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Abstract 

In this research paper we do an introduction to Hilbert space frames. We also discuss various 

frames in the Hilbert space. A frame is a generalization of a basis. It is useful, for example, in 

signal processing. It also allows us to expand Hilbert space vectors in terms of a set of other 

vectors that satisfy a certain condition. This condition guarantees that any vector in the Hilbert 

space can be reconstructed in a numerically stable way from its frame coefficients. Our focus 

will be on frames in finite dimensional spaces. 
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1.0 Introduction 

1.1 Hilbert Space  

We introduce some basic definitions and facts about Hilbert space.  

Definition 1. A Hilbert space is a complete, normed vector space H over the complex numbers 

ℂ, whose norm is induced by an inner product. The inner product is a function 

 〈. , . 〉 ∶ 𝐻 ×   𝐻  →   ℂ, that satisfies:  

(a) Linearity in the second argument: ∀a, b ∈ ℂ and ∀x, y, z ∈𝐻, 

〈𝑥, 𝑎𝑦 + 𝑏𝑧〉 = 𝑎〈𝑥, 𝑦〉 +〈𝑥, 𝑧〉. 

(b) Conjugate symmetry: ∀x, y∈𝐻,  

〈𝑥, 𝑦〉 = 〈𝑦, 𝑥〉̅̅ ̅̅ ̅̅ ̅ 
where the overbar denotes complex conjugation.  

(c) Positivity: ∀x ≠ 0∈𝐻,  

 〈𝑥, 𝑥〉 > 0.  

The norm of 𝐻 is induced by its inner product: ∀x ∈ 𝐻, ‖𝑥‖2 =  〈𝑥, 𝑥〉. The Hilbert space is 

required to be complete, which means that every sequence that is Cauchy with respect to this 

norm converges to a point in 𝐻.  

The most common Hilbert spaces, and the only ones we shall be concerned with in this article, 

are the Euclidean spaces and the square-integrable function spaces. 
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Example 1. The Euclidean space ℂn is a Hilbert space with an inner product defined by  

(〈𝑥, 𝑦〉)2  = ∑ 𝑥̅𝑖𝑦𝑖
𝑛
𝑖=1 . 

The norm induced by this inner product is the standard Euclidean distance; for example, in ℂ2 

we have 

 ‖𝑥‖= √𝑥1
2 + 𝑥2

2 .  

We can generalize these Euclidean spaces to infinite dimensions. Our vectors are then functions 

instead of n-tuples of numbers, and we must introduce the additional requirement that the 

functions be square-integrable to ensure that the inner product is well defined. 

Example 2. For a measure space M and a measure µ, define L2(M, µ) to be the set of 

measurable functions f: M→ ℂ such that ∫ |f|2d µ < ∞. This is a Hilbert space with the inner 

product  

   〈𝑓, 𝑔〉 = ∫ 𝑓g̅dµ.  

We shall take µ to be the Lebesgue measure when M is ℝ or an interval on ℝ, and counting 

measure when 𝑀 = N or 𝑀 = ℤ.  

In the first case, we use the notation L2([a, b]), and the Hilbert space consists of square-

integrable functions. In the second case, we use a lowercase l and write l2(N). Recall that 

integration with respect to counting measure is just summation, so the inner product on l2 is  

〈𝑥, 𝑦〉 =  ∑ 𝑥𝑖𝑦̅𝑖
∞
𝑖=1 ,  

and l2 is the space of square-summable sequences. 

Hilbert spaces are “nicer” than general Banach spaces because of the additional structure 

induced by the inner product. The inner product allows us to define “angles” between vectors, 

and in particular, leads to the concept of orthogonality:  

Definition 2. Two vectors x and y in a Hilbert space H are said to be orthogonal if  

〈𝑥, 𝑦〉 = 0.  

A set of vectors {xi} is said to be orthogonal if 〈𝑥𝑖 , 𝑥𝑗〉 = 0 for i ≠ j.  

In the Euclidean spaces, the inner product is the standard dot product, and two vectors are 

orthogonal if their dot product is zero. 

 

1.2 Linear Operators on Hilbert Space  

Operator here means a linear map between two Hilbert spaces. We introduce some basic 

terminologies regarding operators.  

Definition 3. For Hilbert spaces H1 and H2, mapping T: H1→H2, is called a linear operator if, 

for every x, y ∈𝐻1 and for every c1,c2 ∈ℂ, we have  

T(c1x+c2y) = c1Tx+c2 Ty.  
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A linear operator is bounded if there exists a constant k > 0 such that ‖𝑇 𝑥‖  ≤ 𝑘 ‖𝑥‖for all 

nonzero x∈H1. If T is a bounded operator, then we define the operator norm to be the norm 

induced by the two Hilbert space norms in the following way:  

‖𝑇‖ = inf{k:‖𝑇𝑥‖ ≤ k ‖𝑥‖for all x ≠ 0}.  

Every linear operator has an adjoint, which is the unique operator T∗ satisfying  

〈𝑇𝑥 , 𝑦〉=  〈𝑥, 𝑇∗𝑦〉,  for all x, y ∈ H1.  

An linear operator is an injection if T x = T y ⇒ x = y (that is, if T maps distinct elements in 

H1 to distinct elements in H2). A linear operator is a surjection if range(T) = H2. An operator 

that is both surjective and injective is called a bijection. 

In the finite dimensional case, linear operators are just matrices; the linear operators from ℂn to 

ℂm are precisely the ℂm ×n matrices in ℂm×n. Infinite dimensional linear operators are the subject 

of functional analysis, and are much more difficult to classify in general. We will be working 

with a special type of linear operator called a “frame operator” whose norm is bounded above 

and below by two nonzero constants. 

 

2.0 𝒍2 Representations of L2 Functions 

A common task in applied mathematics is to represent a function f ∈ L2 in terms of some 

sequence of coefficients in l2. For example, in signal processing applications we often represent 

an analog signal (an L2 function) in terms of a sequence of coefficients. In theoretical 

considerations we may take these coefficients to be in l2, but in practice we can only store 

finitely many coefficients. We hope to be able to choose a finite set of coefficients that capture 

most of the “information” in the original signal, in the sense that we can use the coefficients to 

reconstruct the original signal with a small L2 error.  

The most common way to accomplish this task is to find a set of basis vectors {vn} for L2, and 

use the inner products 〈𝑣𝑛, 𝑓 〉 as the l2 coefficients representing a function f ∈L2.  

Example 3. Consider the Hilbert space L2(0,1). The functions  

{e2πinx, n ∈ℤ}  

form an orthonormal basis for this space, and we can represent any function f ∈ L2 uniquely as 

a sequence in l2(ℤ) defined by  

cn = 〈𝑒2𝜋𝑖𝑛𝑥, 𝑓〉, n ∈  ℤ 

These cn are the “Fourier coefficients” of 𝑓. A function can be reconstructed from its Fourier 

coefficients using the inversion formula  

𝑓 = ∑ 𝑐𝑛𝑒
2𝜋𝑖𝑛𝑥

𝑛∈ℤ  

The map F that takes 𝑓 to its sequence of Fourier coefficients c is unitary. This means that the 

problem of forming c given f and the inverse problem of forming 𝑓 given c are both numerically 

stable, which is especially important in computational applications where we may only have 
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an approximation to 𝑓 or c. The fact that the operator F is bounded above and below, guarantees 

that, given a sufficiently good approximation for 𝑓, we can form an approximation of c.  

It turns out that requiring the set {vn} to be a basis is overly restrictive for some applications. 

It is possible to form “stable representations” of arbitrary elements of H in terms of sets of 

vectors that are not necessarily linearly independent. The most general set of vectors that allows 

us to form stable representations of arbitrary vectors is called a “frame.” 

3.0 Hilbert Space Frames 

A frame is a subset {φj} of H that satisfies two very useful conditions:  

(i) Every other vector in H can be written as a linear combination of the φj.  

(ii) Every 𝑓 in H can be represented as a sequence of “frame coefficients” in l2, and each f can 

be reconstructed in a numerically stable way from its frame coefficients.  

The frame coefficients of a function f are determined by applying the “frame operator” to 𝑓. 

Reconstruction of 𝑓 from its frame coefficients is performed with a pseudoinverse.  

Definition 4. Let {φj} be a subset of H such that there exist∝, 𝛽 > 0 with  

∝ ‖𝑓‖2  ≤ ∑(𝜑𝑗, f|)
2  ≤ 𝛽‖𝑓‖2 

for all 𝑓∈ 𝐻. Then {φj} is called a frame of H. The supremum of all ∝ and the infimum of all 

𝛽 that satisfy the above inequality are called the frame bounds.  

The frame operator is the function F: 𝐻→l2 defined by  

(F𝑓)n = 〈𝜑𝑛, 𝑓〉. 

By definition, the frame operator satisfies  

∝ ‖𝑓‖2 ≤ ‖𝐹𝑓‖2 ≤ 𝛽 ‖𝑓‖2.  

If ∝ = 𝛽, then {φj} is called a tight frame.  

Some basic facts follow immediately from this definition.  

(i) A frame must span the Hilbert space. Otherwise, F would have a non-trivial nullspace and   

there would be some f ≠0 such that ‖𝐹𝑓‖2 = 0 < ∝ ‖𝑓‖2.  

(ii) The frame operator is an injection onto its range. If F f = F g, then by linearity 

 F(f − g) = 0 and  

 ∝ ‖𝑓 − 𝑔‖2  ≤ 0 ≤ 𝛽 ‖𝑓 − 𝑔‖2 ⇒  ‖𝑓 − 𝑔‖ = 0 ⇒ f = g.  

(iii) A frame does not have to be orthogonal, or even linearly independent. 

Example 4. Let 𝐻 = ℂ2, and let F = (
1 0
0 1
1 1

). The columns of F∗ = (
1 0 1
0 1 1

) are a frame of 

ℂn, and F: ℂ2 → ℂ3 is the associated frame operator. Its range in ℂ3 is the span of its columns, 
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i.e., all vectors of the form (
𝑎
𝑏

𝑎 + 𝑏
), and F is a bijection from ℂ2 to this two-dimensional 

subspace of ℂ3. Its frame bounds will be the squares of the singular values of F, which are the 

square roots of the eigenvalues of F∗F = (
2 1
1 2

)Thus, ∝ = 1 and 𝛽 = 3.  

The obvious question is how a vector x ∈ ℂ2 can be reconstructed from its “frame coefficients” 

in ℂ3. It turns out that there is another set of vectors in ℂ 2, called the dual frame, that is used 

to reconstruct x from its coefficients. 

Before defining the dual frame, we compute the adjoint of the frame operator. 

Proposition 1. Let {φj} ⊂ H be a frame and let F be the associated frame operator. Then the 

adjoint of F is the operator F∗: l2 → H given by  

F∗c = ∑𝑐𝑗𝜑𝑗. 

Proof. By definition, the adjoint satisfies  

〈𝐹𝑓, 𝑐〉= ∑〈𝜑̅𝑗  𝑓〉̅cj 

 

Using the conjugate symmetry and linearity of the inner product, this is  

= 〈𝑓, ∑ 𝑐𝑗𝜑𝑗〉 =  〈𝑓, 𝐹∗𝑐〉. 

The result follows.            

So, the adjoint of the frame operator takes a sequence c in l2 to a linear combination of the 

frame vectors weighted by the coefficients cj. 

 

3.1 The Dual Frame  

Definition 5. Dual Frames  

Let {𝜑j} be a frame in H. Then there is another frame {𝜑̃ j}⊂H, called the dual frame, 

given by: 

    𝜑̃j = (F∗F)−1𝜑j. 

It is instructive to look at the equivalent expression 

𝜑j = F∗F𝜑̃j. 

F 𝜑̃j is the l2 sequence of “frame coefficients” of 𝜑̃j in terms of the original frame; say  

F 𝜑̃j = 𝑐̃. The adjoint F∗, when applied to this sequence of coefficients, gives  

F∗𝑐̃ = ∑ 𝑐̃𝜑𝑖 = 𝜑j 
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So, we have written each of the original frame vectors φj as a linear combination of the other 

φi, and the coefficients of this expansion are the inner products of the φi with the dual frame 

vector 𝜑̃j.  

We will see below that we can expand any vector 𝑓 ∈𝐻 as a linear combination of the φj, and 

the coefficients of this expansion will be given by the inner products of 𝑓 with the dual frame 

vectors 𝜑̃j. On the other hand, we can write any vector f as a linear combination of the 𝜑̃j, and 

then the coefficients will be given by the inner products of 𝑓 with the original frame. This is 

where the terminology “dual frame” comes from; reconstructing a vector from its frame 

coefficients and writing a vector as linear combination of frame vectors are in fact dual aspects 

of the same problem. 

Proposition 2. If F is a frame operator (with frame bounds 𝛼 and 𝛽), then F∗F is invertible; 

thus, the dual frame is well-defined.  

Proof.  

(i) Let 𝑓 ∈𝐻 with 𝑓 ≠0. Then  

〈𝐹 ∗ 𝐹𝑓〉, fi= 〈𝐹𝑓, 𝐹𝑓〉= ‖𝐹𝑓‖2 ≥A ‖𝑓‖2 > 0.  

It follows that F∗F𝑓 ≠0, so F∗F is injective.  

(ii) The range of F∗F is closed. Suppose gn is some Cauchy sequence in the range of 

F∗F. That is,  

‖𝑔𝑛 − 𝑔𝑚‖→ 0 as n, m→∞  

and there is a sequence 𝑓n such that F∗F𝑓n = gn ∀n. For any n, m,  

 〈𝐹∗𝐹 (𝑓𝑛 − 𝑓𝑚), (𝑓𝑛 − 𝑓𝑚)〉 = ‖𝐹 (𝑓𝑛 − 𝑓𝑚‖
2 = ‖𝑔𝑛 − 𝑔𝑚‖2 ≥ 𝛼‖𝑓𝑛 − 𝑓𝑚‖

2, 

since F is a frame with lower bound 𝛼 > 0. That means  

‖𝑓𝑛 − 𝑓𝑚‖
2  ≤ 

1

𝐴
 ‖𝑔𝑛 − 𝑔𝑚‖

2,  

So  ‖𝑓𝑛 − 𝑓𝑚‖
2 → 0  as n, m → ∞ and fn is a Cauchy sequence as well. Every Hilbert space is 

complete by definition, so 𝑓n converges to some 𝑓 ∈𝐻. F∗F is a bounded linear map: the norm 

of an operator and its adjoint are the same, so ‖𝐹 ∗ 𝐹 ‖ ≤ ‖𝐹‖2 = 𝛽. It follows that F∗F is 

continuous, and  

F∗F𝑓n = gn→F∗F𝑓 ≡ g ∈ range(F∗F).  

That is, any Cauchy sequence gn in range (F∗F) converges to some element g in range(F∗F), 

and range(F∗F) is closed.  

(iii).  F∗F is a surjection, since 

𝑟𝑎𝑛𝑔𝑒(𝐹 ∗ 𝐹)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = range(F∗F)=N((F∗F)∗)⊥= N(F∗F)⊥ = {0}⊥= H,  

where we have used the fact that F∗F is self-adjoint. 

Thus, F∗F is a bijection from 𝐻 to itself and for every g ∈𝐻, there is a unique f ∈H such that 

F∗F𝑓 = g. The inverse is the unique operator satisfying (F∗F)−1g = 𝑓.  

We are now in a position to show that the dual frame is indeed a frame of H, and compute its 

frame operator and frame bounds. 
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Theorem 3. Suppose {φj} is a frame of a Hilbert space H, with associated frame operator 𝐹̃ 

and frame bounds 0 < 𝛼 ≤ 𝛽 < ∞. Then the set {𝜑̃j = (F∗F)−1φj} is another frame of 𝐻, with 

frame operator  

𝐹̃  = F(F∗F)−1,  

satisfying  

1

𝛽
 ‖𝑓‖2 ≤ ‖𝐹 ˜𝑓‖2  ≤ 

1

𝛼
 ‖𝑓‖2.  

The set {𝜑̃j} is called the dual frame associated with the original frame. 

Proof.  

If {𝜑̃j} is to be a frame, then its frame operator is some 𝐹̃ satisfying : 

(𝐹̃𝑓)j = 〈𝜑̃𝑗, 𝑓〉 = (F∗F)−1𝜑̃j, 𝑓.  (F∗F)−1 is the bounded inverse of a bounded self-adjoint 

operator, so it is self-adjoint, and  

(𝐹̃ 𝑓)j = 〈𝜑𝑗,(𝐹
∗ 𝐹)−1 𝑓〉.  

By definition of the frame operator F, this is the jth component of F (F∗F)−1. Thus, the dual 

frame operator is given by  

𝐹̃  =F(F∗F)−1. 

To compute the frame bounds, we note that the inverse of a bounded self-adjoint operator is 

also self adjoint, so 𝐹̃∗ = (F∗F)−1F∗, and 

   ‖𝐹̃ 𝑓‖2 = 〈𝐹∗𝐹𝑓, 𝑓〉= 〈(𝐹∗𝐹)−1 𝐹∗𝐹(𝐹∗𝐹)−1 𝑓, 𝑓〉 

    = 〈(𝐹∗𝐹)−1 𝑓, 𝑓〉. 

 

Let g = (F∗F)−1𝑓, so that  

‖𝐹̃ 𝑓‖
2
 = 〈𝑔, 𝐹∗𝐹𝑔〉 = ‖𝐹 𝑔‖2. 

Since F is a frame operator with bounds 𝛼 and 𝛽,  

𝛼‖𝑔‖2 ≤ ‖𝐹𝑔‖2  ≤ 𝛽 ‖𝐹𝑔‖2. 

 

Inserting g = (F∗F)−1𝑓 back into this inequality gives  

A‖(𝐹∗𝐹−1𝑓‖2 ≤ ‖𝑓‖2 ≤ ‖(𝐹∗𝐹)−1𝑓‖2, 

and rearranging, we have  

1

𝛽
 ‖𝑓‖2 ≤  ‖(𝐹∗𝐹)−1𝑓‖2 ≤  

1

𝛼
 ‖𝑓‖2, 

It follows that  

1

𝛽
 ‖𝑓‖2 ≤  ‖𝐹̃𝑓‖

2
 ≤  

1

𝛼
 ‖𝑓‖2, 
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Thus, {𝜑̃j} is indeed a frame, with bounds 0 < 
1

𝛽
  ≤ 

1

𝛼
 < ∞.  

Example 5. Let us return to Example 4, and compute the dual frame. We have a frame  

{(
1
0
) , (

0
1
) , (

1
1
)} of ℂ2. The frame operator is  

F = (
1 0
0 1
1 1

)  

and the frame bounds are 𝛼 = 1, 𝛽 = 3. 

The dual frame operator is 

𝐹̃  = F(F∗F)−1 =  

(

 
 
−

2

3
−
1

3
1

3

2

3
1

3

1

3 )

 
 

 

so the dual frame is {(
2
3⁄

−1
3⁄
) , (

−1
3⁄

2
3⁄
) , (

1
3⁄

1
3⁄
)}.The bounds for the dual frame are 𝐴̃  = 

1

𝛽
 = 
1

3
 

and 𝐵̃ = 
1

𝛼
 =1.  

Consider the vector x = (
1
2
). Applying the operator F to it gives  

Fx = (
1
2
3
).  

These are the coefficients of the expansion of x in terms of the dual frame vectors; that is, 

   x = (
1
2
) = 1 (

2
3⁄

−1
3⁄
) + 2  (

−1
3⁄

2
3⁄
) + 3 (

1
3⁄

1
3⁄
) 

If we instead apply the dual frame operator to x, we find 

𝐹 ̃x = (
0
1
1
). 

These are the coefficients of the expansion of x in terms of the original frame vectors:  

  X = (
1
2
) = 0 (

1
0
)  + 1 (

0
1
) + 1 (

1
1
). 

In general, the frame operator is not invertible, since it might not be surjective. However, in 

the example above, we were able to recover a vector x from its frame coefficients by writing it 

as a linear combination of the dual frame vectors; specifically, 

𝐹̃∗Fx = x 
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for any x, so the frame operator has a left inverse 𝐹̃∗ that inverts F on its range. This turns out 

to be true in general, and an analogous result allows us to recover a vector from its dual frame 

coefficients.  

Theorem 4. Pseudo-Inverse of the Frame Operator  

If F is a frame operator in a Hilbert space H and 𝐹̃ is the associated dual frame operator, then 

   𝐹̃∗F = F∗𝐹̃  = I,  

where I is the identity operator on H. That is, 𝐹̃∗ and F∗ are left inverses for F and 𝐹̃  

respectively.  

Proof. The dual frame operator is given by  

𝐹  = F(F∗F)−1.  

F∗F is a bounded, self-adjoint operator, so it is invertible and its inverse is self adjoint. Thus, 

𝐹̃∗=(F∗F)−1F∗. 

It follows that 

𝐹̃∗F =(F∗F)−1(F∗F)=I. 

Also, 

F∗𝐹 ̃ = F∗F(F∗F)−1 = I. Thus, for any frame {φj} and its associated dual frame 

{𝜑̃j }, we have for each 𝑓 ∈H  

   𝑓 = ∑〈∅𝑗 , 𝑓〉 ∅̃𝑗 = ∑〈∅̃𝑗 , 𝑓〉 ∅𝑗.  

When a frame is redundant (that is, F is not a surjection, or equivalently, the frame vectors are 

linearly dependent), 𝐹̃∗ is not a unique left inverse. We can add any arbitrary operator A that is 

zero on range(F) and still get a left inverse; if A: l2 →H is a linear operator satisfying A (F 𝑓) 

= 0 for all 𝑓 ∈ H, then clearly (𝐹̃∗ + A)F 𝑓 = 𝐹̃∗F 𝑓 = 𝑓 for any 𝑓 ∈H. The pseudo-inverse 𝐹̃∗ 

is chosen because it is zero on range(F)⊥, and so it is “optimal” in the sense that is the left 

inverse with the smallest possible norm.  

Theorem 5. “Optimality” of the Psuedo-Inverse  

If F is a frame operator on H and 𝐹̃  is the dual frame operator, then 𝐹̃∗ is the left-inverse of F 

with minimum induced norm. That is, if 𝐹̃∗ F = TF = I, then  

‖𝐹̃ ‖ ≤ ‖𝑇‖. 

Proof. First we show that range(F) is closed. Let cn = Ffn be a Cauchy sequence in range(F); 

that is,  

  ‖𝑓𝑛 − 𝑓𝑚‖
2 → 0 as n, m→∞.  

From the frame inequality it follows that  

‖𝐹 (𝑓𝑛 − 𝑓𝑚‖
2 = ‖𝑐𝑛 − 𝑐𝑚‖

2  ≥ 𝛼 ‖𝑓𝑛 − 𝑓𝑚‖
2  
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so ‖𝑓𝑛 − 𝑓𝑚‖
2 →0 as n, m→∞. Thus, fn is a Cauchy sequence and it converges to some 𝑓 ∈ 

H. F is bounded, so it is continuous, and F fn = cn → F 𝑓 = c for some c ∈ range(F), and range(F) 

is closed.  

Since range(F) is closed, we have  

l2 = range(F) ⊕ (range(F))⊥.  

Let c ∈l2 with c ≠ 0 and write c = c1 + c2 where c1 = F 𝑓 ∈ range(F) and c2 ∈ (range(F))⊥. Let 

T be an arbitrary left inverse of F. Then T and 𝐹̃∗ are equal on range(F), so  

‖𝐹̃∗𝑐‖

‖𝑐‖
= 

‖𝐹̃∗𝑐1‖

‖𝑐‖
 = 
‖𝑇𝑐1‖

‖𝑐‖
 

Since c1⊥c2, ‖𝑐‖2 = ‖𝑐1‖
2 + ‖𝑐2‖

2 and ‖𝑐‖  ≥ ‖𝑐‖, so  

‖𝐹̃∗𝑐‖

‖𝑐‖
 = 
‖𝐹̃∗𝑐‖

‖𝑐‖
 = 
‖𝑇𝑐1‖

‖𝑐‖
 ≤ 

‖𝑇𝑐1‖

‖𝑐‖
 ≤ 𝑠𝑢𝑝 

‖𝑇𝑐‖

‖𝑐‖
. 

 

Thus,  

  ‖𝐹̃∗‖ = sup 
‖𝐹̃∗𝑐‖

‖𝑐‖
 ≤  

‖𝑇𝑐‖

‖𝑐‖
 = ‖𝑇‖. 

and the pseudo-inverse 𝐹̃∗ is the left inverse of F with minimum sup norm.  

We have shown that the pseudo-inverse is the left inverse of minimum norm. If we know the 

lower frame bound 𝛼, then this norm is given by ‖𝐹̃∗‖= ‖𝐹̃∗‖ = 
1

√𝛼
. Having this bound on the 

pseudo-inverse is important for computational reasons; if 
1

√𝛼
 is not too large, then a vector can 

be reconstructed from its frame coefficients in a numerically stable way. Say we have a vector 

𝑓 ∈ H whose frame coefficients are given by F 𝑓 = c. In practice, we will not have the exact 

frame coefficients, but some perturbed 𝑐̃ = c + δ where hopefully ‖𝛿‖ ≪ 1. Then the 

reconstructed vector will be 𝑓 ̃= 𝐹̃∗𝑐̃= 𝑓 + 𝐹̃∗δ, and‖𝐹̃ − 𝑓‖= ‖𝐹̃∗𝛿‖ ≤ 
1

√𝐴
 ‖𝛿‖. Thus, small 

perterbations to the frame coefficients result in small perturbations of the reconstructed vector, 

as long as  
1

√𝛼 
is not too large. 

 

3.2 Tight Frames 

We have seen that in order to reconstruct a vector from its frame coefficients, we must have 

knowledge of the dual frame as well. For a special class of frames, this is no trouble, because 

the dual frame vectors are just constant multiples of the original frame vectors.  

Theorem 6. The Dual Frame of a Tight Frame  

A tight frame is a frame satisfying ‖𝐹𝑓‖2 = 𝛼 ‖𝑓‖2 for some 𝛼 > 0, and for every 𝑓 ∈ H.  

Let {φj} be a frame of H. Then {φj} is a tight frame with frame bound 𝛼 if and only if the dual 

frame is given by {𝜑̃j = 
1

𝛼
 φj}. 
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Proof.  

Suppose {φj} is a tight frame. Then for any f ∈H,  

‖𝐹𝑓‖2 = 〈𝐹 ∗ 𝐹𝑓, 𝑓〉 = 𝛼‖𝑓‖2 = 𝛼 〈𝑓, 𝑓〉, 

and thus  

F∗F =AI  

where I is the identity operator on H. It follows that (F∗F)−1 = 
1

𝛼
𝐼, and so 𝜑̃j = 

1

𝛼
 φj. 

Conversely, suppose we know that the dual frame satisfies 𝜑̃j = 
1

𝛼
φj. Then the associated 

frame operator satisfies (𝐹̃ 𝑓) j = 〈∅̃𝑗, 𝑓〉 = 
1

𝛼
 (F f)j, so F = 𝛼𝐹̃. It follows from 

Theorem 4, then, that 

F∗F =𝛼 𝐹̃∗F =𝛼I, 

so for any 𝑓 ∈H, 

〈F ∗ 𝐹𝑓, 𝑓〉 = ‖𝐹𝑓‖2 = 𝛼〈𝑓, 𝑓〉 = 𝛼‖𝑓‖2  

and {φj} is a tight frame with frame bound 𝛼.  

Example 6. Any orthonormal basis is a tight frame with 𝛼 = 𝛽 =1. 

Example 7. In ℝ2, any set of 3 vectors that are equally distributed on the unit circle (meaning 

the angle between each of them is 120 degrees) will form a tight frame. For example, the set  

 {(
1
0
) , (

cos
2𝜋

3

𝑠𝑖𝑛
2𝜋

3

) ,(
cos

4𝜋

3

𝑠𝑖𝑛
4𝜋

3

)} = {(
1
0
) , (

−1 2⁄

√3
2
⁄
) , (

−1 2⁄

−√3 2
⁄
)} 

is a tight frame. To see this explicitly, note that for any v = (
𝑥
𝑦)in ℝ 2, we have  

 ∑ |〈∅𝑛, 𝑣〉|
3
𝑛=1

2 = x2 + (−
𝑥

2
+ 

√3𝑦

2
)
2

 + (−
𝑥

2
− 

√3𝑦

2
)
2

 

   = x2 + 
1

4
𝑥2 + 

3

4
𝑦2 - 

√3

2
xy + 

1

4
𝑥2 + 

3

4
𝑦2 - 

√3

2
xy 

   = 
3

4
𝑥2 + 

3

2
𝑦2 = 

3

2
‖𝑣‖2. 

 

3.3 Relationship between Frames and Bases 

A frame is a generalization of a basis. Clearly, in finite dimensions a frame is a basis if and 

only if it is linearly independent; that is, a frame in ℂn is a basis if and only if it consists of 

exactly n vectors. 
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Definition 6. Normalized Frames  

Define a normalized frame to be a frame {φj} of a Hilbert space H such that ‖φj‖ =1 for all j . 

That is, a normalized frame consists of unit vectors. 

Theorem 7. Conditions for a Normalized Frame to be an Orthonormal Basis 

 A normalized frame is an orthonormal basis if and only if 𝛼 = 𝛽 = 1. 

Proof. Suppose {vj}j∈J is an orthonormal basis of a Hilbert space H. Then for any u ∈ H, we 

have the basis expansion  

u = ∑ 〈𝑣𝑗 , 𝑢〉𝑗∈𝐽  vj. 

Since {vj} is an orthonormal basis, 〈𝑣𝑗 , 𝑣𝑖〉 = δij for all i, j ∈ J. Thus,  

‖𝑢‖2 = 〈𝑢, 𝑢〉 = ∑ 〈𝑣𝑗 , 𝑢〉 〈𝑢, 𝑣𝑗〉𝑗∈𝐽  = ∑ |〈𝑣𝑗 , 𝑢〉|𝑗 ∈𝐽
2,  

and vj is a normalized frame with 𝛼 = 𝛽 = 1. 

Now suppose {φj}j∈J is a normalized frame with 𝛼 = 𝛽 = 1. Then for any 𝑓 ∈ H,  

‖𝑓‖2=∑ |〈𝜑𝑗, 𝑓〉|𝑗∈𝐽
2.  

Then in particular, for any i, ‖𝜑𝑖‖
2 = 1 = 1 + ∑ |〈𝜑𝑗 + 𝜑𝑖〉|𝑗≠𝑖

2, which implies |〈𝜑𝑗, 𝜑𝑖〉| = δij 

so the frame vectors are orthonormal. To show that any vector can be expanded in terms of the 

frame vectors, consider the difference  

D = f − ∑ 〈𝜑𝑗 , 𝑓〉𝑗 ∈𝐽 φj.  

This difference must satisfy 

 ‖𝑑‖2= ∑ |〈𝜑𝑗, 𝑑〉|𝑗 ∈𝐽 
2  

  = ∑ (|〈𝜑𝑖, 𝑓 − ∑ 〈𝜑𝑗 , 𝑓〉𝜑𝑗𝑗 ∈𝐽 〉|)𝑖 ∈𝐽 
2 

  = ∑ (|〈𝜑𝑖, 𝑓〉 − ∑ 〈𝜑𝑗 , 𝑓〉〈𝜑𝑖, 𝜑𝑗〉𝑗 ∈𝐽 |)𝑖 ∈𝐽
2. 

Since the φj are orthonormal, this is equal to  

∑ (|〈𝜑𝑖, 𝑓 〉 − 𝜑𝑖, 𝑓|)𝑖 ∈𝐽 
2 = 0.  

Thus, d=0 and 𝑓 = ∑ 〈𝜑𝑗, 𝑓 〉𝜑𝑗𝑗 ∈𝐽 .  It follows that {φj} constitutes an orthonormal basis.  

If a frame is not normalized, then the result of Theorem 20 does not hold. We can show this by 

constructing a frame of ℂ2 consisting of 3 vectors that has bounds 𝛼 = 𝛽 =1. 

Example 8. To construct a frame of ℂ2 consisting of 3 vectors that satisfies A = B = 1, we must 

find a matrix in ℂ3×2 that has singular values σ1 = σ2 = 1. Such a matrix can be factored as USV 

, where U ∈ℂ3×3 and V ∈ ℂ2×2 are unitary and S = (
1 0
0 1
0 0

). For example, let  
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  U = (

𝑐𝑜𝑠 (
𝜋

3
) 𝑠𝑖𝑛 (

𝜋

3
) 1

− sin (
𝜋

3
) 𝑐𝑜𝑠 (

𝜋

3
) 1

0 0 1

)  (

𝑐𝑜𝑠 (
𝜋

3
) 0 𝑠𝑖𝑛 (

𝜋

3
)

0 1 0

𝑠𝑖𝑛 (
𝜋

3
) 0 𝑐𝑜𝑠 (

𝜋

3
)

) 

and 

   V = (
1 0
0 1

). 

This gives  

USV =  

(

 
 

1

4

√3

2

−
√3

4

1

2

√3

2
0)

 
 

, 

so the set {(

1
4⁄

√3
2
⁄
) , (

−
3

4

1
2⁄
) , (√

3
2⁄

0

)}is a tight frame of ℂ2 with 𝛼 = 𝛽 = 1. However, it is 

clearly not a basis. Theorem 7 is not violated because the frame vectors do not have unit length. 

 

3.4 Frames in Finite Dimensions 

We now consider frames in the finite dimensional Hilbert spaces ℂn. We give first a sufficient 

condition for a set of vectors to constitute a frame. 

Lemma 8. Any finite, spanning set in ℂn constitutes a frame.  

Proof. Suppose {𝜑𝑗}𝑗=1
𝑚

 ⊂ ℂn and span({φj}) = ℂn.  

Define an operator F: ℂn → ℂm by (Fx)j = 〈𝜑𝑗 , 𝑥〉. F can be written as a matrix F ∈ℂm×n. This 

matrix has rank n, since the span of its rows is all of ℂn by assumption; it follows that all the 

singular values of F are nonzero. We denote the largest singular value by σ1, and the smallest 

by σn. Then for any x ∈ℂn,  

𝜎 𝑛
2‖𝑥‖2 ≤ ‖𝐹𝑥‖2 𝜎1

2‖𝑥‖2.  

Thus, F is a frame operator, {𝜑𝑗}𝑗=1
∞

is a frame of ℂn, and the frame bounds are given by the 

squares of the smallest and largest singular values of F (i.e., the absolute values of the 

eigenvalues of F∗F).  

It is also possible to have an infinite frame in finite dimensions, as long as the length of the 

frame vectors goes to zero sufficiently fast. 

Lemma 9. A countable spanning set {𝜑𝑗}𝑗=1
∞
 in ℂn is a frame iff   ∑𝑗=1

∞  ‖𝜑𝑗‖
2 < ∞. 

Proof. Let {𝜑𝑗}𝑗=1
∞

  be a set that spans ℂn.  
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Suppose  iff   ∑𝑗=1
∞  ‖𝜑𝑗‖

2 = 𝛽 < ∞. For any x ∈ℂn, the Cauchy-Schwarz inequality gives  

‖𝐹𝑥‖2  = ∑ |〈𝜑𝑗, 𝑥〉|
2∞

𝑗=1   ≤ = ‖𝑥‖2  ∑ ‖𝜑𝑗‖
2
=∞

𝑗=1 𝛽 ‖𝑥‖2,  

so F is bounded above.  

Since {φj} spans ℂn, we can choose a finite subset that also spans ℂn, say {∅𝑖
1}𝑖=1
𝑛 n where  

φi ′∈{φj}. By Lemma 17, this subset is a frame; say its lower frame bound is A. Then  

  ‖𝐹𝑥‖2  = ∑ |〈𝜑𝑗, 𝑥〉|
2∞

𝑗=1  ≥  = ∑ |〈𝜑𝑗
1, 𝑥〉|

2𝑛
𝑗=1  ≥ A ‖𝑥‖2,  

and F is bounded below. It follows that F is a frame operator and the {φj} are a frame of ℂn. 

 

4.0 Conclusions 

We have introduced the concept of frames and gone through the basic definitions and important 

theorems. The real work, being in construction of frames that can be used in applications. 

References (1) and (2) provide constructions of wavelet frames and windowed Fourier frames, 

which have found great use in signal processing applications. The results we have presented 

about finite frames indicate that a normalized tight frame (FNTF) exhibits a great deal of 

symmetry, and that these FNTFs can be fully classified. The infinite dimensional analogous 

has not, I suppose, been fully explored; similar classification results for infinite dimensional 

normalized tight frames could give some insight into the concept of symmetry and 

“equidistribution” in the infinite dimensional setting. 
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