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Abstract 

Large amount of data is often required to train and deploy useful machine learning models in                
industry. Smaller enterprises do not have the luxury of accessing enough data for machine              
learning, For privacy sensitive fields such as banking, insurance and healthcare, aggregating data             
to a data warehouse poses a challenge of data security and limited computational resources.              
These challenges are critical when developing machine learning algorithms in industry. Several            
attempts have been made to address the above challenges by using distributed learning             
techniques such as federated learning over disparate data stores in order to circumvent the need               
for centralised data aggregation. 
This paper proposes an improved algorithm to securely train deep neural networks over several              
data sources in a distributed way, in order to eliminate the need to centrally aggregate the data                 
and the need to share the data thus preserving privacy. The proposed method allows training of                
deep neural networks using data from multiple de-linked nodes in a distributed environment and              
to secure the representation shared during training. Only a representation of the trained models              
(network architecture and weights) are shared. 
The algorithm was evaluated on existing healthcare patients data and the performance of this              
implementation was compared to that of a regular deep neural network trained on a single               
centralised architecture. This algorithm will pave a way for distributed training of neural             
networks on privacy sensitive applications where raw data may not be shared directly or              
centrally aggregating this data in a data warehouse is not feasible.  
 
Index Terms​: Big Data, Distributed Computing, Deep Learning 
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1. Introduction 
1.1 Background 

Adoption of artificial intelligence techniques in business to enhance the quality of products,             
optimize planning, maximize output and improve customer satisfaction is at an all time high.              
Modern companies are now moving from mere predictive analytics to prescriptive analytics and             
possibilities beyond. We are now talking of artificial super intelligence (ASI), as path towards              
achieving technological singularity. Only time will settle the debate on the achievability of             
technological singularity as to surpass human intelligence, but right now we cannot overlook the              
possibilities that have been brought about by artificial intelligence, especially in enterprise            
operations. Data sensitive operations such as targeted marketing, that were traditionally based on             
purely human efforts have experienced great positive results attributed to adoption of AI             
techniques.  
Large amount of data is often required to train and deploy useful machine learning models in                
industry. Labelled customer data cannot be shared for this purpose due to privacy issues and               
sensitivity of customer information that can land in unauthorised hands.  
Successfully deployment of artificial intelligence solutions requires development of a very           
deliberate internal data sharing culture. Siloed data is one of the greatest killers of AI application                
in industry (Medium, 2018). Machine learning problems are known to be very data intensive,              
thus corporations wishing to explore machine learning have to first breakdown data silos, not              
only to increase the amount of data on which an AI model can be trained, but also to increase the                    
diversity of the data. Though breakdown the data silos sounds like a brilliant idea, it becomes                
challenging in two ways; 

1. When this data is individual customers’ or patients’ health data and breaking down the              
silos to share it will infringe on their privacy. 

2. When resources to gather centrally and store data from these diverse sources are limited. 
From challenge (2) above, the following pertinent question arises; how can health facilities,             
insurance companies and other SMEs with smaller or more specialized datasets benefit given             
that huge and diverse datasets are required to train and deploy usable modern machine learning               
systems? ​Thanks to recent progress in deep learning research, it is now possible for all               
corporations to benefit through sharing learnt representations other that sharing data.  
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Figure 1.1: From general AI to Deep Learning (Hackernoon.com, 2019) 
 
It is now possible to work with unlabelled and unstructured big data using deep neural networks                
and autoencoders. The success of machine learning methods in extracting patterns from            
structured data has led to its adoption in processing unstructured data such as images. In deep                
learning, the focus is on learning representation apart from learning patterns. Advancement in             
representational learning makes it possible for a trained model to share its knowledge with other               
deep learning systems. 
Though there has been a surge in application of artificial intelligence in industry, its adoption in                
electronic medical records has been slow due to a myriad of problems, mainly privacy issues, the                
unstructured nature of most of the data and complicated regulatory requirements. According to             
AI Med (AI Med, 2019), about 80% of data in EHRs/EMRs is unstructured and housed in                
various silos across disparate systems. Sharing this data or aggregating to a data warehouse for               
centralised application of machine learning does not address any of the above problem. Unless a               
solution is found, the medical field will lag behind in this AI boom.  
 
Sharing Representation Instead of Sharing Data 
Since it is possible to share learned representation between different deep learning systems             
instead of sharing raw data, data security and privacy will no longer be a major issue in AI                  
adoption. A description of the data, description of training model and the learned weights is what                
will need to be shared with other learning systems that would need to run the same on their data.                   
Deep learning provides opportunities for continuous learning and improvement for AI systems as             
they get exposed to different data sets. As ​Philippe Beaudoin (Medium, 2018) correctly points              
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out; advances in representation learning will to a great extend enable sharing of expertise and in                
the future, the greatest killer of AI was siloed expertise. 
 
Decentralized Machine Learning 
There are already solutions built around decentralized machine learning, also known as federated             
learning, such as OpenMined (Openmined.org, 2018), DML (Decentralizedml.com, 2018) and          
BigAI (BigAI, 2018) that can be deployed on consumer applications on mobile devices for tasks               
such as learning the voice of the device owner so as to work with voice commands. Apart from                  
being tailored to work with a single data source for both training and testing, the major challenge                 
with these solutions is that they always assume that users have pre-labeled data on their devices.                
Despite this challenge, the techniques learned here can be adopted and curated to be applied in a                 
wide range of fields including electronic health records. ​Instead of sharing data for machine              
learning, what if we share knowledge instead? 
 

1.2 Problem Statement 
For corporations to reap the full potential benefits of using artificial intelligence, enough and              
diverse data must be available to build models and extract knowledge. As mentioned earlier, one               
of the greatest killers of AI in industry is siloed data. Breaking the data silos by sharing data and                   
storing it centrally face storage space, computational resources limitation and privacy concerns.            
It is also difficult for corporations with smaller or more specialized or sensitive datasets that               
cannot be shared to benefit from utilizing machine learning in their operations ​given that huge               
and diverse datasets are required to train modern machine learning systems. Thus there is a need                
to have a way in which smaller companies/entities in the same domain can apply machine               
learning techniques on their data collaboratively without having to share data while preserving             
data security and integrity. In summary, lack of a secure model for training deep neural networks                
on distributed/desperate and unstructured data environments poses a challenge to full scale            
application of artificial intelligence techniques in industry. 
 

1.3 Research Questions 

Based on the problem statement as outlined above, the following questions need to be addressed 
towards solving the problem; 

1. What is required for securely training a distributed deep learning model in a distributed              
unstructured data environment? 

2. How can we design a distributed deep learning neural network model over distributed or              
disconnected enterprise data stores? 

3. How can we prototype the above model in an environment with de-linked data stores? 
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4. How can we evaluate the performance of a distributed deep learning model? 

1.4 Project Objectives  

1.3.1 General Objective 
To develop and test a model for training  distributed deep neural networks on a distributed big 
data environment. The model was trained on a radiology database consisting of chest x-ray 
images. 
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1.3.2 Specific Objectives 
a. To develop a deep learning algorithm for securely training a distributed deep            

neural network over distributed unstructured data sources. 
b. To design a distributed deep neural network model over distributed medical imagery            

databases? 
c. To prototype the distributed deep neural network model in a distributed           

unstructured data environment 
d. To evaluate the performance of the distributed deep learning model. 

 

1.5 Project Scope 

This research was limited to developing a distributed deep neural network model on distributed              
big data environment using chest x-ray images datasets. Security implementation was based on             
RSA encryption algorithm, evaluation of different security implementation algorithms was not           
within the scope of this research project. 
 

1.6 Project Justification 

This research project provides a solution to the problem of training deep learning models in a                
distributed environment without having to centrally aggregate the data in a data warehouse or              
having to share data in a privacy sensitive environments. This paves the way for collaborative               
learning in industry by small enterprises and extending the application of machine learning             
techniques to electronic health records, thus leveling the competitive field for every player who              
wishes to apply artificial intelligence techniques in industry. 
This research project is also complex enough to warrant a computer science research approach to               
solution since it touches on important fields in computing, including Big Data, Distributed             
Computing,  Synchronisation, Optimisation and Security.  
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2. Literature Review 
2.1 Big Data Intelligence 

Big data is a term that references sets of data whose size,type or structure is beyond the ability of                   
traditional relational databases to capture, manage, and process with low-latency (Ibm.com,           
2018). Big data does not necessarily mean a lot of data, though size is a big indicator in                  
determining whether a set of data qualifies to be called Big Data, its nature of being highly                 
unstructured carries more weight in the definition than size. The most common characteristics of              
big data are; 

I. Volume - big data is characterized by enormous volume of data being generated by              
machines, IoT devices or human interactions with systems such as social media. 

II. Variety - data is from multiple sources, which makes the data be in several types, either                
structured or unstructured. 

III. Velocity - refers to the speed at which data accumulates from different sources.The flow              
of data is normally massive and continuous. 

IV. Veracity - refers to the biases, noise and abnormality in the data, though not obvious,               
depending on the source of that particular data 

Data intelligence is the analysis of various forms of data in such a way as to inform action and                   
optimize decision making. Thus big data intelligence refers to application of data analytics             
methods and tools to analyze big data in order to enable companies to make better decisions and                 
to inform action.  
In the recent past, most big companies have been aggregating data from multiple sources and               
joining it together to exploit network effects to become a one stop shop for high quality data. In                  
this model, if you’re the aggregator you win, taking typically 60–80% of the revenue and the vast                 
majority of the profits. If your data is aggregated you lose, but not as much as if you keep your                    
data to yourself. Pretty much every industry now has their set of dominant aggregators, and so                
it’s exceedingly hard to get in here unless you happen to be an industry-leading aggregator               
already and just woke up this morning with that realization (Bernes, 2017). 
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Figure 2.1 Big data business model 
Data contained in EHRs and EMRs has all traits of big data. Doctors and medical imagery makes                 
this data largely unstructured and disintegrated. When attempting to get useful insights from this              
data, a lot of effort would go towards cleaning the data and pre-processing. 
 

2.2 Distributed Computing Systems 

A distributed computing is the field in computer science that studies the design and behavior of                
systems that involve many loosely-coupled components (Cpsc.yale.edu, 2018). They consist of           
multiple software components that are on multiple computers, but run as a single system. The               
computers that are in a distributed system can be physically close together and connected by a                
local network, or they can be geographically distant and connected by a wide area network. A                
distributed system can consist of any number of possible configurations, such as mainframes,             
personal computers, workstations, minicomputers, and so on. The goal of distributed computing            
is to make such a network work as a single computer. 
Several factors motivate enterprises to implement distributed systems as opposed to centralised            
ones. The two main factors are for scalability and redundancy. Scalability ensures that the              
systems can be expanded easily by adding more nodes as needed. Redundancy improves service              
availability and ensures security. 
The figure below shows an example of a distributed computing systems; 
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Figure 2.2 Distributed computing system 
This research project implemented the deep learning model in a both decentralised and             
distributed way. The multiple data stores were decentralized and delinked whereas the learning             
process was distributed across different training nodes in the network. Each node has its own               
copy of the trained model depending on local stopping parameters. Thus a study of inner               
workings of  distributed computing systems was necessary prior to the start of the project. 
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2.3 Deep Neural Networks 

Deep learning is a machine learning method based on learning data representations and structure              
as opposed to learning task specific algorithms. Deep learning is also referred to as deep               
structured learning or hierarchical learning. Deep neural network is a deep learning architecture             
that uses artificial neural networks to learn representations. The diagram below a conceptual             
model of a neural network; 

 
Figure 2.3 DNN model 

A method knowns as gradient descent is used to train the network. Gradient descent requires a                

large amount of data in order to determine the gradient of a predefined cost function and to                 

converge to a global minimum. Once the minimum is found, the network is considered trained               

and can be used for inference. Usually, no further training occurs at this stage. Multiple versions                

of gradient descent have been invented over time, with some of the more prominent being the                

Stochastic Gradient Descent (SGD) and Adadelta. The advantages of gradient descent include            

fast and simple implementation and relatively fast convergence as compared to algorithms such             

as Genetic Algorithms (GA). Genetic algorithm is more susceptible to premature convergence.            

The choice of deep learning as the machine learning technique to be used in this project was                 

largely informed by the nature of data, which consists of labelled x-ray images from an EMR                

system.  
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2.4 Predictive Analysis of Clinical Data 

Predictive data mining is a field of data mining that automatically creates a classification model               
from a given set of examples. Once the model is built, it can be used to predict the classes of                    
other examples automatically. The outcome is generally because of certain probability or on the              
basis of detection theory. Many models and classifiers exist for predictive data mining namely              
k-Nearest Neighbours (k-NN), Naïve Bayes, Logistic Regression, and Majority Classifiers. The           
predictive data mining techniques has varied applications ranging from archaeology, medical           
sciences and bioinformatics. The predictive modelling is mainly preferred for biomedical           
research to target best diagnosis and appropriate treatment, developed detailed patients’ and            
disease profile and also to diagnose and prevent diseases appropriately. The predictive data             
mining technique allows the physician/surgeon to predict the disease through symptoms quickly            
and accurately, predict the survivability rate of the patients and find the intensity of the diseases                
more precisely. Thus predictive data mining helps the medical practitioners to decide about the              
type of treatment based on the predictions (Elsevier Connect, 2016). 

 
For these reasons, clinicians complement guidelines and protocols with their knowledge base and             
anecdotal experience. However, there is considerable variation in clinicians’ prior experience,           
and in addition, clinician recall is often biased, with recent patients and patients with adverse               
outcomes being recalled most readily. Here are some benefits that can be attributed to clinical               
predictive analysis; 

 

● Predictive analytics increase the accuracy of diagnoses. 
● Predictive analytics will help preventive medicine and public health. 
● Predictive analytics provides physicians with answers they are seeking for individual 

patients. 
● Predictive analytics can provide employers and hospitals with predictions concerning 

insurance product costs. 
● Predictive analytics allow researchers to develop prediction models that do not require 

thousands of cases and that can become more accurate over time. 
● Pharmaceutical companies can use predictive analytics to best meet the needs of the 

public for medications. 
● Patients have the potential benefit of better outcomes due to predictive analytics. 
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This approach represents a promising avenue toward reducing the current gap between research             
and practice across healthcare, developing data-driven clinical decision support based on           
real-world populations, and serving as a component of embedded clinical artificial intelligences            
that “learn” over time. 

 
The use of predictive models for informing healthcare treatment algorithms accentuates the            
tension that exists between the art and science of treating common health disorders, between the               
knowledge of experienced clinicians and predictive recommendations derived from data. This           
old controversy is best characterized by Paul Meehl, who noted nearly half a century ago “When                
you are pushing [scores of] investigations [140 in 1991], predicting everything from the             
outcomes of football games to the diagnosis of liver disease and when you can hardly come up 
with a half dozen studies showing even a weak tendency in favor of the clinician, it is time to                   
draw a practical conclusion” (p.372-373).  

However, many current decision support systems in healthcare rely on experts’ or            
standards-based models, rather than models that adapt population-based guidelines to individual           
patient characteristics by utilizing existing EHR patient data.  

Applying advanced learning techniques such as deep learning to clinical predictive analytics will             
improve the predictive models by extending them to cover unstructured data such as             
radiographic images. This research used chest x-ray images to build a model that would predict               
the probability of a patient having pneumonia based on their chest x-ray images.  

 

2.5 Blockchain Technology 

A blockchain is an open distributed, decentralized, public ledger that securely stores transaction             
records between parties by using public key cryptography on a peer-to-peer network (Harvard             
Business Review, 2019).  

Transactions are recorded as a block of data which is hashed and distributed across multiple 
nodes in the network. Each block is linked to a preceding block in their order of generation, 
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forming a logical chain.

 

Figure 2.4: High level blockchain decentralization concept (CoinDesk, 2019) 

Each block is generated by application of a complex mathematical computation that is resource              
intensive. Coupling this generation process with public key cryptography and the fact that the              
same block is replicated to many nodes in the network makes blockchain technology inherently              
secure. 

 

Figure 2.5: Simplified chain generation process (Anwar, 2019) 
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Blockchain is not completely anonymous but confidential, transactions are publicly recorded on            
the blockchain without complete user data. A user’s public key is a shortened version of the                
private key that is created through a complicated mathematical algorithm. Due to the complexity              
of generating the keys, it is practically impossible to reverse the process and generate a private                
key from a public key. This is how blockchain technology achieves its confidentiality. 

Implementation of the algorithm used in this research project borrows a lot from blockchain              
technology with few modifications but totally different objectives. They both run on distributed             
network, use private key cryptography and every node on the network comes to the same               
conclusion, each updating their records independently. Blockchain technology requires         
authorization and authentication to establish trust whereas in our case, the keys are used for               
encryption only to conceal weight transfer between nodes and not for           
authentication/authorization. 

2.6 Related Projects 

2.6.1 SNIPS - Decentralized Machine Learning using MPC and Secret Sharing 
Snips (Snips, 2018) is a platform that helps people build private voice assistant applications for               
IoT. Snips provides NLP as a service without having to share user data. Privacy problem is                
addressed by a combination of 3 factors; 

I. Embedded processing of the voice query - voice processing is done directly inside the              
device the user is talking to. No data is sent outside the user’s device to the cloud unlike                  
traditional voice recognition devices. This 100% on-device approach has a number of            
advantages, from enabling offline use cases, to having no network latency and being             
resilient to cloud outages, mass surveillance and data breaches. 

II. Decentralized data generation - data for training examples is automatically generated           
from a handful given initially 

III. Decentralized machine learning - The voice app models are trained on the end user data               
without forcing the data to leave the devices they are sitting on. ​The goal of               
Decentralized Machine Learning (also called Federated Learning) is to train a neural            
network by updating the gradient locally on the device of the user, before aggregating it               
securely via a network of nodes.  

Challenges; 
- Automatic generation of data may not be an exact representation of data from the user               

given that different users may have different ways of saying the same thing.  
- Since these models are built for a specific task of voice commands interpretation on a               

user’s device, it will pose a challenge scaling them to be used in big data contexts with                 
high demand for space resources. 
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- At any given instance, a model on a device has a snapshot of its local environment, and                 
blind to the global environment. Though this is not a requirement for a voice app, it is                 
important for models in a distributed big data environment.  
There is a key challenge that is often overlooked: most decentralised machine learning             
solutions, like OpenMined, DML or BigAI, assume that users have pre-labelled data on             
their devices. 
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2.6.2 ​Federated Learning at Google AI Lab (Google AI Blog, 2018) 
Federated learning is an approach to training models from user interaction with mobile devices;              
models are trained on the devices. Federating learning decouples machine learning from data             
storage by enabling learning a shared prediction model with the training data on the device               
without sharing the data (McMahan and Ramage, 2017). In this approach, there is a shared               
model that resides in the cloud.  
A mobile device gets the current up-to-date shared model from the cloud, runs it on the local data                  
on the phone and stores the improvements as a small focused update. These changes to the model                 
are then sent to the cloud, averaged with updates from other devices and applied to the central                 
main model in the cloud.  No training data leaves the users’ devices. 

 
Figure 2.6 Federated learning architecture 
 
A mobile device (A) localizes the model in the context of a user’s interaction with the device.                 
Users' changes are summed up (B) to form an aggregate change (C) which is then applied to the                  
shared model and procedure repeated whenever new data is available. (Google AI Blog, 2018). 
Federated learning proposes a mechanism suitable for training centralized models in an            
unreliable network connection environment where sharing data would be expensive in addition            
to privacy concerns. This work borrows a lot from federated learning techniques, albeit on              
training a decentralised model. 
 
2.6.3 OpenMined 
OpenMined is an open-source community project focused on researching, developing, and           
promoting tools for secure, privacy-preserving, value-aligned artificial intelligence        
(Openmined.org, 2018). The project has built a platform that combines the principles of             
federated learning with cutting edge techniques such as homomorphic encryption and blockchain            
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smart contracts to enable a collaborative model to implement deep learning application in a              
completely decentralized way (Rodriguez, 2018). The OpenMined platform allows data scientists           
to upload pre-defined models and private data and have the model trained by anonymous              
decentralized nodes (miners). 
2.6.3.1 OpenMined Platform Architecture 

The figure diagrammatically represents OpenMined approach towards decentralized        
collaborative learning; 

 
Figure 2.7 OpenMined architecture ​(​Towards Data Science, 2018​) 
 
2.6.3.2 How it Works 

1. A data scientist creates a desired model using an external framework such as Keras or               
Tensorflow and specifies the type of data required and the amount they are willing to pay                
for the model to be trained. 

2. Upon submission the model is encrypted and uploaded to OpenGrid - a ​peer-to-peer             
network of data owners and data scientists who can collectively train AI models using              
Syft. 

3. Members of the OpenGrid network anonymously download the encrypted model should           
they have the correct data required by the model. They train the model locally on their                
devices. 

4. With each party unknown to the other, the miner uploads a new version of the trained                
model based on their local training 

5. The model that meets a success criteria is the one that is picked by the data scientist.  
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Though OpenMined represent one of the best enterprise implementation of decentralized deep            
learning, this approach poses the following challenges; 

1. The model is not trained on user’s data, but on someone else's data located somewhere on                
the OpenGrid networks meaning the user has no control of the data. 

2. This approach can only be used on pre-labelled data and can not be deployed in an                
environment with unstructured big data. 

3. It requires the user/data scientist to have predefined models. 
4. Scope of training of a model is limited to only a localised data store in the sense that the                   

trained model does not have a view of the whole data on the network. 
 
2.6.5 Distributed Learning of Deep Neural Network Over Multiple Agents ​(Gupta and Raskar,                         
2018) 
This work by Gupta and Raskar explores an algorithm that allows for distributed deep learning               
over multiple agents. The algorithm was evaluated on existing mixed NIST (MNIST) datasets             
and it was shown that the obtained performance was similar to that of a regular neural network                 
trained on a centralised data source. Gupta and Rasker raised security concerns on their              
algorithm evaluation which we seek to address here by running an improved algorithm on              
privacy sensitive electronic medical records patients’ data. 
 
 

2.7 Related Research Work 

 
2.7.1 The Data Grid: Towards an Architecture for the Distributed Management and Analysis of                           
Large Scientific Datasets 
The communities of researchers that need to access and analyze this data (often using              
sophisticated and computationally expensive techniques) are often large and are almost always            
geographically distributed, as are the computing and storage resources that these communities            
rely upon to store and analyze their data [17]. This combination of large dataset size, geographic                
distribution of users and resources, and computationally intensive analysis results in complex            
and stringent performance demands that are not satisfied by any existing data management             
infrastructure. A large scientific collaboration may generate many queries, each involving access            
to|or supercomputer-class computations on|gigabytes or terabytes of data. Efficient and reliable           
execution of these queries may require careful management of terabyte caches, gigabit/s data             
transfer over wide area networks, coscheduling of data transfers and supercomputer computation,            
accurate performance estimations to guide the selection of dataset replicas, and other advanced             
techniques that collectively maximize use of scarce storage, networking, and computing           
resources. (Chervenak et al., 2000)  



  25 
 

2.7.2 Practical Secure Aggregation for Privacy Preserving Machine Learning 
This research paper by Bonawitz et al (Bonawitz et al., 2017) outlines an approach to advancing                
privacy preserving machine learning by leveraging secure multiparty computation (MPC) to           
compute sums of model parameter updates from individual users’ devices in a secure manner.              
This approach attempts to address the issue of privacy/security in federated learning on mobile              
devices where communication is expensive and dropouts are common. This research developed            
a protocol for securely computing sums of vectors, which had a constant number of rounds, with                
low communication overhead, robustness to failures, and which required only one server with             
limited trust. The role of the server was to route messages between the other parties and compute                 
the final result. The figure below depicts how secure aggregation is achieved; 

 
Figure 2.8 Secure aggregation 
 
Though this research work focuses on securing and optimizing communication on federated            
learning on mobile devices, some aspects of this secure aggregation technique can be adopted              
and improved to secure weights sharing in a distributed big data environment.  
 
2.7.3 Communication-Efficient Learning of Deep Networks from Decentralized Data (McMahan et                     
al., 2017) 
Modern mobile devices generate a lot of data suitable for learning models to improve user               
experience. However due to sensitivity and privacy issues, it is impossible to log this wealth of                
data centrally to a data center and train machine learning models on them using conventional               
approaches. In this research, McMahan et al advocate for an alternative approach that leaves the               
training data distributed on the mobile phone devices, and learns a shared model by aggregating               
locally computed updates, an approach known as Federated Learning.  
A practical method for the federated learning of deep networks based on iterative model              
averaging is presented. An extensive empirical evaluation, considering five different model           
architectures and four datasets is also conducted.  
Federated learning allows users to collectively reap the benefits of shared models trained from              
this rich data, without the need to centrally store it thus eliminating the need to share users’ data.                  
In their implementation of federated learning, this research uses a client-server approach. Each             
client has a local training dataset which is never uploaded to the server. Instead, each client                
computes an update to the current global model maintained by the server, and only this update is                 
communicated, thus decoupling model training from the need for direct access to the raw              
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training data. An algorithm known as Federated Averaging, which combines local stochastic            
gradient descent (SGD) on each client with a server that performs model averaging was              
developed to implement federated learning. 
 

2.8 Literature Review Summary 

There has been a lot of effort both from academia and industry in an attempt to address the                  
problem of implementing distributed machine learning on distributed systems especially on           
small pre-labelled user data sets. All methods that have been used presume pre labelled data.               
Thus there's a need to develop a generic model that can be used in big data settings where data is                    
not necessarily labelled. Though federated learning on mobile devices has been proven to work              
well, the tasks that has been tested on such as image classification, for example predicting which                
photos are most likely to be viewed multiple times in the future, or shared; and language models,                 
which can be used to improve voice recognition and text entry on touch-screen keyboards by               
improving decoding, next-word-prediction, and even predicting whole replies requires user data           
to be pre-labeled. While federated learning as implemented by McMahan et al offers many              
practical privacy benefits, there's a need to provide stronger privacy guarantees via application of              
differential privacy and/or secure multi-party computation. 
Conceptual Framework 
The diagram below depicts the current status of things against what this research project aims at                
achieving; 

 
Figure 2.9: Conceptual Framework  
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3. Research Methodology 
To answer each of the questions, this research involved theoretical studies of existing literature              
and implemented projects, experimental studies, simulation, prototyping and empirical         
evaluation. The diagram below gives a high level summary of the tasks that were accomplished               
in order to realize the study objectives; 

 
Figure 3.1 Project activity flow 

To accomplish the above tasks, below is how each of the approaches was used; 
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3.1 Theoretical Studies 

To find out an optimal algorithm for securely training a distributed deep learning model in a                
distributed big data environment, there was a review of existing literature. This involved             
reviewing of academic papers and white papers in the area of distributed machine learning on big                
data and centralised machine learning on big data environments. A study of other distributed              
machine learning open source and commercial projects was also conducted, including a study of              
federated learning approach widely used on training centralised models in mobile devices such             
as smartphones and tablets. The output of this study was an optimal algorithm that can be used to                  
securely train a distributed deep learning neural network model in a distributed big data              
environment. Arriving at an optimal algorithm required coming up with a hybrid algorithm that              
borrows the best techniques from each of the identified approaches. 
A study of the design of distributed machine learning open source projects was useful in               
designing a simulation of a distributed environment.  
 

3.2 Simulation and Prototyping 

This project prototypes a distributed deep learning environment using python parallel           
programming and secure shell protocol (SSH) for file transfer and communication; sending            
model architecture and weights. Convolution neural network was used for automatic feature            
extraction and representational learning on the data. The environment was setup on a personal              
computer with Nvidia GTX 1050 Graphics Processing Unit, running on Ubuntu 18.04 operating             
system with Python 3.6 with installed with Numpy, Tensorflow and Keras deep learning             
libraries.  
 

3.3 Empirical Evaluation 

The number of nodes in the distributed environment was increased periodically as performance             
was being monitored in terms of time taken to converge and accuracy so as to generate concrete                 
recommendations for future work. 
The performance of this model of training a distributed deep neural network on big data was                
compared against implementing the same model on a centralised deep learning environment            
where all the data is centrally aggregated. The comparison was in terms of accuracy of the                
clustering and time taken for the models to converge.  
To ascertain performance against other existing implementations, this method was compared           
against the modern state-of-the-art methods including large-batch global SGD and federated           
averaging approaches from theoretical studies above.  
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K-fold validation was used to evaluate the accuracy of the model by itself. This was done by                 
systematically splitting up the available data into k-folds, fitting the model on k-1 folds,              
evaluating it on the held out fold, and repeating this process for each fold. 
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3.4 Dataset 

The data that was used to train the model consisted of x-ray images obtained from 28780                
patients. There were two sets of data; xray images from normal patients and those from patients                
with pneumonia.  

 
Figure 3.2: Dataset 
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Figure 3.3: Xray image from patient with pneumonia 
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Figure 3.4 Chest Xray image from a normal person. 
 
 
3.4.1 Data Preprocessing 
The binary images was reformatted and spatially normalized to fit in a 20 × 20 bounding box.                 
Anti-aliasing techniques was used to convert black and white (bilevel) images to grayscale             
images. Finally the images were placed in a 28 × 28 grid, by computing the center of mass of the                    
pixels and shifting and superimposing images in the center of a 28 × 28 image. 
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4.0 Analysis and Design 
4.1 Technical Requirements Analysis 

4.1.1 Environment Software Setup 
The environment was setup on a personal computer with Nvidia GTX 1050 Graphics Processing              
Unit, running on Ubuntu 16.04 operating system and Python 2.7 installed with the following              
packages; 
 
Numpy 

NumPy is a library for Python programming language that adds support for large             
multi-dimensional arrays and matrices, with a large collection of mathematical functions to            
operate on these arrays. Since the representation of the images in the data needed a matrix of size                  
256 x 256 with a depth of 3 for each image, NumPy came in handy in doing operations on array                    
data structures of such size. 
 
Tensorflow & Tensorboard 

Tensorflow is an open source library for developing machine learning algorithms. It has a              
comprehensive, flexible collection of tools, libraries and community resources that lets           
researchers develop state-of-the-art machine learning models with ease and for developers to            
easily build and deploy machine learning powered applications. Tensorflow was used to abstract             
low level implementation of the convolutional neural network since this research project focuses             
on building a model for distributed machine learning and not the nitty gritties of low level                
implementation. Tensorboard is a visualization tool that runs on tensorflow and helps in             
visualization of the results during training. 
 
Keras 

Keras is a high-level neural networks API, written in Python and runs on top of Tensorflow.                
Designed to enable fast experimentation with deep neural networks, it focuses on being             
user-friendly, modular, and extensible. It offers a higher-level, more intuitive set of abstractions             
that make it easy to develop deep learning models regardless of the computational backend used.               
Keras contains numerous implementations of commonly used neural-network building blocks          
such as layers, objectives, activation functions, optimizers, and a host of tools to make working               
with image and text data easier. 
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CUDA & cuDNN 

CUDA is a parallel computing platform and programming model developed by NVIDIA            
(NVIDIA Developer, 2019) for general computing on its own GPUs. CUDA enables developers             
to speed up compute-intensive applications by harnessing the power of GPUs for the             
parallelizable part of the computation. NVIDIA CUDA Deep Neural Network library (cuDNN)            
is a GPU-accelerated library of primitives for deep neural networks. cuDNN provides highly             
tuned implementations for standard routines such as forward and backward convolution, pooling,            
normalization, and activation layers. CUDA and cuDNN were used to implement parallel            
computing so as to speedup training. 
 
Docker for Distributed Computing Environment 

Implementation of the distributed computing environment requires a docker image running           
multiple containers as semi-autonomous computing agents. ​Docker is a container technology for            
Linux that performs operating-system-level virtualization. 
 

4.2 Economic and Technical Feasibility Analysis 

All the technical software requirements listed above are free and open source thus there is               
minimal cost implication on the prototype development. Being open source, the technologies            
have a wider community for technical support 
 

4.3 Prototype Design 

Algorithm Design 
This algorithm implements a technique that was used to train deep neural networks over multiple               
data sources in a secure electronic medical records environment while mitigating the need to              
share raw data directly. The algorithm implementation used three categories of agents as below;  

I. Alice → deep neural network that runs at the data source nodes. 
II. Bob → acts as a watchdog, monitoring file changes (model improvements) which are             

encrypted and send to Charity. Bob also gets initial models from Charity when Alice              
wants to train on new data. 

III. Charity → remote deep neural network that coordinates sharing of weights among the             
training nodes and stores up-to-date model architecture. 
START 

I. Charity initializes a network architecture with random weights and other parameters. 
II. Charity compiles the model and trains with its local data for 1 epoch, writing the best                

output model to a file. 
III. Charity encrypts the model file using her own private key. 
IV. When Alice​k​ wants to train; 
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a. Bob​k​ fetches the current model from Charity via secure shell (SSH) protocol 
b. Bob​k decrypt the model file using Charity’s public key and makes it available for              

Alice​k 

V. Alice​k reads the model, compiles it trains (a series of forward and back propagation) the               
model using its local data. 

VI. While training, Alice​k monitors model improvements in terms of accuracy and loss at the              
end of every epoch, with an early stopping patience of 10. 

VII. If there is an improvement, Alice​k​ saves the improved model to a file, this alerts Bob​k​. 
VIII. Bobk encrypts the new improved model file using Charity’s public key and send the file               

to Charity 
IX. Upon receipt, Charity runs the model from Bob​k on local data while comparing with her               

current model 
X. If the new model from Bob​k is better than the current model, Charity saves the new model                 

as the currently available model, else the model from Bob​k​ is discarded.  
XI. When Alice​k+1 wants to train, it will use the currently available model from Charity as the                

starting point. 
XII. End  
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Pictorial Representation of the Algorithm 

 
 
Figure 4.1: Pictorial representation of the algorithm.   
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4.4. Model Architecture 

The figure below shows a summary of the convoluted neural network architecture that was used; 

 

Figure 4.2: Summary of the model architecture and parameters 
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Figure 4.3: Model architecture 
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4.5 Initial Model Inputs 

● Loss - The loss function was used to determine the model’s success or failure. Each               
iteration of training, it calculated its loss using this function to evaluate its current              
performance, and tweak the model parameters based on this feedback. Binary cross            
entropy was used as the loss function.. 

● Optimizer - Defined how the parameters will be tweaked (i.e., should the parameters be              
modified by a large or small amount?). Adam optimizer was used in this model. 

● Metrics - Accuracy was used as the main metric to judge performance of the model. 

 

4.6. Implementation 

The algorithm and protocol was implemented using python Keras library running on docker             
containers with Tensorflow backend. Each of the docker containers serve as independent            
agents/nodes, called Alice in this case, on the distributed environment with their own data of               
about 5000 images and running through a copy of the CNN model. Though the nodes are                
distributed, they communicate through a centralised node called Bob in this case.  
At the beginning of a training cycle, Bob initializes random weights and sets them as weights of                 
last trained node. Before any Alice starts training, they request for the weights of the last trained                 
node from Bob and use the data to initialize their network. Communication between Alices and               
Bob is by file transfer using the SCP protocol. The diagram below depicts the algorithm               
implementation. For efficiency, Bob runs on a cloud instance with better infrastructure.  
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Figure 4.4: Distributed architecture 
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4.7. Implementation Comparison with Blockchain 

A blockchain is a linked list of digital records in packages (blocks) which are distributed and                
secured using cryptography. Each block contains data that is cryptographically hashed and            
timestamped. Subsequent blocks in the chain depend on previous blocks thus ensuring that data              
is tamper proof. From the recent past, blockchain technology is being adopted in implementing              
distributed machine learning where computing resources are offered as a service with notable             
projects such as OpenMined (Openmined.org, 2018) and DML ​(Decentralizedml.com, 2018).          
Though there are several similarities between this implementation and blockchain-based          
implementation of distributed machine learning, below are the key differences between this            
approach and implementing machine learning on blockchain; 

1. The main focus of blockchain machine learning is to offer computing resources as a              
service whereas the focus of this implementation is to share data representation as a              
service. 

2. In blockchain implementation, the model is not trained on user’s data, but on someone              
else's data located somewhere on the blockchain network meaning the user has no control              
of the data. In this project’s implementation, though there is no data sharing, all the nodes                
on the distributed network are well known because the network coordination is still             
centralised. 

3. In blockchain implementation, the scope of training of a model is limited to only a               
localised data store in the sense that the resultant model is not trained on all data on the                  
network. Each node runs an independent training and one with the best model is picked.               
In this implementation, the resultant model is trained jointly by sharing weights from             
each node, thus at the end of the training, all nodes will have a copy of the same trained                   
model. 
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5.0 Results and Analysis 
5.1 Proof of Correctness 

The algorithm correctness stems from the fact that Bob and at least one of Alice​k have identical                 
neural network parameters to regular training at iteration k. The neural network being trained at               
iteration k is identical to the neural network if it was trained by just one entity. Alice 1 randomly                   
initialized weights and Bob used these weights during first iteration. We assume that this              
initialization is consistent when training with single entity. In case another Alice​j attempts to              
train, it will refresh the weights to correct value. Alice​j performs backpropagation as the final               
step in iteration i. Since this backpropagation is functionally equivalent to backpropagation            
applied over the entire neural network at once, Alice​j continues to have correct parameters at the                
end of one training iteration. (F​T​(gradient) is functionally identical to sequential application of             
F​a,j​(F​b​T​ (data)) 

5.2 Accuracy 

Accuracy was used to evaluate the performance of this model. The plots below indicate that the                
model generally improved every epoch until it hit a maximum accuracy of 93.63% before              
smoothing and and a final accuracy of 93.55% after smoothing. Accuracy was calculated by              
finding the ratio between the correctly predicted classes and the total number of predictions. The               
slope of this curve is relatively similar to one achieve by training a centralised model on a                 
centralised database.  
 
5.2.1 Accuracy before smoothing 
Maximum Value: 99.81% 

 
Figure 5.1: Accuracy before smoothing; y-axis = accuracy, x-axis = number of epochs 
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5.2.2 Accuracy after smoothing 
Initial Value: 0 
Final Value: 99.81% 
Smoothing Factor: 0.6 

 

 
Figure 5.2: Accuracy after smoothing; y-axis = accuracy, x-axis = number of epochs 
 

5.3 Loss 

The objective of the model was to minimise loss while increasing accuracy. During each              
iteration of training, the loss was calculated and used to evaluate current performance, and tweak               
the model parameters based on this feedback. Binary cross entropy was used as the loss function.                
From the graphs below, the loss decreases steadily in every epoch. 
 
5.3.1 Loss before smoothing 

Minimum Value: 0.1936 

 
Figure 5.3: Loss before smoothing; y-axis = loss, x-axis = number of epochs 
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5.3.2 Loss after smoothing 
Final Value: 5.4970e-3 
Smoothing Factor: 0.6 

 
Figure 5.4: Loss after smoothing; y-axis = loss, x-axis = number of epochs 
 

5.4 Comparison with centralised models 

The same model was also trained on centralised architecture. There was no difference between              
the distributed architecture and the centralised architecture in terms of final loss and accuracy              
achieved, but there was a significant difference in terms of time taken to converge. Each node on                 
the distributed network training on about 37000 images, doing 100 epochs and a batch size of                
200 images took an average of 96 minutes to converge. For a centralised architecture with the                
same number of images, batch size, epoch and same infrastructure resource configuration as one              
node on the distributed architecture, took close to 3 times average time taken on the distributed                
learning architecture. 

 

5.5 Effect of increasing the number of layers on accuracy and loss 

There was no significant difference on accuracy and loss when the number of hidden layers was                
doubled from 4 to 8 but the was a significant different on the number of epochs required and                  
time taken to converge as shown on the charts below; 
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Accuracy 

 
Figure 5.5: Accuracy after doubling number of hidden layers; y-axis = accuracy, x-axis =              
number of epochs 
 

Loss 

 
Figure 5.6: Accuracy after doubling number of hidden layers; y-axis = accuracy, x-axis =              
number of epochs 
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6.0 Conclusion and Future Work 
 
This research work has proved beyond reasonable doubt the practicability of training a shared              
deep learning model in an unstructured data environments without having to share actual data.              
Eliminating the need to share data or the need to aggregate data in a data warehouse ensures                 
security of the data in the nodes where it is generated. Communication security while exchanging               
weights and other network parameters can be ensured by leveraging private-public authentication            
on SCP,SFTP and SSH mechanisms. Thus databases that handle sensitive data such as patients’              
medical records in electronic medical records can benefit from the application of machine             
learning techniques on their data without compromising on data security and privacy of patients. 
 
This approach can also be beneficial in low resource and low data scenarios by training a deep                 
learning model on several smaller databases as if they were a single data repository. Thus big                
data, data security and limited computational resources should not hinder developing and            
adopting machine learning algorithms in industry.  
 
Recommendations and Future work 
 
Though this approach has been proven to work here, having a centralised coordinator (Bob) will               
be will break the whole network whenever Bob is down or his resources are overwhelmed by the                 
number of nodes connecting. A reasonable extension to this research work can be to develop a                
technique to have several coordinators or who are synchronised and the nodes can connect to the                
nearest one. An algorithm can also be developed to have the nodes intelligently pick a new                
coordinator whenever the central coordinator breaks down. It would also be interesting to             
explore using blockchain technology to shared model parameters in situations where each of the              
nodes should remain completely hidden from the other nodes or where each node should be               
rewarded based on their contribution to the final model. 
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Appendix 1: Project Plan and Management 
 

1.2 Required Resources 

a. Software Resources 
i. Pycharm IDE (Ultimate Edition V14.1)  

ii. PostgreSQL 10.6 Server 
iii. Git and Github (Version Control)  
iv. GanttProject for Project Management  
v. Ubuntu 18.04 LTS Operating System for deployment  

vi. Java Enterprise Edition - for backend development 
vii. PostgreSQL JDBC Driver 

viii. Python Keras/Tensorflow ML Library 
 

2. Hardware Resources 
a. PC ( Intel(R) Core(TM) i7 Processor, 16GB RAM) 
b. 10 Linode cloud server;  2GB RAM each 
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Appendix 2: Sample Scripts 
2.1 CNN Initialization 

 

   



  51 
 

2.2 Model Instantiation, training and saving 
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2.3 Communication daemon script 

 
 


