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Abstract

Unemployment is a worldwide problem that affects not only the unemployed but also their
family with respect to income, health and mortality. This work combines the theory of
Approximation and Numerical linear algebra tools especially Singular Value Decomposition
and least squares problems. It shows the limitations of least squares method in trend
estimation of time series applied to unemployment rates data in Kenya. This makes
Singular Spectrum Analysis the best method in predicting the rate of unemployment in
Kenya.
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INTRODUCTION

Singular value decomposition

Matrix decomposition, also known as matrix factorization, involves describing a given
matrix using its constituent elements.

All matrices have an SVD, making it more stable than other methods, such as the eigende-
composition. It is often applied in compressing, denoising and data reduction.

Time series

Time series insures information about Socioeconomic, physical or biological that produced
it. The main objective of time series analysis depends on pattern of time series, to deter-
mine some of main properties, to understand how time series has behaved in the past and
to understand and predict future behavior. There are many well known decomposition
methods which are used in time series analysis.

The main SSA method basically contains two stages: reconstruction and decomposition
stages and both stages contain two separate steps. The decomposition stage consists:
embedding and singular value decomposition steps; then the reconstruction stage consists
of grouping and diagonal averaging steps [26].

Structure of the SSA algorithm is as follows. First,a one dimensional time arrangement
is changed over into a higher measurement framework called the trajectory matrix. The
dimension of the trajectory matrix is called the window length. SVD is then applied
to the trajectory matrix and eigenvalues and eigenvectors are found. The next step is
grouping which includes parting the elementary matrices in various groups and summing
the matrices in each of the grouping. To get the reconstructed components, we take the
diagonal averaging along the diagonals of each group, then by combining them into a one
dimensional time series, we obtain the approximated time series [26].

An important advantage of SSA is that after reconstruction of the time series it allows the
production of forecast for the reconstructed components which is known as SSA forecast-
ing algorithm. The purpose of this work is to understand SVD, least squares method, study
and understand SSA method, SSA forecasting algorithm and make numerical experiments
on unemployment data.

Problem statement and research objectives

Lining up with the exploration inspirations, the issue explanation of this research is that
in a nation with nearly 55 million people living in it like Kenya, having the largest citizens
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unemployed is a huge problem. According to the latest research 42.01 percent of the
population is declared unemployed. Despite of the fact that employment in Kenya has
been growing fast for the past decade, still, many Kenyans are jobless.

This study aims at understanding least squares, SVD and the basic algorithm of SSA then
later predict on unemployment rate in Kenya from 2018 to 2028 on annually basis.

1.3.1 Main objective
To study and predict the future of unemployment rates in Kenya.

1.3.2 Specific objectives

« To study the basic algorithm of SSA.

+ To study numerical linear algebra especially SVD and least squares problems.

Literature review

Historical background of SVD

The differential geometers, developed singular value decomposition, where they wished to
decide if a genuine bi-linear structure could be made equivalent to another by autonomous
symmetrical changes of the two spaces it follows up on. E. Beltrami and C. Jordan
discovered separately, in (1873) and (1874) respectively, that the singular values of the
bi-linear forms, spoken to as a matrix, structure a total arrangement of invariants for
bi-linear frames under symmetrical substitutions.

In (1889) Joseph Sylvester discovered the singular value decomposition of real square
matrices. Sylvester called singular values of a matrix, the canonical multipliers.
Autonne discovered the singular value decomposition in (1915) who arrived at it via polar
decomposition. Gale Young et al in (1936), did the first proof of SVD for rectangular
and complex matrices, they show it as speculation of Principal axis change for Hermitian
matrices. Schmidt characterized an analog of singular values for integral operators; it
seems he was unaware of the parallel work on singular values of finite matrices in (1907).
This theory was further developed by Emile Picard in (1910), who called the numbers o}
singular values [4]. Practical method for computing the SVD date back to Kogbetliantz in
(1954), (1955) and Hestenes in (1958) resembling closely the Jacobi eigenvalue algorithm,
which uses plane rotation. However this were replaced by method of Gene Golub and
Willian Kahan in (1965) which uses Householders reflections. In (1970) Golub and
Christian published a variant of Golub/Kahan algorithm still one most used today.
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History of least squares

The least squares method emerged out of the fields of space science and geodesy as
researchers and mathematicians looked to offer answers for the difficulties confronting
Earths seas during the age of exploration.

The advancement of foundation can be assessed to demonstrate when the arrangement
with least blunder has been accomplished. Laplace attempted to give a numerical formu-
lation of probability density of mistakes of estimation. Laplace utilized symmetric two
sided exponential dispersion and utilized whole of total deviation as mistake of estimation.
The primary clear strategy for least squares was distributed by Legendre in (1805). This
an arithmetical method for fitting straight conditions to data.

History of singular spectrum analysis

Singular spectrum analysis was developed simultaneously and independently in (1986)
by Broomhead, King and Fraedrich. Broomhead and King applied singular spectrum
analysis to the issues of dynamical systems theory and the singular spectrum approach
to the method of delays was suggested to remove some of the limitations and ambiguities
experienced with the method of delays. By combining SVD and embedding theorems,
they laid the mathematical basis used for SSA.

They also investigated some preliminary artificial time arrangement to outline [8] the
advantages of using singular spectrum analysis as a statistical tool for qualitative analysis
and for the removal of especially white noise from time series. Fraedrich (1986) utilized
watched climate and atmosphere factors to give data to depictions of the properties of
the attractors of these dynamical frameworks and to acquire a gauge of the most modest
number of factors important to clarify the framework elements. Further groundbreaking
work in the methodological development of the singular spectrum analysis toolkit and
substantial research on the possibilities of the technique, was done by Robert Vautard
and Michael Ghil. Robert and Michael (1989) extended the previous research done by
Broomhead and King (1986) and refined certain aspects of the application.

After applying SSA to various paleoclimatic time series, they found the technique to be
very flexible and incisive. They concluded that, even though SSA is related to ordinary
spectral analysis, it is considerably more robust to the nonstationarities that can be found
in climatic records.

Robert et al. (1992) distinguish among three major cases encountered when performing
data analysis. The first is where the evolution equations governing the data are known and
these equations are relatively insensitive to the initial values of the system. The second
type of data analysis occurs when the governing equations are also known, but long-term
prediction of the data is impossible due to the sensitivity of the system for the initial
values. The last class of data analysis is where the evolution equations for the system
are completely unknown and often only noisy measurements of one of the variables in a
high-dimensional system are available.




It is especially with respect to this last class of data that Robert et al. (1992) identified
the potential of SSA. Even though the work focused on single-channel SSA, they already
saw the possibilities of multi-channel SSA to account for the cross-correlation between
several variables that were measured simultaneously. The outline of the thesis is per the
following:

Chapter 2: chapter 2 discusses the SVD and its overview.

Chapter 3:
Chapter 3 discusses least squares and it’s overview. Then the link SVD and least squares
and finally its application to Unemployment rate data in Kenya from 1991 to 2018.

Chapter 4:

Chapter 4 discusses the basic algorithm of singular spectrum analysis. Chapter 5 is about
the application of SSA to unemployment rate data of Kenya. Finally there is conclusion
and recommendation for future work.




2 THE SINGULAR VALUE DECOMPOSITION

The SVD is given by;

Artr rrpare BENT S sad &y Sz ey 2 0 Ao sansadar
" T = o
| | by aL
S — I
“L = .
Figure 1. SVD.

where A € R™*" then U € R™*" and V € R"" are symmetrical matrices and £ € R"™*"
is a matrix whose diagonal elements satisfy 6; > 63 > ... > 6, > 0 and with non diagonal
entries being zeros

o ... 0

0 o
) ?

0 o,

The ojs are special and known as the singular values of A. The eigenvectors of ma-
trix AAT being column vectors of U. The eigenvectors of the matrix A”A being column
vectors of V.

Theorem 2.0.1. (singular value decomposition)

If matrix A € R™*" then A can be decomposed into singular values.

Proof. Let ATA be a symmetric matrix. Then all its eigenvalues are symmetrical and
real it has an diagonalizing (symmetrical) matrix V, it’s eigenvalues are real and positive.
Let A be an eigenvalue of AT A and x be eigenvector associated with A, then

lAx|)? = x"AT Ax




= AxTx
= Allx|[*.

Hence ,
_JlAx|P
x> =

We expect that the columns of V are arranged in the descending order

A

M2 .. 2.
The singular values of matrix A are given by
O; = \/H_'hi: l'."".n'

O

The rank of matrix A is denoted by r. The matrix AT A will also have rank r. Since ATA is
symmetric, its rank equals the number of nonzero eigenvalues. Thus

M>h>... > M

and

/1;—{.1 == }L,-..} 2= H’H’ =0.

The same relation holds for the singular values

and condition numbers, singular values and matrix norms
Op41 = Op42 =0, =0.

Getting the number of nonzero singular values of £, gives us the rank of matrix A by the
use SVD. Let

Vi=(Viyeyvr),
Vo = (Vrglysees¥n)
and
op 0 0
I=10 oo O
0 0 o
thus

LeR™".




2.1

.

Existence of SVD

Supposed to prove that any A € R"*" with rank (A) = R can be written as A = ULV,
We can write: N

ATA = E /lnl’nv,]:a (2)

n=I

since ATA is symmetric positive semi-definite, where the v, are orthonormal and the
A, are real and non-negative. Since rank (A) = R, we also have rank (AT A)=R and so
Al,...,Ag are strictly positive .
Set u,, = \/%Av,,,, form=1,...,R,U = [uy,...,ug|,
where 1, are orthonormal, as

l T.T l,” T ]m == !0;
(g 1tg) = ViA V= —VgVm =14 : (3)
m }‘d“l{. m 24( m 01}‘” S /
These u,, are also eigenvectors of AAT, as
1 i
AAT“M: = \/TAA?AV:H =V A’HJ‘AVJ'H = Amltp;. (4)
m
Now let tpy1,...,u, are an orthobasis for full space of uT concating these sets into
uy,...,uy forms an orthobasis for all of R™.
Properties of SVD
Assume
A=UzvT, (5)

The following are the five properties of ULV ;

1. The particular estimations of a matrix A are equivalent to the square foundations of
the eigenvalues A1, 12,. .., 4, of the matrix ATA (o; = V/4;).

2. The number of singular values of any matrix A gives the rank of that matrix.
3. The largest singular values is equal to the euclidean norm A ||Al|> = S..

4. The main r sections of the matrix U structure orthonormal basis for the space projected
by the columns of matrix A.

5. The primary r segments of the matrix V structure orthonormal basis for the space
anticipated by the rows of matrix A.




2.3 Matrix norms and SVD

The SVD gives a method for getting the 2- norm of a matrix say A, since || A || = /0.
I

o_]-.

The SVD gives a method for getting the Frobenius norm. If K is a matrix then

Suppose A is invertible, then can say that ||A|2 =

||A||:'f = trace(ATA) = trace(AAT).

Lemma 2.3.1. .
Suppose V € R"*" symmetrical matrix then U is an m x m symmetrical matrix and

[UAV |7 = ||A]I7-

Proof. proof of lemma 2.3.1
|UA||% = trace((UA)T (UA)

= trace(ATUT)UA
=trace(ATIA)
=A"A
= ||All7-

The Frobenius norm is fixed under left augmentation by a symmetrical matrix.
AV ||% = trace((AV)(AV)T)

= trace(AV)(VTAT)
= traceAAT
= |lAllz-

and
|RA||Z = trace(AT RT RA)

= trace(ATA)
2
= [lAl[#-
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Here we have used the symmetrical nature of R
R'TR=RR" =1
and the cyclic nature of the trace

trace(XYZ) = trace(ZXY),

it also satisfies
IATAl|F = ||AAT||F < ||AlIE

1A +BIF = |AlIF+|IBIF +2 < A,B >F,
where < A, B > is the Frobenius inner products. Since ||A||2 = \/01 if A is invertible then

All2 = \/; The SVD gives a way of computing the Frobenius norm. Given A is a general
matrix
|A||7 = trace(AT A) = trace(AAT).

Lemma 2.3.2. IfU € R"*™ andV € R™" are symmetrical matrices then |[UAV ||% = ||A||%.

Proof.
||UA||:'f = trace((UA)T (UA))

= trace(ATUT)(UA)
= trace(ATIA)
= traceA” A
= ||AlIZ.
The Frobenius norm is fixed under left augmentation by an symmetrical matrix.
AV ||} = trace((aV)T (AV))
= trace(AV)(VTAT)
= trace(ATA)
= [Al-
The Frobenius norm is fixed under right multiplication by an symmetrical matrix. O

Theorem 2.3.3.

ral—

jallr = (L.03) "
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24

Proof. By SVD U and V are symmetrical matrices such that

r
lAllF = IUZV" ||F
IZ]|£-
From the above lemma, the (just) non-zero entries are L are the singular values 6}, 02,..., 0,
)
o §
Mmz(gq).
J:

Spectral decomposition

The spectral theorem provides a canonical decomposition, called the spectral decomposi-
tion, eigenvalue decomposition, or eigendecomposition of the underlying vector space on
which the operator acts.

Theorem 2.4.1. Any n square matrix A can be characterized by a biorthogonal system of
left and right eigenvectors which form the matrices P and Q.

Proof. QPT =PQ" =1.

QTAP = diag [A1, 42, . .., M),

where A; are eigenvalues of A.

A has number of linearly independent eigenvectors xy, ..., x, with the corresponding eigen-
vectors

Pi= [y 5%

then we have

AP = Pdfag[lhlg,‘.‘,l”l. (6)

Therefore, taking transpose in both sides and rearranging, we get
AT(PTY T = (PT) \diag[A1, 2a, . .., Au).

The eigenvectors of A’ can, therefore, be selected as the columns of (PT)~! which we
denote by Q = (P")~'. Hence, we have a bi-orthogonal system of left and right singular
vectors forming respectively the matrices Q and P and satisfying

o'P=1




12

2.5

and in the view of (6),

OTAP = diag(M, A2y .. s Mn)-

Therefore we write the theorem as

A =Pdiag(M, Az, ..., )07 = PD1QT +,PD20" +.. .+ APDOT = 1101+ 402+ ...+ A0 O,
)

th

where D; = a diagonal matrix with diagonals equal to zero but for i'"" which is 1,

Qi = PD;Q".

Low rank approximation

The rank of a matrix is given by singular value decomposition, which is the quantity of
nonzero singular values of matrix A. If

Amxn = U.iuxrzrx: r)(n

then it’s rank is r = min(m,n),

(o] 0 v—ir
(03] v;
A=[ujuy...u,l “1;
T
0 or| |V,
;
A= ZGjLEjV‘?‘,
i=1
where uy,us,...,uy and vy, v, ..., v, are columns of Uy, and V., respectively. The

matrix A can be represented by the sum of external products of vectors. Using SVD we
can approximate a matrix A by low rank approximation The rank k approximation (also
called the truncated or partial SVD) of A, A; where k < r is given by zeroing out the r-k
trailing singular values of A, that is

Ap = Umxk(zﬂ Rxlvkxn Z 0-:”:
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2.6

.
Vi
vy
Here Xy = diag(61,03,...,01), Upxx = U1, 42,.. ., 4 and V&” = | 7| .Thenit’s seen that
Vi
A= UmkakamA = (E ”!'”;T)A (8)
i=1
and
T . T
Ak = AVl =AY viv]), ©)
i=1

i.e Ay is the projection of the A onto the space spread over by the top k singular vectors
of A. The following theorem states that the above approximation is the best rank &
approximation in both Frobenius and spectral norm.

Theorem 2.5.1. Let Ay be the rank -k approximation of A achieved by SVD truncation as
above. Then Ay is the closest rank-k matrix to A, ie.

14— Agllr < 1A= b]lr,

where B,s are rank-k matrices. The minimal error is given by the Euclidean norm of the
singular values that have been in the process

||A—Ai||F = «1/cf+| +...4+ 02,

where ||.||F is Frobenius norm. SVD also gives the best low rank approximation in spectral
norm:

|A—Aklla= min ||A—B|]»=0ks1.
rank(B)=k

Fundamental subspaces

The four central subspaces of a matrix are given by SVD.

1. The linear subspace is the range of matrix A. R(A) = y|y = {Ax for arbitrary x},
assuming that A has rank r
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2. Then utilizing the external product structure we have

,

= An = vl

y=Ax= E Ojujv;x
j=1

T
= Z(ijjx)”,f
r
= Z ().‘.'juj.
Jj=1

3. The linear subspace is the null-space of the matrix A. N(A) = {x|Ax = 0}, since

y=Ax
=X_ ojuvix,
then any vector
—wn s
=E By

is the null space.

AZ = (i GJ.'HJ'V}-)( i ﬁjvj) =0.

2.7 Moore Penrose inverse

A generalization of the inverse of a matrix which is defined for any matrix and its unique.
Special properties of the mp-inverse.

1. A" provides atleast the least squares solution.
= Eliminates the influence of error orthogonal to the range of A.

2. A" has minimum spectral norm among all left inverse of A.
= Recovers x but doesn’t blow up the noise.

2.7.1 Definition and characterizations

We consider the case of A € R™*". Every A € R™*" has a pseudoinverse denoted by
A" € R™™ is unique.

Theorem 2.7.1. let A € Rm x n then J = A" if and only if

(P1) AJA = A

(P2) JAT = J

(P3) (ANT =AJ
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(P4) (JA)T =JA

where A" always exists and its unique and matrix J purpots to be the pseudoinverse.

some proofs

AlfAa=uvzvTvsivTuzv?
=yzziv?
=uzv’
=A.

(AATA)T = (uzvTveiuhT
= (UextyT)?
=y(EzhHfuT

=yrzty?
=uxvTvziy?
=AAT.

Limit definition of the pseudoinverse.

Theorem 2.7.2. Let A € R™*", then
A" = lim(ATA+)8%1) AT
6—0

= lim AT (AAT + 821)~ 1.
80

AT =AT(AAT)~1 :if Ais onto i.e has linearly independent rows (A is right invertible). A" =
(ATA)~'AT : if A is one to one i.e has linearly independent columns (A is left invertible).

For any scalar a

(10)

. a ' a#0
g =
0,a=0
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2.7.2 Properties

Let A € R™" and suppose U € R"*", V € R"*" are symmetrical. Then
(wAv) =vTATUT,

(AN =A.

(ATA)" = (AT(AT)T,(AAT)* = (aT)*A™.

R(A™) = R(AT) = R(ATA) = R(ATA).

N(AT) = N(AAT) = N((4A)") = N(AAT) = N(AT).

If A is normal then AKAT = ATAK for all K > 0 and (AX)T = (AT)X for all K > 0,4 € R™*"
is normal if AAT = ATA.

Theorem 2.7.3. Forall A € R"™"

1. AT = (ATA)TAT = AT (AAT)T
) {AT)% — (A?)T_
Proof.
A = éirr}}(AAT—I—ﬁzf)_'
= lim [AT(AAT + 821~ 1)T
8—0
= [lim AT (AAT + 821717
80
= (AN,
O

Combining the above two theorems we can compute the Moore-penrose inverse of any
matrix (AAT and ATA) are symmetric SVD of A

A=UzvVT,

AT =viyT,

.St o
rf =

0 0|
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2.8

2.9

Perturbation analysis

Let B = A+ E be the perturbated matrix. The perturbation in A" becomes unbounded
when the perturbation ||E||, — 0, for any change in the rank. This makes the theory

c 0
muddled. Unimportant model of this is A(g) = , for which rank(A) =2, if € # 0,

0 ¢
but rank (A(0)) =1l and ||(A+E) —AT|,=e| ! = ﬂflﬂ: The condition

rank(A) = rank(B) = rank(Pg(s)BPg(an)) (1)

characterizes the perturbations for which the Moore penrose-inverse is well behaved. If
the equation (11) holds then the matrix B is an acute Perturbation of A.

Theorem 2.8.1. If rank (A+E) = rank (A)=r and 1 = ||A"||2||E||2 < 1, then ||(A+E)T||» <
AT .

Proof. i

1(A+E)Tl2
= 0;(A+E) > 0,(A) - ||E[|]2

1
=
|AT]]2 — ||E]|2

0.
Perturbation theory of SVD
Let A be an n x m matrix. Then
Utav =
U and V are unitary matrices. Let A = A + E be a perturbation of A and let

o )3
UTAV =
0

be singular value decomposition of A [13]. A and A are compared using perturbation
bound and perturbation expansion. A perturbation bound gives an upper bound on the
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2.10

difference between perturbed quantity and its original; say between o; and ; in terms
of a norm of E. A perturbation expansion sets to approximate &; as a function of E. First
order perturbation expansion expresses G; in the form

&i = oi +¥(E)O(|[E| ),

where ¥ is a linear function.
By definition,
IE|l, = lim max||Ex]|,
lla=1

[lxll2=
the spectral norm is written as ||.||>» Both the spectral and Frobenius norms are unitary
fixed in that ||[U”EU|| = ||E|| for all the unitary matrices U and V; where the spectral
norm of E is the biggest singular value of E and the sum of squares of the singular values
of E is the square of the Frobenious norm.

2.9.1 Singular values perturbation bounds

Weyl and Mirsky are behind the basic perturbation bounds for the singular values of a
matrix

Theorem 2.9.1.

» No singular values can move than the norm of pertubation

|Gi — aif < [[E|l2-

\/E(8)) — o7 < ||E||F).

Outer product form and blocked matrices of SVD

In X, the outer columns and rows of matrix A can be eliminated if matrix product A = ULV”
is expressed using sub-matrices as

v
O]

vy

: 0 .

A=lur.. ug|ugsy ...y —

Ok

Vi1

\ 0 0} .

T

\ Yn
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Multiplying the sub-matrices we have

T
O] l’l

A= (ul ...uk) e (“k{-l ”m) (0)

T T
O} l’k vy

.
Vi+1

The second part vanishes since only the first k of the u; and v; make contributions to
matrix A.

O] l"'lr
A=(uy...ug)

Oy 1’}:

We have 2 rectangular matrices u; and v; (m x k) and (k x n) respectively. Then the
diagonal matrix is square (k x k) which is alternative formulation of SVD.

Proposition 2.10.1. Let k be the rank of matrix A of dimension (m x n) be communicated
in the structure A = ULV given U € R™*, L € R¥K diagonal matrix with positive entries
andV € R™* matrix.

In matrix product rows are multiplied by columns

2
Wz = Ew;z,;-r )
i=1

where w; are columns of W and Z;.T are rows of Z. Let

Ol
W= (uy...uy) = (o1u1 ... Opty)
Ok
Vi
Z=] :
r
Vi

With A = WZ expressed as outer product expansion

k
A= Z J,-u,-v,r,
i=1
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thus
k
AX = E Ol ,-v,r

i=1
k
AX¥ = Z v}ri"O',-u;,
i=1

where u; is a vector formed as a result of linear combination of AX.
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3.1

LEAST SQUARE PROBLEMS

Linear least squares problems and their normal equations

Linear least squares problems occurs when comprehending linear systems.

When reducing norms of the residual vector, we may locate an important estimated
solutions for overdetermined solutions which has no solutions.

Given a matrix A € R"*", where n < m and b € R", we are searching for ¥ € R” for which
the norm of the residual r is reduced i.e.

| 7 lI=Il 6—A%]|.

When we choose 2— norm, we simplify the calculation. The square of the residual vector
length is thus reduced

m

lri3=r+n+..+5=Yrl
i=1

The minimum is accomplished by ¥ € R", we note that E = {b — A% | x € R"} is closed, a
non empty and convex subset of R”.

E has a unique element with the least norm hence 3 an ¥ € R” such that || b — A% ||, is
reduced. From the reducing problem

Iri3=ri+id+..+r%

emerges the name least squares method. The following theorem characterizes the least
squares solution.

Theorem 3.1.1. Least square solution
Let L= {% € R"with || b— A% ||} — min be the set of solutions and assume r, = b — A% be
the residual for a particular X. Then

YeL<=ATr, =0« r. LR(A). (12)

where the columns of A are the basis of the subspace R(A)
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Proof. We start by demonstrating the underlying identicalness.
“ <« Let ATr, = 0 and z € R" be an arbitrary vector, it pursues that

r,=b—Az=b—AX+A(x—2)

thus
r: =rx+A(x—z).

Now

7 3= e I +2(x = 2) " ATt | A(x = 2) |13 -

But AT r, = 0 and therefore || . |[2>]| 7, || since this holds for z then ¥ € L.

“ = ” we demonstrate this by logical inconsistency, let AT r, = z # 0 we consider u = x+ £z
with & >0
ry=by—Au=b—AX—€eAz=r,— €Az

Now
I 13=I re 13 —2€27ATro+ €7 | AZ |13 -
Because
Arrx =z
we obtain

2 2 2, .2 2
Fru 3=l re Iz —2¢ [ Z ||z +€° [ AZ |3

for adequate small € we can acquire || r, ||%<|| e ||% . Since in this case X can’t be in the set
of solutions, we reason this is an inconsistency. Consequently the suspicions was not valid
i.e. we must have A7 r, = 0, this demonstrates the underlying comparability in condition
equation(12).

O

Gauss-markoff theorem expresses the least squares solutions which has an important
statistical property. By linear relation let the b of perceptions be identified with an obscure
parameter X

AX=Db+e¢,

where A € R"™*" is a known matrix and € is a vector of random errors.
Theorem 3.1.2. Gauss markoff Consider the standard linear model
AX=Db+e.

Then the best linear unbiased estimator of any linear function CT X is the least square solution
of || AX— b ||3— min.
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3.2

The equation (12) can be utilized to decide the least square arrangement structure A7 r, =0
where, AT (b — A¥) = 0 and the Gauss normal equations can be acquired

ATAx = ATh. (13)

To approximate b, we need to get the linear combination of columns of A. The range of A
is the spanned space by columns of A. The hyperplane in R™ is R(A) and b doesn’t lie in
this hyperplane. Thus reducing || b— A% || is similar to reducing the residual vector length
r and thus be R(A) has to be symmetrical to r. The normal equation (13) concentrate data
since ¥ = AT A is a small n x n matrix whereas A is m x n. The matrix Y is symmetric and
it’s rank (A) = n, then it is also positive definite. Cholesky decomposition is the common
way of solving the normal equations.

1. From Y = ATA (we process just the upper triangle since ¥ is symmetric then ¢ =ATh).

2. Since R is an upper triangular matrix, then ¥ = R” R (cholesky decomposition )

3. The arrangement by forward substitution RTb = ¢ and back substitution R¥ = b.

The methods for computing the least squares solution all use orthogonal matrices (i.e
matrices Y for which Y7Y = I).

Using Gaussian elimination method to solve linear system of the form AX = b with equal
equations and unknowns, we diminish the framework to triangular framework structure
utilizing the way that proportionate frameworks have similar arrangements.

A% = b <= YA% = BYb if Y is non singular. Confine ourselves to the class of symmetrical
matrices AY ~ b <= bAY ~ BYD if Y is symmetrical then the least squares problems
remains equivalent. Since r = b—AXand Yr = bY, YAR have the same length

N Yr3= T r)=rTYTYr=rTr=|r|3. (14)

QR Decomposition.

Theorem 3.2.1. Let A be m by n with m > n. Suppose that A has full column rank. Then
there exists a unique m by n orthogonal matrix Q (QT Q = I,) and a unique n by n upper
triangular matrix R with positive diagonals such that A = QR.
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3.3

Proof. Algorithm
procedure(Gramschmidt)
The column vectors of matrix A

then

A=g|g|...|&n
) = g1
i
€] = ——
| 2 ||

u = g2 —(g2.€1)e

us
e = ——
|| uz ||

U1 = 8k+1— (8rt1-€1)€1 - .- (8k+1-€x)ek

The resulting QR factorization is;

Up+1
| g1 ||

Ch1 =

AZ[(‘:’I |g2|'-'|8n][€l |€2|--'|€nl

gi1€1  g€3 8n€l
0 ge gne2
0 0 En€p

The classical Gram-Schmidt is numerically unstable.

Condition number and perturbation theory for least squares

problems

The condition number of a matrix A is characterized by SVD. If singular values satisfy;
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3.4

then the rank of A is R. where p = min(m,n). Then

m@:g

defines the condition number

Theorem 3.3.1. Assume that the matrix A € R™*"", where m > n be the solution of the least
squares problem min X||AX — b||>. Let 6A and 8b be perturbations such that

=K&g < 1

Al
The perturbated matrix A+ 8A has full rank and the perturbation of the solution ||8x||2 <
5 €allxlla) + e + enr e

where r = b — AX is the residual.

The number k determines the condition of the Least squares, the equality becomes the
linear system of equation if m = n, where the residual r is equal to zero.

For the case of over-determined system , the residual is usually not equal to zero where
the conditioning depends on k2. This maybe significant if the norm of the residual is
large.

SVD and Least squares problems

The tool for analyzing and solving linear least squares problems is SVD. It also plays a key
role in algorithms for approximating a given matrix with a matrix of lower rank. This is
applied in data compression.

By truncating the SVD expansion of matrix A, we obtain the best approximation of
A € C"™" by a matrix of lower rank .

3.4.1 SVD and the Moore Penrose inverse

Theorem 3.4.1. Consider the least square problem miny ||AX — b||>, where A € C"*" and
rank (A) < min(m,n). Assume that

= o2
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Uy and V) are r columns and the diagonal matrix £ > 0. Then the solution
x=viZ 'Ufp

is the unique pseudoinverse.

Proof. LetX = Vz using unitary invariance of the spectral norm, then

B-Af” = HUH(B-AVZ)”
2 2

] X1 0 (21 e Xiz1
&) 0 2 €2
¢i = UMb, i=1,2.
Minimum value is attained by the residual norm which is equal to ||c||2 for z; = El_] and
75 are arbitrary. The choice of z; = 0 reduces ||x||> = ||Vz||> = ||z]|2-
The pseudoinverse of matrix A is
. I of (Uff
Al = (V] VZ) 1 1 — V|E=Ui"r e Cmxn,
0o o \u#
The above represents the SVD of A™ and maps b to X. Can also be written as
= i Ci HY,
=) —vici=u'b.
= 0_: I3 0} ']
O

Theorem 3.4.2. [fA =€ C"*",B =€ C"™" and rank (A)=rank(B)=r, hence
(AB)" =B (BB")~'(AFA)~'A" = B'A",

Proof. A"A and BB are square matrices with rank r and therefore nonsingular. By
demonstrating that the Penrose conditions are fulfilled gives the evidence. O

An inner inverse is matrix A~! satisfying the initial Moore Penrose- inverse condition
AA~'A = A. An outer inverse is one fulfilling the second condition.

Let A~! be an inner inverse of A, then solution is ¥ = A~'h, where the system A% = b is
consistent for all b, where

x=A"1b+(1-A"'A)z,ze C"

=
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3.5

is the general solution. For any inner inverse of A,
(AA12=4A""AA" = AL
and

(A71A)2 =A"1AA"1A =474,

Thus the idempotent projectors are AA~! and A~'A. Let A € C"*" and b € C". When ¥
satisfies the normal equations A¥AX = A#D, then ||[AX — b||» is reduced. (AA~")# = AA~!
is satisfied by the generalized inverse A~! Then the orthogonal projector onto R(A) is
AA~! where A~ is a least squares inverse. If ¥ = A~'b satisfies the normal equations and
has least square solution, then we have

A7 = (AA714)" = AFAA~
[3]. Conversely, when ¥ = A~'b, ||AX — b||5 is reduced for all b € C" if A~1 € C>m.

SVD and matrix approximation

Theorem 3.5.1. Assume A € C"™"*" with singular values 6\ > ... > 6, > 0, where p =
min(m, n). Then, if S fulfills a linear subspace of C", one has that o; = maxmin||A%||>
= minmax||AX||> [4].

Theorem 3.5.2. The ordered singular values o; of A € C"*" interlace singular values o; of
the bordered matrix

A:
»

as follows
6| 2 O Z A2 2 2 a-m 2 Om 2 6-m+hm <n

61>20126>...26,_1>0,-1=6,,m>n

When A is bordered by a column, then a similar result holds.

Proof. For Hermitian matrices, the theorem is as a result of Cauchy’s interlacing
theorem. Also the eigenvalues of the leading principal minor of order n — 1 of a Hermitian
matrix B interlace those of B. Since

AH (A ) AHA AfYy
u

WA ufu
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g [AAT Ay
(A v)— JHAH H

i Vv

14

It’s seen that the singular values of A are the positive square underlying the foundations
of the eigenvalues of A#A and AA¥ [4]. O

Theorem 3.5.3. LetA € C"*" and B, = XkYkH, where X, Y € C"™**_ Then rank (Br) <k<
min m,n and
01(A—By) > 0r11(A),

ah

where i'" singular value of its argument is denoted by 6;(it) [4].

Proof. Let the right singular vectors of A be v;,i = | : n. Since k is the rank ¥ and
k < n, there is a vector v = c|v| + ...+ Vg + Ck+1Vk+1 such that ||v||% = C% + ... +cf+|
and Y#v = 0. It follows that

02 (A—By) > V(A= B ) (A—B)v=17AHAv
|L‘]|20']2—|— saa e |L‘k+||263+|.
O

Theorem 3.5.4. Let A € C"™".m > n has polar decomposition A = PH with P € C"™*"
unitary, PP = I, and H € C"™". Hermitian and positive semi-definite. H is positive definite
iff rank (A) = n and this decomposition is unique.

Proof. LetA = U, XV U; € C™ ", be the "thin" SVD and set
p=u Vvl H=vEvi.

Since VAV = I then
PH =U VvV =y zvH = A,

O

The SVD of A can help us obtain the polar decomposition as shown by the proof. Having
the polar decomposition A = PH, SVD can be constructed from spectral decomposition
H=vEVH ieA=(PV)ZVH [4].
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3.5.1 Normal equations

For n distinct points (¢,...,t,) and data (by,...,b,) € R, there exists a least squares
polynomial P, (t) = co+cit + ...+ ¢put™ of degree m which fits the data in the sense that

|7 [|l2=[| — A% ||2 (15)

is minimum, where X=(cg,c1,... .,c,,,)? is of unknown coefficients and can be determined
by use of system of normal equations and use of a Vandermonde matrix. The system of
normal equations is :

i=0 k k=1

ic; [)iri‘*""’] - ir,ﬁ'bk, (=0,1,....m
=1

or, in matrix form

&y} b;(
n+l Yo YLif ... It >
Er ZI’} zr? ZJ‘H—l €l Zb!‘q
I - i ;
: A “ el = || (16)

+1 +2 +
ZI;: ZI}? er . er mn

| Cr | _Z byt, ;:_

3.5.2 Polynomial curve fitting

Suppose we are given m distinct points (#1,...,t,) and data (by,...,b,) € R at these
points. Then 3 a unique polynomial degree n.

p(t) =co+cit+...+cp1t" " +eat" (17)

For some n < m such a polynomial is a least squares fit to the data if it minimizes the sum
of the squares of the deviation from the data

,
Y 1bi— pti)|*. (18)
i=1

This sum of squares is equal to the norm squared of the residual for the rectangular
Vandermonde system [11]

Basically to determine the coefficients cg,cy,c2,...,¢,—1,c, of equation (17) such than it
interpolates the n points

(thbl)a'-':(fn:bm)
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is to write a linear system of equations as follows

= co+cit + C21‘|2 +.. .c,,_l.i‘f_' + cntf
Hi{fg) =by = cpt+cir+ CQI% +. ‘.C”._ﬂg_l -+ C,,Ig

=

=

2 —1
P.ii('rn) =bp cot+cCilptcaty, +. .. L‘Ji—l'r_:_] = L‘,,.“::

or, in matrix form:

l 4 & &Y & 5 r -
_ co by
1 o 8 2= &
2 n—1 € b2
1 3 1 ty
. | . LR (19)
Cn—1
2 n—1 n
[ o P T
2 n—1 n L Cn - -b""—
_] rn I” o In f” i —_— ——
~ ¥ -~ X b
A

We have a system of a linear equations to solve but with more equations than unknowns.
Hence system is described as b = AX. Since A is a rectangular matrix, the MP- inverse can
be performed [4].

Using least squares estimation

= (ATA) 1A, (20)

we can obtain the coefficients.

3.5.3 Application to unemployment rates data in Kenya

The Unemployment rates data in Kenya from 1991 to 2018.

Table 1. Unemployment rates data in Kenya

T(Years) 1991 1992 1993 1994 1995 1996 1997

U.Rate | 33.9110 34.0979 34.3160 34.5469 34.7630 34.9800 35.1139
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Table 2. Unemployment rates data in Kenya

T(Years) 1998 1999

2000

2001

2002 2003 2004

U. Rate | 35.2580

353809 36.3810 37.4580 38.5509 39.6940

40.8409

Table 3. Unemployment rates data in Kenya

T(Years) 2005 2006

2007

2008

2009 2010 2011

U. Rate | 41.9819

41,9230 41.7900 41.5680 42.1730 42.0390

41.9189

Normal equations

The below equations (21) and (22) are the polynomials of degree 3 and 5 from equation

(15)

28 56.126
56.126

225.5263912 452.0896742

[ 28 56.126  112.506
56.126  112.506 225.526
112.506 225526  452.089
225.526  452.089 1785.766
452.089 1785.766 1816.77

| 1785.766 1816.770 3642.072

112.506394
112.506394 225.5263912

112.506394 225.5263912 452.0896742
1785.766069

225.526
452.089
1785.766
1816.770
3642.072
7301.363

225.5263912| |co
452.0896742| |c;
1785.766069| |c2
1816.770941] |c3

452.089
1785.766
1816.770
3642.072
7301.363
14637.483

1785.766
1816.770
3642.072
7301.363
14637.483

29345.122 |

1092.739006

2191.084116
4393.47875

8809.776316

@)

[co] [ 1092.739 ]
| | 2191.084
o| | 4393.478
3| | 8809.776
cs|  [17665.588
es|  [69984.043)

(22)

The system can be computed by Gauss elimination method or any other direct computation
to solve the linear system of equations, since the matrices formed are square matrices.
Below is the table for the order of polynomial, the coefficients value and the condition

number.
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Table 4. Unemployment rates data in Kenya

T(Years) 2012 2013 2014

2015

2016 2017

2018

U.Rate | 41.8779 41.9070 41.9580 42.0139 42.0960 42.0960 42.1030

Order of Polynomial

Coeffients

Condition number

—716.6696
376.9998
—0.0000
—0.0000

71.59 %103

39.2927
—0.0076
—0.0069
—0.0050
—0.0033
—0.0020

276.0352 % 10*

The results obtained are not significant because the matrices obtained are ill conditioned
and this is one of the limitations. The use of normal equation to solve linear systems is
the fastest technique but least accurate.

Vandermonde matrix

A logical extension to the linear regression curve fit is to use a higher- order polynomial

such as

p{t) =cot+cit+ ...+L‘”_|t"_].

A third degree or cubic polynomial fit is of the form

p(t) =cp+cCit+ Cztzr: + L‘3t3.

The fifth degree polynomial is of the form

p(t) = C0+C|t+L‘2r2+t‘3r3—|—c4t4—|—cjt5_

(23)

(24)

(5)
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The first degree polynomial is similar to linear. The below equations (26) and (27) are from

the polynomials in equations (24) and (25) respectively and similar system follows for any
polynomial from equation (23)

1
1

1.991
1.992
1.993

2.017
2.018

1.991
1.992
1.993

2.017
2.018

3.9640
3.9680
3.9720

4.0682
4.0723

3.964081 7.8925 ]

3.9680
3.9720

4.0682
4.0723

7.8925
7.9044
7.9163

8.2057
8.2179

7.9044
7.9163

8.2057

co

cl

c27

8.2179

15.7139
15.7455
15.7771

16.550
16.5838

€28 |

31.2864

31.3650
31.4439

33.3832

33.4661 |

[33.9110
34.0979
34.3160

42.0960

€28

42,1030

€o

€1

27

33.9110]
34.0979
34.3160

42.0960

1421030

(26)

(27)

We pick the level of polynomial for which the coefficients are figured by equation (20) is a
base or when there is no noteworthy abatement in its incentive as the level of polynomial

is expanded. If a third order polynomial is chosen, we get the residual from equation (18)

p(¥) = 107 % 1.2757 + 107 % —19122T + 107 %0.9554T2 + 107 x —0.15917° + €.

(28)

Below is the table for the order of polynomial, the coefficients value and the residual value
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Order of Polynomial

Coefficients

Residuals

1.2757 %107
—1.9122%107
0.9554 % 107
—0.1591 %107

3.7903

1.2068 % 10’
—1.8016x 107
0.8927 % 10’
—0.1449 % 107
—0.0009 107

3.7979

2.8297 % 10°
—5.2881%10°
3.513810°
—0.8756 107
0.0001 % 10°
0.0217x 10°

3.2197

10

—1.9551%10°
—0.8561 % 10°
0.5002 % 10°
1.6075 % 107
0.0000 % 10°
0.6337 % 10°
—1.0226%10°
—0.9741%10°
1.5135% 10°
—0.6085 % 10°
0.0808 % 10°

2.6002
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A Plot of Least squares curve fittings
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Figure 2. Different degrees polynomial of least squares fit to 28 data points of unemployment

rates in Kenya.

From figure 2 it has modelled the expected value of b as a 3", 4" 5" 10'" and 18" degree
polynomial yielding the general polynomial. The values of the constants ¢y, cy,...,c,
where k = 1,...,10 are achieved by the use of equation (20). The higher the degree the
lower the error. From equation (2) the error is minimal when the polynomial is of degree

18, obtained from equation (18)




4.1

SINGULAR SPECTRUM ANALYSIS IN THE STUDY
OF TIME SERIES

Spectral decomposition or eigenvalue is the origin of singular spectrum of a matrix say A.
These eigenvalues, A then make the matrix ||A — A1|| singular. The spectral decomposition
of matrices of multivariate data is also referred to as singular spectrum analysis.

Time series

Time series is a masterminded progression of estimations of a variable at comparably

isolated time intervals. If a single variable is measured then the time series is multivariate
otherwise univariate. When time series is measured at finite steps then it is discrete time
series and data used in this work is a discrete time series is X;;r =0,1,2,....

Times series has some components like seasonal and trend, where trend in time series
occur when there is a pattern of continous increase, decrease or stagnation over time.

Graph of Unemployment Rates in Kenya
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Figure 3. Graph of unemployment rates in Kenya from 1991 to 2018
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4.2

The utilization of time series is two fold [23]

« Acquire an appreciation of the concealed powers and structure that made the watched
data.

+ Estimating observing or on the other hand even analysis and feed forward control. Time
series is utilized in numerous applications, for example, deals estimating, remaining
task at hand projections, evaluation investigation, budgetary examination.

Basic spectrum analysis

SSA is a non parametric time series method that decomposes, reconstructs and forecasts
time series. It basically incorporates tools from time series analysis, multivariate data,
dynamical systems and signal processing. SSA seeks to decompose the unique series into
a whole of modest number of interpretable segments.

It is based on the singular value decomposition of a specific matrix constructed upon the
time series. The basic SSA basically includes: decomposition stage and reconstruction
stage.

The decomposition comprises of embedding and SVD. The reconstruction stage comprises
of eigentriple grouping and diagonal average.

The structure of SSA algorithm is as follows: Initial, a one dimensional time series is
changed over into a higher measurement matrix known as the trajectory matrix. Then
dimension of the trajectory matrix is known as the window length.

Second, SVD is then applied to the trajectory matrix and eigenvalues and eigenvectors
found. The next step is grouping step which basically involves splitting the elementary
matrices into several groups and then summing the matrices in each group. The approx-
imated series of the initial series is given by combining the reconstructed components
obtained by taking the mean across the diagonals of all groups and combining them into
a single series.

The advantage of SSA is that, after reconstruction of the time series under study it allows
to produce forecast for the reconstructed components which is called SSA forecasting
algorithm.

4.2.1 Decomposition stage

(a) Embedding
The purpose of the embedding step is to expand the single time series into a multidi-
mensional matrix, called a trajectory matrix, which can then in turn be decomposed
into various components.
This embedding is done by giving the time series a certain lag, usually one, and then
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combining the resulting lagged column vectors into a matrix of a specific window
length(number of columns). Consider F = F; = (fj,..., fn), the time series of length
N, where N > 2 and F is a non zero series: that is there exists at least one i such that
fi 7 0. Let L be some integer known as the window length, which is | <L < N. Then
let K=N—-L+1.

Mapping the initial time series into a sequence of lagged vectors of size L performs
the embedding by forming K = N — L+ 1 lagged vectors.

Xi= (ﬁ:"'sﬁ-i-r‘-—])?"

The trajectory matrix F can then be constructed by combining the lagged column

vectors into a single matrix
X = [Fl'.Fz'."'aFNl'

Input: Ordered

collection
of numbers
il;
. Sum of rank-one
Trajectory matrices
matrix 2.
i d
X Z X;j=X
j=1
3.
Output: SSA
utpu > Grouped matrices
decomposition, 4.
. . X=X, +...+Xy,
XZX]*“H"‘X;H ]

. An arranged accumulation of N numbers is the info.

X:il—f'---'f‘ﬁrrr (29)

is a decomposition of X in a sum of identifiable components:
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(b)

The mathematical definition of the combined trajectory matrix therefore is:

h A B .. Tk
L B fa o Sk

X=1fs fa fs ... [fx+2|- (30)
| fL fiv1 Sz - i

The above principle of the construction of the trajectory matrix can be illustrated by
the following example.

Example 4.2.1. Let ¥; = [0,2,3,4,5,6,7,8,9,10]. The time series can now be given a
lag of 1 and be embedded in a matrix with window length of 5, which results to the below
trajectory matrix, X :

(01 23 4]
12345
2345 6
X=[3456 7
4567 8
5678 9
6 7 8 9 10]

The optimal size of the embedding window depends on the nature of the time series
and it is vital in the analysis of the time series to determine the most favorable win-
dow length. This window length should be wide enough to sufficiently capture the
global behavior of the system, but it should be kept in mind that the complexity of
the analysis increases with the increase in the number of columns in the trajectory
matrix. Because the width of embedding window is one of the two most fundamental
parameters of SSA. The trajectory matrix has two main essential properties:

(a) The subseries of the initial series is made of both rows and columns are of X.

(b) X is a Hankel matrix since it has equivalent components on its enemies of diago-
nals.

Singular Value Decomposition (SVD)
Once the trajectory matrix X has been formed, singular value decomposition (SVD)
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(©)

(d)

can be performed [26].

Let C = XX and denote by A1,42,...,Ar the eigenvalues of C in decreasing order,
M>X>...> 2 >0. Let U, Us,...,UL be the orthonormal eigenvector’s of the
matrix C corresponding to those eigenvalues [26].

Let V; = L\/% (i=1,2,...,d), where (d) is equal to the rank of the matrix X such that

Ai > 0in any case, all things considered, series we typically have d = L*, with L* =
min (L, K).
The triple (VA Vi, U;) is called the ith eigentriple of the SVD [26]

4.2.2 Reconstruction stage

Eigentriple Grouping

This progression relates to partitioning the elementary matrices X; into several groups
and summing the matrices in each group.

Let I =ij,...,in and P; has several X;f and X; = O';VE-TU;. The expansion of X = X| +
...+ X4 leads to the decomposition.

Diagonal Averaging

We change each matrix of the grouped decomposition equation (29) into a series
of length N. Assume Y € L x K with elements y;;,1 <i<L,1 < j<K.Set L* =
min(L,K),K* = max(L,K) and N = L+ K — 1. Assume y;; = y;; otherwise averaging

transfers the matrix Y to the series y,ys,...,yy using the formula
1 k
P &,

k _E] }'m,k—m—l-lfor 1 <k<L%

1=
L &

* * *.
Ye=\T* _):] y.-'._k—m+lfor L <k <K™ (31)
=
| N-K*"+1
o *
N—k+1 E . }m.k—m-}-l f()."K < k<N.
\ m=k—K*+1

This corresponds to the averaging of the matrix elements over the diagonal i+ j =
k +2: The choice k = 1 gives y; =y |, for k =2 we have y; = (y12+y2.1)/2, for
k=3y3=(y13+y31+y22)/3.

Diagonal averaging

The series # = (5,...7% ) is produced by applying equation (31) applied to a resultant
matrix X;i, where the reconstructed series is X* and the initial series ¥ = (Y15¥25+ 43 N)
is decomposed into the sum of reconstructed series [26]

m

wm=Y. 5% (n=12,...,N). (32)
k=1

Equation (30) can be explained in a more practical manner by the following example. If a
matrix X, were obtained by summation of SVD to be retained, the original signal would
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be extracted by calculating the averages of the respective diagonals, as illustrated

4 3 4 5 1
35656
39458
Xee=19 7 8 9 8
275 41
3496 4

9 5 6 8 7]

The resulting series will then be: Z,,. = [4,3,4,7.25,3.8,4.8,7,6.5,4.3,6,7|. Elementary
reconstructed series is the reconstructed series obtained by the elementary grouping. In
the following sections this method will be applied to a real time series.
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APPLICATION OF SSA-THE CASE OF
UNEMPLOYMENT DATA

To represent the utilization of SSA method, the time series formed by annually unemploy-
ment data in Kenya from 1991 to 2018. This area is of interest because unemployment
is one of the current issues in Kenya. This makes unemployment a pressing, disturbing
economic and social issue in Kenya.

Graph of Unemployment Rates in Kenya
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Figure 4. Time series graph for unemployment rate in Kenya between 1991 to 2018.

The time series plot of Unemployment in Kenya, in indicates an upward trend with a slow
down after 2004. However, the trend is not regular. This shows that we cannot model the
resultant trend using simple linear regression model or using an exponential model. The
time series components of these series can be withdrawn using sequential SSA with a
given window length of say, 7. With sequential SSA, some components are extracted with
the first window length and others with the second window length weighted-correlation
matrix This matrix has weighted correlations between the reconstructed time series com-
ponents. This matrix helps in separability of the components based on the strength of
their correlation. Correlated components are grouped into one group.

All the analysis was done using R[28]. The SSA part of the analysis was conducted using
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5.1

the RSSA package and code in [26].

Choice of SSA parameters

The choice of parameters depends on the data we have and the analysis to perform.
Basically SSA has two parameters, the window length L and the number of components
r for reconstruction. Using the information given by time series, the values for L and r
could be defined[32].

5.1.1 Selection of the window length

In the decomposition stage, the only parameter is the window length L. Selection of the
best window length depends on the problem in hand. To get a better separability of this
component, it is recommended to choose the window length proportional to the period
since time series may have a periodic component. Basically L should be large enough but
not greater than N /2 [26].

The number of components r: The basis for the definition of r is how well the compo-
nents can be separated. The variance of X, evaluated as %(F = E A;) is the main criterion

i=1
and is based on the contribution of the two parameters. Select r out of the components so

that the sum of their contributions is at least a predetermined threshold.

The W-correlation matrix helps to decide the window length. The W-correlation matrix is
a matrix of elementary reconstructed components. If two elementary reconstructed com-
ponents are W-orthogonal, it means they are forcefully dissociable[26]. If two elementary
reconstructed components are associable, it means they are highly W-correlated.

Then W-correlation matrix for L = 4 is shown below.
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W-correlation matrix
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Figure 5. W-correlation matrix of unemployment data with L=4.

The strength of the W-correlation between two components is represented by the shade
of each square in figure 5. From figure 5 it can be seen that the first component is W-
uncorrelated with the rest of the components. Hence the trend is described by the first
eigentriple.

The highly correlated components are the second and third components with the rest and
the fourth one is slightly correlated. Similar relationship is observed in the W-correlation
matrices in L =7, 14 even when the components change because the matrix X changes
when we change the length L.

Figure 6a almost suggests a diagonal shape because the eigentriples tend to be corre-
lated mainly with the neighboring components and not with distant components. As L
increases, the components tend to be correlated with more different components even
if the correlation is light sometimes. Comparing the plots with different window length
L, its seen that as L increases we see the last eigentriples be somehow correlated with
more eigentriples. For instance when L = 7, the correlated matrix is almost diagonal shape.
When L is increased to 14, the W-correlation matrix almost becomes a funnel shape. Its
therefore preferable to work with window length L=7.
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W-correlation matrix W-correlation matrix

Fd -

F3

F1

F1 F2 F3 F4 FI F2 F3 F4 F5 F6 F7

(@) L=4 (b) L=7

W-correlation matrix

LI L L L L L L L L AL
F1F2F3F4FSF6F7 FBFF1F1F1F1F14

(c)L=14
Figure 6. Comparing different window lengths of unemployment data L =4,L =7L = 14.

5.1.2 Scree plot and eigenvectors plot

Scree plot is a basic line section plot of an eigenvalues in lessening request of their sizes
e d] > Ay > ... > Ar. The key in the scree plot is the "Shark break", which is the second
component. Hence, the firs component is the first one. The first turning point is known as
the "Shark break". The components before the "Shark break" are significant ones. Hence
the first principal component matters most as illustrated by the eigenvectors plot in figure
8.
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Singular Values
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Figure 7. Scree plot of SSA for unemployment data.

Figure 7 shows the Scree plot for the unemployment data.

Eigenvectors

1 (99.96%) 2 (0.04%) 3 (0%) 4 (0%)
/ I .
/ v
5 (0%) 6 (0%)

Figure 8. Eigenvectors plot for SSA for unemployment data.

The eigenvectors plot in figure 8 indicates that the leading eigenvector has almost constant
coordinates. This kind of behavior of the eigenvectors is interpretable as the trend.
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5.2

5.1.3 Diagonal averaging

This transforms the series of unemployment into the reconstructed series.
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Figure 9. Reconstructed Series.

Figure 9 is the plot for the reconstructed series. The first component corresponds to the
trend the rest corresponds to high frequency components which are not related to the

trend.

Extraction of the seasonal part

The residuals are calculated by subtracting the values of the trend from the original time
series. The residuals [10] are showed in figure 10.
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Figure 10. Residuals.

Forecasting method

In the previous section, we applied the main algorithm of SSA to unemployment data
from Kenya. First, we created trajectory matrix and found the singular values and singular
vectors. Then constructed principal and reconstructed components. In this section the
goal is to forecast the unemployment rate for the next 10 years. the below figure 11
where last 10 points are predicted by SSA forecasting algorithm and figure 12 complete
reconstructed components for (N+10).
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Original time Series plot of Unemployment Rates in Kenya
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Figure 11. Original time series for unemployment rates in Kenya from 1991: 2018.
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Figure 12. Complete reconstruction with forecasting for unemployment rates in Kenya.

Forecasting isn’t done quickly by just looking at a graph 4 since the rate of Unemployment
is . There is an increased Unemployment rate from 2018 to 2028. This may depend on
several factors e.g courses offered in the education system and how relevant they are to

the current economy.
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CONCLUSION AND RECOMMENDATION

SSA has been considered on of the powerful technique for analysing a variety of time
series has appeared over the past 20 years. Despite the fact that it’s roots lie in the normal
sciences, and the series arisen from such processes, it also be applied in different fields
[21].

SSA is a non parametric method of time series analysis that decomposes time series
into trend and built reconstructed components which are used for forecasting. It uses
linear algebra tools. In this work we analysed and presented theoretical results on SSA
applied unemployment data. By carrying out experiment with different window lengths
we observed that by increasing the window length the forecast accuracy gets smaller and
the forecast is more exact.

We also get different forecasting results by changing the number of components. It’s clear
that by using the sum of even indices reconstructed components we obtain with negative
value which can’t be "the best" selection for forecasting algorithm. However using the first
two reconstructed components we got more exact forecasting. The comparison forecasting
results showed that there is an influence in the selection of SSA parameters to forecasting.
It should be mentioned that the application of the SSA forecasting algorithm has given us
some expected results but has not yet showed its potential. In future work it is crucial to
study forecasting accuracy with even indices reconstructed components. Also can apply
the SSA Forecasting algorithm and compare the results with other forecasting methods.
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