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Abstract

Actuarial Science is the discipline that concerns with uncertain events where the concept
of probability and statistics provide for essential instruments in the measurement and
management of risks in insurance and finance.A key aspect of the business of insurance is
the calculation of the price to pay commonly known as the premium to pay in exchange
for the transfer of risk.Many insurance companies charge premiums on the policyholders
based only on the claim frequency.That way a policyholder who underwent an accident
with a small size of loss will be unfairly punished in comparison to an insured policyholder
who had an accident with a large amount of loss.In automobile liability insurance,the
policyholders do not all the same risk to have an accident.The premium that is charged
to each policyholder has to be proportionate to his/her underlying risk to have an ac-
cident.Motivated by this,we consider the design of a model that incorporate both the
frequency and and severity components and we suggest a method that deliberate concur-
rently on the number of claims,the exact size of loss and the individual characteristics.
The modeling of claim frequency component is based on Poisson mixtures where the
number of claims is distributed according to the negative binomial type L. The severity
component is modeled using the exponential mixtures where the the losses are distributed
according to a Pareto distribution.Using the Baye’s theorem we get the posterior function
for the number of claims and the claim amount component.Considering only the claim
frequency the premium was estimated as the mean of the posterior structure function in
computing premiums.The premiums based on both frequency and severity component
was estimated as the product of the mean of posterior structure function of the frequency
and severity component.
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1.1

General Introduction

Background/Historical Information

The basic concept of insurance consist of creating a portfolio where the risks of the insured
are managed.Since the risks in the portfolio are not the same for every insured ,the
premium paid by each member should be equivalent to risk that an insured exposes the
portfolio.In insurance companies that deal with third-party liability insurance especially
the automobile,the risk structure of the portfolio of policyholders is heterogeneous in
that the risk are not equal, i.e. the policyholders do not all have the same risk to have an
accident.The detection and measurement of the elements that affect and transform the
risk of an accident and hence the premium that must be paid,is essential for the designing
fair tariff that fairy allocates the cost of claims to each and every insured individual.

The main duty of an actuary in modelling of a new pricing structure is to ensure that it
equitable .This is achieved with the partition of the portfolio of policies into similar groups
and all the policyholders belonging to the same group paying equal premium.The more
heterogeneity of risk structure exist inside each class of policyholders the more unfair
the tariff classification method is as policyholders with a different probability to have an
accident pay the same premium.This partition can be done using information known to
the insurer before the insured join the portfolio or a posteriori information or by using
both of them.The most frequently used a priori classification criteria are the automobile
type and use, age and sex of the insured,cubic capacity of the engine and place where the
insured resides.After the use of a priori classification criteria the tariff structure classes are
still homogeneous ,hence its is suggested taking into consideration all these differences
in the posteriori,by modifying the premium according to the each policyholder’s claim
history.

According to the philosophy of a posteriori classification criteria the driver’s past claim
behavior give the best forecast of the future claim numbers.The evolution of the philosophy
of the a posteriori classification has guided the growth of the classification systems which
are known in almost every country around the world Bonus-Malus Systems (BMS).The
Bonus-Malus-Systems penalize policyholders who caused and and made a claim by
premium increase or and appreciate the policyholders who did not caused and accident
during the period under consideration by awarding the discounts of the premium of
bonuses.The main purpose of a BMS is to enable the insurance companies under how they
charge premiums to their customers proportionately based on the characteristics of each
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insured person at any given year.Such characteristics includes the number of claims,the
amount of each claims and driving abilities

The optimal BMS obtained using the frequency component has the disadvantage of
penalizing the policyholders without taking into consideration the amount of claim that
the claim caused.As a matter of fact,all Bonus-Malus Systems considered do not factor
in the amount of loss on renewal of the policy and as such ,the policyholders who made
a claim with small loss are forced to renew their policy with the same price with the
policyholders which the insurance company pay high cost in paying their claims.In this
sense a BMS which can separate the policyholders according to the number of claims and
amounts of their claims should be developed.

Besides,the current Bonus-Malus System does not take into consideration the type of
accident and penalize equally the accidents which cause a property damage claim only
and the claims which cause property damage and bodily injury claims.The bodily injury
claims are of great importance because even though they represent a small percent of
number of claims,they cost a serious percent of the total claim amounts.

Definitions,Notations and Terminologies

Mixtures

Mixtures arises when a probability density function f(x/v) depends on a parameter v that
is uncertain and is itself a random variable with density g(v).Then taking the weighted

average of f(x/v) with g(v) as weight produces the mixture distribution.
The pdf of a continuous mixture is given by

fx) = Jo fx/v)g(v)dv
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where,

f(x/v) = the conditional pdf

and,

g(v) = the continuous mixing distribution.

pdf= probability density function

BMS=Bonus-malus system

NCD= No claim discount system

PMF =Probability Mass Function

E(x")= The rth Moment of the mixture

Research Problem

Originally Bonus-Malus System was obtained by considering claim frequency without
taking into account the size of claim.This system was unfair since it punishes the claim
numbers independently of their severity,that is without taking into account the size of
loss.

The early studies considered Poisson distribution in obtaining claim frequency component
which assumes homogeneity in policyholders risks but in reality different individuals have
different underlying risk characteristics and hence the need to take into consideration
heterogeneity.Equidispersion is a major disadvantage of Poisson distribution where vari-
ance is to be equal to the mean which may not be consistent with observed data.The
development of specific models (mixture models) to represent different characteristics of
data was motivated by high presence of overdispersion in the data.



The study further proposed a BMS that incorporate both information known to the insurer
and information that the insured exhibits during the period of observation and basing on
each policyholder’s characteristics.
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1.5

Objectives

To obtain optimal Bonus Malus system according to the claim numbers ,claims size
component and on characteristics of each individual policyholder.

Specific Objectives

The specific objectives are to :

1.To estimate number of claims and claim size component according to posteriori criteria.
2.To estimate number of claims and claim size component according to a priori and
posteriori criteria.

3.To compare premiums for various claim frequency with claim severity during the first
period of observation.

4. Estimates premiums using generalized models based on information known to the insurer

before the insured join the portfolio and after taking into account the characteristics of
each insured.

Methodology

The following are methods that are used to achieve the above objectives.
Continuous Mixtures

Poisson Mixtures

Let

Fla/v) =220y 5 0and x=0,1,2,...

Then

) = Jy 22 g (v)dv

E(x) =v and Var(x) =V

Exponential Mixtures

We consider exponential distribution of type Il whose mean is the parameter v
f(x/v)=1exp(—=2) v>0x>0

Fx) = J5 yexp(=3)g(v)



E(x) = { and Var(x) = &

\%
The Gamma function
_ B%v* “exp(—Bv)

g(v) = BBV 1y 5 0,60>0,8> 0

INa+1)=oal'(a)

I exp(—Bynedr = 2

Inverse Gamma Function

mexp(=%)
RCRRC)

E(y) = s—ll and Var(y) = m

Lindley Function

2
g(y) = 27+ 1)exp(yadd) ,y>0and ¥ >0

2

Estimation
The parameters of the above distributions are estmated using the following methods;

1) Method of Moments
In this method,the parameters by method of moments we equate the representative
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variance s> and representative mean  to the corresponding population values.

2)Maximum likelihood Estimate method

The method of maximum likelihood estimate is based on the likelihood function,L(%;x).Suppose
we are given a statistical model {f(-;¥)/0 € ¥}, where ¥ denotes the parameter for the
distribution.The method of maximum likelihood estimate find the values of the model
parameter ,9, that maximize the likelihood function ,L(9;x).

This estimator is given by,

1(¥;x) = InL(¥;x)

3) Bayes Theorem-Bayesian Inference

Consider observations ny,ny, ...,n;,and suppose we wan to estimate the parameters vy, v, ..., v,,.Let
us denote v = (V1,Vs,...,V,;)! the vector of the parameters and n = (ny,na,...,n;)7 ob-

served data with likelihood function L(k/Vv).Suppose u(Vv) is the prior distribution for v,

which denotes our subjective belief or the prior information we have about v.The posterior
distribution of the vector of parameters v will be obtained using the Bayes theorem,and

when the parameter Vv is continuous valued,which is most common situation,will be the
following:

Literature Review

Generally in the insurance industry,a BMS are experience rating mechanism which pun-
ishes policyholders that makes one or more accidents by premium surcharge and ap-
preciate by giving discounts to policyholders who had no claim in any period under
consideration.BMS are common in automobile insurance industry.The BMS can also be
called a No - Claim Discount (NCD) or no - claim bonus in Britain and Australia.



The basic concept of NCD is that higher insurance costs that are charged on average to
every policyholder that corresponds to the high number of the claims.

G. Dionne and C. Vanasse (1989,1992) Builds a Bonus -Malus system in which a priori
and a posteriori information are integrated with individual characteristics so as to modify
premiums of individual policyholder with a given period of time .He develops a statistical
model that integrates sufficiently categories of risks and experience rating .He used Pois-
son and Negative binomial models with a regression component in order to use all the
information available to estimate accidents distribution,. The parameters of negative bino-
mial regression model were estimated using maximum likelihood estimate.The premiums
were calculated using the expected value principle and insurance table were obtained as a
function of time,past number of accidents and remarkable variables in the regression.

Luc Tremblay (1992) proposed a bonus malus system by fitting of data using the poisson
inverse Gaussian Distribution extending the model introduced by Lemaire (1976) thus
minimizing the average total risk of insurer since the insurer is at risk.This model is based
on the number of claims N which is random irrespective of their amount.He represent
claim frequency Poisson distribution with mean v which is a random variable with
distribution representing the expected risk inherent in any given portfolio.He assumed the
the distribution of Vv is inverse Gaussian since it has thick tails and provide an advantage
of having a closed form expression for the moment generating function.The Mixed poisson
provide a better fit from the insurer’s perspective because the variance exceeds its mean.To
minimize the insurer’s risk he estimated the posterior distribution of v using the Bayesian
theorem and estimated the parameters using the maximum likelihood estimate.He used
the principle of zero utility in order to determine the premium .

Nikolaous Frangos and Dimitris (2004) Proposed a model for modelling losses using
exponential-Inverse Gaussian distribution allowing for covariates.The model is preferred
to Pareto distribution because it has a shorter tail and considered appropriate for mod-
elling data without larger tails.The claim losses are distributrd according to exponential
distribution with mean y.Since the policyholders do not have the same mean for the
claim amounts , they expressed inform of a distribution known as inverse Gaussian dis-
tribution.The mixed exponential distribution provide a good fit for claim size data with
small tails.The allowance of covariates (regression coefficient) in the model enables the
modelling of data with different characteristics of policyholders.The model parameters
were estimated using the maximum likelihood estimation through the EM algorithm.The
posterior expectation was estimated using Bayes theorem making use of modified Bessel
Function.The covariates were fitted using exponential General Linear Model via EM algo-
rithm.

Spyridon D. Vrontos et al (1998) Introduced a BMS where past number of accidents
and the correct claim amount for every accident caused are considered.In particular, the



BMS suggested allocates to every individual policyholder a premium equivalent to past
number of accidents they have and the exact amount of loss that the claim caused.That
is ,the bigger the claim size the bigger the premium that the policyholder has to pay.He
considered the frequency and severity to be independent in order to able to deal with
each component separately.He used the Negative Binomial distribution to represent the
number of claims and Pareto distribution for the amount of loss caused and the net
premium calculation principle.

Weihang Ni,Carina Contantinescu and Athanasios A. Pantelous (2014) developed a bonus
malus systems with claims severities distributed according to a Weibull distribution which
addresses the bonus hunger problem.The modelling of claims is done by mixing Poisson
intensity v with gamma which give rise to Negative Binomial distribution which addresses
overdispersion in the data.ln addition,they applied the Bayesian theorem to obtain the
posterior distribution and subsequently the posterior mean. They also assumed that
the claim amount is distributed according to exponential type | distribution with mean
%.The Levy (%) stable )is used to describe because they are not equal for all the insured
.The mixture of exponential type | with Levy distribution result in a Weibull distribution
which does not have long tails as Pareto which reinsurance companies rely on to alleviate
the burden of extremely large claims.The Bayes’ theorem is used to obtain the posterior
distribution and subsequently the posterior mean.The premiums are obtained using the
net premium principle .The application of Weibull distribution to claim size data shows
that the initial premiums payment are lower than the Pareto distribution which is more
preferred by a starting policyholder which creates more competitiveness to the insurer.

Emad Abdelgalil Ali Ismail (2016) present the design of an optimal BMS according to finite
mixture models with claim sizes distributed according to Gamma.This BMS is designed
using the Bayesian approach,probability distribution and taking into account the Poisson
distribution to represent number of claims.The number of claims was assumed to be
Poisson distribution and the basic risk was assumed to b Gamma resulting in Negative
binomial distribution. Using the Bayesian approach he obtained the posterior structure
function and posterior mean.The claim sizes was modelled sing Gamma distribution as the
claim size and the prior function as the Gamma function resulting in Gamma distribution
with updated parameters.The parameters were estimated using the maximum likelihood
estimate method.The premiums obtained using the net premium principle as the product
of posterior mean based on claim numbers and amount of claim.The model overcomes
the limitations of the model proposed by Weihong according to Weibull distribution and
negative distribution where premiums increases with increase in total number of claims
to a given limit then premiums reduces with increase in claim numbers.

George Tzougas et al (2017) presented the design of optimal BMS using various finite mix-
tures of distribution and regression models.He extended the actuarial literature research
which uses generalized linear models for pricing of risks through ratemaking based on a
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priori risk classification (see,Denuit et al 2007) by considering GMLSS.For the frequency
component,the number of claims is assumed to have the following distribution; a finite
Poisson,Delaporte and Negative Binomial Mixture, and for the severity component they
considered that the losses the following distribution; a finite exponential, Gamma and
Weibull Mixture.He expanded Lemaire (1995) set up and applied baye’s theorem to obtain
the posterior probability of the policyholders.

George Tzougas et al (2018) presents the design of BMS with two component mixture mod-
els emerging from no-identical parametric families.They made the following contribution
to the present study:a)Developed a new way of designing optimal bonus-malus system
considering both claim numbers and amount without assuming that the distribution for
claim numbers and amounts come from the same parametric family.b)Developed a bonus
malus system by considering that the parameters of claim numbers and amounts can
be modelled as a function of explanatory variables.c)Proposed calculation of premiums
using the variance principle since its takes into account all important information that an
insurer knew before the insured join the portfolio and their characteristics for both claim
number and amount component.The two component mixture component models devel-
oped addresses the bonus hunger problem in that it provides an option to combinations of
heavy tailed and light tailed distribution which can give premiums which are tailor made
and equitably penalize additionally for claim sizes and lower for small claim amounts.

Significance of the study

The study of Bonus Malus system play a major role in insurance industry in that the insur-
ance companies will be able to charge premiums based on the risk that the policyholder
imposes on the pool.Also a part from promoting careful driving between policyholders,it
helps assess individual risks more accurately through priori risk classifications that on a
long term basis every policyholder pay a premium which is consistent to their own claim
frequency and claim severity.



Poisson and Exponential Continuous Mixtures

Introduction

To obtain the frequency and severity component we shall use the Poisson and exponential
mixtures respectively.
A brief discussion of mixtures is given below

2.1.1 Definition

Continuous Mixtures in General

b
£0) = /0 FO/v)g(v)d(v

where

f(y)=the mixed distribution

f(y/Vv)= the conditional probability density
function or probability mass function

g(v)= continuous mixing or prior distribution
Consider Poisson mixed distribution given by

Py(n/v) = [ SREVV o(v)dy n=0,1,2,...

n!

and type Il exponential mixture distribution is given by

fy) = w%exp(—%)g(v)dv y>0forv>0
To obtain the mixed distribution,the evaluation of the above integrand explicitly is difficult
with the exception of a few mixing distribution,(Albercht,1984).The problem is to obtain
other methods of constructing distributions of Poisson mixtures for different probability
density functions of A = v, and also to identify the ones where explicit evaluation is

possible.

The major problem in constructing or obtaining mixture distribution with continuous
mixing distribution is the evaluation of the integral above.Only a few integrands can be

evaluated explicitly.
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2.1.2 The rth Moment

or

E(Y") —/Omy’f(y

—/0 {y’/o f/v)g
=/0 /Oy’fy/v
_/0 E(Y/A)gl

E(Y") =EE(y'/A=v)

2.1.3 Posterior Distribution
Consider two variablesY =yand A=v

then,

f,v)=£fy/v)g(v)

)d(v)}d(y)
(v)d(v)
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therefore,

| romaw = [~ r6mevam)
0 0
| I £O/v)s)d(v)

o fO/v)g(v)d(v)
Therefore
F/v)g(v)
Jo f/v)g(v)d(v)
is a pdf (forv >0,y > 0)
Let us denote it by g(v/y)
therefore,
_ fh/v)s(v)
VD)= = 56 s va) @
_fh/v)g(v)

for v > 0;y > 0 is a posterior pdf with posterior mean

_JovIb/v)g(v)d(v)
Jo" f(y/v)g(v)d(v)

_E[vI(/V)]
E[f(y/v)]

E(v/y)

E(v/y)



2.2

The objectives of this section are to:-

(i) Construct poisson and exponential mixtures for different cases of g(Vv).
(if) Obtain expectation of y and Variance of .
(iii) Determine posterior distribution of f(v/y) and posterior mean E(Vv/y).

Poisson Mixtures

Mixed Poisson distributions or Poisson Mixtures were developed in order to model data
where the fit of the Poisson distribution was not adequate.Such situation occur often,
among other fields in Insurance where an analysis of a heterogeneous portfolio has
to be made.As already noted in a heterogeneous portfolio,the fundamental risk for all
policyholders to incur an accident are not the same and this justifies the generation of
a model that will represent the different underlying risks.It is often convenient when
constructing mathematical models of complex phenomenon to use familiar and simple
distributions to build more complex distributions.

Mixed Poisson distributions has been given great attention by Johnson et al (1993),Panjer
and Willmot (1992) and Douglas (1980).In order to define the mixed Poisson distribu-
tions,we let k,the random variable denoting the claim numbers of each insured over a
fixed time period which is equal to one year be expressed in terms of Poisson distribution
( v ) which differs for different insured policyholders.Thus the parameter v is the observed
value of the random variable A and each policyholder’s basic risk to have an accident is
characterized by the unique value A for each risk When the portfolio is large as it is in our
case it is logical to assume that A conforms to a continuous distribution in the interval
[0,00].The probability density function of A is called mixing function .In the actuarial
context it is often named as the risk function and will be denoted as g(Vv).

Thus the distribution of the number of each insured over a year,will have a probability of
the form,

forn=0,1,2,...

2.2.1 The rth Moment
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Consider the probability mass function

p) = [ e vyay

for y=0,1,2,..

E(Y")=EE(Y"/v)

ey

y!

Therefore

E(Y) :E{in}
0

y!
=E{exp(—vr)(vt) i (v
y—1

=E{exp(—vt)(vt)exp(vt)}
=E|tV]
=tE[v]

E(Y?) =E[x(y—1)+)]
—Ely(y—1)] +E[Y]
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Therefore

E[y(y—1)]=EE[y(y—1)/A]
ey exp(=ve)(v)
—E{);,y(y D=}

—E{(vt)?exp(— i

—E{(vt)%exp(— vt)exp( )}
—=E[1*A?]
Ely(y—1)] =*E[A

Therefore

E(Y?) =12E[A?] +1E[A]

Therefore variance is;

Var(y) = P E(A*) +tE(A) — *[E(A)]?

Var(y) = *Var(A) +tE(A)

2.2.2 Gamma Mixing Distribution

The mixed model in the portfolio is obtained when,
k/v ~ poisson(v)

and

v ~ Gamma(a, )

(2.2)
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therefore,

pi) = [ PP vy

n!

_ [ exp(=v)v" v VB%exp(—Bv)
_/0 - ) ) dv
:n!llz—W)/om viv(@ exp(—v)exp(—Bv)dv
:% v exp(—(1+ B)viav
_B* T(n+oa)
k() (14 B)nte

I'n+a B¢

“nll(a) (1+p)He

n+a—1 B w1
Po) =" )

n+a—1 B o 1 .,
Po)= ("N e )

Which is the probability density function of the Negative binomial distribution

(2.3)



Mean

ey = L")
. (n+a_1)! ﬁ o 1 n
_n;)” a1 T+p T+p)
(n—}—OC—l)! ( B )a( 1 )n

C =D (a—1)1"1+B’ "1+

_1+B 1 n+o—1 B a1, 1 o
=5 *1+B*a,§6< - >(1—|—B) 1(1_|_[3) 1

(2.4)

Variance



E[n<n_1>]:Zn<n_1><”+“—1)< P ye Ly

= n 1+B" "1+P
n+oa—-1) B ., 1 .,
Znn 1) n‘OC i (1+[3) (1+B)
_ ”+OC 1) [3 o 1,
_,;)(H—Z)!(oc—l)!(1+l}) <1+l3)
_ (n+a—1)! B o, 1 .,
_Zba(aJrl)(n_z)!(a_1)!(1+l3) (=3
_a(a+l) nto—1\, B 4o 1
(B n;)( n—2 )(1+ﬁ) 2(1+a) 2
Efn(n—1)] :“<(0[‘3;1)
(OC+1) o o,
Var(n) = B2 +E_(E)
_a(l+B)
- (B)?
Var(n) :%(1 + %)

The Posterior Distribution

from equation we note that the formula for posterior distribution is given by

fy/v)g(v)
V) = T il vy g (V)
and
) B esol—py)

forv>0,a>0,8>0.
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Therefore

exp(—vr)v" « v(""l)ﬁ"‘ exp(—pv)

gv/m) =
goexp(;!W)V A >§(§§p(fﬁvdv
B exp(—vi)v'v(V-1DB%exp(—Bv)
slv/n) e exp(—ve)viv@—DBdexp(—Bv)dv
_ v lexp(—(t+B)v)
VI = e e+ B)v)av
n+o—1 xp( —
o(v/n) v er([]){ia)(t%—ﬁ)v)
(t+ﬁ)n+06
n+o n+ocflex _
o BTV et 4B
o+n n+aflex _
o = CHRIV et s
Posterior Mean
o nt0 oy (— n+o—1
E(v/n):/0 V(Z+B) lfz(a:fj;rﬁ)v dv
1) n+a xp(— n+ao
v/ = [ R P
n+o poo
E(v/n):(;—(kaﬁj_n) /0 V' %exp(—v(t+ B)dv
n+o oo
E(v/n):(;—(i_aﬁln) /0 Y= oo (Cy(r 4+ Bdv
_(t4+B)"* T(n+a+1)
BV = Favmy * (ot et
_(t+B)"* (a+n)(n+ )
EV/m) = Fava) * (Lo G+ p
E(v/n) =212 2.6)

t+B
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2.2.3 Lindley Mixing Distribution

Consider the Poisson distribution of the form

n=0,1,2.3,...

and assume that v is Lindley distributed with parameter ¥

(0)*
(0+1)

g(v)= (v+1)exp(—vd)

The unconditional distribution of n will be ;

p(n) = /0 " p(n/V)g(v)dv
s exp(-V)V' (9)?
0 n! (0+1)

(0)? /“exp(—v)v”(v—i—l)exp(—vﬁ)
(0+1) Jo n!

(v+1)exp(—vd)dv

dv

(0+1) n!

2 <yl exp(—v(1+39)) = viexp(—v(1+ 1))
[/0 dv+/0

n!

dv]



let Q= 2 R-
o R= iy
) o)™ S = 1
Oy

2/0 : vl%:f}z))(lJ”(")”+2
19. dV+S e Vnex —
n+1 1 /0 p( V(I'l(+0))(l+ﬁ)n+l
n+1)

(0 +1) [ (O +1)n+2 + (O + 1)1

192
— [(”+1)+(19+1)]

]

(0+1)
(O +1)"
p(n) =224 D) o
(O +1)n+3
Mean = M
(B4 1)+3
(2.7)

E(N) =/0w[§:neXP<—V>V”] 2
= @) FUTVIexp(=dvidy

:/Ow[i exp(—v)v”] . 52
=0 (19+1)(1+V)6Xp(_’9")dv

n!

= 192 .
(19+1)/0 [ZM
= (n=1)! J(1+Vv)exp(=Bv)dv

et 192 =
(9 + 1)/0 V(1 +Vv)exp(=dv)dv

192

_(19+1)[/0 vexp(—ﬁv)dV-i-/ooneXP( ¥
A —dvdv|
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Using integration by parts we have;

Variance

2
E@Ozliﬁ(§;+£ﬁ
249

(N):ﬁu+4%

Var(N) =E[(n(n— 1)] + E(n) — [E(N))2

EMM—lﬂ:A

“[in(n_l)exp(—v)v” V2

n=0

I )(1+Vv)exp(—=dv)dv

n! 149

o)

© & exp(—v)V'. B2
:/0 »» (n 2! ]((1+v)(1+v)exp(—0v)dv

n

=2
192

oo © axn(— n—2
:/0 [vzkg‘ze p((n_";;" ]((1+v)(1—|—v)exp(—19v)dv

192
140

[/OOOvzexp(—ﬁv)dv—1—/000\/3exp(—19v)dv]

Using integration by parts we have;

92 2 6
“Toletpe
1+09'93  ©
20+6
20 +6 2+ 0 249
Var(N) =
arN) = se Toaro) T BaT o)
D3+ 492 +89+2
Var(N) = +4092 4+ 80 +

(1+0)%)0?
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The Posterior Distribution

The posterior structure function formula is obtained by formula given by;

(VI = gV

Therefore;

v exp( n!vt); * (1+19)(1 + 3)exp(—1Vv)
o @RVOVIEIR (021 4 9) exp(—DV)dV
exp(—vr)v*(1+v)exp(—9v)
Jo exp(—vt)v*(1+v)exp(—0Ov)dv
exp(—vt)v'exp(—19V) + vl exp(—vt)exp(— V)
Jo exp(—vi)viexp(—Ov)dv + [y vitlexp(—vr)exp(—dVv)dv

viexp(—v(t+ )+ v Dexp(—v(r + )

g(v/n) =

g(v/n)=

g(v/n) = Jo viexp(—v(t+8)dv + [y vitlexp(—v(t + O)dv
_ viexp(—v(t+ )+ v lexp(—v(t+ )
g(v/n) = I(n+1) N [(n+2)
(o) T (r0)m 72
_vlexp(—v(t+0) + v Hlexp(—v(t +9))
g(v/n) = [(n+2)(149)4+T(n42)
(t+l9)”+2
t+ )" 2xexp(—v(t+ 1)) (viH 4 v2
sty )~ )

F(n+2)+(+9)I'(n+1)
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2.3

Posterior Mean

e () P xexp(—v(t+9) (v V)
E(V/”)‘/o L P B PRy IS B

. 1
let A= LC(n+2)+(+9)(n+1)

E(V/l’l) :A[/ (t + ﬁ)k+zeXP(—V(t+ 19‘)Vn+2dv+/ (t + l9'>n+zexp(_v(t_|_ 19)Vn+1d\/]
0 0
also let B = %

o) =awpl [ OV PCAEOE  py) [ 02enpivia - 0)vav

E(v/n) =A[B+TI'(n+2)]

substituting for A and B we get;

- 1 T(n+3)+(+9)(n+2)
EW”)_[r(n+2)+(t+19>F(n+1)H t+9
B /n)_(n+1)[(n+2)+(t+19)(”+1)]

S (D +H)[(n+ 1)+ ()]

]

(n+1D)[(n+2)+ (t+ V)]
(t+9)|[(n+ 1)+ (r+ 0]

E(v/n) = (2.8)

Exponential Mixtures
Let
fO/v)=J5 Lexp(—2),x>0and v>0

be the conditional type Il exponential distribution whose mean is the parameter v.

Then the probability mass function is given by;



£(0) = J57 yrexp(=3)g(v)d(v)

This is the type Il exponential mixture ,with g(v) as the mixing distribution.

2.3.1 The rth Moment
E(Y")=EE[y"/V]

E(Y")=E{Jy’y f(y/vr)dydv}
E(Y") = E{Jyy yrexp(—3;)dy}
E(Y") = E{3; J§"Y exp(—;)dy}
Let > =f = y=vtf

— dy=vidf

E(Y") = E{y; 5" (viu)"exp(~u)df}
E(Y") =E{(vt)" Jg"u" exp(—u)df}
E(Y") =E{(vt)T(r+1)}

E(Y") =E[(vt)'r!]

put 7 = 1 ,them we have the first rth moment
E(Y") = E[Af]

E(Y") =1E(A)

E(y*) =E[(y—1)+)]
E(y’)=Ep(y-1)]+E@)
but
Ely(y—1D]=EE[y(y—1)/V]

E(y—1D]=E{y(y—1) [5y s exp(—)dy}

(2.9)
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Ely(y— 1] = E{f5" Fexp(—3)dy— J§" 3 exp(— )y}

using integration by parts

Ji 37 exp(=35)dy

Let u=y* = du=2dyalsodv=exp(—L) = v=—viexp(—2)
Ji 37 exp(=3)dy = {2 vilf +2 J57 yveexp(— 3 )dy)

=2 [y xexp(—y;)dx

Letu=y = du=dyanddv=exp(—2;,) = v=—vrexp(—3)
=2{[—y—vrexp(—)]5 + Jo vtexp(—3-)dx}

= 2vt [ exp(—y;)dy

oo

= 2vit[—vrexp(—)]G
E{J5 3 exp(—)dy} =2(ve)?

E{J5 Srexp(—p)dy} = 2°E(v?)

also

E{J§" 3; exp(—3;)dy}

Letu =y = du=dyand dv=exp(—3;) = v=—viexp(—3-)
E{J5 3rexp(—3p)dy} = E(){[=yveexp(—=3;)]5 + Jo viexp(—3;)dy}
= E{Jy exp(—3;)dy}

= E(vt){[—exp(—3)]5}

E{Jy vrexp(—3;)dy} = 1E(V)

therefore

E(Y?) =212E(v?) —tE(V) +tE(V)
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Var(Y) =2t*E(A?) — (tE(A))?

Var(Y) = 1*[2E(A%) — E(A)?] (2.10)

2.3.2 Inverse-Gamma Mixing Distribution

The inverse gamma is the only distribution whose corresponding exponential mixture is
in explicit form.Given

flx/y)= %exp(—f) forx >0,y > 0.

and

g(y) = WTFS

mn>0,5s>0,y>0

The pdf of the mixture is obtained by

=1 x lexp(—%)
:/ v s+—1dy
0o ¥ Y T EIG)
o L x, 1 m
:/ yexp — % eX xp(—2 "y
0 )S+1 ( )
ool S 1 m
= - xy exp(——)dy
/o y F(S) ( y)
m* [ 1 (m+x)
= — d
1) =g /O rzesp(— "y
_ 1 _ 1 —d
Letz-; — y—zanddy—z—zy
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Therefor

1) =5 [} exp(—m-+2)2)

f@)—;ﬁ)/“femx—0n+xkﬁk
m*  I(s+1)

T =T 1
m’ sxI(s

@) T s) i (m +x()s)+1

flx) = (m j_n;)s—i-l

£(x) = sm* (m4x) "D
forx>0,5s >0,m>0

This is the Pareto distribution with parameters s and m.

Mean

E(x) :/ xsm® (x+m) S dx
0

:sms/ x(x+m) =" Ldx
0

using integration by parts

(o]

B = ([t m) T [ Getm) )

gl xts) =
=sm [E —(S—l) ]0
E(x) :sTl
E(x)= —

(2.11)

(2.12)
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Variance

Var(x) =E(x*) — [E(x)]?

E(x?) :/ xPsm® (x+m) " dx
0

:sms/ X(x+m) " ldx
0

using integration by parts

(x+m)”* *x(x+m)”S
E(XZ) :SmS{[ ( is) ]60_2/0 ( +s) dx}

=2m’ /m x(etm) dx
0

)

—x(x+m —s+1 I
o ([T g L [y
_2m oo(x—l—m)fs“dx
s—1.Jo
2m*  —(x4+m)~St
:s—l[ s—2 o
stm—s+2
C(s—1)(s—2)
2y — 2m?
FO =)
Var(x) =E(*) — [E(x)]
v B 2m? m 5
= e—y o1
2m?
M e
)
Var(x) :s—l[sEZ +si 1];8 > 2
Posterior Distribution
Fx/y)g(y)
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Therefore;
o) = exp(—2)g(y)
Jo" yrexp(—%)g(y)dy
1 xy ms exp(—7F)
TGXP(__)F s+1
—_7 y/T(s) 'y
f(y/x) - 1 _xm exp( %
fO y CXP( yl"(s) ys+1
Lett:% = y=: — dy:—%’

exp(—5%)
f(y/%) oyt e st exp{ — (m+ x)1 s
exp(—m—ﬂ)
f(y/x) = n+s+1 [ n+s—1 -
y It exp{—(m+x)t}dt
exp(—")
f(y/x) et T
(m—+x)k+s
(m—l—x)k_‘—seXp(—m_ﬂ)
F/x) = T
[(n+s)y
M) (P
fly/x) = C(n+s) exp( y »

Which is the Inverse-Gamma (n+s,m+ x)
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Posterior Mean

(L) exp(— 2y
E(y/x) :/0 y(i)n-i—s—l—lr‘(ny_{_s)dy

m—+x
1 (m—+x
(m) exp(— T)

()Gl )T(ats)

m-+x m-+x

(/o= [

m-+x “(ﬁ)eXP(_(mj)
E(y/x) :F(l’l—:-S)/O +( 3"_ )n+s > dy
| eexp(- )
E(y/x) :F(n+s)/0 (mz;_x)n);s dy
m—+ x)kts e m—+x
B0 = [ (- ay
_(m+x)" T(n+s—1)
E(y/x) = C(k+s) (m+x)rts—1
s =22

2.3.3 Lindley Mixing Distribution

The exponential mixture is constructed as follows:

2

v+1

g(v) = (v+1)exp(=9v),v>0,0>0
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The pdf of the mixture is,

let,

oo X 2
1@ = [ exp(=T) 5 (v 1) exp(—0v)av

\% v §+1
79 =52 [0+ Dyexpov - Dyav
=32 “<1+$>exp<—ﬁ<v+§»dv
f(x):l;fl{/owvl_lexp( dv+/ T exp(—

V= \/%p ,therefore dv = \/%dp

f(x)

19~|—1

:19 ; 1{ K (NE) +Ko(2V/0x)}

+))av)

exp 19x p+ dp-l—/ exp( \/E(p+p))dp}
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Mean

Using conditional expectation approach,we have

E(X) =rE[V']

192 o
E(W) =5 { [ V7 exp(—9v) + v exp(~dv)dv)

v T(r+2) T(r+1)
E(x):0+1{ Br+2 + O+l }
|
E() rlr+1 ¢
E(x")

o1t Ty

r!

(r)2(r+0+1)
9" (8+1)

E(x") =

therefore the first moment whenr =1

O +2
CES))

E(x) =
Variance
Var(x) =E(x*) — [E(x)]?

Given

(r)*(r+9+1)
(0 +1)

E(x") =

when r = 2 we have
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therefore

_ 4(3+v) ¥ 42
Var) = Swan)
99 +8
Var(x) zm
Posterior Distribution
Given ;
_ fvs)
SR =T i v)g(v)ay
B %exp(—%)%(v—l—l)exp(—ﬁv)
i\ )_fgc’%exp(—%)ﬂﬁ—jl(v—i— 1)exp(—dV)dv
_ %exp(—%)(v—i-l)exp(—l?v)
fv/) _f”%exp(—g)(v +1)exp(—9v)dv
B (1+ %)exp(—ﬁv -)
f(v/) _f°°(1 + %)exp(—ﬁv £)dv
Jexp(—vv —7)
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3.1

3.2

Modelling Claim numbers and Losses Based on a
Posteriori Criteria

Introduction

In this chapter we are going to design an optimal bonus-malus system that will modify to
the policyholders a premium according to claim numbers of they have and same claim size
that their claims incur.That is the bigger the size of each claim the bigger is the premium
that the policyholder has to pay.

The frequency Component
3.2.1 Distributions for the Claim number

The following two probability models will be discussed to represent the distribution of the
number of claims observed.
These are;-

(i)Poisson-Gamma Distribution
(ii) The Poisson-Lindley Distribution

Following xekalaki(1983),we are going to have a retrospective look in the distribution of
claim numbers and their interpretation of their underlying factors.Greenwood and woods
(1919) put forward the three hypothesis which have formed the cornerstone for further
investigation into the occurrence of accidents.

These hypothesis are:-

(i)The portfolio is homogeneous and all policyholders have the same underlying risk or
the same probability to cause an accident.This is to say that the occurrence of a claim
from a policyholder constitutes a chance event,it is the result of the pure chance,and it
give rise to Poisson distribution.

(ii)The portfolio is diverse and all policyholders have initially the same basic risk to have
an accident but this change by each accident sustained. This hypothesis is known as the
true contagion hypothesis and leads to what Greenwood and woods called it the biased
distribution.

(iii) The portfolio is diverse and all insured individual have constant but different risks to
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have an accident.This is known as the apparent contagion and leads to a model known as
the accident proneness model.

Under the apparent contagion hypothesis and assuming that the varying underlying risks
are distributed according to the Gamma distribution,Greenwood and Woods showed that
the distribution of the number of accidents is negative Binomial.A good fit of the negative
binomial distribution was then regarded as an indication of heterogeneity in the accident
proneness of the portfolio until Irwin(1941),using a result of Mckendrick(1926),derived the
negative binomial distribution for a contagion model based on the assumption that the
underlying risk or the probability of a policyholder having an accident increases with the
number of previous accidents sustained.

Cresswel and Froggat (1936) formulated a forth model that rejects both the concept
of accident proneness and the concept of contagion.lt is based on the assumption that
each policyholder is liable to spell i.e the periods of time during which the policyholder’s
performance is weak and all of policyholders accidents occur within those spells.The
number of accidents within different spells are independent and also its is independent
of the number of spells. Kemp(1967) showed that the negative binomial can be given a
"spell" interpretation in the context of Poisson distribution generalized by logarithmic
distribution.

3.2.2 Posterior Mean Based on Poisson-Gamma Distribution( Negative Bino-
mial Distribution)

Assume that the portfolio is heterogeneous and that all insure individuals have persistent
but unequal basic risks to have an accident,that is we assume that each policyholder is
having a different accident proneness.

As we have said in the beginning of this chapter,this hypothesis is known as the appar-
ent contagion and leads to a model known in the literature as the "accident proneness"
model.We will show below that the negative binomial model is derived under this hypoth-
esis and subsequently use it as a distribution to represent the number of claims and we
will assume that it has been derived under the apparent contagion hypothesis.

Consider that the conditional distribution of the number of claims n given the parameter
v is distributed according to Poisson with parameter v,

Pv(n/V) — M,

n!

wheren=0,1,2,...and v > 0..

The parameter v is the observed value of the random variable A and it varies from one
insured to another .
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The accident proneness of each policyholder is characterized by the value of A which is
distinctive for each risk.The probability density function of A is known as the structure
function and will be designated by g(Vv).

Let us assume that the structure function conforms to gamma distribution with two
parameters,designated by gamma(c, ) and is given by the following pdf;

a-lga
g(v):w,forv>0,a>0,ﬁ>0.
The two parameter Gamma(a., ) has a mean equal to %,variance equal to l%

The unconditional distribution of the number of claims n denoted as p(n) or p, in the
portfolio is obtained when,

n/v ~ poisson(Vv)
and

vV ~ Gamma(a, )



from equation [2.3lwe have shown that the number of claims n is distributed according to
Negative Binomial distribution with probability density function given by;

P(n) = (") (£5)%(5)"

with mean and variance given by % and %(1 + %) respectively,

Var(n)

a4

=
~—

The variance of the negative binomial exceeds its mean ,a desirable property which is
evident in all Poisson mixtures and allow us to deal with data that presents over-dispersion.

Let us consider a policyholder or a class of policyholders that have been under observation
for the last t years.

Assume that the total number of claims that a policyholder had in t years denoted as
N =Y!_,njwhere n; is the number of claims that an insured had in year i =1,2,...t.

Suppose g(V) is the prior distribution for v,which denotes our subjective belief or the
prior information we have about v.The posterior distribution of the parameter v for
an insured or a group of insured with claim history ny,...,n; will be obtained using the
Bayes theorem,and when the parameter v is continuous value,which is the most common
situation and it is denoted by g(v/ny, ...,n;).Extending equation [2.5\we get the following;

p(ny,..kn /v)u(v)
fo°° (1, - nr/V) *pu(v)d(v

k
ex V
p(ny,..n/v) H p

g(v/ny,...,n) =

exp(— vt) VZ,-:1 i
?:1 n;!

p(ny,..n /v) =

but ! ,nj=N

N
p(ny,..n Jv) :“p(t—w)v

llnl

and
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g(v)= v(“—”ﬁif‘();;(p(—ﬁv) ,forv>0,00>0,8>0.

Therefore

exp(—v)vN V(@D B%exp(—Bv)

N | Y (@)
g(V/l’ll,.,.,l’lt) T e CXP(*VZ‘)VN V(a_])ﬁ“exp(fﬁvd
U | * I'a) v
exp(—ve)vNy(V=1) B exn(— By
&V /1y o) = 2EV) B exp(—Bv)

e exp(—vi)vEv(@ D) Baexp(—Bv)dv
vVt e lexp(—(t 4+ B)v)

SLV/ML o) = e N T T e (— (1 1 B)v)dv

vt lexp(—(t 4 B)v)

v/t ea) =P
(H—ﬁ)N‘H"
(e pNrEvNTelexp(— (14 B)v)
g(v/ni,....,n;) = o TN
Therefore
N+o,N+o—1 xp(—
g(v/ni,..on) = P Vr(a+;)p( (t+B)v)

Which is the pdf of gamma distribution with parameters (ot + N,z + f3))

The optimal selection of v; for an individual policyholder with claim history k;, ..., k
will enable us obtain the mean of the posterior distribution,that is,

oo N+(xeX . N+o—1
o) = [ BV B,
(t+B)NT* a+K*+T(N+a)

TK+a) (+B)N*e(t+B

)

O[+1<n1, ...,n,) =

_oc+N oa+N

vt+l(nl7"'7nt)_ t+ﬁ ZV((X+I\_/

) (3.1)

where v = &
V=5

It is clearly shown from above that a policyholder that has caused K accidents within a
period of t years calls for an update of the gamma parameters from a and 8 to @ + N and

t + B respectively and this shows that gamma is a conjugate family of Poisson Likelihood.
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The net premiums of the Bonus-Malus System obtained in this way can be written in an
interesting an useful way.The net premium which is modified by experience and it is equal
to posterior mean ;

. o+N _ o+N
vt+1(n17"'7nt): t+B ZV(a+t\_/

)

2 that

This can be express as a linear combination of the prior premium %, and the observation, +

is

posterior mean of the structure function= Z* ( the mean of observed data)+ (1-Z)* mean
of prior.

or
Vo1 (11, eee) = Zx k4 (1-2)8

where Z is known as the credibility factor and is equal to

o+N _ a+N
:V( —
t+p o4tV

)

so that the above equation can be true.

That is the net premium of the optimal BMS can be written in terms of Buhlmann credibility
model.The Buhlmann credibility model,which denotes that the posterior mean is the
weighted average of the observation and the a posterior premium.

The credibility factor Z can be interpreted as the weight that is given to individual
experience and it is O for t = 0, which increases with time and asymptotically tends
to 1.

3.2.3 Posterior Mean Based on Poisson-Lindley Distribution

Let us assumed that the number of claims of each insured conforms to a Poisson distribu-
tion with parameter v and v is distributed according to a distribution given by Lindley
(1958) and (1965).

According to that distribution the parameter v of the Poisson has a distribution function
p(v) such that

9)?
r(v+1)exp(—vd)dv

—

u(v) =

<

The underlying risk v is Poisson distributed with p.d.f
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p(n/v) =LY 01,2, and v >0

From equation[2.7)we have proved that the unconditional distribution of n is given by ;

pln) = [ pln/v)g(viav
[t (o
0 n! (O+1)

9 (n+2+0)
SR

(v+1)exp(—vd)dv

According to Sankaran (1970),the Poisson-Lindley distribution has a p.d.f of the following
form;

92 (942
ps(n) = W n=0,1,2,..

The mean and variance are given by

240
(1 +0)

and

93 +40% + 89 +2
(1+0)%)0?

respectively

The posterior structure function for a given policyholder with claim history ny,...,n; is
give by;

p(ny,..,n/V)p(v

w(ny,...,n) :fg"p(m,--w”z/v)u(V)dv
p(nt,....,n V) :Hem(;ﬂ
i=1 !
exp(—vi)v"

p(ny,..,n/v) =
IR §:1n!



43

Therefore;

- N 2
S % (155) (14 ) exp(— 9 V)
w(v/ng,....n) = - oxp( VIV, 52
0 m (rpe)(1+3)exp(=0v)
~exp(—ve)VV(1+v)exp(—9V)
~ Jyexp(—ve)VN (1 +v)exp(—dVv)dv
_ exp(—vt)vNexp(—0v) + vV exp(—vr)exp(—0OVv)
[y exp(=ve)vN exp(—0V)dv + [;" vNHlexp(—vt) exp(—BV)dV
_ VWexp(—v(t+9)+ vVt Dexp(—v(t + )
Jo vNexp(—v(t+8)dv+ [y vEFlexp(—v(t +O)dv
~ VNexp(—v(t+9)+ vV lexp(—v(r+0)

[(N+1) [(N+2)
(t+19)N+1 + (t+19)N+2

~ VNexp(—v(t+9)+ vV lexp(—v(r+0)

T(N+2)(t+9)+T(N+2)
([+19)K+2

(t+ )V 2 xexp(—v(t + 9) (VN VN
T(N+2)+ (t+9)T(N+1)

dv

w(v/ng,..,n) =
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3.3

The optimal selection of v;;| will give the mean of posterior distribution which is given

by;

dv

)_/‘” (t + )V 2 xexp(—v(t + ) (VN VN
Jo

Vip1 (.., ny I(N+2)+(t+9)T(N+1)

let A = mrrarrrs T

Vit (m1smy) =A[/O (t+19)1\’+26>?<1>(—\’(t+19)\/N+zdv+/0 (t+ )" P exp(—v(r+ )V dv]

also let B—= ((ITS)
Vg1 (n o) ZA*B[/OOO (o)™ fj?jv(jr‘;()ﬂr ﬁ)VN+2dV+F(N+2) /Ooo(t+ )N exp(v(t + 9)vV T dv)
=A*[B+T'(N+2)]
substituting for A and B ,we get;
. )= 1 IC(N+3)+(t+3)(N+2)
Vrer(ms o TT(N+2)+(t+9)r (N+1)[ 1+ ]
_(NAD[N+2)+(+8)(N+1)]
(N+1D)(t+3)[(N+ 1)+ (t+9)]
R C(INFD[(N42) + (1 +9)]
) = S N+ 4 9)

Posterior mean is

(N+1)[(N+2)+ (t+ V)]
(t+ ) [(N+1)+ (t+ 9]

0t+1(n17"'7nl) - (3.2)

Severity Component
3.3.1 Reasons for Taking Into Account the Severity of Each Claim

The obtained when only the number of claims is taken into account has the disadvantage
of penalizing claim numbers independently of their severity,that is without taking into
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account the size of loss that the claim incurs.As a matter of fact,all Bonus-Malus Systems
around the world,with the exception of the BMS enforced in Korea,penalize the number
of reported accidents in absence of losses that these accidents caused.This means that
an insured with a small amount of loss,for example a mere scratch,are forced to pay the
equal premium with the policyholders who caused an accident with a big loss,for example
a complete destruction of automobile or a serious bodily injury accident.In this sense a
Bonus-Malus System that does not take into consideration the size of each claim is not
fair and thus a BMS which can separate the policyholders according to the frequency and
the severity of their claims should be done. An advantage of the system which considers
the claim amounts in its design is that the drivers will report all the accidents caused
because they are aware that the amount of loss caused is take in to consideration and that
a driver who caused an accident with a small loss will not be punished the same way with
someone who caused an accident with a higher amount of loss.In that way the insured
will not push for bonuses and the underestimate of the true frequency will be smaller.

Besides the drivers who have claims with big losses are usually doing serious mistakes,such
as reckless driving ,egoistic driving,driving with high speedi,illegal overtaking,driving under
the influence of alcohol,breaking fundamental driving rules such as not observing traffic
lights,the right of way and others,in contrast to the accidents which induce small losses
and usually are incurred because of moment of inattention.That is the severity of each
claim must be penalized not only as an important factor for economic health of insurance
but also because because of the good drivers do not have claims and when they have,these
claims are with small loses in contrast with the bad drivers which usually have claims
with large loss.

3.3.2 Posterior Mean Based on Pareto Distribution

Suppose that a variate x being the claim size and conditional on y is an exponential
distribution with mea y and has the form;

f(x/y) =§6XP(—§);x >0,y > 0.

The policyholders in any given portfolio do not have equal expected amount of claim y
making the expected amount of claim a random variable and therefore necessitate that it
be put in a in form of a distribution.
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Further,suppose y has an inverse gamma distribution with parameters s and m given by;

The mixture has been proved in which is a Pareto distribution and is given by;

POC=2) = [ fle/)xg()dy

= Lexp(—1) ¢ Lexp(~2)
P(X = ):/0 s (,,Xj)HlF(S) s dy

P(X =x) =sm’(m+x)"*D:x>0,5s>0,m>0

The Pareto distribution is preferred to exponential distribution in modelling claims severity
because the relatively tamed exponential distribution get transformed in to heavy tailed
Pareto distribution which make it easy to fit into claim data.The heterogeneity that
characterize claim size data from different policyholders is incorporated into the model

by assuming that the expected claim amount y is distributed according to inverse gamma.

The details we have for each insured on claim size for the time he was in the portfolio
would enable us obtain the posterior distribution of the expected claim amount y that
would lead us to obtain a tariff structure that incorporate the expected amount of each
claim.

Consider a policyholder who has been under observation for a period of t years.
Let x,, denote the size of claim for the k" claim,where n =1,2.3,...,N and ):2]:1% is the
total claim amount for a policyholder who has been under observation for a period of t

years.

Also let us denote n; the number of claim the policyholder had in yeariand N =Y!_, N;
denotes the total number of claims he has in the portfolio for t years.

Using the Bayes theorem, the posterior distribution of the claim amount y given the claim
amount history of the policyholder x;, ...,x, can be obtained as below;
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SO X /)8 ()

80 M) = e /)80y
_ Il flan/y)]80)

SIS £ (xn/y)] g (y)dy

but
N
[1/0a/y) H exp(—
n=1 n= ly
N N
1 X
[T /o) = ex Z"*l n)
n=1 y
therefore;
N
Jrexp(— =5 )
F5rt) =2
0 v exp(—==5)g(v)dy
1 YV xay s eXP(—5)
Jrexp(~ L) e OO
W ms exp(—=4
i dyexp(~ D e SO gy
Lett-% — y:% = dy:—%’
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m+ N, X,
exp——z;—l “

PV N exp (= -+ T )1

. m+22’:1 Xn
y

YL [Nt exp{—(m+ L)L )t bt

. m+Z’,:’:l Xn
_ y
(m—l—ZflV:l X )N+s

N
(m+ TN )V exp(— 1)
F(N + s)yN-i-S-H

N N+s N
(m +1—~Z(:]}i]__:_x’;) i e p(_ (m+zn:1x" )yf(NJrs)fl
S y

FO/x1,.xn) =

exp

exp

FO/x1,.xn) =

This is Inverse-Gamma (N +s,m+YN_, x,)

This pdf can be re-written as

+¥N x
f( /X X ) _(m+zlr:,:1xn)N+seXp(—M+l)c)
y 17-.-7 n) — F(N+s)yN+s+l

N
(m+ XNV 5+ exp(— =

m—+ YN xyNtsHIT(N +5)

AL X
(g o0~ 5=)

FO/xr, e x) = l:yl - N+s+1
Grgr =) TN +9)

From the above it is clearly shown that the Inverse Gamma distribution is a conjugate
prior with the exponential likelihood.This is because a policyholder that has made K claims
within a period of t years with a total claim amount equal to ¥V, x, This implies that
an insured with K claims in any given period with total claim amount equal to eryzlxn
demands an update of the parameters Inverse Gamma distribution from s and m to N+
and m+Zf1V:1xn respectively.

Optimal selection of y; for an insured who has claim amounts x,, ,n = 1,2,3,...N) in
any given period is estimated as ;
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Prr1(x1,..

Vrr1(xg, ...

Vrr1(xg, ...

Prp1(x1s...

Pr1(x1,...

Prp1(x1,...

Prp1(x1,...

s Xn) =

+Xn)

s Xn) =

+Xn)

) =
) =
) =

—— _ (g
_/°° (m+ZnN:1Xn)eXp( . )
0

d
y (¢)N+s+1F(N+s) y

m_‘—th:l Xn

IR s
_/0 (—%— K+ (—— (K +5)

exXp

dy

mA+Y X m+YyL xn
gl [ G (B
) G
1 e
“Fw b G
_(m+22len)N+s/°° 1 exp(—(m+21':’:]xn)dy
T(V+s) o 35 y

(m+ ¥V )V T(N+s—1)
F(N+S) (m_I_ZQ]:lxn)NﬂLS*l

MY

N+s—1

RS VEED

) = N+s—1 (3.3)
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3.4 Calculation of Premium using the Net Premium Principle

From above,the mean claim frequency if given by equation 3.7 which is;

_a+N o+N

Vv = =V
H—l(nl; 7”[) f—f—ﬁ ((X+l\_/

)

where

<
I

=R

also the mean claim size produced a posterior mean equal to;

m—i—Zl: X;
Vi1 (X1, e Xn) = an—ll

Thus according to the net premium principle,the premium that any insured person has to
pay is;

O£+N*m—|—Zi-:1x,~
t+B  s+N-1

Premium(p) = (3:4)

To be able to calculate premium using[3.4] the following are required;

(i)the years t that an insured is under our observation.

(ii)the observed total claim numbers N = th:l nj, where n; the number of accidents that
the policyholder has in the t years.

(iii) total claim amount or the aggregate claim amount.

(iv) the maximum likelihood estimates of the parameters of the negative binomial distributiono
and f .

(v) the maximum likelihood estimates for parameters s and m .
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3.5

Characteristics of the Optimal BMS Based on Claim numbers and
Claim sizes

(1)With information gathered in the past,each insured person will pay a premium equiva-
lent to his/her claim history and this shows it is fair.

(2) At any given period,the premiums received form all the insured person is constant
meaning that its is balanced finally;

m

P_a
“Bs—1

Considering that the number of claims and the size of loss are independent component,we
have shown that mean of negative binomial distribution given by equation [2.4],and of
the second is the mean of pareto distribution given by equation as shown in the
equations below;

Ey[V]|=E[E(V/ny,...n;)] =

™R



and

Ey[Y] =E[E(y/x1;-;%n)]

)
|
p—

respectively.

(3) The premiums rely on the number of accidents which an insured underwent and also
it depends on the distribution of these accidents over the years.The policyholder will pay
a smaller premium if he has done all his claims in one single year in the beginning of his
driving career.

(4) The premium is different not only due to the claim frequency but also due to the claim
severity.The policyholder who has claim with a small premium in comparison with an
insured who underwent an accident with a big loss.

(5) We have seen that the net premium a policyholder is paying is equal to the posterior
mean of the structure function based on his personal claim history after being scaled with
the mean claim amount of all the policyholders.This premium is determined from the
posterior mean and now it is not scaled but it is determined from the amount of claims
for every insured.

(6) The claim amount component is introduced which is very important from the insurer
point of view because it is the component that is used to determine the expenses of the
insurer from the accident and therefore the premiums to be charged.
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4.1

Modelling of Optimal BMS Based on Individual
Characteristics for both claim frequency and
Severity

Introduction

Dionne and Vanasse designed an optimal Bonus-Malus System that combine risk classifi-
cation and experience rating of the individual policyholder based on his claim frequency
and individual characteristics .This framework was further extended by Nicholas Frangos
and Spyridon Vrontos by designing a generalized Bonus-Malus system that combines both
the priori and the a posteriori information based on individual policyholder characteristics
with both frequency and severity incorporated.

The main motivation behind the modelling of a generalized BMS model that take into
account the information known to the insurer about the insurer before he/she join the
portfolio is that several variables affects the distribution of the claim numbers and the
size of loss distribution and that premiums should vary from one policyholder to an-
other.The variables that could be used are the age,sex and the place of residence of the
policyholder;the age and the cubic capacity of the car.

The premiums formula from the generalized BMS will be obtained from the following
multiplicative formula;

premium = GBMF + GBMg

where

GBMF this the generalized BMS obtained when only the number of claims is considered
and

GBMgs this the generalized BMS obtained when only the claims size is considered .
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4.2

The Generalized Negative Binomial Model

The generalized Bonus-malus system which take into account the number of claims GBMF
is constructed according to Dionne and Vanasse (1989,199) as follows;

Suppose an insured i has been observed for t years and that this insured i made claims
totallmg to N/ This claims is distributed according to Poisson distributed with parameter

/. where N] are independent.The expected number of claims of individual i for period
] is the denoted by VJ Also consider that v’ is a function of the vector of 4 individual
characteristics and that it is denoted as C’ ( Cils ...,cljh), which constitute distinct a
priori rating variables. ’

let vl-j = exp(cljrj)

where

7/ is the vector of coefficients.

The non-negativity of vij is implied from the exponential function

The probability becomes

. . v\ (v \N
Prob(N{ =n/v!) = M,nzm,%m

but vl.j = exp(clj’cj)

exp(c/t)[(c] o)V
explei el wI"

Prob(Nij = n/vl]) =

The h individual characteristics is assumed to provide sufficient information for ascer-
taining mean number of claims.The information we have before an individual join our
portfolio may not have all the important information for determining the mean number
of claims and therefore we introduce a random variable &; into the regression component.

To factor in unobserved significant priori information,we introduce the random variable &
and the expected number of claims can be written as

vl:j = exp(c{fj +e)=

= exp(c] T
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where 1; = exp(€), resulting in a random variable v/

exp(— exp(cljrj +é) [exp(c{fj +¢e)"

Prob(N{ =n/v! ) =

n!
Prob(N! = n/v{) _exp(—piexp(c] Tf‘ ) [wiexp(c/t/]"
n.
j j —Du;)(D;)"
Prob(N! = n/vj) =SP(=DHi) (DL)

n!

where D = exp(clj’cj) and p; = exp(&;)
therefore

Prob = (N? /) = SRR (D)

n!

and

Prob(Ni — I’l) — O°° exp(— D“l)(D“z) (.ul)dul

Suppose that y; is distributed according to a gamma distribution with E(u;) =

Var() = %
this means that
g(Mi) = ( yexp(—Tp)u? ™" i > 0,00> 0,7 >0

then

< exp(—Du;) (D ik T _
Prob(N; = ):/ p( IJ)( Hi) I(a) exp(—tu)u®du;

o
Prob(N; = Froz / e exp(—(D+ 1) w;)dp
t* D" T'(n+a)
Prob(N; =n) =
rob(Ni = 1) =y al (Dt ope
I'h+a), 7t D
P . — — o n
rob(N; = n) nla (D+r) (D+r)
a+n—1 T D
Prob(Ni:n):( ; )(D+T)“(D+T)”,n:0,1,2,...

Letax=7=a

o
T and
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Therefore,

Prob= (N} =n) = (“"" N (55)4 (L) n=0,1,2,...

This can be re-written as

a

Prob — (]vl] _ I’l) _ (aJrnfl) a

") o
That is
| r ‘
Prob = (N/ =n) = ’ffFJ(rac;) — (11 o
Prob = (V] =) = 14 2y
Prob = (N! = n) :1:1(!’11“—4(;6)%%)"( l;))(m)
Prob = (N! =n) :F,ffrtac;) (eXP(aC{Tj) yi( exp(j )t

As given by Frangos and Vrontos (2001).This is a Negative Binomial distribution with
parameters a and exp(c! /)

To obtain E[Kl]] and Var[Kij] , we should note that

Prob(K] Ju;) = SEE2HOH) 4 1o

and

g(ui) = %exp(—rui)ui“’l Wi >0,00>0,7>0.
From equation we have the following formulae;
E(x) =tE(A) and Var(x) = t*Var(A) +tE(A)
Inthiscaset =D ,and A= U; x = Nl.j

Therefore E[Nl]] = DE[u;] = D%

and Var[Nij] = D*Var(w;) + DE (1;)
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Thus, E[Nlj] =D= exp(cljrj) sinceax=t=a

i (04 (0
Var[N!] =D*= +D—
T T

. D?
Var[N/] =—+D
a

Var[N/] =D(1 + g)

. . Jri
Var V] = [exp(cl )] 1+ SR
. . Jri
Var[N!] = [exp(c!t/)][1+ %] (4.1)

Consequently,the insurer needs to obtain,at the renewal of the policy, the best esti-

mate of the expected number of claims vH'l, at time ¢t 4+ 1 for an individual policy-

holder with a claim history N, .. ..,N!"and c " i“ individual known characteristics.we

denote Z’jlel-j be the total number of clalms that an individual policyholder i had
.The mean claim frequency for an individual policyholder i over the time period t+1
is TN, NEsel L. ¢t swhich s a function of both claim history and individual

1° l7 g )
characteristics.

Using Bayes’ theorem the posterior distribution for the policyholder with N}, ..., N claim

history and c},...,ci“ characteristics can be derived as follows.

VITHNE, NGl T = v N ) F(VETT N N el dvi

]

Where by Bayes’ rule

f(v;—i_l/]vz'l? Nlt’zv ,Cé)z ' ~ l]
Py

By definition,

pA[(Nila'--7N;)/C117"'7C§] :/0 p[(N1177Nlt)/ H_l C}?"'acg)]f(vl?—i_l)dvl?—'—l
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Then, \A/l-”rl (Nl] , ...,Nf;c},... ctH) is the posterior mean of claim frequency for individual i
[Vf+1 (Nf“,,u,-)],which is a function of both random factor y; and individual characteristics.

PLNG o N Vi hied
Let A = exp(clj’cj)
PLNE, N Vi e
PLNE, NV e

~—

1

) =[] SRl rplexp(e] v
=l N1

‘ exp(—Aw)[Au]Y
exp(— X'y A) [Ty (Ap)™
(V)
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Therefore
exp(—4i Xjy A)[IT)= I(A“i)Ngg( '
41 /a1 r1 t 27 |
PN o) =
exp(— [H 1 (Ap) T
fo [ J I(NM) ]g(nu'ld.ul
N/
1 exp(—p X 1A)Nz]l 8(Hi)

FTYNY NG el =

o LN
Jo exp(—p tj:1A)Hz‘ T g () d
T B
g(1;) zmuf‘ leXP(—TNi)
j

Y N o _
exp(—4 X AV g (1) g exp(— i)

f(“lt_l—l/Nll?' 7N?.C117“‘7C§) =

(=) ]v[j o
Jo exp(—p; IA)M,“ i exp(— i) dp;

o+Y_ N,Ll
T exp[— (T4 Lo A

f(“;+1/Nilv' 7Nl't;czl7"'7cl;): i N/ -1
M expl (0 Xy A dp

\/

o  OFY
fO ‘u'l
o+Y!

r+1 /a7l .1 ! i ! ’_]exp[—(f—i—Z’j:lA)‘ui]
f<‘u'l /Ni7' 7Ni;ci""7ci):

C(a+X' M)
(e ) E
©oN Y N -1
(T4 Xy A) RN = expl — (T X A) ]
Cla+Yi—N)

PN Nl =

leta=t=aand A :exp(c{Tj)

;o ©o atY N/ -1 ;o
(a+ Xy exp(e/e/)) B fi 7 expl — (74 Xy explc] o) i

( _H/ y 1’117 765'):

C(a+X'N/)

Which is gamma with updated parameters [a+2 Nj,a—}—):,J 1exp( ]
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The optimal estimate given the observation ole-1 , ...,JVl-t;cl!,...,cﬁ is equal to

. oty NI—
(c]ei))*+Eim N M?+Z’:1N‘ !

exp[—(T+ X' exp(c/ /)]

. o (a+Y_jexp(c
N N,’;c},---,cf)zf Wi /

T(a+Y' NY)

P t J
A (a+ X'y explel o)) i
AN N e el = ’ :

Cla+Y';N) “
i t J .
a+Y'_ exp(clti)) tri=hi Tla+Y' N/ +1
QY NL NG el el = (a+Lj-rexplc; )>,~ ( =1 ) ,-
<a+zj:1 N;) (a+Z’j:1 exp(cl!TJ)HZj:lN,- +1
- a—{—Z’._lN.j
YN N ) = @2)

CH'):J jexp(c] /)

The Generalized Pareto Model

Consider an individual policyholder i with an experience over a period of t years.Let nl]
denotes the number of claims of policyholder i for period j, N denotes the total number
of claims of policyholder i and Xi{n to denote the size of loss incurred from his claim n for
period j .The claims size history is the information we have about the claims incurred and
is in the form of a vector X; 1,X;»,...,X; ,.The total claim amounts for a policyholder i in
our portfolio observed over t periods is equal to ZnN:1Xi,n-

Let us assume that Xi{n follows an exponential distribution with parameter ylj.Where ylj is
the mean claim severity of an individual policyholder in period j.

Since our portfolio is heterogeneous, all expected claim severity is not the same for all the
insured individuals and it is therefore fair that each policyholder pays pays a premium
proportional to his/her mean claim severity.Consider that the expected claim severity is
a function of the vector of h individual’s characteristics,denoted as dj (dl s din)
which represent a priori rating variables.Specifically assume that yl = exp(d]rf) where r
is the vector of the coefficients.The non-negativity ofyl is implied from the exponential
function.

® a+Yl N/ ! A
| utE expl—(a+ Y exp(el )] du

du;
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This probability becomes

Prob(x},) = L exp(~)

JN 1 X
PrOb(Xi’n) o exp(dl-jrj) eXp(_exp(dijrf))

The h individual characteristics is assumed to provides sufficient information for ascer-
taining the mean claim severity.Nonetheless,if the information we have about an insured
before he/she join our portfolio is enough ,we have to introduce a random variable z; into
the regression component.

y{ :exp(dl-jrj +z;)
v} =exp(d])wi

Where w; = exp(z;)

Therefore
~ 1
Prob(X! =x)= — exp(— al _
7 exp(d!ri+z;) exp(d/ri+z
; x
Prob(X! =x)=——+———exp(———F+—
(Kin =) exp(dri)w; exp(diri)w;
; 1 X

Prob(X], =w;) = o exp(———)

1 1

Where p = exp(dl.jrj)
therefore

Prob(Xl.{n) =w;) = I%Mexp(—l,i%)

and
Prob(X/,) = x) = [§7 phz exp(— i) (wi)dw

Suppose that w; is distributed according to an Inverse gamma distribution with parameters
s and s — 1 and this distribution has mean and variance given by E(W;) = 1, Var(W;) =
,8 > 2 respectively.

1
s—2
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That is

llexP( %1)

8(Wi) = W

Then
1 1
exp(—+,~)
P b . s—1 d l
o PW, Wi) (37 )5—0—11"( ) Wi
S+ (s+1)
(S_l)SH < 1 exp(—f——
P bX N it ST
R =) TPG—D  w
1s+1 T(s—1
Prob( =x)= (s—1) (s—1)

PT(s)(s—1) (34 (s—))s*!
s(s—1)°

Al (s— )P+

Prob(X?, =x) =sP*(s— 1)[x+ (s — 1)P] "+

Ln

Prob(Xi{n =x) =

But P = exp(dl.jrf)

Prob(Xi{n =x)=s[(s— l)exp(d{rj]s[x+ (s— 1)exp(dijrj]_(s+1)

from equation [2.10];
E(X) =tE(A) and Var(X) = 1*[2E(A*) — [E(A))?]
Inthiscaset =Pand v=w; x = Xl{n
Therefore;
E[X],] =PE[w;]

E[X/,] =P*1
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but P = exp(d/r/)

E[Xi{n] =exp(d{r/)

Var[X! ] =P?*[2 % —1]

but P = exp(dl.jrj)

Var{x/,] =(exp(d! ) ~ 1]

This can be re-written as;

[(s—)exp(d/r]? 2 1
(s—2 1

Varlx/,] =

)

s—1

The main objective is to establish generalized an optimal Bonus-Malus system which take
into account individual characteristics and past claim history is that the premium paid per
individual policyholder is proportional to his claim size.There insurer needs to determine
the expected claim severity at period # + 1 given that the insured has been in our portfolio
for t years and and his/her characteristics observed. .

This estimator is denoted as;
A1 j 1
yH_ (Xi,la ---;Xi,n;d,'J; ...,d:;—i_ )

The joint posterior distribution is given by

+1 ety SO xa /) (8()
FO K K i) Joo F(x, o xn /) (8(3)d ()

1 ey T fa/y)e(y)
SO R Xy i) = e S M 0y
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Let m = exp(d!r/)

N N
1 1
exp(—————)) =] [{=—exp(——)}
i=1 exp(d/ri)z; exp(d/ri)z; 1 mz mz;
T exp(c %y =(-L Wexp( En=iXin
i—1 exp(dir)z exp(d!r/)z; mz; mz;
Suppose
(z:) ——Sllexp(_ =)
ST E )
Therefore
1 s—1
1 \N YV X\ 1P
iy et gty ) e
f(y / b b ‘ )_ ZQL]X:J: ﬁexp(—sgl)d
fO [( ) exp( mz; )] (%)le() i
N .
eXP{* Zn:] Xl"}.l +<S+1) }
R s+1l )
FOTYX, o X! dT = (-;Nl) — i
ool B
fO (G)s+iy z
YA
1 = (s 1)
141 1 1y _ W—SHGXP{_Z—;}
f(y /Xl,... Xn,dl 5. dl ) ZnN +(s+l
fO ZN+s+1 exp{— }d
L Xin
1 SR G
wrr exp{——2+———}
f(ytJrl/le"'7Xn;dzl7---7d;+1):Z ['(N+s) )
™ x;
(P (s 1)V
ZNf X; N ZnNzlxiJl +(s71)
{ n;}l l,n+(s_1)} +Sexp{_ m = }

FOYX, o X dT) =

Z?]+S+11—*(N+S)
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This can be re-written as

N X ZnNZIXi,n+( 71)
(B (s — )V exp{ - — )

{Etiin (5 1)} DV +5)

FOT/Xy e Xsd) o d T

N
anl Xi,n

1 m +(S_1)
X Xdy . d ) =— »
f(y / Ly eeoyAns iy eeey 6 ) {ZN+}N+S+1F<N+S)
LT

N oy
Which is Inverse Gamma [N + s, Loo1 Xin (s—1)]

m

This is Inverse Gamma with parameters
[N+s,(s—1) exp(dij) +¥N | X; ] as shown by Frangos and Vrontos (2001)
To enable us determine the premiums from our general case of pareto,we need to use

Baye’s theorem to §**! This optimal estimator which is the posterior mean will be ob-
tained as follows;
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at+1
y (Xi,l7---7

S 141
G (X

S 141
G (Xt

S 141
G (X

at+1
Véi (Xi,17"'7

st
G (Xt

si+1
G (Xt

S 141
G (X

gl
Xi7t’di geeey

.l
Xi,l‘9d[ geeey

.l
Xi,t9d[ geeey

.l
Xi,l‘9dj geeey

. gl
XiJ,di geeey

.l
Xi,t9d[ geeey

gl
Xi,t$di geeey

.l
Xi,t$di geeey

d;+1 / [+1 XtJrl ,')f(ngrl/Xi’l,...,Xl‘7n;dl~1,...,

d{+1 )dytJrl

dlg+1 / 141 Xr+1 )(y€+1/Xi717 Xm,dl ,d§+l)dz§“

)

o) =

&)=

o) =

a1y

o) =

This can be re-written as

~t+1
Z[H—

(Xi717

Xltad

17"

s+N—-1

): 1in )
ex der
{—Z Fexp{—= }
0 {2 }N+S+1F(N+S) 1
+(s71)
exp(djr/)
Z th o N-+s anlxln o
{exp djr/ 1 } / exp(dijr/ ( 1)}d 141
F(N—f—s ZN+S &
IV Xin s L
{Z=t (=D o Tt (s—1)
exp d r] / exp{_exp dir] }dzl—’_l
F(N—I—S) 0 Z§V+s71+1 Zi !
Z 1 Xin _ N+s
{exp djrl ( 1>} F(N—|—S— 1)
F(N+S) Z Xln . N4+s—1
(B -y
I,Y:1Xi.n 1
Loy + 0~V
N+s—1
SN X+ (5 Dexp(dir)
s+N—1
Lty = 25:1Xi+(s—1)%ztj:1 exp(d/r/) 4.3)
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4.4

4.5

Premiums Calculation of the Generalized BMS

Both the severity and the frequency components can be used to obtain the premiums of
the generalized Bonus-Malus system.

The product of the generalized optimal BMS based on the frequency and of the generalized
BMS based on the severity component will give the premiums of the generalized optimal
BMS.

This is given by;
Premium=GBMFr « GBMg

a+ TN IV Xt (= DYDY exp(d/r)
a+ Y exp(c/t/) SIN—1

] (4.4)

Premium = |

Characteristics of the Generalize