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Abstract 

In this research paper we introduce the operators associated with a frame. That is the Analysis 

and the Synthesis Operators and their basic properties. The structure of matrix representation 

of the Synthesis operator is also analysed. This matrix is what most frame constructions in fact 

focus on. The frame operator which is just the joining together of the analysis and synthesis 

operators is fundamental for the reconstruction of signals form frame coefficients. We also give 

a complete characterization of the synthesis matrix in terms of the frame operator. 
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1.0 Introduction 

We set ℓ2
𝑀  = ℓ2(1,…,M}. This space in fact coincides with ℝ𝑚 or ℂ𝑚, endowed with the 

standard inner product and the associated Euclidean norm. 

The analysis, synthesis, and frame operators determine the operations of a frame when 

analysing and reconstructing a signal. The Gramian operator is perhaps not that well known, 

yet it crucially illuminates the behaviour of a frame (φi)𝑖=1
𝑀  embedded as an N-dimensional 

subspace in the high-dimensional space ℓ2
𝑚. 

 

1.1 Analysis and synthesis Operators 

 

Two of the main operators associated with a frame are the analysis and synthesis operators. 

The analysis operator – as the name suggests – analyses a signal in terms of the frame by 

computing its frame coefficients. We start by formalizing this notion. 

 

Definition 1. Let (𝜑𝑖)𝑖=1
𝑀 be a family of vectors in HN. Then the associated analysis operator T: 

HN → ℓ2
𝑚 is define by 

  Tx = (〈𝑥, 𝜑𝑖〉)𝑖=1
𝑀 , x ∈ HN. 

 

In the following lemma we derive two basic properties of the analysis operator. 

 

Lemma 1. Let(𝜑𝑖)i=1
M  be a sequence of vectors in HN with associated analysis operator T. 

 

i) We have ‖T𝑥‖2 = ∑ |〈𝑥, 𝜑𝑖〉|m
i=1

2 for all x ∈ HN. 

 

Hence, (𝜑𝑖)i=1
M  is a frame for HN if and only if T is injective. 

 

Journal of Advance Research in Mathematics And Statistics ISSN: 2208-2409

Volume-5 | Issue-12 | Dec, 2018 1



ii) The adjoint operator T*: ℓ
M
2

→ HN of T is given by 

 

T*(𝜑𝑖)i=1
M  = ∑ 𝑎𝑖φi

M
i=1 . 

 

Proof. (i) This is an immediate consequence of the definition of T and the frame property.  

 

ii) For x = (𝑎𝑖)𝑖=1
𝑀  and y ∈ HN, we have 

 (T*x, y) = (x, Ty) = 〈(𝑎𝑖)𝑖=1
𝑀 , (〈𝑦, 𝜑𝑖〉)𝑖=1

𝑀 〉 = ∑ 𝑎𝑖〈𝑦, 𝜑𝑖〉̅̅ ̅̅ ̅̅ ̅̅𝑚
𝑖=1 =  〈∑ 𝑎𝑖𝜑𝑖, 𝑦𝑚

𝑖=1 〉. 
Thus, T* is adjoint operator. 

 

The second main operator associated to a frame, the synthesis operator, is now defined as the 

adjoint operator to the analysis operator given in Lemma1 (ii). 

 

Definition 2. Let (𝜑𝑖)𝑖=1
𝑀  be a sequence of vectors in HN with associated analysis operator T. 

Then the associated synthesis operator is defined to be the adjoint operator T*. 

 

The next result summarizes some basic, but useful, properties of the synthesis operator. 

 

Lemma 2. Let (𝜑𝑖)i=1
M be a sequence of vectors in HN with associated analysis operator T. 

i) Let (ei)i=1
M  denote the standard basis of ℓ2

m. Then for all i = 1,2,…, M, we have T*ei 

= T*Pei = φi, where P : ℓ2
m →  ℓ2

m denotes the orthogonal projection onto  

ran T. 

ii) (𝜑𝑖)i=1
M  is a frame if and only if T* is surjective. 

 

Proof.  The first claim follows immediately from Lemma1 and the fact that Ker T* = (ran T)⊥. 

The second claim is a consequence of ranT* = (𝑘𝑒𝑟 𝑇)⊥ and Lemma 1(i). 

 

Often frames are modified by the application of an invertible operator. The next result shows 

not only the impact on the associated analysis operator, but also the fact that the new sequence 

again forms a frame. 

 

Proposition 3. Let ∅ = (𝜑𝑖)i=1
M   be a sequence of vectors in HN with associated analysis 

operator T∅ and let F: HN → HN be a linear operator. Then the analysis operator of the sequence 

F∅ = (Fφi)i=1
M  is given by 

 

  TF∅ = T∅F*. 

 

Moreover, if  ∅ is a frame of HN and F is invertible, then F∅ is also a frame for HN. 

 

Proof.  For x ∈ HN we have 

  TF∅𝑥 = (〈𝑥, φi 〉)i=1
M  = (〈F∗𝑥, φi〉)i=1

M   T∅F* x. 

 

This proves TF∅ = T∅ F*. The moreover part follows from lemma 2 (ii). 

 

Next, we analyse the structure of the matrix representation of the synthesis operator. This 

matrix is of fundamental importance, since this is what most frame constructions in fact focus 

on. 

The first result provides the form of this matrix along with stability properties. 
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Lemma 4.  Let ∅ = (𝜑𝑖)i=1
M be a frame for HN with analysis operator T, then a matrix 

representation of the synthesis operator T* is the N x M matrix given by 

   

[
| | ⋯

𝜑1 𝜑2 ⋯
| | ⋯

|
𝜑𝑚

|
]. 

 

Moreover, the riesz bounds of the row vectors of this matrix equal the frame bounds of the 

column vectors. 

 

Proof.  The form of the matrix representation is obvious. To prove the moreover part, let 

(𝑒𝑗)
𝑗=1 

𝑁
be the corresponding orthonormal basis of HN and for j = 1, 2, …, N 

Let 

 𝜓𝑗 = [〈𝜑1, 𝑒𝑗〉, 〈𝜑2, 𝑒𝑗〉, … 〈𝜑𝑚, 𝑒𝑗〉] 
 

Be the row vectors of the matrix. Then for x = ∑ 𝑎𝑗𝑒𝑗
𝑁
𝑗=1  we obtain 

∑ |〈𝑥, 𝜑𝑖〉|𝑚
𝑖=1

2 = ∑ ∑ 𝑎𝑗〈𝑒𝑗, 𝜑𝑖〉
𝑁
𝑗=1

𝑚
𝑖=1   =  ∑ 𝑎𝑗𝑎𝑘̅̅ ̅𝑁

𝑗,𝑘=1  ∑ 〈𝑒𝑗𝜑𝑖〉
𝑀
𝑖=1 〈𝜑𝑖, 𝑒𝑘〉 

  = ∑ 𝑎𝑗𝑎𝑘̅̅ ̅ 〈𝜓𝑘 , 𝜓𝑗〉𝑁
𝑗,𝑘=1  = ‖∑ 𝑎�̅� 𝜓𝑗

𝑁
𝑗=1 ‖2.  

 

 

A much stronger result (Proposition 9) can be proven for the case in which the matrix 

representation is derived using a specifically chosen orthonormal basis. However, the choice 

of this orthonormal basis requires the introduction of the frame operator in the following 

Section 2. 

 

2.0 The Frame Operator 

 

The frame operator may be considered the most important operator associated with a frame. 

Although it is “merely” the joining together of the analysis and synthesis operators, it encodes 

crucial properties of the frame. Moreover, it is also fundamental for the reconstruction of 

signals from frame coefficients. 

 

2.1 Fundamental Properties 

 

The precise definition of the frame operator associated with a frame is as follow: 

 

Definition 3.  Let (𝜑𝑖)𝑖=1
𝑀 be a sequence of vectors in HN with associated analysis operator T. 

Then the associated frame operator S: HN→HN is defined by 

 

  Sx = T*Tx = ∑ 〈𝑥, 𝜑𝑖〉
𝑀
𝑖=1 𝜑𝑖, 𝑥 ∈  𝐻N. 

 

A first observation concerning the close relation of the frame operator to frame properties is 

the following lemma. 

 

Lemma 5.  Let (𝜑𝑖)i=1
M  be a sequence of vectors in HN with associated frame operator S. Then, 

for all  

x ∈ HN, 
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  〈𝑆𝑥, 𝑥〉 =  ∑ |〈𝑥, 𝜑𝑖〉|𝑀
𝑖=1

2. 

 

Proof . The proof follows directly from  〈𝑆𝑥, 𝑥〉 = 〈𝑇∗𝑇𝑥, 𝑥〉 = ‖𝑇𝑥‖2 and Lemma 1(i) 

 

Clearly, the frame operator S = T*T is self-adjoint and positive. The most fundamental property 

of the frame operator – if the underlying sequence of vectors forms a frame – is its invertibility, 

which is crucial for the reconstruction formula. 

 

Theorem 6. The frame operator S of a frame (𝜑𝑖)𝑖=1
𝑀  for HN with frame bounds 𝛼 and 𝛽 is a 

positive, self-adjoint invertible operator satisfying 

 

𝛼.Id ≤ S ≤ 𝛽.Id. 

 

Proof.  By Lemma 5, we have 

 

〈𝛼𝑥, 𝑥〉 = 𝛼‖𝑥‖2 ≤ ∑ |〈𝑥, 𝜑𝑖〉|𝑚
𝑖=1

2 = 〈𝑆𝑥, 𝑥〉 ≤ 𝛽‖𝑥‖2 = 〈𝛽𝑥, 𝑥〉 for all x ∈ HN. 

 

This implies the claimed inequality. 

 

The following proposition follows directly from proposition 3 

 

Proposition 7.  Let (φi)i=1
M  be a frame for HN with frame operator S, and let F be an invertible 

operator on HN. Then ((Fφi)i=1
M  is a frame with frame operator FSF*. 

 

 

 

2.2 The special case of tight frames 

 

Tight frames can be characterized as those frames whose frame operator equals a positive 

multiple of the identity. The next result provides a variety of similarly frame-operator-inspired 

classification. 

Proposition 8. Let (𝜑𝑖)i=1
M  be a frame of HN with analysis operator T and frame operator S. 

Then the following conditions are equivalent. 

 

(i) (𝜑𝑖)i=1
M  is an 𝛼-tight frame for HN. 

(ii) S = 𝛼.Id. 

(iii) For every x ∈ HN, 

 

X = 𝛼-1.  ∑ 〈𝑥, 𝜑𝑖 〉𝜑𝑖
m
i=1 . 

 

(iv) For every x ∈ HN, 

 

𝛼‖𝑥‖2 = ∑ |〈𝑥, 𝜑𝑖 〉|M
i=1

2. 

 

(v) T/ √𝛼 is an isometry. 

 

Proof. (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) These are immediate from the definition of the frame operator 

and from Theorem 6. 
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 (ii) ⇔ (v)  This follows from the fact that T / √𝛼 is an isometry if and only if  

T*T = 𝛼.Id. 

 

A similar result for the special case of a Parseval frame can be easily deduced from Proposition 

8 by setting 𝛼 = 1. 

 

2.3 Structure of the synthesis matrix 

 

We now apply the previously derived results to obtain a complete characterization of the 

synthesis matrix of a frame in terms of the frame operator. 

 

Proposition 9. Let T : HN → 𝑙2
M be a linear operator, Let (𝑒𝑗)j=1

N  be an orthonormal basis of 

HN, and let (𝑒𝑗)j=1
N  be a sequence of positive numbers. By A, denote the N × M matrix 

representation of T* with respect to (𝑒𝑗)j=1
N  (and the standard basis (𝑒𝑖)i=1

M  of ℓ2
M). Then the 

following conditions are equivalent. 

 

(i) (𝑇∗𝑒𝑖)i=1
M  forms a frame for HN whose frame operator had eigenvectors (𝑒𝑗)

j=1

N
  and 

associated eigenvalues (λj)j=1
N . 

(ii) The rows of A are orthogonal, and the jth row square sums to λj. 

(iii) The columns of A form a frame for ℓ2
N, and AA* = diag(λ1, ⋯, λN. 

 

Proof.  Let (𝑓𝑗)𝑗=1
𝑁  be the standard basis of ℓ2

𝑁 and denote by U: ℓ2
𝑁 → HN the unitary operator 

which maps fj to ej. Then T* = UA. 

(i)⟹ (𝑖𝑖) For j, k ∈{1, ⋯, N} we have 

  

 〈𝐴∗𝑓𝑗 , 𝐴∗𝑓𝑘〉 = 〈𝑇𝑈𝑓𝑗 , 𝑇𝑈𝑓𝑘〉 = 〈𝑇∗𝑇𝑒𝑗, 𝑒𝑘〉 = 𝜆𝑗𝛿𝑗𝑘, 

 

Which is equivalent to (ii). 

(ii)⟹(iii) since the rows of A are orthogonal, we have rank A = N, which implies that the 

columns of A form a frame for ℓ2
𝑁. The rest follows from 〈𝐴𝐴∗𝑓𝑗 , 𝑓𝑘〉 = 〈𝐴∗𝑓𝑗 , 𝐴∗𝑓𝑘〉 = 𝜆𝑗𝛿𝑗𝑘 for 

j, k = 1, ⋯, N. 

 

(iii) ⇒ (i) since (𝐴ê𝑖)𝑖=1
𝑀  is a spanning set for ℓ2

𝑁 and T* = UA, it follows that (𝐴ê𝑖)𝑖=1
𝑀  forms 

a frame for HN. Its analysis operator is given by T, since for all x ∈ HN, 

  (〈𝑥, 𝑇∗ê𝑖〉)𝑖=1
𝑀  = (〈𝑇𝑥, ê𝑖〉)𝑖=1

𝑀  = Tx. 

Moreover, 

 

 T*𝑇𝑒𝑗 = U A A* U*ej = U diag (𝜆1, ⋯ , 𝜆𝑁) fj = 𝜆𝑗  𝑈𝑓𝑗  = 𝜆𝑗𝑒𝑗, 

Which completes the proof. 

 

3.0   Gramian Operator 

 

Let (𝜑𝑖)𝑖=1
𝑀  be a frame for HN with analysis operator T. In the previous subsection we have 

looked at the properties of the frame operator defined by S = T*T: HN → HN. Of particular 

interest is also the operator generated by first applying the synthesis and then the analysis 

operator. We first state the precise definition then discuss its importance. 
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Definition 4.  Let (𝜑𝑖)𝑖=1
𝑀  be a frame of HN with analysis operator T. Then the operator  

G : ℓ2
𝑀 → ℓ2

𝑀 defined by 

 

 G(𝑎𝑖)𝑖=1
𝑀  = TT*(𝑎𝑖)𝑖=1

𝑀  = (∑ 𝑎𝑖
𝑀
𝑖=1 〈𝜑𝑖, 𝜑𝑘〉)𝑘=1

𝑀   = ∑ 𝑎𝑖(〈𝜑𝑖, 𝜑𝑘 〉)𝑘=1
𝑚𝑀

𝑖=1  

 

Is called the Gramian (operator) of the frame (𝜑𝑖)𝑖=1
𝑚 . 

 

Note that the (canonical) matrix representation of the Gramian of a frame (𝜑𝑖)𝑖=1
𝑚  for HN which 

will also be called the Gramian matrix) is given by 

 

 [

‖𝜑1‖2 〈𝜑2, 𝜑1〉 ⋯

〈𝜑1, 𝜑2 〉 ‖𝜑2‖2 ⋯
⋮ ⋮ ⋱

      
〈𝜑𝑀, 𝜑1〉

〈𝜑𝑀, 𝜑2〉
⋮

〈𝜑1, 𝜑𝑀 〉 〈𝜑2, 𝜑𝑀 〉 ⋯ ‖𝜑𝑀‖2  

]. 

 

One property of the Gramian is immediate. In fact, if the frame is unit norm, then the entries 

of the Gramian matrix are exactly the cosines of the angles between the frame vectors. Hence, 

for instance, if a frame is equiangular, then all off-diagonal entries of the Gramian matrix have 

the same modulus. 

The fundamental properties of the Gramian operator are collected in the following theorem. 

 

Theorem 10. Let (φi)i=1
m  be a frame for HN with analysis operator T, frame operator S, and 

Gramian operator G. Then the following statements hold. 

 

(i) An operator U on HN is unitary if and only if the Gramian of (Uφi)i=1
M  coincides 

with G. 

(ii) The nonzero eigenvalues of G and S coincide. 

(iii) (φi)i=1
m  is a Parseval frame if and only if G is an orthogonal projection of rank N 

(namely onto the range of T). 

(iv) G is invertible if and only it M = N. 

 

Proof. (i) This follows immediately from the fact that the entries of the Gramian matrix for 

(𝜑𝑖)𝑖=1
𝑚  are of the form 〈𝑈𝜑𝑖, 𝑈𝜑𝑗〉. 

 

(ii) Since TT* and T*T have the same nonzero eigenvalues, the same is true for G and S. 

 

(iii) It is immediate to prove that G is self-adjoint and has rank N. Since T is injective, T* 

is surjective, and 

   G2 = (TT*) (TT*) = T(T*T)T*, 

It follows that G is an orthogonal projection if and only if T*T = Id, which is equivalent to the 

frame being Parseval. 

 

(iv) This is immediate by (ii). 

 

 

4.0 Reconstruction from Frame Coefficients 
 

The analysis of a signal is typically performed by merely considering its frame coefficients. 

However, if the task is transmission of a signal, the ability to reconstruct the signal from its 
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frame coefficients and also to do so efficiently becomes crucial. However, reconstruction from 

coefficients with respect to a redundant system is much more delicate and requires the 

utilization of another frame, called the dual frame. If computing such a dual frame is 

computationally too complex, a circumvention of this problem is the frame algorithm. 

 

4.1   Exact Reconstruction 
 

We start by stating an exact reconstruction formula. 

 

Theorem 11.  Let (φi)i=1
m  be a frame for HN with frame operator S. then, for every x ∈ HN, we 

have 

  x = ∑ 〈𝑥, φi 〉
S−1

φi
M
i=1  = ∑ 〈𝑥, S−1φi〉φi

M
i=1 . 

 

Proof.  The proof follows directly from the definition of the frame operator in Definition 3 by 

writing  

x = S-1Sx and x = SS-1x. 

 

Notice that the first formula can be interpreted as a reconstruction strategy, whereas the second 

formula has the flavour of a decomposition. We further observe that the sequence (𝑆−1𝜑𝑖)𝑖=1
𝑀  

plays a crucial role in the formulas in Theorem 11. The next result shows that this sequence 

indeed also constitutes a frame. 

 

Proposition 12.  Let (φi)i=1
m  be a frame for HN with frame bounds 𝛼 and 𝛽 and with frame 

operator S. Then the sequence (S−1φi)i=1
M  is a frame for HN with frame bound 𝛽-1 and 𝛼-1 and 

with frame operator S-1. 

 

Proof.  By Proposition 7, the sequence(𝑆−1𝜑𝑖)𝑖=1
𝑀   forms a frame for HN with associated frame 

operator 

S-1(S-1)* = S-1. This in turn yields the frame bounds 𝛽-1 and 𝛼-1. 

 

This new frame is called the canonical dual frame. In the sequel, we will discuss that other 

dual frame may also be utilized for reconstruction. 

 

Definition 5. Let (φi)i=1
m  be a frame for HN with frame operator denoted by S. then (S−1φi)i=1

M   

is called the canonical dual frame for (φi)i=1
m . 

 

The canonical dual frame of a Perseval frame is now easily determined by Proposition 12. 

 

Corollary 13. Let (φi)i=1
m  be a Parseval frame for HN. Then its canonical dual frame is the 

frame (φi)i=1
m  itself, and the reconstruction formula in Theorem 11 reads 

 

  x = ∑ 〈𝑥, 𝜑𝑖𝜑1〉𝑀
𝑖=1 , x ∈ HN. 

 

As an application of the above reconstruction formula for Parseval frames, we prove the 

following proposition which again shows the close relation between Parseval frames and 

orthonormal bases. 

 

Proposition 14. (Trace Formula for Parseval Frames) Let (𝜑𝑖)𝑖=1
𝑚  be a Parseval frame for HN, 

and let F be a linear operator on HN. Then 
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 Tr(F) = ∑ 〈𝐹φi, φi〉
𝑀
𝑖=1 . 

 

Proof.  Let (𝑒𝑗)
𝑗=1

𝑁
 be on orthonormal basis for HN. Then, by definition. 

   

  Tr(F) = ∑ 〈𝐹𝑒𝑗, 𝑒𝑗〉𝑀
𝑖=1 . 

 

This implies 

 Tr(F) = ∑ 〈∑ 〈𝐹𝑒𝑗, 𝜑𝑖〉φi, φj
𝑀
𝑖=1 〉𝑁

𝑗=1  = ∑ ∑ 〈𝑒𝑗 , 𝐹∗φi〉
𝑀
𝑖=1

𝑁
𝑗=1 〈φi, 𝑒𝑗〉 

 = ∑ 〈∑ 〈φi, 𝑒𝑗〉𝑒𝑗, 𝐹
∗φi

𝑁
𝑗=1 〉𝑀

𝑖=1  = ∑ 〈φi, 𝐹∗φi〉
𝑀
𝑖=1  = ∑ 〈𝐹φi, φi 〉

𝑀
𝑖=1 . 

 

As mentioned earlier, many other dual frames for reconstruction exist. We now give a precise 

definition of the same. 

Definition 6. Let (φi)𝑖=1
𝑚  be a frame for HN. Then a frame(Ψi)𝑖=1

𝑚  is called dual frame for 

(φi)𝑖=1
𝑚 , if 

 

  x = ∑ 〈𝑥, φi 〉Ψi
𝑀
𝑖=1  for all x ∈ HN. 

 

Dual frames, which do not coincide with the canonical dual frame, are often coined alternate 

dual frames. 

 

Similar to the different forms of the reconstruction formula in Theorem 11, dual frames can 

also achieve reconstruction in different ways. 

 

Proposition 15.  Let (φi)i=1
m  and Ψii=1

M  be frames for HN and let T and T̃ be the analysis 

operators of (φi)i=1
m  and Ψii=1

M , respectively. Then the following conditions are equivalent. 

 

(i) We have x = ∑ 〈𝑥, Ψi 〉
M
i=1 φi for all x ∈HN. 

(ii) We have x = ∑ 〈𝑥, φi〉
M
i=1 Ψi for all x ∈HN. 

(iii) We have (x, y) = ∑ 〈𝑥, φi 〉
M
i=1 〈ψi, 𝑦〉 for all x, y ∈HN. 

(iv) T*T̃ = Id and T̃*T = Id. 

 

Proof.  Clearly (i) is equivalent to T*T̃ = Id, which holds if and only if T̃*T = Id. The 

equivalence of (iii) can be derived in a similar way. 

 

One may ask what distinguishes the canonical dual frame from the alternate dual frames 

besides its explicit formula in terms of the initial frame. Another seemingly different question 

is which properties of the coefficient sequence in the composition of some signal x in terms of 

the frame (see Theorem 11). 

 

  x = ∑ 〈𝑥, 𝑆−1φi〉φi
𝑀
𝑖=1 , 

 

uniquely distinguishes it from other coefficient sequences; redundancy allows infinitely many 

coefficient sequences. Interestingly, the next result answers both questions simultaneously by 

stating that this coefficient sequence has minimal ℓ2-norm among all sequences – in particular 

those, with respect to alternate dual frames – representing x. 
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Proposition 16. Let (φi)i=1
M  be a frame for HN with frame operator S, and let x ∈HN. If (ai)i=1

M   

are scalars such that x = ∑ aiφi
M
i=1 , then 

 

  ∑ |ai|
2M

i=1  = ∑ |〈𝑥, S−1φi〉|M
i=1

2 + ∑ |ai − 〈𝑥, S−1φi〉|M
i=1

2. 

 

Proof.  Letting T denote the analysis operator of (φi)𝑖=1
𝑀 , we obtain 

 

  (〈𝑥, 𝑆−1φi〉)𝑖=1
𝑀  = (〈𝑆−1 𝑥, φi〉)𝑖=1

𝑀  ∈ ran T. 

 

Since x = ∑ 𝑎𝑖φi
𝑀
𝑖=1 , it follows that 

 

  (𝑎𝑖 −  〈𝑥, 𝑆−1φi〉)𝑖=1
𝑀  ∈ ker T* = (ran T)⊥. 

 

Considering the decomposition 

  (𝑎𝑖)𝑖=1
𝑀  = (〈𝑥, 𝑆−1φi〉)𝑖=1

𝑀  + (𝑎𝑖 −  〈𝑥, 𝑆−1φi〉)𝑖=1
𝑀 , 

 

The claim is immediate. 

 

Corollary 17.  Let (φi)i=1
M  be a frame for HN, and let (Ψi)i=1

M  be an associated alternate dual 

frame. Then, for all x ∈HN, 

  ‖(〈𝑥, S−1φi〉)i=1
M ‖2 ≤ ‖(〈𝑥, Ψi 〉)i=1

M ‖2. 

 

 

4.2 Properties of Dual Frames 

 

While we focused on properties of the canonical dual frame in the last subsection, we now 

discuss properties shared by all dual frames. The first question that arises is: 

How do we characterize all dual frames? And a comprehensive answer is provided by the 

following result. 

 

Proposition 18.  Let (φi)i=1
M  be a frame for HN with analysis operator T and frame operator S. 

Then the following conditions are equivalent. 

 

(i) (Ψi)i=1
M  is a dual frame for (φi)i=1

M . 

(ii) The analysis operator T1 of the sequence (Ψi −  S−1φi)i=1
M  satisfies 

Ran T ⊥ ran T1. 

 

Proof. We set Ψĩ : = Ψi– S-1φifor I = 1, ⋯ , M and note that 

 

 ∑ 〈𝑥, Ψi 〉
𝑀
𝑖=1 φi = ∑ 〈𝑥, �̃�𝑖 + 𝑆−1φi〉φi

𝑀
𝑖=1  = x + ∑ 〈𝑥, �̃�𝑖〉φi

𝑀
𝑖=1  = x + T*T1x 

 

holds for all x ∈ HN. Hence (Ψi)𝑖=1
𝑀  is a dual frame for (φi)𝑖=1

𝑀  if and only if T*T1 = 0. But this 

is equivalent to (ii). 

 

From this result, we have the following corollary which provides a general formula for all dual 

frames. 
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Corollary 19.  Let (φi)i=1
M  be a frame for HN with analysis operator T and frame operator S 

with associated normalized eigenvectors (𝑒𝑗)j=1
N and respective eigenvalues (𝜆𝑗)𝑗=1

N . Then 

every dual frame (ψi)i=1
M  for (φi)i=1

M  is of the form 

 

 ψi = ∑ (
1

λj
 〈φi, ej〉 +  hij

̅̅ ̅)N
j=1 ej, i = 1, … , M, 

 

Where each (hij)i=1

M
, j = 1,…, N, is an element of (ranT)⊥. 

 

Proof.  If ψi, i = 1, … , M, is of the given form with sequences (ℎ𝑖𝑗)
𝑖=1

𝑀
∈ ℓ2

𝑀, j = 1, …, N,                

then ψi = S-1 φi+ �̃�i, where  �̃�i = ∑ ℎ𝑖𝑗
̅̅ ̅̅𝑁

𝑗=1 𝑒𝑗, i = 1, … , M. The analysis operator �̃� of  

(�̃�𝑖)𝑖=1
𝑀  satisfies �̃�ej = (ℎ𝑖𝑗)

𝑖=1

𝑀
. The claim follows from this observation. 

 

5.0  Conclusion 

We have discussed the analysis, synthesis and frame operators of a frame in a finite dimensional 

Hilbert space. We have also looked at their basic properties and the structure of matrix 

representation of the synthesis operator, where the Riesz bounds of the row vectors of the 

matrix equal the frame bounds of the column vectors. The frame operator is considered the 

most important operator associated with a frame, although it is just the joining of the analysis 

and the synthesis operators. It encodes crucial properties of the frame as well as it is 

fundamental for the reconstruction of signals from frame coefficients. The frame operator  

S = T∗T is self-adjoint and positive. If the underlying sequence of vectors forms a frame, then 

the frame operator is invertible, which is crucial for the reconstruction formula, given in 

Theorem 11. Properties of Dual frames were also discussed as can be seen in Proposition 18 

and corollary 19. 
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