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Abstract

Actuarial Science is the discipline that concerns with uncertain events where the concept

of probability and statistics provide for essential instruments in the measurement and

management of risks in insurance and �nance.A key aspect of the business of insurance is

the calculation of the price to pay commonly known as the premium to pay in exchange

for the transfer of risk.Many insurance companies charge premiums on the policyholders

based only on the claim frequency.That way a policyholder who underwent an accident

with a small size of loss will be unfairly punished in comparison to an insured policyholder

who had an accident with a large amount of loss.In automobile liability insurance,the

policyholders do not all the same risk to have an accident.The premium that is charged

to each policyholder has to be proportionate to his/her underlying risk to have an ac-

cident.Motivated by this,we consider the design of a model that incorporate both the

frequency and and severity components and we suggest a method that deliberate concur-

rently on the number of claims,the exact size of loss and the individual characteristics.

The modeling of claim frequency component is based on Poisson mixtures where the

number of claims is distributed according to the negative binomial type I.The severity

component is modeled using the exponential mixtures where the the losses are distributed

according to a Pareto distribution.Using the Baye’s theorem we get the posterior function

for the number of claims and the claim amount component.Considering only the claim

frequency the premium was estimated as the mean of the posterior structure function in

computing premiums.The premiums based on both frequency and severity component

was estimated as the product of the mean of posterior structure function of the frequency

and severity component.
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structure function,a priori classi�cation criteria, a posteriori classi�cation criteria,
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1 General Introduction

1.1 Background/Historical Information

The basic concept of insurance consist of creating a portfolio where the risks of the insured
are managed.Since the risks in the portfolio are not the same for every insured ,the
premium paid by each member should be equivalent to risk that an insured exposes the
portfolio.In insurance companies that deal with third-party liability insurance especially
the automobile,the risk structure of the portfolio of policyholders is heterogeneous in
that the risk are not equal, i.e. the policyholders do not all have the same risk to have an
accident.The detection and measurement of the elements that a�ect and transform the
risk of an accident and hence the premium that must be paid,is essential for the designing
fair tari� that fairy allocates the cost of claims to each and every insured individual.

The main duty of an actuary in modelling of a new pricing structure is to ensure that it
equitable .This is achieved with the partition of the portfolio of policies into similar groups
and all the policyholders belonging to the same group paying equal premium.The more
heterogeneity of risk structure exist inside each class of policyholders the more unfair
the tari� classification method is as policyholders with a di�erent probability to have an
accident pay the same premium.This partition can be done using information known to
the insurer before the insured join the portfolio or a posteriori information or by using
both of them.The most frequently used a priori classification criteria are the automobile
type and use, age and sex of the insured,cubic capacity of the engine and place where the
insured resides.A�er the use of a priori classification criteria the tari� structure classes are
still homogeneous ,hence its is suggested taking into consideration all these di�erences
in the posteriori,by modifying the premium according to the each policyholder’s claim
history.

According to the philosophy of a posteriori classification criteria the driver’s past claim
behavior give the best forecast of the future claim numbers.The evolution of the philosophy
of the a posteriori classification has guided the growth of the classification systems which
are known in almost every country around the world Bonus-Malus Systems (BMS).The
Bonus-Malus-Systems penalize policyholders who caused and and made a claim by
premium increase or and appreciate the policyholders who did not caused and accident
during the period under consideration by awarding the discounts of the premium of
bonuses.The main purpose of a BMS is to enable the insurance companies under how they
charge premiums to their customers proportionately based on the characteristics of each
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insured person at any given year.Such characteristics includes the number of claims,the
amount of each claims and driving abilities

The optimal BMS obtained using the frequency component has the disadvantage of
penalizing the policyholders without taking into consideration the amount of claim that
the claim caused.As a ma�er of fact,all Bonus-Malus Systems considered do not factor
in the amount of loss on renewal of the policy and as such ,the policyholders who made
a claim with small loss are forced to renew their policy with the same price with the
policyholders which the insurance company pay high cost in paying their claims.In this
sense a BMS which can separate the policyholders according to the number of claims and
amounts of their claims should be developed.

Besides,the current Bonus-Malus System does not take into consideration the type of
accident and penalize equally the accidents which cause a property damage claim only
and the claims which cause property damage and bodily injury claims.The bodily injury
claims are of great importance because even though they represent a small percent of
number of claims,they cost a serious percent of the total claim amounts.

1.2 Definitions,Notations and Terminologies

Mixtures

Mixtures arises when a probability density function f (x/ν) depends on a parameter ν that
is uncertain and is itself a random variable with density g(ν).Then taking the weighted
average of f (x/ν) with g(ν) as weight produces the mixture distribution.
The pdf of a continuous mixture is given by

f (x) =
∫

∞

0 f (x/ν)g(ν)dν
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where,

f (x/ν) = the conditional pdf

and,

g(ν) = the continuous mixing distribution.

pdf= probability density function

BMS=Bonus-malus system

NCD= No claim discount system

PMF =Probability Mass Function

E(xr)= The rth Moment of the mixture

1.3 Research Problem

Originally Bonus-Malus System was obtained by considering claim frequency without
taking into account the size of claim.This system was unfair since it punishes the claim
numbers independently of their severity,that is without taking into account the size of
loss.
The early studies considered Poisson distribution in obtaining claim frequency component
which assumes homogeneity in policyholders risks but in reality di�erent individuals have
di�erent underlying risk characteristics and hence the need to take into consideration
heterogeneity.Equidispersion is a major disadvantage of Poisson distribution where vari-
ance is to be equal to the mean which may not be consistent with observed data.The
development of specific models (mixture models) to represent di�erent characteristics of
data was motivated by high presence of overdispersion in the data.
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The study further proposed a BMS that incorporate both information known to the insurer
and information that the insured exhibits during the period of observation and basing on
each policyholder’s characteristics.
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1.4 Objectives

To obtain optimal Bonus Malus system according to the claim numbers ,claims size
component and on characteristics of each individual policyholder.

Specific Objectives
The specific objectives are to :
1.To estimate number of claims and claim size component according to posteriori criteria.
2.To estimate number of claims and claim size component according to a priori and
posteriori criteria.
3.To compare premiums for various claim frequency with claim severity during the first
period of observation.
4.Estimates premiums using generalized models based on information known to the insurer
before the insured join the portfolio and a�er taking into account the characteristics of
each insured.

1.5 Methodology

The following are methods that are used to achieve the above objectives.

Continuous Mixtures

Poisson Mixtures

Let

f (x/ν) = exp(ν)νx

x! ν > 0 and x = 0,1,2, ...

Then

f (x) =
∫

∞

0
exp(ν)νx

x! g(ν)dν

E(x) = ν and Var(x) = ν

Exponential Mixtures

We consider exponential distribution of type II whose mean is the parameter ν

f (x/ν) = 1
ν

exp(− x
ν
) ν > 0 x > 0

f (x) =
∫

∞

0
1
ν

exp(− x
ν
)g(ν)
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E(x) = 1
ν

and Var(x) = 1
ν2

The Gamma function

g(ν) = β α να−a exp(−βν)
Γ(α) , ν > 0,α > 0,β > 0

Γ(α +1) = αΓ(α)

∫
∞

0 exp(−β t)tα−1dt = Γ(α)
β α

Inverse Gamma Function

g(y) =
1
m exp(−m

y )

( y
m)

s+1Γ(α)

E(y) = m
s−1 and Var(y) = m2

(s−1)2(s−2)

Lindley Function

g(y) = ϑ 2

ϑ+1(y+1)exp(yaϑ) , y > 0 and ϑ > 0

E(y) = ϑ 2+4ϑ+2
ϑ 2(ϑ01)2

Estimation
The parameters of the above distributions are estmated using the following methods;

1) Method of Moments
In this method,the parameters by method of moments we equate the representative
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variance s2 and representative mean x̄ to the corresponding population values.

2)Maximum likelihood Estimate method

The method of maximum likelihood estimate is based on the likelihood function,L(ϑ ;x).Suppose
we are given a statistical model { f (·;ϑ)/ϑ ∈ ϑ}, where ϑ denotes the parameter for the
distribution.The method of maximum likelihood estimate find the values of the model
parameter ,ϑ , that maximize the likelihood function ,L(ϑ ;x).
This estimator is given by,

l(ϑ ;x) = lnL(ϑ ;x)

3) Bayes Theorem-Bayesian Inference

Consider observations n1,n2, ...,nt ,and suppose we wan to estimate the parameters ν1,ν2, ...,νn.Let
us denote ν = (ν1,ν2, ...,νn)

T the vector of the parameters and n = (n1,n2, ...,nt)
T ob-

served data with likelihood function L(k/ν).Suppose u(ν) is the prior distribution for ν ,
which denotes our subjective belief or the prior information we have about ν .The posterior
distribution of the vector of parameters ν will be obtained using the Bayes theorem,and
when the parameter ν is continuous valued,which is most common situation,will be the
following:

f (ν/n) =
L(n/ν)∗g(ν)∫

∞

0 L(n/ν)∗g(ν)dν

1.6 Literature Review

Generally in the insurance industry,a BMS are experience rating mechanism which pun-
ishes policyholders that makes one or more accidents by premium surcharge and ap-
preciate by giving discounts to policyholders who had no claim in any period under
consideration.BMS are common in automobile insurance industry.The BMS can also be
called a No - Claim Discount (NCD) or no - claim bonus in Britain and Australia.
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The basic concept of NCD is that higher insurance costs that are charged on average to
every policyholder that corresponds to the high number of the claims.

G. Dionne and C. Vanasse (1989,1992) Builds a Bonus -Malus system in which a priori
and a posteriori information are integrated with individual characteristics so as to modify
premiums of individual policyholder with a given period of time .He develops a statistical
model that integrates su�iciently categories of risks and experience rating .He used Pois-
son and Negative binomial models with a regression component in order to use all the
information available to estimate accidents distribution,.The parameters of negative bino-
mial regression model were estimated using maximum likelihood estimate.The premiums
were calculated using the expected value principle and insurance table were obtained as a
function of time,past number of accidents and remarkable variables in the regression.

Luc Tremblay (1992) proposed a bonus malus system by fi�ing of data using the poisson
inverse Gaussian Distribution extending the model introduced by Lemaire (1976) thus
minimizing the average total risk of insurer since the insurer is at risk.This model is based
on the number of claims N which is random irrespective of their amount.He represent
claim frequency Poisson distribution with mean ν which is a random variable with
distribution representing the expected risk inherent in any given portfolio.He assumed the
the distribution of ν is inverse Gaussian since it has thick tails and provide an advantage
of having a closed form expression for the moment generating function.The Mixed poisson
provide a be�er fit from the insurer’s perspective because the variance exceeds its mean.To
minimize the insurer’s risk he estimated the posterior distribution of ν using the Bayesian
theorem and estimated the parameters using the maximum likelihood estimate.He used
the principle of zero utility in order to determine the premium .

Nikolaous Frangos and Dimitris (2004) Proposed a model for modelling losses using
exponential-Inverse Gaussian distribution allowing for covariates.The model is preferred
to Pareto distribution because it has a shorter tail and considered appropriate for mod-
elling data without larger tails.The claim losses are distributrd according to exponential
distribution with mean y.Since the policyholders do not have the same mean for the
claim amounts , they expressed inform of a distribution known as inverse Gaussian dis-
tribution.The mixed exponential distribution provide a good fit for claim size data with
small tails.The allowance of covariates (regression coe�icient) in the model enables the
modelling of data with di�erent characteristics of policyholders.The model parameters
were estimated using the maximum likelihood estimation through the EM algorithm.The
posterior expectation was estimated using Bayes theorem making use of modified Bessel
Function.The covariates were fi�ed using exponential General Linear Model via EM algo-
rithm.

Spyridon D. Vrontos et al (1998) Introduced a BMS where past number of accidents
and the correct claim amount for every accident caused are considered.In particular, the
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BMS suggested allocates to every individual policyholder a premium equivalent to past
number of accidents they have and the exact amount of loss that the claim caused.That
is ,the bigger the claim size the bigger the premium that the policyholder has to pay.He
considered the frequency and severity to be independent in order to able to deal with
each component separately.He used the Negative Binomial distribution to represent the
number of claims and Pareto distribution for the amount of loss caused and the net
premium calculation principle.

Weihang Ni,Carina Contantinescu and Athanasios A. Pantelous (2014) developed a bonus
malus systems with claims severities distributed according to a Weibull distribution which
addresses the bonus hunger problem.The modelling of claims is done by mixing Poisson
intensity ν with gamma which give rise to Negative Binomial distribution which addresses
overdispersion in the data.In addition,they applied the Bayesian theorem to obtain the
posterior distribution and subsequently the posterior mean. They also assumed that
the claim amount is distributed according to exponential type I distribution with mean
1
ϑ

.The Levy (1
2 ) stable )is used to describe because they are not equal for all the insured

.The mixture of exponential type I with Levy distribution result in a Weibull distribution
which does not have long tails as Pareto which reinsurance companies rely on to alleviate
the burden of extremely large claims.The Bayes’ theorem is used to obtain the posterior
distribution and subsequently the posterior mean.The premiums are obtained using the
net premium principle .The application of Weibull distribution to claim size data shows
that the initial premiums payment are lower than the Pareto distribution which is more
preferred by a starting policyholder which creates more competitiveness to the insurer.

Emad Abdelgalil Ali Ismail (2016) present the design of an optimal BMS according to finite
mixture models with claim sizes distributed according to Gamma.This BMS is designed
using the Bayesian approach,probability distribution and taking into account the Poisson
distribution to represent number of claims.The number of claims was assumed to be
Poisson distribution and the basic risk was assumed to b Gamma resulting in Negative
binomial distribution. Using the Bayesian approach he obtained the posterior structure
function and posterior mean.The claim sizes was modelled sing Gamma distribution as the
claim size and the prior function as the Gamma function resulting in Gamma distribution
with updated parameters.The parameters were estimated using the maximum likelihood
estimate method.The premiums obtained using the net premium principle as the product
of posterior mean based on claim numbers and amount of claim.The model overcomes
the limitations of the model proposed by Weihong according to Weibull distribution and
negative distribution where premiums increases with increase in total number of claims
to a given limit then premiums reduces with increase in claim numbers.

George Tzougas et al (2017) presented the design of optimal BMS using various finite mix-
tures of distribution and regression models.He extended the actuarial literature research
which uses generalized linear models for pricing of risks through ratemaking based on a
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priori risk classification (see,Denuit et al 2007) by considering GMLSS.For the frequency
component,the number of claims is assumed to have the following distribution; a finite
Poisson,Delaporte and Negative Binomial Mixture, and for the severity component they
considered that the losses the following distribution; a finite exponential,Gamma and
Weibull Mixture.He expanded Lemaire (1995) set up and applied baye’s theorem to obtain
the posterior probability of the policyholders.

George Tzougas et al (2018) presents the design of BMS with two component mixture mod-
els emerging from no-identical parametric families.They made the following contribution
to the present study:a)Developed a new way of designing optimal bonus-malus system
considering both claim numbers and amount without assuming that the distribution for
claim numbers and amounts come from the same parametric family.b)Developed a bonus
malus system by considering that the parameters of claim numbers and amounts can
be modelled as a function of explanatory variables.c)Proposed calculation of premiums
using the variance principle since its takes into account all important information that an
insurer knew before the insured join the portfolio and their characteristics for both claim
number and amount component.The two component mixture component models devel-
oped addresses the bonus hunger problem in that it provides an option to combinations of
heavy tailed and light tailed distribution which can give premiums which are tailor made
and equitably penalize additionally for claim sizes and lower for small claim amounts.

1.7 Significance of the study

The study of Bonus Malus system play a major role in insurance industry in that the insur-
ance companies will be able to charge premiums based on the risk that the policyholder
imposes on the pool.Also a part from promoting careful driving between policyholders,it
helps assess individual risks more accurately through priori risk classifications that on a
long term basis every policyholder pay a premium which is consistent to their own claim
frequency and claim severity.
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2 Poisson and Exponential Continuous Mixtures

2.1 Introduction

To obtain the frequency and severity component we shall use the Poisson and exponential
mixtures respectively.
A brief discussion of mixtures is given below

2.1.1 Definition

Continuous Mixtures in General

f (y) =
∫ b

0
f (y/ν)g(ν)d(ν

where
f(y)=the mixed distribution
f (y/ν)= the conditional probability density
function or probability mass function
g(ν)= continuous mixing or prior distribution
Consider Poisson mixed distribution given by

Pν(n/ν) =
∫

∞

0
exp(−ν)νn

n! .g(ν)dν ,n = 0,1,2, ...

and type II exponential mixture distribution is given by

f (y) =
∫

∞

0
1
ν

exp(− y
ν
)g(ν)dν y≥ 0 for ν ≥ 0

To obtain the mixed distribution,the evaluation of the above integrand explicitly is di�icult
with the exception of a few mixing distribution,(Albercht,1984).The problem is to obtain
other methods of constructing distributions of Poisson mixtures for di�erent probability
density functions of Λ = ν , and also to identify the ones where explicit evaluation is
possible.

The major problem in constructing or obtaining mixture distribution with continuous
mixing distribution is the evaluation of the integral above.Only a few integrands can be
evaluated explicitly.
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2.1.2 The rth Moment

E(xr) =
∞

∑
0

yr f (x)

=
∞

∑
a

yr
∫

∞

0
f (y/ν)d(ν)

=
∫

∞

0
{

∞

∑
0

yr f (y/ν)}g(ν)d(ν)

=
∫

∞

0
E(Y r/ν)g(ν)d(ν)

=EE(Y r/ν)

or

E(Y r) =
∫

∞

0
yr f (y)d(y)

=
∫

∞

0
{yr
∫

∞

0
f (y/ν)g(ν)d(ν)}d(y)

=
∫

∞

0
[
∫

∞

0
yr f (y/ν)d(y)] g(ν)d(ν)

=
∫

∞

0
E(yr/Λ)g(ν)d(ν)

E(Y r) =EE(yr/Λ = ν)

2.1.3 Posterior Distribution

Consider two variables Y = y and Λ = ν

then,

f (y,ν) = f (y/ν)g(ν)
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therefore,

∫
∞

0
f (y,ν)d(ν) =

∫
∞

0
f (y/ν)g(ν)d(ν)

1 =

∫
∞

0 f (y/ν)g(ν)d(ν)∫
∞

0 f (y/ν)g(ν)d(ν)

Therefore

f (y/ν)g(ν)∫
∞

0 f (y/ν)g(ν)d(ν)

is a pdf ( for ν > 0,y > 0)

Let us denote it by g(ν/y)

therefore,

g(ν/y) =
f (y/ν)g(ν)∫

∞

0 f (y/ν)g(ν)d(ν)
(2.1)

g(ν/y) =
f (y/ν)g(ν)

f (y)
,

for ν > 0;y > 0 is a posterior pdf with posterior mean

E(ν/y) =
∫

∞

0 ν f (y/ν)g(ν)d(ν)∫
∞

0 f (y/ν)g(ν)d(ν)

E(ν/y) =
E[ν f (y/ν)]

E[ f (y/ν)]
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The objectives of this section are to:-

(i) Construct poisson and exponential mixtures for di�erent cases of g(ν).
(ii) Obtain expectation of y and Variance of y.
(iii) Determine posterior distribution of f (ν/y) and posterior mean E(ν/y).

2.2 Poisson Mixtures

Mixed Poisson distributions or Poisson Mixtures were developed in order to model data
where the fit of the Poisson distribution was not adequate.Such situation occur o�en,
among other fields in Insurance where an analysis of a heterogeneous portfolio has
to be made.As already noted in a heterogeneous portfolio,the fundamental risk for all
policyholders to incur an accident are not the same and this justifies the generation of
a model that will represent the di�erent underlying risks.It is o�en convenient when
constructing mathematical models of complex phenomenon to use familiar and simple
distributions to build more complex distributions.

Mixed Poisson distributions has been given great a�ention by Johnson et al (1993),Panjer
and Willmot (1992) and Douglas (1980).In order to define the mixed Poisson distribu-
tions,we let k,the random variable denoting the claim numbers of each insured over a
fixed time period which is equal to one year be expressed in terms of Poisson distribution
( ν ) which di�ers for di�erent insured policyholders.Thus the parameter ν is the observed
value of the random variable Λ and each policyholder’s basic risk to have an accident is
characterized by the unique value Λ for each risk.When the portfolio is large as it is in our
case it is logical to assume that Λ conforms to a continuous distribution in the interval
[o,∞].The probability density function of Λ is called mixing function .In the actuarial
context it is o�en named as the risk function and will be denoted as g(ν).

Thus the distribution of the number of each insured over a year,will have a probability of
the form,

Pν(N = n) =
∫

∞

0

exp(−ν)νn

n!
.g(ν)dν ,

for n = 0,1,2, ...

2.2.1 The rth Moment
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Consider the probability mass function

py(t) =
∫

∞

0
{exp(−νt)(νt)y

y!
}g(ν)d(ν)

for y=0,1,2,..

E(Y r) =EE(Y r/ν)

=E{
∞

∑
0

yr{exp(−νt)(νt)y

y!
}

Therefore

E(Y ) =E{
∞

∑
0

y
exp(−νt)(νt)y

y!
}

=E{exp(−νt)(νt)
∞

∑
y−1

(νt)y−1

(x−1)!

=E{exp(−νt)(νt)exp(νt)}
=E[tν ]

=tE[ν ]

E(Y 2) =E[x(y−1)+ y]

=E[y(y−1)]+E[Y ]
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Therefore

E[y(y−1)] =EE[y(y−1)/Λ]

=E{
∞

∑
0

y(y−1)
exp(−νt)(νt)

y!
}

=E{
∞

∑
y=2

exp(−νt)(νt)y

(y−2)!
}

=E{(νt)2
∞

∑
y=2

(νt)y−2

(y−2)!

=E{(νt)2 exp(−νt)
∞

∑
y=2

(νt)y−2

(y−2)!

=E{(νt)2 exp(−νt)exp(νt)}
=E[t2

Λ
2]

E[y(y−1)] =t2E[Λ2]

Therefore

E(Y 2) = t2E[Λ2]+ tE[Λ]

Therefore variance is;

Var(y) = t2E(Λ2)+ tE(Λ)− t2[E(Λ)]2

Var(y) = t2Var(Λ)+ tE(Λ) (2.2)

2.2.2 Gamma Mixing Distribution

The mixed model in the portfolio is obtained when,

k/ν ∼ poisson(ν)

and

ν ∼ Gamma(α,β )
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therefore,

p(n) =
∫

∞

0

exp(−ν)νn

n!
g(ν)dν

=
∫

∞

0

exp(−ν)νn

n!
.
ν(α−1)β α exp(−βν)

Γ(α)
dν

=
β α

n!Γ(α)

∫
∞

0
ν

n
ν
(α−1) exp(−ν)exp(−βν)dν

=
β α

n!Γ(α)

∫
∞

0
ν

n+α−1 exp{−(1+β )ν}dν

=
β α

k!Γ(α)
.

Γ(n+α)

(1+β )n+α

=
Γ(n+α

n!Γ(α)
.

β α

(1+β )n+α

P(n) =
(

n+α−1
n

)
(

β

1+β
)α(

1
1+β

)n

P(n) =
(

n+α−1
n

)
(

β

1+β
)α(

1
1+β

)n (2.3)

Which is the probability density function of the Negative binomial distribution
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Mean

E(N) = ∑
n=0

n
(

n+α−1
n

)
(

β

1+β
)α(

1
1+β

)n

= ∑
n=0

n
(n+α−1)!
n!(α−1)!

(
β

1+β
)α(

1
1+β

)n

= ∑
n=0

(n+α−1)!
(n−1)!(α−1)!

(
β

1+β
)α(

1
1+β

)n

=
1+β

β
∗ 1

1+β
∗α ∑

n=0

(
n+α−1

n−1

)
(

β

1+β
)α−1(

1
1+β

)n−1

E(N) =
α

β

E(N) =
α

β
(2.4)

Variance

Var(N) =E[n(n−1)+n]− [E(n)]2

=E[n(n−1)]+E(n)−E[(n)]2
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E[n(n−1)] = ∑
n=0

n(n−1)
(

n+α−1
n

)
(

β

1+β
)α(

1
1+β

)n

E[n(n−1)] = ∑
n=0

n(n−1)
(n+α−1)!
n!(α−1)!

(
β

1+β
)α(

1
1+β

)n

= ∑
n=0

(n+α−1)!
(n−2)!(α−1)!

(
β

1+β
)α(

1
1+β

)n

= ∑
n=0

α(α +1)
(n+α−1)!

(n−2)!(α−1)!
(

β

1+β
)α(

1
1+α

)n

=
α(α +1)
(β )2 ∑

n=0

(
n+α−1

n−2

)
(

β

1+β
)α−2(

1
1+α

)n−2

E[n(n−1)] =
α(α +1)
(β )2

Var(n) =
α(α +1)
(β )2 +

α

β
− (

α

β
)2

=
α(1+β )

(β )2

Var(n) =
α

β
(1+

1
β
)

The Posterior Distribution

from equation 2.1, we note that the formula for posterior distribution is given by

g(ν/y) =
f (y/ν)g(ν)∫

∞

0 f (y/ν)g(ν)d(ν)

and

g(ν) =
ν(α−1)β (α) exp(−βν)

Γ(α)
,

for ν > 0,α > 0,β > 0.



20

Therefore

g(ν/n) =
exp(−νt)νn

n! ∗ ν(α−1)β α exp(−βν)
Γ(α)∫

∞

0
exp(−νt)νn

n! ∗ ν(α−1)β α exp(−βν

Γ(α) dν

g(ν/n) =
exp(−νt)νnν(ν−1)β α exp(−βν)∫

∞

0 exp(−νt)νnν(α−1)β α exp(−βν)dν

g(ν/n) =
νn+α−1 exp(−(t +β )ν)∫

∞

0 νn+α−1 exp(−(t +β )ν)dν

g(ν/n) =
νn+α−1 exp(−(t +β )ν)

Γ(k+α)
(t+β )n+α

g(ν/n) =
(t +β )n+ανn+α−1 exp(−(t +β )ν)

Γ(α +n)

g(ν/n) =
(t +β )α+nνn+α−1 exp(−(t +β )ν)

Γ(α +n)
(2.5)

Posterior Mean

E(ν/n) =
∫

∞

0
ν
(t +β )n+α exp(−ν(t +β )νn+α−1

Γ(α +n)
dν

E(ν/n) =
∫

∞

0

(t +β )n+α exp(−ν(t +β )νn+α

Γ(α +n)
dν

E(ν/n) =
(t +β )n+α

Γ(α +n)

∫
∞

0
ν

n+α exp(−ν(t +β )dν

E(ν/n) =
(t +β )n+α

Γ(α +n)

∫
∞

0
ν

n+α+1−1 exp(−ν(t +β )dν

E(ν/n) =
(t +β )n+α

Γ(α +n)
∗ Γ(n+α +1)
(t +β )n+α+1

E(ν/n) =
(t +β )n+α

Γ(n+α)
∗ (α +n)Γ(n+α)

(t + τ)n+α(t +β

E(ν/n) =
α +n
t +β

(2.6)
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2.2.3 Lindley Mixing Distribution

Consider the Poisson distribution of the form

Pν(n) =
exp(−ν)νn

n!

n = 0,1,2,3, ...

and assume that ν is Lindley distributed with parameter ϑ

g(ν) =
(ϑ)2

(ϑ +1)
(ν +1)exp(−νϑ)

The unconditional distribution of n will be ;

p(n) =
∫

∞

0
p(n/ν)g(ν)dν

=
∫

∞

0

exp(−ν)νn

n!
∗ (ϑ)2

(ϑ +1)
(ν +1)exp(−νϑ)dν

=
(ϑ)2

(ϑ +1)

∫
∞

0

exp(−ν)νn(ν +1)exp(−νϑ)

n!
dν

=
ϑ 2

(ϑ +1)
[
∫

∞

0

νn+1 exp(−ν(1+ϑ))

n!
dν +

∫
∞

0

νn exp(−ν(1+ϑ))

n!
dν ]



22

let Q = ϑ 2

(ϑ+1) ,R = n+1
(1+ϑ)n+2 ,S = 1

(1+ϑ)n+1

=Q[R
∫

∞

0

νn+1 exp(−ν(1+ϑ))(1+ϑ)n+2

Γ(n+2
dν +S

∫
∞

0

νn exp(−ν(1+ϑ))(1+ϑ)n+1

Γ(n+1)
dν ]

=
ϑ 2

(ϑ +1)
[

n+1
(ϑ +1)n+2 +

1
(ϑ +1)n+1 ]

=
ϑ 2

(ϑ +1)
[
(n+1)+(ϑ +1)

(ϑ +1)n+2 ]

p(n) =
ϑ 2(n+2+ϑ)

(ϑ +1)n+3

p(n) =
ϑ 2(n+2+ϑ)

(ϑ +1)n+3 (2.7)

Mean

E(N) =
∫

∞

0
[

∞

∑
k=0

n
exp(−ν)νn

n!
] ∗ ϑ 2

(ϑ +1)
∗ (1+ν)exp(−ϑν)dν

=
∫

∞

0
[

∞

∑
n=0

exp(−ν)νn

n!
] ∗ ϑ 2

(ϑ +1)
(1+ν)exp(−ϑν)dν

=
ϑ 2

(ϑ +1)

∫
∞

0
[

∞

∑
n=1

exp(−ν)νn−1

(n−1)!
] (1+ν)exp(−ϑν)dν

=
ϑ 2

(ϑ +1)

∫
∞

0
ν(1+ν)exp(−ϑν)dν

=
ϑ 2

(ϑ +1)
[
∫

∞

0
ν exp(−ϑν)dν +

∫
∞

0
ν

2 exp(−ϑνdν ]
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Using integration by parts we have;

E(N) =
ϑ 2

1+ϑ
(

2
ϑ 3 +

1
ϑ 2 )

E(N) =
2+ϑ

ϑ(1+ϑ)

Variance

Var(N) =E[(n(n−1)]+E(n)− [E(N)]2

E[n(n−1)] =
∫

∞

0
[

∞

∑
n=0

n(n−1)
exp(−ν)νn

n!
] (

ϑ 2

1+ϑ
)(1+ν)exp(−ϑν)dν

=
∫

∞

0
[

∞

∑
n=2

exp(−ν)νn

(n−2)!
] (

ϑ 2

(1+ν)
(1+ν)exp(−ϑν)dν

=
∫

∞

0
[ν2

∞

∑
k=2

exp(−ν)νn−2

(n−2)!
] (

ϑ 2

(1+ν)
(1+ν)exp(−ϑν)dν

=
ϑ 2

1+ϑ
[
∫

∞

0
ν

2 exp(−ϑν)dν +
∫

∞

0
ν

3 exp(−ϑν)dν ]

Using integration by parts we have;

=
ϑ 2

1+ϑ
[

2
ϑ 3 +

6
ϑ 4 ]

E[n(n−1)] =
2ϑ +6

(1+ϑ)ϑ

Var(N) =
2ϑ +6

(1+ϑ)ϑ
+

2+ϑ

ϑ(1+ϑ)
+(

2+ϑ

ϑ(1+ϑ)

Var(N) =
ϑ 3 +4ϑ 2 +8ϑ +2

(1+ϑ)2)ϑ 2
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The Posterior Distribution

The posterior structure function formula is obtained by formula given by;

g(ν/n) =
p(n/ν)g(ν∫

∞

0 p(n/ν)g(ν)dν

Therefore;

g(ν/n) =
exp(−νt)νn

n! ∗ ( ϑ 2

1+ϑ
)(1+ϑ)exp(−ϑν)∫

∞

0
exp(−νt)ν∑

t
i=1 ni

n! ( ϑ 2

1+ϑ
)(1+ϑ)exp(−ϑν)dν

g(ν/n) =
exp(−νt)νn(1+ν)exp(−ϑν)∫

∞

0 exp(−νt)νn(1+ν)exp(−ϑν)dν

g(ν/n) =
exp(−νt)νn exp(−ϑν)+νn+1 exp(−νt)exp(−ϑν)∫

∞

0 exp(−νt)νn exp(−ϑν)dν +
∫

∞

0 νn+1 exp(−νt)exp(−ϑν)dν

g(ν/n) =
νn exp(−ν(t +ϑ)+νn+1) exp(−ν(t +ϑ)∫

∞

0 νn exp(−ν(t +ϑ)dν +
∫

∞

0 νn+1 exp(−ν(t +ϑ)dν

g(ν/n) =
νk exp(−ν(t +ϑ)+νn+1 exp(−ν(t +ϑ)

Γ(n+1)
(t+ϑ)n+1 +

Γ(n+2)
(t+ϑ)n+2

g(ν/n) =
νn exp(−ν(t +ϑ)+νn+1 exp(−ν(t +ϑ))

Γ(n+2)(t+ϑ)+Γ(n+2)
(t+ϑ)n+2

g(ν/n) =
(t +ϑ)n+2 ∗ exp(−ν(t +ϑ))(νn+1 +νn)

Γ(n+2)+(t +ϑ)Γ(n+1)
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Posterior Mean

E(ν/n) =
∫

∞

0
ν
(t +ϑ)n+2 ∗ exp(−ν(t +ϑ)(νn+1 +νn)

Γ(n+2)+(t +ϑ)Γ(n+1)
dν

let A = 1
Γ(n+2)+(t+ϑ)Γ(n+1)

E(ν/n) =A[
∫

∞

0
(t +ϑ)k+2 exp(−ν(t +ϑ)νn+2dν +

∫
∞

0
(t +ϑ)n+2 exp(−ν(t +ϑ)νn+1dν ]

also let B = Γ(n+3)
(t+ϑ)

E(ν/n) =A∗B[
∫

∞

0

(t +ϑ)n+3 exp(−ν(t +ϑ)νn+2

Γ(n+3)
dν +Γ(n+2)

∫
∞

0
(t +ϑ)n+2 exp(ν(t +ϑ)νn+1dν ]

E(ν/n) =A[B+Γ(n+2)]

substituting for A and B we get;

E(ν/n) =[
1

Γ(n+2)+(t +ϑ)Γ(n+1)
] [

Γ(n+3)+(t +ϑ)Γ(n+2)
t +ϑ

]

E(ν/n) =
(n+1)[ (n+2)+(t +ϑ)(n+1)]
(n+1)(t +ϑ)[ (n+1)+(t +ϑ)]

E(ν/n) =
(n+1)[ (n+2)+(t +ϑ)]

(t +ϑ)[ (n+1)+(t +ϑ ]
(2.8)

2.3 Exponential Mixtures

Let

f (y/ν) =
∫

∞

0
1
ν

exp(− y
ν
) , x > 0 and ν > 0

be the conditional type II exponential distribution whose mean is the parameter ν .

Then the probability mass function is given by;
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fy(t) =
∫

∞

0
1
νt exp(− y

νt )g(ν)d(ν)

This is the type II exponential mixture ,with g(ν) as the mixing distribution.

2.3.1 The rth Moment

E(Y r) = EE[yr/ν ]

E(Y r) = E{
∫

∞

0 yr f (y/νt)dydν}

E(Y r) = E{
∫

∞

0 yr 1
νt exp(− y

νt )dy}

E(Y r) = E{ 1
νt
∫

∞

0 yr exp(− y
νt )dy}

Let y
νt = f =⇒ y = νt f

=⇒ dy = νtd f

E(Y r) = E{ 1
νt
∫

∞

0 (νtu)r exp(−u)d f}

E(Y r) = E{(νt)r ∫ ∞

0 ur exp(−u)d f}

E(Y r) = E{(νt)rΓ(r+1)}

E(Y r) = E[(νt)rr!]

put r = 1 ,them we have the first rth moment

E(Y r) = E[Λt]

E(Y r) = tE(Λ) (2.9)

E(y2) = E[y(y−1)+ y]

E(y2) = E[y(y−1)]+E(y)

but

E[y(y−1)] = EE[y(y−1)/ν ]

E[y(y−1)] = E{y(y−1)
∫

∞

0 yr 1
νt exp(− y

νt )dy}
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E[y(y−1)] = E{
∫

∞

0
y2

νt exp(− y
νt )dy−

∫
∞

0
y
νt exp(− y

νt )dy}

using integration by parts

∫
∞

0
y2

νt exp(− y
νt )dy

Let u = y2 =⇒ du = 2dy also dv = exp(− y
νt ) =⇒ v =−νt exp(− y

νt )

∫
∞

0
y2

νt exp(− y
νt )dy = 1

νt {[−y2νt]∞0 +2
∫

∞

0 yνt exp(− y
νt )dy}

= 2
∫

∞

0 xexp(− x
νt )dx

Let u = y =⇒ du = dy and dv = exp(− y
νt ) =⇒ v =−νt exp(− y

νt )

= 2{[−y−νt exp(− y
νt )]

∞
0 +

∫
∞

0 νt exp(− y
νt )dx}

= 2νt
∫

∞

0 exp(− y
νt )dy

= 2νt[−νt exp(− y
νt )]

∞
0

E{
∫

∞

0
y2

νt exp(− y
νt )dy}= 2(νt)2

E{
∫

∞

0
y2

νt exp(− y
νt )dy}= 2t2E(ν2)

also

E{
∫

∞

0
y
νt exp(− y

νt )dy}

Let u = y =⇒ du = dy and dv = exp(− y
νt ) =⇒ v =−νt exp(− y

νt )

E{
∫

∞

0
y
νt exp(− y

νt )dy}= E( 1
νt ){[−yνt exp(− y

νt )]
∞
0 +

∫
∞

0 νt exp(− y
νt )dy}

= E{
∫

∞

0 exp(− y
νt )dy}

= E(νt){[−exp(− y
νt )]

∞
0 }

E{
∫

∞

0
y
νt exp(− y

νt )dy}= tE(ν)

therefore

E(Y 2) = 2t2E(ν2)− tE(ν)+ tE(ν)
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Var(Y ) = 2t2E(Λ2)− (tE(Λ))2

Var(Y ) = t2[2E(Λ2)−E(Λ)2] (2.10)

2.3.2 Inverse-Gamma Mixing Distribution

The inverse gamma is the only distribution whose corresponding exponential mixture is
in explicit form.Given

f (x/y) = 1
y exp(−x

y) for x > 0,y > 0.

and

g(y) =
1
m exp(−m

y )

( y
m)

s+1Γ(s)

,m > 0,s > 0,y > 0

The pdf of the mixture is obtained by

f (x) =
∫

∞

0

1
y

exp(−x
y
)∗

1
m exp(−m

y )

( y
m)

s+1Γ(s)
dy

f (x) =
∫

∞

0

1
y exp(−x

y ∗
1
m exp(−m

y

( y
m)

s+1Γ(s)
dy

f (x) =
∫

∞

0

1
y

exp(−x
y
)∗ ms

Γ(s)
∗ y−s−1 exp(−m

y
)dy

f (x) =
ms

Γ(s)

∫
∞

0

1
ys+2 exp(−(m+ x)

y
)dy

Let z = 1
y =⇒ y = 1

z and dy = −dy
z2
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Therefor

f (x) =
ms

Γ(s)

∫
∞

0
zs+2 exp(−(m+ x)z)

dz
z2

f (x) =
ms

Γ(s)

∫
∞

0
zs exp(−(m+ x)z)dz

f (x) =
ms

Γ(s)
∗ Γ(s+1)
(m+ x)s+1

f (x) =
ms

Γ(s)
∗ s∗Γ(s)
(m+ x)s+1

f (x) =
sms

(m+ x)s+1

f (x) = sms(m+ x)−(s+1) (2.11)

for x > 0,s > 0,m > 0

This is the Pareto distribution with parameters s and m.

Mean

E(x) =
∫

∞

0
xsms(x+m)−s−1dx

=sms
∫

∞

0
x(x+m)−s−1dx

using integration by parts

E(x) =sms{[−x
s
(x+m)−s]∞0 +

1
s

∫
∞

0
(x+m)−sdx}

=sms[
1
s
(x+ s)−s+1

−(s−1)
]∞

0

E(x) =
m

s−1

E(x) =
m

s−1
(2.12)
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Variance

Var(x) =E(x2)− [E(x)]2

E(x2) =
∫

∞

0
x2sms(x+m)−s−1dx

=sms
∫

∞

0
x2(x+m)−s−1dx

using integration by parts

E(x2) =sms{[x
2(x+m)−s

−s
]∞0 −2

∫
∞

0

x(x+m)−s

−s
dx}

=2ms
∫

∞

0

x(x+m)−s

−s
dx

=2ms{[−x(x+m)−s+1

s−1
]∞0 +

1
s−1

∫
∞

0
(x+m)−s+1dx}

=
2ms

s−1

∫
∞

0
(x+m)−s+1dx

=
2ms

s−1
[
−(x+m)−s+1

s−2
]∞

0

=
2msm−s+2

(s−1)(s−2)

E(x2) =
2m2

(s−1)(s−2)

Var(x) =E(x2)− [E(x)]2

Var(x) =
2m2

(s−1)(s−2)
− (

m
s−1

)2

Var(x) =
2m2

(s−2)(s−1)2

Var(x) =
m2

s−1
[

2
s−2

+
1

s−1
];s > 2

Posterior Distribution

g(y/x) =
f (x/y)g(y)∫

∞

0 f (x/y)g(y)dy
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Therefore;

f (y/x) =
1
yn exp(−x

y)g(y)∫
∞

0
1
yn exp(−x

y)g(y)dy

f (y/x) =
1
yn exp(−x

y)
ms

Γ(s)
exp(−m

y )

ys+1∫
∞

0
1
yn exp(−x

y
ms

Γ(s)
exp(−m

y
ys+1 dy

Let t = 1
y =⇒ y = 1

t =⇒ dy =−dt
t2

f (y/x) =
exp(−m+x

y )

yn+s+1
∫

∞

0 tn+s+1 exp{−(m+ x)t}dt
t2

f (y/x) =
exp(−m+x

y )

yn+s+1
∫

∞

0 tn+s−1 exp{−(m+ x)t}dt

f (y/x) =
exp(−m+x

y )

yn+s+1 Γ(n+s)
(m+x)k+s

f (y/x) =
(m+ x)k+s exp(−m+x

y )

Γ(n+ s)yn+s+1

f (y/x) =
(m+ x)k+s

Γ(n+ s)
exp(−m+ x

y
)y−(n+s)−1

Which is the Inverse-Gamma (n+ s,m+ x)



32

Posterior Mean

E(y/x) =
∫

∞

0
y
( 1

m+x)exp(− (m+x
y )

( y
m+x)

n+s+1Γ(n+ s)
dy

E(y/x) =
∫

∞

0

( 1
m+x)exp(− (m+x

y )

( y
m+x)

n+s( 1
m+x)Γ(n+ s)

dy

E(y/x) =
m+ x

Γ(n+ s)

∫
∞

0

( 1
m+x)exp(− (m+x

y )

( y
m+x)

n+s dy

E(y/x) =
1

Γ(n+ s)

∫
∞

0

exp(− (m+x
y )

( y
m+x)

n+s dy

E(y/x) =
(m+ x)k+s

Γ(n+ s)

∫
∞

0

1
yn+s exp(−m+ x

y
)dy

E(y/x) =
(m+ x)n+s

Γ(k+ s)
Γ(n+ s−1)
(m+ x)n+s−1

E(y/x) =
m+ x

n+ s−1

2.3.3 Lindley Mixing Distribution

The exponential mixture is constructed as follows:

g(ν) =
ϑ 2

ϑ +1
(ν +1)exp(−ϑν),ν > 0,ϑ > 0
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The pdf of the mixture is,

f (x) =
∫

∞

0

1
ν

exp(− x
ν
)

ϑ 2

ϑ +1
(ν +1)exp(−ϑν)dν

f (x) =
ϑ 2

ϑ +1

∫
∞

0
(1+

1
ν
)exp(−ϑν− x

ν
)dν

f (x) =
ϑ 2

ϑ +1

∫
∞

0
(1+

1
ν
)exp(−ϑ(ν +

x
ϑν

))dν

f (x) =
ϑ 2

ϑ +1
{
∫

∞

0
ν

1−1 exp(−ϑ(ν +
x

ϑν
))dν +

∫
∞

0
ν

0−1 exp(−ϑ(ν +
x

ϑν
))dν}

let,

ν =
√ x

ϑ
p ,therefore dν =

√ x
ϑ

d p

f (x) =
ϑ 2

ϑ +1
{
√

x
ϑ

∫
∞

0
p1−1 exp(−

√
ϑx(p+

1
p
))d p+

∫
∞

0
p0−1 exp(−

√
ϑx(p+

1
p
))d p}

f (x) =
2ϑ

ϑ +1
{
√

x
ϑ

K1(2
√

ϑx)+K0(2
√

ϑx)}
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Mean

Using conditional expectation approach,we have

E(xr) =r!E[νr]

E(xr) =
ϑ 2

ϑ +1
{
∫

∞

0
ν

r+1 exp(−ϑν)+ν
r exp(−ϑν)dν}

E(xr) =
ϑ 2

ϑ +1
{Γ(r+2)

ϑ r+2 +
Γ(r+1)

ϑ r+1 }

E(xr) =
r!

ϑ +1
{r+1

ϑ r +
ϑ

ϑ r }

E(xr) =
r!

ϑ r(ϑ +1)
(r+ϑ +1)

E(xr) =
(r!)2(r+ϑ +1)

ϑ r(ϑ +1)

therefore the first moment when r = 1 ;

E(x) =
ϑ +2

ϑ(ϑ +1)

Variance

Var(x) =E(x2)− [E(x)]2

Given

E(xr) =
(r!)2(r+ϑ +1)

ϑ r(ϑ +1)

when r = 2 we have

E(x2) =
4(3+ϑ)

ϑ 2(ϑ +1)
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therefore

Var(x) =
4(3+ϑ)

ϑ 2(ϑ +1)
− (

ϑ +2
ϑ(ϑ +1)

)2

Var(x) =
9ϑ +8

ϑ 2(ϑ +1)2

Posterior Distribution
Given ;

g(ν/x) =
f (x/ν)g(ν)∫

∞

0 f (x/ν)g(ν)dν

f (ν/x) =
1
ν

exp(− x
ν
) ϑ 2

ϑ+1(ν +1)exp(−ϑν)∫
∞

0
1
ν

exp(− x
ν
) ϑ 2

ϑ+1(ν +1)exp(−ϑν)dν

f (ν/x) =
1
ν

exp(− x
ν
)(ν +1)exp(−ϑν)∫

∞

0
1
ν

exp(− x
ν
)(ν +1)exp(−ϑν)dν

f (ν/x) =
(1+ 1

ν
)exp(−ϑν− x

ν
)∫

∞

0 (1+ 1
ν
)exp(−ϑν− x

ν
)dν

f (ν/x) =
(1+ 1

ν
)exp(−ϑν− x

ν
)∫

∞

0 ν1−1 exp(−ϑν− x
ν
)dν +

∫
∞

0 ν0−1 exp(−ϑν− x
ν
)dν
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3 Modelling Claim numbers and Losses Based on a
Posteriori Criteria

3.1 Introduction

In this chapter we are going to design an optimal bonus-malus system that will modify to
the policyholders a premium according to claim numbers of they have and same claim size
that their claims incur.That is the bigger the size of each claim the bigger is the premium
that the policyholder has to pay.

3.2 The frequency Component

3.2.1 Distributions for the Claim number

The following two probability models will be discussed to represent the distribution of the
number of claims observed.
These are;-

(i)Poisson-Gamma Distribution
(ii) The Poisson-Lindley Distribution

Following xekalaki(1983),we are going to have a retrospective look in the distribution of
claim numbers and their interpretation of their underlying factors.Greenwood and woods
(1919) put forward the three hypothesis which have formed the cornerstone for further
investigation into the occurrence of accidents.

These hypothesis are:-
(i)The portfolio is homogeneous and all policyholders have the same underlying risk or
the same probability to cause an accident.This is to say that the occurrence of a claim
from a policyholder constitutes a chance event,it is the result of the pure chance,and it
give rise to Poisson distribution.
(ii)The portfolio is diverse and all policyholders have initially the same basic risk to have
an accident but this change by each accident sustained. This hypothesis is known as the
true contagion hypothesis and leads to what Greenwood and woods called it the biased
distribution.
(iii) The portfolio is diverse and all insured individual have constant but di�erent risks to
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have an accident.This is known as the apparent contagion and leads to a model known as
the accident proneness model.

Under the apparent contagion hypothesis and assuming that the varying underlying risks
are distributed according to the Gamma distribution,Greenwood and Woods showed that
the distribution of the number of accidents is negative Binomial.A good fit of the negative
binomial distribution was then regarded as an indication of heterogeneity in the accident
proneness of the portfolio until Irwin(1941),using a result of Mckendrick(1926),derived the
negative binomial distribution for a contagion model based on the assumption that the
underlying risk or the probability of a policyholder having an accident increases with the
number of previous accidents sustained.

Cresswel and Froggat (1936) formulated a forth model that rejects both the concept
of accident proneness and the concept of contagion.It is based on the assumption that
each policyholder is liable to spell i.e the periods of time during which the policyholder’s
performance is weak and all of policyholders accidents occur within those spells.The
number of accidents within di�erent spells are independent and also its is independent
of the number of spells. Kemp(1967) showed that the negative binomial can be given a
"spell" interpretation in the context of Poisson distribution generalized by logarithmic
distribution.

3.2.2 Posterior Mean Based on Poisson-Gamma Distribution( Negative Bino-
mial Distribution)

Assume that the portfolio is heterogeneous and that all insure individuals have persistent
but unequal basic risks to have an accident,that is we assume that each policyholder is
having a di�erent accident proneness.
As we have said in the beginning of this chapter,this hypothesis is known as the appar-
ent contagion and leads to a model known in the literature as the "accident proneness"
model.We will show below that the negative binomial model is derived under this hypoth-
esis and subsequently use it as a distribution to represent the number of claims and we
will assume that it has been derived under the apparent contagion hypothesis.

Consider that the conditional distribution of the number of claims n given the parameter
ν is distributed according to Poisson with parameter ν ,

Pν(n/ν) = exp(−ν)νn

n! ,

where n = 0,1,2, ... and ν > 0..

The parameter ν is the observed value of the random variable Λ and it varies from one
insured to another .
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The accident proneness of each policyholder is characterized by the value of Λ which is
distinctive for each risk.The probability density function of Λ is known as the structure
function and will be designated by g(ν).

Let us assume that the structure function conforms to gamma distribution with two
parameters,designated by gamma(α,β ) and is given by the following pdf;

g(ν) = να−1β α exp(−βν)
Γ(α) , for ν > 0,α > 0,β > 0.

The two parameter Gamma(α,β ) has a mean equal to α

β
,variance equal to α

β 2

The unconditional distribution of the number of claims n denoted as p(n) or pn in the
portfolio is obtained when,

n/ν ∼ poisson(ν)

and

ν ∼ Gamma(α,β )



39

from equation 2.3,we have shown that the number of claims n is distributed according to
Negative Binomial distribution with probability density function given by;

P(n) =
(n+α−1

n

)
( β

1+β
)α( 1

1+β
)n

with mean and variance given by α

β
and α

β
(1+ 1

β
) respectively,

E(n) = α

β

Var(n) = α

β
(1+ 1

β
)

The variance of the negative binomial exceeds its mean ,a desirable property which is
evident in all Poisson mixtures and allow us to deal with data that presents over-dispersion.

Let us consider a policyholder or a class of policyholders that have been under observation
for the last t years.

Assume that the total number of claims that a policyholder had in t years denoted as
N = ∑

t
i=1 ni,where ni is the number of claims that an insured had in year i = 1,2, ...t .

Suppose g(ν) is the prior distribution for ν ,which denotes our subjective belief or the
prior information we have about ν .The posterior distribution of the parameter ν for
an insured or a group of insured with claim history n1, ...,nt will be obtained using the
Bayes theorem,and when the parameter ν is continuous value,which is the most common
situation and it is denoted by g(ν/n1, ...,nt).Extending equation 2.5,we get the following;

g(ν/n1, ...,nt) =
p(n1, ...knt/ν)µ(ν)∫

∞

0 p(n1, ...nt/ν)∗µ(ν)d(ν

p(n1, ...nt/ν) =
t

∏
i=1

exp(−ν)νk

k!

p(n1, ...nt/ν) =
exp(−νt)ν∑

t
i=1 ni

∏
t
i=1 ni!

but ∑
t
i=1 ni = N

p(n1, ...nt/ν) = exp(−νt)νN

∏
t
i=1 ni!

and
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g(ν) = ν(α−1)β (α) exp(−βν)
Γ(α) , for ν > 0,α > 0,β > 0.

Therefore

g(ν/n1, ...,nt) =

exp(−νt)νN

∏
t
i=1 ni!

∗ ν(α−1)β α exp(−βν)
Γ(α)∫

∞

0
exp(−νt)νN

∏
∞
i=1 ni

∗ ν(α−1)β α exp(−βν

Γ(α) dν

g(ν/n1, ...,nt) =
exp(−νt)νNν(ν−1)β α exp(−βν)∫

∞

0 exp(−νt)νKν(α−1)β α exp(−βν)dν

g(ν/n1, ...,nt) =
νN+α−1 exp(−(t +β )ν)∫

∞

0 νN+α−1 exp(−(t +β )ν)dν

g(ν/n1, ...,nt) =
νN+α−1 exp(−(t +β )ν)

Γ(N+α)
(t+β )N+α

g(ν/n1, ...,nt) =
(t +β )N+ανN+α−1 exp(−(t +β )ν)

Γ(α +N)

Therefore

g(ν/n1, ...,nt) =
(t+β )N+α νN+α−1 exp(−(t+β )ν)

Γ(α+N)

Which is the pdf of gamma distribution with parameters (α +N, t +β ))

The optimal selection of νt+1 for an individual policyholder with claim history ki, ...,kt

will enable us obtain the mean of the posterior distribution,that is,

ν̂t+1(n1, ...,nt) =
∫

∞

0
ν
(t +β )N+α exp(−ν(t +β )νN+α−1

Γ(α +N)
dν

ν̂t+1(n1, ...,nt) =
(t +β )N+α

Γ(K +α)
∗ α +K ∗Γ(N +α)

(t +β )N+α(t +β
)

ν̂t+1(n1, ...,nt) =
α +N
t +β

= ν̄(
α +N
α + tν̄

) (3.1)

where ν̄ = α

β

It is clearly shown from above that a policyholder that has caused K accidents within a
period of t years calls for an update of the gamma parameters from α and β to α +N and
t +β respectively and this shows that gamma is a conjugate family of Poisson Likelihood.
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The net premiums of the Bonus-Malus System obtained in this way can be wri�en in an
interesting an useful way.The net premium which is modified by experience and it is equal
to posterior mean ;

ν̂t+1(n1, ...,nt) =
α +N
t +β

= ν̄(
α +N
α + tν̄

)

This can be express as a linear combination of the prior premium α

β
, and the observation,n

t ,that
is

posterior mean of the structure function= Z* ( the mean of observed data)+ (1-Z)* mean
of prior.

or

ν̂t+1(n1, ...,nt) = Z ∗ k
t +(1−Z)α

β

where Z is known as the credibility factor and is equal to

α +N
t +β

= ν̄(
α +N
α + tν̄

)

so that the above equation can be true.

That is the net premium of the optimal BMS can be wri�en in terms of Buhlmann credibility
model.The Buhlmann credibility model,which denotes that the posterior mean is the
weighted average of the observation and the a posterior premium.

The credibility factor Z can be interpreted as the weight that is given to individual
experience and it is 0 for t = 0, which increases with time and asymptotically tends
to 1.

3.2.3 Posterior Mean Based on Poisson-Lindley Distribution

Let us assumed that the number of claims of each insured conforms to a Poisson distribu-
tion with parameter ν and ν is distributed according to a distribution given by Lindley
(1958) and (1965).
According to that distribution the parameter ν of the Poisson has a distribution function
µ(ν) such that

µ(ν) = (ϑ)2

ϑ+1(ν +1)exp(−νϑ)dν

The underlying risk ν is Poisson distributed with p.d.f
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p(n/ν) = exp(−ν)νn

n! ,n = 0,1,2, ... and ν > 0

From equation 2.7 we have proved that the unconditional distribution of n is given by ;

p(n) =
∫

∞

0
p(n/ν)g(ν)dν

=
∫

∞

0

exp(−ν)νn

n!
∗ (ϑ)2

(ϑ +1)
(ν +1)exp(−νϑ)dν

p(n) =
ϑ 2(n+2+ϑ)

(ϑ +1)n+3

According to Sankaran (1970),the Poisson-Lindley distribution has a p.d.f of the following
form;

pϑ (n) =
ϑ 2(ϑ+2+n)
(ϑ+1)n+3 ,n = 0,1,2, ...

The mean and variance are given by

2+ϑ

ϑ(1+ϑ)

and

ϑ 3 +4ϑ 2 +8ϑ +2
(1+ϑ)2)ϑ 2

respectively

The posterior structure function for a given policyholder with claim history n1, ...,nt is
give by;

µ(n1, ...,nt) =
p(n1, ...,nt/ν)µ(ν∫

∞

0 p(n1, ...,nt/ν)µ(ν)dν

p(n1, ...,nt/ν) =
t

∏
i=1

exp(−ν)νn

n!

p(n1, ...,nt/ν) =
exp(−νt)νN

∏
t
i=1 n!
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Therefore;

µ(ν/n1, ...,nt) =

exp(−νt)νN

∏
t
i=1 n! ∗ (

ϑ 2

1+ϑ
)(1+ϑ)exp(−ϑν)∫

∞

0
exp(−νt)νK

∏
t
i=1 n! ( ϑ 2

1+ϑ
)(1+ϑ)exp(−ϑν)

dν

=
exp(−νt)νN(1+ν)exp(−ϑν)∫

∞

0 exp(−νt)νN(1+ν)exp(−ϑν)dν

=
exp(−νt)νN exp(−ϑν)+νN+1 exp(−νt)exp(−ϑν)∫

∞

0 exp(−νt)νN exp(−ϑν)dν +
∫

∞

0 νN+1 exp(−νt)exp(−ϑν)dν

=
νN exp(−ν(t +ϑ)+νN+1) exp(−ν(t +ϑ)∫

∞

0 νN exp(−ν(t +ϑ)dν +
∫

∞

0 νK+1 exp(−ν(t +ϑ)dν

=
νN exp(−ν(t +ϑ)+νN+1 exp(−ν(t +ϑ)

Γ(N+1)
(t+ϑ)N+1 +

Γ(N+2)
(t+ϑ)N+2

=
νN exp(−ν(t +ϑ)+νN+1 exp(−ν(t +ϑ)

Γ(N+2)(t+ϑ)+Γ(N+2)
(t+ϑ)K+2

µ(ν/n1, ...,nt) =
(t +ϑ)N+2 ∗ exp(−ν(t +ϑ)(νN+1 +νN

Γ(N +2)+(t +ϑ)Γ(N +1)
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The optimal selection of νt+1 will give the mean of posterior distribution which is given
by;

ν̂t+1(n1, ...,nt) =
∫

∞

0
ν
(t +ϑ)N+2 ∗ exp(−ν(t +ϑ)(νN+1 +νN

Γ(N +2)+(t +ϑ)Γ(N +1)
dν

let A = 1
Γ(N+2)+(t+ϑ)Γ(N+1)

ν̂t+1(n1, ...,nt) =A[
∫

∞

0
(t +ϑ)N+2 exp(−ν(t +ϑ)νN+2dν +

∫
∞

0
(t +ϑ)N+2 exp(−ν(t +ϑ)νN+1dν ]

also let B = Γ(N+3)
(t+ϑ)

ν̂t+1(n1, ...,nt) =A∗B[
∫

∞

0

(t +ϑ)N+3 exp(−ν(t +ϑ)νN+2

Γ(N +3)
dν +Γ(N +2)

∫
∞

0
(t +ϑ)N+2 exp(ν(t +ϑ)νN+1dν ]

=A∗ [B+Γ(N +2)]

substituting for A and B ,we get;

ν̂t+1(n1, ...,nt) =
1

Γ(N +2)+(t +ϑ)Γ(N +1)
[
Γ(N +3)+(t +ϑ)Γ(N +2)

t +ϑ
]

=
(N +1)[ (N +2)+(t +ϑ)(N +1)]
(N +1)(t +ϑ)[ (N +1)+(t +ϑ)]

ν̂t+1(n1, ...,nt) =
(N +1)[ (N +2)+(t +ϑ)]

(t +ϑ)[ (N +1)+(t +ϑ ]

Posterior mean is

ν̂t+1(n1, ...,nt) =
(N +1)[ (N +2)+(t +ϑ)]

(t +ϑ)[ (N +1)+(t +ϑ ]
(3.2)

3.3 Severity Component

3.3.1 Reasons for Taking Into Account the Severity of Each Claim

The obtained when only the number of claims is taken into account has the disadvantage
of penalizing claim numbers independently of their severity,that is without taking into
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account the size of loss that the claim incurs.As a ma�er of fact,all Bonus-Malus Systems
around the world,with the exception of the BMS enforced in Korea,penalize the number
of reported accidents in absence of losses that these accidents caused.This means that
an insured with a small amount of loss,for example a mere scratch,are forced to pay the
equal premium with the policyholders who caused an accident with a big loss,for example
a complete destruction of automobile or a serious bodily injury accident.In this sense a
Bonus-Malus System that does not take into consideration the size of each claim is not
fair and thus a BMS which can separate the policyholders according to the frequency and
the severity of their claims should be done. An advantage of the system which considers
the claim amounts in its design is that the drivers will report all the accidents caused
because they are aware that the amount of loss caused is take in to consideration and that
a driver who caused an accident with a small loss will not be punished the same way with
someone who caused an accident with a higher amount of loss.In that way the insured
will not push for bonuses and the underestimate of the true frequency will be smaller.

Besides the drivers who have claims with big losses are usually doing serious mistakes,such
as reckless driving ,egoistic driving,driving with high speed,illegal overtaking,driving under
the influence of alcohol,breaking fundamental driving rules such as not observing tra�ic
lights,the right of way and others,in contrast to the accidents which induce small losses
and usually are incurred because of moment of ina�ention.That is the severity of each
claim must be penalized not only as an important factor for economic health of insurance
but also because because of the good drivers do not have claims and when they have,these
claims are with small loses in contrast with the bad drivers which usually have claims
with large loss.

3.3.2 Posterior Mean Based on Pareto Distribution

Suppose that a variate x being the claim size and conditional on y is an exponential
distribution with mea y and has the form;

f (x/y) =
1
y

exp(−x
y
);x > 0,y > 0.

The policyholders in any given portfolio do not have equal expected amount of claim y
making the expected amount of claim a random variable and therefore necessitate that it
be put in a in form of a distribution.
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Further,suppose y has an inverse gamma distribution with parameters s and m given by;

g(y) =
1
m exp(−m

y )

( y
m)

s+1Γ(s)

The mixture has been proved in 2.11 which is a Pareto distribution and is given by;

P(X = x) =
∫

∞

0
f (x/y)∗g(y)dy

P(X = x) =
∫

∞

0

1
y exp(−x

y)∗
1
m exp(−m

y )

( y
m)

s+1Γ(s)
dy

P(X = x) =sms(m+ x)−(s+1);x > 0,s > 0,m > 0

The Pareto distribution is preferred to exponential distribution in modelling claims severity
because the relatively tamed exponential distribution get transformed in to heavy tailed
Pareto distribution which make it easy to fit into claim data.The heterogeneity that
characterize claim size data from di�erent policyholders is incorporated into the model
by assuming that the expected claim amount y is distributed according to inverse gamma.

The details we have for each insured on claim size for the time he was in the portfolio
would enable us obtain the posterior distribution of the expected claim amount y that
would lead us to obtain a tari� structure that incorporate the expected amount of each
claim.

Consider a policyholder who has been under observation for a period of t years.

Let xn denote the size of claim for the kth claim,where n = 1,2,3, ...,N and ∑
N
n=1 xn is the

total claim amount for a policyholder who has been under observation for a period of t
years.

Also let us denote ni the number of claim the policyholder had in year i and N = ∑
t
i=1 Ni

denotes the total number of claims he has in the portfolio for t years.

Using the Bayes theorem, the posterior distribution of the claim amount y given the claim
amount history of the policyholder xi, ...,xn can be obtained as below;
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g(y/x1, ...,xn) =
f (x1, ...,xn/y)g(y)∫

∞

0 f (x1, ...,xn/y)g(y)dy

=
[∏N

n=1 f (xn/y)]g(y)∫
∞

0 [∏N
n=1 f (xn/y)]g(y)dy

but

N

∏
n=1

f (xn/y) =
N

∏
n=1

1
y

exp(−xn

y
)

N

∏
n=1

f (xn/y) =
1

yN exp(−∑
N
n=1 xn

y
)

therefore;

f (y/x1, ...,xn) =

1
yN exp(−∑

N
n=1 xn

y )g(y)∫
∞

0
1

yN exp(−∑
N
n=1 xn

y )g(y)dy

=

1
yN exp(−∑

N
n=1 xn

y ) ms

Γ(s)
exp(−m

y )

ys+1∫
∞

0
1

yN exp(−∑
N
n=1 xn

y
ms

Γ(s)
exp(−m

y
ys+1 dy

Let t = 1
y =⇒ y = 1

t =⇒ dy =−dt
t2
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f (y/x1, ...,xn) =
exp−m+∑

N
n=1 xn
y

yN+s+1
∫

∞

0 tN+s+1 exp{−(m+∑
N
n=1 xn)t}dt

t2

=
exp−m+∑

N
n=1 xn
y

yN+s+1
∫

∞

0 tN+s−1 exp{−(m+∑
N
n=1 xn)t}dt

=
exp−m+∑

N
n=1 xn
y

yN+s+1 Γ(N+s)
(m+∑

N
n=1 xn)N+s

=
(m+∑

N
n=1 xn)

N+s exp(−m+∑
N
n=1 xn
y )

Γ(N + s)yN+s+1

f (y/x1, ...,xn) =
(m+∑

N
n=1 xn)

N+s

Γ(N + s)
exp(−

(m+∑
N
n=1 xn

y
)y−(N+s)−1

This is Inverse-Gamma (N + s,m+∑
N
n=1 xn)

This pdf can be re-wri�en as

f (y/x1, ...,xn) =
(m+∑

N
n=1 xn)

N+s exp(− (m+∑
N
n=1 xn

y )

Γ(N + s)yN+s+1

=
(m+∑

N
n=1 xn)

N+s+1 exp(− (m+∑
N
n=1 xn

y )

m+∑
N
n=1 xiyN+s+1Γ(N + s)

f (y/x1, ...,xn) =
( 1

m+∑
N
i=1 xn

)exp(− (m+∑
N
n=1 xn

y )

( y
m+∑

N
i=1 xn

)N+s+1Γ(N + s)

From the above it is clearly shown that the Inverse Gamma distribution is a conjugate
prior with the exponential likelihood.This is because a policyholder that has made K claims
within a period of t years with a total claim amount equal to ∑

N
n=1 xn This implies that

an insured with K claims in any given period with total claim amount equal to ∑
N
n=1 xn

demands an update of the parameters Inverse Gamma distribution from s and m to N + s
and m+∑

N
n=1 xn respectively.

Optimal selection of yt+1 for an insured who has claim amounts xn ,n = 1,2,3, ...N) in
any given period is estimated as ;



49

ŷt+1(x1, ...,xn) =
∫

∞

0
y
( 1

m+∑
N
n=1 xn

)exp(− (m+∑
N
n=1 xn

y )

( y
m+∑

K
i=1 xn

)N+s+1Γ(N + s)
dy

ŷt+1(x1, ...,xn) =
∫

∞

0

( 1
m+∑

N
i=1 xn

)exp(− (m+∑
N
n=1 xn

y )

( y
m+∑

N
n=1 xn

)K+s( 1
m+∑

N
n=1 xn

)Γ(K + s)
dy

ŷt+1(x1, ...,xn) =
m+∑

N
n=1 xn

Γ(N + s)

∫
∞

0

( 1
m+∑

N
n=1 xn

)exp(− (m+∑
N
n=1 xn

y )

( y
m+∑

N
n=1 xn

)N+s dy

ŷt+1(x1, ...,xn) =
1

Γ(N + s)

∫
∞

0

exp(− (m+∑
N
n=1 xn

y )

( y
m+∑

N
n=1 xk

)N+s dy

ŷt+1(x1, ...,xn) =
(m+∑

N
n=1 xn)

N+s

Γ(N + s)

∫
∞

0

1
yN+s exp(−

(m+∑
N
n=1 xn

y
)dy

ŷt+1(x1, ...,xn) =
(m+∑

N
n=1 xn)

N+s

Γ(N + s)
Γ(N + s−1)

(m+∑
N
n=1 xn)N+s−1

ŷt+1(x1, ...,xn) =
m+∑

N
n=1 xn

N + s−1

ŷt+1(n1, ...,xn) =
m+∑

N
n=1 xn

N + s−1
(3.3)
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3.4 Calculation of Premium using the Net Premium Principle

From above,the mean claim frequency if given by equation 3.1 which is;

νt+1(n1, ...,nt) =
α +N
t +β

= ν̄(
α +N
α + tν̄

)

where

ν̄ =
α

β

also the mean claim size produced a posterior mean equal to;

yt+1(x1, ...,xn) =
m+∑

t
n=1 xi

N + s−1

Thus according to the net premium principle,the premium that any insured person has to
pay is;

Premium(p) =
α +N
t +β

∗ m+∑
t
i=1 xi

s+N−1
(3.4)

To be able to calculate premium using 3.4, the following are required;

(i)the years t that an insured is under our observation.
(ii)the observed total claim numbers N = ∑

t
j=1 n j, where n j the number of accidents that

the policyholder has in the t years.
(iii) total claim amount or the aggregate claim amount.
(iv) the maximum likelihood estimates of the parameters of the negative binomial distributionα

and β .
(v) the maximum likelihood estimates for parameters s and m .
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3.5 Characteristics of the Optimal BMS Based on Claim numbers and
Claim sizes

(1)With information gathered in the past,each insured person will pay a premium equiva-
lent to his/her claim history and this shows it is fair.

(2) At any given period,the premiums received form all the insured person is constant
meaning that its is balanced finally;

P =
α

β

m
s−1

Considering that the number of claims and the size of loss are independent component,we
have shown that mean of negative binomial distribution given by equation 2.4 ,and of
the second is the mean of pareto distribution given by equation 2.12 as shown in the
equations below;

Eν [ν ] =E[E(ν/n1, ...,nt)] =
α

β
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and

Ey[Y ] =E[E(y/x1, ...,xn)] =
m

s−1

respectively.
(3) The premiums rely on the number of accidents which an insured underwent and also
it depends on the distribution of these accidents over the years.The policyholder will pay
a smaller premium if he has done all his claims in one single year in the beginning of his
driving career.
(4) The premium is di�erent not only due to the claim frequency but also due to the claim
severity.The policyholder who has claim with a small premium in comparison with an
insured who underwent an accident with a big loss.
(5) We have seen that the net premium a policyholder is paying is equal to the posterior
mean of the structure function based on his personal claim history a�er being scaled with
the mean claim amount of all the policyholders.This premium is determined from the
posterior mean and now it is not scaled but it is determined from the amount of claims
for every insured.
(6) The claim amount component is introduced which is very important from the insurer
point of view because it is the component that is used to determine the expenses of the
insurer from the accident and therefore the premiums to be charged.
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4 Modelling of Optimal BMS Based on Individual
Characteristics for both claim frequency and
Severity

4.1 Introduction

Dionne and Vanasse designed an optimal Bonus-Malus System that combine risk classifi-
cation and experience rating of the individual policyholder based on his claim frequency
and individual characteristics .This framework was further extended by Nicholas Frangos
and Spyridon Vrontos by designing a generalized Bonus-Malus system that combines both
the priori and the a posteriori information based on individual policyholder characteristics
with both frequency and severity incorporated.

The main motivation behind the modelling of a generalized BMS model that take into
account the information known to the insurer about the insurer before he/she join the
portfolio is that several variables a�ects the distribution of the claim numbers and the
size of loss distribution and that premiums should vary from one policyholder to an-
other.The variables that could be used are the age,sex and the place of residence of the
policyholder;the age and the cubic capacity of the car.

The premiums formula from the generalized BMS will be obtained from the following
multiplicative formula;

premium = GBMF ∗GBMS

where
GBMF this the generalized BMS obtained when only the number of claims is considered
and
GBMS this the generalized BMS obtained when only the claims size is considered .
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4.2 The Generalized Negative Binomial Model

The generalized Bonus-malus system which take into account the number of claims GBMF

is constructed according to Dionne and Vanasse (1989,199) as follows;

Suppose an insured i has been observed for t years and that this insured i made claims
totalling to N

j

i .This claims is distributed according to Poisson distributed with parameter
ν

j
i , where N j

i are independent.The expected number of claims of individual i for period
j is the denoted by ν

j
i .Also consider that ν

j
i is a function of the vector of h individual

characteristics and that it is denoted as C j
i = (c j

i,1, ...,c
j
i,h), which constitute distinct a

priori rating variables.

let ν
j

i = exp(c j
i τ j)

where

τ j is the vector of coe�icients.

The non-negativity of ν
j

i is implied from the exponential function

The probability becomes

Prob(N j
i = n/ν

j
i ) =

exp(−ν
j

i )(ν
j

i )
N

N! , n = 0,1,2, ...

but ν
j

i = exp(c j
i τ j)

Prob(N j
i = n/ν

j
i ) =

exp(c j
i τ j)[(c j

i τ j)]N

N!

The h individual characteristics is assumed to provide su�icient information for ascer-
taining mean number of claims.The information we have before an individual join our
portfolio may not have all the important information for determining the mean number
of claims and therefore we introduce a random variable εi into the regression component.

To factor in unobserved significant priori information,we introduce the random variable ε

and the expected number of claims can be wri�en as

ν
j

i = exp(c j
i τ j + ε) =

= exp(c j
i τ j)µi
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where µi = exp(ε), resulting in a random variable ν
j

i

Prob(N j
i = n/ν

j
i ) =

exp(−exp(c j
i τ j + ε)[exp(c j

i τ j + ε)]n

n!

Prob(N j
i = n/ν

j
i ) =

exp(−µi exp(c j
i τ j))[µi exp(c j

i τ j]n

n!

Prob(N j
i = n/ν

j
i ) =

exp(−Dµi)(Dµi)
n

n!

where D = exp(c j
i τ j) and µi = exp(εi)

therefore

Prob = (N j
i /µi) =

exp(−Dµi)(Dµi)
n

n!

and

Prob(Ni = n) =
∫

∞

0
exp(−Dµi)(Dµi)

n

k! g(µi)dµi

Suppose that µi is distributed according to a gamma distribution with E(µi) =
α

τ
and

Var(µi) =
α

τ2

this means that

g(µi) =
τα

Γ(α) exp(−τµi)µ
α−1
i , µi > 0,α > 0,τ > 0

then

Prob(Ni = n) =
∫

∞

0

exp(−Dµi)(Dµi)
k

k!
τα

Γ(α)
exp(−τµi)µ

α−1
i dµi

Prob(Ni = n) =
τα

Γ(α)

Dn

n!

∫
∞

0
µ

n+α−1
i exp(−(D+ τ)µi)dµi

Prob(Ni = n) =
τα

Γ(α)

Dn

n!
Γ(n+α)

(D+ τ)n+α

Prob(Ni = n) =
Γ(n+α)

n!α
(

τ

D+ τ
)α(

D
D+ τ

)n

Prob(Ni = n) =
(

α +n−1
n

)
(

τ

D+ τ
)α(

D
D+ τ

)n,n = 0,1,2, ...

Let α = τ = a
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Therefore,

Prob = (N j
i = n) =

(a+n−1
n

)
( τ

D+a)
a( D

D+a)
n ,n = 0,1,2, ...

This can be re-wri�en as

Prob = (N j
i = n) =

(a+n−1
n

) aa

(D+a)n+a)

That is

Prob = (N j
i = n) =

Γ(n+a)
n!Γ(a)

aa

[a+(1+ D
a )]

n+a

Prob = (N j
i = n) =

Γ(n+a)
n!Γ(a)

aa

an+a (1+
D
a
)−(n+a)

Prob = (N j
i = n) =

Γ(n+a)
n!Γ(a)

(
D
a
)n(1+

D
a
)−(n+a)

Prob = (N j
i = n) =

Γ(k+a)
n!Γ(a)

(
exp(c j

i τ j)

a
)n(1+

exp(c j
i τ j)

a
)−(n+a)

As given by Frangos and Vrontos (2001).This is a Negative Binomial distribution with
parameters a and exp(c j

i τ j)

To obtain E[K j
i ] and Var[K j

i ] , we should note that

Prob(K j
i /µi) =

exp(−Dµi)(Dµi)

k! , k = 0,1,2, ...

and

g(µi) =
τα

Γ(α) exp(−τµi)µ
α−1
i ,µi > 0,α > 0,τ > 0.

From equation 2.2, we have the following formulae;

E(x) = tE(Λ) and Var(x) = t2Var(Λ)+ tE(Λ)

In this case t = D ,and Λ = µi ,x = N j
i

Therefore E[N j
i ] = DE[µi] = Dα

τ

and Var[N j
i ] = D2Var(µi)+DE(µi)
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Thus, E[N j
i ] = D = exp(c j

i τ j) ,since α = τ = a

Var[N j
i ] =D2 α

τ2 +D
α

τ

Var[N j
i ] =

D2

a
+D

Var[N j
i ] =D(1+

D
a
)

Var[N j
i ] =[exp(c j

i τ
j)] [1+

exp(c j
i τ j

a
]

Var[N j
i ] = [exp(c j

i τ
j)] [1+

exp(c j
i τ j

a
] (4.1)

Consequently,the insurer needs to obtain,at the renewal of the policy, the best esti-
mate of the expected number of claims ,ν̂ t+1

i , at time t + 1 for an individual policy-
holder with a claim history N1

i , ....,N
t
i and c1

i , ...,c
t+1
i individual known characteristics.we

denote ∑
t
j=1 N j

i be the total number of claims that an individual policyholder i had
.The mean claim frequency for an individual policyholder i over the time period t+1
is ν̂

t+1
i (N1

i , ...,N
t
i ;c1

i , ...,c
t+1
i ) ,which is a function of both claim history and individual

characteristics.

Using Bayes’ theorem the posterior distribution for the policyholder with N1
i , ...,N

t
i claim

history and c1
i , ...,c

t+1
i characteristics can be derived as follows.

ν̂
t+1
i (N1

i , ...,N
t
i ;c1

i , ...,c
t+1
i ) =

∫
∞

0 ν
t+1
i (Nt+1

i ,µi) f (ν t+1
i /N1

i , ...,N
t
i ;c1

i , ...,c
t
i)dν

t+1
i

Where by Bayes’ rule

f (ν t+1
i /N1

i , ...,N
t
i ;c1

i , ...,c
t
i) =

p[ (N1
i , ...,N

t
i )/ν

t+1
i ;c1

i , ...,c
t
i)] f (ν t+1

i )

p̂[ (n1
i , ...,n

t
i)/c1

i , ...,c
t
i]

By definition,

p̂[ (N1
i , ...,N

t
i )/c1

i , ...,c
t
i] =

∫
∞

0
p[ (N1

i , ...,N
t
i )/ν

t+1
i ;c1

i , ...,c
t
i)] f (ν t+1

i )dν
t+1
i
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Then, ν̂
t+1
i (N1

i , ...,N
t
i ;c1

i , ...,c
t+1
i ) is the posterior mean of claim frequency for individual i

[ν t+1
i (Nt+1

i ,µi)],which is a function of both random factor µi and individual characteristics.

p[ (N1
i , ...,N

t
i )/ν

t+1
i ;c1

i , ...,c
t
i)] =

t

∏
j=1

exp(−exp(c j
i τ jµi)[exp(c j

i τ jµi]
N j

i

N j
i !

Let A = exp(c j
i τ j)

p[ (N1
i , ...,N

t
i )/ν

t+1
i ;c1

i , ...,c
t
i)] =

t

∏
j=1

exp(−Aµi)[Aµi]
N j

i

n j
i !

p[ (N1
i , ...,N

t
i )/ν

t+1
i ;c1

i , ...,c
t
i)] =

exp(−µi ∑
t
j=1 A)[∏t

j=1(Aµi)
N j

i

∏
t
j=1(N

j
i !)



59

Therefore

f (µ t+1
i /N1

i , ...,N
t
i ;c1

i , ...,c
t
i) =

exp(−µi ∑
t
j=1 A)[∏t

j=1(Aµi)
N j

i

∏
t
j=1(N

j
i !)

g(µi

∫
∞

0 [
exp(−µi ∑

t
j=1[∏

t
j=1(Aµi)

N j
i

∏
t
j=1(N

j
i !)

]g(µidµi

f (µ t+1
i /N1

i , ...,N
t
i ;c1

i , ...,c
t
i) =

exp(−µi ∑
t
j=1 A)µ

∑
t
j=1 N j

i
i g(µi)∫

∞

0 exp(−µi ∑
t
j=1 A)µ

∑
t
j=1 N j

i
i g(µi)dµi

g(µi) =
τα

Γ(α)
µ

α−1
i exp(−τµi)

f (µ t+1
i /N1

i , ...,N
t
i ;c1

i , ...,c
t
i) =

exp(−µi ∑
t
j=1 A)µ

∑
t
j=1 N j

i
i g(µi)

τα

Γ(α)µ
α−1
i exp(−τµi)∫

∞

0 exp(−µi ∑
t
j=1 A)µ

∑
t
j=1 N j

i
i

τα

Γ(α)µ
α−1
i exp(−τµi)dµi

f (µ t+1
i /N1

i , ...,N
t
i ;c1

i , ...,c
t
i) =

µ
α+∑

t
j=1 N j

i −1
i exp[−(τ +∑

t
j=1 A)µi]∫

∞

0 µ
α+∑

t
j=1 N j

i −1
i exp[−(τ +∑

t
j=1 A)µi]dµi

f (µ t+1
i /N1

i , ...,N
t
i ;c1

i , ...,c
t
i) =

µ
α+∑

t
j=1 N j

i −1
i exp[−(τ +∑

t
j=1 A)µi]

Γ(α+∑
t
j=1 N j

i )

(τ+∑
t
j=1 A)

α+∑
t
j=1 N j

i

f (µ t+1
i /N1

i , ...,N
t
i ;c1

i , ...,c
t
i) =

(τ +∑
t
j=1 A)α+∑

t
j=1 N j

i µ
α+∑

t
j=1 N j

i −1
i exp[−(τ +∑

t
j=1 A)µi]

Γ(α +∑
t
j=1 N j

i )

Let α = τ = a and A = exp(c j
i τ j)

f (µ t+1
i /N1

i , ...,N
t
i ;c1

i , ...,c
t
i) =

(a+∑
t
j=1 exp(c j

i τ j))a+∑
t
j=1 k j

i µ
a+∑

t
j=1 N j

i −1
i exp[−(τ +∑

t
j=1 exp(c j

i τ j))µi]

Γ(a+∑
t
j=1 N j

i )

Which is gamma with updated parameters [a+∑
t
j=1 N j

i ,a+∑
t
j=1 exp(c j

i τ j)]
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The optimal estimate given the observation of N1
i , ...,N

t
i ;c1

i , ...,c
t
i is equal to

µ̂
t+1
i (N1

i , ...,N
t
i ;c1

i , ...,c
t
i) =

∫
∞

0
µi
(a+∑

t
j=1 exp(c j

i τ j))a+∑
t
j=1 N j

i µ
a+∑

t
j=1 N j

i −1
i exp[−(τ +∑

t
j=1 exp(c j

i τ j))µi]

Γ(a+∑
t
j=1 N j

i )
dµi

µ̂
t+1
i (N1

i , ...,N
t
i ;c1

i , ...,c
t
i) =

(a+∑
t
j=1 exp(c j

i τ j))a+∑
t
j=1 N j

i

Γ(a+∑
t
j=1 N j

i )

∫
∞

0
µ

a+∑
t
j=1 N j

i
i exp[−(a+

t

∑
j=1

exp(c j
i τ

j))µi]dµi

µ̂
t+1
i (N1

i , ...,N
t
i ;c1

i , ...,c
t
i) =

(a+∑
t
j=1 exp(c j

i τ j))a+∑
t
j=1 N j

i

Γ(a+∑
t
j=1 N j

i )

Γ(a+∑
t
j=1 N j

i +1)

(a+∑
t
j=1 exp(c j

i τ j)a+∑ j=1 N j
i +1

µ̂
t+1
i (N1

i , ...,N
t
i ;c1

i , ...,c
t
i) =

a+∑
t
j=1 N j

i

a+∑
t
j=1 exp(c j

i τ j)
(4.2)

4.3 The Generalized Pareto Model

Consider an individual policyholder i with an experience over a period of t years.Let n j
i

denotes the number of claims of policyholder i for period j, N denotes the total number
of claims of policyholder i and X j

i,n to denote the size of loss incurred from his claim n for
period j .The claims size history is the information we have about the claims incurred and
is in the form of a vector Xi,1,Xi,2, ...,Xi,n.The total claim amounts for a policyholder i in
our portfolio observed over t periods is equal to ∑

N
n=1 Xi,n.

Let us assume that X j
i,n follows an exponential distribution with parameter y j

i .Where y j
i is

the mean claim severity of an individual policyholder in period j.

Since our portfolio is heterogeneous, all expected claim severity is not the same for all the
insured individuals and it is therefore fair that each policyholder pays pays a premium
proportional to his/her mean claim severity.Consider that the expected claim severity is
a function of the vector of h individual’s characteristics,denoted as d j

i = (d j
i,1, ...,di,h) ,

which represent a priori rating variables.Specifically assume that y j
i = exp(d j

i r j) where r
is the vector of the coe�icients.The non-negativity of y j

i is implied from the exponential
function.
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This probability becomes

Prob(X j
i,n) =

1
y j

i
exp(− x

y j
i
)

Prob(X j
i,n) =

1
exp(d j

i r j)
exp(− x

exp(d j
i r j)

)

The h individual characteristics is assumed to provides su�icient information for ascer-
taining the mean claim severity.Nonetheless,if the information we have about an insured
before he/she join our portfolio is enough ,we have to introduce a random variable zi into
the regression component.

i.e

y j
i =exp(d j

i r j + zi)

y j
i =exp(d j

i )wi

Where wi = exp(zi)

Therefore

Prob(X j
i,n = x) =

1

exp(d j
i r j + zi)

exp(− x

exp(d j
i r j + zi

)

Prob(X j
i,n = x) =

1

exp(d j
i r j)wi

exp(− x

exp(d j
i r j)wi

)

Prob(X j
i,n =wi) =

1
pwi

exp(− x
pwi

)

Where p = exp(d j
i r j)

therefore

Prob(X j
i,n) = wi) =

1
Pwi

exp(− x
Pwi

)

and

Prob(X j
i,n) = x) =

∫
∞

0
1

Pwi
exp(− x

Pwi
)g(wi)dwi

Suppose that wi is distributed according to an Inverse gamma distribution with parameters
s and s−1 and this distribution has mean and variance given by E(Wi) = 1 , Var(Wi) =

1
s−2

,s > 2 respectively.



62

That is

g(wi) =
1

s−1 exp(− s−1
wi

)

(
wi

s−1 )
s+1Γ(s)

Then

Prob(X j
i,n = x) =

∫
∞

0

1
Pwi

exp(− x
Pwi

)

1
s−1 exp(− s−1

wi
)

( wi
s−1)

s+1Γ(s)
dwi

Prob(X j
i,n = x) =

(s−1)s+1

PΓ(s)(s−1)

∫
∞

0

1
wi

exp(−
x
P+(s+1)

wi

ws+1
i

dwi

Prob(X j
i,n = x) =

(s−1)s+1

PΓ(s)(s−1)
Γ(s−1)

( x
P +(s−))s+1

Prob(X j
i,n = x) =

s(s−1)s

1
Ps [x+(s−1)P]s+1

Prob(X j
i,n = x) =sPs(s−1)[x+(s−1)P]−(s+1)

But P = exp(d j
i r j)

Prob(X j
i,n = x) =s[(s−1)exp(d j

i r j]s[x+(s−1)exp(d j
i r j]−(s+1)

from equation 2.10,;

E(X) = tE(Λ) and Var(X) = t2[2E(Λ2)− [E(Λ)]2]

In this case t = P and ν = wi ,x = X j
i,n

Therefore;

E[X j
i,n] =PE[wi]

E[X j
i,n] =P∗1

E[X j
i,n] =P
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but P = exp(d j
i r j)

E[X j
i,n] =exp(d j

i r j)

Var[X j
i,n] =P2[2∗ 1

s−2
−1]

but P = exp(d j
i r j)

Var[X j
i,n] =(exp(d j

i r j))2[
2

s−2
−1]

This can be re-wri�en as;

Var[X j
i,n] =

[(s−1)exp(d j
i r j]2

s−1
(

2
s−2

− 1
s−1

)

The main objective is to establish generalized an optimal Bonus-Malus system which take
into account individual characteristics and past claim history is that the premium paid per
individual policyholder is proportional to his claim size.There insurer needs to determine
the expected claim severity at period t +1 given that the insured has been in our portfolio
for t years and and his/her characteristics observed. .

This estimator is denoted as;

ŷt+1(Xi,1, ...,Xi,n;d j
i , ...,d

t+1
i )

The joint posterior distribution is given by

f (yt+1/X1, ...,Xn;d1
i , ...,d

t+1
i ) =

f (x1, ...,xn/y)(g(y)∫
∞

0 f (x1, ...,xn/y)(g(y)d(y)

f (yt+1/X1, ...,Xn;d1
i , ...,d

t+1
i ) =

∏
n
i=1 f (xi/y)g(y)∫

∞

0 [∏n
n=1 f (xi/y)]g(y)dy

N

∏
n=1

f (xi/y) =
N

∏
n=1

(
1

exp(d j
i r j)zi

exp(− x

exp(d j
i r j)zi

))
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Let m = exp(d j
i r j)

N

∏
i=1

(
1

exp(d j
i r j)zi

exp(− x

exp(d j
i r j)zi

)) =
N

∏
i=1
{ 1

mzi
exp(− x

mzi
)}

N

∏
i=1

(
1

exp(d j
i r j)zi

exp(− x

exp(d j
i r j)zi

)) =(
1

mzi
)N exp(−∑

N
n=1 Xi,n

mzi
)

Suppose

g(zi) =

1
s−1 exp(− s−1

zi
)

( zi
s−1)

s+1Γ(s)

Therefore

f (yt+1/X1, ...,Xn;d1
i , ...,d

t+1
i ) =

[( 1
mzi

)N exp(−∑
N
n=1 Xi,n
mzi

)]
1

s−1 exp(− s−1
zi

)

(
zi

s−1 )
s+1Γ(s)∫

∞

0 [ ( 1
mzi

)N exp(−∑
N
n=1 Xi,n
mzi

)]
1

s−1 exp(− s−1
zi

)

(
zi

s−1 )
s+1Γ(s)

dzi

f (yt+1/X1, ...,Xn;d1
i , ...,d

t+1
i ) =

exp{−
∑

N
n=1 Xi,n

m +(s+1)
zi

}
(

zi
s−1 )

s+1zN
i

∫
∞

0
exp(−

∑
N
n=1 Xi,n

m +(s+1)
zi

)

(
zi

s−1 )
s+1zN

i
dzi

f (yt+1/X1, ...,Xn;d1
i , ...,d

t+1
i ) =

1
zN+s+1 exp{−

∑
N
n=1 Xi,n

m +(s−1)
zi

}
∫

∞

0
1

zN+s+1 exp{−
∑

N
n=1 Xi,n

m +(s+1)
zi

}dzi

f (yt+1/X1, ...,Xn;d1
i , ...,d

t+1
i ) =

1
zN+s+1 exp{−

∑
N
n=1 Xi,n

m +(s−1)
zi

}
Γ(N+s)

{∑
N
n=1 Xi,n

m +(s−1)}N+s

f (yt+1/X1, ...,Xn;d1
i , ...,d

t+1
i ) =

{∑
N
n=1 Xi,n

m +(s−1)}N+s exp{−
∑

N
n=1 Xi,n

m +(s−1)
zi

}
zN+s+1

i Γ(N + s)
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This can be re-wri�en as

f (yt+1/X1, ...,Xn;d1
i , ...,d

t+1
i ) =

{∑
N
n=1 Xi,n

m +(s−1)}N+s+1 exp{−
∑

N
n=1 Xi,n

m +(s−1)
zi

}

{∑
N
n=1 Xi,n

m +(s−1)}zN+s+1
i Γ(N + s)

f (yt+1/X1, ...,Xn;d1
i , ...,d

t+1
i ) =

{ 1
∑

N
n=1 Xi,n

m +(s−1)
}exp{−

∑
N
n=1 Xi,n

m +(s−1)
zi

}

{ zi
∑

N
n=1 Xi,n

m +(s−1)
}N+s+1Γ(N + s)

Which is Inverse Gamma [N + s, ∑
N
n=1 Xi,n

m +(s−1)]

This is Inverse Gamma with parameters

[N + s,(s−1)exp(d j
i )+∑

N
n=1 Xi,n] as shown by Frangos and Vrontos (2001)

To enable us determine the premiums from our general case of pareto,we need to use
Baye’s theorem to ŷt+1 .This optimal estimator which is the posterior mean will be ob-
tained as follows;
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ŷt+1(Xi,1, ...,Xi,t ;d1
i , ...,d

t+1
i ) =

∫
∞

0
yt+1

i (X t+1
i ,wi) f (yt+1

i /Xi,1, ...,Xi,n;d1
i , ...,d

t+1
i )dyt+1

i

ẑi
t+1(Xi,1, ...,Xi,t ;d1

i , ...,d
t+1
i ) =

∫
∞

0
zt+1

i (X t+1
i ,wi) f (yt+1

i /Xi,1, ...,Xi,n;d1
i , ...,d

t+1
i )dzt+1

i

ẑi
t+1(Xi,1, ...,Xi,t ;d1

i , ...,d
t+1
i ) =

∫
∞

0
zi

{ 1
∑

N
n=1 Xi,n

exp(d j
i r j)

+(s−1)
}exp{−

∑
N
n=1 Xi,n

exp(d j
i r j)

+(s−1)

zi
}

{ zi
∑

N
n=1 Xi,n

exp(d j
i r j)

+(s−1)
}N+s+1Γ(N + s)

dzt+1
i

ẑi
t+1(Xi,1, ...,Xi,t ;d1

i , ...,d
t+1
i ) =

{ ∑
N
n=1 Xi,n

exp(d j
i r j)

+(s−1)}N+s

Γ(N + s)

∫
∞

0

1
zN+s

i
exp{−

∑
N
n=1 Xi,n

exp(d j
i r j)

+(s−1)

zi
}dzt+1

i

ẑi
t+1(Xi,1, ...,Xi,t ;d1

i , ...,d
t+1
i ) =

{ ∑
N
n=1 Xi,n

exp(d j
i r j)

+(s−1)}N+s

Γ(N + s)

∫
∞

0

1
zN+s−1+1

i
exp{−

∑
N
n=1 Xi,n

exp(d j
i r j)

+(s−1)

zi
}dzt+1

i

ẑi
t+1(Xi,1, ...,Xi,t ;d1

i , ...,d
t+1
i ) =

{ ∑
N
n=1 Xi,n

exp(d j
i r j)

+(s−1)}N+s

Γ(N + s)
Γ(N + s−1)

{ ∑
N
n=1 Xi,n

exp(d j
i r j)

+(s−1)}N+s−1

ẑi
t+1(Xi,1, ...,Xi,t ;d1

i , ...,d
t+1
i ) =

{ ∑
N
n=1 Xi,n

exp(d j
i r j)

+(s−1)}

N + s−1

ẑi
t+1(Xi,1, ...,Xi,t ;d1

i , ...,d
t+1
i ) =

∑
N
n=1 Xi,n +(s−1)exp(d j

i r j)

s+N−1

This can be re-wri�en as

ẑi
t+1(Xi,1, ...,Xi,t ;d1

i , ...,d
t+1
i ) =

∑
N
n=1 Xi +(s−1)1

t ∑
t
j=1 exp(d j

i r j)

s+N−1
(4.3)
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4.4 Premiums Calculation of the Generalized BMS

Both the severity and the frequency components can be used to obtain the premiums of
the generalized Bonus-Malus system.

The product of the generalized optimal BMS based on the frequency and of the generalized
BMS based on the severity component will give the premiums of the generalized optimal
BMS.

This is given by;

Premium=GBMF ∗GBMS

Premium = [
a+∑

t
j=1 N j

i

a+∑
t
j=1 exp(c j

i τ j)
] [

∑
N
n=1 Xi,n +(s−1)1

t ∑
t
j=1 exp(d j

i r j)

s+N−1
] (4.4)

4.5 Characteristics of the Generalized BMS

(1) This system takes into consideration the severity,the important prior rating variables
for the claim severity , the number of claims and the significant a prior rating variables for
the number of claims,for each policyholder.This mean that the system if fair is charging
premiums.
(2)The average premiums charged by the insurer each year is;

P =exp(ct+1
i τ

t+1)exp(dt+1
i rt+1)

This mean that it is financially balanced.The above equation can be shown by stating the
following; equation;

E[ν̂ t+1
i (N1

i , ...,N
t
i ;c1

i , ...,c
t
i)] =exp(ct+1

i τ
t+1)

and that

E[ŷt+1
i (N1

i , ...,N
t
i ;d1

i , ...,d
t
i )] =exp(dt+1

i rt+1)

This is possible because the number of claims and amounts of claims are independent.
(3) The same premium will be paid by in the beginning by all the policyholders with the
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same characteristics which is ;

P =exp(ct+1
i τ

t+1)exp(dt+1
i rt+1)

(4)The premium will always increase proportionately to accidents numbers and the amount
of claim that each extra claim incurred and reduce when there no accidents .
(5) This BMS could result in a decrease in Bonus hunger.This because drivers will be
penalized separately depending on the amount of loss arising from the accident.
(6) The expenses of the insurer from the accident is determined principally from the claim
severity and its introduction into the design of a BMS is crucial as it helps in calculating
the correct premium that must be paid.

4.6 Estimation

The net premium principle equation will be used to calculate premiums i.e

premium = GBMF ∗GBMS

The net premium formula for the BMS which take into account information about the
insured a�er he/she join the portfolio is given by equation 3.4.

The net premium formula for the generalized BMS based both on a priori , a posteriori
classification criteria and on individual characteristics is given by

premium =
1
t

t

∑
j=1

exp(c j
i τ

j)[
a+∑

t
j=1 N j

i

a+ t exp(c j
i τ j

] [
∑

N
i=1 xi +(s−1)1

t ∑
t
j exp(d j

i r j)

s+N−1
]
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For us to calculate the premium to be paid,the following has to be considered;

(1) The period t to which an insured is in our portfolio.
(2) The estimate of the parameters c and τ for the case of generalized Negative binomial
model.
(3)The estimate of the parameters d and r for the case of generalized Pareto model.
(4) the total claim amount ∑

N
n=1 xi,n and the total number of claims ,∑t

n=1 ni where ni is
the number of accidents caused in year i = 1, ..., t .

4.6.1 Estimation of Negative Binomial Distribution parameters

Using methods of Moments

To estimate the parameters by the above method, we equate the sample mean n̄ and the
sample variance s2 to the corresponding population values.

That is

n̄ =
α

β

Therefore

α =n̄β

Variance(k) = s2 =
α

β
(1+

1
β
)

s2 =n̄(1+
1
β
)

1
β
=

s2− n̄
n̄

β̂ =
n̄

s2− k̄
and

α̂ =n̄
n̄

s2− n̄

α̂ =
n̄2

s2− n̄

provided s2 > n̄
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Using the Maximum Likelihood Method

The maximum likelihood estimation method is more sophisticated than the method of
moments and superior even for small sets of data as it gives accurate and sensible estimates.

the maximum likelihood function is defined to be

L(α,β ) =
∞

∏
n=0

[pn(α,β )]Dn

Where

pn =

(
n+α−1

n

)
(

β

1+β
)α(

1
1+β

)n

and Dn is the frequency of n accidents.

L(α,β ) =
∞

∏
n=0

(n+α−1)!
n!

(
β

1+β
)α(

1
1+β

)n

and

β̂ =
α

n̄
n−1 = m

L(α,β ) =
∞

∏
n=0

(α +m)!
n!

(
β

1+β
)α(

1
1+β

)n

L(α,β ) =
∞

∑
k=1

Dn[
n−1

∑
m=0

log(α +m)] −
∞

∑
n=0

Nk logn!+
∞

∑
n=0

Dn[−(α +n) log(1+β )+α logβ ]

The maximum likelihood estimates of α and β will be obtained by taking the partial
derivatives of log-likelihood with respect to α and β .
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The partial derivative of log-likelihood with respect to α is

∂ l(α,β )

∂α
=

∞

∑
n=1

Dn[
n−1

∑
m=0

1
α +m

] +
∞

∑
n=0

Dn[ logβ ] − log(1+β )
∞

∑
n=0

Dn

∂ l(α,β )

∂α
=

∞

∑
k=1

Dn[
n−1

∑
m=0

1
α +m

] +
∞

∑
n=0

Dn[ logβ − log(1+β )]

and the partial derivatives of log-likelihood with respect to β is

∂ l(α,β )

∂β
=

∞

∑
n=0

Dn[−
α +n
1+β

] +
∞

∑
n=0

Dn(
α

β
)

∂ l(α,β )

∂β
=

∞

∑
n=0

[
α

β
− α +n

1+β
]

When we equate the partial derivative of log-likelihood with respect to β we get,

∑
∞
n=0[

α

β
− α+n

1+β
] = 0

α

β
= α+n

1+β

α(1+β ) = β (α +n)

α +αβ = αβ +βn

α = βn

n̄ = α

β
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Equating the partial derivative of log-likelihood with respect to α to zero it is;

∂ l(α,β )

∂α
=

∞

∑
n=1

Dn[
n−1

∑
m=0

1
α +m

] +
∞

∑
n=0

Dn[ logβ − log(1+β )]

∂ l(α,β )

∂α
=nlogβ −nlog(1+β )+

∞

∑
n=1

Dn[
n−1

∑
m=0

1
α +m

]

∂ l(α,β )

∂α
=n log β̂ −n log(1+ β̂ )+

n−1

∑
m=0

1
α̂ +m

]

n log(1+ β̂ ) =n log β̂ +
n−1

∑
m=0

1
α̂ +m

]

The Newton-Raphson approach will be used in order to solve numerically the above
equation.

Replacing β̂ with α

n̄ we have that,

H(α̂) =d log
α̂

n̄
−d log(1+

α̂

n̄
)+

∞

∑
k=1

Dn[
n−1

∑
m=0

1
α̂ +m

] = 0

and

H ′α̂ =
nn̄
α̂
− dn̄

n̄+ α̂
+

∞

∑
n=1

Dn[
n−1

∑
m=0

1
(α̂ +m)2 ]

The calculation of the maximum likelihood estimator for α at the v− th iteration will be

αv =αv−1−
H(αv−1

H ′(αv−1)

A good initial value for αo is the moment estimate for α , which is

α̂ =
n̄2

s2− n̂
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Iteration are repeated until αv is su�iciently close to αv−1.A�er we have obtained α̂ we
can compute β from the following formula;

β̂ =
α̂

n̄

Generally the fit of the negative binomial is very good and it give an excellent represen-
tation of the drivers behavior.This mean that the Poisson distribution fits well for the
individual drivers accidents and the Gamma distribution represents well the heterogeneity
of the portfolio,that is the di�erent underlying risk of each policyholders to produce a
claim.

4.6.2 Estimation of Pareto Distribution Parameters

Using Methods of Moments

E[x] =
m

s−1

x̄ =
m

s−1
m =x̄(s−1)

and

Var[x] = S2 =
m2s

(s−2)(s−1)2

S2 =
x̂2(s−1)2s

(s−2)(s−1)2

S2 =
x̂2s

(s−2)

ŝ =
2S2

S2− x̂2

m̂ =x̂{ 2S2

S2− x̂2 −1}

m̂ =x̂{S2 + x̂2

S2− x̂2}

m̂ = x̂{S2 + x̂2

S2− x̂2} (4.5)
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The Maximum Likelihood Method

In order to find the maximum likelihood estimators,we obtain the likelihood which is
equal to,

L(s,m) =
n

∏
i=

sms(xi +m)−s−1

The log-likelihood is given by

log l(s,m) =
n

∑
i=

ln[sms(xi +m)−s−]

log l(s,m) =
n

∑
i=
[ lns+ s lnm− (s+1) ln(xi +m)]

log l(s,m) =n lns+ns lnm− (s+1)
n

∑
i=1

ln(xi +m)

Let log l(s,m) = l

l =n lns+ns lnm− (s+1)
n

∑
i=1

ln(xi +m)

The first derivative of the log-likelihood with respect to s is

∂ l
∂ s

=
n
s
+n lnm−

n

∑
i=1

ln(xi +m)

The first derivative of log-likelihood with respect to m is
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∂ l
∂m

=
ns
m
− (s+1)

n

∑
i=1

1
(m+ xi)

The second derivative with respect to s is

∂ 2l
∂ s2 =− n

s2

The first derivative of the log-likelihood with respect to m is

∂ l
∂m

=
ns
m
− (s+1)

n

∑
i=1

1
(m+ xi)

The second derivative of the log-likelihood with respect to m is

∂ 2l
∂m2 =− ns

m2 +(s+1)
n

∑
i=1

1
(m+ xi)2

and the second derivative of the log-likelihood with respect to s and then to m which is

∂ 2l
∂m∂ s

=
∂ 2l

∂ s∂m
=

n
m
−

n

∑
i=1

1
(m+ xi)
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We use the method of scoring.The vector of parameters ϑ = (s,m) and A(ϑ) as the matrix
of the first derivative which is defined as

R(ϑ) =

( ∂ l
∂ s
∂ l
∂m

)
=

(n
s +n lnm−∑

n
i=1 ln(m+ xi)

∂ 2l
∂ s∂m = n

m −∑
n
i=1

1
(m+xi)

)

and the Q(ϑ) the matrix of the second derivatives which is defined as

Q(ϑ) =

( ∂ 2l
∂ s2

∂ 2l
∂ s∂m

∂ 2l
∂m∂ s

∂ 2l
∂ s2

)

Q(ϑ) =

(
(− n

s2 )(
n
m −∑

n
i=1

1
m+xi

)

( n
m −∑

n
i=1

1
m+xi

)(− ns
m2 +(s+1)∑

n
i=1

1
(m+xi)2 )

)

and then the vector of parameter ϑ is estimated using the following equation

ϑi+1 =ϑi− [Q(ϑ)]−1[A(ϑ)]
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5 Application

5.1 Introduction

We consider the data presented by Spyridon D. Vrontos (2001)

Table 1. Claim Frequency Data.

Number of claims per policy(n) Number of Policies

0 1755724

1 117632

2 14510

3 2228

4 418

5 73

6 23

7 6

8 1

The mean and variance of this data is obtained as;

Mean = E(N) = 0.08228

Variance = S2 = 0.1019

we consider the negative binomial model.
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using the method of moments

β̂ =
n̄

s2− n̄
β̂ = 4.1937

α̂ =
n̄2

s2− n̂
α̂ = 0.34506

using maximum likelihood method

we have that

αv = αv−1−
H(αv−1)

H ′(αv−1)

A good start for the value of α0 is the moment estimate for α ,which is

α̂ =
n̄2

s2− n̂

A�er we compute α we compute β from the formula

β =
α̂

n̄

This a�er a few iteration we find that α̂ = 0.34854 and β̂ = 4.23602
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5.1.1 Optimal BMS using the Net Premium Principle

Here the optimal BMS is obtained using the net premium principle.All the values obtained
are divided with the basic premium,the premium paid when t = n = 0, i.e the premium
paid in the beginning of the driving career of the policyholder in our portfolio and under
observation.We consider this division because in this phase we are more interested in
the percentage di�erence that result a�er the maluses are given.The results presented
indicates that a new policyholder pays premium 100 as the initial premium.

The Negative Binomial Distribution
We apply the Negative Binomial parameter estimates in to equation 3.1 and obtain the
Optimal BMS in table 2.It is clear that the Optimal BMS proposed is generous to the good
drivers and strict for the bad drivers.It is generous because for the basic premium the
bonuses are 19.10 percent for one claim free year,32.07 percent for two claim -free year
and the policyholder who had 7 claim free years will have a bonus of 62.3 percent of the
basic premium.On the other hand,the driver who had one accident will have increase of
213.017 percent of the basic premium to be paid and the penalties are more severe for
drivers who cause two or more accidents in one year.
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From this system,it is clear that it increases the phenomenon of hunger bonus the is
because the policyholder with a small loss arising from his claim will prefer to pay the
damage themselves as they will not want to lose on the big bonuses awarded.

Table 2. Optimal BMS based on the Posteriori Criteria,Negative Binomial Distribution Model

Years Number of Claims

t 0 1 2 3 4 5

0 100.00 0.00 0.00 0.00 0.00 0.00

1 80.9015 313.0170 545.1325 777.2480 10009.3635 1241.4790

2 67.9283 262.8221 457.7158 652.6096 847.5034 1042.3972

3 58.5408 226.5007 394.4607 562.4206 730.3806 898.3406

4 51.4329 198.9995 346.5661 494.1328 641.6994 789.2660

5 45.8641 177.4535 309.0428 440.6322 572.2221 703.81081

6 41.3835 160.1173 278.8511 397.5849 516.3188 635.0526

7 37.7004 145.8669 253.0373 362.2001 470.3668 578.5333

5.1.2 Optimal BMS based on the a Posteriori frequency and Severity Compo-
nent

The independence property has to be assumed between claim numbers and claim amounts
in order to deliberate on each component separately.We consider the data presented by
Walhin and Paris (2000) and added the values on the right so that the data fits the Pareto
distribution.

From table 3 the mean and variance claim amount obtained are;
E(x) = 321,422.22
Var(x) = 2.85637E +11

Using the maximum likelihood estimate,we find that ŝ = 3.13 and m̂ = 685,682.79.

Here we will demonstrate only the instances that the total claim amount of an insured in
the portfolio under our observation i.e ∑

N
n=1 xn will be equivalent to Kes.250,000.00,Kes.750,000.00

and Kes.1,000,000.00.However we can use di�erent values with the the net premium for-
mula .

In table 4, it shows clearly the premiums that will be paid by insured who underwent
di�erent number of claims.For example let us consider an insured who underwent one
accident in the first year with a claim amount of Kes.250,000 ,the amount of premium that
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Table 3. Observed Claim Severity Distribution ’000’

6 6 10 11 17 18 20 26 27 34

42 44 47 54 59 60 61 61 61 61

64 64 65 66 67 68 71 71 73 75

76 81 85 87 93 94 101 103 105 109

110 110 113 116 116 129 134 134 141 141

151 154 156 159 167 171 172 173 174 179

181 183 185 187 195 195 203 226 235 240

151 255 273 340 361 429 465 531 646 923

1043 1226 1398 1423 1569 1702 1929 081 2265 2545

he will pay is Kes.76,992.20.If we observe him for the next period and he made a claim
size of Kes.500,000.00 for his accident made, then a surcharge will be enforced as he had
an accident and he will have to pay Kes.130,917.90.This premium is equivalent to two
accidents observed in a period of two years of total claim amount of Kes.750,000.00.In
the event that the insured remain in our portfolio for the third year with no accident,the
premium to be paid will be lower and he will pay Kes.112,825.30.This amount has reduced
since there was no accident caused and this translates to the total premium for two
accidents of total claim amount of Kes.750,000.00 for the three periods the insured is in
our portfolio.

Table 4. Optimal BMS Based on the a Posteriori Frequency and Severity Component-Total
Claims Size of 250000

Years Number of Claims

t 0 1 2 3 4 5

0 26,487.30 0 0 0 0 0

1 21,428.70 76,992.20 101,619.10 116,644.80 126,768.20 134,051.90

2 18,044.90 64,645.90 85,323.60 97,939.80 78,000.70 112,555.50

3 15,505.90 55,712.00 73,532.10 84,404.80 91,730.10 97,000.60

4 13,623.20 48,947.50 64,603.00 74,156.50 80,592.40 85,223.00

5 12,148.20 43,647.90 57,609.20 66,127.50 71,866.50 75,995.80

6 10,961.40 39,383.70 51,981.10 59,667.20 64,845.60 68,571.40

7 9,985.80 35,878.60 47,354.80 56,099.60 59,074.40 62,468.60
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Table 5. Optimal BMS Based on the a Posteriori Frequency and Severity Component-Total
Claim Size of 750,000.00

Year Number of Claims

t 0 1 2 3 4 5

0 26,487.30 0 0 0 0 0

1 21,428.70 118,134.50 155,921.20 178,976.20 194,509.20 205,685.10

2 18,044.90 99,190.60 130,917.90 150,275.80 163,318.00 172,701.70

3 15,505.90 85,482.70 112,825.30 129,508.10 140,747.80 148,834.80

4 13,623.20 75,103.60 99,138.70 113,797.70 123,674.00 130,780.00

5 12,148.20 66,980.40 88,393.70 101,476.70 110,283.60 116,620.20

6 10,961.40 60,436.80 79,768.20 91,563.00 99,509.60 105,227.10

7 9,985.80 55,057.90 72,668.90 83,413.90 90,653.30 95,861.90

Table 6. Optimal BMS based on the a Posteriori Frequency and Severity Component-Total
Claim Size of 1000000

Year Number of Claims

t 0 1 2 3 4 5

0 26,487.30 0 0 0 0 0

1 21,428.70 138,720.40 183,091.80 210,164.40 228,404.10 241,527.50

2 18,044.90 116,475.40 153,731.40 176,462.70 191,777.50 202,796.50

3 15,505.90 100,378.80 132,486.10 152,076.00 165,274.40 174,770.50

4 13,623.20 88,191.00 116,400.00 133,611.20 145,207.10 153,550.30

5 12,148.20 78,642.40 103,797.10 119,144.90 129,485.30 136,925.10

6 10,961.40 70,959.50 93,656.70 107,505.10 116,835.30 123,548.30

7 9,985.80 64,644.10 85,321.30 97,937.20 106,437.00 112,552.60

In table 7 we illustrates how this bonus-malus system is discriminative of the premium
paid when claim amount is taken into account.it also show premium to be paid when an
insured is in our portfolio for one year and caused accidents which range from 1 upto
5.The total claim amount range from Kes.250,000.00 to Kes.4,000,000.00. For example an
insured who underwent an accident with an amount of Kes.250,000.00 , Kes.750,000.00
and Kes.2,000,000.00 should have to pay a premium of Kes.76,992.20, Kes.118,134.50 and
Kes. 220,990.40 respectively.
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Table 7. Comparison of Premiums for Various Number of Claims and Claim Sizes in the First
Year of Observation

Number of Claims

Claim Sizes 1 2 3 4 5

250,000 76,992.20 101,619.10 116,644.80 126,768.20 134,051.90

500,000 97,563.40 128,770.10 147,810.50 160,638.70 169,786.80

1,000,000 138,702.60 183,113.00 210,141.90 228,379.70 241,501.70

2,000,000 220,990.10 291,676.40 334,804.70 363,861.80 384,768.20

3,000,000 303,274.70 400,280.60 459,467.50 499,343.80 528,034.60

4,000,000 385,559.20 508,884.80 584,130.30 634,825.80 671,301.00

5.1.3 The designing of an Optimal BMS based both on the a priori and the a
posteriori Classification Criteria

The premiums of a generalized optimal Bonus-Malus system is obtained by apply equation
4.4 .

To enable us implement equation 4.4,which has both negative binomial regression pa-
rameters and Pareto parameters,we have have to find the estimate of the parameters a
and s ,and the vector τ and r of significant priori rating variables.We employ the methods
developed by Riggby and Stasinopoulos (2001,2005,2009) to estimate the parameters in
the generalized models.

The generalized additive model for lacation,scale and shape(GAMLSS)

The GAMLSS are models which are semi-parametric regression in nature.The parametric
distribution assumption shows that they are parametric and using the non-parametric
smoothing functions as function of explanatory variables in modelling of parameters give
the sense of "semi".These models were introduced as an option of Generalized Linear
Models,GLM and Generalized Additive Models ,GAM, which within the framework of
univariate regression modelling techniques hold a prominent place.The response variable
y relaxed in the exponential family in the GAMLSS model and replaced by a general
distribution family .Within this model the systematic part of the model is expanded
to allow not only for the mean(or location) but other parameters of y as,linear and/or
non-linear,parametric and/or additive non-parametric (smooth)functions of explanatory
variables and/or random e�ects which is the key advantage of GAMLSS.Two di�erent
algorithm were used in model fi�ing of GAMLSS,the fisrt is based on the algorithm that
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was used for fi�ing the mean and dispersion additive models of Rigby and Stasinopou-
los,whereas the second is based on the Cole and Green algorithm.

The observations yi for i = 1, ...,n with probability density function f (yi/τ) conditional on
τi = (τ1i, ...,τi4) are assumed independent by GAMLSS model,the vector of the distribution
parameters each of which can be a function of explanatory variables.
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6 Conclusion and Recommendations

In this thesis we presented the methodology for the construction of a BMS according to
the number of claims and net premium calculation principle.We used the negative binomial
distribution to model the number of claims and we found that the optimal BMS obtained
was fair as every policyholder should pay a premium which is in line with the estimate
of his/her number of claims.It is finally balanced as each period the total of amount of
the premiums recived by the insurance company from all the insured individuals remains
constant and can be wri�en as a special case of Buhlmann credibility model which denotes
the risk premium modified by experience is the weighted average of the prior premium
and the observation.

We have also developed the methodology for designing a BMS using the number and
amount of claims components.This optimal BMS adjust to the policyholders a premium
according to the number of claims they have and the correct claim size they incur.We used
the Negative Binomial distribution as the distribution of the number of claims,the Pareto
distribution for the loss that each claim incur and net premium calculation principle.The
premium that each policyholder is paying is proportional to the number of his/her claims
and to the loss that these claims incur and this indicates that the optimal BMS obtained in
this ways is fair.It is finally balanced as each year the mean value of all premiums collected
from all the policyholders is stable.This optimal BMS is important because policyholders
who are going to pay a small premium are those with a small loss than those with big loss
and also for the insurance companies as the size of loss is very important factor for their
financial security.

Furthermore,we have developed a generalized BMS for frequency severity model using
claim frequency and loss distribution in the design of a tari� classification criteria that take
into account both the a priori and a posteriori classification criteria.We have constructed
the generalized model for both the frequency and severity component.However,we have
not applied this generalized model to the because we needed to estimate the regression
parameters and their interaction using the Generalized Additive Model for Location,Scale
and Shape (GAMLSS) which we have only described and we recommend this challenge as
a subject for further research in estimation of regression components.
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6.1 Future Research

As stated in the conclusion above,we recommend the application of GAMLSS in the
estimation of regression parameters as a subject for further research.This would enable us
apply the generalized models constructed to the data and therefore enabling us to see
how premiums adjust to the impact of individual characteristics.This can also be extended
to other models using other premium calculation principles.

Finally,we would like to recommend the development the development of a method for
the evaluation of the e�iciency for the current bonus-malus system when the size of loss
and the number of claims is put into consideration as a subject for further research.
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