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ABSTRACT

Cancer is an increasing public health problem in the world with about 17.5 million new cases
and 8.7 million cancer deaths reported in 2015 alone. The development of drug resistant
cancer cells represents one of the major challenges in cancer chemotherapy. The ever
growing incidences of cancer, and the rapid development of drug resistance, has made it
necessary to discover novel drugs to tackle this menace. A survey of current pharmaceutical
drugs revealed that 60% of cancer therapeutics are derived from natural products. Due to
drug resistance, the search for new anticancer agents has continued, especially among plant
metabolites. Members of the family Leguminosae and Moraceae produce a broad variety of
heterocycles compounds with a wide range of biological activities, including anticancer
activities, indicating that these families could be sources of anticancer agents.

Chromatographic separation of the CH,Cl,/MeOH (1:1) extracts of six plants belonging to
the Leguminosae (Ormocarpum kirkii S x Moore, Derris trifoliata Lour, Lonchocarpus
bussei Harms, Lonchocarpus eriocalyx Harms) and Moraceae (Dorstenia kameruniana Engl
and Streblus usambarensis (Engl) x CC x Berg) families resulted in the isolation of forty one
compounds (1-41), of which nine are new. Thus a new rotenoid derivative, 7a-O-methyl-
12a-hydroxyelliptonol (16), along with eight known compounds (a pterocarpan, five rotenoid
derivatives and two isoflavones) were isolated from the roots of Derris trifoliata.
Phytochemical investigation of the leaves of Lonchocarpus bussei resulted in the
identification of a new isoflavone, 4'-prenyloxyvigvexin A (24) along with four known
isoflavones. The stem bark of Lonchocarpus eriocalyx afforded a new pterocarpan,
(6aR,11aR)-3,8-dimethoxybitucarpin B (33) along with a known pterocarpan. The roots and
twigs of Dorstenia kameruniana yielded three new benzylbenzofuran derivatives, 2-(p-
hydroxybenzyl)-6-hydroxybenzofuran (34), 2-(p-hydroxy-benzyl)-6-hydroxy-7-
methoxybenzofuran (35) and 2-(p-hydroxy-benzyl)-6-hydroxy-4'-prenylbenzofuran (36)
(named dorsmerunin A, B and C, respectively), along with a known coumarin known and a
chalcone. Similar investigation of the roots and stems of Streblus usambarensis yielded three
new unusual naphthobenzofuran derivatives, 2,3-(5-hydroxy-naphtalene)-6,7-chromene-5-
hydroxybenzofuran (39), 2,3-(5'-methoxy-naphthalene)-6,7-chromene-5-hydroxybenzofuran
(40) and 2,3-(5'-methoxy-naphthalene)-6-methoxy-5-hydroxy-7-prenylbenzofuran  (41)
named usambarin A, B and C, respectively. The structures of the isolated compounds were
elucidated by mass spectrometry and NMR (*H NMR, *C NMR, COSY, NOESY, HSQC
and HMBC) spectroscopy. The absolute configuration of some of the chiral compounds was
determined by ECD spectroscopy.

The cytotoxicity of the isolated compounds was determined based on the resazurin assay
using drug-sensitive and multidrug-resistant cancer cell lines. Among the tested compounds,
5,7-dihydroxy-4'-methoxy-6,8-diprenylisoflavone  (2), osajin (3) and 7,7"-di-O-
methylchamaejasmin (4) displayed 1Cso values below 20 puM in both CCRF-CEM and
CEM/ADR5000 cells, while 3',6,7-trimethoxyl-4',5'-methylenedioxyisoflavone (27) and
durmillone (28) were active against leukemia CCRF-CEM cells; 4-hydroxylonchocarpin (29)
and durmillone (28) against its resistant counterpart CEM/ADR5000 cells. Bergapten (37)
and licoagrochalcone A (38) showed good activities (ICso values of 7.17 uM and 5.16 uM,
respectively) against CCRF-CEM leukemia cells. Usambarin B (40) had significant effects
towards CEM/ADRS5000 leukemia cells with 1Cs value of 6.13 uM. Osajin (3) and 7,7"-di-
O-methylchamaejasmin (4) had significant cytotoxic effects with 1Cs values below or around
10 pM against 7 carcinoma cells and against the normal AML12 hepatocytes (4/7, 5/7 and
7/7). Durmillone (28) showed ICs, values below 10 puM against the resistant breast
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adenocarcinoma MDA-MB231/BCRP cells and resistant gliobastoma U87TMG.4EGFR cells.
Licoagrochalcone A (38) also showed cytotoxicity against 7 sensitive or drug-resistant solid
tumor cell lines (breast carcinoma, colon carcinoma, glioblastoma) with 1Cs, values below 50
MM, whilst bergapten (37) showed selective activity. Usambarin B (40) and usambarin C (41)
had cytotoxic effects against the 7 tested carcinoma cell lines with ICs, values below 63 uM.
Cytotoxicity of some isolated compounds was also assessed against human embryonic kidney
cells (HEK293). The highest activity was observed for rotenone (10) an ICs value of 0.82
0.02 uM while the rotenoloids 7a-O-methyldeguelol (12) and 7-a-O-methylelliptonol (18)
showed cytotoxicity with an ICsq values of 9.4 + 0.25 pM and 7.1 = 0.50 pM, respectively.
The isoflavones, 5,7-dihydroxy-4'-methoxy-6,8-diprenylisoflavone (2) and osajin (3) showed
comparable activity (ICso 27.1 and 27.3 + 2.0 uM, respectively) against this cell line.

Further studies were conducted to determine the modes of action of osajin (3) and 7,7"-di-O-
methylchamaejasmin (4). The result showed osajin (3) and 7,7"-di-O-methylchamaejasmin
(4) caused cell cycle arrest in GO/G1 phase as well as apoptosis with significant increase of
cells in sub-GO/G1 phase. The activity of caspases in CCRF-CEM cells showed that the two
compounds did not increase the activity of caspases 3/7, 8 and 9. These compounds (3, 4)
induced apoptosis in CCRF-CEM cells mediated by MMP alteration and increased ROS
production. Overall, the study has demonstrated that the plants investigated here elaborate
diverse range of phenolics with some having unique structural features. These plants are also
good sources of cytotoxic compounds with potential use in cancer therapy.

34 R"=R?=H 41
35 R'=0OCH;, R?=H
36 R'=H,R?=prenvl
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CHAPTER ONE

INTRODUCTION

1.1 Background

Many plants have a long history of usage as therapeutic agents. In 1500 BC, the ancient
Egyptian documented over 700 medicinal herbs in ‘Ebers Papirus’, including the use of
Willow as tree an antipyretic agent (Viktorin, 1999). The antimalarial application of
Artemisia annua in Chinese traditional medicine was documented in ‘The handbook of
prescription for emergencies’ (Govindarajan et al., 2005). The Indian Ayurvedic describes
medicinal uses of approximately 1,000 herbs and shrubs (Aggarwal et al., 2007). The Persian
and Arab civilizations are credited for starting a healthcare system, rich in the use of
traditional medicinal plants (Castleman, 2001). In many developing countries, herbal
medicines remain important in the treatment of numerous ailments. According to World
Health Organization, about 80% of the world population in developing countries still relis on
traditional medicine for their primary health care (Ekor, 2013). The wide use of traditional
medicine in primary healthcare and the rich biodiversity has made significant contribution to
the development of modern medicine. Many of the current pharmaceutical drugs have their
roots in herbal remedies. For example, morphine (42) which is used as a pain reliever was
isolated from Opium. The common antipyretic and analgesic agent, aspirin (43), was derived
from the natural compound, salicylic acid which was isolated from the bark of Willow tree
Salix alba L (Viktorin, 1999); the antimalarial drug quinine (44) was obtained from the
Cinchona species. Following the resistance of Plasmodium falciparum to the commonly used
antimalarial drugs, the relatively new antimalarial drug artemisinin (45), was isolated from
the Chinese traditional medicinal plant have, Artemisia annua (Lombardino and Lowe, 2004).

Plants also played a significant role in the discovery of anticancer drugs.



Cancer is a group of associated diseases, which involves abnormal cell growth that are unable
to perform normal cell function and can spread to the surrounding tissues and other body
parts (Bunz, 2008). It is mainly caused by bacterial or viral infections, family history, and
exposure to chemicals; environmental factors, and risky life-style also contribute as to
increase of cancer incidebts in recent year (Anand et al., 2008; Irigaray et al., 2007; Perera,
1997). Cancer is the leading cause of deaths worldwide, after cardiovascular diseases, with
about 17.5 million new cases and 8.7 million cancer deaths reported in 2015 alone

(Fitzmaurice et al., 2017).

Plant-derived cancer chemotherapeutic agents have remained an integral part of cancer
therapy. The anticancer agent taxol (46) was derived from the bark of the pacific Yew tree,
Taxus brevifolia (Wani et al., 1971); the vinca alkaloids, vinblastine (47) and vincristine (48),
are naturally occurring antineoplastic agents, obtained from Madagascar periwinkle,
Catharantus rosesus. The semi-synthetic derivatives vinorelbine (49) and vindezine (50)
derived from these alkaloids are currently in use for the treatment of a variety of cancer types

(Cragg and Newman, 2005; Sisodiya, 2013).

Despite the fact that there are advances in the treatment of cancer through the discovery of
new cancer treatment agents, cancer still presents a major global burden mainly due to Multi—
Drug-Resistance (MDR) incidences of cancer. MDR cells reveal cross- resistance to diverse
drugs which are structurally and functionally unrelated, which leads to failure of cancer
chemotherapy. Drug resistance is believed to cause about 90% MDR treatment failure in

metastasis cancer patients (Longley and Johnston, 2005).



47 R=CH,
48 R = CHO

1.2. Statement of the Problem

Cancer is an increasing public health problem in the world, with 17.5 million new cases and
8.7 million cancer deaths reported in 2015 worldwide (Fitzmaurice et al., 2017).. To make
the matter worse, it is expected that there will be 26 million new cancer cases and 17 million
cancer deaths per year over the next two decades (Thun et al., 2010). It has remained the
main cause of death in economically developed countries and the second leading cause in
developing countries (Jemal et al., 2011). In Kenya, cancer is the third leading cause of
mortality with 7% of total deaths each year attributed to cancer. It is estimated that 40,000
new cases and over 28,000 deaths occur annually in this country (Topazian et al., 2016).

Surgery, radiation and chemotherapy are the main choices of treatment of cancer. However,



in most cases such treatment options are effective only when the tumour is small in size and
localized. In addition to this, most of the drugs currently available induce side effects by
affecting the normal cells too. Resistance to chemotherapeutic drugs is the other main
obstacle to effective cancer treatment with upto 80% of cancer patients developing resistance
to drugs (Alfarouk et al., 2015; Geretto et al., 2017; Velingkar & Dandekar, 2010). Hence,
the search for new anticancer drugs that successfully kill the cancer cells without

significantly affecting normal cells has become of paramount importance in recent years.

1.3. Objectives

1.3.1. General Objective
The general objective of this study was to identify anticancer principles from selected plants

of the Leguminosae and Moraceae families.

1.3.3. Specific Objectives
The specific objectives of the study were to:

I. Isolate and characterize compounds from Ormocarpum Kirkii, Derris trifoliata,
Lonchocarpus eriocalyx, Lonchocarpus bussei, Dorstenia kameruniana and Streblus
usambarensis;

ii.  Establish the anticancer activities of the isolated compounds against drug sensitive
and multidrug resistant cancer cell lines;

iii.  Determine the mode of action of some of the active compounds.

1.4. Justification

The use of medicinal plants is still widely practiced and has played an important role in the
field of drug discovery. A survey of the currently used pharmaceutical drugs revealed that
60% of cancer chemotherapeutics are either natural products or their synthetic derivatives

(Newman & Cragg, 2012). A similar study showed that, out of 175 natural anticancer agents



reported since 1940’s to the end of 2014, 49% were approved as anticancer drugs (Newman
and Cragg, 2016). Plants remain potential sources of first-line anticancer drugs, as
exemplified by the development of vinblastine, vincristine, camptothecin, podophyllotoxin,
paclitaxel and some of their derivatives that are obtained from medicinal plants (Cragg and
Newman, 2005; Sisodiya, 2013). Thus, isolating and identifying the bioactive constituents
from medicinal plants will have great contribution in addressing this global problem.
Members of the families Leguminosae and Moraceae produce a broad variety of heterocyclic
compounds with a wide range of biological activity including cytotoxic compounds. It is thus
postulated that phytochemical studies on these families would lead to the discovery of

anticancer lead compounds.



CHAPTER TWO

LITERATURE REVIEW

2.1 Background Information on Cancer

Cancer is the uncontrolled growth of cells which disables the normal cell function. This rapid
division leads to a solid mass of cells known as a tumour. The initial tumour, known as the
primary tumour, is often not the cause of death, but secondary growth when cancerous cells
break away from the primary tumour to the blood stream and lymphatic system and seeds
new tumour elsewhere in the body, a phenomenon referred to as metastasis (Bunz, 2008).
Most cancer cases result from exposure to an ever increasing number of chemicals in the
environment, risky life-style, unhealthy diet, viral or bacterial infections and inheritance are

also contributing factors to cancer (Anand, et al., 2008; Irigaray, et al., 2007; Perera, 1997).

There are several types of treatment modalities available for cancer. However, most cancer
treatment practices combine two or more therapeutic methods. Surgery is the most common,
where primary treatment of cancer is done by removing the tumour. It may be used alone or
in combination with other treatment methods, such as radiation therapy which requires high
energy irradiation to kill cancer cells with low level of harm to normal cells. This treatment is
applied before, during or after treatment. Another method of cancer treatment is hormone
therapy which involves the use of medicine to remove hormones, or block their actions, and
as the result of the growth of cancer is arrested. Immunotherapy is a cancer treatment in
which the body repairs the immune system to stop or slow the growth of cancer cells and to
prevent the cancer cells from spreading. Chemotherapy is a drug based treatment and is
usually recommended to all cancer patients, and chemotherapy can be administered

intravenously or orally (Miller et al., 1981; Palmer, 1982).



2.2 Cancer Chemotherapeutics Agents
Anticancer drugs are classified into several groups according to their mechanism of action.
These include alkylating agents, antimetabolites, antimicrotubules, antibiotics and

topoisomerase inhibitors (Sarah, 2008).

2.2.1 Alkylating Agents

Alkylating agents include classes of compounds comprising of nitrogen mustards,
alkylsulfonates, piperazines, nitrosoureas, tetrazines and platinum compounds. They inhibit
cancer cells growth by cross-linking DNA strands and are the most common antineoplastic

chemotherapy drugs used for the treatment of Hodgkin’s lymphoma and brain cancer

(Celkan, 2013; McClean et al., 1999).

2.2.2 Antimetabolites

Antimetabolites contain folic acid antagonistic, purine and pyrimidine analogues. They
inhibit cell division by inhibiting nucleotide synthesis or interfering with DNA and
preventing the synthesis of a new extension of the DNA strand. Methotrexate, fluorouracil
and pentostatiol are some of the common antimetabolite drugs (Hillcoat et al., 1978; Kaye,

1998).

2.2.3 Antimicrotubular Agents

Naturally occurring compounds such as vinca alkaloids and taxanes are the two main groups
of anti-microtubule agents. The mechanism of action of the vinca alkaloids, vinblastine and
vincristine, in the treatment of cancer is by binding to the protein tubulin and inhibiting
polymerization and forming microtubules resulting in the blockage of cell proliferation
whereas taxanes, paclitaxel and docetaxel act by inhibiting microtubule disassembly
(Dumontet and Jordan, 2010). These classes of drugs are used mainly for the treatment of

ovarian and breast cancer (Zeng et al., 2000).



2.2.4 Antibiotics
Antineoplastic antibiotics are derived from streptomyces bacteria (Watve et al., 2001), and
act by binding to DNA and blocking the synthesis of RNA. These groups of agents include

doxorubicin, plicamycin, bleomycin and mitomycin C (Davey & Tudhope, 1983).

2.2.5 Topoisomerase Inhibitors

Topoisomerases bind to DNA creating a DNA topoisomerase complex; they are involved in
DNA-metabolism reaction, such as replication, transcription, recombination and chromosome
segregation (Beretta et al., 2013). Inhibition of topoisomerase function results in the cleavage
of DNA topoisomerase complex, leading to cell death (Wozniak & Ross, 1983).
Topoisomerase | inhibitors include camptothecin and its derivatives, topotecan and irinotecan
which are used for the treatment of ovarian, lung and prostate cancer. Topoisomarase Il
inhibitors are used in the treatment of leukemia, lymphoma and breast cancer. They include
several classes of compounds, such as anthracyclines, amsacrines and anthracenediones

(Gordon et al., 2001).

2.3 Plant based Anticancer Drugs
Several drugs of plant origin are used as anticancer agents. Some of these drugs and their use

are described in Table 1.



Table 1: Anticancer drugs of plant origin used in modern medicine

Anticancer drugs Source Uses
Vinblastine (47) Cathrantahus roseus Breast cancer, lymphoma, germ cell
tumour
Vincristine (48) Cathrantahus roseus Leukemia, Lymphoma, neuroblastoma,

breast, lung cancer

Vinorelbine (49) Derivative of vinblastine Breast, osteosarcoma, lung cancer
Vinflunine (51) Derivative of vincristine Non-small cell lung cancer, breast
carcinoma
Paclitaxel (46) Taxus brevifolia Ovary, breast, kaposi’s sarcoma and

non-small cell lung cancer

Docetaxel (53) Derivative of paclitaxel Breast, prostate and lung cancer
Cabazitaxel (54) Semi-synthetic derivative of Metastasis hormone-refractory prostate
paclitaxel cancer
Topotecan (52) Semi-synthetic derivative of Metastasis ovarian cancer, small cell
campotothecin lung cancer and pediatric cancer

(Haque et al., 2016; Moudi et al., 2013; Ojima et al., 2016)

53 R'=R?=0OH o}
54 R'=R?=0CHj4



2.4 Multi-Drug Resistance (MDR) in Cancer Chemotherapy

Resistance to chemotherapeutic drugs is one of the main challenges in effective cancer
treatment. Multi-drug resistance occurs when cancer cells become resistant to different
classes of drugs which are structurally and functionally unrelated and have different
molecular targets (Gottesman, 1993). Cancer drug resistance may be intrinsic, where tumour
cells initially susceptible to certain chemotherapies or acquired, resistance during the process
of treatment through DNA mutation and metabolic change (Holohan et al., 2013). Different
genes and mechanisms contribute to multidrug resistance in cancer; these include change in
the activity of specific enzyme systems involved in cell regulation such as glutathione-S-
transferase and topoisomerase I/11 (Hao et al., 1994; Seitz et al., 2010). Alteration of protein
levels that control apoptosis can also reduce the effectiveness of anticancer drugs. The ATP-
binding cassette (ABC) transporters family mediate multi-drug resistance through the
hydrolysis of ATP-dependent drug efflux pumps (Holohan, et al., 2013; Housman et al.,
2014). To address the problem of drug resistant, the development of new drugs that are

cytotoxic towards multidrug resistance cancer cells is of high priority.

2.5 Botanical Information of the Leguminosae and Moraceae Families

2.5.1 The family Leguminosae

The family Leguminosae (commonly known as the legume, pea or bean family), with about
700 genera and over 18,000 species, is the third largest family of the flowering plants after
the Asteraceae and Orchidaceae (Lewis, 2005). It belongs to the class of dicotyledons and is
divided into three subfamilies known as Papilionoideae, Mimosoideae and Caesalpinioideae
(Kaess & Wink, 1996). The subfamily Papilionoideae is the largest group in the legume and

is classified into 33 tribes (Polhill, 1981). The family representatives range from giant plants
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to ephemerals and distributed from the equator to the edge of the cold and hot deserts

(Polhill, 1981).

2.5.1.1 The Genus Ormocarpum

The genus Ormocarpum belonging to the subfamily Papilionoideae tribe Dalbergieae
comprises approximately 25 species, with 17 of which restricted to Africa (Lock, 1989). In
the flora of East Africa, there are 8 species recorded, of which 6 species are found in Kenya
(Gillett, 1971). Ormocarpum kirkii S x Moore is a shrub or a small tree (Figure 1) which is
distributed in Somalia, Kenya, Tanzania, Malawi, Mozambique, Zaire, Zimbabwe and South
Africa (Gillett, 1971). In Kenya, it is found in Machakos, Kajiado and Lamu counties (Gillett,

1971).

Figure 1: Ormocarpum kirkii S x Moore picture taken by Mr. Patrick Chalo Mutiso in Sep
2014

2.5.1.2 The Genus Derris
The genus Derris belongs to the tribe Millettieae, subfamily Papilionoideae, family

Leguminosae. It consists of 50 species, with one costal species, Derris trifoliata Lour,
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distributed in the tropical region of Asia and East Africa (Adema, 2003). In the flora of
Kenya, the genus is represented by Derris trifoliata Lour, found in Kilifi county, coastal

region of Kenya (Gillett, 1971).

2.5.1.3 The Genus Lonchocarpus

The genus Lonchocarpus belongs to the family Leguminosae, subfamily Papilionoideae and
comprises of over 100 species found in tropical America, Africa and the Caribbean Islands
(Magalhaes et al., 1996). Some taxonomists consider the genus Lonchocarpus to be one of
the complex genera within the tribe Millettieae, which also includes the genera Derris and
Millettia (Lavin et al., 1998; Polhill, 1981). Six Lonchocarpus species are recorded in the
flora of tropical East Africa. In Kenya, the genus is represented by three species;
Lonchocarpus bussei Harms, L. eriocalyx Harms and L. kanurii Brenanand Gillet (Beentje,

1994).

Q) (1)
Figure 2: Picture of Lonchocarpus bussei Harms (I) and Lonchocarpus eriocalyx Harms
[taken by Mr. Patrick Chalo Mutiso in Kaya Muhaka forest, January 2018.]
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2.5.2 The family Moraceae

The Moraceae is a family of flowering plants comprising 6 tribes with over 40 genera and
about 1,000 species, is distributed in the tropics, subtropics and in temperate region (Corner,
1962). Most plants in this family are shrubs, trees, herbs, featuring woody stem, alternative or
opposite leaves, unisexual flowers and fruits are multiple. Some of the species have a great
agricultural and economic importance. The bark of Broussonetia (paper mulberry) is used for
the manufacture of cloth and paper. Several species in the genera Morus, Ficus, and
Arthocarpus (breadfruit and jackfruit) are cultivated for their edible fruits. The genus Ficus is

also known for their latex and timber production (Mahbubur Rahman, 2013).

2.5.2.1 The Genus Dorstenia

The genus Dorstenia, consists of about 170 species, is the biggest genus of the family
Moraceae (Mabberley, 1987), and is distributed in tropical Africa, the Middle-East, central
and southern America (Abegaz & Ngadjui, 1999). There are 28 species recorded in the flora
of East Africa, 13 of which are found in Kenya (Polhill, 1989). Among the Kenyan species,
Dorstenia Kameruniana Engl grows in Gongoni, Mwele Mdogo and Cha Simba forest

(Polhill, 1989).

2.5.2.2 The Genus Streblus

The genus Streblus comprises about 25 species and is mostly distributed in tropical and
subtropical Asia (Roy, 2013). In Kenya, the genus is represented by Streblus usambarensis
(Eng,) x CC x Berg (Beentje, 1994), which is a shrub and found in Mombasa and Kilifi

counties (Beentje, 1994).
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Figure 3: Picture of Dorstenia kameruniana Engl (I) and Streblus usambarensis (Eng,) x CC
x Berg (11) [taken by Mr. Patrick Chalo Mutiso in Ukunda, Gongoni forest in January 2018.]

2.6 Ethnomedicinal Uses of Plants from the Leguminosae and Moraceae Families
Ethnomedicinal applications of some plants of the Leguminosae and Moraceae families are

given in Table 2
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Table 2: Ethnomedicinal uses of some plants of the Leguminosae and Moraceae families

Genus Species Ethinomedicinal uses

Reference

rmocarpum The roots and leaves are used for
treatment of abscess and cellulites.

Boiled roots are drunk against fever,
rheumatism, stomach troubles and
infectious disease.

O. kirkii

The ash of the roots of this plant is
used for allergic diseases and to
decrease oedemas.

O. trichocarpum The Leaves used for the treatment of
stomach-related ailments.

The bark of this plant is used to induce

Maregesi et al., 2007;
Nyandat et al., 1990

vomiting for suspected poisoning. Miller, 1997
erris
D. trifoliata Different parts of this plant is used in Cheenpracha et al.,
the control of ticks and other 2007
ectoparasites in cattle and sheep.
D. indica Different part of this plant is used in
the treatment of bronchitis, cough,
rheumatic joints and diabetes. Koysomboon et al.,
2006
D. scandnes The dried stem is used for the
management of cough, inflammation,
urinary tract obstruction, muscle aches Mahabusarakam et al.,
and pains. 2004
anchocarpus The bark is used in the treatment of
) blood pressure and to reduce sugar
L. eriocalyx Kareru et al., 2006
level.
The roots and the stem bark is used in
i the management of fever and
L. bussei Chhabra et al., 1990

abdominal pain.
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Dorstenia D. convexa

D. kameruniana

D. foetida

D. barteri

The leaves-infusion is used as an
enema for a children’s disease called
‘lunyama’.

The leaves is administrated for the
treatment of cough, headache and
stomach pain.

The juice of the aerial part used for
treating skin diseases.

The roots are taken against leprosy,
liver diseases and to remove intestinal
worms.

The leaves and twigs are used in the
treatment of mumps, yaws and for
infected wounds.

Terashima, 1992

Abegaz et al., 1998

Al-Fatimi et al., 2007

Tsopmo et al., 1999

reblus S. asper

S. indicus

Different parts of this plant are used
for relief of fever, toothache,
dysentery, gingivitis, wound

decoction, epilepsy, cardiac disorder

and oedema.

The bark is used for the treatment of
inflammation and various rheumatoid
diseases.

Rastogi et al., 2006

Zhao et al., 1999

2.7 Phytochemistry and Biological Activities

2.7.1 Phytochemistry and Bioactivity of Ormocarpum species

The presence of monomeric flavonoids have been reported from the genus Ormocarpum. For

example, an isoflavone, 7-O-glucosyldiphysolone (55) was previously isolated from the roots

of Ormocarpum kirkii (Xu et al., 2012); an isoflavanone, 4"-hydroxydiphysolone (56) has

also been isolated from the roots of this plant (Dhooghe et al., 2010). Dimeric flavanones
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having 1-3,11-3 linkage (57-58), a biflavone with 1-3,11-3 linkage (59) and a coumarin
glycoside (60-61) have also been reported in Ormocarpum Kirkii (Dhooghe et al., 2010;
Nyandat et al., 1990; Xu et al., 2012). The isolated compounds from Ormocarpum Kirkii have
been evaluated for antimicrobial, antileshmanial (against Typanosoma cruzi and Typanosoma
brucei) and antiplasmodial (aganst the chloroquine-resistance K1 strain of Plasmodium
falciparum) activities. The monomeric isoflavone 4"-Hydroxydiphysolone (56) showed no
activity against all bacteria and parasites (Dhooghe, et al., 2010). On the other hand the
dimeric isoflavone Isochamaejsmin (57) revealed antiplasmodial activity with I1Cs 7.3 = 3.8
MM whereas apigeninyl-(I-3, 11-3)-naringenin (58) showed activity against T. rubrum (ICsg
7.0 £ 6.4 pM) with cytotoxicity (CCso 50.2 + 16.3 pM) against MRC-5 cells. 5,5'-Di-O-
methyldiphysin (59) showed moderate activity against all parasites and bacteria (Dhooghe et

al., 2010).

OH
55 R'=Glc R2=H
56 R'=OH R2=H

OR*

57 R'=H R?2=0H R®*=0OH R*=H R®=OH
58 R'=Glc R2=0OH R®=0OH R*=GIlc R®=0OH
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60 R'=OCH; R?=0H R®=0OCHj,4
61 R'=0OH R?>=0CH; R®*=OH
2.7.2 Phytochemistry and bioactivity of Derris species
Many compounds including flavonoids, rotenoids, chalcones, pterocarpans and other

constituents have been isolated from Derris species.

The major class of compounds of the genus Derris is the flavonoids including isoflavons; 4'-
hydroxy-5,7-dimethoxy-6-(-3-methyl-2-butinyl)-isoflavone (62) and derrubon-5-methyl ether
(63) reported from stems of Derris eriocarpa and possess antifungal activities against
Trichophyton mentagrophytes with an MIC value of 25 pg/ml for both compounds and
against Microsporum gypsium with MIC values 12.5 pg/ml and 25 pg/ml, respectively
(Zhang et al., 2014). A flavanone derivative, lupinifolin-4'-methyl ether (64) has been
isolated from the seed pods of Derris trifoliata (Yenesew et al., 2009). The seed-pods extract
of Derris trifoliata was reported to be active against the D6 and W2 strains of Plasmodium
falciparum with ICsq values of 12.2 + 2.4, 13.4 + 2.6 pg/ml, respectively, but was inactive
(LCso above 20 pg/ml) towards 2™ instar larvae of Aedes aegyptii. Lupinifolin-4'-methyl
ether (64) isolated from this extract exhibited significant inhibitory effect against the D6 and
W2 strains of Plasmodium falciparum with 1Cs, values of 12.9 £ 1.6 and 15.0 = 2.5 pg/ml,
respectively, but was inactive (LCsy above 20 pg/ml) towards 2" instar larvae of Aedes

aegypti (Yenesew, et al., 2009). The flavanones, 2™, 3™-epoxylupinifolin (65) and
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dereticulatin (66) have been reported from the stem of Derris reticulata and inhibited P-338

cell line (0.4-0.5ug/ml) (Mahidol et al., 1997).

Another type of constituents of the genus Derris are the rotenoids, represented by the
common rotenoids, rotenone (67), deguelin (68) and toxicarol (69), which occur widely in the
genus (Lu et al., 2008; Yenesew et al., 2006; Yenesew et al., 2005). Rotenoids are well
known for their anticancer activities; deguelin (68) and toxicarol (69) have been reported to
show remarkable antitumor effects on mouse skin tumors in an in vitro two stage
carcinogenesis test (Konoshima et al., 1993; Udeani et al., 1997 ). Rotenone, a compound
isolated from the roots of Derris trifoliata has shown high larvicidal activity to the second
instar larva of Culex quinquefasciatus (LCso value 1.45 + 0.1 ug/mL) (Yenesew, et al., 2005).
Apart from the usual rotenoids, rotenoid derivatives with unusual skeleton having an open
ring C, 7a-O-methyl-12a-hydroxydeguelol (70), and the spiro rotenoid, spiro-13-homo-13-
oxaelliptone (71), have been isolated from the seeds of Derris trifoliata. 7a-O-
Methyldeguelol (72) and 7a-O-methylelliptonol (73) were also reported from the roots and

stem of Derris trifoliata (Cheenpracha, et al., 2007; Yenesew et al., 2006; Yenesew et al.,
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2005). 7a-O-Methyldeguelol (72) has been reported to exhibit cytotoxic effect against NCI-

H187 cell lines (Cheenpracha, et al., 2007).

OCH;

The chalcones laxichalcone (74) and derrichalcone (75) have been isolated from the roots of
Derris laxiflora (Lin et al., 1992). The prenylated chalcone, 2', 4'-dihydroxy-4-methoxy-3'-
prenylchalcone (76) has been isolated from the leaves of Derris malaccensis (Siripaisarnpipat
et al., 2007). The chalcones, derrischalcone (77), tunicatachalcone (78), and obovatachalcone
(79) isolated from the fruits of Derris indica showed cytotoxic activity with ICsy value in the
range of 0.59 to 7.0 pg/ml and 2.6 to 5.3 pg/ml against cholangiocarcinoma cell line (M156)

human hepatoma (HEPG,) cells, respectively (Decharchoochart et al., 2014).
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OH O 77 R' = R? = -OCH,0-
76 78 R'=R?=H

o
O

OH O
79

From the whole plant of Derris laxiflora, the pterocarpans, lespedezole (80) and derrispisatin
(81) (Chien et al., 2016) were reported. Addtional pterocarpans, pterocarpadiol A-D (82-85),
were reported from twigs and leaves of Derris robusta (Li et al., 2015). NOESY correlation
was used to establish the relative configuration at C-6a and C-11a of compounds 80 and 81.
There are two possible isomers for these compounds: (6aR,11aR) or (6aR,11aR). To
determine the correct absolute configuration for compound 80 and 81, the CD spectra were
measured and compared to the theoretical predicted CD spectra for the two isomers

(Yenesew et al., 1998a).
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82 R'=R?=0CH,0
83 R'=H R?=0CH;

84 R'=R?=0CH,0

85 R'=H R?=0CH3
2.7.3 Phytochemistry and Bioactivity of Lonchocarpus species
Phytochemical studies of the genus Lonchocarpus revealed that the genus mainly elaborate
flavonoids (including chalcones, pterocarpans and rotenoids), dibenzoylmethane and
stilbenes. Chemical investigation of the roots of Lonchocarpus latifolius led to the isolation
of a flavone, 3,5-dimethoxy-2",2"-dimethylpyrano-(5",6":8,7)flavone (86); flavanones, 3-
methoxy-(2"-3":7,8)-furanoflavanone (87) and 3',4'-methylenedioxy-(2"-3":7,8)-
furanoflavanone (88) and a flavan, (2,3-trans-3,4-trans)-3,4-dimethoxy-(2",3":7,8)-
furanoflavan (89) (Magalhaes et al., 2000). From the leaves of Lonchocarpus xuul and
Lonchocarpus yucatanensis flavones including 5,4'-dihydroxy-3'-methoxy-(6:7)-2,2-
dimethylpyranoflavone (90) and 5,4'-dimethoxy-(6:7)-2,2-dimethylpyranoflavonen (91) have

been reported (Borges-Argaez et al., 2002).
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OCH-0

87 R'=R?=H R®=0OCHj,4
88 R'=R?=0-CH,-O R3 = OCHj,4

90 R=O0H R'= OCH; R?=OH
91 R=0CH; R'=HR?= OCHj,4

The genus Lonchocarpus also contains rotenoid derivatives including 12a-hydroxyrotenone
(92) and pterocarpans such as medicarpin (93) (Magalhaes, et al., 2000; Magalhaes et al.,

1996).

The other classes of compounds isolated from this genus are dibenzoylmethane and stilbenes.
From the roots of Lonchocarpus latifolius and L. muehlbergianus 2'-methoxy-[2",3":4",3"]-
furanodibenzoylmethane (94), 3.4-methylenedioxy-2'-methoxy-[2",3":4",4']-
furanodibenzoylmethane (95) and 2'5',6'-trimethoxy-[2",3",4",3']-furanodibenzoylmethane

(96) have been isolated (Magalhaes et al., 1997). Prenylated stilbenes including chiricanines
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A-C (97-99) have been reported from Lonchocarpus chiricanus (loset et al., 2001).
Chiricanines A (97) exhibited antifungal effects against Cladosporium cucumerinus with
MIC value 5 pg/ml, but Chiricanines B-C (98-99) were not active against this fungus.
Chiricanines A-C (97-99) have tested for larvicidal activity against Aedes aegypti of which
97 was active with 1Csg values of 6 pg/ml, while 98 and 99 were inactive (ICso >50 pg/ml)

(loset et al., 2001).

94 R"=R*=R®=R*=H
95 R'=R2=H R®=R*=0CH,0
96 R'=R?=0CH;R®*=R*=H

2.7.4 Phytochemistry and Bioactivity of Dorstenia Species

The genus Dorstenia is a rich source of prenylated and geranylated flavanones, flavones,
flavonols, chalcones, coumarins, styrenes and benzofurans. Monoprenylated as well as
diprenylated flavanones have been reported from Dorstenia species. Dorspoinsettifolin (100)
was obtained from the twigs of D. poinsettifolia (Ngadjui et al., 1999). The diprenylated
flavanone, dinklagin A (101), has been reported from Dorstenia dinklagei (Ngadjui et al.,
2002). The authors did not establish the configuration of Dorspoinsettifolin (100) and

dinklagin A (101) at C-2 of ring C.
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The flavones reported from Dorstenia species contain up to three prenyl groups. The
monoprenylated flavones of Dorstenia include 6-prenylapigenin (102), isolated from D.
cilata, D. dinklagei and D. kameruniana (Abegaz et al., 1998; Ngadjui, et al., 2002). 6-
Prenylapigenin (102) has been tested against growth profiles and viability of HL-60
promyeloytic leukaemia cells and was not toxic at low concentration but showed high
toxicity at 100 uM (Abegaz et al., 1998). The 8-prenylated isomer, licoflavone C (103), has
been reported from Dorstenia poinsettifolia (Tsopmo et al., 1998). Dorstenia psilurus
produced a number of triprenylated flavones such as dorsilurin F—-H (104-106) (Tabopda et

al., 2008).
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Flavonols with two prenyl groups at C-6 and C-8, dorsmanin D (107) and dorsilurin C (108)
have been isolated from Dorstenia mannii and D. psilurus, respectively (Ngadjui et al., 1998;
Ngadjui, et al., 1999). The geranyl substituted flavonol, dorsmannin C (109), has been
isolated from Dorstenia mannii and D. tayloriana (Ngadjui, et al., 1998). The anti-oxidant
activity of prenylated flavonoids isolated from Dorstenia mannii have been reported and
dorsmanin C (109) showed significant binding to copper ions (Dufall et al., 2003).The
geranylated flavonol derivative, poinsettifolin A (110), has been isolated from Dorstenia

poinsettifolia (Tsopmo, et al., 1998).

Chemical investigation of the twigs of Dorstenia mannii yielded the prenylated chalcone, 4-
hydroxylonchocarpin (111) (Ngadjui et al., 1998). Isobavachalcone (112) has been reported
from Dorstenia kameruniana and Dorstenia ciliata (Abegaz et al., 1998). A chalcone having
two prenyl groups, stipulin (113), has been reported from Dorstenia kameruniana, D. ciliate,
and D. dinklagei (Abegaz et al., 1998; Ngadjui et al., 1998). The cytotoxicity of stipulin

(113) has been reported against promyeloytic leukaemia (HL-60) with EDsy of 50 uM
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(Abegaz et al., 1998). Dorstenia kameruniana and Dorstenia mannii have also yielded the
bis-dihydropyran derivative (114) (Abegaz et al., 1998; Ngadjui et al., 1998). Investigation of
the aerial part of Dorstenia poinsettifolia and D. proropens, resulted in the isolation of the
geranylated chalcones, Poinsettifolin B (115) and proropensin (116) (Abegaz et al., 2002;
Tsopmo, et al., 1998).
0 OH HO OH
N O N = O X O
OH O
112

OH O
111

Phytochemical examination of the rhizomes of Dorstenia psilurus led to the isolation of the
furanocoumarin derivative, psoralen (117) (Ngadjui, et al., 1998). Psoralen (117) is
recognized as cytotoxic, antitumour promoter, artemicide, antimutagenic, bacteriophagicide
and viricide (Duke, 1992). Investigation of yet another Dorstenia species resulted in the
isolation of an unusual furanocoumarin, O-[3-(2,2,-dimethyl-3-0x0-2H-furan-5-
yl)butyl]bergaptol (118) from Dorstenia caypiaa which has also been isolated from

Dorstenia contrajerva and Dorstenia elliptica (Terreaux et al., 1995). Compound 118 was
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tested for its antitumor properties, but did not show significant inhibitory activity (Terreaux,

etal., 1995).

The first naturally occurring styrenes which contain a furan moiety, 6-methoxy-5-
vinylbenzofuran (119) and 2,4-dimethoxystyrene (120) were reported from the roots of
Dorstenia barnimiana (Woldu et al., 1988). 6-Methoxy-5-vinylbenzofuran (119) and 2,4-
dimethoxystyrene (120) have been tested against several microbes, but they did not show
significant activity (Woldu, et al., 1988). The benzofuran derivative, 2-(p-hydroxybenzyl)-6-
methoxybenzofuran (121) reported from the leaves of Dorstenia gigas, exhibited antifungal

activity in the Cladosporium bioassay (Franke et al., 2001).
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2.7.5 Phytochemistry and Bioactivity of Streblus Species

They are only few Streblus species which have been phytochemically investigated, most of
the reports being on Streblus asper. From the heart wood of Streblus asper, lignans, erythro-
strebluslignanol (122), threo-7'-methoxylstrebluslignanol (123) and erythro-7'-methoxyl
strebluslignanol (124) have been isolated and the anti-hepatitis B virus activity of these
compounds have been reported with 1Cs values between 131.23 uM and 156.75 puM (Li et
al., 2012). The other lignans reported from the roots of this plant include (7'R,8'S)-4,4'-

dimethoxystrebuslignanol (125), 3'-hydroxy-isostrebluslignaldehyde (126), 3-3'-methylene



and bis-(4-hydroxybenzaldehyde) (127) (Nie et al., 2016). It has been reported that
compounds 125-127 showed good antimicrobial activity against Saccharomyces cerevisiae,
Bacillus subtilis, Pseudomonal aeraginosa, Escherichia coli and Staphylococcus aureus with

MIC values ranging from 0.0183 to 0.0853 uM (Nie, et al., 2016).

123 124
O\ O\
OH OH OH OH
126 127

Cardiac glycosides, (+)-19-hydroxykamaloside (128), (+)-5-hydroxyasperoside (129) and
(+)-3'-de-O-methylkamaloside (130) have been isolated from the stem bark of Streblus asper
(Ren et al., 2017). These compounds show potent cytotoxicity against MV4-11 and Kasumi-1
leukemia cell lines, and H1299 non small cell lung cancer cells with 1Csq values ranging from
160 to 360 nM (Ren, et al., 2017). Furthermore, the presence of cardiac glycosides from
different parts of Streblus asper have been reported (Rastogi et al., 2006a); (Vidhu et al.,

2012).
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The root of Streblus asper also contains the aliphatic esters, hexacosenyl lactones (e.g. 131),
a fatty acid glycoside, cerotic acid glycoside (132) and salicylic glucoside ester, nonadecanyl

salicylate glucoside (133) (Vidhu, et al., 2012).
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Phytochemical investigation of the bark of Streblus indicus yielded the cytotoxic 2,3-dihydro-
1H-indene derivatives indidene A-C (134-136) with inhibitory activity towards human lung
epithelial A549 and human breast carcinoma MCF-7 cells with 1Csy values ranging from 2.2

+0.51t07.2+0.9 uM (He et al., 2016).
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CHAPTER THREE

MATERIALS AND METHODS
3.1 Plant Materials

3.1.1 Ormocarpum kirkii

The roots and stem bark of Ormocarpum kirkii were collected in September 2014 from
Muthetheni location, Machakos County by Mr. Patrick C. Mutiso. The plant was identified
and a voucher speciman (PBC 2016/004) deposited at the University Herbarium, School of

Biological Sciences, University of Nairobi.

3.1.2 Derris trifoliata

The different plant parts of Derris trifoliata were collected at the mouth of river Sabaki in
Malindi, Coast Province, Kenya, in August 2013. The plant was identified by Mr. Patrick C.
Mutiso, of the Herbarium, School of Biological Sciences, University of Nairobi, where a

voucher specimen was deposited.

3.1.3 Lonchocarpus bussei and Lonchocarpus eriocalyx

The plant materials of Lonchocarpus bussei were collected from Muhaka-Kaya forest, Kwale
County, Kenya in January 2016. Lonchocarpus eriocalyx were collected from Muthetheni
location, Machakos County, Kenya in January 2016. The plants were authenticated by Mr.
Patrick C. Mutiso of the University Herbarium, School of Biological Sciences, University of
Nairobi, where voucher specimens (PBC2016/005 for Lonchocarpus bussei and

PBC2016/006 for Lonchocarpus bussei) were deposited.

3.1.4 Dorstenia kameruniana
The roots and twigs of Dorstenia kameruniana were collected in July 2016 from Gondoni

forest, Kwale County, Kenya. The plant was identified and authenticated by Mr. Patrick C.
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Mutiso from School of Biological Sciences, University of Nairobi where a voucher specimen

(PBC 2016/007) was deposited.

3.1.5 Streblus usambarensis

The stem and roots of Streblus usambarensis were collected from Gondoni forest, Kwale
County, in July 2016. The authenticity of the plant was confirmed by Mr. Patrick C. Mutiso
from School of Biological Sciences, University of Nairobi, where voucher specimen (PBC

2016/008) was deposited.

3.2 Methods

3.2.1 General Methods

Column chromatographic separations were performed on Merck silica gel 60 (70-230 mesh).
Further purifications were conducted on Preparative HPLC using Water 600 instruments
loaded with an RP C8 Kromasil (250 mm x 55 mm) column, eluting with H,O/MeOH solvent
system. Gel filtration was done on Sephadex LH-20 eluting with CH,Cl,/MeOH (1:1). PTLC
sparations were done with silica gel on 60 (20 cm x 20 cm) plates. In the cytotoxicity assay,
fluorescence was measured on an Infinite 200 Pro TECAN plate reader. Cell cycle analysis,
Annexin V/VI, JC-1 and H2DCFH-DA staining were measured on a flow cytometer LSR-
Fortessa FACS analyser (Bacton-Dickinson, Heidelberg, Germany). NMR spectra were
recorded on Varian VNMR-S 500, BRUKER AVANCE 600 and BRUKER AVANCE IlI
HD 800 spectrometers. The NMR spectra were processed using MestReNova 10.0 software.
The HRESIMS were acquired on GC-TOF micromass (Waters Inc.). LCESIMS was acquired
on Perkin Elmer PESUEX API 150EX. UV spectra were acquired on specord S 600. Melting
points were determined on SMP 10 apparatus. Electronic Circular Dichroism spectra were
measured using JASCO J-815. Optical rotations were read on AUTOPOL IV. IR spectra were

measured on Perkin ElImer UATR Two instrument.

33



3.3 Extraction and Isolation of Compounds

3.3.1 Extraction and isolation of compounds from the stem bark of Ormokarpum Kirkii

The stem bark of Ormokarpum kirkii was air dried and crushed into powder. The powdered
stem bark (1.5 kg) was extracted successively with CH,Cl,/MeOH (1:1) (4 x 2 L) and MeOH
(4 x 2 L) by cold percolation. The combined extract (194 g) was partitioned between EtOAc
and water. The EtOAc layer was collected and concentrated to yield 175 g of crude extract. A
100 g portion of the EtOAc extract was adsorbed on 100 g of silica gel and subjected to
column chromatography over silica gel (800 g) and eluted with n-hexane containing
increasing amounts of EtOAc. A total of 271 fractions (ca. 500 ml) were collected. Osajin-4-
methylether (1) (10 mg) was obtained from the fractions eluted with 3% EtOAc in n-hexane
after purification by column chromatography over Sephadex LH-20 (eluted with
CH,Cl,/MeOH, 1:1) and crystallization. The precipitate obtained from 4% EtOAc in n-
hexane eluent was filtered and washed with n-hexane to yield 5,7,-dihydroxy-4"-methoxy-
6,8-diprenylisoflavone (2) (5 mg). The mother liquor was purified on Sephadex LH-20
eluting with CH,CIl,/MeOH (1:1) to yield yellow crystals of osajin (3) (20 mg). The fraction
obtained from 6% EtOAc in n-hexane was subjected to column chromatography over silica
gel (100 g) eluting with 5% EtOAc in n-hexane to yield more amounts of osajin (3) (9 mg). A
white precipitate obtained from 10% EtOAc in n-hexane was filtered and washed with
CHCl; to afford 7,7"-di-O-methylchamaejasmin (4) (100 mg). A precipitate obtained from
15% EtOAc in n-hexane was filtered and washed with CH,CI, to afford chamaejasmin (5)
(200 mg). In the same way purification of the fraction eluted with 50% EtOAc in n-hexane

gave diphysin (6) (75 mg).

3.3.2 Extraction and isolation of compounds from the roots of Ormokarpum kirkii
The powdered roots of Ormokarpum kirkii was extracted as described above to give 205 g of

a combined extract. The extract was partitioned between EtOAc and water. The EtOAc layer
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was collected and concentrated on a rotary evaporator to provide 160 g of crude extract. Part
of the extract (100 g) was subjected to column chromatography over silica gel (800 g). The
column was eluted with n-hexane containing increasing amounts of EtOAc. A total of 130
fractions, 500 ml each, were collected. The fraction eluted with 10% EtOAc in n-hexane was
purified over Sephadex LH-20 CH,Cl,/MeOH (1:1) and yielded osajin (3) (3 mg) and
heptacosyl (E)-3-(4-hydroxy-3-methoxyphenyl)acrylate (7) (11 mg). A precipitate obtained
from the fraction eluted with 15% EtOAc in n-hexane was filtered and rinsed with CH,ClI; to
afford 7,7"-di-O-methylchamaejasmin (4) (200 mg). Fractional crystallization of the 30%
EtOAc in n-hexane eluent gave chamaejasmin (5) (35 mg) and campylospermone (8) (50

mg). The 50% EtOAc in n-hexane fraction gave diphysin (6) (24 mg) as a precipitate.

3.3.3 Extraction and isolation of compounds from the roots of Derris trifoliata

The dried and ground roots of Derris trifoliata (1 kg) was extracted in CH,Cl,/MeOH (1:1)
by cold percolation to yield 100 g of crude extract. The extract was partitioned between
EtOAc and water. The organic layer was separated and concentrated on a rotary evaporator to
give 25 g of extract. The extract was separated by column chromatography over silica gel
(450 g) and eluted with n-hexane containing increasing amounts of EtOAc. A total of 55
fractions were collected and combined into 10 major fractions based on their TLC profiles. A
brown oily fraction obtained from 8% EtOAc in n-hexane was purified using Sephadex LH-
20 (eluted with CH,Cl,/MeOH, 1:1) to afford (-)-medicarpin (9) (3.3 mg) and a mixture of
two compounds. This fraction was separated by PTLC (eluting with n-
hexane/CH,CI,/EtOAc, 4:2:1) followed by preparative HPLC (eluting with H,O/CH30H,
15:85, 250 mm x 55 mm column for 54 minutes) and yielded rotenone (10) (2.7 mg). a-
Toxicarol (13) (3.8 mg) was crystallized from the fraction eluted with 10% EtOAc in n-
hexane. From the mother liquor of this fraction 7a-O-methyldeguelol (12) (3.2 mg) was

isolated after purification by PTLC (eluted with n-hexane/CH,Cl,/EtOAC, 4:2:1). Purification
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of the fraction obtained from 13% EtOAc in n-hexane by PTLC (eluted with n-
hexane/CH,CI,/EtOAc (4:2:1)) yielded a mixture of two compounds. These were separated
by preparative HPLC (eluting with H,O/CH30H, 90:10, 250 mm x 55 mm column, 42 and 46
minutes, respectively) to yield prunetin (19) (2.6 mg) and barbigerone (20) (2.5 mg). The
fraction eluted with 15% EtOAc in n-hexane was separated over Sephadex LH-20 (eluted
with CH,Cl,/MeOH; 1:1) to yield 7a-O-methylelliptonol (18) (3.2 mg) and a mixture of two
compounds. This mixture was purified using preparative HPLC (eluted with H,O/CH3;0OH,
85:15, 250 mm x 55 mm, column at 35 and 37 minutes, respectively) and afforded 12a-

hydroxyelliptonol (15) (3.7 mg) and 7a-O-Methyl-12a-hydroxyelliptonol (16) (1.1 mg).

3.3.4 Extraction and isolation of compounds from the stem of Derris trifoliata

The air dried and ground stem of Derris trifoliata (2 kg) was macerated overnight in
CH,Cl,/MeOH (1:1) (5 x 3 L). The solvent was concentrated on a rotary evaporator to
provide 147 g of extract. The extract was partitioned between EtOAc and water. The EtOAc
layer was collected and the solvent was concentrated on a rotary evaporator under reduced
pressure to give 35 g of an organic extract. The extract was subjected to column
chromatography over silica gel (400 g) and eluted with n-hexane-containing increasing
amounts of EtOAc to afford 78 fractions of 500 mL each. The fractions were analysed by
TLC and pooled into 10 major fractions. The fraction eluted with 8% EtOAc in n-hexane was
separated over Sephadex LH-20 column (eluted with CH,Cl,/MeOH, 1:1) to give rotenone
(10) (2.7 mg). The fraction eluted with 10% of EtOAc in n-hexane was further separated over
Sephadex LH-20 (eluting with CH,Cl,/MeOH; 1:1) to remove chlorophyll followed by
purification using preparative HPLC eluting with CH30H /H,0, 50:50, 250 mm x 55 mm
column, at 52, 49, 38 minute respectively) to afford deguelin (11) (3.3 mg), tephrosin (14)
(3.2 mg) and elliptone (17) (3.0 mg). The fraction eluted with 15% EtOAc in n-hexane was

purified over Sephadex LH-20 using CH,Cl,/MeOH (1:1) as eluent and then on preparative
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HPLC (eluted with H,O/CH3OH, 70:30, 250 mm x 55 mm column, at 42 and 40 minute) to
afford dereticulatin (22) (2.5 mg) and 6,7-dimethoxy-4-chromanone (23) (3.9 mg).
Lupinifolin (21) (3.1 mg) was isolated from the fraction eluted with 20% EtOAc in n-hexane
by PTLC using n-hexane/CH,Cl,/EtOAc (4:2:1) followed by further purification using
preparative HPLC (eluting with H,O/CH3OH gradient 65:35, 250 mm x 55 mm column, at 43

minutes).

3.3.5 Extraction and isolation of compounds from the leaves of Lonchocarpus bussei

The air dried and powdered leaves of Lonchocarpus bussei (2 kg) were extracted with
CH,Cl,/MeOH (1:1) (3 x 2 L) at room temperature. A dark green crude extract (100 g) was
obtained after removal of the solvent under reduced pressure. A portion of the extract (85 g)
was subjected to column chromatography (CC) over silica gel (450 g, 80 x 4 cm) and eluted
with n-hexane-EtOAc gradient (1-100%). A total of 75 fractions each ca. 500 mL were
collected. The fraction eluted with 3% EtOAc in n-hexane was purified by column
chromatography using Sephadex LH-20 as a stationary phase (eluent: CH,CIl,/MeOH, 1:1) to
give 4'-prenyloxyvigvexin A (24) (15 mg) and maximaisoflavone (25) (17 mg). 7,2'-
Dimethoxy-3',4'-methylenedioxyisoflavone (26) (25 mg) was crystallized from the fraction
eluted with 5% EtOAc in n-hexane. The mother liquor of this fraction was purified by
column chromatography on Sephadex LH-20 (eluent: CH,CIl,/MeOH, 1:1) to give 6,7,3-
trimethoxylenedioxyisoflavone (27) (50 mg) and more amounts of 7, 2'-dimethoxy-3',4'-
methylenedioxyisoflavone (26) (3 mg). The fractions eluted with 10% EtOAc in n-hexane
was passed through Sephadex LH-20 (eluent: CH,CIl,/MeOH, 1:1) and crystallised to give
durmillone (28) (10 mg) and 4-hydroxylonchocarpin (29) (12 mg). Similar treatment of the

fraction eluted with 20% EtOAc in n-hexane afforded colenemol (30) (22 mg).
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3.3.6 Extraction and isolation of compounds from the roots of Lonchocarpus bussei

The air dried and crushed roots of Lonchocarpus bussei (2 kg) were extracted at room
temperature with CH,Cl,/MeOH (1:1). The solvent was removed using a rotary evaporator to
afford 84 g of crude extract. Part of this extract (75 g) was subjected to column
chromatography on silica gel (400 g) and eluted with n-hexane containing increasing amounts
of EtOAc to give a total of 50 fractions, of about 500 ml each. The fraction obtained with
15% EtOAc in n-hexane was separated by PTLC (eluent: n-hexane-CH,Cl,-EtOAc, 8:1:1) to

afford (6aR,11aR)-maackiain (31) (5 mg) and (6aR,11aR)-edunol (32) (4 mg).

3.3.7 Extraction and isolation of compounds from the stem bark of Lonchocarpus eriocalyx

The dried stem bark of Lonchocarpus eriocalyx (2 kg) were crushed and extracted using
CH.Cl,/MeOH (1:1) at room temperature. The extract was concentrated under reduced
pressure to yield a brown crude extract (100 g). A portion of the extract (85 g) was subjected
to column chromatography over silica gel (450 g) eluting with n-hexane containing
increasing amounts of EtOAC to give a total of 100 fractions, about 500 ml each. The fraction
eluted with 5% EtOAc in n-hexane was subjected to silica gel PTLC using n-hexane-CH,Cl-
EtOAc (8:1:1) to afford (6aR,11aR)-3,8-dimethoxybitucarpin B (33) (20 mg). Purification of
the fraction eluted with 10% EtOAc in n-hexane by column chromatography over Sephadex

LH-20 (eluent: CH,Cl,/MeOH, 1:1) afforded (6aR,11aR)-edunol (32) (3 mg).

3.3.8 Extraction and isolation of compounds from the roots of Dorstenia kameruniana

The roots of Dorstenia kameruniana (1.5 kg) were air dried and crushed into powder. The
powdered roots were extracted with CH,Cl,/MeOH (1:1) (4 x 2L) at room temperature. The
extract was combined and the solvent removed using a rotary evaporator to give 90 g of crude
extract. A portion of the extract (75 g) was subjected to column chromatography (CC) over

silica gel (450 g) and eluted with n-hexane containing increasing amounts of EtOAc to give
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71 fractions, ca. 500 ml each. Crystallization of the fraction eluted with 10% EtOAc in n-
hexane gave bergapten (37) (100 mg). The mother liquor from this fraction was purified by
column chromatography (silica gel, n-hexane//EtOAc, gradient) and by PTLC (eluent: n-
hexane/CH,CI,/EtOAc (8:1:1) to afford dorsmerunin A (34) (5 mg), dorsmerunin B (35) (20

mg) and dorsmerunin C (36) (4 mg).

3.3.9 Extraction and isolation of compounds from the twigs of Dorstenia kameruniana

The air dried and powdered twigs of Dorstenia kameruniana (2.5 kg) were extracted with
CH,Cl,/MeOH (1:1) (4 x 2L) at room temperature. The extracts were combined and
concentrated under reduced pressure to yield 64 g of crude extract. A portion of the extract
(60 g) was subjected to column chromatography on silica gel (400 g) with increasing polarity
of EtOAc in n-hexane (1-100%) to afford 52 fractions, ca. 500 mL each. The fraction
obtained from 10% EtOAc eluent was crystallized to give bergapten (37) (55 mg). The
mother liquor was concentrated and then purified on Sephadex LH-20 column using
CH,Cl,/MeOH (1:1) as eluent to give two major sub-fractions (I and Il). PTLC (silica gel,
eluent: n-hexane/CH,CI,/EtOAc, 8:1:1) separation of sub-fraction | yielded dorsmerunin A
(34) (6 mg) and dorsmerunin B (35) (25 mg). Sub-fraction 1l was subjected to column
chromatography over silica gel eluting with 5% EtOAc in n-hexane to provide dorsmerunin C
(36) (3 mg). The 20% EtOAc in n-hexane eluent from the original column was further
purified on Sephadex LH-20 (eluent: CH,Cl,/MeOH, 1:1) to afford licoagrochalcone A (38)

(18 mg).

3.3.10 Extraction and isolation of compounds from roots of Streblus usambarensis
The air dried roots of Streblus usambarensis (1.5 kg) was crushed into powder and extracted
with CH,CIl,/MeOH (1:1) by cold percolation. The solvent was removed under reduced

pressure to yield 56 g of crude extract. A portion of the extract (50 g) was chromatographed
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on a silica gel (450 g) to yield a total of 58 fractions of 500 ml each. The fraction obtained
from 1% of EtOAc in n-hexane elution was further separated over Sephadex LH-20 column
(eluted with CH,Cl,/MeOH; 1:1) to yield usambarin A (39) (30 mg). The fraction eluted with
3% EtOAc in n-hexane was subjected to column chromatography over Sephadex LH-20
eluting with CH,CIl,/MeOH, followed by purification by preparative TLC using n-hexane/

CH,CI,/EtOAC (2:1:0.5) to yield usambarin (40) (15 mg).

3.3.10 Extraction and isolation of compounds from stems of Streblus usambarensis

The dried and crushed stems (2 kg) of Streblus usambarensis were extracted with a mixture
of CH,CI,/MeOH (1:1) at room temperature. Concentration of the extract under reduced
pressure yielded 100 g of extract. Part of this extract (90 g) was subjected to column
chromatography over silica gel and the column was eluted with n-hexane containing
increasing polarities of EtOAc to obtain 64 fractions of 500 ml each. The fraction obtained
from 10% n-hexane-EtOAc elution was applied over silica gel column and eluted with 6%
EtOAc in n-hexane followed by Sephadex LH-20 (eluted with CH,Cl,/MeOH; 1:1) to yield

usambarin C (41) (25 mg).

3.4 Biological Assay

3.4.1 Cell cultures of drug sensitive and drug-resistant cancer cell lines

Various models of sensitive cell lines and their resistant counterparts were used. These were
drug-sensitive  CCRF-CEM leukemia and its multidrug-resistant P-glycoprotein-over-
expressing subline CEM/ADRS5000 (Efferth et al., 2003; Gillet et al., 2004; Kimmig et al.,
1990), MDA-MB-231-pcDNA3 breast cancer cells and its resistant subline MDA-MB-231-
BCRP clone 23 (Doyle et al., 1998), HCT116 (p53*'*), colon cancer cells and its knockout
clone HCT116 (p537), US7MG glioblastoma cells and its resistant subline U87MG.AEGFR

(Kuete et al., 2013a; Kuete et al., 2013b; Kuete et al., 2013c). To compare tumor with
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normal cells, HepG2 hepatocarcinoma cells and AML12 normal hepatocytes were used

(Kuete et al., 2013a; Kuete et al., 2013b; Kuete et al., 2013c).

3.4.2. Anticancer Assay against Drug sensitive and Drug-resistant Cancer Cell Lines

The resazurin reduction assay (O'Brien et al., 2000) was performed to assess the cytotoxicity
of isolated compounds and doxorubicin as control drug towards various sensitive and drug-
resistant cancer cell lines, including the CCRF-CEM and CEM/ADR5000 leukemia, MDA-
MB231 breast cancer cells and its resistant subline MDA-MB231/BCRP, HCT116p53*"*
colon cancer cells and its resistant subline HCT116p53", U87MG glioblastoma cells and its
resistant subline U87MG.4EGFR and HepG2 hepatocarcinoma cells and normal AML12
hepatocytes. The details have been described (Kuete et al., 2017). The assay is based on the
reduction of the indicator dye, resazurin, to the highly fluorescent resorufin by viable cells.
Non-viable cells rapidly lose their metabolic capacity to reduce resazurin and, thus, do not
produce fluorescent signals anymore. Briefly, adherent cells were detached by treatment with
0.25 % trypsin/EDTA (Invitrogen, Darmstadt Germany) and an aliquot of 1 x 10* cells was
placed in each well of a 96-well cell culture plate (Thermo Scientific, Langenselbold,
Germany) in a total volume of 200 pL. Cells were allowed to attach overnight and then were
treated with different concentrations of compounds. For suspension cells, aliquots of 2 x 10*
cells per well were seeded in 96-well-plates in a total volume of 100 pL. The studied
compound was immediately added in varying concentrations in an additional 100 pL of
culture medium to obtain a total volume of 200 uL/well. After 72 h, resazurin (Sigma-
Aldrich, Schnelldorf, Germany) (20 pL, 0.01% w/v) in distilled H,O was added to each well
and the plates were incubated at 37 °C for 4 h. Fluorescence was measured on an Infinite
M2000 ProTM plate reader (Tecan, Crailsheim, Germany) using an excitation wavelength of
544 nm and an emission wavelength of 590 nm. Each assay was done at least twice with six

replicates each. The viability was evaluated based on a comparison with untreated cells. 1Csg
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values represent the compound concentrations required to inhibit 50% of cell proliferation

and were calculated from a calibration curve by linear regression using Microsoft Excel.

3.4.3 Anticancer Assay against HEK293 Cell Line

Human Embryonic Kidney cells (HEK293) were maintained in DMEM medium
supplemented with 10% FBS. HEK?293 cells were exposed to the compounds in TC-treated
384-wells plates (Falcon) as previously described (Fletcher and Avery, 2014). Plates were
incubated for 72h at 37 °C, 5% CO,, and then the media was removed from the wells and
replaced with an equal volume of 44 uM resazurin. After an additional 5-6 hours incubation
at standard conditions, the total fluorescence (excitation/emission: 530 nm / 595 nm) was
measured using an Envision plate reader (PerkinElmer). Raw data was normalized using the
in-plate positive and negative controls to obtain normalized % inhibition data, which was
then used to calculate I1Cs values, through a 4 parameter logistic curve fitting in GraphPad
Prism v.6. The experiments were carried out in two independent biological replicates, each

consisting of two technical replicates.

3.4.4. Mechanistic Studies

3.4.4. 1. Analysis of the cell cycle distribution and detection of apoptotic cells by flow
cytometry
Isoflavonoid 3, flavonoid 4, and doxorubicin or DMSO (used as solvent control) at various

concentrations were used to treat CCRF-CEM cells (1x10°cells). The cell cycle was then
analyzed after 24 h incubation in a humidified 5% CO, atmosphere at 37°C as previously
described (Mbaveng et al., 2018a; Mbaveng et al., 2018b). The propidium iodide (PI)
fluorescence of individual nuclei was measured using BD Accury C6 Flow Cytometer (BD
Biosciences, Heidelberg, Germany). Assays were performed with three independent

experiments each at least with triplicate parallel measurements.
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3.4.4. 2. Assessment of apoptosis by annexin V/PI staining

Compounds 3, 4 and doxorubicin at various concentrations were used to treat CCRF-CEM
cells (1x10°% 1 ml) for 24 h (in humidified 5% CO, atmosphere at 37°C), and apoptosis was
further assessed using fluorescein isothiocyanate (FITC)-conjugated annexin V/PI assay kit
(eBioscience™Annexin V; Invitrogen, San Diego, USA) by flow cytometry under similar
experimental conditions as reported earlier (Mbaveng et al., 2018a; Mbaveng et al., 2018b).
Cells were analyzed using BD Accury C6 Flow Cytometer (BD Biosciences). Early and late
apoptosis or necrosis was evaluated on fluorescence 2 (FL2 for PI) versus fluorescence 1

(FL1 for annexin) plots (Gerwirtz and Elmore, 2005; Samarghandian et al., 2011).

3.4.4. 3. Effects of compounds on caspases activities

Compounds 3 and 4 at various concentrations were used to treat CCRF-CEM cells for 6 h.
The activity of caspases was further determined using Caspase-Glo 3/7, Caspase-Glo 8 and
Caspase-Glo 9 Assay kits (Promega, Mannheim, Germany) as previously reported (Kuete et

al., 2014a).

3.4.4. 4. Evaluation of the integrity of the mitochondrial membrane

Compounds 3 and 4 at various concentrations, as well as a reference mitochondrial gradient
dissipation drug, valinomycin (positive control) were used to treat CCRF-CEM cells for 24 h.
Their mitochondrial membrane potential (MMP) was then analyzed. The MMP was analyzed
using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1;
Biomol, Hamburg, Germany) staining as previously described (Kuete et al., 2013d).
Experimental conditions were similar to those reported earlier (Kuete et al., 2013d; Mbaveng

et al., 2018a).
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3.4.4. 5. Assessment of the production of reactive oxygen species (ROS)

Isoflavonoid 3 and flavonoid 4 at various concentrations, as well as DMSO (solvent control),
or hydrogen peroxide (H,O,; positive control) were used to treat CCRF-CEM cells for 24 h.
The production of ROS was further assessed as previously reported (Bass et al., 1983;
Cossarizza et al., 2009; Kuete et al., 2014b). 2,7 -Dichlorodihydrofluorescein diacetate
(Ho.DCFH-DA) (Sigma-Aldrich) was used for detection of ROS under similar experimental

conditions as reported earlier (Kuete et al., 2016; Mbaveng et al., 2018a).

3.5. Theoretical Calculations

Different conformations and configurations of compound 33 were optimized at the B3LYP/6-
311G** (Becke, 1993; Lee et al., 1988) level of theory without any restrictions. The ECD
were computed using the Time Dependent DFT (TDDFT) (Autschbach et al., 2002,
Bauernschmitt & Ahlrichs, 1996) algorithm in the program package GAUSSIAN 09 (Frisch,
2009). The 6-31G* basis set was applied. 10 singlet and 10 triplet states were solved
(keyword TD (NStates=10, 50-50). All GAUSSIAN results were analysed and the spectra
display using the SpecDis 1.62 (Bruhn et al., 2013). The molecules are displayed using
SYBYL-X 2.1.1 ("SYBYL-X 2.1.1 Tripos a Certara Company, 1699 South Hanley Rd. , St.

Louis, MO ", 2013).
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CHAPTER FOUR

RESULTS AND DISCUSSION

Selected plants in the Leguminosae (Ormocarpum kirkii, Derris trifoliata, Lonchocarpus
bussei and Lonchocarpus eryocalix) and Moraceae (Dorstenia kameruniana and Streblus
usambarensis) families were investigated for secondary metabolites. The structure
elucidation and cytotoxicity of the isolated compounds and the modes of action of two of
these compounds (3 and 4) is discussed in this chapter. A total of forty one compounds
including nine new compounds were isolated and characterized. These include, three
isoflavones (1-3) and three biflavonoids (4, 5 and 8) and a dimeric coumarin (6) and an ester
of ferullic acid with long alkyl chain (7) from Ormocarpum kirkii. A new rotenoid derivative,
7a-O-methyl-12a-hydroxyelliptonol (16) along with eight rotenoids (10, 11, 12, 13, 14, 15, 17
and 18), a pterocarpan (9), isoflavones (19-20), two flavanones (21-22) and a chromanone
derivative (23) from Derris trifoliata. A new isoflavone, 4'-prenyloxyvigvexin A (24) along
with four isoflavones (25-28), a chalcone (29), a geranylated phenylpropanol (30) and two
pterocarpans (31-32) were isolated from Lonchocarpus bussei. Also isolated was a new
pterocarpan, (6aR,11aR)-4,9-dimethoxybitucarpin B (33) along with the known pterocarpan
(32) from Lonchocarpus eriocalyx. Three new benzylbenzofuran derivatives (34-36) (named
dorsmerunin A, B and C respectively), along with known coumarin (37) and chalcone (38)
from Dorstenia kameruniana and new naturally unusual naphthobenzofuran derivatives,
usambarin A, B and C (39-41) were isolated from Streblus usambarensis. The cytotoxicity of
the isolated compounds was tested against various sensitive and their resistant cancer cell
lines. In the cytotoxicity assay of compounds isolated from Ormocarpum Kirkii, 5,7-
dihydroxy-4'-methoxy-6,8-diprenylisoflavone  (2), Osajin (3) and 7,7"-di-O-

methylchamaejasmin (4) displayed 1Cso values below 20 uM against both CCRF-CEM and
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CEM/ADR5000 cells while osajin (3) and 7,7"-di-O-methylchamaejasmin (4) had
significant cytotoxic effects with ICsy values below or around 10 pM against 7 carcinoma
cells and a normal AML12 hepatocytes (4/7, 5/7 and 7/7). The compounds isolated from
Ormocarpum kirkii were also tested against the HEK293 cell line. The isoflavones, 5,7-
dihydroxy-4'-methoxy-6,8-diprenylisoflavone (2) and osajin (3) showed comparable activity
against HEK293 with 1Csq values of 27.1 and 27.3 * 2.0 respectively. The biflavanones 7,7"-
di-O-methylchamaejasmin (4) and chamaejasmin (5) displayed significant activity, with 1Csg
values of 20.8 £ 6.8 UM and 43.5 pM, respectively. The compounds (9-23) isolated from
Derris trifoliata were evaluated for their cytotoxicity against HEK293 cells. Rotenone (10)
exhibited the highest cytotoxic (ICso value of 0.82 £ 0.02 uM) towards HEK?293 cells. The
rotenoloids 7a-O-methyldeguelol (12) and 7-a-O-methylelliptonol (18) showed cytotoxicity
towards HEK?293 cells (ICsp 9.4 = 0.25 pM and ICsp 7.1 = 0.50 pM, respectively).
Isoflavones isolated from Lonchocarpus species showed significant cytotoxicity. 3',6,7-
Trimethoxyl-4',5'-methylenedioxyisoflavone (27) and durmillone (28) were cytotoxic against
leukemia CCRF-CEM cells; while 4-hydroxylonchocarpin (29) and durmillone (28) showed
significant antiproliferative effects against its resistant counterpart CEM/ADR5000 cells with
ICso values below 20 puM. Durmillone (28) showed ICsy values below 10 uM against the
resistant breast adenocarcinoma MDA-MB231/BCRP cells and resistant gliobastoma
UB7MG.AEGFR cells. The compounds isolated from Dorstenia kameruniana 34-38
displayed cytotoxicity against the sensitive CCRF-CEM and multidrug-resistant
CEM/ADRS5000 leukemia cells, where bergapten (37) and licoagrochalcone A (38) had the
highest activities (ICso values of 7.17 uM and 5.16 pM, respectively) against CCRF-CEM
leukemia cells. Licoagrochalcone A (38) also showed cytotoxicity against 7 sensitive or drug-
resistant solid tumor cell lines (breast carcinoma, colon carcinoma, glioblastoma) with 1Cs

below 50 uM, whilst bergapten (37) showed selective activity. The new naphthobenzofuran
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derivatives characterized from Streblus usambarensis 39-41 displayed cytotoxic effects in
both sensitive CCRF-CEM and resistant CEM/ADRS5000 leukemia cells with an ICsq values
below 25 pM. Besides, Usambarin B (40) had significant effects towards CEM/ADR5000
leukemia cells with an 1Csy value of 6.13 puM. Usambarin B (40) and Usambarin C (41) had
cytotoxic effect in the 7 tested carcinoma cell lines with 1Cs values below 63 uM. The study
was extended to analyse the modes of action of osajin (3) and 7,7"-di-O-methylchamaejasmin
(4). The result showed that Osajin (3) and 7,7"-di-O-methylchamaejasmin (4) caused cell
cycle arrest in GO/G1 phase as well as apoptosis with significant increase of cells in sub-
GO/G1 phase. The activity of caspases in CCRF-CEM cells showed that the two compounds
did not increase the activity of caspases 3/7, 8 and 9. These compounds (3, 4) induced

apoptosis in CCRF-CEM cells mediated by MMP alteration and increased ROS production.

4.1. Compounds Isolated from Ormocarpum Kirkii

Chromatographic separation of the extract of the stem bark of Ormocarpum kirkii led to the
isolation of four isoflavones [osajin-4'-methyl ether (1), 5,7-dihydroxy-4'-methoxy-6,8-
diprenylisoflavone (2) and osajin (3)]; two biflavonoids [7,7"-di-O-methylchamaejasmin (4)
and chamaejasmin (5)]; a dimeric chromene [diphysin (6)] and an ester of ferullic acid with
long alkyl chain [erythrinasinate (7)]. Compounds 3, 4, 5, 6 and 7 along with

campylospermone A (8) were also isolated from the roots of this plant.

4.1.1. Osajin-4'-methyl ether (1)

Compound 1 was isolated as yellow crystals. HRESIMS (m/z = 418.1764, [M]") and NMR
data (Table 4) allowed the assignment of the molecular formula CzsH260s. In the 'H NMR
spectrum, the up-field singlet at &4 8.28, corresponding to H-2 of ring C, is characteristic of
isoflavones. The *C NMR spectrum (Table 4) showed 26 carbon signals, including a

carbonyl carbon (6¢c 180.9), four oxygenated carbons and a de-shielded carbon signal (6¢
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153.5) corresponding to C-2. In the proton NMR spectrum, the presence of a pair of mutually
coupled proton signals at 6y 3.35 (2H, d, J = 7.4 Hz) and o4 5.25 (1H, m); and signals for two
methyl groups at 6y 1.83 (s) and oy 1.68 (s) showed the presence of a prenyl group.
Additionally, the *H NMR spectrum showed two signals at 8 6.76 (d, J = 9.9 Hz, 1H, H-4")
and oy 5.78 (d, J = 10.0, 1H, H-3") and two methyl signals at oy 1.52 clearly indicating the
presence of 2",2™-dimethylchromene ring. The attachment of both groups in ring A was
established from the HMBC spectrum (Table 4). Thus, the proton signal at é4 3.35 showed
HMBC correlation with the oxygenated carbon 6¢ 156.9 (C-7), showing the attachment of the
prenyl group is at C-6 (6¢c 112.2). The two proton signals of the chromene ring showed
HMBC correlation with C-8 (6¢ 100.7) and C-8a (6c 150.4), showing that this group is

attached at C-7/C-8 of ring A.

In ring B, the *H NMR spectrum showed an AA'XX' spin system at &y 7.58 (for H-2'/6") and
oy 7.03 (for H-3'/5") with methoxy group (6y 3.86 and &¢ 54.7) attached on C-4' (6 159.8).
Therefore, this compound was identified as osajin-4'-methyl ether, previously reported from

Derris scandens and Hedysarem scoparium (Babu et al., 2010; Chen et al., 2007).

4.1.2. 5,7-Dihydroxy-4'-methoxy-6,8-diprenylisoflavone (2)

Compound 2 (UV Amax 270 nm) was isolated as yellow crystals with a melting point of
165—166 °C. The HREIMS showed a molecular ion peak m/z 420.1935 which suggested with
the molecular formula CyHos0s. In agreement with this, the *C NMR (Table 3) of
compound 2 showed 26 carbon signals, including two prenyl and a methoxy group on an
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isoflavone skeleton (Table 3). The NMR spectral data (Table 3) of 2 is similar to 1, except
that there are two prenyl groups (Table 3) in ring A at C-7 (6¢c 105.9) and C-8 (8¢ 111.3). The
placement of the prenyl groups at C-6 and C-8 was confirmed from the HMBC spectrum
which showed correlation of CH,-1" and CH,-1"" with C-6 (6¢ 105.9) and C-8 (6¢c 111.3),
respectively. As in compound 1, the *"H NMR displayed an AA'XX' spin system with a
methoxy group (o4 3.87, d¢c 54.7) placed at C-4'. Thus, compound 2 was identified as 5,7-
dihydroxy-4'-methoxy-6,8-diprenylisoflavone, previously isolated from the roots of
Hedysarem scoparium (Chen, et al., 2007). This appears to be the first report of the isolation

of this compound from the genus Ormocarpum.

Table 3: *H (500 MHz) and **C (125 MHz) NMR data along with HMBC correlations for
compound 2 (acetone-dg)

Carbon No.
OH dc HMBC
2 8.28 (s) 153.3 C-3,C-4,C-8a
3 122.4
4 181.1
5 157.6
5a 105.3
6 105.9
7 158.9
8 111.3
8a 153.5
1 1235
2"/6' 7.51(d,J= 8.8 Hz) 130.2 C-3, C-3'/5', C-4'
3'/5' 7.01(d, J= 8.8 Hz) 1135 C-1, Cc-4'
4 159.7
1" 3.54 (d,J= 7.0 Hz) 21.4 C-6, C-7,C-2", C-3", C-
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4"/5"-CHg,

1 3.46 (d, J = 7.0 Hz) 214  C-4"[5"CHs, C-2"/2", C-
3" C-7,C-8
22 5.23 (m) 1220 C-4"/5"CHa, C-4"/5""CH3
c-1"
3" 131.6
3" 131.8
4"/4"CHj, 1.85 17.1 C-2"/2", C--4"14™,
5"/5"'CHj 1.68 (s) 25.0 C-2"/2", C-5"/5",
4'OCH; 3.87 (5) 54.7 C-4
5-OH 13.34 (s) C-5, C-5a, C-6

4.1.3. Osajin (3)

Osajin (3) was isolated as yellow crystals, mpt. 170—171 °C. The molecular formula
(C25H2405) was established based on NMR data (Table 4) and HR-EI-MS analysis (M™ at m/z
404.1637). The UV (Amax 285 nm) and NMR spectra (64 8.30, s, for H-2; 6¢ 153.5 for C-2)
are consistent with this compound being an isoflavone derivative. Compound 3 is similar to
1, with the only difference being that the methoxy group in compound 1 is replaced by
hydroxy substituent at C-4' in ring B. Thus the *H NMR spectrum (Table 4) showed once
again an AA'XX' spin system at 6y 7.49 (d, J = 8.0 Hz, H-2'/6") and 6y 6.93 (d, J = 8.7 Hz, H-
3'/5"); these protons showed HMBC correlation with the oxygenated carbon peak at 6c 157.5
(C-4"). Inring A, the placement of the prenyl and chromene groups was established based on
HMBC correlations of oy 3.44 (d, J = 7.4 Hz, H-1") with C-5 (8¢ 154.9) and C-6 (d¢ 107.2);
Correlation of the olefinic proton in the chromene ring, é4 6.72 (d, J = 10.0 Hz, H-4") with
C-7 (¢ 156.5) and C-8 (6¢c 105.6) and 6y 5.80 (d, J = 10.0 Hz, H-3") with C-8 established
that the prenyl group is located at C-6 and the chromene group is fused to C-7 and C-8. Based
on the above data compound 3 was characterized as osajin, previously reported from Maclura
pomofera (Ribaudo et al., 2017). This is the first report of the occurrence of osajin (3) in the

genus Ormocarpum.
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Table 4: *H (600 MHz) and **C (150 MHz) NMR data along with HMBC correlations for compounds 1 and 3 (acetone-ds)

Carbon No. 1 3
R Sc HMBC R Sc HMBC

2 8.28 (s) 153.5 C-2,C-4,C-8a 8.30 (s) 153..5 C-3,C-4,C-8

3 122.9 122.9

4 180.9 181.2

5 159.2 154.9

5a 105.3 105.0

6 112.2 107.2

7 156.9 156.5

8 100.7 105.6

8a 150.4 154.6

1 123.2 121.9
2'/6' 7.58 (d, J = 8.5 Hz) 130.2 C-3, C-3/5, C-4' 7.49 (d, J=8.0 Hz) 130.2 C-3,C-3'/5',C-4
3/5' 7.03 (d, J= 8.8 Hz) 113.6 C-1,C-4 6.93 (d, J = 8.7 Hz) 115.1 C-1,C-4

4' 159.8 157.5

1" 3.35(d,J= 7.4Hz) 20.9 c-2", C-3",C-7 3.44 (d,J=7.4Hz) 20.9 C-6, C-3",C-2",C-5
2" 5.25(m) 122.0 C-3"CHjs, C-1" 5.23(m) 121.9 C-1",C-4""/5 "CHs
3" 130.8 131.2

2" 77.9 77.8

3" 5.75 (d, J=9.9 Hz) 128.3 C-8,C-8a, 2" CHz, C-2 ™ 5.80 (d, J = 10.0 Hz) 128.3 C-2"" CHs C-2""",C-8
4™ 6.76 (d, J =9.9 Hz) 115.3 C-8a, 2" CH3, C-2™ 6.72 (d, J = 10.0 Hz) 115.3 C-2""" CH3C-2"", C-7,

C-8,

2" (CHs), 1.52 (s) 27.3 2" CH3 C-2", C-3" 1.5 (s) 27.4 C-2""" CHs C-2""",C-3""
4" CHs 1.83(s) 17.1 c-2", C-3", C-4", 1.85 (s) 17.1 C-2"",C-3"",C-4"" CHs,
5" CHs 1.68 (s) 25.0 c-2", C-3", C-5", 1.69 (s) 25.0 C-2"",C-3"",C-5"" CHs,
4'0OCHs 3.86 (8) 54.7 C-4'

5-OH 13.46 (s) C-5, C-5a 13.43 (s) C-5, C-5a
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4.1.4. 7,7"-Di-O-methylchamaejasmin (4)

Compound 4 was obtained as a colourless solid, mpt. 209—210 'C, [a]3! +198.7° (c 0.17,
acetone). HREIMS showed molecular ion peak m/z 570.1518, which together with the NMR
data (Table 5) is consistent with the molecular formula Cs,H26010. The *C NMR spectrum
showed only 14 carbon signals indicating that the molecule is a symmetrical dimer. In
agreement with this, the *H NMR spectrum showed signals at 8y 5.90 (d, J = 11.9 Hz, H-2)
and 3.00 (d, J = 11.8 Hz, H-3), typical of a 3,3"-biflavanone moiety (Dhooghe et al., 2010;
Nyandat et al., 1990; Xu et al., 2012). Furthermore the *H NMR spectrum showed two meta-
oriented aromatic protons in ring A at oy 6.06 (d, J = 2.3 Hz) and 5.99 (d, J = 2.3 Hz)
assigned to H-6 and H-8, respectively with the biogenetically expected oxygenation at C-5
(6c 164.1) and C-7 (8¢ 168.2). The substituent at C-7 was established to be a methoxy (Jy
3.85) from the HMBC correlation of the methoxy protons and H-8 (64 5.99) with C-7 (6¢
168.2). In ring B, the "H NMR spectrum showed an AA'XX' spin system at 8y 7.05 (d, J =
8.6 Hz) assigned to H-2'/6' whereas 6y 6.88 (d, J = 8.6 Hz) to H-3'/5' is consistent with 4'-
oxygenation (OH). In agreement with this, both sets of proton signals showed HMBC

correlation with C-4' (5¢ 158.3).

The trans relationship of H-2/H-3 was suggested from large coupling constant of proton
signals 6y 5.90 (d, J = 11.9 Hz, H-2) and 3.00 (d, J = 11.8 Hz, H-3) suggestive of a 25*,3R*
relative configuration. The ECD spectrum (Fig 4) showed a positive and then negative Cotton
effects at 310 nm and 285 nm, for n - n* and nm > n* electronic transitions, respectively
consistent with (2S,3R) absolute configuration (Dhooghe et al., 2010; Xu et al., 2012).
Therefore the structure of compound 4 was characterized as (2S,3R)-7,7"-di-O-
methylchamaejasmin, previously isolated from the aerial part of Ormocarpum trichocarpum

(Chukwujekwu et al., 2012), but has not been reported from any other source.

52



50

40

N I\
20 [\

-10 \ : : .
20250 \ oo 350 400 450

- \\ |
s\

-60

—Seriesl

CD (degree)

A (nm)

Figure 4: ECD spectrum of 7,7"-di-O-methylchamaejasmin (4)

4.1.5. Chamaejasmin (5)

Compound 5 was obtained as a colourless amorphous solid, mpt. 210-212 °C, [a]3! +138.9°
(c 0.15, acetone). HR-EI-MS spectra showed the molecular ion peak at m/z 542.1215 [M]"
corresponding to the molecular formula CsoH2:01. As in compound 5, the *H NMR data
displayed symmetrical flavanone resonance, the characteristic signals for 3,3-biflavanone
moiety was evident from the *H NMR signals at &4 5.87 (H-2) and 2.96 (H-3) with the
corresponding (from HSQC spectrum) **C NMR peaks at 5 83.6 (C-2) and 49.6 (C-3). Two
meta coupling aromatic protons oy 5.98 (d, J = 2.2 Hz) and 5.90 (d, J = 2.2 Hz) were
assigned to H-6 and H-8, respectively of ring A with the biogenetically 5,7-dihydroxy

substitution. This was confirmed by HMBC correlation of H-6 (64 5.98) with C-5 (5¢ 164.4)
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and C-7 (8¢ 166.6); H-8 correlated with C-7. In ring B, as in compound 5, the *H NMR
spectrum showed an AA'XX' spin system at oy 7.04 (d, J = 8.5 Hz) and at 6.88 (d, J = 8.6
Hz), assigned to H-2'/6" and H-3'/5" with 4'-hydroxy group. The large coupling constant of the
proton signals at oy 5.87 (d, J = 11.9 Hz, H-2) and 2.96 (d, J = 11.8 Hz, H-3) and the ECD
spectrum (Figure 5) which showed a negative Cotton effect at 285 nm and positive Cotton
effect at 310 nm are consistent with (2S,3R) absolute configuration as in compound 4.
Therefore, compound 5 was identified as chamaejasmin (5), previously isolated from
Ormocarpum kirkii and Campylospermum mannii (Dhooghe et al., 2010; Elo Manga et al.,

2009; Nyandat, et al., 1990).
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Figure 5: ECD spectrum of chamaejasmin (5)
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Table 5: *H (600 MHz) and **C (150 MHz) NMR data together with HMBC correlations for 4 and 5 (acetone-ds)

Carbon No. 4 5
SH Sc HMBC SH Sc HMBC

2 5.90 (d, J=11.9 Hz) 83.7 C-3,C-2/6', C-4 5.87 83.6 C-4,C-1
3 3.00 (d, J= 11.8 Hz) 49.7 C-2,C-5a,C-1',C-4 2.96 (m) 49.6 C-2,C4,C-1
4 197.2 196.9
5 164.1 164.4
5a 102.8 102.3
6 6.06 (d, J= 2.3 Hz) 94.8 C-4, C-5, C-5a, C-7,C-8 5.98 (d,J= 2.2 Hz) 96.1 C-5,C-5a,C-7,C-8
7 168.2 166.6
8 5.99 (d,J= 2.3 Hz) 93.7 C-4, C-5a, C-6, C-7, C-8a 5.90 (d,J= 2.2 Hz) 94.9 C-4, C-5a, C-6, C-7, C-8a
8a 162.9 166.6
I 127.4 127.5

2'/6' 7.05(d, J= 8.6 Hz) 129.4 C-2,C-1', C-3/5', C-4' 7.04 (d, J= 8.5Hz) 129.4 C-2,C-3/5, C-4'

3'/5° 6.88 (d, J= 8.6 Hz) 115.4 c-1,C-4 6.88 (d, J= 8.6 Hz) 115.4 C-2/6', C-4'
4' 158.3 158.3

7-OCH3 3.85(s) 55.4 C-7
5-OH 11.89 (s) C-4, C-5, C-5a, C-6, C-7 11.94 (s) C-5,C-5a, C-6

The NMR assignment is for one half of the symmetrical dimer
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4.1.6. Diphysin (6)

Compound 6 was isolated as a white amorphous solid with melting point in the range of 325-
326 °C; [a]3' —183.0° (c 0.125, acetone). HREIMS of 7 showed [M]" peak at m/z 542.1226
corresponding to the molecular formula C3oH22010. The ESIMS fragment ion at m/z 271 as
well as the NMR data (Table 6) account for one half of this dimer. An ester carbonyl 6c 168.9
together with the 'H NMR signals at 6y 3.04 (dd, J=3.49, 1.19 Hz) and 64 4.85 (dd, J = 3.2,
2.1Hz) assigned to H-3 and H-4 is typical of 4-aryldihydrocoumarin (Stermitz et al., 1993).
This was further confirmed by HMBC correlation of H-3 and H-4 with C-1' (8¢ 129.4). The
AA'XX' spin system in the 'H NMR spectrum at 8 7.21 (d, J = 8.7 Hz) and 6.78 (d, J = 8.7
Hz) were assigned to H-2'/6' and H-3'/5' of a 1,4-disubstituted benzene ring i.e. ring B. Two
meta coupled aromatic protons at dy 6.15 (d, J = 2.3 Hz) and 6.18 (d, J = 2.3 Hz) of ring A
correlating with the carbon signal at d¢c 95.1 (C-6) and 6¢ 98.6 (C-8) in the HSQC spectrum,
are characteristic of protons ortho to two oxygenated carbon atoms. Additionally, H-6 and H-
8 showed HMBC correlation with C-5 (8¢ 152.4) and C-7 (8¢ 158.0) which confirmed
oxygenation (hydroxy groups) at C-5 and C-7. The small coupling constants between H-3 (Jy
3.04, dd, J = 3.49, 1.19 Hz) and H-4 (4.85, dd, J = 3.2, 2.1Hz) indicated the cis relative
configuration at C-3/C-4 junction of the two units, similar to that previously reported for
5,5"-di-O-methyldiphysin and 3"-epydiphysin (Dhooghe et al., 2010; Xu, et al., 2012). The
levorotatory nature of this compound ([a]4! —183.0°) is consistent with (3S,3"S,4R,4"R)
absolute configuration (Chukwujekwu et al., 2012; Xu et al., 2012). Therefore, this
compound was characterized as diphysin, first reported from Diphysa robinoides (Stermitz et
al., 1993) and later from Ormocarpum trichocarpum and Ormocarpum Kirkii (Chukwujekwu

etal., 2012; Xu et al., 2012).
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Table 6: *H (600 MHz) and **C (150 MHz) NMR data together with HMBC correlations of 6
(acetone-ds)

Carbon No. SH S¢c HMBC
2/2" 168.9
3/3" 3.04 (dd, J=3.5, 1.2 Hz) 35.9 C-2,C-3,C-1"
4/4" 4.85 (dd, J = 3.2, 2.1 Hz) 42.9 C-2, C-4, C-5, C-5a, C-8a, C-1"
5/5" 152.4
5a/5a" 106.9
6/6" 6.15 (d, J = 2.3 Hz) 95.1 C-5, C-5a, C-7,C-8
7 158.0
8/8" 6.18 (d, J = 2.3 Hz) 98.6 C-5a, C-6, C-7, C-8a
8a/8a" 154.6
1/ 129.4
2'16'12"/6™ 7.21(d, J=8.7 Hz) 129.2 C-1,C-3,C-3'/5", C-4'
3'/5'3"/5™ 6.78 (d, J =8.7 Hz) 115.4 C-2'/6', C-4'

4.1.7. Erithrinasinate (7)

Compound 7 was isolated as a white solid, m.pt. 94-95 °C. The UV (Amax 295 and 321 nm)
and NMR data (Table 7) suggested the aromatic nature of 7. The presence of three mutually
coupled aromatic proton signals in the'H NMR spectrum at & 7.12 (m, 2H, H-5/6) and 6.94
(d, J = 7.9 Hz, H-2) suggested compound 7 is a 1,3,4-trisubstituted benzene. A singlet
integrating for three protons at 6y 3.97 (S) and signals for quaternary carbons at ¢ 146.9 (C-
3) and 147.9 (C-4) was indicative of methoxy and hydroxy substituents at C-3 and C-4.
Additionally, two trans-oriented olefinic protons at 6y 7.63 (d, J = 15.9 Hz, H-1") and 6.35
(d, J = 15.9 Hz, 1H, H-2") which showed HMBC correlation with the ester carbonyl (d¢

167.0) together with multiplet (64 1.20-1.50) and terminal methyl protons at oy 0.92 (t, J =
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7.0 Hz) established the presence of a long alkenyl ester substituent at C-1 (6¢c 127.0). The

length of the side chain was determined from the HREIMS which showed a molecular ion

peak at m/z 586.4970. Hence, based on the above spectroscopic data, compound 7 was

characterized as erithrinasinate. This is the first report of this compound from the genus

Ormocarpum.

Table 7: *H (600 MHz) and **C (150 MHz) NMR data together with HMBC correlations in
compound 7 (CD,Cl,)

Carbon No. SH d¢ HMBC

1 127.0
2 6.94 (d, J=7.9 Hz) 114.4 C-1,C-3,C-6
3 146.9
4 147.9
5 7.12 (d, J = 7.8 Hz) 122.9 C-4,C-6
6 7,12 (d, J=7.8 Hz) 109.3 C-4,C-5,C-1'
1 7.63 (d, J =159 Hz) 144.2 C-1, C-5,C-6, C-2,, C-3'
2' 6.35 (d, J = 15.9 Hz) 115.7 C-1,C-1,C-3'
3 167.0
1" 4.20 (app t, J=6.7, 6.7 Hz) 64.4 C-3, C-2"
2" 1.73 (m) 26.01 C-3, C-3"

(3"-26") 1.20-1.50 (m) 22.7-35.9

CHs 0.92 (t,J=7.0HHz) 13.9
3-OCH3 3.97 (s) 55.9 C-3

58



4.1.8. Campylospermone A (8)

HR-EI-MS analysis of compound 8, ([a]3! —182.3 °C (c 0.145, acetone), mpt. 300-302 °C),
showed a molecular ion peak at m/z 510.1320 which is in agreement with the molecular
formula C3oH»,0s. As in compounds 4, 5 and 6, the *H and **C NMR spectra (Table 8)
showed one half of a flavanone dimer. For each part of the molecule the *H NMR showed
two proton signals at 6y 6.00 (d, J = 12.0 Hz, 1H, H-2) and 2.75 (d, J = 11.8 Hz, 1H, H-3)
with large coupling proton, characteristic of a 3-substituted 2,3-trans-flavanone (Dhooghe et
al., 2010; Xu et al., 2012). The ring A aromatic proton signals with an AXY spin system, at
oy 7.74 (d, J = 8.7 Hz), 64 6.60 (dd, J = 8.7, 2.3 Hz) and 6y 6.34 (d, J = 2.3 Hz) was assigned
to H-5, H-6 and H-8, respectively. The nature of ring A which is substituted with hydroxyl at
C-7 was confirmed by HMBC correlation of H-6 (64 6.60) with C-5a (8¢ 114.3) C-7 (6¢
164.4) and C-8 (8¢ 102.5). In ring B, an AA'XX' spin system at 6y 7.04 (d, J = 8.6 Hz, 2H, H-
2'/6") and oy 6.88 (d, J = 8.6 Hz, 2H, H-3'/5") is consistent with oxygenation (hydroxyl
group) at C-4' (¢ 158.1). The large coupling constant (J = 12.0 Hz) between H-2 (34 6.00)
and H-3 (8 2.75) indicated a trans relative configuration at the C-2/C-3 stereogenic centres.
The ECD spectrum which showed a positive Cotton effect at 310 nm and a negative one at
290 nm (Fig. 6) was consistent with (2S,3R) absolute configuration. Thus, based on the above
data and comparison with literature, this 3,3"-biflavanone was identified as campylospermone
A (8), previously reported from Campylospermum mannii (Elo Manga et al., 2009).
However, campylospermone A (8) is being reported for the first time from the genus

Ormocarpum.
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Table 8: *H (600 MHz) and **C (150 MHz) NMR data together with HMBC correlations in
compound 8 (acetone-dg)

Carbon No. SH d¢ HMBC
2 6.00 (d, J=12.0 Hz) 84.1 C2'/6', C-8a, C-4
3 2.75(d,J=11.8 Hz) 50.9 C-2,C-1,C4
4 190.7
5 7.74 (d, J=8.7 Hz) 129.2 C-8, C-6,C-8a, C-4
5a 114.3
6 6.60 (d,J=8.7,2.3 110.4 C-8, C-ba, C-7
Hz)
7 164.4
8 6.34 (d, J= 2.3 Hz) 102.5 C-5a, C-6, C-8a, C-4
8a 163.3
1 128.3
2'/6' 7.04 (d,J= 8.6 Hz) 129.0 C-2,C-3/5', C-4'
3'/5' 6.88 (d, J = 8.6 Hz) 115.3 C-2'/6', C-4'
4 158.1
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Figure 6: ECD spectrum of campylospermone A (8)



4.2. Compounds Isolated from Derris trifoliata

Chromatographic separation of the extract from the roots and stem of Derris trifoliata
resulted in the isolation of 15 compounds. Isomedicarpin (9), rotenone (10), 7a-O-
methyldeguelol (12), a-toxicarol (13), 12a-hydroxyelliptonol (15), 7a-O-methyl-12a-
hydroxyelliptonol (16), 7a-O-methylelliptonol (18), prunetin (19) and barbigerone (20) were
isolated from the roots. Among these, 7a-O-methyl-12a-hydroxyelliptonol (16) is a new
compound. A similar investigation of the stem afforded seven known compounds; namely
rotenone (10), deguelin (11), tephrosin (14), elliptone (17), lupinifolin (21), dereticulatin (22)
and 6,7-dimethoxy-4-chromanone (23). The characterization of these compounds is discussed

below.

4.2.1. Medicarpin (9)

Compound 9 was obtained as a brown paste. Its molecular formula was determined as
C16H1404 by LCMS analysis ([M+H]* m/z 271.7) and NMR spectra (Table 9). The *H NMR
spectrum showed signals at 6y 5.57 (d, 7.3 Hz, H-11a), 3.70 (dd, J = 11.1, 9.4 Hz, H-60),
4.26 (dd, 10.9, 4.7 Hz, H-6B) and 3.64 (ddd, J = 9.4, 7.3, 4.7 Hz, H-6a) indicating a
pterocarpan skeleton. An AXY spin system of proton signals at 6y 7.34 (d, J = 7.8 Hz), 6.35
(d, 2.4 Hz) and 6.54 (dd, J = 8.4, 2.4 Hz) was assigned to the protons in ring A at C-1 (d¢c
132.8), C-2 (8¢ 103.5) and C-4 (5¢ 110.1), respectively. The nature of ring A was confirmed
from HMBC correlation of H-1, H-2 and H-4 with C-3 (8¢ 158.9). Additional proton signals
in the aromatic region with AXY spin system at 6y 7.22 (d, J = 7.8 Hz), 6.42 (d, J = 2.3 Hz)
and 6.49 (dd, J = 8.2, 2.3 Hz) were assigned for protons at C-7 (6¢ 125.5), C-8 (6¢ 96.8) and
C-10 (8¢ 106.6) in ring D. In addition to these, a sharp singlet at 6y 3.76 with corresponding
carbon peak (from HSQC spectrum) at d¢ 55.6 showing an HMBC correlation with C-9 (6¢
161.3) was assigned to the methoxy substituent at C-9 in ring B. The HMBC correlation of

the methoxy protons, H-7, H-8 and H-10 with C-9 (6¢ 161.3) confirmed the placement of
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methoxy group at C-9. The magnitude of the coupling constant between H-6a and H-11a (J =

7.3 Hz), is consistent with cis fusion at the B/C ring junction. The high negative specific

rotation, [a]3! —196° (c 0.25, acetone), suggested (6aR,11aR) absolute configuration for

compound 9 (Yenesew et al., 1998c).

On the basis of the above spectroscopic data and comparison with literature, this compound

was identified as (6aR,11aR)-3-hydroxy-9-methoxypterocarpan trival name medicarpin. This

compound has been reported from Millettia leptobotrya (Zhi Na, 2013) and other plant in the

family Leguminosae, however this is the first report from the genus Derris.

Table 9:'H (800 MHz) and **C (200 MHz) NMR data together with HMBC correlations in
compound 9 (CD3CN)

Carbon No. SH d¢ HMBC
1 7.34(d, J=7.8 Hz) 132.8 C-1a, C-10, C-7a, C-9
la 105.5 C-6a, C-6, C-53, C-1, C-5, C-12
2 6.35 (d, J=2.4 Hz) 103.5 C-8, C-11a, C-9
3 158.9
4 6.54 (dd, J = 8.4, 2.4 Hz) 110.1 C-10, C-11a, C-73, C-9
4a 157.3
6 3.70 (dd, J=11.1,9.4 Hz) 66.8 C-6a, C-1a, C-5a, C-7a
4.26 (dd, 10.9, 4.7 Hz)
6a 3.64 (ddd, J=9.4,7.3,4.7 Hz) 39.9 C-6, C-5a, C-2a
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7 7.22 (d, J=7.8 Hz) 125.5 C-6a, C-4, C-3

7a 120.1
8 6.49 (dd, J = 7.8, 2.3 Hz) 96.8 C-2, C-5a, C-3
9 6.42 (d, J =2.3 Hz) 161.3
10 106.6 C-4, C-5a, C-3
10a 161.6
11a 557 (d, J=7.3 Hz) 79.0 C-6a, C-6, C-11a, C-11, C-7a
9-OCHj 3.76 (s) 55.6 C-3

4.2.2. Rotenone (10)

Compound 10 was isolated as a white amorphous solid. The molecular formula Cy3H22,0¢ Was
established from LCMS ([M+H]"m/z 395.3) and NMR data (Table 10). The *"H NMR [at &4
4.55 (dd, J = 12.3, 3.0 Hz, H-6), 4.22 (dd, J = 12.4, 1.0 Hz, H-6), 5.04 (ddd, J = 4.0, 3.0, 1.1
Hz, H-6a) and 3.97 (m, H-12a)] and the *C NMR [at 8¢ 66.6 (C-6), 72.7 (C-6a) and 44.7
(12a)] are typical of a rotenoid skeleton. In the aromatic region of the *"H NMR spectrum, a
pair of ortho-coupled signals at 64 6.54 (d, J = 8.5 Hz) and 7.80 (d, J = 8.5 Hz) were assigned
to H-10 and H-11 of ring D which is substituted at C-8 (6¢c 113.9) and C-9 (d¢c 167.7). This
substituent was established to be 2'-isopropenyldihydrofuran group from the *H NMR signals
at 84 2.96 (dd, J = 15.7, 7.8 Hz, H-3'0), 3.28 (m, H-3'B), 5.34 (M, H-2'), 4.95 (d, J = 1.6 Hz,
H-5'a), 5.07 (dt, J = 1.9, 1.0 Hz, H-5'B), and methyl signal at 1.76 (s, 3H). The location of the
isopropenyldihydrofuran group between C-8 (6¢ 113.9) and C-9 (6¢ 167.7) of ring D was
confirmed by HMBC correlation of H-10, H-11 and H-3" with C-8 and C-9. In ring A, signals
at 0 6.70 (s) and 6 6.50 (s) were assigned to H-1 and H-4, respectively, with C-2 (¢ 150.4)
and C-3 (8¢ 144.3) substituted by methoxy groups (6 3.66 and 3.77). The placement of the

methoxy groups was confirmed by HMBC correlation of methoxy signals at 6y 3.66 to C-2
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(6c 150.4) and &y 3.77 to C-3 (8¢ 144.3) and also correlation of H-1 (64 6.70) and H-4 (dy

6.50) to C-2 and C-3. The absolute configurations at C-6a and C-12a were not established.

However, the coupling constant between one of the protons at C-6 and H-6a are indicative of

a cis—configuration for H-6aand C-12a. This was further supported by the chemical shift of

H-1 o4 6.59 Hz (s) consistant with the B/C ring junction being cis configured (Ito et al.,

2004). Therefore, on the basis of the above evidence and comparison with literature data,

compound 10 was identified as rotenone, previously reported from several plants belonging

to the family Leguminosae including Derris trifoliata (Yenesew et al., 2005).

Table 10: *H (800 MHz) and **C (200 MHz) NMR data together with HMBC correlations in
compound 10 (CDsCN)

Carbon No. OH d¢c HMBC
1 6.70 (s) 111.3 C-2,C-3, C-53, C-12a
2 150.4
3 144.3
4 6.50 (s) 101.7 C-2, C-3, C-5a, C-12a
4a 148.3
60 4.22 (dd,J=12.4,1.0Hz 66.6 C-5a, C-6a, C-12a
6B 4.55 (dd, J = 12.3, 3.0 Hz)
6a 5.04 (ddd, J=4.0, 3.0, 1.1 Hz) 72.7 -
7a 158.5
8 113.9
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10
11
11a
12
12a
o
3

5!

6'-CHs

2-OCHg3
3-OCH;

6.54 (d, J = 8.5 Hz)
7.80 (d, J = 8.5 Hz)

3.97 (m)
5.34 (m)

2.96 (dd, J = 15.7.4, 7.8 Hz)
3.28 (M)

4.95 (q, J = 1.6 Hz)
5.07 (dt, J=1.9, 1.0 Hz)
1.76 (s)

3.66 (s)
3.77 (s)

167.7
104.9
130.0
1135
189.5
44.7
88.2
31.3

144.3
112.3

16.7
56.3
55.9

C-8
C-7a, C-9,C-12

C-1a,, C-5a, C-11aC-12

C-2',C-4',C-7a,C-8, C-9

C-2,C-4'

C-2' C-4', C-5

C-2
C-3

4.2.3. Deguelin (11)

Compound 11 was obtained as a brown paste. The *H NMR spectrum displayed signals at 8

4.61 (dd, J = 12.3, 2.8 Hz), 4.22 (d, J = 12.3 Hz), 5.05 (m) and 3.88 (d, J = 4.0 Hz) with the

corresponding **C signal at 8¢ 66.0, 72.4 and 43.9 indicating that compound 11 is also a

rotenoid derivative. As in compound 10, the *H NMR spectrum showed two singlet aromatic

protons at oy 6.70 (s) and 6.51 (s) allocated to H-1 and H-4, respectively, of ring A with two

methoxy groups (6y 3.77 and 3.66) located at C-2 (¢ 143.7) and C-3 (o4 149.8). The

placement of the methoxy groups was confirmed from HMBC correlation of the methoxy

proton signal at &y 3.77 with 143.7 (C-2), and the signal at &y 3.66 with 149.8 (C-3). A pair

of ortho-coupled doublets at &y 6.46 (d, J = 8.7 Hz) and 7.71 (d, J = 8.7 Hz) were assigned to

H-10 and H-11, respectively of ring D which is substituted at C-8 and C-9. A set of signals at
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oy 6.64 (d, J =10.1 Hz) and 5.73 (d, J = 10.1 Hz) together with two methyl signals at &y 1.37
(s) and 1.46 (s) showed that this substituent is a 2',2'-dimethylchromene or pyran group. The
attachment of the pyran ring at C-8/C-9 of ring D was confirmed from HMBC correlation of
H-10 and H-11 with C-8 (6¢ 109.0) and C-9 (6¢ 159.6), and by correlation of H-4" with C-8
and C-9. As in compound 10, the configuration at C-6a and C-12a was assigned as cis
configuration from the J value (Table 11) of CH,-6 with H-6a and the chemical shift value of
H-1 (64 6.70). Thus compound 11 was identified as deguelin, a compound which also occurs
widely in the family Leguminosae including the roots of Derris trifoliata (Yenesew, et al.,

2005).

4.2.4. Ta-O-Methyldeguelol (12)

Compound 12 was isolated as a colourless paste and showed [M+H]* at m/z 411.3 in the
LCMS analysis, corresponding to the molecular formula C,sH260s. In the *H NMR spectrum,
the presence of a methylene signal oy 2.16 (ddd, J = 7.9, 5.6, 4.0 Hz, 2H) along with
oxymethylene at oy 4.08 (ddd, J = 11.0, 8.0, 5.0 Hz, 1H, H-60) and 4.16 (ddd, J = 11.0, 4.1
Hz, 1H, H-6p), and methine at 6y 4.66 (m, 1H, H-12a) was typical of a rotenoid derivative
with an open ring C (a new subclass named as rotenoloid) (Yenesew et al., 2005). As in
compound 11, two singlet aromatic proton signals at oy 6.47 (H-1) and 6y 6.43 (H-4) were
observed with the corresponding **C NMR peaks appearing at 8¢ 114.2 and 101.5 of ring A.
Furthermore, two sharp singlet proton signals at oy 3.59 (s), 3.77 (S) were assigned to

methoxy substituents at C-2 (6¢ 143.5) and C-3 (6¢ 149.7) of ring A. The attachment of the

66



methoxy group in ring A was established by HMBC correlation of the methoxy signals oy
3.59 to C-2 and oy 3.77 with C-3. In support of this, the HMBC spectrum also showed
correlation of the singal oy 6.47 (H-1) with C-3 (6¢ 149.7), and dy 6.43 (H-4) with C-2 (6¢
143.5). In ring D, the presence of a methoxy oy 3.81(s) together with mutually coupled
aromatic protons at oy 6.65 (d, J = 8.5 Hz, H-10) and 7.41 (d, J = 8.5 Hz, H-11) and a 2',2"-
dimethylchromene substituent at 6y 5.85 (d, J = 10.0 Hz), 6.67 (d, J = 10.0 Hz) and 1.46 (s)
further confirmed that ring C in the rotenoloid moiety is open. The placement of the 2'2'-
dimethylchromene ring at C-8 (6¢ 115.6) and C-9 (6¢ 157.8) in ring D was confirmed by
HMBC correlation of H-10 (64 6.65) with C-8 (6¢ 115.6), C-9 (6¢ 157.8), as well as H-11 (6y
7.41) with C-9 (8¢ 157.8). Therefore, based on the above spectroscopic evidence and
comparison with literature data, compound 12 was identified as 7a-O-methyldeguelol;
previously reported from Derris trifoliata (Cheenpracha, et al., 2007; Yenesew et al., 2005).

The absolute configuration at C-12a was not determined.
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Table 11: *H (800 MHz) and **C (200 MHz) NMR data together with HMBC correlations in compounds 11 and 12 (CD3CN)

Carbon 11 12

No. S Sc HMBC S Sc HMBC

1 6.70 (s) 110.7 C-2,C-3,C-5 6.47 (5) 114.2 C-3, C-4a, C-12a
la 104.9 111.2

2 143.7 143.5

3 149.8 C-2,C-3,C-5 149.7

4 6.51 (s) 101.2 6.43 (s) 101.5 C-1a, C-2, C-4a, C-12a
4a 147.7 149.8

60 4.22 (d, J =12.3 Hz) 66.0 C-6a, C-12a 4.08 (ddd, J = 11.0, 8.0, 5.0 Hz) 63.6 C-4a, C-6a, C-12a
6 461 (dd,J=12.3, 2.8 Hz) 4.16 (ddd, J=11.0, 4.1 Hz) C-4a, C-6a, C-12a
6a 5.05 (m) 72.4 - 2.16 (ddd, J=7.9,5.6, 4.0 Hz, 2H) 255 C-1a, C-6, C-12, C-12a,
7a 156.7 156.2

8 109.0 115.6

9 159.6 157.8

10 6.46 (d, J = 8.7 Hz) 110.0 C-9, C-11, C-11a 6.65 (d, J=8.5Hz) 112.8 C-8, C-9, C-11a

11 7.71(d, J=8.7 Hz) 128.7 7.41(d,J=8.5Hz) 131.8 C-7a, C-9,C-12
11a 112.8 126.0
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12 189.2 203.1
12a 3.88 (d, J = 4.0 Hz) 43.9 C-4,C-1, C-12 4.66 (t, J=5.1 Hz) 111.2 C-1, C-4a, C-5a, C-6, C-6a, C-12
2" 777 77.4
3 573 (d,J=10.1Hz) 129.6 C-2, C-4 5.85 (d, J = 10.0 Hz) 131.0 C-CH3, C-2', C-8
4 6.64 (d, J= 10.1 Hz) 114.8 C-2,C-8 6.67 (d, J = 10.0 Hz) 116.7 C-2',C-7a, C-9
2' (CHa), 1.37 (5) 270  C-CH;C-2, C-3' 1.46 () 275 C-CH3 C-2', C-3'
1.46 (s) 275
2-OCHj 3.77 (s) 553  C-CH; C-2, C-3' 3.59 (s) 55.3 C-2
3-OCH; 3.66 () 55.8 C-2 3.77 (s) 55.8 C-3
7a-OCHs 3.81(s) 63.7 C-7a
OCH,
OCH,
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4.2.5. o-Toxicarol (13)

Compound 13 was isolated as a brown paste, the molecular formula was determined as
Ca3H2,0; by LC-MS ([M+H]" peak at m/z 411.3) and NMR spectra (Table 12). The NMR
spectra of 13 is similar to 11 except for the presence of a signal for intramolecularly bonded
hydroxy group at 6y 12.23 (C-11 8¢ 164.9) in ring D. That this compound is a rotenoid
derivative was established from the *H NMR spectrum which showed characteristic peaks at
Sy 4.61 (dd, J = 12.4, 2.9 Hz, 1H), 422 (m, 1H), 501 (m, 1H) and 3.91 (m, 1H)
corresponding to protons on C-6 (&¢ 66.3), C-6a (6¢c 72.5) and C-12a (d¢c 43.7). Ring A is
identical to that of compound 11 which showed two singlet aromatic protons 6y 6.81 (H-1)
and 6.51 (H-4) with the corresponding **C NMR peaks (from HSQC spectrum) 8¢ at 111.3
(C-1) and 101.7 (C-4), respectively. As in compound 11, the *H NMR spectrum revealed the
presence of 2',2'-dimethylpyran group [éy 5.62 (d, J = 10.1 Hz), 6.55 (d, J = 10.0 Hz), and
two methyl signals 64 1.35 (s) and 1.44 (s)]. The attachment of the 2',2'-dimethylpyran
moiety at C-8/C-9 in ring D was established from the HMBC correlation of H-10 (64 5.93)
with C-9 (8¢163.0), and H-4' (64 6.55) with C-8 (6¢ 106.2). The remaining singlet proton
signals at 3.78 (s) and 3.69 (s) belong to methoxy groups at C-2 (6¢ 150.6) and C-3 (d¢c 144.4)
of ring A. Thus, this compound was identified as a-toxicarol, previously isolated from the

roots of Derriis trifoliata (Yenesew, et al., 2005).
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Table 12: *H (800 MHz) and **C (200 MHz) NMR data together with HMBC correlations in
compound 13 (CD3CN)

Carbon No. OH d¢c HMBC

1 6.81 (s) 111.3 C-2,C-3,C-5

2 150.6

3 144.4

4 6.51 (s) 101.7 C-2,C-3,C-H5

5 156.7

oa -

60 4.22 (m) 66.3 C-6a, C-12a

6B 4.61 (dd, J = 12.4, 2.9 Hz)

6a 5.01 (m) 72.5 -

7a 156.7

8 106.2

9 163.0

10 5.93 (s) 97.8 C-9,C-11,C-11a

11 164.9

1la 101.7
12 195.8
12a 3.91 (m) 437 C-1, C-4, C-12

2' 78.9

3 5.62 (d, J = 10.1 Hz) 127.7 C-2, C-4'

4 6.55 (d, J=10.0 Hz) 115.2 C-2',C-8
2'-CH3 1.35 (s) 27.8 CHj C-2', C-3'
2'-CH3 1.44 (s) 28.2 CHj3 C-2', C-3
2-OCHs 3.78 (s) 55.9 C-2
3-OCHs 3.69(s) 56.4 C-3
11-OH 12.23 (s) C-7a, C-10, C-11a
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4.2.6. Tephrosin (14)

Compound 14 was isolated as a light brown oil having the LC-MS fragment ion peak at m/z
393.3 [M-H,0+H]" corresponding to [C2sH2106]". The NMR spectra of 14 is similar to 11
except for the presence of a hydroxy substituent at C-12a in compound 14. Thus the *H NMR
spectrum showed signals at oy 4.65 (m, H-6a), 4.44 (dd, J = 12.3, 1.1 Hz, H-6B) and 4.68 (m,
H-6a), with the corresponding **C NMR signals (from HSQC) appearing at 8¢ 63.7 and 76.1,
which is consistent with the presence of hydroxy group at C-12a. In the aromatic region of
the spectrum, two singlet proton signals at 6y 6.59 and 6.54 were assigned to H-1 and H-4 of
ring A. The presence of two methoxy signals 6y 3.78 (s) and 3.65 (s) were apparent and were
placed at C-2 (6¢ 151.4) and C-3 (6¢ 143.7) in ring A. The position of the methoxy group was
fixed from HMBC spectrum (Table 13). Additionally, ortho coupling signals at 6y 6.48 (d, J
=8.7Hz) and 7.71 (d, J = 8.7 Hz), and their HSQC cross peaks at 6c 111.3 and d¢c 128.8 were
assigned to H-10 and H-11 of ring D. The signals 64 5.72 (d, J = 10.2 Hz), 6.60 (d, J = 10.0
Hz) and methyl signals 6y 1.36 (s) and 1.46 (s) were representative of the 2',2'-dimethylpyran
group. The fusion of the 2',2'-dimethylpyran at C-8 and C-9 in ring D was established by
HMBC correlation of H-10 and H-11 to C-9 (3¢ 160.0), as well as H-3" (64 5.72) with C-8
and H-4" (o4 108.5) with C-9 (160.0). The relative configuration at the B/C ring junction was
established from NMR as in the other rotenoids of this plant. Therefore, this compound was
identified as tephrosin, previously isolated from seeds of Mellettia dura (Yenesew et al.,

2003) and several plants in the family Leguminosae.
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Table 13: *H (800 MHz) and **C (200 MHz) NMR data and HMBC correlations for 14

(CDsCN)
Carbon No. SH d¢c HMBC
1 6.59 (s) 110.4 C-12a, C-1a, C-2, C-
3, C-4a,
la 108.9
2 151.4
3 143.7
4 6.54 (s) 101.1 C-6a, C-12a, C-2,
C-3,C-4a
4a 148.5
60, 4.44 (dd, J=12.3,1.1 Hz) 63.7 C-6a, C-12a, C-4a,
6P 4.65 (m) C-12,C-7a
6a 4.68 (m) 76.1 C-6, C-123, C-12
7a 156.1
8 108.5
9 160.0
10 6.48 (d, J = 8.7 Hz) 111.3 C-11a, C-9
11 7.71(d, J=8.7 Hz) 128.8 C-11,C-9,C-7a
1la 108.9
12 190.9
12a 67.6
2' 77.9
3 5.72 (d,J=10.2 H2) 129.7 2'-CH3 C-2', C-8, C-
9
4 6.60 (d, J= 10.0 H2) 1145 C-2',C-9
2-OCHjs 3.78 (s) 55.4 C-2
3-OCHjs 3.65 (s) 55.8 C-3
2'CHj; 1.36 (s) 21.7 c-2', C-3
1.46 (s) 27.6

4.2.7. 12a-Hydroxyelliptonol (15)

Compound 15 was identified as a pale yellow oil. LCMS indicated the molecular ion peak at

m/z 351.7 corresponding to the dehydration product with the molecular formula CyoH150¢".

The *H and **C NMR signals at 54 4.67 (dd, J = 12.5, 2.5 Hz, H-60), 4.51 (dd, J = 12.5, 1.1

Hz, H-6p) and 4.87 (dd, J = 2.5, 1.1 Hz, H-6a) with corresponding carbon peaks (from

HSQC spectrum) appearing at dc 64.3 (C-6), 77.1 (C-6a) and 68.4 (C-12a), indicated that

compound 15 is a rotenoid derivative having a hydroxyl substituent at C-12a (6¢ 68.4).
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The "H NMR signals at 8 6.59 (s) and 6.55 (s) were assigned to H-1 and H-4, respectively of
ring A, with methoxy groups (6 3.77 (S) and 3.64) attached to C-2 (6¢ 152.0) and C-3 (6¢
144.3) of ring A. The aromatic protons at oy 7.26 (d, J = 8.8, 0.9 Hz) and 7.87 (d, J = 8.8
Hz) together with 3C NMR peak 8¢ 107.2 (C-10) and 124.2 (C-11) were assigned to H-10
and H-11 in ring D, and further proton signals at éy 7.76 (d, J = 2.2 Hz) and 6.94 (dd, J =
2.2, 0.9 Hz) confirmed the presence of a 1,2,-disubstituted furan moiety in ring D. The
placement of the furan ring between C-8 (8¢ 117.4) and C-9 (8¢ 160.7) in ring D was further
confirmed by the HMBC correlation of protons of the furan ring (H-2' and H-3") and the
aromatic ring proton (H-10 and H-11) with quaternary carbon peaks at C-8 (6¢c 117.4) and C-
9 (8¢ 160.7). The 6aa,12a0 (Ito, et al., 2004; Yenesew, et al., 2006) and the 6af,12af3
(Cheenpracha, et al., 2007; Thasana et al., 2001) configuration of 12a-hydroxylelliptone has
been suggested. However the configuration at C-6a and C-12a in 15 has not been determined.
Thus, this compound was identified as 12a-hydroxylelliptone, a compound previously
reported from Derris trifoliata (Cheenpracha, et al., 2007; Ito, et al., 2004; Yenesew, et al.,

2006) and from Derris malaccensis (Thasana, et al., 2001).

4.2.8. 7a-O-Methyl-12a-hydroxyelliptonol (16)

Compound 16 was isolated as a pale yellow oil. As in compound 15, the *H and *C NMR
spectra displayed signals corresponding to two aromatic proton singlets at éy 6.60 (H-1) and
6.48 (H-4) in ring A and two ortho coupled signals at 6 7.17 (d, J = 8.5, 1.0 Hz, H-10) and
6.93 (d, J = 8.4 Hz, H-11) in ring D. As in the other rotenoid derivatives, the methoxy groups

which appeared at oy 3.64 (3¢ 56.3) and 3.80 (8¢ 55.9), were placed at C-2 and C-3,
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respectively in ring A. The presence of mutually coupled proton signals at 6y 7.77 (d, J = 2.3
Hz) and 7.12 (dd, J = 2.3, 0.9 Hz) was evidence for the presence of a furan moiety in ring D
as in compound 15. Furthermore, in the NMR spectrum two mutually coupled, methylene
signals at 8y 4.12 (m) and 4.24 (m) with the corresponding **C signal 8¢ 63.3 (from HSQC)
were observed and were assigned to CH; -6. The replacement of a methine [oy 4.87 (dd, J =
2.5, 1.1 Hz), 8¢ 77.1] in compound 14 by methylene oy 2.04 (m) (3¢ 34.5) signals in 16 and
the presence of an additional methoxyl (at C-7a) signal at oy 4.23 (S) (8¢ 60.6) clearly
indicated that ring C of 15 is open at C-6a. Therefore, based on the above data this new
compound was characterized as 7a-O-methyl-12a-hydroxyelliptonol (16). The absolute

configuration at C-12a has not been determined.
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Table 14: *H (800 MHz) and *C (200 MHz) NMR data for 15 and 16 along with HMBC correlations in 15

Carbon 15 16
No. OH d¢ HMBC OH dc
1 6.59 () 110.8 C-1a, C-2, C-3, C-4a, C-12a 6.60 () 111.5
la 108.9 -
2 152.0 -
3 144.3 -
4 6.55 () 101.6 C-1a, C-2,C-3,C-4a, C-12a 6.48 (s) 101.5
4a 149.1 -
60 451 (dd, J =125, 1.1 Hz) 64.3 C-4a, C-6a, C-12a 4.12 (m) 63.3
6p 4.67 (dd, J =12.5, 2.5 Hz) 4.24 (m)
6a 4.87 (dd, J =25, 1.1 Hz) 77.1 C-1a, C-12a 2.04 (m) 34.5
7a 155.6 -
8 117.4 -
9 160.7 -
10 7.26 (dd, J=28.8,0.9 Hz) 107.2 C-8, C-9, C-11a 7.17 (d,dJ=8.5,1.0 Hz) 106.0
11 7.87 (d, J=8.8 Hz) 124.2 C-7a, C-9, C-12 6.93 (d, J = 8.4 Hz) 125.0
11a 117.4 -
12 192.3 -
12a 68.4 -
2' 7.76 (d,J=2.2 Hz) 146.8 C-3',C-8,C-9 7.77 (d, J = 2.3 Hz) 146.0
3 6.94 (dd, J = 2.2, 0.9 Hz) 104.6 C-2',C-8,C-9 7.12 (dd, J = 2.3, 0.9 Hz) 105.9
2 -OCHjs 3.77 (s) 55.9 C-2 3.64 (s) 56.3
3-OCH; 3.64 (s) 56.4 C-3 3.80 (s) 55.9
7a- OCH3 4.23 () 60.6
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4.2.9. Elliptone (17)

Compound 17 was isolated as a colourless paste. The *H and **C NMR of 17 is typical of a
rotenoid and showed signals at 6y 4.69 (dd, J = 12.5, 2.5 Hz, 1H, H-6p), 4.51 (m, 1H, H-6a),
4.87 (dd, J = 2.5, 1.1 Hz, H-6a) and 2.70 (m, H-12a), with the corresponding carbon peaks
appearing at dc 64.3 (C-6), 77.1 (C-6a) and 49.4 (C-12a), respectively. In the *H NMR
spectrum, two aromatic singlets at oy 6.59 (s) and 6.55 (s) were assigned to H-1 and H-4 of
ring A with methoxy (64 3.77 and 3.64) groups being at C-2 and C-3, respectively. HMBC
correlation of the two methoxy protons with carbon peaks at C-2 (6¢ 152.0) and C-3 (6¢c
144.3) supported their placement at C-2 and C-3 as in the other rotenoids of this plant. Two
mutually coupled protons at 6y 7.26 (dd, J = 8.8, 1.0 Hz) and 7.87 (d, J = 8.8 Hz) were
assigned to H-10 and H-11 of ring D which is substituted at C-8 and C-9. This substituent is a
furan moiety as in compound 15 as shown by the *H NMR signals at 814 7.76 (d, J = 2.3 Hz)
and 6.95 (dd, J = 2.3, 0.9 Hz). Therefore, this compound was identified as elliptone;
previously reported from Derris trifoliata (Ito, et al., 2004) and from Millettia duchesnei
(Ngandeu et al., 2008). The absolute configuration of 17 was not determined here, however
in the previous report the relative configuration had been assigned as 6a4,12ap (lto, et al.,

2004).

4.2.10. 7-a-O-Methylelliptonol (18)
Compound 18 was isolated as a yellowish paste with [M+H]" at m/z 369.2 from LCMS. This
information along with NMR data (Table 15) allowed the assignment of molecular formula as

C,1H2106. The *H and *3C data (Table 15) of 18 showed that it had identical A and D rings as
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in elliptonol (16). The only difference is that the quaternary carbon signal for C-12a in
compound 16 (5¢c 68.4) is replaced with signals for a methine in 18 64 4.73 (dd, J = 6.2, 4.3
Hz), o6c 46.1. Consequently, this compound was identified as 7-a-O-methylelliptonol,
previously reported from Derris trifoliata (Cheenpracha, et al., 2007). The absolute

configuration at C-12a remains unresolved.
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Table 15: *H (800 MHz) and *C (200 MHz) NMR data together with HMBC correlations in compounds 17 and 18 (CD3CN)

Carbon 17 18
No. Su Sc HMBC SH S¢ HMBC
1 6.59 (s) 110.8 C-1a, C-2, C-3, C-4a, C- 6.49 (s) 114.2 C-12a, C-2, C-3, C-4a
12a,
la 108.9 111.7
2 152.0 143.5
3 144.3 149.8
4 6.55 (s) 101.6 C-1a, C-2, C-3,C-4a, C- 6.44 (s) 101.4 C-1a, C-2, C-4a
123,
43 149.1 149.7
60 4.51 (m) C-6a, C-12a, C-4a, C-12 4.11 (m) 63.6 C-6a, C-12a,
6p 4.69 (dd, J=125,25Hz) 64.3 4.16 (m) C-4a
6a 4.87 (dd, J=2.5, 1.1 H2) 77.1 C-12a, C-1a 2.18 (m) 25.5 C-12a, C-64a, C-1a, C-12
8 160.7 153.4
9 - 118.4
10 155.6 159.2
11 7.26 (dd, J=8.8, 1.0 Hz) C-11a, C-9 7.30 (dd, J=8.5,1.0 Hz) 106.5 C-8, C-11a
107.2
11a 7.87 (d,J=8.8 Hz) 124.2 C-7a, C-9, C-12 7.47 (d,J=7.47 Hz) 126.6 C-7a, C-9, C-12
12 113.3 125.4
12a 2.70 (m) 49.4 4.73 (dd, J=6.2, 4.3 Hz) 46.1 C-6,C-1a, C-1
2' 7.76 (d, J = 2.3 Hz) 146.8 C-3',C-7a 7.82 (d,J=2.3 Hz) 146.0
3 6.95(dd,J=23,09Hz) 104.6 C-2',C-7a 7.22(dd,J=2.3,1.0H2) 106.2 C-2',C-8, C-9
2-OCHj, 3.77 (s) 55.9 C-2 3.65 () 56.3 Cc-2
3-OCHj;4 3.64 (s) 56.4 C-3 3.77 (s) 55.8 C-3
7a-OCHj; 4.23 (s) 60.8 C-7a
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4.2.11. Prunetin (19)

Compound 19 was isolated as a white amorphous solid; LC-MS analysis showed [M+H]" at
m/z 285.0 which together with NMR data (Table 16) allowed the assignment of the molecular
formula as CigH140s. In its *H NMR spectrum, a singlet at &y 8.08 (H-2), with the
corresponding **C NMR peak (from HSQC spectrum) d¢ 154.3 (C-2) indicated compound 19
is an isoflavone derivative. The presence of downfield shifted proton (o4 12.94, for 5-OH),
methoxy group (8y 3.91, 8¢ 56.4), was evident from the NMR spectra. In the *C NMR
spectrum (Table 16), the presence of five downfield shifted quaternary carbon signals are
consistent with five oxygenated sp® hybridized carbon atoms. Two meta coupled aromatic
proton signals at 6y 6.40 (d, J = 2.3 Hz) and 6.56 (d, J = 2.3 Hz) with upfield carbon signals
d¢c 98.6 (C-6) and 92.7 (C-8) assigned to H-6 and H-8, respectively in ring A, consistent with
oxygenation at C-5 (OH) and C-7 as expected from biogenetic considerations. HMBC
correlation of the methoxy protons with C-7 allowed its placement at this carbon. The
substitution pattern in this ring was confirmed by HMBC correlation of the signal 6y 6.40 (H-

6) with C-5 (8¢ 163.0) and C-7 (8¢ 166.3), 34 6.56 (H-8) with C-7 (5¢ 166.3).

In ring B, an AA'XX" spin system at &y 7.42 and 6.91 was assigned to H-2'/6" and H-3'/5'
respectively, with C-4' substituted with hydroxy group (6¢c 157.8). In agreement with this, the
HMBC spectrum showed correlation of H-2'/6' and H-3'/5" with the carbon peak at ¢ 157.8
(C-4"). Therefore, compound 19 was identified as 4',5-dihydroxy-7-methoxyisoflavone, trivial
name prunetin. This compound has been reported from Dalbergia spinosa and Dalbergia
sympathetica (Nagarajan et al., 2006; Narayanan & Nagarajan, 1988). This is however the

first report of prunetin (19) from the genus Derris.
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Table 16: *H (800 MHz) and **C (200 MHz) NMR data together with HMBC correlations in
compound 19 (CD3CN)

Carbon No. SH d¢ HMBC
2 8.08 (s) 154.3 C-1',C-3,C-4,C-8a
3 123.8
4 181.6
5 163.0
5a 106.5
6 6.40 (d, J=2.3 Hz) 98.6 C-5, C-5a, C-7,C-8
7 166.3
8 6.56 (d,J=2.3 Hz) 92.7 C-7,C-8a
8a 158.7
1 122.8
2'/6' 7.42 (d, J=8.5Hz) 130.4 C-3,C-2/6', C-4'
35 6.91 (d, J=8.5 Hz) 115.7 C-3/5', C-2,
c-4'
4 157.8
7- OCH3; 3.91 (s) 56.4 C-6
5-OH 12.94 (s) C-6, C-4a, C-5

4.2.12. Barbigerone (20)
Compound 20 was obtained as a white amorphous solid. LCMS analysis showed a [M+H]"

peak at m/z 395.3, which together with NMR data (Table 17) is consistent with the molecular
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formula C,3H2306. That this compound is an isoflavone is shown from the *H NMR signal at
81 8.03 (s, H-2) and **C NMR signals at 8¢ 154.6 (C-2), 122.5 (C-3) and 175.7 (C-4). The
presence of a 2",2"-dimethylpyran [y 5.89 (d, J = 9.9 Hz, H-4"), 64 6.87 (d, J = 10.7 Hz, H-
3") and oy 1.51 (6H, s, (Me);-2"] and three methoxy groups (64 3.76 (S), 3.78 (s) and 3.90
(s)) was evident from the *H NMR spectrum. In ring A, two ortho coupled aromatic protons
at oy 7.93 (d, J = 8.6 Hz, H-5) and 6.87 (d, J = 8.5 Hz, H-6) with the corresponding carbon
signals (from HSQC spectrum) appearing at 6c 126.5 (C-5) and 115.0 (C-6) correspond to H-
5 and H-6, respectively with C-7/C-8 substituted with a 2",2"-dimethylpyran moiety. The
placement of the 2",2"-dimethylpyran ring at C-7/C-8 was confirmed from the HMBC
correlation of H-5 (64 7.93) with C-7 (8¢ 152.8), as well as the correlations of H-6 (dy 6.87)

with C-7 (6¢ 152.8) and C-8 (6¢ 110.1).

In ring B, the presence of two singlet aromatic protons oy 6.75 (s) (H-3") and 6.92 (s) (H-6"),
is consistent with the placement of the three methoxy groups at C-2' (6¢ 152.8), C-4' (dc
143.3) and C-5' (8¢ 150.7). The substitution pattern in ring B was confirmed by HMBC
correlation of H-3' and H-5' with C-2' (8¢ 152.8), C-4' (6c 143.3) and C-5' (6¢c 150.7).
Therefore, this compound was identified as barbigerone (20), previously reported from seeds
of Tephrosia barbigera (Vilain, 1980) and Millettia usaramensis (Yenesew et al., 1998a).

This is the first report from the genus Derris.
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Table 17: *H (800 MHz) and **C (200 MHz) NMR data together with HMBC correlations in
compound 20 (CD3CN)

Carbon No. SH d¢ HMBC
2 8.03 (s) 154.6 C-1', C-2',C-3, C-
8a, C-4
3 122.5
4 175.7
4a -
5 7.93 (d, J=8.6 Hz) 126.5 C-7, C-8a, C-4
6 6.87 (d, J=8.5Hz) 115.0 c-2",C-7, C-8, C-
8a
7 152.8
8 110.1
8a 157.6
1 112.9
2' 152.8
3 6.75 (S) 99.0 c-1, C-2,C-3, C-
4', C-5
4' 143.3
5 150.7
6' 6.92 (s) 116.7 Cc-1,C-2', C-3, C4,
C-5
2" 78.3
3" 5.89 (d, J = 9.9 Hz) 1315 2" CH; C-2", C-7
4" 6.87 (d, J=10.7 Hz) 1154 c-2", C-7, C-8, C-
8a
2'-OCH;, 3.76 (s) 56.7 c-2'
4-OCHjs 3.78 (s) 56.8 C-4'
5-OCHjs 3.90 (s) 52.6 C-5'
2"-(CHa), 1.51 (s) 27.7 c-2, C-3'
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4.2.13. Lupinifolin (21)

Lupinifolin was isolated as a yellow oil with a molecular ion peak [M+1]" appearing at m/z
407.7 corresponding to C,H250s. The *H NMR spectrum revealed a flavanone skeleton with
proton signals at 6y 5.43 (dd, J = 12.8, 3.1 Hz, H-2), 3.15 (dd, J = 17.1, 12.8 Hz, H-3ax) and
2.81 (dd, J = 17.1, 3.1 Hz, H-3eq) with the corresponding carbon signals appearing at d¢ 79.3
(C-2) and 6¢ 42.9 (C-3) of ring C. The proton signals 6y 3.19 (m) and 5.15 (m) together with
the methyl signals at oy 1.66 (6H, s) are indicative of the prenyl substituent in ring A. The
presence of another set of proton signals at 64 5.63 (d, J = 10.0 Hz), 6.60 (d, J = 10.0 Hz) and
methyl protons [6y 1.44 (s) and 1.45 (s)] are due to a 2",2"-dimethylpyrano ring. The
placement of prenyl at C-8 and the 2", 2"-dimethylpyrano between C-6 and C-7 in ring A was
established by the HMBC correlation of H-1"" (64 3.19) to C-8 (6¢ 108.8); correlation of
proton signals of the chromene ring H-3' (64 5.63) to C-6 (6¢ 103.0) as well as H-4' to C-7
(6c 159.7). Furthermore, a strongly hydrogen bonded hydroxy signal at 6y 12.42 is placed at
C-5 (8¢ 156.8) of ring A which is fully substituted. The AA’XX’ spin system at oy 7.37 (d, J
= 8.5 Hz) and 6.89 (d, J = 8.5 Hz) was assigned to H-2'/6" and H-3'/5', respectively of ring B
with hydroxy substituent at C-4" (6¢c 157.8). These proton signals showed HMBC correlation

with C-2 (8¢ 79.3) and C-4' (¢ 157.8) confirming the nature of ring B.

Based on the above spectroscopic evidence and comparison with literature, compound 21 was
identified as lupinifolin, a compound previously reported from Derris reticulata (Mahido, et
al., 1997) and Derris trifoliata (YYenesew et al., 2009). The absolute configuration has not yet
been established, but the large coupling constant between H-2 and one of the protons at C-3
(J = 12.8 Hz) indicates that H-2 is in an axial orientation and the B ring is in an equatorial

position.
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4.2.14. Dereticulatin (22)

Compound 22 was isolated as a brown paste. The LCMS spectrum displayed a molecular ion
peak at m/z 423.1. Proton signals at dy 5.39 (dd, J = 13.3, 2.9 Hz), 2.78 (m, H-3a) and 3.14
(m, H-3B) and carbon peaks (8¢ 79.5 (C-2) and 6¢ 42.6 (C-3) characteristic of a flavanone
were displayed. The H and *C NMR spectra of 22 were similar to compound 21, the only
difference was that the presence of a 2-hydroxy-3-methylbut-3-en-1-yl) group instead of a
prenyl group at C-8. Thus the "H NMR signals at & 2.78 (m, H-1"), 4.21 (m, H-2"), 4.69 (m,
H-4"), and 1.68 (s, 3"'-CHs), together with the *C NMR peaks at 5¢ 28.8 (C-1"), 74.6 (C-
2"), 109.5 (C-4™) and 17.0 (C-3"CHs) represented the 2-hydroxy-3-methylbut-3-en-1-yl)
group. Additional set of signals at &4 5.63 (d, J = 10.0 Hz), 6.61 (d, J = 10.0 Hz) and 1.47 (s,
2"CHg3) belong to the 2",2"-dimethylpyrano ring. The placement of both substituents (2-
hydroxy-3-methylbut-3-en-1-yl) and 2",2"-dimethylpyrano) in ring A was confirmed by the
HMBC correlation of H-1" (5 2.78) to C-7 (8¢ 159.6), C-8 (8¢ 105.6) and C-8a (5¢ 148.1),
as well as H-3" correlation to C-6 (8¢ 102.4), and H-4" with C-5 (¢ 156.6) and C-7 (d¢
159.6). The AA'XX' spin system signals in ring B resonates at oy 7.38 (d, J = 8.6 Hz) and
6.89 (d, J = 8.5 Hz) is consistent with C-4" (6c 157.3) oxygenation. The nature of this ring
was confirmed on the basis of HMBC correlation of the signals at 6y 7.38 (H-2'/6") to C-2 (6¢
42.6) and C-4' (6¢ 157.3), as well as correlation of H-3'/5' to C-1' (8¢ 130.2), and C-4' (6¢
157.3). The absolute configuration at C-2 has not yet been established, but the coupling

constant between H-2 and one of the protons (J = 13.2 Hz) suggested an axial and equatorial
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position for H-2 and the B ring, respectively. Therefore, this compound was identified as

dereticulatin; previously reported from the stem of Derris reticulata (Mahidol et al., 1997).
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Table 18: *H (800 MHz) and *C (200 MHz) NMR data together with HMBC correlations of compounds 21 and 22 (CDsCN)

Carbon 21 22
No. Sh Sc HMBC du dc HMBC
2 5.39 (dd,J=13.2,2.93 795 c-1',C-2/6' 5.43 (dd,J=12.8, 3.1 Hz) 79.3 C-2'/6', C-1',C-4
Hz)
3 2.78 (m) 42.6 C-2,C-1' 2.81(dd, J=17.1, 3.1 Hz) 42.9 C-5a, C-4
3.14 (m) 3.15 (dd, J = 17.1, 12.8 Hz) C-2,C-1'
4 197.4 197.7
5 156.6 156.8
5a 102.2 103.0
6 102.4 103.0
7 159.6 159.7
8 105.6 108.8
8a 148.1 160.1
2'/6' 7.38 (d, J = 8.6 Hz) 128.6 C-2, C-4' 7.37 (d, J = 8.5 Hz) 128.6 C-2, C-4'
3/5' 6.89 (d, J = 8.5 Hz) 115.8 c-1', C-4' 6.89 (d, J = 8.5 Hz) 115.8 C-2, C-4'
1 130.2 130.7
4 157.3 157.8
oM 78.3 78.3
3" 5.63(d,J=10.0Hz)  127.0 2"CH; C-2", C-6 5.63(d, J = 10.0) 127.1 2"CH,; C-2", C-6
4" 6.61(d, J=100Hz) 1154 C-2", C-5a, C-5, C-7 6.60 (d, J = 10.0) 115.5 c-2", C-5, C-7
1 2.78 (m) 28.8 c-2", C-7,C-8, C-8a 3.19 (m) 216 c-8, C-2", C-3", C-7
2" 4.21 (m) 74.6 5.15 (m) 122.8 4" CHj, 5™ CH;s
3™ 131.6
4 4.69 (m) 109.5 1.66 (s) 175 5" CH,, C-3", C-2"
5 1.66 (s) 25.4 4™ CH,, C-3", C-2™
2"CHj 1.47 (s) 27.6 C-2"CH,, C-2", C-3" 1.44 (s) 2" CH,, C-2", C-3"
1.45 (s)
3"CHj 1.68 (s) 17.0 C-3"CH; C-4", C-8a
5-OH 12.47 (s) 12.42 (s) C-5, C-5a
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4.2.15. 6,7-Dimethoxy-4-chromanone (23)

Compound 23 was isolated as a colourless paste with [M+1]" peak in the LCMS analysis at
m/z 209.2 corresponding to molecular formula C11H1,04. That this compound is chroman-4-
one derivative was evident from the NMR sectra (Table 19). Thus, the *H NMR spectrum
showed two singlet aromatic signals at 6y 7.24 (S) and 6.54 (s) assigned to H-5 and H-8, as
well as two methoxy signals at 6y 3.87 (S) and 3.81 (s) attached at C-6 (d¢ 156.8) and C-7 (6¢
145.0), respectively. The oxymethylene protons and methylene proton signals at 4.15 (m) and
2.70 (dd, J = 6.9, 6.1 Hz) corresponding to protons at C-2 and C-3, respectively, which is
consistent with a disubstituted chroman-4-one skeleton (Wangensteen et al., 2005). The
placement of methoxy group at C-6 was established from the HMBC correlation of the
methoxy protons (dy 3.87) with a carbon peak at d¢ 156.8 (C-6), whereas the methoxy signal
at oy 3.81 correlated to peak at dc 145.0 (C-7). HMBC correlation of H-5 (o 7.24),
oxymethylene (3 4.15) and methylene (6y 2.70) protons with C-4 (5c 190.7) is consistent
with the structre proposed. Hence, on the basis of this spectroscopic evidence and comparison
with literature data, this compound was identified as 6,7-dimethoxy-4-chromanone,
previously reported from Sarcolobus globosus (Aslclepiadaceae) (Wangensteen, et al., 2005)

and Derris trifoliata (Yenesew, et al., 2006).

HacO0” ¢ "0
1
23
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Table 19: *H (800 MHz) and **C (200 MHz) NMR data together with HMBC correlations in
compound 23 (CD3CN)

Carbon No. OH d¢c HMBC

2 4.15(m) 68.1 C-3, C-4, C-8a,
3 2.70 (dd, J =6.9, 6.1 Hz) 37.4 C-2,C-4, C-ha
4 190.7
5 7.24 (s) 107.1 C-4, C-5a, C-6, C-7,C-8a
oa 113.9
6 156.8
7 145.0
8 6.54 (s) 100.8 C-5a, C-6, C-7,C-8a, C-4
8a 158.8

6-OCHs 3.87 (s) 56.4 C-6

7-OCHs 3.81(s) 56.1 C-7

4.3. Compounds Isolated from of Lonchocarpus bussei

A new isoflavone, 4'-prenyloxyvigvexin A (24) along with four known isoflavones:
maximaisoflavone H (25), 7,2'-dimethoxy-4',5'-methylenedioxyisoflavone (26), 6,7,3'-
trimethoxy-4',5'-methylenedioxyisoflavone (27) and durmillone (28) were isolated from the
CH.Cl,/MeOH (1:1) extract of the leaves of Lonchocarpus bussei. The roots extract of this
plant gave a chalcone, 4-hydroxylonchocarpin (29); a geranylated phenylpropanol, colenemol
(30) and two known pterocarpans, (6aR,11aR)-maackiain (31) and (6aR,11aR)-edunol (32).

The characterization of these compounds is discussed below.

4.3.1. 4'-Prenyloxyvigvexin A (24)

Compound 24 was obtained as a colourless paste; HREIMS analysis showed a [M+H]" peak
at m/z 389.1753, which together with NMR data (Table 20) allowed the assignment of the
molecular formula CasH2404. The UV (Amax 250 and 312 nm), *H NMR (8 7.91 for H-2) and
3C NMR (8¢ 152.0 for C-2, 124.9 for C-3, 175.9 for C-4) spectral data were characteristics
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of an isoflavone moiety (Yenesew et al., 1998b). Two ortho-coupled proton signals at Sy
8.09 (d, J = 8.6 Hz) and 6.92 (d, J = 8.6 Hz) were assigned to H-5 and H-6, respectively, of
ring-A which is substituted at C-7 and C-8. In the HMBC spectrum, H-5 (64 8.09) correlated
to C-4 (8¢ 175.9), C-7 (3¢ 165.2) and C-8a (8¢ 153.9); H-6 to C-7 (8¢ 165.2), C-8 (113.5) and
C-4a (6¢ 119.1), consistent with a 7,8-disubstituted ring-A. The substituent was identified as
2-isopropenyl-2,3-dihydrofuran as shown from the *H NMR spectrum [8y 3.22 (1H, dd, J =
15.8, 9.9 Hz, H-1a"), 3.58 (1H, dd, J = 15.8, 7.9 Hz, H-1b"), 5.43 (1H, brt, J = 8.9 Hz, H-2"),
4.98 (1H, m, H-5a"), 5.13 (1H, m, H-5b") and 1.80 (3H, s, 4"-CH3)]. The placement of the 2-
isopropenyl-2,3-dihydrofuran ring at C-7/C-8 of ring-A was supported by HMBC correlation

of CH,-3" to C-7 (165.2), C-8 (113.5) and C-8a (153.9); and H-2" to C-7 (165.2) (Table 20).

In the *H NMR spectrum, an AA'XX' spin system at &y 7.45 (d, J = 8.8 Hz) and 6.96 (d, J =
8.8 Hz) was assigned to H-2'/6' and H-3'/5', respectively, of 4'-oxygenated ring-B. In
addition, the *H NMR spectrum revealed the presence of a prenyloxy group in ring B- based
on the signals at 54 4.56 (2H, d, J = 6.7 Hz, CH»-1"), 5.49 (1H, m, H-2"), 1.76 (3H, s, 4"
CHs) and 1.80 (3H, s, 5"'-CHj) together with the corresponding *3C signals at 8¢ 65.2 (C-1"),
120.0 (C-2™), 138.2 (C-3™) and two methyl carbon signals at ¢ 18.2 (4™-CHs) and 25.8 (5™-
CHj3). The attachment of the prenyloxy group at C-4' (6¢ 159.2) was confirmed by the HMBC
correlation (Table 20) of H-3'/5" (84 6.96) to C-4' (6¢ 159.2). On the basis of the above data
and comparison with related compounds (Derese et al., 2014; Leu et al., 2012), compound 24
characterised as 7,8-(2"-isopropenyl-2",3"-dihydrofuran)-4'-prenyloxyisoflavone, a new
compound named 4'-prenyloxyvigvexin A. The absolute configuration at C-2" has not been

determined.
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Table 20: *H (500 MHz) and **C (125 MHz) NMR data together with HMBC correlations in

compounds 24 (CD,Cly)
Carbon No. On d¢ HMBC (H—C)
2 7.91(s) 152.0 C-3,C-4,C-8a, C-1'
3 124.9*
4 175.9
4a 119.1
5 8.09 (d, J = 8.6 Hz) 128.0 C-4,C-7,C-8a
6 6.92 (d, J = 8.6 Hz) 108.6 C-4a, C-7 (w), C-8
7 165.2
8 113.5
8a 153.9
1 124.7*
2'/6' 7.45 (d, J = 8.8 Hz) 130.5 C-3, C-1', C-2'6', C-3/5'
(w), C-4'
3/5' 6.96 (d, J= 8.8 Hz) 114.8 C-1', C-3/5, C-4'
4 159.2
1"-a 3.22(dd,J=15.8,9.9 31.8 C-7,C-8, C-8a, C-2" (w),
Hz) c-3"
1"-p
3.58 (dd, J=15.8,9.9 C-7,C-8, C-8a, C-2" (w),
Hz) c-3"
2" 5.43 (brt, J = 8.9 Hz) 88.2 C-7,C-3",C-5"", C-1",
c-4"
3" 143.7
5"-q 4.98 (m) 112.7 C-2", C-3" (w), C-4"
5"-B 5.13 (m) c-2", C-3" (w), C-4"
1 456 (2H, d, J = 6.7 Hz) 65.2 c-4', c-2", C-3"
2" 5.49 (m) 120.0 4", 5"
3" 138.2
4" 1.80 (s) 18.2 c-2",C-3",C-5"
4™ 1.80 (s) 25.8 c-2", C-3", C-5"
5" 1.76 (s) 18.2 c-2", C-3", C-4™




4.3.2. Maximaisoflavone H (25)

Compound 25 was obtained as white crystals and had a melting point of 205-206 °C. LCMS
analysis showed a molecular ion peak at m/z 296.0 corresponding to the molecular formula
C17 Hiz Os. The UV (Amax 261, 290 and 325 nm), *H NMR (4 7.96 for H-2) and *C NMR
(6c 151.7 for C-2, 124.1 for C-3 and 171.5 for C-4) spectra of compound 25 is characteristic
of isoflavones. In ring A, ortho coupled protons at 6y 7.87 (d, J = 8.5 Hz) and 7.02 (d, J =
8.6Hz) were assigned to H-5 and H-6, respectively of ring A which is substituted at C-7 and
C-8. This substituent was identified as a methylenedioxy group as shown by the presence of a
sharp singlet at 64 6.25 (2H, s) with the corresponding carbon appearing at 6c 103.5. The
placement of the methylenedioxy group was confirmed from the HMBC correlation of the
signals at 6 7.87 (H-5) and 7.02 (H-6) with carbon signal at 6¢ 141.2 (C-7) and 103.5 (C-8).
In ring B, the aromatic proton signals at 64 7.01 (d, J = 8.6 Hz, for H-2'/6") and 7.51 (d, J =
8.8 Hz, H-3/5") formed an AA'XX' spin system with C-4' (6c 159.7) substituted with a
methoxy group (dy 3.88, d¢ 55.2). The nature of ring B was confirmed by HMBC correlation
of H-2'/6" and H-3'/5" with C-4' (8¢ 159.7). Based on the above spectroscopic data and
comparison with literature, compound 25 was identified as maximaisoflavone H; previously
reported from Millettia dura (Yenesew et al., 1996) and Millettia ferruginea (Dagne et al.,

1990).

92



4.3.3. 7,2'-Dimethoxy-3',4'-methylenedioxyisoflavone (26)

Compound 26 was isolated as a white amorphous solid, mpt. 215-216 °C; it showed a
molecular ion peak at m/z 326.0781 corresponding to the molecular formula C1gH1406. The
UV (Amax 249, 273 and 306 nm), 'H and *C NMR spectra (Table 21) displayed
characteristics features of an isoflavone skeleton substituted with two methoxy groups (dn
3.96, 5c 55.9 and 8y 3.76, 8¢ 56.6) and a methylenedioxy (54 6.01, 8¢ 101.5) groups. In ring
A, the 'H NMR spectrum showed an AXY spin system at 6y 8.15 (d, J = 8.9 Hz, H-5), 7.03
(dd, J = 8.9, 2.4 Hz, H-6) and 6.93 (d, J = 2.39 Hz, H-8), with the corresponding carbon
atoms (from HSQC spectrum) appearing at d¢c 127.3 (C-5), 114.3 (C-6) and 100.1 (C-8)
respectively. With one of the methoxy groups fixed at C-7 (from HMBC correlation of
methoxy protons with C-7), the second methoxy and the methylenedioxy group must be
located in ring B. The *H NMR spectrum showed two singlet protons at &y 6.69 and 6.84 and
assigned to H-3' and H-6', respectively for ring B. This suggested the placement of the
methylenedioxy at C-4'/C-5" and the second methoxy at C-2'. In the HMBC spectrum, the two
singlet protons at 6y 6.69 and 6.84 showed correlation with C-2', C-4' and C-5' confirmed the
substitution pattern in ring B. Therefore compound 26 was identified as 7,2'-dimethoxy-4',5'-
methylenedioxyisoflavone, a compound which has been isolated from the genus Millettia
(Kapingu et al., 2006; Marco et al., 2017). This is the first report on the occurance of

compound 26 in the genus Lonchocarpus.
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Table 21: *H (500 and 600 MHz) and *C (125 and 150 MHz) NMR data together with HMBC correlations in compound 25 and 26 (CD,Cl,)

Carbon 25 26
No. S Sc HMBC S Sc HMBC
2 7.96 (s) 151.7 7.94 (s) 154.1 C-3,C-4,C-83a, C-1
C-3,C-4,C-8a
3 124.1 112.9
4 171.5 175.3
5 7.87 (d, J=8.5Hz) 120.5 C-4,C-6, C-7,C-8a 8.15 (d, J=8.8 Hz) 127.3 C-4,C-7,C-8a
5a - 118.3
6 7.02 (d, J=8.6 Hz) 107.1 C-6,C-7,C-8 7.03 (dd, J =8.8, 2.4 Hz) 114.3 C-5a, C-7,C-8
7 141.2 163.9
7/8 6.25 (2H, s) 103.5 C-8, C-8a 146.3
8 134.6 6.93 (d, J=2.3 Hz) 100.1 C-4, C-5, C-53a, C-8a, C-7
8a 152.2 157.9
1 124.3 121.9
2' 152.9
2'/6' 7.01 (d, J=8.6 Hz) 113.7 C-1', C-4
3 6.69 () 95.1 C-3, C-2',C-4, C-5'
3'/5' 7.51 (d, J=8.8 Hz) 130.2 C-1', C-2'/6', C-4' 156.1
4 159.7 148.3
4'/5' 6.01 (2H, s) 101.5 C-4', C-5'
5' 141.0
6' 6.84 (s) 111.0 Cc-1', C-2',C-4'C-5'
4'0OCH3 3.88 () 55.2 c-4
2'0CHjs 3.76 (s) 56.6 C-6'
7 OCH; 3.96 () 55.9 C-7
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4.3.4. 6,7,3'-Trimethoxy-4',5'-methylenedioxyisoflavone (27)

Compound 27 was obtained as a white solid, mpt. 209-210 °C. The HRESIMS showed
molecular ion peak at m/z 356.0914 which matches the molecular formula C19H1607. The UV
spectrum of this compound exhibited the absorption maximum at 270 and 325 nm, which
together with NMR data (Table 22) suggested an isoflavone skeleton. The presence of three
methoxy (64 3.99, 4.00 and 3.95) and a methylenedioxy (64 6.03) groups were evident from
the '"H NMR spectra (Table 22). In ring A, the *H NMR spectrum further revealed the
presence of two aromatic protons at oy 7.60 (S), 6.94 (s), assigned to H-5 and H-8,
respectively, with C-6 and C-7 substituted. The two singlets in ring A correlated to C-6 (d¢
147.9) and C-7 (8¢ 154.6) which in turn correlated with the signal for the methoxy protons.
This therefore meant that one methoxy and the methylenedioxy groups are located in ring B.
The *H NMR spectrum showed two meta-coupled protons at 84 6.81 (d, J = 1.5 Hz) and 6.77
(d, J = 1.4 Hz) assigned to H-2' and H-6" with the methylenedioxy group placed at C-4'/5" and
the methoxy at C-3'. The chemical shift values of the oxygenated carbon atoms are consistent
with oxygenation at C-3' (6¢c 143.5), C-4' (6¢ 135.2) and C-5' (8¢ 148.7). In agreement with
this, in the HMBC spectrum, the methylenedioxy protons at 64 6.03 correlated with C-4' (6¢
135.2) and C-5' (8¢148.7). In the same manner, the two mutually coupled protons in ring B
showed correlation with the sp? carbon signals for at C-3' (8¢ 143.5) C-4' (8¢ 135.2) and C-5'
(6c 148.7). Therefore, this compound was identified as 6,7,3-trimethoxyl-4',5'-
methylenedioxyisoflavone. This compound was previously reported from the heartwood of
Cordyla africana (Campbell et al., 1969). However, this is the first report of its occurrence in

the genus Lonchocarpus.
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4.3.5. Durmillone (28)

Compound 28 was isolated as a white amorphous solid, m pt. 195-196 °C. Its molecular
formula was determined as CyH130s (HREIMS ([M'] at m/z 378. 1107) and NMR data
(Table 22). The UV (Amax 263, 230 and 348 nm) and NMR spectra of compound 28 is
characteristic of an isoflavone. Thus *H and **C NMR spectra further showed singnals at &
7.99 (for H-2) and 6¢c 151.8 (for C-2, from HSQC spectrum). The AXY spin system [at dy
7.13 (d, 3 = 1.6 Hz, H-2"), 6.92 (d, J = 7.9 Hz, H-5") and 7.02 (dd, J = 8.0, 1.7 Hz, H-6")],
along with a methylenedioxy group (64 6.04, d¢c 101.3) belong to ring B. In agreement with
this, HMBC spectrum showed correlation of H-2' with C-3 (6¢ 124.0), C-1" (8¢ 126.1), C-3°

(3¢ 147.5) and C-4' (8¢ 147.5).

The presence of a singlet aromatic proton signal at oy 7.54 (s) indicates that ring A is tri-
substituted with a methoxy (o 3.98 and 6¢ 56.1) at C-6 and a 2",2"-dimethylpyran [0y 5.81
(d, J=10.0 Hz, H-3"), 6.85 (d, J = 10.0 Hz, H-4") and methyl protons 6y 1.46 (s)] at C-7/C-8
groups. In agreement with this, the only proton in this ring H-5 (64 7.54) showed HMBC
correlation with the carbonyl carbon signal (d¢ 175.0), quaternary carbon at 117.4 (6¢c C-5a)
and oxygenated carbon ¢ 147.2 (C-6). Similarly, the placement of the 2",2"-dimethylpyran
group at C-7 (6¢ 147.2) and C-8 (8¢ 110.2) was confirmed by HMBC correlation of H-3" (o4
5.81) to C-8a (147.2), as well as H-4" to C-7 (147.2) and C-8 (110.2). This compound was
therefore identified as durmillone, previously reported from Millettia oblata and Millettia

dura (Dhooghe et al., 2010; Yenesew, et al., 1996).
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Table 22: *H (600) and **C (150 MHz) NMR data along with HMBC correlations for compounds 27 and 28 (CD,Cl,)

Carbon 27 28
No. Sn Sc HMBC SH dc HMBC
2 8.00 (s) 152.1 C-3,C-4,C-8a 7.99(s) 151.8 C-3,C-4.C-8a
3 124.2 124.0
4 174.9 175.0
5a 117.6 117.4
5 7.60 (s) 104.5 C-5a, C-6 7.54 (s) 104.8 C-4.C-5a, C-6
6 147.9 147.2 C-6,C-7,C-8
7 154.6 147.2
8 6.94 (s) 99.5 C-4, C-5a, C-6, C-7, 110.2
C-8a,
8a 152.2 147.2
1 125.5 126.1
2' 6.81 (d, J=1.5Hz) 108.8 C-3, C-6', C-4', C-5' 7.13(d,J=1.6 Hz) 109.8 C-4', C-6'
3 143.5 1475
3'/4' 6.04 (2H, s) 101.3 C-3'/4
4 135.2 1475
4'/5' 6.03 (2H, s) 101.6 C-4', C-5'
5' 148.7 6.92 (d, J=7.9 Hz) 108.1 C-1, C-3
6' 6.77 (d, J= 1.4 Hz) 103.7 C-3,C-2,C-4,C-5" 7.02(dd,J=8.0,1.7 Hz) 122’3 C-3,C-2', Cc-4
2" 78.0
3" 5.81 (d, J=10.0 Hz) 130.4 2"-CHs, C-4", C-8a
4" 6.85 (d, J = 10.0 Hz) 114.9 2"-CHs, C-7,C-8
3'-OCHjs 3.95 (s) 56.6 C-3
6 -OCH3 3.99 (s) 56.3 C-6 3.98 (s) 56.1 C-6
3"-CHs 1.46 (2xCHg, s) 27.7 2"-CHs, C-2", C-3"
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4.3.6. 4-Hydroxylonchocarpin (29)

Compound 29 was obtained as yellow crystals, m pt. 206-208 °C. The HREIMS showed [M]*
peak at m/z 322.1215 suggesting the molecular formula CyoH1504. The UV (Amax 285, 311
and 363 nm), '"H NMR (34 7.88, d, J = 15.4 Hz, H-q; 7.78, d, J = 15.4 Hz for H-B) and *C
NMR (6¢ 144.6 for C-a, 131.0 for C-p and 192.3 for C=0) spectra were consistent with an
o,B-unsaturated moiety of a chalcone skeleton. The *H NMR spectrum further showed an
AA'XX' spin system of aromatic proton signals at 6y 7.77 (d, J = 8.0 Hz) and 6.96 (d, J = 8.7
Hz) assigned for H-2/6 and H-3/5 of ring A, respectively, which is substituted with a hydroxy
group at C-4 (6¢ 159.5). Two mutually coupled aromatic proton signals at 6y 6.40 (d, J = 8.9
Hz) and 8.08 (d, J = 8.9 Hz) represented for H-5' and H-6' of ring B, which is substituted with
a hydroxy (64 14.11) at C-2' (8¢ 160.8) and a 2",2"-dimethylpyran group [0y 5.73 (d, J =10.0
Hz), 6.73 (d, J = 10.0 Hz) and two methyl groups at o4 1.47 (s)] at C-3'/C-4". The placement
of this group was confirmed based on the HMBC correlation of H-3" (64 5.73) and H-4" (o4
6.73) with C-3' (6¢ 109.0) and C-4' (8¢ 160.2). Hence compound 29 was characterized as 4-
hydroxylonchocarpin, a chalcone previously isolated from Millettia ferruginea (Dagne et al.,

1990). This appears to be the first report from the genus Lonchocarpus.
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Table 23: *H (600) and *C (150 MHz) NMR data together with HMBC correlations in
compound 29 (acetone-ds)

Carbon No. SH d¢c HMBC
1 126.6
2/6 7.77 (d, J =8.0 Hz) 117.2
3/5 6.96 (d, J =8.7 Hz) 115.9 C-1,C-4
4 159.5
7 7.88 (d, J=15.4 Hz) 144.6 C-2/6, C-9
8 7.78 (d, J=15.4 Hz) 131.0 C-1,C-9
9 192.3
1 114.0
2' 160.8
3 109.0
4 160.2
5 6.40 (d, J = 8.9 Hz) 107.9 C-4', C-6',C-9
C-1', C-3
6' 8.08 (d, J =8.9 Hz) 131.3 C-1', C-4', C-5', C-9
2" 77.5
3" 5.73(d, J=10.0 Hz) 128.3 2-"CHgs, C-2",
C-3, C-4'
4" 6.73 (d, J =10.0 Hz) 115.4 2''-CHs, C-2"
C-3, C-4
2" (CHa) 1.47 (s) 27.6 2"-CHgs, C-2",
C-3"
2'-OH 14.11 (s) C-2', C-3,C-4'

4.3.7. Colenemol (30)

Colenemol (30) was isolated as pale yellow paste, and showed UV absorption maximum at
273 nm. The HREIMS ([M]" at m/z 286.19939) together with NMR data suggested the
molecular formula as C19H260,. The presence of a AA'XX' spin system at oy 7.43 (d, J = 8.6
Hz) and 6.90 (d, J = 8.8 Hz) assigned to H-2/6 and H-3/5, respectively, in the aromatic region
of the 'H NMR spectrum suggested that compound 30 is a 1,4-disubstituted benzene
derivative. The *H NMR spectrum also displayed signals at &y 4.58 (m), 5.50 (tdd, J = 5.2,
2.5, 1.3 Hz), 1.78 (s), 2.12 (m), 2.18 (m), 5.15 (tdd, J = 5.6, 2.8, 1.4 Hz), 1.72 (s), 1.66 (5)
indicating that one of the substituents is a geranyloxy group. Another set of proton signals at
Su 6.58 (d, J = 15.9 Hz, H-1"), 6.28 (dt, J = 15.9, 5.9 Hz, H-2") and 4.30 (dd, J = 5.8, 1.5 Hz,

H-3") were assigned to 3-hydroxy-1-propenyl group. HMBC correlation of H-1" and H-2" with
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C-4 (3 129.4) showed the position of the 3-hydroxy-1-propenyl moiety is at C-4; and the

geranyloxy was then placed at C-1 (8¢ 156.8). This was supported by HMBC correlation of

H-2/6 (64 7.43) and H-3/5 (64 6.90) to C-4 (6¢129.1) and C-1 (&¢ 156.8). Hence, based on

these spectroscopic data and comparison with literature, compound 30 was characterized as

(E)-3-(4-(((E)-4,8-dimethylnona-3,7-dien-1-yl)oxy)phenyl)prop-2-en-1-ol, common name

colenemol. This compound was first reported from Coleonema pulchellum (Brader et al.,

1997) and later from the genus Millettia (Deyou et al., 2015).

30

OH

Table 24: *H (600) and **C (150 MHz) NMR data together with HMBC correlations for

compound 30 (CD.Cly)

Carbon No. dH d¢c HMBC
1 156.8
2/6 7.43 (d, J=8.6 Hz) 127.4 C-1, C-3/C-5,C-4
3/5 6.90 (d, J=8.7Hz) 114.3 C-2/C-6,C-4,C-1
4 1294
1 6.58 (d, J=15.8 Hz) 130.3 C-3,C4
2' 6.28 (dt, J =15.9, 5.86, 5.9 Hz) 126.5 C-3,C4
3 4.30 (dd, J =5.8,1.4 Hz) 63.6 C-1,C-2'
2" 4.58 (m) 64.9 5"-CHs, C-4", C-6"
2"B
3" 5.50 (tdd, J=5.2, 2.5, 1.3 Hz) 1195 5"-CH; C-7"
4" 25.3
6"o 2.12 (m) 394 5"-CH; C-7"
6"p
7" 2.18 (m) 26.3 c-6", C-8", C-9"
7'B
8" 5.15 (tdd, J = 5.6, 2.8, 1.4 Hz, 1H) 123.7 C-6", 10" -CH3, 11"-CH3
9" 131.8
5"CH; 1.78 (s) 16.3 c-6"
10"- CH, 1.66 (s) 17.3 11"- CH3
11"- CH, 1.72 (s) 25.3 10"- CH,3
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4.3.8. (6aR,11aR)-Maackiain (31)

Compound 31 was isolated as brown paste, [a]3' —180° (c 0.07, acetone). Its molecular
formula was assigned as C16H1,05 from HREIMS which showed a molecular ion peak at m/z
284.0694 and NMR spectra (Table 25). The UV spectrum showed absorption maximum at
280, 286 and 313 nm indicating a conjugated double bond or aromatic ring. The presence of
signals for a pyranofuran moiety at 4 5.51 (d, J = 7.0 Hz), 4.29 (m), 3.64 (m) and 3.58 (m) in
the *H NMR alongside sp* hybridized carbon peaks at 8¢ 78.4 (C-11a), 66.0 (C-6) and 40.1
(C-6a) of a pterocarpan derivative. The NMR spectra further showed the presence of hydroxy
(6¢c 158.7) and a methylenedioxy (6 5.96, d, J= 1.1 Hz and &y 5.93, d, J = 1.1 Hz; ¢ 101.2)
groups. The AXY spin system at oy 7.32 (d, J = 8.4 Hz, H-1), 6.58 (dd, J = 8.37, 2.4 Hz, H-2)
and 6.38 (d, J = 2.4 Hz, H-4) with the corresponding (from HSQC spectrum) carbon signals
appearing at d¢c 132.6 (C-1), 109.5 (C-2) and 103.0 (C-4) is consistent with a mono
substituted (OH-3) ring A. HMBC correlation of H-1 (64 7.32) and H-2 (&4 6.58) to an
oxygenated carbon C-3 (8¢ 158.7) confirmed the identity of ring A. In addition, the *H NMR
spectrum showed two singlet aromatic proton signals at éy 6.92 (H-7) and 6.42 (H-10)
indicating that ring B is substituted with methylenedioxy group. This was confirmed by
HMBC correlation of H-7 (84 6.92) and H-10 (o 6.42) with C-8 (6c141.5) and C-9 (3¢

148.0).

The high negative specific rotation, [a]3! —180°, is consistent with (6aR,11aR) absolute
configuration (Yenesew et al., 1998c). This was further confirmed by the experimental ECD
spectrum (Figure 7) which showed Cotton effects at 305 nm consistant with (6aR,11aR)
absolute configuration (Adem et al., 2018) (33). Therefore, compound 31 was characterized
as (6aR,11aR)-9-hydroxyl-3,4-methylenedioxypterocarpan (trivial name (+) maackiain),
which has been reported from the roots of Onionis vaginalis (Abdel-Kader, 2001). This is the

first report of its occurrence in the genus Lonchocarpus.
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4.3.9. (6aR,11aR)-Edunol (32)

Compound 32 was isolated as a colourless paste, [a]3! —222° (c 0.125, acetone). The
molecular formula C,1H»0s was determined from HREIMS which showed [M]" m/z
352.1315 and NMR data (Table 25). As in compound 31, the UV ([nax 280, 286 and 311
nm) together with the *H NMR [y 5.48 (d, J = 6.7 Hz, 1H, H-11a), 4.25 (m, 1H, H-6a), 3.57
(m, 1H, H-6p) and 3.53 (ddd, J = 10.3, 6.8, 4.3 Hz, 1H, H-6a)] and **C NMR [5¢ 78.6 (C-
11a), 66.1 (C-6) and 40.2 (C-6a)] indicated that compound 32 has a pterocarpan skeleton. The
'H NMR spectrum showed four singlet aromatic proton signals at &y 7.18, 6.90, 6.42 and
6.40 indicating a 2,3-disubstituted ring A, and 8,9-disubstituted ring D. The proton signals at
Oy 6.90 (6¢c 105.0) and oy 6.42 (8¢ 93.0) were assigned to H-7 and H-10 in ring B
respectively, whereas oy 7.18 (6¢ 131.5) and oy 6.40 (6¢ 102.6) represented for H-1 and H-4
of ring A. Another set of proton signal at o4 3.31 (d, J = 7.4 Hz, 8¢ 27.5), 5.37 (m, d¢ 123.0)
and methyl at 6y 1.77 (8¢ 16.9, 25.0) are due to the presence of prenyl group. The placement
of the prenyl group at C-2 (¢ 118.7) in ring A was determined by the HMBC correlation of
the methylene protons (CH»-1', 64 3.31) of the prenyl group to C-1 (8¢ 131.5), whereas H-2'
(0n 5.37) correlated to quaternary carbon peak at 6¢c 118.7 (C-2). The substituent in ring D
was determined to be a methylenedioxy group from the proton signal at 6y 5.94 (s) with the
corresponding carbon appearing at dc 101.2. In addition to these, the HMBC spectrum
showed the singlet aromatic proton correlating to C-8 (141.5) and C-9 (147.9). Additional
proton signals oy 6.90 (H-7) and oy 6.42 (H-10) in ring B correlated to C-8 (141.5) and C-9

(147.9). The high negative specific rotation, [a]3! —222°, and the experimental ECD
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spectrum (Figure 8) which showed a positive Cotton effect at 305 nm suggested a (6aR,11aR)
absolute configuration (Adem et al., 2018). Therefore, based on the above data and
comparison with literature, this compound was identified as (6aR,11aR)-edunol, previously
isolated from Brongniartia podalyrioides (Reyes-Chilpa et al., 1994). This is the first report

on the occurance of compound 32 from the genus Lonchocarpus.
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Table 25: *H (600) and **C (150 MHz) NMR data together with HMBC correlations for compounds 31 and 32 (acetone-ds)

Carbon 31 32
No. OH dc HMBC (H—C) OH d¢ HMBC (H—C)
1 7.32 (d, J=8.4 Hz) 132.6 C-4a, C-4, C-11a 7.18 () 131.5 C-4,C-4a, C-11a
la 115.4 111.5
2 6.58 (dd, J = 8.3, 2.4 Hz) 109.5 C-1a,C-3,C-4 118.7
3 158.7 -
4 6.38 (d, J = 2.4 Hz) 103.0 C-1a, C-2, C-4a 6.40 () 102.6 C-1a, C-4a
4a 156.8 154.4
6 3.64 (m) 66.0 C-4a, C-6a, C-7a, C-11a 3.57 (m) 66.1 C-4a, C-6a, C-7a, C-10a,
4.29 (m) 4.25 (m) C-11a
6a 3.58 (m) 40.1 C-6, C-7a, C-10a 3.53 (m) 40.2 C-6, C-7a
6b 118.6
7 6.92 (s) 105.0 C-6a, C-8, C-9, C-10 6.90 (s) 105.0 C-6a, C-8, C-9, C-10
8/9 5.96 (d,J=1.0 Hz) 101.2 C-8,C-9 5.94 (2H, s) 101.2 C-8,C-9
5.93(d,J=1.0H2)
8 148.0 147.9
9 1415 141.5
10 6.42 (S) 93.0 C-7a, C-8, C-9, C-10a 6.42 () 93.0 C-7a, C-8, C-9, C-10a
10a 154.4 154.6
1la 5.51(d, J=7.0 Hz) 784 C-1a,C-1,C-4a,C-6,C- 548(d,J=6.7Hz) 78.6 C-1, C-1a, C-44, C-6, C-
6a 6a, C-7a
1 3.31(d,J=7.4Hz) 275 C-2',C-1
2' 5.37 (m) 123.0 CH3 C-1',C-2
3 131.4
3' (CHs); 1.77 (2 CHg, s) 16.9 CH; C-2', C-3'
25.0
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Figure 8. Experimental ECD spectrum of (6aR,11aR)-edunol (32)

4.4. Compounds Isolated from Lonchocarpus eriocalyx

Chromatographic separation of the stem bark extract of Lonchocarpus eriocalyx afforded a
new pterocarpan, (6aR,11aR)-3,8-dimethoxybitucarpin B (33) along with a known

pterocarpan (6aR,11aR)-edunol (32).
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4.4.1. (6aR,11aR)-3,8-Dimethoxybitucarpin B (33)

Compound 33 was isolated as a pale yellow gum. The HREIMS of compound 33, [a]3?
—114°, showed a molecular ion peak at m/z 368.1626, which along with NMR data (Table
26) suggested the molecular formula CH24Os. The UV (Amax 288 and 304 nm), *H NMR
spectrum [6y 3.60 and 4.34 (CH,-6), 3.58 (H-6a), and 5.48 (H-11a)], with the corresponding
carbon signals (from HSQC spectrum) appearing at oc 68.3 (C-6), 41.9 (C-6a) and 80.0 (C-
11a), suggested that compound 33 has a pterocarpan skeleton. The presence of a prenyl, two
methoxy and a hydroxy substituent was also evident from the NMR spectra (Table 26). In
ring-A, the *H NMR spectrum showed two ortho-coupled aromatic protons at 8y 6.71 (d, J =
8.5 Hz) and 7.31 (d, J = 8.5 Hz), the latter of which showed HMBC correlation with C-3 (d¢
159.7), C-4a (8¢ 155.6) and C-11a (3¢ 80.0), allowing the assignment of this signal (64 7.31)
to H-1 and its coupling partner (64 6.71) to H-2. One of the methoxy protons (o4 3.84)
showed NOE correlation with H-2 (34 6.71), and HMBC correlation with C-3 (8¢ 159.7) and
hence placed at C-3. The methylene protons of the prenyl group which showed HMBC
correlation with C-3 (8¢ 159.7), C-4 (d¢ 118.9) and C-4a (8¢ 155.6) was consistent with its

placement at C-4.

In ring-D, two singlet aromatic protons resonating at oy 7.02 and 6.33 were assigned to H-7
and H-10, respectively, indicating that ring D is 8,9-disubstituted with hydroxyl and methoxy
groups. This was supported in the HMBC spectrum where both H-7 and H-8 ((6¢ 143.4) and

C-9 (8¢ 149.2). The methoxy group (64 3.80) in this ring showed NOE correlation with H-7
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(6 7.02) and HMBC correlation with C-8 (d¢ 143.4) and hence was placed on this carbon,
leaving the hydroxy group to be located on C-9. Compound 33 was therefore characterised as
9-hydroxy-3,8-dimethoxy-4(3',3"-dimethylallyl)pterocarpan, named 4,9-dimethoxybitucarpin

B.

The high negative specific rotation, [a]3? —114°, and the experimental ECD spectrum
(Figure 8) which showed a positive Cotton effect at 300 nm suggested (6aR,11aR) absolute
configuration (Yenesew et al., 1998c). In order to ascertain this, the energies of different
conformers of (6aR*,11aR*)-33 were calculated and the one with minimum energy and two
immediately above it with AE < 0.99 kcal/mol were identified (Figure 9). Then the ECD
spectra for these conformations were calculated separately and compared with experimental
ECD of 33. The weighed Boltzmann sum of calculated for three energy minimum
confirmations of (6aR,11aR)-33 showed a positive cotton effect at ca 300 nm as in the
experimental ECD spectrum (Figure 10), confirming this configuration. Therefore on the
basis of the above evidence, this new compound was characterised as (6aR,11aR)-4,8-

dimethoxybitucarpin B.

107



Table 26: *H (500 MHz) and *°C (125 MHz) NMR data and HMBC correlations in
compound 33 (acetone-de)

Carbon No. OH d¢c HMBC (H—C)

1 7.31(d, J=8.5Hz) 130.7 C-3,C-4a, C-11a

la 1154

2 6.71 (d, J=8.6 Hz) 106.1 C-1a, C-3, C-4, C-4a (w)
3 159.7

4 118.9

4a 155.6*

6 3.60 (m) 68.3 C-4a, C-6a, C-11a

4.34 (m) C-4a, C-6a, C-6b, C-11a

6a 3.58 (m) 41.9 C-6, C-6b, C-10a

6b 118.6

7 7.02 (s) 111.2 C-6b, C-8, C-9, C-10

8 143.4

9 149.2

10 6.33 (s) 99.3 C-6b, C-8, C-9, C-10a
10a 155.7*
11a 5.48 (d, J = 6.6 Hz) 80.0 C-1, C-1a, C-4a, C-6, C-6a,
1 3.30 (m) 26.3 C-3, C-4, g—f: Cc-2, C-3
2' 5.15 (m) 124.4 C-1a, C-4, C-1', C-4', C-5'
3 131.8

4 1.73 (s) 18.5 C-2', C-3, C-5'

5 1.60 (s) 26.5 C-2', C-3', C-4'

3-OCH3 3.84 (s) 56.8 C-3
8-OCH; 3.80 (5) 58.2 C-8
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Figure 9: The calculated global energy minimum geometries of conformers of (6aR,11aR)-33
(conformation I: global minimum, conformation Il: + 0.10 kcal/mole, confirmation IlI:
+0.99).
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Figure 10: ECD spectra of 33: Experimental (blue broken line) and Boltzmann weighted
calculation for the three energy minimum conformations of (6aR,11aR)-33 (red solid line)

4.5. Compounds Isolated from Dorstenia kameruniana

Chromatographic separation of the CH,Cl,/MeOH extract of the roots of Dorstenia

kameruniana yielded three new benzylbenzofuran derivatives, 2-(p-hydroxybenzyl)-6-

hydroxybenzofuran (34), 2-(p-hydroxybenzyl)-6-hydroxy-7-methoxybenzofuran (35) and 2-

(p-hydroxybenzyl)-6-hydroxy-4'-prenylbenzofuran (36) (named dorsmerunin A, B and C

respectively), along with the known compound, bergapten (37). The twigs of this plant also

produced compounds 34-37 as well as the known chalcone licoagrochalcone A (38).
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4.5.1. Dorsmerunin A (34)

Compound 34 was obtained as a brown gum. HREIMS showed a molecular ion peak at m/z
240.0779, which together with NMR data (Table 27) allowed the assignment of the molecular
formula C15H1203. The UV (Amax 250, 258 and 287 nm), IR (Appendix 34D) and NMR data
(Table 27) indicated that the compound is aromatic. That this is a benzyl benzofuran
derivative (Franke et al., 2001), was established from the NMR spectra: 8y 6.33 for H-3; 6¢
158.7 for C-2, 104.1 for C-3 (for the furan ring) and 6y 7.29 (d, J = 8.3 Hz), 6.74 (dd, J =
8.3, 2.1 Hz) and 6.87 (d, J = 1.8 Hz) assigned to H-4, H-5 and H-7, respectively, for ring B
protons, which is substituted with a hydroxyl group at C-6 (vmax at 3187 cm’1 for hydroxy
band; 6¢c 156.4 for C-6). The identity of ring B was confirmed from the HMBC spectrum
(Figure 12) where the proton signals at oy 7.29, 6.74 and 6.87 showed HMBC correlation
with the oxygenated carbon signal at 6c 156.4 (C-6). The methylene protons signal at 6y 3.97
(s) exhibited HMBC cross peak (Figure 13) with the signal at ¢ 158.7 (C-2), 6c 104.1 (C-3)
and d¢ 131.4 (C-3") which was consistent with the attachment of benzyl group at C-2 (6¢
158.7) of the furan ring. The AA'XX' spin system at 6y 7.14 and 6y 6.80 was assigned to H-
3'/H-7" and H-4'/H-6', which indicates oxygenation (hydroxy group) at C-5' (6¢c 157.5) of ring
C. Furthermore, the placement of the hydroxy substituent at C-5' was supported by the
HMBC correlation of the proton signals at 6y 7.14 (H-3'/H-7") and oy 6.80 (H-4'/H-6") with
C-5" (8¢ 157.5) (Figure 12). Thus, this new compound 34 was identified as 2-(p-hydroxy)-3-

(3methylbut-2-en-1-yl)-benzofuran-6-ol, named dorsmerunin A.
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4.5.2. Dorsmerunin B (35)

Compound 35 was isolated as a brown gum, and the molecular formula was established as
C16H1404 from HREIMS analysis, which revealed a molecular ion peak at m/z 270.0891. The
UV (Amax 258 and 283 nm), and NMR spectra (Table 27) of 35 is similar to those of 34
indicating that compound 35 is also a benzylbenzofuran derivative. As in compound 34, the
presence of p-hydroxybenzyl group attached to C-2 of the benzofuran skeleton was evident
from the NMR spectra (Table 27) and the MS fragment ion at m/z 107 ([C;H-O]"). In ring B,
the AMX spin system observed in compound 34 is now replaced by an AX spin system for
H-4 (64 7.00 (d, J = 8.3 Hz) and H-5 (64 6.78 (d, J = 8.3 Hz), which indicated the presence of
hydroxyl and methoxy (8 4.01; 8¢ 61.4) substituents at C-6 and C-7. The *C NMR chemical
shift value of the methoxy group is down-field shifted (3¢ 61.4) which requires that it be di-
ortho-substituted, placing this group at C-7 rather than C-6 or C-5" (typical value of such
“free” methoxy group is at d¢c 54-56 ppm). In agreement with this, the HMBC spectrum
(Figure 12) showed correlation of the methoxy protons (64 4.01) with C-7 (3¢ 133.9). In
addition, the HMBC correlation of the proton signal at 6y 6.78 (H-5) to C-3a, C-6, C-7; and
H-4 with C-3, C-7 and C-7a (Figure 12) confirmed the identity of ring B. Therefore, the
second new compound from this plant (35) was characterized as 2-(p-hydroxybenzyl)-3-(3-

methylbut-2-en-1-yl)benzyl)-6-ol, for which the trivial name dorsmerunin B was assigned.
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4.5.3. Dorsmerunin C (36)

Compound 36 with molecular ion [M]* at m/z 308.1411 corresponds to the molecular formula
C20H2003. This compound also showed UV (Amax 251, 258 and 287 nm) and NMR (Table 27)
spectra of benzylbenzofuran. Typical of such compounds, the *H NMR signal at &y 6.33 (brs)
was assigned to H-3 with the corresponding carbon C-3 appearing at 6c 104.0. The presence
of two hydroxyl (at C-6 and C-5") and a prenyl group was evident from NMR spectra. As in
compound 34, the H NMR spectrum of 36 exhibited an AMX spin system for ring B protons
appearing at oy 7.29 (d, J = 8.3 Hz), 6.74 (dd, J = 8.3, 2.2 Hz) and 6.86 (d, J = 2.1 Hz)
allocated to protons at C-4 (8¢ 121.9), C-5 (&¢ 113.0) and C-7 (8¢ 99.0) of ring B. The
methylene protons (6 3.94) of the benzyl moiety showed HMBC cross peak (Figure 12) with
C-2 (8¢ 158.8) and C-3 (d¢ 104.0) confirming its connection to C-2 of the furan ring (ring A).
In ring C, an AMX spin system appearing at 6y 7.05 (d, J = 2.2 Hz), 6.78 (d, J = 8.1 Hz) and
6.95 (dd, J = 8.1, 2.3 Hz) was assigned to protons on C-3" (d¢ 131.6), C-6' (¢ 116.4) and C-
7' (8¢ 128.5), which requires substitution, (hydroxy and prenyl) at C-4' and C-5'. The
attachment of the prenyl group at C-4' (¢ 129.4) and hydroxy at C-5' (8¢ 155.1) was
established from the HMBC correlation of H-3' (6y 7.05) to C-1" (8¢ 29.7); CH,-1" (6 5.32)
with C-3' (8¢ 131.6), C-4' (6¢c 129.4) and C-5' (8¢ 155.1) (Figure 12). Thus, this new
compound (36) was characterized as 2-(p-hydroxybenzyl)-6-hydroxy-4'-prenylbenzofuran,

for which the trivial name dorsmerunin C was assigned.

Whereas several chalcones (Abegaz et al., 1998) and furanocoumarins (Franke et al., 2001,

Heinke et al., 2011) have been reported from the genus Dorstenia, only three
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benzylbenzofurans (Franke et al., 2001; Peniche-Pavia et al., 2016) have been reported prior
to the present report; 2-(p-hydroxybenzyl)-6-methoxybenzofuran from D. gigas (Franke, et
al., 2001) and dorsjervins A and B from D. Contrajerva (Franke et al., 2001; Peniche-Pavia,
et al., 2016). It has been suggested (Franke et al., 2001; Peniche-Pavia, et al., 2016) that the
biogenesis of benzylbenzofuran to be similar to the biosynthesis of aurones, presumably from
chalcone precursor (Figure 11). The co-occurence of the chalcone licoagrochalcone A (38)
with the benzylbenzofuran 34 may suggest that 34 is derived from 38. Alternatively,
compound 34 could have first been formed from the corresponding chalcone precursor
(4,2',4'-trihydroxychalcone), then prenylation of 34 at C-4' may give compound 36; while

oxidation and methylation at C-7 of 34 produces compound 35 (Figure 11).
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Figure 11: Proposed biogenesis of benzylbenzofurans 34—36.
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Table 27: *H (500 MHz) and *C NMR (125) spectral data of compounds 34-36 (acetone-ds)

Carbon 34 35 36

No. OH (m, Jin HZ) dc OH (m, Jin HZ) dc OH (m, Jin HZ) dc
2 158.7 159.1 158.8
3 6.33 (br s) 104.1 6.33 (t, J =0.9) 104.4 6.33 (br s) 104.0
3a 122.8 124.8 122.8
4 7.29 (d, J =8.3) 121.9 7.00 (d, J = 8.3) 115.6 7.29 (d, J =8.3) 121.9
5 6.74 (dd, J = 8.3, 2.1) 113.1 6.78 (d, J = 8.3) 113.8 6.74 (dd, J = 8.3, 2.2) 113.0
6 156.4 147.2 156.4

6-OH 8.33 (br s)* 7.76 (s) 8.39 (s)
7 6.87(d, J=18) 99.0 133.9 6.86 (d, J=2.1) 99.0
7a 157.6 148.3 157.5
I 3.97 (s) 35.0 4.99 (brs) 35.0 3.94 (s) 35.2
2 130.0 129.9 130.1
3 7.14 (d, J = 8.6) 131.4 7.17 (d, J = 8.6) 131.3 7.05(d, J=2.2) 131.6
4 6.80 (d, J = 8.6) 116.7 6.81 (d, J = 8.6) 116.8 129.4
5 157.5 157.6 155.1
5-OH 8.24 (br )* 8.27 (s) 8.19 (s)
6 6.78 (d, J = 8.1) 116.4
7 6.95 (dd, J = 8.1, 2.3) 128.5
7-OCH; 4.01 (s) 61.4

1" 3.30 (d, J = 7.4) 29.7
2" 5.32 (M) 124.4
3" 133.0
3" (CH3), 1.68 (6H, m) 26.5

* or reverse
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36

Figure 12:Important HMBC correlations in compounds 34- 36.

4.5.4. Bergapten (37)

Bergapten (37) was crystallized from CH,Cl,/MeOH as white crystals (mpt. 197-198 °C).
This compound exhibited UV absorption maxima at 242, 251, 261, 269 and 314 nm
characteristic of coumarins (Choudhary et al., 2002). The HREIMS showed a molecular ion
peak at m/z 216.0415 suggesting a molecular formula C1,HgOs. The *H NMR spectrum
showed singlet aromatic proton at oy 7.11 (H-8) and a pair of mutually coupled protons at dn
6.25 (d, J = 9.8 Hz, H-3) and 8.15 (d, J = 9.8 Hz, H-4) indicating a 6,7,5-trisubstituted
coumarin skeleton. This was supported by HMBC correlation of the proton signal at &y 7.11

with a quaternary carbon peak 6c 158.3 (C-7) and 112.5 (C-6). The signals of two other
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protons at dy 7.03 (d, J = 2.4 Hz, H-2") and 7.60 (d, J = 2.4 Hz, H-3") together with the
corresponding (from the HSQC spectrum) *3C NMR peaks at 8¢ 112.5 (C-6) and 158.3 (C-7)
indicated the attachment of the furan ring at C-6 and C-7 of ring A. An additional sharp
singlet proton signal at 6y 4.28 indicated the presence of a methoxy group. The placement of
methoxy at C-5 (d¢ 149.5) was established by HMBC correlation of H-4 (34 8.15) with the
13C NMR peak at 8¢ 149.5 (C-5) (Table 28). In the **C NMR spectrum, five methine carbons,
two quaternary carbons, three oxygenated carbons and one ester carbonyl carbon were
observed. Therefore, the structure of this compound was established as bergapten (5-
methoxypsoralen), previously isolated from Dorstenia brasiliensis and Dorstenia contrajerva

(Kuster et al., 1994; Terreaux et al., 1995).

Table 28: *H (500 MHz) and *C (125 MHz) NMR data and HMBC correlations for
compound 37 (acetone-ds)

Carbon No. SH d¢ HMBC
2 161.2
3 6.25 (d, J=9.8 Hz) 112.4 C-2,C-4a
4 8.15(d, J=9.8 Hz) 139.2 C-2, C-4a, C-5, C-8,
C-8a
4a 106.3
5 149.5
6 1125
7 158.3
5 7.11(s) 93.7 C-4a, C-6, C-7,C-8a
8a 152.6
2' 7.03 (d,J=2.4Hz) 105.0 C-3,C-6, C-7
3 7.60 (d, J=2.4 Hz) 144.7 C-2',C-6,C-7,C-8
4-OCHj 4.28 (s) 60.0 C-5
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4.5.5. Licoagrochalcone A (38)

Compound 38 was isolated as a yellow paste, and its HREIMS showed a molecular ion peak
at m/z 324.1375 suggesting a molecular formula of CyoH2004. The UV (Anax 288 and 363
nm), *H NMR at &y 7.84 (d, J = 15.3 Hz) for H-a. and 7.75 (d, J = 15.3 Hz) for H-p and * C
NMR (&¢ 144.7 for C-a, 6¢c 117.0 for C-f and &¢c 191.9 for C=0) suggested 38 to be a
chalchone derivative (Markham, 1982). The presence of a prenyl (Table 29) and three
hydroxy groups (one of which intramolecular hydrogen bonded) was evident from the NMR
spectra (Table 29). In ring A, the 'H NMR showed an AMX spin system at 8y 7.64 (H-6),
7.59 (H-2) and 6.95 (H-5) suggested the placement of the prenyl group at C-3 with the
biogenetically expected oxygenation (hydroxy group) at C-4. In agreement with this, in the
HMBC spectrum H-2 showed corelation with C-4 (5¢ 157.8), and H-5 with C-1" (8¢ 28.2). In
ring B, with the the hydrogen bonded hydroxy group being at C-2', the *H NMR showed
another AMX spin system (Table 29) which requires the placement of the third hydroxy
group at C-4' (which is biogenetically expected). Therefore this compound was identified as
licoagrochalcone A, previously reported from the roots of Ononis vaginalis (Abdel-Kader,

2001). This is the first report on the occurance of compound 38 from the genus dorstenia.
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Table 29: *H (500 MHz) and **C (125 MHz) NMR data and HMBC correlations for
compound 38 (acetone-ds)

Carbon No. SH d¢c HMBC
1 127.3
2 7.59 (dd, J =8.3, 2.3 Hz) 128.3 C-4,C-6, C-7
3 128.2
4 157.8
5 6.95 (d, J =8.3 Hz) 115.4 C-1",C-1,C4
6 7.64 (d, J=2.0 Hz) 130.9 C-2,C-4,C-7
7 7.84 (d, J=15.3 Hz) 144.7 C-1,C-6,C-8,C-9
8 7.75(d, J=15.3 Hz) 117.0 C-1,C-7,C-9
9 191.9
1 113.6
2' 166.2
3 6.38 (d, J = 2.3 Hz) 102.8 C-1', C-4', C-5'
4' 164.6.
5 6.48 (dd, J =8.9, 2.3 Hz) 107.7 C-1',C-3', C-4
6' 8.10 (d, J=8.9 Hz) 132.3 C-1', C-2,C-3, C-9
1" 3.38(d,J=7.3Hz) 28.2 C-2",C-2,C-4
2" 5.39 (d, J=10.0 Hz) 122.4 CHjs
3" 132.3
4"-CHj 1.74 (s) 25.0 5"-CHs, C-2"
5"-CHj 1.76 (s) 17.0 4"-CHs;, C-2"
2'-OH 13.68 (5) Cc-1', C-2', C-3'

4.6. Compounds Isolated from the Roots and stem of Streblus usambarensis

Column chromatographic separation of the CH,Cl/MeOH (1:1) extract of the roots of
Streblus usambarensis yielded two new compounds, named usambarin A (39) and usambarin
B (40). Similar investigation of the stem of this plant resulted in the isolation of a further new

compound, usambarin C (41). The characterization of these compounds is discussed below.

4.6.1. Usambarin A (39)

Compound 39 was obtained as a brown gum. The UV (Amax 270, 297 and 350 nm), IR (Vimax
3188, OH, 1468, 1219 and 860 cm™) and NMR spectral data (Table 30) suggested this
compound to be aromatic. Its molecular formula was established as CxH1504 (m/z 346.1214
[M]") from HREIMS and NMR (Table 30) analyses. The *H and **C NMR spectra further

suggested an unprecedented naphtho[1,2-b]benzofuran-2,8,9-triol skeleton. Thus, the singlet
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at oy 7.39 (S) was assigned to H-4 in ring B of the benzofuran moiety which is substituted at
C-5, C-6 and C-7. The proton signals at éy 5.83 (d, J = 9.9 Hz, H-3"), 7.08 (d, J = 9.86 Hz,
H-4") and methyl signal 64 1.58 (6H, s) corresponds to a 2",2"-dimethylpyran substituent at
C-6/C-7 with hydroxy group being at C-5 (6c 141.6). Consistent with this substitution pattern
in ring B, the HMBC spectrum showed correlation of H-3" and H-4" with C-2", C-6, C-7 and
C-7a; H-4 (84 7.39) with C-3 (8¢ 120.3), C-6 (8¢ 145.9) and C-7a (5¢ 138.5) (Figure 13). The
fusion of ring C of the naphthalene moiety at C-2 (6¢c 151.4) and C-3 (3¢ 120.3) of the furan
ring was evident from the presence of two ortho-coupled signals at &y 7.68 (d, J = 8.32 Hz,
H-1' and 7.75 (d, J = 8.30 Hz, H-2") in the '"H NMR spectrum, which was supported by
HMBC correlation H-1" with C-2 (8¢ 151.4), C-2'a (8¢ 127.6) and C-3 (d¢ 120.3) (Fig.14). An
AMX spin system at oy 7.87 (d, J = 8.9 Hz), 7.66 (d, J = 2.6 Hz) and 7.19 (dd, J = 8.9, 2.6
Hz) was assigned to H-3', H-6' and H-4', respectively, of ring D which is substituted at C-5'
(6c 158.1) with methoxy group (64 4.05, oc 55.4). The placement of methoxy group was
confirmed by HMBC correlation of H-3' (64 7.87), H-4' (64 7.19) and H-6" (64 7.66) with C-
5 (8¢ 158.1) (Figurel3). Thus this new compound was characterized as 11-methoxy-3,3-
dimethyl-3H-naphtho[2',1":4,5]furo[2,3-f|chromen-5-0l, and given the trivial name usambarin

A

4.6.2. Usambarin B (40)
Compound 40 was isolated as a brown gum. Its molecular formula, C,;H1604, was established
from HREIMS (m/z 332.1053, [M*]) and NMR analyses (Table 30). The UV (Amax at 257 and

341 nm), IR (Vmax 3373, OH, 1444, 1165 and 840 cm™), NMR spectra (Table 30) indicated
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that compound 40 is also has a naphtho[1,2-b]benzofuran-2,8,9-triol skeleton as compound
39. In fact the only difference between the two compounds is that compound 40 has a
hydroxy group instead of a methoxy at C-5'in ring D of the naphthalene moiety. Thus the *H
NMR spectrum exhibited a singlet at &y 6.85 (s) for H-4, and signals for a 2".2"-
dimethylpyran ring in ring B. The placement at C-6/C-7 of this ring was established by
HMBC correlation of H-3' (64 5.75) and H-4" with C-7 (6c119.3) as well as H-4 (64 6.85)
correlation with C-5 (6¢140.2) and C-6 (5¢137.8). Moreover, the proton signals at 7.60 (d, J =
8.30 Hz) and 7.25 (d, J = 8.32 Hz) corresponds to H-1' and H-2' respectively of ring C
(Fig.14). The ABX spin system at 7.17 (d, J = 8.77 Hz, H-3'), 7.82 (d, J = 8.92, 2.56 Hz, H-
4 and 7.25 (d, J = 2.5 Hz, H-6") corresponds to ring D protons with a hydroxy group at C-5'
(8¢ 155.6). The substitution pattern in this ring was confirmed by HMBC correlation of H-3'
and H-4" with C-5' (6¢ 155.6) (Fig.13). Thus the second new compound from this plant (40)
was characterized as 3,3-dimethyl-3H-naphtho[2',1":4,5]furo[2,3-fchromene-5,11-diol, and

named usambarin B.

4.6.3. Usambarin C (41)

Compound 41 was isolated as white crystals, mpt.154-155 °C. HREIMS (m/z 362.1510,
[M]") analysis together with the NMR data suggested the molecular formula C,3H2,0,. The
UV (hmax 267, 273, 309, 321 nm), *H and 3C NMR spectra (Table 30) displayed the presence
of a prenyl and methoxy substituents on a naphtho[1,2-b]benzofuran-2,8,9-triol skeleton.
Furthermore, the substitution pattern of this compound is also the same as in compounds 39

and 40, with oxygenation (two methoxy and one hydroxy) at C-5, C-6 and C-5' and a Cs
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(prenyl) substituent at C-7. In ring A, one of the methoxy groups (o4 3.95) showed HMBC
correlation with C-6 (d¢ 144.3) indicating that it is attached to this carbon atom. Likewise, the
second methoxy group was placed at C-5' (6¢ 158.1) from the HMBC spectrum which
showed correlation of the methoxy group to C-5' (Figure 13). The substitution pattern in ring
A was confirmed based on HMBC spectrum where the singlet at 6y 7.41 (H-4), showed
HMBC cross peak with C-3 (3¢ 120.9) and C-6 (¢ 144.3); HMBC correlation of the proton
signal at 6y 3.83 (d, J = 7.21 Hz, H-1") with C-7 (6¢ 119.0) (Figure 13). The NMR spectrum
also showed identical rings C and D of the naphthalene group as in compounds 39 and 40
with two ortho coupled protons at 6 7.78 (d, J = 8.38 Hz) and 7.68 (d, J = 8.30 Hz) assigned
to H-1'and H-2" in ring C. An ABX spin system were observed at 6y 7.89 (d, J = 8.94 Hz, H-
3, 7.21 (d, J = 8.93, 2.65 Hz, H-4") and 7.69 (d, 2.40 Hz. H-5") for ring D protons with
methoxy group placed at C-5'.The substitution pattern in ring D was confirmed by HMBC
correlation of methoxy signal 6y 4.06 (s) as well as AMX protons with C-6" (6c 158.1).
Therefore, this new compound was characterized as 2,9-dimethoxy-10-(3-methylbut-2-en-1-

yl)naphtho[1,2-b]benzofuran-8-ol and named usambarin C.
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Table 30: *H (500 MHz) and **C NMR (125 MHz) (acetone-ds) spectral data of compounds 39-41

Carbon 39 40 41
No. Sy (M, Jin Hz) Sc 8y (m, Jin Hz) Sc Sy (m, Jin Hz) Sc
2 1514 135.0 151.9
3 120.3 126.4 120.9
3a 117.8 130.8 120.0
4 7.39 (s) 104.4 6.85 (s) 115.1 7.41 (s) 102.8
5 141.6 140.2 145.7
6 145.9 137.8 144.3
7 106.6 119.3 119.0
7a 138.5 145.1 149.1
1 7.68 (d, J = 8.3 H2) 122.8 760(d,J=8.3Hz)  109.0 7.78(d,J=8.3 H2) 115.9
2 7.75 (d, J = 8.3 Hz) 115.6 7.25(d,J=83Hz) 1264  7.68(d,J=8.3 Hz) 122.6
2'a 127.6 127.3 127.9
3 7.87 (d, J = 8.9 H2) 130.0 717(d,J=87Hz) 1182  7.89(d,J=8.9 Hz) 130.0
4 7.19 (dd, J =8.9, 2.56 Hz) 118.0 7.82(dd,J=8.9,25 129.1 7.21(dd,J=8.9,2.6 118.1
Hz) Hz)
5 158.1 155.6 158.1
6 7.66 (d, J = 2.6 H2) 98.9 7.25(d,J=25Hz) 1252  7.69(d, 2.40 Hz) 99.3
6'a 122.2 130.8 122.3
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41

Figure 13: Important HMBC correlations in compounds 39-41

4.7. Bioactivity
The compounds isolated from the six plants in this study were tested for cytotoxicity against

a panel of cell-lines. The results are presented and discussed in the following subsections.

4.7.1. Cytotoxicity of Compounds isolated from Ormocarpum Kirkii

Compounds 2-8 were tasted for cytotoxicity on human embryonic kidney cells (HEK293) at
100 uM. Compounds 2-6 showed more than 75% inhibition at this concentration while
compounds 7 and 8 were not cytotoxic (Table 31). The compounds were then tested at
different concentrations and the ICsy values for the cytotoxicity determined (Table 31).
Compounds 2-5 showed some degree of cytotoxicity with 1Cso values less than 45 uM, while
compounds 6-8 were inactive (ICso > 100 puM), towards HEK 293 cells (Table 31). The
isoflavones, 5,7-dihydroxy-4'-methoxy-6,8-diprenylisoflavone (2) and osajin (3) showed

comparable activity against HEK293 with ICsy values 27.1 and ICso value 27.3 + 2.0

124



respectively. Among the three biflavanones (4, 5 and 8) assayed, 7,7"-di-O-
methylchamaejasmin (4) and chamaejasmin (5) displayed significant activity, with 1Cs
values of 20.8 uM and 43.5 uM, respectively, while campylospermone A (8) was inactive
(Table 31). This suggested that the presence of hydroxy group at C-5 in ring A may be
important for the observed activities of the biflavanones 4 and 5. Diphysin (6) and heptacosyl
(E)-3-(4-hydroxy-3-methoxyphenyl)acrylate (7) did not inhibit HEK293 cells up to 100 uM.
The activity of compounds 4-6 was previously reported against the D10 strain of
Plasmodium falciparum without toxicity against Chinese hamster ovarian (CHO) cell line

(Chukwujekwu et al., 2012).

4 R'=OH R?=O0CH,;
5 R'=0H R?2=0H
8R'=H R*>=0H

AN

O(CH,),6CHj3

HO
OCH,
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Table 31: Cytotoxic activity of compounds 2-8 against HEK293 cell line

Compounds HEK293 at HEK293
top dose (100
UM) ICsp in }J.M
2 88.8 £1.58 27.1
3 101.9 £ 0.49 27.3+2.0
4 101.8 £ 0.47 20.8 6.8
5 78.6 £ 21.9 43.5
6 9.96 + 14.6 > 100
7 -6.59 + 14.47 > 100
8 -6.61 £ 17.75 > 100
DHA 92.3+9.71 ~10.6
Puromycin 98.3+0.54 0.7+0.13
Pyrimethamine 62.3+ 3.6 ~15.8
Pyronaridine 97.9+0.21 49+0.84

The cytotoxicity of compounds 2-8 isolated from Ormocarpum Kirkii together with the
standard doxorubicin was first determined in both sensitive CCRF-CEM leukemia cells and
in drug resistant subline CEM/ADR5000 cells. 5,7-Dihydroxy-4'-methoxy-6,8-
diprenylisoflavone (2), Osajin (3) and 7,7"-di-O-methylchamaejasmin (4) and diphysin (6)
were cytotoxic to both sensitive CCRF-CEM and resistant CEM/ADRS5000 leukemia cells
with 1Csq values below 61 uM (Table 32). In both CCRF-CEM and CEM/ADRS5000 cells,
significant activity with 1Cs, values below 10 uM (Brahemi et al., 2010; Kuete and Efferth,
2015) were obtained for osajin (3) and 7,7"-di-O-methylchamaejasmin (4) as well as
doxorubicin. 1Cso values below 10 uM were also obtained for 5,7-dihydroxy-4'-methoxy-6,8-

diprenylisoflavone (2) towards CEM/ADRS5000 cells.
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4.7.2.Mode of action of osajin (3) and 7,7"-di-O-methylchamaejasmin (4)

4.7.2.1.Cell cycle distribution and apoptosis

The distribution of cell cycle in CCRF-CEM cells treated with the isoflavonoids osajin (3)
and the biflavonoid 7,7"-di-O-methylchamaejasmin (4) as well as the reference drug
doxorubicin is depicted in Figure 14. Concentration-dependent modifications of cell cycle
phases were observed with osajin (3) and 7,7"-di-O-methylchamaejasmin (4) as well as
doxorubicin. Increase of cells in sub-G0/G1 phase was generally observed with all tested
samples. Osajin (3) and 7,7"-di-O-methylchamaejasmin (4) induced cell cycle arrest in
GO0/G1 phase, meanwhile doxorubicin induced S and G2/M phase arrest. The amounts of
cells in the sub-GO/G1 phase varied from 1.27% (1/4 x 1Csq) to 35.61% (2 x ICs) after
treatment with osajin (3), from 3.27% (1/4 x ICsp) to 59.68% (2 x 1Cx) after treatment with
7,7"-di-O-methylchamaejasmin (4), and from 4.81% (1/4 x 1Csp) to 10.35% (2 % ICsg) upon
treatment with doxorubicin. In non-treated cells, the percentage of cells in sub-G0/G1 phase
remains at 1.78% (Figure 15). The increase of cells in sub-G0/G1 phase indicates that osajin
(3), 7,7"-di-O-methylchamaejasmin (4) and doxorubicin probably induced apoptosis in
CCRF-CEM cells. A dose-dependent induction of apoptosis by the two compounds and the
drug doxorubicin was further investigated by annexin V/PI staining and the results are shown
in (Figure 16). At 2 x ICs, for example, osajin (3) and 7,7"-di-O-methylchamaejasmin (4)
slightly induced late apoptosis with 4.4% and 4.4% annexin V (+)/P1 (+) cells, respectively.
They mostly induced necrosis with 51.8% and 66.5% annexin V (-)/PI (+) cells for osajin (3)

and 7,7"-di-O-methylchamaejasmin (4), respectively (Figure 15).
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4.7.2.2.Activation of caspases
The activity of caspases in CCRF-CEM cells upon treatment with osajin (3) and 7,7"-di-O-
methylchamaejasmin (4) is shown in Figure 16. It appeared that the two compounds did not

increase the activity of caspases 3/7, 8 and 9.

4.7.2.3. Integrity of mitochondrial membrane

The effects of osajin (3), 7,7"-di-O-methylchamaejasmin (4) and standard drug valinomycin
on the integrity of MMP in CCRF-CEM cells are depicted in (Figure 17). It can be seen that
the two compounds considerably altered the MMP in CCRF-CEM cells from their 1Csp. At 2
X 1Csp, 79.4% and 94.9% alterations of MMP were obtained as the results of treatment with
osajin (3) and 7,7"-di-O-methylchamaejasmin (4), respectively, meanwhile valinomycin at 10

MM induced 45.9% alteration.

4.7.2.4. Production of reactive oxygen species (ROS)

The effects of osajin (3) and 7,7"-di-O-methylchamaejasmin (4) on ROS production in
CCRF-CEM cells are given in Figure 18. The tested compounds caused dose-dependent
increase of ROS in the range of 13.2% (1.30 uM) to 67.8% (10.34 uM) for osajin (3) and of
16% (0.90 puM) to 74.5% (7.16 pM) for 7,7"-di-O-methylchamaejasmin (4). The positive
control, H,O, increased the ROS levels to 92.8% at 50 uM, while ROS production in non-

treated cells was 0.2%.

Hypersensitivity (degree of resistance or D.R. below 0.90) (Mbaveng et al., 2017) of
CEM/ADRS5000 compared to its sensitive parental cell line CCRF-CEM was noted with 5,7-
dihydroxy-4'-methoxy-6,8-diprenylisoflavone (2), osajin (3), chamaejasmin (5) and diphysin
(6) (Table 32), suggesting that these compounds could be potential inhibitors of P-
glycoprotein’s expression (Mbaveng, et al., 2017). With regards to their activities to the two

leukemia cells, 5,7-dihydroxy-4'-methoxy-6,8-diprenylisoflavone (2), osajin (3), and 7,7"-di-
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O-methylchamaejasmin (4) displaying ICso values below 20 uM were selected and tested
against 7 carcinoma cells and normal AML12 hepatocytes (Table 33). The four compounds
showed cytotoxicity against the 7 carcinoma cell lines with ICsy values below 50 pM.
Moreover, osajin (3) and 7,7"-di-O-methylchamaejasmin (4) had significant cytotoxic effects
with I1Csq values below 10 uM against 4/7, 5/7 and 7/7 tested carcinoma cells. Hence, the
potential of these compounds in the fight against cancer should be further explored.
Interestingly, hypersensitivity was observed with the four compounds towards resistant
US7MG.AEGREF glioblastoma cells compared to its respective sensitive counterparts US7MG
cells, and in some cases, with 5,7-dihydroxy-4'-methoxy-6,8-diprenylisoflavone (2), in
another resistant cell line (Table 33). It is also interesting to note that the selectivity indexes
of 5,7-dihydroxy-4'-methoxy-6,8-diprenylisoflavone (2), osajin (3) and 7,7"-di-O-
methylchamaejasmin (4) for the normal AML12 hepatocytes versus HepG2 hepatocarcinoma
cells are around or below 1, suggesting their poor selectivity to liver cancer cells.
Nonetheless, a keen look at 1Csy values of compounds 2-4 in AML12 cells versus that of

doxorubicin indicate that these compounds can be explored further towards cancer therapy.

Apoptosis is one of the likely modes of action of cytotoxic compounds in cancer cells. In this
work, it was found that the isoflavone osajin (3) and the biflavonoid 7,7"-di-O-
methylchamaejasmin (4) caused cell cycle arrest in GO/G1 phase as well as apoptosis with
significant increase of cells in sub-GO/G1 phase (Figure 14). This is an indication of
apoptosis, which was later confirmed by annexin V/PI staining, as osajin (3) and 7,7"-di-O-
methylchamaejasmin (4) also caused increase in late apoptotic and necrotic cells (Figure 16).
Activation of caspase-dependent apoptosis is involved in cell death in mammals (Fuchs and
Steller, 2011) making them good therapeutic targets for modulators (Howley and Fearnhead,
2008; Mbaveng, et al., 2017). Neither the isoflavone 3 nor the biflavonoid 4 induced the

activation of caspases 3/7, 8 and 9 (Figure 16), suggesting that they are not caspases

129



modulators. The activity of caspases 3, 8, and 9 was previously measured in HelLa cells
together with its effect on the phosphoinositide 3-kinase (PI13K)/Akt pathway (Qian & Li,
2017). These compounds induced apoptosis in HeLa cells mediated through the suppression
of PI3K/Akt signaling cascades, but not by caspases activation (Qian and Li, 2017).
Breakdown of the mitochondrial membrane potential causes cytochrome C release due to
formation of channels in the outer mitochondrial membrane leading to apoptosis (Dejean et
al., 2006). In this work, it was found that CCRF-CEM cells treated with osajin (3) and 7,7"-
di-O-methylchamaejasmin (4) considerably deteriorated MMP with upto 79.4% and 94.9%
alterations at 2 x 1Csp, respectively (Figure 18). These compounds also induced high levels of
ROS in CCRF-CEM cells with up to 67.80% for 3 and 74.50% for 4 at 2 x ICs (Figure 19).
These data suggest that MMP alterations as well as increased ROS production were involved

in cell death induced by compounds 3 and 4.

With regards to structure-activity relationship, it appears that both the isoflavones 2 and
biflavonoid 4 were active. Within biflavonoids, it seems that the substitution of some
hydroxy groups by methoxy positively influenced the cytotoxicity. In effect, compound 4
with 4 hydroxy- and 2 methoxy groups revealed an ICs, value below 10 uM in 9/9 cancer cell
lines, whilst the biflavonoids 4 and 5 (with 4 and 6 hydroxy groups and no methoxy
substituent, respectively) were less active (Tables 32). This is also the case with compounds 5
and 6 having 4 and 6 hydroxy groups and no methoxy substituent, respectively, that also

showed poor cytotoxic effects (Table 32).

The overall data highlighted the possibility of using the tested natural compounds, especially,
osajin (3) and 7,7"-di-O-methylchamaejasmin (4) to develop a novel drug to fight drug

sensitive and resistant cancers.
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Figure 14: Effect of 24 h treatment of osajin (3), 7,7”-di-O-methylchamaejasmin (4) and
doxorubicin on the cell cycle distribution of CCRF-CEM leukemia cells. The I1Csq values
were 5.17 uM for compound 3, 3.58 uM for compound 4 and 0.02 uM for doxorubicin.
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Figure 15: Apoptosis assessment of osajin (3), 7,7”’-di-O-methylchamaejasmin (4) and
doxorubicin on CCRF-CEM leukemia cells after 24 h as determined by annexin V/PI assay.
Apoptosis was assessed by flow cytometry after annexin V-PI double staining. Necrotic cells
lose membrane integrity, allowing Pl entry. Q9-LL: viable cells exhibit annexin V (-)/PI (-);
Q9-LR: early apoptotic cells exhibit annexin (+)/PI (-); Q9-UR and Q9-UL.: late apoptotic
cells or necrotic cells exhibit annexin V (+)/P1 (+) or annexin V (-)/P1 (+). ICs values were
5.17 uM for compound 3, 3.58 uM for compound 4 and 0.02 uM for doxorubicin.
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Figure 16: Activity of caspases in CCRF-CEM cells treated for 6 h with osajin (3) and 7,7”-
di-O-methylchamaejasmin (4). The ICs, values were 5.17 uM for compound 2 and 3.58 uM
for compound 4. The concentrations tested corresponded to 1/2 x 1Csg, ICso and 2 x 1Csg;

Shown are mean £ SD of three independent experiments.
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Figure 17: Effect of osajin (3), 7,7”-di-O-methylchamaejasmin (4) and valinomycin for 24 h
on the mitochondrial membrane potential of CCRF-CEM cells. Intact cells (Q1), loss of
MMP (Q2), ruptured cell membrane (Q3 and Q4). The ICsy values were 5.17 uM for
compound 3 and 3.58 uM for compound 4.
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Figure 18: Reactive oxygen species (ROS) production in CCRF-CEM cells treated for 24 h
with osajin (3), 7,7”-di-O-methylchamaejasmin (4), and hydrogen peroxide (H,0,). Shown
are mean = SD of three independent experiments. The ICsy values were 5.17 uM for
compound 3 and 3.58 uM for compound 4.The concentrations tested corresponded to 1/4 x
1Csp, 1/2 x I1Csg, I1Csq and 2 x I1Cxp.

Table 32: Cytotoxicity of compounds 2-8 and doxorubicin towards leukemia cells as
determined by resazurin assay

Compounds CCRF-CEM CEM/ADR5000  Degree of
ICs0 in UM ICs0 in UM resistance*
2 15.05 +2.29 5.81+£0.02 0.38
3 5.17+1.08 3.87+£0.44 0.74
4 3.58+0.09 5.69+£0.51 1.58
5 >73.73 65.28 + 8.62 <0.88
6 60.40 + 9.63 47.74 + 6.80 0.79
7 > 69.87 > 69.87 na
8 34.25+0.84 > 78.85 >2.30
Doxorubicin 0.02 £ 0.00 66.83 £ 2.20 3341

(*): The degree of resistance was determined as the ratio of 1Cs, value in multidrug- resistant CEM/ADR5000
cells divided by the 1Cs in sensitive CCRF-CEM cells.
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Table 33: Cytotoxicity of compounds 2, 3 and 4 and doxorubicin towards drug sensitive and
resistant solid tumor cell lines as determined by resazurin assay

Cell lines ICs0 values in uM and degree Doxorubicin
of resistance
Compounds
2 3 4

MDA-MB231 24.28+5.38 9.95+0.65 5.97 +0.46 0.07 £0.00
MDA-MB231/BCRP 1782+£261 1444+1.40 7.76x0.30 0.43 +£0.10
Degree of resistance*  0.73 1.45 1.29 6.14
HCT116(p53*"™) 19.67£3.93 8.49+247 6.02 £ 0.36 0.26 +0.01
HCT116(p53™) 23.15+230 8.76+0.30 5.48 £ 0.16 0.97 £ 0.02
Degree of resistance*  1.17 1.03 0.91 3.73
Us7MG 4223 +437 1225+561 6.16+0.06 0.14 +0.01
U87MG.4EGFR 16.90+0.92 7.85+0.26 4.96 +0.22 0.53+ 0.08
Degree of resistance* 0.4 0.64 0.80 3.79
HepG2 48.67+7.15 1286+3.74 559+0.61 2.15+0.03
AML12 38.68+6.64 796 +3.15 6.37+0.63 0.48 £ 0.01
Sensitivity index** 0.79 0.61 1.13 0.22

(*): The degree of resistance was determined as the ratio of ICsq value in the resistant divided by the I1Cs; in the
sensitive cell line; MDA-MB-231-BCRP, HCT116 (p53”) and U87MG.AEGFR were used as the
corresponding resistant counterpart for MDA-MB-231-pcDNA, HCT116 (p53**), US7TMG respectively; (**):
The selectivity index was determined as the ratio of 1Csy value of normal AML12 hepatocytes divided by the
ICs of HepG2 hepatocarcinoma cells.
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4.7.3. Cytotoxicity of compounds isolated from Derris trifoliata

The compounds (9-23) isolated from Derris trifoliata, except compound 16, were evaluated for
their cytotoxicity against HEK293 cells. Except for medicarpin (9) and 6,7-dimethoxy-4-
chromanone (23) (ICso > 100 uM against HEK cells) all the compounds tested showed activity
with 1Csq values less than 95 uM (Table 34). Rotenone (10) exhibited the highest cytotoxic (ICso
value of 0.82 £ 0.02 uM) towards HEK293 cells. Deguelin (11) and elliptone (17) showed weak
activity with ICsp values of 38.9 and 84.0 uM against the HEK293 cells. The rotenoloids
(rotenoid with an open ring C) 7a-O-methyldeguelol (12), showed better cytotoxicity towards
HEK293 cells (ICsp 9.4 £ 0.25 uM). Similarly, the activity of 7-a-O-methylelliptonol (18) was
higher than elliptone (17) (ICso 7.1 £ 0.50 pM) (Table 34) suggesting that rotenoloids (rotenoids
moiety with open ring C) have better activities compared to their rotenoid counter parts. The
rotenoloids and rotenoids have earlier been reported for their cytotoxicity against KB, BC and
NCI-H187 cell lines (Cheenpracha, et al., 2007). The rotenoids (rotenone (10), deguelin (11) and
a-toxicarol (13)) showed better cytotoxicity against KB, BC and NCI-H187 cell lines with ICs
values in the range of 0.05 to 1.8 uM, but rotenoloid 7a-O-methyldeguelol (12) showed
selectivity (ICso 4.1 uM) against NCI-H187 cell lines, while 7a-O-methylelliptonol (18) showed
activity against KB, BC and NCI-H187 cells with ICs, values of 4.1, 3.8 and 3.0 uM,
respectively (Cheenpracha, et al., 2007). Among flavones (19-22) tested barbigerone (20)
showed good cytotoxicity with an 1Csy value of 2.1 £ 0.30 uM. Prunetin (19), lupinifolin (21)
and dereticulatin (22) showed weak activity with ICsy values of 45.8, 39.7 and 93.8 uM,

respectively against the HEK293 cells (Table 34).
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Table 34: Cytotoxic activity of compounds 9-23 against HEK293 cell line

Compounds HEK293 at top HEK293
dose (100 uM)
I1Csg in IJM
9 31.5+4.68 > 100
10 88.5+0.86 0.82 £0.02
11 65.3 £ 0.40 ~38.9
12 91.6 £0.61 9.4+0.25
13 774185 214 +3.79
14 83.3+5.31 ~115
15 75.4 +1.46 ~8.4
17 61.3+5.71 ~84.0
18 83.6 £ 0.66 7.1+0.50
19 61.1+6.06 458 +7.41
20 89.0+2.12 2.1+£0.30
21 100.9 £ 0.49 ~39.7
22 50.7+11.8 ~93.8
23 17.7+£15.3 > 100
DHA 92.3+9.71 ~10.6
Puromycin 98.3+0.54 0.7+0.13
Pyrimethamine 62.3+ 3.6 ~15.8
Pyronaridine 979+0.21 49+0.84

137

11 R1=H R2=H
13 R1=0H R2=H
14 R1=H R2=0H



OH
HO H,CO
o) o)

H,CO o)

23
22

4.7.4. Cytotoxicity of compounds isolated from Lonchocarpus bussie and L. eryocalix

The cytotoxicity of compounds 24-33 as well as the standard doxorubicin was first determined
against sensitive leukemia CCRF-CEM cells and the drug resistant subline CEM/ADR5000 cells.
Apart from maximaisoflavone H (26) against CCRF-CEM and CEM/ADR5000 cells, and
(6aR,11aR)-maackiain (32) against CCRF-CEM cells, all other compounds showed activities
with 1Cso values below 90 uM against the two cell lines (Table 35). Against the CCRF-CEM
cells, significant activity with 1Cso values less than 10 uM (Brahemi et al., 2010; Kuete & Efferth,

2015), were observed for 6,7,3'-trimethoxy-4',5'-methylenedioxyisoflavone (27, ICsy 6.27 uM)
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and durmillone (28, ICsy 0.54 uM). Similarly, 4'-hydroxylonchocarpin (30, 1Cso 3.43 uM) and
durmillone (28, 1Cs 0.86 M) showed moderate to good activities against the CEM/ADR5000
cells, respectively. It is worth noting that CEM/ADRS5000 cells were highly resistant to the drug
doxorubicin; on the other hand, all the tested compounds (except for compounds 25 and 31)
showed better activity than the standard against this cell-line. Hypersensitivity (degree of
resistance or D.R. below 0.90) (Mbaveng et al., 2017) of CEM/ADR5000 compared to it
sensitive parental cell line CCRF-CEM was noted with (6aR,11aR)-4,9-dimethoxybitucarpin B
(33), 7,2'-dimethoxy-4',5'-methylenedioxyisoflavone (25), 4-hydroxylonchocarpin (29) and
colenemol (30), suggesting that they might have inhibitory effect on P-glycoprotein’s expression
(Mbaveng et al., 2017). With regards to their activity in leukemia cells, 4'-prenyloxyvigvexin A
(24), 6,7,3-trimethoxy-4',5-methylenedioxyisoflavone (27) and durmillone (28) displaying ICsg
values below 20 puM towards CCRF- CEM cells were selected and screened further against a
panel of 7 carcinoma cells and normal AML12 hepatocytes (Table 36). Of the three compounds,
the isoflavone durmillone (28) displayed 1Cso values below 10 puM towards resistant MDA-
MB231/BCRP cells (8.97 uM) and resistant glioblastoma U87MG.AEGRF cells (5.83 pM).
Interestingly, hypersensitivity was obtained with the three selected compounds in
U87MG.AEGRF cells as well as with 4'-prenyloxyvigvexin A (24) and durmillone (28) in MDA-
MB231/BCRP cells compared to their respective sensitive counterparts U87MG cells and MDA-
MB231 cells. It is also important to note that the selectivity indexes of 4'-prenyloxyvigvexin A
(24), 6,7,3-trimethoxyl-4',5-methylenedioxyisoflavone (27) and durmillone (28) for the normal
AML12 hepatocytes versus hepatocarcinoma HepG2 cells are below 1, suggesting their poor
selectivity to liver cancer cells. However, a closer look at the 1Csy values of the compounds

against AML12 cells versus other cell lines indicated that higher selectivity can be achieved with
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other cancer types. Overall, the study reveals the good activity of durmillone (28), with ICs
below 1 pM towards the two leukemia cells and against 2/7 tested carcinoma cells. This
compound is a cytotoxic agent that can be explored further towards the development of an

anticancer drug.

Table 35: Cytotoxicity of the studied compounds (24-33) and doxorubicin towards
leukemia cells as determined by resazurin assay

Compound ICso value in uM and degree of resistance  Degree of resistance*
CCRF-CEM CEM/ADR5000

24 18.92+4.88 25.53+9.05 1.34
25 31.82 £3.40 16.87+1.94 0.53
26 >135.10 >135.10 na
27 6.27+1.41° 29.51+3.75 6.70
28 0.54+0.17° 0.86+0.02" 1.59
29 49.49+11.27 32.47+5.53 0.65
30 88.91+1.18 3.43+1.21° 0.03
31 37.74+14.12 21.58+0.84 0.57
32 >140.70 81.34+4.10 >0.57
33 34.11+0.80 33.22+4.07 0.97

Doxorubicin 0.02+0.00° 66.83+2.20 3341

® Values in bold: Significant activity
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Table 36: Cytotoxicity of compounds 24, 27, 28 and doxorubicin towards leukemia cells as
determined by resazurin assay

ICso value in uM and degree of resistance

Compound
24 27 28
Doxorubicin
Cell lines
MDA-MB231 >102.99 67.89 +£23.34 27.14+4.73 0.07+0.00°
MDA-MB231/ 83.08 £ 0.29 >112.26 8.97+3.83" 0.43+0.10°
BCRP
Degree of <0.80 >1.65 0.33 6.14
resistance
HCT116p53+/+ 57.49+2.91 103.30+£12.03 23.56+3.27 0.26+0.01°
HCT116p53-/- 67.42+7.01 >112.26 >105.71 0.97+0.02°
Degree of >1.17 >1.08 >4.48 3.73
resistance
U87TMG 85.71+16.79 >112.26 14.92+1.85 0.14+0.01°
U87MG.AEGFR 56.31+5.90 80.19+£16.53 5.83+1.07° 0.53+0.08"
Degree of 0.65 0.71 0.39 3.79
resistance
HepG2 >102.99 >112.26 >105.71 2.15+0.03"
AML12 60.41+2.64 85.82+1.07 96.04+5.53 0.48+0.01
Sensitivity index <0.58 <0.76 <0.90 0.22

bValues in bold: Significant activity
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4.7.5. Cytotoxicity of compounds isolated from Dorstenia kameruniana
The cytotoxicity of compounds 34-38 as well as that of the standard doxorubicin was first
determined against the drug-sensitive leukemia CCRF-CEM cells and its multidrug-resistant

subline, CEM/ADR5000. Dorsmerunin A-C (34-36) and licoagrochalcone A (38) displayed
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cytotoxic effects against both cell-lines with ICsy values below 80 uM (Table 37). Against
CCRF-CEM cells, significant activity with 1Cs values less than 10 uM (Brahemi, et al., 2010;
Kuete & Efferth, 2015) were obtained for bergapten (37) (1Cso = 7.17 uM) and licoagrochalcone
A (38) (IC5p = 5.16 uM). Hypersensitivity (collateral sensitivity with a degree of resistance
(D.R.) below 0.90) of CEM/ADR5000 cells compared to their sensitive parental CCRF-CEM
cells was observed for dorsmerunin A (34) and dorsmerunun B (35) (Table 37). This indicates
that the two compounds might be potential inhibitors of P-glycoprotein’s expression (Mbaveng
et al., 2017). With regards to their activity in the sensitive CCRF-CEM leukemia cells, bergapten
(37) and licoagrochalcone A (38) displaying ICs, values below 10 uM were selected and tested
towards a panel of 7 solid tumor cell lines and normal AML12 hepatocytes (Table 38).
licoagrochalcone A (38) showed cytotoxic effect against all 7 solid tumor cell lines tested with
ICso values below 50 pM, whilst bergapten (37) showed selective activity (Table 38).
Interestingly, collateral sensitivity was observed for licoagrochalcone A (38) against drug-
resistant US7MG.AEGRF glioblastoma cells (D.R. of 0.60) compared to the corresponding
sensitive counterpart US7MG cells, Table 38). It is also important to note that the selectivity
indexes of bergapten (37) and licoagrochalcone A (38) for normal AML12 hepatocytes versus
HepG2 hepatocarcinoma cells were below 1, suggesting poor selectivity to liver cancer cells.
Nonetheless, a closer look at the 1Csy values of licoagrochalcone A (38) in AML12 cells
compared to other cell lines allows to speculate that higher selectivity can be achieved with other

+/+

cancer types such as HCT116 (p53™") colon carcinoma cells or U87TMG.AEGFR glioblastoma
cells. The overall data showed the potential of the tested compounds, especially bergapten (37)

and licoagrochalcone A (38), towards the development of novel drugs to treat cancer.
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Table 37: Cytotoxicity of compounds 34-38 and doxorubicin towards leukemia cells as
determined by resazurin assay.

Samples CCRF-CEM CEM/ADR5000  Degree of
ICsp In UM ICsp In UM resistance*

34 77.15+1.27 58.21 £ 0.38
35 35.13+4.63 28.95+2.64
36 29.07 £ 2.18 47.81 £ 4.56
37 7.17 £0.85 >185.02
38 5.16 £1.40 17.38 £ 1.96

Doxorubicin 0.02 £ 0.00 66.83 + 2.20

(*): The degree of resistance was determined as the ratio of 1Csy value in multidrug- resistant CEM/ADRS5000 cells
divided by the ICx in sensitive CCRF-CEM cells.

Table 38: Cytotoxicity of compounds 37, 38 and doxorubicin towards drug sensitive and
resistant solid tumor cell lines as determined by resazurin assay.

Cell lines ICso value in uM and degree of resistance  Doxorubicin
Compounds
37 38

MDA-MB231 132.80 + 3.40 34.84 +0.33 0.07 £0.00
MDA-MB231/BCRP 158.55 + 10.92 49.57 £ 0.44 0.43 £0.10
Degree of resistance* 1.19 1.42 6.14
HCT116(p53*"™) 111.61+£29.44 21.84 +4.68 0.26 +0.01
HCT116(p53™) >185.02 31.25+2.82 0.97 £0.02
Degree of resistance* >1.65 1.43 3.73
U87TMG 163.61 £ 12.17 37.63+£1.48 0.14 +0.01
U87MG.4EGFR 163.40 + 15.67 22.75+1.30 0.53+ 0.08
Degree of resistance* 0.99 0.60 3.79
HepG2 >185.02 42,95 +2.82 2.15+0.03
AML12 166.66 + 7.06 37.16 £4.45 0.48 +0.01
Sensitivity index** <0.90 0.86 0.22

(*): The degree of resistance was determined as the ratio of ICg, value in the resistant divided by the ICsq in the
sensitive cell line; MDA-MB-231-BCRP, HCT116 (p53”) and U87MG.AEGFR were used as the corresponding
resistant counterpart for MDA-MB-231-pcDNA, HCT116 (p53**), US7MG respectively; (**): The selectivity index
was determined as the ratio of ICsy value of normal AML12 hepatocytes divided by the I1Cs, of HepG2 hepatocarcin
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4.7.6. Cytotoxicity of compounds isolated from Streblus usambarensis

The cytotoxicity of compounds 39-41 as well as doxorubicin was first determined in both
sensitive CCRF-CEM leukemia cells and in drug resistant subline CEM/ADR5000 cells. The
three compounds displayed cytotoxic effects in both sensitive CCRF-CEM and resistant
CEM/ADRS5000 leukemia cells with 1Cs values below 25 pM (Table 39). In CEM/ADR5000
cells, significant activity with ICsy values of 10 uM (Brahemi, et al., 2010; Kuete & Efferth,
2015) was obtained for usambarin B (40), while doxorubicin had ICsy values of 0.02 uM in
CCRF-CEM cells. Hypersensitivity (degree of resistance or D.R. below 0.90) (Mbaveng, et al.,
2017) of CEM/ADR5000 compared to its sensitive parental cell line CCRF-CEM was noted with
usambarin B (40) (Table 39), suggesting that this compound could be potential inhibitors of P-
glycoprotein’s expression (Mbaveng et al., 2017). In regards to their activity in the two leukemia
cells, usambarin B (40) and usambarin C (41) displaying ICsp values below 20 uM were selected
and tested towards a panel of 7 carcinoma cells and normal AML12 hepatocytes (Table 40). The
two compounds had cytotoxic effect in the 7 tested carcinoma cell lines with below 63 pM.
Usambarin B (40) and usambarin C (41) could be exploited in the fight against cancers.
Interestingly, hypersensitivity was obtained with Usambarin B (40) towards resistant
US7MG.AEGRF glioblastoma cells (D.R. of 0.42) compared to its respective sensitive
counterparts U87MG cells, and with usambarin C (41) towards U87MG.AEGRF cells (D.R. of
0.73) and resistant MDA-MB231/BCRP breast adenocarcinoma cells compared to its sensitive
counterparts MDA-MB231 cells (D.R. of 0.85). It is also important to note that the selectivity
indexes of usambarin B (40) and usambarin C (41) for the normal AML12 hepatocytes versus
HepG2 hepatocarcinoma cells are around or below 1, suggesting their poor selectivity to liver

cancer cells; Nonetheless, a keen look of 1Csg values of usambarin C (41) in AML12 cells versus
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other cell lines indicate that higher selectivity can be achieved with other cancer types such as
HCT116(p53"*) colon carcinoma cells or U87MG.4EGFR cells. The overall data highlight the
possibility of using the tested phytochemicals and mostly usambarin B (40) and usambarin C

(41) to develop a novel drug to fight drug sensitive and resistant cancers.

Table 39: Cytotoxicity of compounds 39-41 and doxorubicin towards leukemia cells as
determined by resazurin assay.

Samples CCRF-CEM CEM/ADR5000 Degree of
ICs0 in UM ICs0 in UM resistance*
39 22.84 £ 4.00 24.45 + 291 1.07
40 16.02 £ 0.20 6.13+0.22 0.38
41 18.93 +2.30 18.17 +1.00 0.95
Doxorubicin 0.02£0.00 66.83 + 2.20 3341

(*): The degree of resistance was determined as the ratio of 1Csy value in multidrug- resistant CEM/ADRS5000 cells
divided by the ICx in sensitive CCRF-CEM cells.

Table 40: Cytotoxicity of compounds 40, 41 and doxorubicin towards drug sensitive and
resistant solid tumor cell lines as determined by resazurin assay.

Cell lines ICs0 value in uM and degree of resistance  Doxorubicin
Compounds
40 | 41

MDA-MB231 23.31+2.80 26.90 + 10.65 0.07 £0.00
MDA-MB231/BCRP 27.15+ 9.25 23.12+1.37 0.43 £0.10
Degree of resistance* 1.16 0.85 6.14
HCT116(p53*"") 19.60 £ 0.73 16.11 +0.31 0.26 £0.01
HCT116(p53™) 29.59 + 7.02 14.90 + 2.97 0.97 £0.02
Degree of resistance* 1.50 0.92 3.73
U87TMG 32.22 £0.08 22.28 + 3.45 0.14 +0.01
U87MG.AEGFR 13.77 £ 0.20 16.46 + 1.07 0.53+ 0.08
Degree of resistance* 0.42 0.73 3.79
HepG2 62.76 + 3.43 20.54 +2.17 2.15+0.03
AML12 32.58 + 4.06 21.54 + 2.60 0.48 +0.01
Sensitivity index** 0.51 1.04 0.22

(*): The degree of resistance was determined as the ratio of 1Cs, value in the resistant divided by the ICs in the sensitive cell line; MDA-MB-
231-BCRP, HCT116 (p53™) and US7TMG.AEGFR were used as the corresponding resistant counterpart for MDA-MB-231-pcDNA, HCT116
+/+

(p53™"), UBTMG respectively; (**): The selectivity index was determined as the ratio of 1Cs value of normal AML12 hepatocytes divided by the
ICs of HepG2 hepatocarcinoma cells.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATION
5.1. Conclusion
Phytochemical study of plants from Leguminosae (Ormocarpum Kkirkii, Derris trifoliata,
Lonchocarpus bussei, Lonchocarpus eriocalyx) and Moraceae families (Dorstenia kameruniana
and Streblus usambarensis) led to the isolation of forty one compounds, of which 7a-O-methyl-
12a-hydroxyelliptonol (16), 4'-prenyloxyvigvexin (24), (6aR,11aR)-4,9-dimethoxybitucarpinB

(33) dorsmeruninA, B and C (34-36), usambarin A, B and C (39-41) are new.

Investigation for cytotoxicity of the isolated compounds, based on resazutine assay, on drug
sensitive and multidrug resistant cancer cell lines showed that osajin (3), 7,7"-di-O-
methylchamaejasmin (4) and durmillone (28) had significant cytotoxic effects with ICs values
below 10 uM against 7 carcinoma cells and a normal AML12 hepatocytes (4/7, 7/7 and 2/7
respectivelly); while rotenone (10), 7a-O-methyldeguelol (12), 12a-Hydroxyelliptonol (15), 7-a-

O-methylelliptonol (18) and barbigerone (20) towards HEK293 cells.

The mechanistic studies of the most cytotoxic compounds were indicates that Osajin (3) and
7,7"-di-O-methylchamaejasmin (4) induced apoptosis in CCRF-CEM cells by MMP alteration

and increased ROS production.

5.2. Recommendation
1. Synthetic derivatives of the active compounds, especially of osajin (3) and 7,7"-di-O-
methylchamaejasmin (4) should be prepared and tested.
2. The X-ray data and biosynthetic pathway of the unique compounds usambarin A (39),

usambarin B (40) and usambarin C (41) should be generated.
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In vivo cytotoxicity or toxicology of the most active compounds; osajin (3) and 7,7"-di-
O-methylchamaejasmin (4) should be established.

. The mechanism of action of durmillone (28) shoud be explored.

. Osajin (3), 7,7"-di-O-methylchamaejasmin (4) and durmillone (28) should be explored

further towards the development of an anticancer drug.
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'H (600 MHz) and **C (150 MHz) NMR spectra of compound 1 (Acetone-d6)

SA-31K = 9mg i. 0.6ml Acetone-d6 * 1H = AVE00
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Appendix 1B: H,H-COSY and HSQC spectra of compound 1 (600 MHz, acetone-d6)
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Appendix 1C: HMBC (600 MHz, acetone-d6) and HREIMS spectra of compound 1
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Appendix 2A: *H (600 MHz) and *C (150 MH 2) NMR spectra of compound 1 (Acetone-d6)
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Appendix 2B: H,H-COSY and HSQC spectra of compound 2 (600 MHz, acetone-dg)
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Appendix 2C: HMBC (600 MHz, acetone-ds) and HREIMS spectra of compound 2
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Appendix 3A: 'H (600 MHz) and ** C NMR (150 MHz) spectrum of compound 3 (Acetone-dg)
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Appendix 3B: H,H-COSY and HSQC spectra of compound 3 (600 MHz, acetone-dg)
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Appendix 3C: HMBC and HREIMS spectra of compound 3 (600 MHz, acetone-dg)
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Appendix 4A: 'H (600 MHz) and **C (150 MHz) NMR spectra of compound 4 (Acetone-ds)
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Appendix 4B: HHCOSY and HSQC spectra of compound 4 (600 MHz, acetone-dg)
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Appendix 4C: HMBC (600 MHz, acetone-ds) and HREIMS spectra of compound 4
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Appendix 5A: *H 600 MHz) and **C NMR (150 MHz) spectra of compou
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Appendix 5B: H,H-COSY and HSQC spectra of compound 5 (600 MHz, acetone-dg)

| |
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Appendix 5C: HMBC (600 MHz, acetone-ds) and HREIMS spectra of compound 5
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Appendix 6A: *H (600 MHz) and **C NMR (15
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Appendix 6B: H,H-COSY and HSQC spectra of compound 6 (600 MHz, acetone-ds)
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Appendix 6C: HMBC (600 MHz, acetone-ds) and HREIMS spectra of compound 6
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Appendix 7A: *H (600 MHz) and **C NMR (150 MHz) spectra of compound 7 (Acetone-ds)
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Appendix 7B: H,H-COSY and HSQC spectra of compound 7 (600 MHz, acetone-dg)
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Appendix 7C: HMBC (600 MHz, acetone-dg) and HREIMS spectrum of compound 7
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Appendix 8A: 'H (600 MHz) and **C NMR (150 MHz) spectrum of compound 8 (Acetone-dg)
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Appendix 8B: H,H-COSY and HSQC spectra of compound 8 (600 MHz, acetone-d6)
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Appendix 8C: HMBC (600 MHz, acetone-ds) and HREIMS spectra of compound 8
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Appendix 9A: *H (800 MHz) and *C (200 MHz)

NMR spectra of compoun
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Appendix 9B: H,H-COSY and HSQC spectra of compound 9 (800 MHz; CD3CN)
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Appendix 9C: HMBC (800 MHz; CD3;CN) and LCMS spectra of compound 9
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Appendix 10B: H,H-COSY and HSQC spectra of compound 10 (800 MHz; CD3;CN)
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Appendix 10C: HMBC (800 MHz; CD3CN) and LCMS spectra of compound 10
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'H (800 MHz) and **C (200 MHz) NMR spectra of compound 11 (CDsCN)
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Appendix 11B: H,H-COSY and HSQC spectra of compound 11 (800 MHz; CD3;CN)
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Appendix 11C: HMBC spectrum of compound 11 (800 MHz; CD3;CN)

s

- FAA_8N.17.ser
ZFAA_8N CD3CN
—=M_HMBC CD3CN /opt/data/mate/nmr mate 53

M . ﬂh. MWWN Ll

L Mm

L ML

r10

)

T T T T T T T
8.0 7.5 7.0 6.5 6.0 5.5 5.0

T T T T T T
4.5 4.0 3.5 3.0 2.5 2.0
f2 (ppm)

194

1.5

F20

30

2Fa0

50
60
70
80
90
r 100
r110
r120
130
r 140
150
r 160
170
180
190
200

210

1 (ppm)



Appendix 12A: *H (800 MHz) and *C NMR (200 MHz) spectra of compound 12 (CDsCN)
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Appendix 12B: TOCSY and HSQC spectra of compound 12 (800 MHz; CD3;CN)
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Appendix 12C: HMBC (800 MHz; CD3CN) and LCMS spectra of compound 12
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Appendix 13A: *H (800 MHz) and *C (200 MHz) NMR spectra of compound 13 (CD3CN)
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Appendix 13B: HSQC and HMBC spectra of compound 13 (800 MHz; CD3;CN)
FAA_71/16

VRN BN

M_HSQCED CD3CN /opt/data/mate/nmr mate 25 r20

e @y sTxOvE

30

140

(b l

50

60

000 @6 $09CH 6B D suv.

70

80

90

100

r110

120

130

r 140

150

160

Por WO 9 ® DREWEGT « =0 @ ORI 60 4N O @ Oor TR ©

-170

Ll . lJ-
FA8 TILT

&8_71 CLa0N 0= 2
FROE O Joohiceta/nsbe iner made 5

'
&

.._,_...._,.___h_,.,..
E

*

E

*

m140

= .

k130

L0

.

SE]

‘-'1_-

FLED
=170
e
=150
geE]

F2Ll

=
L g mgmca ca o gy, e s e e s e

T T T T

!
i pem)

E
-

199

f1 (ppm)

L (ppmy



Appendix 13C: LCMS spectrum of compound 13

Aoy, Fila: 20151204 wiff fanplo Wamp: FAA-TT
fanple Numbar: NfA

[ +Q1:6.24 to 6,565 min from Sample 10 (FAA7T) of 20151204 wift (Turbo Spray) Max. 1.6 ops]

4113
1.6

1 2e8

1.1e8

1.0=8

0.0e5

8.0e54

Infensity, cps

8.0e5
5 0e5H 1034

405

po2 140.5 s
1202 2003 W8 hosg,.. o
111 2055 !

5 BT v v - Y N1 . 213, o0

10 150 200 250 300 350 400 450 500 550 600 650 700 75 800 250 odo (5] 1000

yé
50

200



FAA_8H.21fid e
FAA_BH CDCI3 so0#27; 77
M_1H1D CD3CN foptfd}{afmate{nmr mate 62\\'

6.59

-
o

6.49
6.48

AN
573

—378
—365

'lT 13000
12000

248 f-11000

JTr 4 4= Jr 10000
246
Fa000
146

8000

7000

6000

5000

4000

3000

! 2000

rioo0

o

i

r-1000

100 ] e
=
05
106 —_[
a1
-+
4.
A
23 17{

1291
290

8.5 8.0 75 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 1.5 1.0 0.5

FAA_8H.22.fid 5 28885

FAA_8H CDCI3 800#2 S § §
M_13C1D CD3CN /opt/qata/mate/nmr mate 62 / /

320

13034
~ 128.85
115.1
— 101.64
7847
—~76.70
— 68.18
— 6434
_-56.39
55.97
_-28.20
X 27.69

300
k280
260
k240
k220
200
k180
160
k140
k120
100
80

60

k40

-20

k-40

T T T T T T T T T T T T T
20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10
f1 (ppm)

201



Appendix 14B: H,H COSY and HSQC spectra of compound 14 (800 MHz; CD3CN)
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Appendix 14C: HMBC and LCMS spectra of compound 14 (800 MHz; CD3;CN)

| Ll »

FAA_8H.27.ser
FAA_8H CDCI3 800#2 . L 10
—< M_HMBC CD3CN /opt/data/mate/nmr mate 62 Lo
_ . " L 30
L 40
k50
L 60
— . - [0
o . . vee " -
E L0
Fi00
E €
— —= o . " s rio  §
[ —— . [120 &
— " +130
. k140
J— w© ] o
— » ° f k150
3 . .
- . MR I 160
k170
I 180
s . . k190
k200
k210
. . . . . . . . . . . . . . . . . . . . . . . .
95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 1.0 05 00 -05 -1.0 -1.5 -2.0
2 (ppm)
Acg. Flla: 20151204 .wiff Lampla Name: FAA-BH
Eampla Numbar: K/
W +01: 5474 to 5.853 min from Sample 11 (FAAGH) of 20151208 wff (Turbo Spray) Max. 4 728 cps)|
3833
4 el
4.4e6|
4 208
4.0e6-|
3 Befi-|
3.6e.|
3408
3206
3,065 3,36
2 Befi-|
2 el
-3
5
7 248
£ 220
=
2 el |
1808
168
1.4e8
1268
1.0e8
8.0e5-|
.0e5-]
4051 4006
2 5|
B2 a5 g ETe E) & BO3.3
| .208.1 1} 4336 _4ma5 E3B.7 mggn
oofdw P YO I wa Gl WA s P v
50 100 150 20 250 £ 3 alo 450 500 550 ‘600 50 Tho T 'sl0 a5 ‘olo ‘50 1000
miz, Ca

203



Appendix 15A: *H (800 MHz) and *C NMR (200 MHz) spectra of compound 15 (CDsCN)
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Appendix 15B: H,H COSY and HSQC spectra of compound 15 (800 MHz; CD3;CN)
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Appendix 15C: HMBC and LCMS spectra of compound 15 (800 MHz; CD3;CN)
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Appendix 16A: 'H (800 MHz) and *C NMR (200 MH?z) spectrum of compound 16 (CD3CN)
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Appendix 17A: *H (800 MHz) and *C (200 MHz) NMR spectra of compound 17 (CDsCN)
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Appendix 17B: H,H COSY and HSQC spectra of compound 17 (800 MHz; CD3;CN)
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Appendix 17C: HMBC spectrum of compound 17 (800 MHz; CD3;CN)
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'H (800 MHz) and **C (200 MHz) NMR spectra of compound 18 (CDs;CN)

Appendix 18A
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Appendix 18B: H,H COSY and HSQC spectra of compound 18 (800 MHz; CD3;CN)
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Appendix 18C: HMBC (800 MHz; CD3CN) and LCMS spectra of compound 18
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Appendix 19A: *H (800 MHz) and *C (200 MHz) NMR spectrum of compound 19 (CDsCN)
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Appendix 19B: H,H COSY and HSQC spectra of compound 19 (800 MHz; CD3;CN)
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Appendix 19C: HMBC (800 MHz; CD3CN) and LCMS spectra of compound 19
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Appendlx 20A: 'H (800 MH ) and 13(: (200 MHz) NMR spectra of compound 20 (CDsCN)
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Appendix 20B: H,H COSY and HSQC spectra of compound 20 (800 MHz; CD3;CN)
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Appendix 20C: HMBC and LCMS spectra of compound 20 (800 MHz; CD3;CN)
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Appendix 21B: H,H COSY and HSQC spectra of compound 21 (800 MHz; CD3;CN)
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Appendix 21C: HMBC (800 MHz; CD3CN) and LCMS spectra of compound 21
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'H (800 MHz) and **C (200 MHz) NMR spectra of compound 22 (CDs;CN)
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Appendix 22B: H,H COSY and HSQC spectra of compound 22 (800 MHz; CD3;CN)
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Appendix 22C: HMBC (800 MHz; CD3CN) and LCMS spectra of compound 22
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Appendix 23A: *H (800 MHz) and 13C (200 MHz) NMR spectra of compound 23 (CDsCN)
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Appendix 23B: H,H COSY and HSQC spectra of compound 23 (800 MHz; CD3;CN)
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Appendix 23C: HMBC (800 MHz; CD3CN) and LCMS spectra of compound 23
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Appendix 24A: *H (500 MHz) and *C (150 MHz) NMR spectrum of compound 24 (CD,Cl,)

9’1
9L1
081
081

ﬁN.mM
we
Fs't
S5t
95
35
1
9=r
Lo’k
Loy
86°F

£rs
.n._.mW
£s

EFs-7
ar's
ot's
6r's

069
9
S6'9
SH'Y
969
969
SrL
Sl
9L
9L
6L
820°8
68

ppm

!

=

F

EE

3

=
1

3

|

=
Lol |
—

gt

=~
~

|

!

2
o

7 |

g

!

E

T81—
8T
662
00€

£'€s
S'€s
LeS
6°¢S
I'ys
TSy

88—
9801

LT
SEIT
8PII
611
0021\

ppm

30

40

50

60

70

80

229

170 160 150 140 130 120 110 100 90

Lol | L



Appendix 24B: NOESY (500 MHz) and H,H-COSY (600 MHz) spectra of compound 24 (CD,Cl,)
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Appendix 24C: HSQC and HMBC spectra of compound 24 (600 MHz; CD,Cl,)
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Appendix 24D: HREIMS, IR and UV spectra of compound 24
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500 MHz) and *C NMR (125 MHz) spectra of compound 25 (CD,Cl,)
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Appendix 25B: H,H-COSY and HSQC spectra of compound 25 (500 MHz; CD,Cly,)
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Appendix 25C: HMBC (500 MHz; CD,Cl,) and LCMS spectra of compound 25
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Appendix 26A: *H (500 MHz) and *C (125 MHz) NMR spectra of compound 26 (CD,Cl,)
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Appendix 26B: HSQC and HMBC spectra of compound 26 (500 MHz; CD,Cl,)

IJ A l L

SA-54K.242.ser
SA-54 K * 6.0mg * i. 0.65ml CD2CI2 * ed. HSQC * AV600 Lo
L10
E k20
L 30
F40
I 50
P o
L 60
t7o €
a
&
tso &
Foo
°
° ® I 100
N k110
]
— k120
-]
L 130
_ k140
— L 150
— -]
T T T T T T T T T T T T T T T T
85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 1.0
2 (ppm)
SA-54K.243.ser r-10
SA-54 K * 6.0mg * i. 0.65ml CD2CI2 * HMBC * AV600 Lo
F10
E 20
! 30
F40
50
60
70
! I-80
90
¥
X 0 ) 100
110
— | 8 0
— ] L
— ' o 120
] F130
_ 10 I 140
— " ' ; 150
— [ ' g
— [ ] [] s 160
e — ] 0l \
: F170
— g n
180
I190
200
k210
T T T T T T T T T T T T T T T T
8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 45 4.0 3.5 3.0 2.5 2.0 1.5 1.0

2 (ppm)

237

1 (ppm)



Appendix 26C: LCMS spectrum of compound 26E
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Appendix 27A: *H (600 MHz) and *C (150 MHz) NMR spectra of compound 27 (CD,Cl,)
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Appendix 27B: H,H-COSY and HSQC spectra of compound 27 (600 MHz; CD,Cly,)
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Appendix 27C: HMBC (600 MHz; CD,Cl,) and LCMS spectra of compound 27
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Appendix 28A: *H (600 MHz) and *C (150 MHz) NMR spectrum of compound 28 (CD,Cl,)
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Appendix 28B: H,H-COSY and HSQC spectrum of compound 28 (600 MHz; CD,Cl,)
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Appendix 28C: HMBC (600 MHz; CD,Cl,) and LCMS spectrum of compound 28
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Appendix 29B: H,H-COSY and HSQC spectrum of compound 29 (600 MHz; CD,Cl,)
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Appendix 29C: HMBC (600 MHz; CD,Cl,) and LCMS spectra of compound 29
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'H (600 MHz) and **C (125 MHz) NMR spectra of compound 30 (CD,Cl,)

SA-54 C ™ 15.5mg ™ i. 0.65ml CD2CI2 = 1H * AVe00
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Appendix 30B: H,H-COSY and HSQC spectra of compound 30 (600 MHz; CD,Cly,)
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Appendix 30C: HMBC (600 MHz; CD,Cl,) and LCMS spectra of compound 30
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'H (600 MHz) and **C NMR (150 MHz) spectra of compound 31 (CD,Cl,)

SA-54T * 3.4mg * i. 0.25ml Acetone-d6 * 1H * AV600

Appendix 31A
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Appendix 31B:

A
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Appendix 31C: HMBC (600 MHz; CD,Cl,) and LCMS spectra of compound 31
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'H (600 MHz) and **C (150 MHz) NMR spectra of compound 32 (CD,Cl,)
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Appendix 32B: H,H-COSY and HSQC spectrum of compound 32 (600 MHz; CD,Cl,)
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Appendix 32C: HMBC and LCMS spectra of compound 32 (600 MHz; CD,Cl,)
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Appendix 33A: 'H (500 MHz) and *C (125 MHz) NMR spectra of compound 33 (CD,Cl,)
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Appendix 33B: NOSEY (500 MHz) and H,H-COSY (600 MHz) spectra of compound 33 (CD,Cl,)
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Appendix 33C: HSQC and HMBC spectra of compound 33 (600 MHz; CD,Cl,)
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Appendix 33D: HREIMS, IR and UV spectra of compound 33
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Appendix 34A: 'H (500 MHz) and ** C (125 MHz) NMR spectra of compound 34 (Acetone-ds)
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Appendix 34B: NOESY and H,H-COSY spectrum of compound 34 (500 MHz, acetone-dg)
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Appendix 34C: HSQC and HMBC spectrum of compound 34 (500 MHz, acetone-ds)
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Appendix 34D: HREIMS, IR and UV spectra of compound 34
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Appendix 35A: *H and * C NMR spectrum of compound 35 (500 MHz, acetone-ds)
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Appendix 35B: NOSEY and H,H-COSY spectra of compound 35 (500 MHz, acetone-ds)

SA-61Q.46.ser

SA-61Q * 45.1mg i. 0.65ml Acetone-d6, 2017-01-20 * NOESY, mixing time 0.8 s * AV500

)
-
J

T T T
70 6.8 6.6 6.4 6.2 6.0 58 5.6 5.4 5.2 5.0 438 4.6 44 4.2 4.0 38 36 34

f2 (ppm)
T Wi N
SA-61Q.41.ser 25
SA-61Q * 45.1mg i. 0.65ml Acetone-d6 * H,H-COSY * AV500 i
L3.0
(X}
0
L35
¢ . L40
L45
0
L5.0
5.5
L6.0
L65
A A
©b L7
A, Y
@
U
L75
T T T T T T T T T T T T T T T T T T T T T T
74 72 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 52 5.0 48 4.6 4.4 4.2 4.0 38 3.6 34 3.2
f2 (ppm)

266

f1 (ppm)

f1 (ppm)



Appendix 35C: HSQC and HMBC spectra of compound 35 (500 MHz, acetone-dg)
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Appendix 35D: HREIMS, IR and UV spectram of compound 35
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Appendix 36A: 'H (600 MHz) and ** C (150 MHz) NMR spectra of compound 36 (Acetone-ds)
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Appendix 36B: H,H-COSY and HSQC spectra of compound 36 (600 MHz, Acetone-d6)
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Appendix 36C: HMBC (600 MHz, acetone-ds) and HREIMS spectra of compound 36
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Appendix 36D: IR and UV spectra of compound 36
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Appendix 37A: 'H (500 MHz) and **C NMR (500 MHz) spectra of compound 37 (Acetone-ds)
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Appendix 37B: H,H-COSY and HSQC spectra of compound 37 (500 MHz, Acetone-d6)
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Appendix 37C: HMBC (500 MHz, Acetone-d6) and HREIMS spectra of compound 37
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'H (500 MHz) and **C (125 MHz) NMR spectra of compound 38 (Acetone-ds)

S&61U *15.2mg i. 0.65ml Acetone-d6 * 1H * AV500
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Appendix 38B: H,H-COSY and HSQC spectra of compound 38 (500 MHz, Acetone-d6)
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Appendix 38C: HMBC (500 MHz, Acetone-d6) and HREIMS spectra of compound 38
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Appendix 39A: *H (500 MHz) and ** C (125 MHz) NMR spectra of compound 39 (Acetone-ds)
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Appendix 39B: NOESY and H,H-COSY spectra of compound 39 (500 MHz, acetone-ds)
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Appendix 39C: HSQC and HMBC spectra of compound 39 (500 MHz, acetone-dg)
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Appendix 39D: HREIMS, IR and UV spectra of compound 39
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Appendix 40A: *H (500 MHz) and ** C (125 MHz) NMR spectrum of compound 40 (CDClI5)
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Appendix 40B: NOSEY and H,H-COSY spectra of compound 40 (500 MHz, CDCly)
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Appendix 40C: HSQC and HMBC spectra of compound 40 (500 MHz, CDCl,)
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Appendix 40C: HREIMS, IR and UV spectra of compound 40
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Appendix 41A: *H (500 MHz) and ** C (125 MHz)
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Appendix 41B: NOSEY and H,H-COSY spectra of compound 41 (500 MHz, CDCly)
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Appendix 41C: HSQC and HMBC spectra of compound 41 (500 MHz, CDCl,)
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Appendix 41D: HREIMS, IR and UV spectra of compound 41
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ABSTRACT ARTICLE HISTORY
A new isoflavone, 4-prenyloxyvigvexin A (1) and a new pterocarpan, Received 24 December 2017
(6aR,11aR)-3,8-dimethoxybitucarpin B (2) were isolated from the leaves ~ Accepted 4 April 2018

of Lonchocarpus bussei and the stem bark of Lonchocarpus eriocalyx,

respectively. The extract of L. bussei also gave four known isoflavones, f:ntxvog;::z busser
maximaisoflavone H, 7,2'-dimethoxy-3',4'-methylenedioxyisoflavone, Lonchocarpus eriocalyx;
6,7,3-trimethoxy-4',5'-methylenedioxyisoflavone, durmillone; a Leguminosae; isoflavone;
chalcone, 4-hydroxylonchocarpin; a geranylated phenylpropanol, pterocarpan; cytotoxicity

colenemol; and two known pterocarpans, (6aR,11aR)-maackiain and
(6aR,11aR)-edunol. (6aR,11aR)-Edunol was also isolated from the stem
bark of L. eriocalyx. The structures of the isolated compounds were
elucidated by spectroscopy. The cytotoxicity of the compounds was
tested by resazurin assay using drug-sensitive and multidrug-resistant
cancer cell lines. Significant antiproliferative effects with IC,; values
below 10 uM were observed for the isoflavones 6,7,3-trimethoxy-4',5'-
methylenedioxyisoflavone and durmillone against leukemia CCRF-
CEM cells; for the chalcone, 4-hydroxylonchocarpin and durmillone
against its resistant counterpart CEM/ADRS5000 cells; as well as for
durmillone against the resistant breast adenocarcinoma MDA-
MB231/BCRP cells and resistant gliobastoma U87MG.AEGFR cells.
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ARTICLEINFO ABSTRACT

Keywords: Chromatographic separation of the extract of the roots of Dorstenia kameruniana (family Moraceae) led to the
Dorstenia kameruniana isolation of three new benzylbenzofuran derivatives, 2-(p-hydroxybenzyl)benzofuran-6-o0l (1), 2-(p-hydro-
Moraceae xybenzyl)-7-methoxybenzofuran-6-ol (2) and 2-(p-hydroxy)-3-(3-methylbut-2-en-1-yl)benzyl)benzofuran-6-ol
Eﬁ::::::z;:x“ (3) (named dorsmerunin A, B and C, respectively), along with the known furanocoumarin, bergapten (4). The
- twigs of Dorstenia kameruniana also produced compounds 1-4 as well as the known chalcone licoagrochalcone A
Cytotoxicity (5). The structures were elucidated by NMR spectroscopy and mass spectrometry. The isolated compounds

displayed cytotoxicity against the sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells,
where compounds 4 and 5 had the highest activities (ICs values of 7.17 uM and 5.16 uM, respectively) against
CCRF-CEM leukemia cells. Compound 5 also showed cytotoxicity against 7 sensitive or drug-resistant solid
tumor cell lines (breast carcinoma, colon carcinoma, glioblastoma), with ICs, below 50 M, whilst 4 showed

selective activity.

1. Introduction

The genus Dorstenia (family Moraceae) comprises about 170 species
[1] and is distributed in tropical Africa, the Middle East, central and
southern America [2,3]. In East Africa, 28 Dorstenia species have been
recorded, of which 13 are found in Kenya [4]. The genus Dorstenia is a
rich source of heterocyclic compounds and has long been of interest as a
potential source of biologically active metabolites [5]. Some of the
Dorstenia species are used in folk medicine for the treatment of different
diseases. In Cameroon, the leaves of Dorstenia psilurus are used to treat
cough, stomach pain and headache [6,7]. In the northern part of
Ethiopia, the roots of Dorstenia barnimiana are used to treat leprosy,
liver disease and to remove intestinal worms [8]. Previous phyto-
chemical investigations on this genus led to the isolation of prenylated
chalcones and flavonoids [7,9], furanocoumarins [10-12], styrenes
[13], benzylbenzofurans [11,14] and benzofurans [6,11,13].

2. Results and discussion
From the CH,Cl,/MeOH (1:1) extract of the roots of Dorstenia

* Corresponding author at: 55128, Mainz, Germany.
“* Corresponding author at: 30197-00100, Nairobi, Kenya.
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kameruniana, three new benzylbenzofuran derivatives (1-3, Fig. 1) and
the known furanocoumarin bergapten (4) [12] were isolated. Com-
pounds 1-4 were also isolated from the twigs of Dorstenia kameruniana
along with the known chalcone licoagrochalcone A (5) [15].
Compound 1 was obtained as a brown gum. HREIMS showed a
molecular ion peak at m/z 240.0779, which together with NMR data
(Table 1, Figs. $1-S7) allowed the assignment of the molecular formula
CisH1205. The UV (Amax 250, 258 and 287 nm), IR (Section 3.4) and
NMR data (Table 1) indicated that the compound is aromatic. That this
compound is a b 1b furan derivative [11,14], was established
from the NMR spectra (Table 1): 8y 6.33 for H-3; 8. 158.7 for C-2,
104.1 for C-3 (for the furan ring), and 8 7.29 (d, J = 8.3 Hz), 6.74 (dd,
J = 8.3, 2.1 Hz) and 6.87 (d, J = 1.8 Hz) assigned to H-4, H-5 and H-7,
respectively, for ring B protons, which is substituted with a hydroxy
group at C-6 (Vmax at 3187 cm™" for hydroxy band; 8 156.4 for C-6).
The identity of ring B was confirmed from the HMBC spectrum (Fig. 2)
where the proton signals at 8y 7.29, 6.74 and 6.87 showed HMBC
correlation with the oxygenated carbon signal at §; 156.4 (C-6). The
methylene protons at 8y 3.97 (s) exhibited HMBC cross peak with the
signals at 8; 158.7 (C-2), 8¢ 104.1 (C-3) and 8¢ 131.4 (C-3") which was
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ARTICLE INFO ABSTRACT

Keywords: Background: While incidences of cancer are continuously increasing, drug resistance of malignant cells is ob-

Apoptosis served towards almost all pharmaceuticals. Several isoflavonoids and flavonoids are known for their cytotoxicity

Cancer towards various cancer cells.

Z";”f,"""”" Karkit Purpose: The aim of this study was to determine the cytotoxicity of isoflavones: osajin (1), 5,7-dihydroxy-4'-
oflavone

methoxy-6,8-diprenylisoflavone (2) and biflavonoids: chamaejasmin (3), 7,7”-di-O-methylchamaejasmin (4) and
campylospermone A (5), a dimeric chromene [diphysin(6)] and an ester of ferullic acid with long alkyl chain
[erythrinasinate (7)] isolated from the stem bark and roots of the Kenyan medicinal plant, Ormocarpum kirkii.
The mode of action of compounds 2 and 4 was further investigated.

Methods: The cytotoxicity of compounds was determined based on the resazurin reduction assay. Caspases ac-
tivation was evaluated using the caspase-Glo assay. Flow cytometry was used to analyze the cell cycle (pro-
podium iodide (PI) staining), apoptosis (annexin V/PI staining), mitochondrial membrane potential (MMP) (JC-
1) and reactive oxygen species (ROS) (H,DCFH-DA). CCRF-CEM leukemia cells were used as model cells for
mechanistic studies.

Results: Compounds 1, 2 and 4 displayed 1Cs, values below 20 uM towards CCRF-CEM and CEM/ADR5000
leukemia cells, and were further tested towards a panel of 7 carcinoma cells. The ICs, values of the compounds
against carcinoma cells varied from 16.90 uM (in resistant US87MG.AEGFR glioblastoma cells) to 48.67 uM
(against HepG2 hepatocarcinoma cells) for 1, from 7.85 uM (in U87MG.AEGFR cells) to 14.44 uM (in resistant
MDA-MB231/BCRP breast adenocarcinoma cells) for 2, from 4.96 uM (towards U87MG.AEGFRcells) to 7.76 pM
(against MDA-MB231/BCRP cells) for 4, and from 0.07 pM (against MDA-MB231 cells) to 2.15uM (against
HepG2 cells) for doxorubicin. Compounds 2 and 4 induced apoptosis in CCRF-CEM cells mediated by MMP
alteration and increased ROS production.

Conclusion: The present report indi that isofl and bifl ids from Or rpum kirkii are cytotoxic
compounds with the potential of being exploited in cancer chemotherapy. Compounds 2 and 4 deserve further
studies to develop new anticancer drugs to fight sensitive and resistant cancer cell lines.

Biflavonoid
Multi-drug resistance

Abbreviations: 1, osajin; 2, 5,7-dihydroxy-4"-methoxy-6,8-diprenylisoflavone; 3, chamaejasmin; 4, 7,7"-di-O-methylchamaejasmin; 5, campylospermone A, 6, di-
physin; 7, erythrinasinate; ABC, ATP-binding cassette; BCRP, breast cancer resistance protein; BNIP-3, BCL2 Interacting Protein 3; DMSO, dimethylsulfoxide; D.R.,
resistance; EGFR, epidermal growth factor receptor; FITC, flourescein isothiocynate; H,0,, Hydrogen peroxide; H2DCFH-DA, 27,7 -dichlorodihydrofluoresceine
diacetate; JC-1, 5,5',6,6"-tetrachloro-1,17,3,3"-tetraethylbenzimidazolylcarbocyanine iodide; 1Cso, 50% inhibitory concentration; MDR, multidrug resistance; MMP,
mitochondrial membrane potential; PARP-1, poly (ADP-ribose) polymerase 1; P-gp, P-glycoprotein; PI, propidium iodide; RIPK-1, receptor-interacting serine/
threonine-protein Kinase 1; ROS, reactive oxygen species
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