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Abstract

This project is on spectra and almost similarity of operators in Hilbert spaces.

In chapter one we discuss the meaning and the structure of a Hilbert space. Here the

linear structure, the norm, the inner product structure and convergence of sequences in a

set of vectors are discussed to yield the meaning of a Hilbert space.

In chapter two, transformation of elements in a Hilbert space is discussed. The nature of

transformations are also discussed in this chapter i.e. the preservation of linear structure,

boundedness and the norm. The Banach algebra of bounded linear operators is also

established. We use the linear operator to de�ne invariant subspaces of a Hilbert space.

We also de�ne the spectra of operators on Hilbert spaces. The structure and the subsets of

the spectrum are discussed in this chapter. We also discuss the spectrum of some classes

of operators.

The third chapter is on similarity and quasi-similarity of operators. We show that unitary

equivalence, similarity and quasi-similarity of operators are equivalence relations. Also

unitary equivalence implies similarity and similarity implies quasi-similarity. Unitary

equivalent and Similar operators have equal spectra in general. Quasi-similar operators on

a �nite dimensional Hilbert space have equal spectra but on in�nite dimensional Hilbert

spaces, quasi similar operators have equal spectra if the operators are hypo-normal.

The fourth chapter is on almost similarity of operators. We discuss the relationship of

cartesian and polar decomposition of operators with almost similarity of operators. We

show that almost similarity of operators is an equivalence relation. Almost similar

operators which are Hermitian or projections have equal spectra.

Master Thesis in Mathematics at the University of Nairobi, Kenya.
ISSN 2410-1397: Research Report in Mathematics
©Joseph Mutuku Matheka, 2019
DISTRIBUTOR: School of Mathematics, University of Nairobi, Kenya
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1 PRELIMINARIES

1.1 Introduction

A set is a well defined collection of objects.
Sets are denoted by capital le�ers, e.g.set X.
The objects in a set are called elements.
If % is one of the objects in X, then this is denoted % ∈ X and read as %
belongs to X.
If every element ϑ of Y is also a member in X, then Y ⊆ X
e.g Z ⊂ Q ⊂ R ⊂ C
A set can be empty (i.e. having no elements), having a finite number of
elements or have infinite number of elements.
Examples of infinite sets include: Z,Q,R,C

A function is a rule f that uniquely associates members of one set, say X
with members of another set, say Y denoted f : X→ Y.
A domain D of f denoted D(f) contains all the values at which a function
f is defined.
The collection {f(%) ∈ Y : % ∈ X} of values that function f can produce is
called the range of f and denoted Ran(f).
If an object % ∈ X is mapped to an object f(%) ∈ Y by a mapping f , this is
denoted f : % 7→ f(%)

The term vector was first used by 18th century Astronomers investigating
planetary revolution around the sun.
A Euclidean vector is a Geometric object that has magnitude and direction.
In pure mathematics, vectors are abstract entities which may or may not
be characterised by a magnitude and direction.
Thus euclidean vectors are special kind of vectors which are elements of a
special kind of a vector space called the euclidean space. The inner product
associates each pair of elements in a vector space with a scalar.
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A metric is a distance function on vectors while a norm gives the notion of
a vector’s length. A linear space X with norm function defined on X given
X is complete is a Banach space.

The earliest Hilbert spaces were worked on in the early twentieth century
by David Hilbert. A complete normed linear space H whose norm is induced
by the inner product function is a Hilbert space.

A linear transformation on a linear space preserves the operation of addition
and scalar multiplication of vectors. This transformation may be bounded
or unbounded,invertible or not invertible, symmetric or not symmetric
among other properties. Various classes of operators are studied which
include normal, unitary, hypo-normal,quasi-normal among other classes.

In mathematics the spectrum of a linear transformation is a generalized
collection of eigenvalues of a given matrix. specifically a λ ∈ C is an
object contained in the spectrum of a bounded linear Transformation Λ
when Λ− λI does not have an inverse where I is identity operator. If the
linear space has dimension less than infinity then a transformation on this
space has a spectrum which is just given by its eigenvalues. In the case
where the dimension of the linear space is infinite we will have some other
objects in the spectrum of a linear transformation of this space added to
its eigen-values

Two Operators on a Hilbert Space such that the Operators are intertwined
by another invertible operator are similar and are equivalent to each other
in terms of eigenvalues, trace and spectrum among others.
�asi Similarity was first studied by Foias and S. Nagy(4). Two Operators
are �asi Similar when each is a quasi-a�ine transform of each other.
�asi-similar operators on a finite dimensional Hilbert spaces have equal
spectra but in case of infinite dimensional Hilbert spaces, Sz Nagy(4) has
shown that the Operators may be quasi-similar but have spectra which are
not equal. Clary(17) proved the condition under which two �asi Similar
transformaions will be having spectra being equal, i.e. if the operators are
hyponormal.

Almost similarity was first introduced by A.A.S Jibril(21). He proved various
results that relate almost similarity and other classes of operators. In 2008
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Nzimbi et al(13) results are also handy in enriching almost similarity where
he a�empts to classify those operators where quasi-similarity implies al-
most similarity.
A bounded linear operator Λ can be expressed like a complex number
ξ = % + iϑ into real and imaginary parts by decomposing it into two
unique hermitian operators Υ and Ψ such that Λ = Υ + iΨ.
Λ can also be expressed like a complex number ξ = reiθ into polar form
as Λ = UG given U is a partially isometric and G being non-negative self
adjoint operator.
If Λ = UG = Υ + iΨ then G2 = Λ∗Λ and 2Υ = Λ∗ + Λ.
Definition of almost similarity makes use of Cartesian and polar decom-
position of operators. Two operators Λ and Ξ are almost similar if Λ∗Λ =
Υ−1(Ξ∗Ξ)Υ and Λ∗ + Λ = Υ−1(Ξ∗ + Ξ)Υ where Υ is invertible operator.
We investigate the conditions under which two almost similar operators
have equal spectra, i.e. if the operators are Hermitian or projections.
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1.2 Notation and terminology

In this project, Vector spaces and vector subspaces will be denoted by

X,X1,X2,Y,Y1,Y2

Hilbert spaces will be denoted by

H,H1,H2,H3,H4

and closed subspaces by
M,M1,M2.

We will denote linear operators by

Λ,Ξ,Ψ,Υ,Γ,Ω, G, I, L, P,Q,R, S, T, U

For Λ on H and % ∈ H, then Λ of % will be denoted Λ(%) or Λ%.
Λ(H) is bounded if ‖ Λ% ‖≤ α ‖ % ‖,∀% ∈ H and α > 0
B(H) will be the class of linear transformations on H, which are linear and
bounded.
The domain, co-domain, range, image, co-image, kernel and co-kernel of Λ
will be denoted by
D(Λ),CoD(Λ),Ran(Λ), Im(Λ),CoIm(Λ),Ker(Λ),Coker(Λ) respectively.
The dense range of Λ ∈ B(H1,H2) will be denoted by Ran(Λ) = H2

The norm of Λ ∈ B(H) will be denoted by

‖Λ‖ = inf{α :‖ Λ% ‖≤ α ‖ % ‖,∀(% 6= 0) ∈ H, α > 0}

Λ∗ ∈ B(H2,H1) will denote the Hilbert ad-joint operator of Λ ∈ B(H1,H2).
The space of bounded invertible operators from H1 into H2 will be denoted
by G(H1,H2).
Λ ∈ B(H) is said to be:

• idempotent if Λ2 = Λ

• an involution if Λ2 = I

• self ad-joint or Hermitian if Λ∗ = Λ
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• a projection if Λ2 = Λ = Λ∗

• normal if Λ∗Λ = ΛΛ∗

• hypo-normal if Λ∗Λ ≥ ΛΛ∗

• co-hyponormal if Λ∗ is hyponormal

• seminormal if either hypornormal or co-hyponormal

• quasi-hypo-normal if Λ∗(Λ∗Λ− ΛΛ∗)Λ ≥ 0

• p-quasi-hyponormal if Λ∗[(Λ∗Λ)p − (ΛΛ∗)p]Λ ≥ 0

• paranormal if ‖ Λ% ‖2≤‖ Λ2% ‖‖ % ‖ ∀% ∈ H

• unitary if Λ∗Λ = ΛΛ∗ = 1

• isometry if Λ∗Λ = I

• partial isometry if ΛΛ∗Λ = Λ ie if Λ∗Λ is a projection

• co-isometry if ΛΛ∗ = I

If Λ ∈ B(H) is
Unitary ⇒ Normal⇒ Quasi− normal⇒ hypo− normal
⇒ Paranormal

The trace of Λ will be denoted

tr(Λ) =
n∑
i=1

%ii

where {%ii : i = 1, 2, ......, n} are elements in the main diagonal.
N(Λ− λI) will denote the eigen space.
ρ(Λ), σ(Λ), σΛ(Λ), σC(Λ), σR(Λ), π(Λ), τ(Λ) will denote resolvent set, spec-
trum, point spectrum, continuous spectrum, residual spectrum, approxi-
mate point spectrum and compression spectrum of an operator Λ ∈ B(H)
respectively.
Rλ(Λ) = (Λ− λI)−1 will denote the resolvent of an operator Λ ∈ B(H) at
λ
W (Λ) will be the numerical range and w(Λ) numerical radius of an opera-
tor Λ.
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Two operators Λ ∈ B(H1) and Ξ ∈ B(H2) which are:
unitary equivalent will be denoted Λ ∼= Ξ,
similar will be denoted Λ ∼ Ξ,
quasi-similar will be denoted Λ ≈ Ξ,
almost similar will be denoted Λa.s∼Ξ
Note:

unitary − equivalence⇒ similarity ⇒ quasi− similarity

and

unitary − equivalence⇒ similarity ⇒ almost− similarity

.
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1.3 Hilbert spaces

De�nition 1.3.1. : Linear space
A linear space (L.S) over a scalar �eld K is a set X of vectors together with
a rule ” + ” for adding any two elements % and ι of X to form an element
%+ ι of X (called vector addition) and another rule ”.” for multiplying any
element % of X by an element κ of K to form an element κ% of X (called
scalar multiplication). Moreover the rules must satisfy the following familiar
algebraic properties:

1. closure of vector addition.
%+ ι ∈ X,∀%, ι ∈ X

2. Addition of vectors is commutative
%+ ι = ι+ %, ∀%, ι ∈ X

3. Addition of vectors is associative.
%+ (ι+ ζ) = (%+ ι) + ζ, ∀%, ι, ζ ∈ X

4. Existence of addition identity.
∃0 ∈ X such that %+ 0 = %,∀% ∈ X

5. Existence of inverse elements of addition.
∃ − % ∈ X such that %+ (−%) = (−%) + % = 0,∀% ∈ X

6. Closure of scalar multiplication.
κ% ∈ X,∀% ∈ X,∀κ ∈ K

7. Distributivity of ”.” w.r.t scalar addition.
κ(%+ ι) = κ%+ κι,∀%, ι ∈ X,∀κ ∈ K

8. Distributivity of ”.” w.r.t scalar addition.
(κ1 + κ2)% = κ1%+ κ2%,∀% ∈ X,∀κ1, κ2 ∈ K

9. Compatibility of ”.” with �eld multiplication.
(κ1κ2)% = κ1(κ2%),∀% ∈ X,∀κ1, κ2 ∈ K

10. Existence of identity element of scalar multiplication.
∃I ∈ X such that I% = %,∀% ∈ X

De�nition 1.3.2.
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For a subset Y of X to be a subspace the following are necessary and suf-
�cient conditions.

%+ ι ∈ Y,∀%, ι ∈ Y

κ% ∈ Y,∀% ∈ Y,∀κ ∈ K

Remark 1.3.3.
Note, {0̄} and X are trivial subspaces of L.S X.

Proposition 1.3.4.
let X be L.S over a scalar �eld K and Y1,Y2 be subspaces. then Y1 + Y2 and
Y1 ∩ Y2 are linear subspace of X

Proof. 1. Let % ∈ Y1 and ι ∈ Y2, then (%+ ι ∈ Y1 + Y2)

Let %1, %2 ∈ Y1 and ι1, ι2 ∈ Y2 then (%1 + ι1), (%2 + ι2) ∈ Y1 + Y2

and

(%1 + ι1) + (%2 + ι2) = (%1 + %2) + (ι1 + ι2) ∈ Y1 + Y2

because (%1 + %2) ∈ Y1 and (ι1 + ι2) ∈ Y2 since Y1 and Y2 are linear

spaces

If κ ∈ K and %+ ι ∈ Y1 + Y2 then κ(%+ ι) = κ%+ κι
but κ% ∈ Y1 and κι ∈ Y2 ⇒ κ(%+ ι) ∈ Y1 + Y2

2. Let %, ι ∈ Y1 ∩ Y2 then %, ι ∈ Y1 and %, ι ∈ Y2

⇒ %+ ι ∈ Y1 and %+ ι ∈ Y2 ⇒ %+ ι ∈ Y1 ∩ Y2

Let % ∈ Y1 ∩ Y2 and κ ∈ K then % ∈ Y1 and % ∈ Y2

also κ% ∈ Y1 and κ% ∈ Y2 ⇒ κ% ∈ Y1 ∩ Y2

De�nition 1.3.5. : Inner product spaces (I.P.S)
A mapping 〈, 〉 : X× X→ K is an inner product function on X if ∀%, ϑ ∈ X,
and κ ∈ K, it satis�es the axioms below.

1. Positivity axiom.
〈%, %〉 ≥ 0, 〈%, %〉 = 0⇔ % = 0, % ∈ X

2. Conjugate symmetry.
〈%, ϑ〉 = 〈ϑ, %〉
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3. Homogeneity property.
〈κ%, ϑ〉 = κ〈%, ϑ〉

4. Distributive property.
〈%+ ϑ, ζ〉 = 〈%, ζ〉+ 〈ϑ, ζ〉

Remark 1.3.6.
If K = R then the conjugate symmetry reduces to symmetry thus 〈%, ϑ〉 =
〈ϑ, %〉

De�nition 1.3.7.
An (I.P.S) is a linear space endowed with I.P structure.

Examples 1.3.8.

1. The euclidean vector space X = Rn with the I.P function
〈%, ϑ〉 = %.ϑ = %1ϑ1 + %2ϑ2 + ....+ %nϑn,∀%, ϑ ∈ X
such that % = (%1, %2, ...., %n) and ϑ = (ϑ1, ϑ2, ...., ϑn)
is an IPS.

2. The spaceX = Mm,n(R) ofm×nmatrices with the inner product function
〈Λ,Ξ〉 = Σn

i=1Σ
m
j=1%jiϑji,∀Λ,Ξ ∈ X

is an IPS.

3. The space X = C[p, q] of continuous functions in the closed interval [p, q]
with the inner product function
〈f1, f2〉 =

∫ q
p f1(%)f2(%)d%, ∀f1, f2 ∈ X

is an IPS.

De�nition 1.3.9. : Normed linear spaces
A norm on X is a rule ‖, ‖: X→ R+ which meets the following requirements.

1. None negativity property
‖ % ‖≥ 0,∀% ∈ X

2. Continuity property
‖ % ‖= 0⇔ % = 0,∀% ∈ X

3. Homogeneity property
‖ κ% ‖=| κ |‖ % ‖,∀% ∈ X,∀κ ∈ K
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4. Triangular inequality
‖ %+ ϑ ‖≤‖ % ‖ + ‖ ϑ ‖,∀%, ϑ ∈ X

Remark 1.3.10.
If continuity property is relaxed i.e. ‖ % ‖= 0 for some % 6= 0 then ‖, ‖ is a
semi-norm.

De�nition 1.3.11.
The pair (X, ‖, ‖) where ‖, ‖ is a norm de�ned on X is a normed linear space
(N.L.S).

Examples 1.3.12.

1. The n-dimensional euclidean space with the euclidean norm of point
% = (%1, %2, ...., %n) ∈ Rn de�ned by ‖%‖ =

√
%2

1 + %2
2 + ....+ %2

n .

2. The linear space X = Rn with the norm of point

% = (%1, %2, ...., %n) ∈ X de�ned by ‖ % ‖=sup
1≤i≤n {| %i |}.

3. The space X of integrable functions in the interval [p, q] with ‖f‖ = (
∫ q
p |

f(t) |p dt)
1
p .

Theorem 1.3.13. :The Cauchy Bunyakosky theorem (CBS)
Let X be an I.P.S and %, ϑ ∈ X. Then

| 〈%, ϑ〉 |≤
√
〈%, %〉

√
〈ϑ, ϑ〉

Theorem 1.3.14.
Suppose 〈%, ϑ〉 is an inner product on X, then

‖%‖ =
√
〈%, %〉 is a norm.

Proof. 〈%, %〉 ≥ 0⇒
√
〈%, %〉 ≥ 0⇒‖ % ‖≥ 0,

hence the positivity property.

‖ % ‖= 0⇔
√
〈%, %〉 = 0⇔ 〈%, %〉 = 0⇔ % = 0,

the continuity property

‖ %, ϑ ‖2= 〈%+ ϑ, %+ ϑ〉 = 〈%, %+ ϑ〉+ 〈ϑ, %+ ϑ〉

= 〈%, %〉+ 〈%, ϑ〉+ 〈ϑ, %〉+ 〈ϑ, ϑ〉
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≤ 〈%, %〉+ |〈%, ϑ〉|+ |〈ϑ, %〉|+ 〈ϑ, ϑ〉

≤ ‖%‖2 + 2‖%‖‖ϑ‖+ ‖ϑ2‖ by CBS

(‖%‖+ ‖ϑ‖)2

i.e. ‖%+ ϑ‖2 ≤ (‖%‖+ ‖ϑ‖)2 ⇒ ‖%+ ϑ‖ ≤ ‖%‖+ ‖ϑ‖
Therefore the sub additivity property is satis�ed.

Consequently ‖%‖ =
√
〈%, %〉 is a norm.

Remark 1.3.15.
The norm on % de�ned by ‖%‖ =

√
〈%, %〉 is a norm.

Theorem 1.3.16.
Let X be an I.P.S and %, ϑ ∈ X. Then

‖%+ ϑ‖2 + ‖%− ϑ‖2 = 2(‖%‖2 + ‖ϑ‖2)

Theorem 1.3.17.
Let X be an I.P.S and %, ϑ ∈ X. Then

〈υ, ϑ〉 =
1

4
(‖%+ ϑ‖2 − ‖%− ϑ‖2)

if K = R

〈%, ϑ〉 =
1

4
(‖%+ ϑ‖2 − ‖%− ϑ‖2 + i‖%+ iϑ‖2 − i‖%− iϑ‖2)

if K = C

De�nition 1.3.18.
A non empty subset Y of I.P.S X is an orthogonal set if ∀%, ϑ ∈ Y and
% 6= ϑ then 〈%, ϑ〉 = 0.
An orthogonal subset Y of X is called an orthonormal set if ‖%‖ = 1 for any
% ∈ Y

Theorem 1.3.19. :Pythagorean law
Let X be an I.P.S and %, ϑ ∈ X where % is orthogonal to ϑ denoted % ⊥ ϑ i.e.
〈%, ϑ〉 = 0. Then ‖%+ ϑ‖2 = ‖%‖2 + ‖ϑ‖2
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Proof.

‖%+ϑ‖2 = 〈%+ϑ, %+ϑ〉 = 〈%, %+ϑ〉+〈ϑ, %+ϑ〉 = 〈%, %〉+〈%, ϑ〉+〈ϑ+%〉+〈ϑ, ϑ〉

〈%, %〉+ 〈ϑ, ϑ〉 = ‖%‖2 + ‖ϑ‖2

Theorem 1.3.20.
A N.L.S is a metric space with the metric

d(%, ϑ) = ‖%− ϑ‖

Proof. d(%, ϑ) = ‖%− ϑ‖ ≥ 0
d(%, ϑ) = 0⇔‖ %− ϑ ‖= 0⇔ %− ϑ = 0⇔ % = ϑ

d(%, ϑ) = ‖%, ϑ‖ = ‖(−1)(ϑ− %)‖ = | − 1|‖ϑ− %‖ = ‖ϑ− %‖ = d(ϑ, %)
d(%, ι) = ‖%− ι‖ = ‖(%− ϑ) + (ϑ− ι)‖ ≤‖ %− ϑ ‖ + ‖ ϑ− ι ‖

= d(%, ϑ) + d(ϑ, ι)

De�nition 1.3.21. :Cauchy sequence A sequence {an} in X is Cauchy if
given a positive ε we can �nd N ∈ J+ satisfying

‖%m − %n‖ < ε,∀m,n > N

i.e d(%m, %n)→ 0 asm,n→∞

De�nition 1.3.22.
A N.L.S X is complete ( a Banach space) if every Cauchy sequence in X also
converges to a �nite limit in X.

De�nition 1.3.23.
A Banach Space H is a Hilbert space if the norm on elements in H is induced
by the I.P function.

Examples 1.3.24.
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1. Euclidean space R3 equipped with inner product function de�ned by

〈%, ϑ〉 = (%1, %2, %3).(ϑ1, ϑ2, ϑ3) = ϑ1ϑ1 + %2ϑ2 + %3ϑ3

is a Hilbert space.

2. The Lebesgue space (X,M.µ) of functions with inner product of functions
f1, f2 ∈ (X,M, µ) de�ned as

〈f1, f2〉 =

∫
×
f1(s)f2(s)dµ(s)

is a Hilbert space.

3. For s a non-negative integer and Ω ⊂ Rn, the sobolev space Hs(Ω) which
contains L2 functions whose weak derivatives of order upto s are also L2,
equiped with the inner product function de�ned by

〈f1, f2〉 =

∫
Ω

f1(%)f2(%)d%+

∫
Ω

Df1(%)Df2(%)d%+....+

∫
Ω

Dsf1(%)Dsf2(%)d%

(with D as a set which is open ) is a Hilbert space.
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2 LINEAR OPERATORS AND THEIR SPECTRAL
PROPERTIES

2.1 Some properties of linear operators

De�nition 2.1.1.
A mapping Λ : H1 → H2 such that,

Λ(%+ ϑ) = Λ%+ Λϑ,∀%, ϑ ∈ H1

Λ(κ%) = κΛ%,∀% ∈ H1,∀κ ∈ K

is called a linear operator.

De�nition 2.1.2.
A mapping F : H→ K de�ned by F (κ1%+ κ2ϑ) = κ1F%+ κ2Fϑ

∀%, ϑ ∈ H and κ1, ϑ, κ1F%, κ2Fϑ ∈ K is called a linear functional.

De�nition 2.1.3.
The kernel of an operator Λ : H1 → H2 is given by

Ker(Λ) = {% ∈ H1 : Λ(%) = 0}

The image of Λ is given by

Im(Λ) = {Λ% ∈ H2 : % ∈ H1}

Theorem 2.1.4.
The kernel of P : H1 → H2 is a subspace of H1

Proof. Let %, ϑ ∈ Ker(Λ) ⊆ H1 and κ ∈ K Then

Λ(%+ ϑ) = Λ(%) + Λ(ϑ) = 0 + 0 = 0⇒ %+ ϑ ∈ Ker(Λ)

Λ(κ%) = κΛ(%) = κ.0 = 0⇒ κ% ∈ Ker(Λ)

Λ(0) = 0⇒ 0 ∈ Ker(Λ)

Hence Ker(Λ) is a subspace of H1
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Theorem 2.1.5.
Let P : H1 → H2 then Im(P ) is a linear subspace of H2.

Proof. Let ϑ1, ϑ2 ∈ Im(Λ) where

ϑ1 = Λ%1, ϑ2 = Λ%2 for %1, %2 ∈ H1.

Then

%1 + %2 ∈ H1 ⇒ Λ(%1 + %2) = Λ%1 + Λ%2 = ϑ1 + ϑ2

⇒ ϑ1 + ϑ2 ∈ Im(P )

κ% ∈ H1 ⇒ Λ(κ%) = κΛ(%) = Λϑ ∈ Im(Λ)

0 ∈ H1 ⇒ Λ(0) = 0⇒ 0 ∈ Im(Λ)

Hence Im(Λ) is a subspace of H2.

De�nition 2.1.6.
The co-kernel of Λ : H1 → H2 is given by

Coker(Λ) = H2/Im(Λ)

The co-image of Λ is given by

Coim(Λ) = H1/Ker(Λ)

Remark 2.1.7.
The following are the basic properties of mappings from H1 into H2

1. The sum of Λ and Ξ is given by

(Λ + Ξ)% = Λ%+ Ξ%,∀% ∈ H1

2. The product of Λ and Ξ is given by

(ΛΞ)% ≡ Λ(Ξ%),∀% ∈ H1

3. Λ and Ξ are equal if Λ% = Ξ%,∀% ∈ H1
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4. The identity operator I is de�ned by I% = %,∀% ∈ H1

5. The associative law holds for operators Λ,Ξ and Υ i.e. Λ(ΞΥ) = (ΛΞ)Υ

6. The commutative law does not generally hold for operators Λ and Ξ i.e.
ΛΞ 6= ΞΛ. If Λ and Ξ commute, then ΛΞ = ΞΛ and [Λ,Ξ] = 0

7. The nth power of an operator Λ denoted Λn is n successive applications of
the operator. e.g. Λ2% = ΛΛ%

8. The exponential of an operator Λ denoted eΛ is de�ned via power series

eΛ = I + Λ +
Λ2

2!
+

Λ3

3!
+ ........

De�nition 2.1.8.
Λ : H1 → H2 is a bounded if we can have κ > 0 satisfying

‖Λ%‖H2
≤ κ‖%‖H1

,∀% ∈ H1

De�nition 2.1.9.
Λ : H1 → H2 is continuous if for every ε > 0,∃δ > 0 where

‖%− ϑ‖ < δ ⇒ ‖Λ%− Λϑ‖ < ε,∀%, ϑ ∈ H1

Theorem 2.1.10.
If Λ : H1 → H2 is bounded ,then Λ is continuous.

Proof. Let Λ be bounded and %, ϑ ∈ H1 with % 6= ϑ.

Then ‖Λ%− Λϑ‖ = ‖Λ(%− ϑ)‖ < κ‖(%− ϑ)‖ < ε
If κ = 0 the relation holds for all δ > 0
If κ > 0, let ‖%− ϑ‖ < δ then δ = ε

κ > 0
Then Λ is continuous.

Remark 2.1.11.
if Λ : H1 → H2 is continuous, then Λ is continuous at 0 ∈ H1, or at some
point a0 ∈ H1 and therefore continuous everywhere in H1.

Theorem 2.1.12.
An operator Λ : H1 → H2 is bounded i� Λ maps bounded sets into bounded
sets.
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Proof. Suppose Λ is a bounded. Then ∃α > 0 satisfying

‖Λ%‖ ≤ α‖%‖,∀% ∈ H1

. Let M ⊂ H1 where M is a bounded set.

Then ‖%‖ ≤ k,∀% ∈M and some constant k.

to have ‖Λ%‖ ≤ α‖%‖ ≤ αk,∀% ∈M⇒ Λ(M) is a bounded set.

Conversely suppose Λ maps bounded sets onto bounded sets and consider

% 6= 0.

Then ‖ %
‖%‖ ‖= 1

Let ϑ = %
‖%‖ . Then all ϑ are bounded for all %

so ‖ Λ(ϑ) ‖≤ α for some constantα i.e. ‖ Λ( %
‖%‖) ‖≤ α i.e. ‖ Λ% ‖≤ α ‖ % ‖

Thus Λ is a bounded.

De�nition 2.1.13.
We de�ne the norm of Λ : H1 → H2 as

‖Λ‖ = inf{κ : ‖Λ%‖ ≤ κ‖%‖,∀% ∈ H1}

Remark 2.1.14.
If ‖Λ‖ ≤ 1 then Λ is a contraction.

Proposition 2.1.15.
If Λ and Ξ are bounded linear operators from H1 into H2 over the same scalar
�eld K then:

1. Λ + Ξ is a bounded linear operator

2. κ is a bounded linear operator ,∀κ ∈ K

3. ΛΞ and ΞΛ are bounded linear operators.

Proof. 1. Let %, ϑ ∈ H1, λ, µ ∈ K and α, β > 0.

(Λ + Ξ)(λ%+ µϑ) = Λ(λ%+ µϑ) + Ξ(λ%+ µϑ)

= λΛ%+ µΛϑ+ λΞ%+ µΞϑ = λ(Λ + Ξ)%+ µ(Λ + Ξ)ϑ

⇒ Λ + Ξ is linear

Using triangular inequality ‖(Λ + Ξ)%‖ = ‖Λ%+ Ξ%‖
≤ ‖Λ%‖+ ‖Ξ%‖ ≤ α‖%‖+ β‖%‖ = (α + β)‖%‖
but (α + β) > 0⇒ Λ + Ξ is linear and bounded.
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2. Let %, ϑ ∈ H1 and λ, µ, α, κ ∈ K

(κΛ)(λ%+ µϑ) = κ(Λλ%+ Λµϑ) = λΛ%+ κµΛϑ

⇒ κΛ is linear.

Now ‖(κΛ)%‖ = ‖κ(Λ%)‖ = |%|‖Λ%‖ ≤ |κ|α‖%‖
but (|κ|α) > 0 ∈ K⇒ κΛ is linear and bounded.

3. ΛΞ(λ%+ µϑ) = Λ[Ξ(λ%+ µϑ)] = Λ[λΞ%+ µΞϑ] = λ(ΛΞ)%+ µ(ΛΞ)ϑ
⇒ ΛΞ is linear.

Now using continuity of Λ and Ξ we have

‖(ΛΞ)%‖ = ‖Λ(Ξ%)‖ ≤ α‖Ξ%‖ ≤ αβ‖%‖

but αβ > 0 ∈ K⇒ ΛΞ is a linear and bounded.

Remark 2.1.16.
By the results of the proposition 2.1.15, we have shown that the set of bounded
linear operators from H1 into H2 is a linear space.

Proposition 2.1.17.
The space B(H1,H2) of all bounded linear operators from H1 into H2 is a
N.L.S.

Proof. Let Λ,Ξ ∈ B(H1,H2), % ∈ H1, ϑ ∈ H2, κ ∈ K then the norm of

Λ is de�ned by

‖Λ‖ = inf{κ : ‖Λ%‖ ≤ κ‖%‖} = sup{‖Λ%‖
‖%‖
} = sup{‖Λ%‖ : ‖%‖ ≤ 1}

1. To prove the non-negativity axiom

‖Λ‖ ≥ 0 from the de�nition of the norm of Λ
Now let D = {% ∈ H1 : ‖%‖ ≤ 1} and let ϑ = %

‖%‖ then ϑ ∈ D
but

‖Λ‖ = 0⇔ Λ% = 0⇔ Λϑ = 0⇔ Λ( %
‖%‖) = 0⇔ Λ = 0

i.e. ‖Λ‖ = 0 i� Λ = 0
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2. To prove the homogeneity property

‖κΛ‖ = sup{‖κΛ%‖ : ‖%‖ = 1} = sup{|κ|‖Λ%‖ : ‖%‖ = 1}

= |κ|sup{‖Λ%‖ : ‖%‖ = 1} = |κ|‖Λ‖

3. To prove the triangular in equality

‖(Λ + Ξ)%‖ = ‖Λ%+ Ξ%‖ ≤ ‖Λ%‖+ ‖Ξ%‖

taking supremum on right hand side for ‖%‖ = 1 we have

‖(Λ + Ξ)%‖ ≤ sup‖Λ%‖+ sup‖Ξ%‖ ≤ ‖Λ‖+ ‖Ξ‖

Taking supremum on left hand side for ‖%‖ = 1 we have

‖Λ + Ξ‖ ≤ ‖Λ‖+ ‖Ξ‖

Theorem 2.1.18.
The space B(H1,H2) is a banach space.

Proof. We have already shown in propositions 2.1.17 that the setB(H1,H2)
is N.L.S. It now remains to show that it‘s complete.

Let Λn be a Cauchy in B(H1,H2), then for ε > 0, ∃N ∈ j+
satisfying

(‖Λn − Λm)%‖ ≤ ε, ∀m,n > N

So ‖(Λn + Λm)%‖ ≤ ‖Λn + Λm‖‖%‖ ≤ ε‖%‖
hence {Λn(%)} is a Cauchy sequence in H2.

but H2 is a banach space, so every sequence {Λn} in H2 also converges in

H2.

so from ‖Λn(%)− Λm(%)‖ ≤ ε‖%‖ we let m→∞ to obtain

‖Λn(%)− Λ%‖ ≤ ε‖%‖ ⇒ ‖(Λn − Λ)%‖ ≤ ε‖%‖ ⇒ (Λn − Λ) ∈ B(H1,H2)

such that Λ = Λn − (Λn − Λ) ∈ B(H1,H2)
Now the norm of (Λn − Λ) is given by

‖Λn − Λ‖ = sup{‖Λn(%)− Λ(%)‖}
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≤ sup{‖Λn − Λ‖‖%‖ : ‖%‖ = 1} ≤ ε
i.e. ‖Λn − Λ‖ ≤ ε and therefore Λn converges uniformly to Λ
So B(H1,H2) is complete.

De�nition 2.1.19.
Let Λ ∈ B(H1,H2) then Λ is invertible if we have Λ−1 : H2 → H1 to have
Λ−1Λ(%) = I% = %,∀Λ(%) ∈ H2

Remark 2.1.20.
Note that Λ is invertible if it is injective i.e. (1-1) and surjective i.e. onto. If Λ
is injective the Ker(Λ) = 0 and if Λ is surjective then Im(Λ) = H2

Theorem 2.1.21.
Let Λ ∈ B(H1,H2) then Λ−1 exists and Λ−1 ∈ B(H2,H1) i� we have α > 0
and ‖Λ%‖ ≥ α‖%‖ i.e. Λ is bounded below.

Proof. suppose Λ is bounded below to have ‖Λ%‖ ≥ α‖%‖ and %1, %2 ∈
Ker(Λ).

Then ‖Λ(%1 − %2)‖ ≥ α‖%1 − %2‖
but Λ(%1 − %2) = Λ%1 + Λ%2 = 0 + 0 = 0
i.e.

‖0‖ ≥ α‖%1 − %2‖ ⇒ 0 ≥ α‖%1 − %2‖ ⇒ ‖%1 − %2‖ = 0⇒ %1 − %2 = 0
i.e. Λ(0) = 0⇒ Ker(Λ) = 0⇒ Λ is injective.

Now Λ is injective and Λ−1
exist.

Let ϑ ∈ Λ(H1) so that ϑ = Λ(%) for % ∈ H1. then Λ−1(ϑ) = Λ−1Λ(%) = %

So

‖Λ%‖ ≥ α‖%‖ ⇒ ‖Λ(Λ−1ϑ)‖ ≥ α‖Λ−1ϑ‖

i.e.

‖ϑ‖ ≥ α‖Λ−1ϑ‖ ⇒ ‖Λ−1ϑ‖ ≤ 1

α
‖ϑ‖.

Hence Λ−1
is a bounded.

Conversely, suppose P−1
exists and is bounded.

Then ∃ α > 0 satisfying

‖Λ−1ϑ‖ ≤ α‖ϑ‖

Let ϑ = Λ(%) for some % ∈ H1

Then
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‖Λ−1(Λ%)‖ ≤ α‖Λ%‖ ⇒ ‖%‖ ≤ α‖Λ%‖ ⇒ ‖Λ%‖ ≥ 1
α‖%‖

Hence Λ is bounded below.

Remark 2.1.22.
In mathematics each bounded linear operator on a complex Hilbert space has
a corresponding ad− joint operator also called Hermitian ad-joint named
after Charles Hermite.

De�nition 2.1.23.
If to every operator Λ ∈ B(H1,H2) we associate another unique operator
Λ∗ ∈ B(H2,H1) to satisfy

〈Λ%, ϑ〉 = 〈%,Λ∗ϑ〉,∀% ∈ H1,∀ϑ ∈ H2

. Then Λ∗ is called an Hermitian ad-joint of Λ

Remark 2.1.24.
Note that the ad-joint of Λ∗ denoted (Λ∗)∗ = Λ
i.e. for each Λ∗ : H2 → H1 we associate by a unique operator

Λ∗∗ : H1 → H2 satisfying 〈Λ∗ϑ, %〉 = 〈ϑ,Λ∗∗%〉 = 〈ϑ,Λ%〉

Remark 2.1.25.
If an operator Λ is a square matrix [λij], then its ad-joint operator Λ∗is the
conjugate transpose of [λij].

Proposition 2.1.26.
Let Λ,Ξ ∈ B(H1,H2). Then

1. (Λ + Ξ)∗ = Λ∗ + Ξ∗

2. (λΛ)∗ = λ̄Λ∗

3. (ΛΞ)∗ = Ξ∗Λ∗

4. (Λ∗)−1 = (Λ−1)∗

Proof. 1. For all %, ϑ ∈ H1. Then

〈(Λ + Ξ)%, ϑ〉 = 〈%, (Λ + Ξ)∗ϑ〉..........(i)
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but 〈(Λ + Ξ)%, ϑ〉 = 〈Λ%+ Ξ%, ϑ〉 = 〈Λ%, ϑ〉+ 〈Ξ%, ϑ〉

= 〈%,Λ∗ϑ〉+ 〈%,Ξ∗ϑ〉 = 〈%,Λ∗ϑ+ Ξ∗ϑ〉 = 〈%, (Λ∗ + Ξ∗)ϑ〉

i.e. 〈(Λ + Ξ)%, ϑ〉 = 〈%, (Λ∗ + Ξ∗)ϑ〉..........(ii)
The results (i) and (ii) imply that

〈%, (Λ + Ξ)∗ϑ〉 = 〈%, (Λ∗ + Ξ∗)ϑ〉 ⇒ (Λ + Ξ)∗ = Λ∗ + Ξ∗

2. let %, ϑ ∈ H1 and λ ∈ K. Then

〈(λΛ)%, ϑ〉 = 〈%, (λΛ)∗ϑ〉............(iii)

but 〈(λΛ)%, ϑ〉 = λ〈Λ%, ϑ〉 = λ〈%,Λ∗ϑ〉 = 〈%, λ̄Λ∗ϑ〉.....(iv)
From (iii) and (iv),

〈%, (λΛ)∗ϑ〉 = 〈%, λ̄Λ∗ϑ〉 ⇒ (λΛ)∗ = λ̄Λ∗

3. 〈(ΛΞ)%, ϑ〉 = 〈%, (ΛΞ)∗ϑ〉................(v)
but 〈ΛΞ%, ϑ〉 = 〈Ξ%,Λ∗ϑ〉 = 〈%,Ξ∗Λ∗ϑ〉...............(vi)
From (v) and (vi),

〈%, (ΛΞ)∗ϑ〉 = 〈%,Ξ∗Λ∗ϑ〉 ⇒ (ΛΞ)∗ = Ξ∗Λ∗

4. Note

〈%, ϑ〉 = 〈I%, ϑ〉 = 〈%, I∗ϑ〉 ⇒ Iϑ = ϑ = I∗ϑ⇒ I = I∗

Λ is invertible⇒ Λ−1 ∈ B(H2,H1)

and Λ−1Λ = I = I∗ = ΛΛ−1

⇒ (Λ−1Λ)∗ = I∗ = I = (ΛΛ−1)∗ ⇒ Λ∗(Λ−1)∗ = I = (Λ−1)∗Λ∗

i.e. (Λ−1)∗ is the inverse of Λ∗ ⇒ (Λ∗)−1 = (Λ−1)∗

De�nition 2.1.27.
Λ ∈ B(H) is self ad− joint (also hermitian) if Λ∗ = Λ i.e. if

〈Λ%, ϑ〉 = 〈%,Λϑ〉,∀%, ϑ ∈ H
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Theorem 2.1.28.
Let Λ,Ξ ∈ B(H) be self ad-joint. Then ΛΞ is self ad-joint i� Λ↔ Ξ i.e. if Λ
commutes with Ξ

Proof. Let Λ↔ Ξ, then ΛΞ = ΞΛ
thus (ΛΞ)∗ = Ξ∗Λ∗ = ΞΛ = ΛΞ⇒ ΛΞ is self ad-joint.

conversely let ΛΞ be self ad-joint, then (ΛΞ)∗ = ΛΞ
thus ΞΛ = Ξ∗Λ∗ = (ΛΞ)∗ = ΛΞ⇒ Λ↔ Ξ

Theorem 2.1.29.
Let Λ ∈ B(H) be self ad-joint. Then the real polynomial Φ(Λ) = α0I+α1Λ+
α2Λ

2 + .......+ αnΛ
n is also self ad-joint.

Proof. Since Λ commutes with itself we have ΛΛ = Λ2
is self ad-joint.

Also Λ2 ↔ Λ⇒ Λ3
is self ad-joint thus inductively we have

Λn = Λn−1Λ is self ad-joint for all n ∈ J+

If αi ∈ R the for λ = αi we have (λΛ)∗ = λΛ∗ = λΛ⇒ λΛ is self ad-joint

Therefore every term of the polynomial Φ(Λ) is self ad-joint and their �nite

sum is also self ad-joint.

De�nition 2.1.30.
Λ ∈ B(H) is idempotent if

Λ2(%) = Λ(%),∀% ∈ H
De�nition 2.1.31.
Λ : H→M is a projection if Λ is i.eΛ2 = Λ = Λ∗

Remark 2.1.32.
If Λ ∈ B(H) is a projection then ‖Λ‖ ≤ 1 i.e. Λ is a contraction.

De�nition 2.1.33.
Let Λ ∈ B(H1,H2) then Λ is an isometry if ‖Λ%‖ = ‖%‖,∀% ∈ H1

Remark 2.1.34.
Clearly an isometry is injective.

Proposition 2.1.35.
If Λ ∈ B(H) is an isometry then Λ∗Λ = I
Note ‖Λ%‖ = ‖%‖ ⇒ ‖Λ%‖2 = ‖%‖2 ⇒ 〈Λ%,Λ%〉 = 〈%, %〉

⇒ 〈%,Λ∗Λ%〉 = 〈%, I%〉 ⇒ Λ∗Λ = I
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De�nition 2.1.36.
Let Λ ∈ B(H1,H2) then Λ is an isomorphism if Λ is surjective and

〈Λ%,Λϑ〉 = 〈%, ϑ〉,∀%, ϑ ∈ H1

Remark 2.1.37.
Clearly an isometry is an isomorphism, since

‖Λ%‖2 = 〈Λ%,Λ%〉 = 〈%, %〉 = ‖%‖2 ⇒ ‖Λ%‖ = ‖%‖



25

2.2 Invariant subspaces

De�nition 2.2.1.
A closed subspaceM of H is invariant under transformation Υ ∈ B(H) if

Υ% ∈M,∀% ∈M

i.e. ΥM ⊆M where ΥM = {Υ% : % ∈M}

Remark 2.2.2.
If M ⊆ H is Υ− invariant we can restrict Υ to M to arrive at a new linear
transformation

Υ/M : M→M

Proposition 2.2.3.
The subspaces {0} and H of H are invariant subspaces under any linear
operator Υ : H→ H

Proof. Υ(0) = 0⇒ Υ{0} ⊆ {0} thus {0} is Υ− invariant
Υ(%) ∈ H,∀% ∈ H and so Υ(H) ⊆ H thus H is Υ− invariant

Remark 2.2.4.
The subspaces {0} and H of H under linear operator Υ are called trivial
Υ− invariant subspaces.
If H has no non-trivial Υ− invariant subspaces then Υ is simple.

Proposition 2.2.5.
Both kernel and the image of Υ on H are Υ− invariant subspaces.

Proof. If % ∈ Ker(Υ) then Υ% = 0 thus Υ(Υ%) = Υ(0) = 0 and so

Υ% ∈ Ker(Υ)
i.e. Υ(Ker(Υ)) ⊆ Ker(Υ)⇒ Ker(Υ) is Υ− invariant
If ϑ ∈ Im(Υ) then ϑ ∈ Υ(%) for % ∈ H and then Υ(%) = Υ(Υ%) ∈ Im(Υ)
i.e. Υ[Im(Υ)] ⊆ Im(Υ)⇒ Im(Υ) is Υ− invariant.

Proposition 2.2.6.
LetM1 andM2 be Υ− invariant subspaces in Hilbert space H.
Then M1 + M2 and M1 ∩M2 are Υ− invariant subspaces in H
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Proof. ClearlyM1+M2 andM1∩M2 are subspaces ofH. Now let % ∈M1

and ϑ ∈M2, then %+ϑ ∈M1 +M2 and Υ(%+ϑ) = Υ%+ Υϑ ∈M1 +M2

since Υ% ∈M1 and Υϑ ∈M2 thus implying Υ(%+ ϑ) ⊆M1 + M2

hence M1 + M2 is Υ− invariant
Now let % ∈M1 ∩M2, then % ∈M2 and % ∈M2

Also Υ% ∈M1 and Υ% ∈M2 ⇒ Υ% ∈M1∩M2 ⇒ Υ(M1∩M2) ⊆M1∩M2

and hence M1 ∩M2 is Υ− invariant

Remark 2.2.7.
Lat(Υ) deenotes the lattice of all Υ− invariant subspaces of H. Thus

Lat(Υ) = {M ⊆ H : ΥM ⊆M}

De�nition 2.2.8.
M ⊆ H reduces Υ ∈ B(H) if M is Υ− invariant and Υ∗ − invariant i.e.
if Υ(M) ⊆M and Υ∗(M) ⊆M

Remark 2.2.9.
Red(Υ) denotes the lattice of all Υ− reducing subspaces of H. Thus

Red(Υ) = {M ⊆ H : ΥM ⊆M,Υ∗M ⊆M}

Remark 2.2.10.
Recall,two operators Υ,Ψ ∈ B(H) are said to commute if
ΥΨ = ΨΥ i.e. if the commutator ofΥ andΨ denoted [Υ,Ψ] = ΥΨ−ΨΥ = 0
{R}′ denotes the set of Ψ ∈ B(H) such that ΥΨ = ΨΥ

De�nition 2.2.11.
M ⊆ H is Υ− hyperinvariant ifM is Ψ− invariant for all Ψ ∈ {Υ}′ i.e.
if Ψ(M) ⊆M for ΨΥ = ΥΨ

Remark 2.2.12.
Hyperlat(Υ) denotes Hyper − invariant subspaces under transformation
Υ

Remark 2.2.13.
Note that Red(Υ) ⊆ Lat(Υ) since every Υ − reducing subspace is Υ −
invariant
AlsoHyperlat(Υ) ⊆ Lat(Υ) becauseΥ ∈ {Υ}′ since [Υ,Υ] = ΥΥ−ΥΥ =
0
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2.3 Some classes of linear operators

De�nition 2.3.1. : Positive operators
Λ ∈ B(H) is positive if Λ∗ = Λ and
〈Λ%, %〉 ≥ 0,∀% ∈ H

Proposition 2.3.2.
If Λ ∈ B(H) is self ad-joint, then Λ2 is positive.

Proof. 〈Λ2%, %〉 = 〈Λ%,Λ∗%〉 = 〈Λ%,Λ%〉 = ‖Λ%‖2 ≥ 0,∀% ∈ H
hence Λ2

is positive.

Corollary 2.3.3.
Any projection Λ is a positive operator since Λ = Λ∗ and Λ2 = Λ
So

〈Λ%, %〉 = 〈Λ2%, %〉 = 〈Λ%,Λ∗%〉 = 〈Λ%,Λ%〉 = ‖Λ%‖2 ≥ 0,∀% ∈ H

Theorem 2.3.4. :Remainder theorem
If Λ ∈ B(H) = Υ∗Υ (i.e. the composite of Υ∗,Υ ∈ B(H)), then Λ is positive.

Proof. Λ∗ = (Υ∗Υ)∗ = Υ∗Υ∗∗ = Υ∗Υ = Λ⇒ Λ is self ad-joint.

Also

〈Λ%, %〉 = 〈Υ∗Υ%, %〉 = 〈Υ%,Υ%〉 = ‖Υ%‖2 ≥ 0,∀% ∈ H
Hence Λ is positive

De�nition 2.3.5.
Λ ∈ B(H) is normal if
Λ∗Λ = ΛΛ∗ i.e. if [Λ∗,Λ] = 0

Theorem 2.3.6.
Λ ∈ B(H) is normal i�

‖Λ%‖ = ‖Λ∗%‖,∀% ∈ H

Proof. Let Λ be normal and % ∈ H, then

‖Λ%‖2 = 〈Λ%,Λ%〉 = 〈Λ∗Λ%, %〉

‖Λ∗%‖2 = 〈Λ∗%,Λ∗%〉 = 〈ΛΛ∗%, %〉
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but Λ is normal⇒ Λ∗Λ = ΛΛ∗ ⇒ 〈Λ∗Λ%, %〉 = 〈ΛΛ∗%, %〉

⇒ ‖Λ%‖2 = ‖Λ∗‖2 ⇒ ‖Λ%‖ = ‖Λ∗%‖

Conversely let ‖Λ%‖ = ‖Λ∗%‖, then

‖Λ%‖2 = ‖Λ∗%‖2 ⇒ 〈Λ%,Λ%〉 = 〈Λ∗%,Λ∗%〉 ⇒ 〈Λ∗Λ%, %〉 = 〈ΛΛ∗%, %〉 ⇒
Λ∗Λ = ΛΛ∗ ⇒ Λ is normal.

De�nition 2.3.7. : Quasi− normal operators
Λ ∈ B(H) is quasinormal if

Λ(Λ∗Λ) = (ΛΛ∗)Λ

Remark 2.3.8.
Every normal operator is quasi-normal.
Note , if Λ is normal then Λ∗Λ = ΛΛ∗ ⇒ Λ(Λ∗Λ) = Λ(ΛΛ∗)⇒ Λ(Λ∗Λ) =
(ΛΛ∗)Λ⇒ Λ is quasi normal

Remark 2.3.9.
Every isometry is quasi-normal but not every isometry is normal
Note, if Λ is an isometry then Λ∗Λ = I ⇒ Λ(Λ∗Λ)(Λ∗Λ) = ΛI(Λ∗Λ) ⇒
ΛΛ∗Λ = ΛΛ∗Λ⇒ Λ is quasi-normal
But Λ is an isometry implies that Λ is normal i� Λ commutes with Λ∗ and so
not true in general

De�nition 2.3.10.
Λ ∈ B(H) is bi− normal if
(Λ∗Λ)ΛΛ∗ = (ΛΛ∗)Λ∗Λ i.e. if Λ∗Λ commutes with ΛΛ∗

De�nition 2.3.11.
Λ ∈ B(H) is hypo-normal if Λ∗Λ ≥ ΛΛ∗

Λ is p− hypornormal if (Λ∗Λ)p ≥ (ΛΛ∗)p thus Λ is hyponormal if p = 1

Remark 2.3.12.
Clearly if Λ is hypo-normal operator then Λ∗Λ− ΛΛ∗ ≥ 0⇒ Λ∗Λ− ΛΛ∗ is
a positive.

De�nition 2.3.13.
Λ ∈ B(H) is semi-normal if either Λ or Λ∗ is hypo-normal
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De�nition 2.3.14.
U ∈ B(H) is a unitary if U ∗U = UU ∗ = I

Remark 2.3.15.
The weaker condition U ∗U = I de�nes an isometry while the other condition
UU ∗ = I de�nes co-isometry.
So a unitary operator is a bounded linear operator which is both an isometry
and co-isometry.

De�nition 2.3.16.
Λ ∈ B(H) is paranormal if ‖Λ2‖ ≥ ‖Λ‖2

Remark 2.3.17.
Note, if Λ is
unitary ⇒ normal⇒ quasi−normal⇒ subnormal⇒ hyponormal⇒
semi− normal⇒ paranormal

De�nition 2.3.18.
Λ ∈ B(H) is a normaloid if ‖Λ‖ = sup{|〈Λ%, %〉| : ‖%‖ = 1}
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2.4 Spectra of linear operators

De�nition 2.4.1.
An eigenvector is a non zero vector % ∈ H that changes by only a scalar
factor λ when a linear transformation Λ ∈ B(H) is applied to it, i.e.Λ% = λ%

De�nition 2.4.2.
Let Λ ∈ B(H), a value λ ∈ C is an eigen − value if ∃ a non-zero vector
% ∈ H satisfying Λ% = λ%.

Remark 2.4.3.
The pair %, λ where % is an eigenvector and λ is its associated eigenvalue is
called an eigen pair.

De�nition 2.4.4.
Let Λ ∈ B(H). The equation Λ% = λ% where % is an eigenvector and λ is its
associated eigenvalue is called the eigen− equation.

.

Remark 2.4.5.
If H is a continuous function space, then Λ can be a di�erential operator like
d/da while f is an eigen function which is scaled by d/da.
hence (d/da)f = λf is the eigen equation.

Proposition 2.4.6.
The eigen equation Λ% = λ% where Λ is an n × n matrix and % is an n-
dimensional column vector can be re-written as

Λ% = λ%⇔ Λ%− λ% = 0⇔ (Λ− λ)% = 0

Let I be an n× n identity matrix, then

(Λ− λI)% = 0....................(i)

Equation (i) has non-zero solutions i� determinant of (Λ − λI) is equal to
zero, i.e.

| Λ− λI |= 0...................(ii)

Equation (ii) is the characteristic equationwhose left side is the characteristic
polynomial.
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Remark 2.4.7.
The characteristic polynomial | Λ− λI | is of degree n such that the equation
(ii) has n roots, (i.e.λ1, λ2, λ3, ........, λn) which are the eigenvalues of the
operator Λ

De�nition 2.4.8.
Let Λ ∈ B(H), then the union of the zero vector and all the eigenvectors
associated with an eigenvalue λ such that Λ% = λ% is a linear subspace of H
called the eigen− space associated with λ.

Remark 2.4.9.
We can �nd out all the vectors associated with an eigenvalue λ by solving the
equation

(Λ− λI)% = 0

Lemma 2.4.10.
The eigen-values of a bounded self ad-joint operator are real and the eigen-
vectors associated with di�erent eigenvalues are orthogonal.

Proof. If Λ : H→ H is self ad-joint and Λ% = λ% with % 6= 0
then λ〈%, %〉 = 〈λ%, %〉 = 〈Λ%, %〉 = 〈%,Λ%〉 = 〈%, λ%〉 = λ̄〈%, %〉 ⇔ λ = λ̄

⇒ λ is real.

Let λ and µ be real eigenvalues such that Λ% = λ% and Λϑ = µϑ

Then

λ〈%, ϑ〉 = 〈λ%, ϑ〉 = 〈Λ%, ϑ〉 = 〈%,Λϑ〉 = 〈%, µϑ〉 = µ〈%, ϑ〉.
i.e. λ〈%, ϑ〉 = µ〈%, ϑ〉 ⇒ (λ− µ)〈%, ϑ〉 = 0
since λ 6= µ then we have 〈%, ϑ〉 = 0⇒ %⊥ϑ

De�nition 2.4.11.
Resolvent set, ρ(Λ) of Λ ∈ B(H) is the set of complex numbers λ satisfying:
(i)Λ− λI is injective thus (Λ− λI)−1 exists.
(ii)Both Λ− λI and (Λ− λI)−1 are in B(H).
(iii)Ran(Λ− λI) = H.

Remark 2.4.12.
Note that if λ ∈ ρ(Λ) then λ is a regular value of Λ

i.e. ρ(Λ) = {λ ∈ C : λ is a regular value }
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De�nition 2.4.13.
The spectrum of Λ ∈ B(H) is σ(Λ) = {λ ∈ C : λ ∈ [ρ(Λ)]C} ie σ(Λ) =
C/ρ(Λ)

Remark 2.4.14.
If λ does not meet any of the three conditions of the resolvent set of an operator
Λ then λ ∈ σ(Λ).
Thus depending on the condition which is not met we can decompose the
spectrum of an operator Λ in to:

1. The point spectrum of Λ

σP (Λ) = {λ ∈ C : (Λ− λI)−1 does not exist }.

2. Continuous spectrum of Λ

σC(Λ) = {λ ∈ C : Ran(Λ− λI) = H and (Λ − λI)−1 exists but not
bounded}

3. Residual spectrum of Λ

σR(Λ) = {λ ∈ C : (Λ− λI)−1 exists but Ran(Λ− λI) 6= H}

Theorem 2.4.15.
λ ∈ C is an element of σP (Λ) i� the eigen equation Λ% = λ% has a non-zero
solution of % ∈ H.

Proof. Let λ ∈ σP (Λ) then (Λ− λI)−1
does not exist.

i.e. Λ − λI is not 1 − 1 so a singular matrix⇒ (Λ − λI)% = 0 for some

% 6= 0
⇒ Λ%− λI% = 0⇒ Λ%− λ% = 0⇒ Λ% = λ%
Therefore Λ% = λ% has a non-zero solution of %.

Conversely let Λ% = λ% for some % 6= 0
Then (Λ − λ)% = 0 ⇒ (Λ − λI)% = 0 for some % 6= 0 ⇒ Λ − λI is not

1− 1
therefore (Λ− λI)−1

does not exist i.e.λ ∈ σP (Λ)

Remark 2.4.16.
In the above prove such a λ is called an eigen value of Λ and a vector % 6= 0
satisfying the eigen equation Λ% = λ% is called the eigenvector of Λ corre-
sponding to λ.
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The set consisting of all eigenvectors corresponding to λ is the eigen space and
denoted N(Λ− λI).
The dimension of N(Λ− λI) is called the multiplicity of the eigenvalue λ.

Theorem 2.4.17.
If H has a �nite dimension and Λ ∈ B(H), then σΛ = σP (Λ) i.e. σC(Λ) and
σR(Λ) are empty sets.

Proof. An operator on a H is always bounded. So ∀λ ∈ C , (Λ− λI)−1

is bounded if it exists and therefore σC(Λ) = φ
If λ ∈ σR(Λ) then (Λ − λI)−1

exists and is bounded since H has a �nite

dimension. Therefore (Λ− λI)−1
is injective on H.

Now let {%1, %2, ........, %n} be a basis for H, then it follows

{(Λ−λI)%1, (Λ−λI)%2, ........., (Λ−λI)%n}which spans theRan(Λ−λI)
is linearly independent and therefore Ran(Λ− λI) = H.

This contradicts the de�nition of σR(Λ) and therefore there is no such λ in

σR(Λ)⇒ σR(Λ) = φ
Hence we have σ(Λ) = σP (Λ) ∪ σC(Λ) ∪ σR(Λ) = σP (Λ) ∪ φ ∪ φ =
σP (Λ)

De�nition 2.4.18.
A complex number λ ∈ π(Λ) if for ε > 0,∃% ∈ D(Λ) such that ‖ % ‖= 1
and ‖ (Λ− λI)% ‖< ε

Remark 2.4.19.
Note that the points λ ∈ [σ(Λ)− π(Λ)] form the compresion spectrum of
Λ denoted τ(Λ)

Theorem 2.4.20.
A complex number λ ∈ π(Λ) i� (Λ− λI) does not have a bounded inverse.

Proof. Suppose λ ∈ π(Λ) then for each n ∈ J+,∃a%n ∈ D(Λ) with

‖%n‖ = 1 satisfying

‖ (Λ− λI)%n ‖≤
1

n

i.e. we can not �nd κ > 0 such that ‖ (Λ− λI)% ‖≥ κ ‖ % ‖ ∀% ∈ D(Λ)
Suppose κ > 0 satisfying ‖ (Λ− λI)% ‖≥ κ ‖ % ‖ does not exist.

This means for any ε > 0 and % ∈ D(Λ) with ‖ % ‖= 1 is such that

‖ (Λ− λI)% ‖< ε⇒ λ ∈ π(Λ)
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Corollary 2.4.21.
Let Λ ∈ B(H) then π(Λ) ⊂ σ(Λ)

Proof. Let λ be not in σ(Λ) then λ ∈ ρ(Λ) ⇒ Λ − λI has a bounded

inverse which implies that λ is not an element in π(Λ)⇒ π(Λ) ⊆ σ(Λ)

Theorem 2.4.22.
For Λ ∈ B(H) , σC(Λ) ∪ σP (Λ) ⊆ π(Λ)

Proof. Let λ ∈ σP (Λ) then (Λ− λI)−1
does not exist and so Λ− λI is

not 1-1

There is no κ > 0 such that ‖ (Λ− λI)% ‖≥ κ ‖ % ‖
This implies for ε > 0∃% ∈ D(Λ) with ‖ % ‖= 1 such that

‖ (Λ− λI)% ‖< ε⇒ λ ∈ π(Λ)⇒ σP (Λ) ⊆ π(Λ)................(i)
Also let λ ∈ σC(Λ) then (Λ− λI)−1

exists and Ran(Λ− λI) = H but

(Λ− λI)−1
is not bounded.

Therefore for any κ > o we can �nd ϑ ∈ Ran(Λ− λI) such that

‖ (Λ− λI)−1ϑ ‖≥ κ ‖ ϑ ‖
i.e. ‖ % ‖≥ κ ‖ (Λ− λI)% ‖⇒‖ (Λ− λI)% ‖≤ 1

κ ‖ % ‖
Thus for ‖ % ‖= 1 it is equivalent to say ‖ (Λ− λI)% ‖< ε i.e. λ ∈ π(Λ)
and so σC(Λ) ⊆ π(Λ)..............(ii)
Hence by (i) and (ii) we have σP (Λ) ∪ σC(Λ) ⊆ π(Λ)

De�nition 2.4.23.
The spectral radius of Λ ∈ B(H) denoted γ(Λ) is the radius of the smallest
disc whose center is at zero that contains σ(Λ).

So
γ(Λ) = Sup{|λ |: λ ∈ σ(Λ)}

Theorem 2.4.24.
Let Λ∗ = Λ and f : σ(Λ)→ C a continuous function then

σ(f(Λ)) = f(σ(Λ))

proof
By Brian Davis(10) page 18
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De�nition 2.4.25.
Numerical range of Λ ∈ B(H) is

W (Λ) = {〈Λ%, %〉 : % ∈ H, ‖ % ‖= 1}

Theorem 2.4.26.
If Λ ∈ B(H) then σP (Λ) ⊆ W (Λ)

Proof. Let λ ∈ σP (Λ) then ∃% ∈ H with ‖ % ‖= 1 such that Λ% = λ%
Now 〈%, %〉 = 1⇒ λ = λ〈%, %〉 = 〈λ%, %〉 = 〈Λ%, %〉 ∈ W (Λ)
i.e. λ ∈ σP (Λ)⇒ λ ∈ W (Λ)⇒ σP (Λ) ⊆ W (Λ)
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2.5 Spectra of some classes of linear operators

Remark 2.5.1.
The following proposition gives some results on spectra of some classes of
operators on H according to Paul Garrett (11)page 18.

Proposition 2.5.2.
Let Λ ∈ B(H).

Then:

1. if Λ is self ad-joint then σ(Λ) ⊆ R

2. if Λ is positive then σ(Λ) is a non-negative real number.

3. if Λ is a projection the σ(Λ) ⊆ {0, 1}

4. if Λ is unitary then σ(Λ) ⊆ z ∈ C :| z |= 1

Theorem 2.5.3.
If Λ ∈ B(H) is a normal operator then

σR(Λ) = φ

Proof. Let λ ∈ σR(Λ) then

Ran(Λ− λI) 6= H⇒ Ran(Λ− λI)
⊥ 6= {0}

⇒ the null set N(Λ∗ − λ̄I) 6= {0} ⇒ (Λ∗ − λ̄I)% = 0 for some % 6= 0
Let Λ be normal, then Λ− λI is normal and

‖ (Λ− λI)% ‖=‖ (Λ∗ − λ̄I)% ‖,∀% ∈ H

but (Λ∗ − λ̄I)% = 0⇒‖ (Λ∗ − λ̄I)% ‖= 0⇒‖ (Λ− λI)% ‖= 0
⇒ (Λ− λI)% = 0 for some % 6= 0
This is only possible if | Λ − λI |= 0 i.e. if λ is an eigenvalue i.e. if

λ ∈ σP (Λ)
This is a contradiction since σP (Λ) and σR(Λ) must be disjoint sets.

Therefore there is no such λ and hence σR(Λ) = φ
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Corollary 2.5.4.
If Λ is normal,

π(Λ) = σ(Λ)

Proof. Recall, always π(Λ) ⊆ σ(Λ).....................(i)
Also recall σR(Λ) = φ for normal Λ implying σ(Λ) = σP (Λ) ∪ σC(Λ)
but σP (Λ) ∪ σC(Λ) is always a subset of π(Λ)
So σ(Λ) = σP (Λ) ∪ σC(Λ) ⊆ π(Λ)
i.e. σ(Λ) ⊆ π(Λ).................(ii)
(i) and (ii)⇒ σ(Λ) = π(Λ).
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3 SIMILARITY AND QUASI-SIMILARITY OF
OPERATORS AND THEIR SPECTRAL PROPERTIES

3.1 Some results on similarity of operators

De�nition 3.1.1.
Υ ∈ B(H1,H2) has inverse if it is injective i.e. (1-1) and surjective i.e.(onto).
Equivalently Υ is invertible if Υ has a trivial kernel inH1 andH2 is the range
of Υ
i.e. Ker(Υ) = 0 and Ran(R) = H2

De�nition 3.1.2.
Let Λ : D(Λ) → H1,Ξ : D(Ξ) → H2 be two linear operators on dense
subspaces D(Λ) of H1 and D(Ξ) of H2 respectively. Then Υ : H1 → H2

intertwines Λ and Ξ if
Υ : D(Λ)→ D(Ξ)

ΥΛ% = ΞΥ%,∀% ∈ D(Λ)

Remark 3.1.3.
The intertwining operator Υ for
Λ ∈ B(H1) and Ξ ∈ B(H2) is invertible and in B(H1,H2) and called an
a�nity of Λ and Ξ

Remark 3.1.4.
We denote by G(H1,H2) the class of all invertible operators from H1 into H2

Proposition 3.1.5.
If Υ ∈ G(H1,H2) intertwines Λ ∈ B(H1) and Ξ ∈ B(H2), then Υ∗ ∈
G(H2,H1) intertwines Ξ∗ ∈ B(H2) and Λ∗ ∈ B(H1).

Proof. Let Υ intertwine Λ and Ξ, then ΥΛ = ΞΥ
Let % ∈ H1 and ϑ ∈ H2

then 〈ΥΛ%, ϑ〉 = 〈Λ%,Υ∗ϑ〉 = 〈%,Λ∗Υ∗ϑ〉................(i)
and 〈ΞΥ%, ϑ〉 = 〈Υ%,Ξ∗ϑ〉 = 〈%,Υ∗Ξ∗ϑ〉................(ii)
So from (i) and (ii) we have
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〈%,Υ∗Ξ∗ϑ〉 = 〈%,Λ∗Υ∗ϑ〉 since 〈ΞΥ%, ϑ〉 = 〈ΥΛ%, ϑ〉
Thus Υ∗Ξ∗ = Λ∗Υ∗ which implies that Υ∗ intertwines Ξ∗ and Λ∗

De�nition 3.1.6.
Let Λ ∈ B(H1) and Ξ ∈ B(H2).
Then Λ is similar to Ξ denoted Λ ∼ Ξ if ∃ Υ ∈ G(H1,H2) satisfying Λ =
Υ−1ΞΥ

Remark 3.1.7.
Note, if Λ ∼ Ξ and Ξ ∼ Λ then Λ and Ξ are similar.

Corollary 3.1.8.
Let Λ ∈ B(H1) and Ξ ∈ B(H2) be similar, i.e. Λ ∼ Ξ and Ξ ∼ Λ then ∃ an
intertwining operator Υ ∈ G(H1,H2) for Λ and Ξ satisfying ΥΛ = ΞΥ.
Moreover Υ−1 ∈ G(H2,H1) is an intertwining operator for Ξ and Λ satisfying
Υ−1Ξ = ΛΥ−1

Proof. Since Λ ∼ Ξ then

Λ = Υ−1ΞΥ⇔ ΥΛ = ΥΥ−1ΞΥ⇔ ΥΛ = ΞΥ
Hence Υ is an intertwining operator for Λ and Ξ
Now

ΥΛ = ΞΥ⇔ Υ−1ΥΛΥ−1 = Υ−1ΞΥΥ−1 ⇔ ΛΥ−1 = Υ−1Ξ

Hence Υ−1
is an intertwining operator for Ξ and Λ

De�nition 3.1.9.
Let the relation < on objects %, ϑ and ι be such that:

1. %<% i.e. < re�exive.

2. if %<ϑ then ϑ<% i.e. < is symmetric

3. if %<ϑ and ϑ<ι then %<ι i.e. < is transitive

Then the relation< satisfying i,ii and iii above is called an equivalence relation.

Theorem 3.1.10.
Similarity of operators is an equivalence relation.
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Proof. Let similarity be represented by ∼ and let Λ ∈ B(H1).

Consider the identity operator I ∈ B(H1)
Note I ∈ G(H1)and I = I−1

Now I−1ΛI = IΛI = Λ implying Λ = I−1ΛI ⇔ Λ ∼ Λ
So ∼ is re�exive.

Let Ξ ∈ B(H2) and Λ ∼ Ξ
Then we can �nd Υ ∈ G(H1,H2) satisfying Λ = Υ−1ΞΥ
⇒ ΥΛΥ−1 = ΥΥ−1ΞΥΥ−1 = Ξ i.e. Ξ = ΥΛΥ−1

i.e. Ξ = (Υ−1)−1ΛΥ−1

i.e. we can �nd Υ−1 ∈ G(H2,H1) satisfying Ξ = (Υ−1)−1ΛΥ−1

⇒ Ξ ∼ Λ
So Λ ∼ Ξ⇒ Ξ ∼ Λ and therefore ∼ is symmetric.

Let Γ ∈ B(H3) with Λ ∼ Ξ and Ξ ∼ Γ
Then can �nd Υ ∈ G(H1,H2) and Ψ ∈ G(H2,H3) satisfying

Λ = Υ−1ΞΥ and Ξ = Ψ−1ΓΨ

⇒ Λ = Υ−1(Ψ−1ΓΨ)Υ = (ΨΥ)−1ΓΨΥ
i.e. we can �nd ΨΥ ∈ G(H1,H3) satisfying

Λ = (ΨΥ)−1ΓΨΥ⇒ Λ ∼ Γ

So Λ ∼ Ξ,Ξ ∼ Γ⇒ Λ ∼ Γ and therefore ∼ is transitive.

Hence ∼ is an equivalence relation.

De�nition 3.1.11.
Λ ∈ B(H1) is unitarily equivalent to Ξ ∈ B(H2) denoted Λ ∼= Ξ if we can
�nd a unitary operator U ∈ B(H1,H2) satisfying Λ = U ∗ΞU

Theorem 3.1.12.
Unitary equivalence is an equivalence relation.

Proof. Let
∼= denote unitary equivalence and let Λ ∈ B(H1).

Consider the identity operator I ∈ B(H1)
Note I∗ = I ⇒ I∗I = II = I = II∗ i.e. I is unitary.

Now I∗ΛI = IΛI = Λ⇒ Λ ∼= Λ thus we have
∼= is re�exive.

Let Ξ ∈ B(H2) and Λ ∼= Ξ
Then we can �nd U1 ∈ B(H1,H2) satisfying

Λ = U1
∗ΞU1 ⇒ U1ΛU1

∗ = U1U1
∗ΞU1U1

∗ ⇒ Ξ = U1ΛU1
∗
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Let U2 = U1
∗

then U2 is unitary and Ξ = U2
∗ΛU2

i.e. we can �nd U2 ∈ B(H2,H1) satisfying Ξ = U2
∗ΛU2 ⇒ Ξ ∼= Λ

so Λ ∼= Ξ⇒ Ξ ∼= Λ and thus we have
∼= is symmetric.

Let Γ ∈ B(H3) with Λ ∼= Ξ and Ξ ∼= Γ
then we can �nd U1 ∈ B(H1,H2) and U2 ∈ B(H2,H3) satisfying

Λ = U1
∗ΞU1 and Ξ = U2

∗ΓU2

So Λ = U1
∗U2

∗ΓU2U1 = (U2U1)
∗Γ(U2U1)

Let U3 = U2U1 then U3 is unitary and Λ = U3
∗ΓU3 ⇒ Λ ∼= Γ

So Λ ∼= Ξ,Ξ ∼= Γ⇒ Λ ∼= Γ thus we have
∼= is transitive.

Hence
∼= is an equivalence relation.

Remark 3.1.13.
Recall Λ ∈ B(H) is positive if Λ∗ = Λ and 〈Λ%, %〉 ≥ 0,∀% ∈ H
Note that Λ is strictly positive if we also have 〈Λ%, %〉 = 0⇔ % = 0

De�nition 3.1.14.
Λ ∈ B(H1,H2) which is self ad-joint and strictly positive is called a metric
operator.

Remark 3.1.15.
We now give the following results on metric operators according to Antoine
and Trapani (14)

Proposition 3.1.16.

1. A metric operator Λ : H1 → H2 is invertible and densely de�ned but may
be bounded or unbounded.

2. If Λ is metric then Λα is metric for all α ∈ R

3. if Ξ and Ξ∗ are densely de�ned on H1 and H2 respectively. Then Ξ is
similar to Ξ∗ with intertwining metric Λ satisfying Ξ = Λ−1Ξ∗Λ

4. If Ξ ∈ B(H1) and Γ ∈ B(H2) which are self adjoint, then Ξ is metrically
similar to Γ satisfying Ξ = Λ−( 1

2 )ΓΛ( 1
2 )
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3.2 Spectral properties of similar operators

Remark 3.2.1.
Recall, Λ represented by a square n × n matrix Λ = [λij] is diagonal if
λij = 0 ∀ i 6= j and the elements λii = {λ1, λ2, .........., λn} in the main
diagonal are all eigenvalues of Λ (multiplicity included).

De�nition 3.2.2.
An n× n matrix Λ = [λij] is a triangular if all the elements above the main
diagonal are all zeroes.

Remark 3.2.3.
Note that the elements λ11, λ22, ........., λnn given by λ1, λ2, ............, λn in the
main diagonal of a triangular matrix Λ are the eigenvalues of Λ hence the
points σP (Λ).

Theorem 3.2.4.
Let H = Kn.
If a matrix operator Λ on Kn is such that all its eigenvalues are in K then we
can �nd Υ on Kn to have ΥΛΥ−1 = Ξ as a triangular matrix
i.e. we can �nd Ξ, a triangular matrix satisfying Λ ∼ Ξ.

De�nition 3.2.5.
Let Λ = [λij] be an n× n square matrix and let {λii} be the elements in the
main diagonal for i = 1, 2, ........n. Then the trace of Λ denoted

tr(Λ) = Σn
i=1λii

Proposition 3.2.6.
The matrix operators Λ,Ξ ∈ B(H) which are are similar have the same
characteristic polynomial. Moreover Λ and Ξ have the same trace.

Proof. Since Λ is similar to Ξ then we can have an invertible matrix Υ
satisfying

Λ = Υ−1ΞΥ

The characteristic polynomial of Λ i.e. ΦΛλ = det(Λ− λI)
So we have ΦΛλ = det(Λ− λI) = det[Υ−1(Ξ− λI)Υ]

= det(Υ−1)det(Ξ− λI)det(Υ)
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= det(Υ)−1det(Ξ− λI)det(Υ) = det(Ξ− λI) = ΦΞλ

Thus we have ΦΛλ = ΦΞλ i.e. Λ and Ξ have the same characteristic

polynomial.

So Λ and Ξ have the same eigenvalues (multiplicity included).

But the trace of an n× n matrix is given by addition of its eigenvalues with

multiplicities and therefore Λ and Ξ have the same trace.

Corollary 3.2.7.
If Λ,Ξ ∈ B(H) are similar then

σP (Λ) = σP (Ξ)

Proof. We have already established that similar operators have the same

characteristic polynomial and hence the same eigenvalues.

The collection of eigen-values is the σP and therefore

Λ ∼ Ξ⇒ σP (Λ) = σP (Ξ)

Theorem 3.2.8.
Let Λ ∈ B(H1) and Ξ ∈ B(H2) where H1 and H2 are �nite dimensional with
Λ ∼ Ξ. Then Λ and Ξ have the same spectrum i.e. σ(Λ) = σ(Ξ)

Proof. Since H1 is �nite dimensional we have σC(Λ) = φ and σR(Λ) =
φ ⇒ σ(Λ) = σP (Λ).

Similarly σC(Ξ) = φ and σR(Ξ) = φ ⇒ σ(Ξ) = σP (Ξ)
but Λ and Ξ are similar, so by corollary 3.2.7 ,

σP (Λ) = σP (Ξ)⇒ σ(Λ) = σ(Ξ)

Remark 3.2.9.
According to Halmos(2) the equality of spectra of similar operators can be
extended to in�nite dimensional Hilbert spaces. So for Λ,Ξ ∈ B(H) and
Λ ∼ Ξ given H has in�nite dimension , then:

σP (Λ) = σP (Ξ)

σC(Λ) = σC(Ξ)
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σR(Λ) = σR(Ξ)

and hence
σ(Λ) = σ(Ξ)
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3.3 Some results on quasi-similarity of operators

Remark 3.3.1.
Recall if Λ ∈ B(H1) and Ξ ∈ B(H2) are similar, then we can �nd an a�nity
Υ ∈ B(H1,H2) satisfying ΥΛ = ΞΥ

De�nition 3.3.2.
Υ ∈ B(H1,H2) is quasi invertible (also called a quasi-a�nity) if 1− 1 and
the range of Υ is dense in H2

De�nition 3.3.3.
Let Λ ∈ B(H1) and Ξ ∈ B(H2)
Then Λ is quasi-a�ne transform of Ξ denoted Λ ≈ Ξ if we can �nd a quasi-
a�nity Υ ∈ B(H1,H2) satisfying ΥΛ = ΞΥ

Remark 3.3.4.
If Λ ∈ B(H1) and Ξ ∈ B(H2) are quasi-a�ne transforms of each other i.e.
we have quasi-a�nities Υ ∈ B(H1,H2) and Ψ ∈ B(H2,H1) satisfying

ΥΛ = ΞΥ

ΨΞ = ΛΨ

then Λ and Ξ are said to be quasi-similar.

Theorem 3.3.5.
If Υ is a quasi-a�nity from H1 to H2 and Ψ is a quasi-a�nity from H2 to H3

then ΨΥ is a quasi-a�nity from H1 to H3 and ΥΨ is a quasi-a�nity from
H3 to H1.

Proof. Since for quasi-similar operators Λ ∈ B(H1) and Ξ ∈ B(H2) we

can �nd quasi-a�nities Υ ∈ B(H1,H2) and Ψ ∈ B(H2,H1) then we can

have the following commutative diagram which illustrates this relationship.
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Now Υ is a quasi-a�nity fromH1 toH2 means that Υ is 1−1 andRan(Υ) =
H2.

Similarly Ψ is 1− 1 and Ran(Ψ) = H3

Then ΨΥ is a 1− 1 operator since is a composition of 1− 1 operators.

The range of ΨΥ is subset of H1 i.e. Ran(ΨΥ) ⊆ H1

Then it follows ΨΥ(H1) = ΨΥ(H1)..............(i)
but Ran(Υ) = H2 ⇒ Υ(H1) = H2 since Υ is a quasi-a�nity

so (i) becomes ΨΥ(H1) = Ψ(H2)
but Ran(Ψ) = H1 ⇒ Ψ(H2) = H1 since Ψ is a quasi-a�nity

consequently ΨΥΥ(H1) = H1 i.e. Ran(ΨΥ) = H1

Now that we have shown that ΨΥ is 1− 1 and has a dense range in H1, it

implies that ΨΥ is a quasi-a�nity.

Similarly ΥΨ is 1− 1 operator because is a composition of 1− 1 operators.

So Ran(ΥΨ) ⊆ H2

Then it follows ΥΨ(H2) = ΥΨ(H2)...............(ii)

but Ran(Ψ) = H1 ⇒ Ψ(H2) = H1 since Ψ is a quasi-a�nity.

so (ii) becomes ΥΨ(H2) = Υ(H1)
but Ran(Υ) = H2 ⇒ Υ(H1) = H2 since Υ is a quasi-a�nity.

consequently ΥΨ(H2) = H2 i.e. Ran(ΥΨ) = H2

Now since we have shown that ΥΨ is 1 − 1 and Ran(ΥΨ) = H2 then it

implies that ΥΨ is a quasi-a�nity.

Theorem 3.3.6.
Let Λ ∈ B(H) be a quasi-a�nity, then Λ∗ is a quasi-a�nity.



47

Proof. Given Λ ∈ B(H) is a quasi-a�nity, then Λ is 1−1 andRan(Λ) =
H
Since Λ is 1− 1 i.e. Ker(Λ) = {0̄}
but Ker(Λ) = Ran(Λ∗)⇒ Ran(Λ∗) = {0̄} = Ran(Λ∗)
so Λ∗ has a dense range in {0̄}
clearly Ker(Λ∗) = {0̄} i.e. Λ∗ is 1− 1
Now that Λ∗ is 1 − 1 and has dense range, it follows that Λ∗ is a quasi-

a�nity.

Theorem 3.3.7.
Quasi-similarity of operators is an equivalence relation.

Proof. Let Λ ∈ B(H1) and denote quasi-similarity by ≈.

Now let Υ and Ψ be quasi-a�nities where Υ = Ψ = I without lose of

generality.

then ΥΛ = IΛ = ΛI = ΛΨ i.e.ΨΥΛ = ΛΨ
also ΨΛ = IΛ = ΛI = ΛΥ i.e.ΨΛ = ΛΥ
hence we have Λ ≈ Λ ,thus ≈ is re�exive.

Let Ξ ∈ B(H2) and Λ ≈ Ξ
then we can �nd quasi-a�nities Υ ∈ B(H1,H2) and Ψ ∈ B(H2,H1) satis-

fying

ΥΛ = ΞΥ and ΨΞ = ΛΨ
i.e. ΨΞ = ΛΨ and ΥΛ = ΞΥ⇒ Ξ ≈ Λ
i.e. Λ ≈ Ξ⇒ Ξ ≈ Λ thus ≈ is symmetric.

Let Γ ∈ B(H3) where Λ ≈ Ξ and Ξ ≈ Γ
We can �nd quasi-a�nities Υ ∈ B(H1,H2) and Ψ ∈ B(H2,H1) satisfying

ΥΛ = ΞΥ

ΨΞ = ΛΨ

and quasi-a�nities Θ ∈ B(H2,H3) and Ω ∈ B(H3,H2) such that

ΘΞ = ΓΘ

ΩΓ = ΞΩ

Now ΩΘΨΥ is a composition of 1−1 operators and hence a 1−1 operator.
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but

ΩΘΨΥΛ = ΩΘΛΨΥ since ΨΥΛ = ΛΨΥ
ΩΘΛΨΥ = ΩΘΨΞΥ since ΛΛΨ = ΨΞ
ΩΘΨΞΥ = ΩΞΘΨΥ since ΘΨΞ = ΞΘΨ
ΩΞΘΨΥ = ΓΩΘΨΥ since ΩΞ = ΓΩ
Thus ΩΘΨΥΛ = ΓΩΘΨΥ
i.e. ΩΘΨΥ is a quasi-a�nity of Λ and Γ Also

ΛΨΥΘΩ = ΨΥΛΘΩ since ΛΨΥ = ΨΥΛ
ΨΥΛΘΩ = ΨΞΥΘΩ since ΥΛ− ΞΥ
ΨΞΥΘΩ = ΨΥΘΞΩ since ΞΥΘ = ΥΘΞ
ΨΥΘΞΩ = ΨΥΘΩΓ since ΞΩ = ΩΓ
Thus ΨΥΘΩΓ = ΛΨΥΘΩ
i.e. ΨΥΘΩ is a quasi-a�nity of Γ and Λ
Now that ΩΘΨΥ ∈ B(H1,H3) is a quasi-a�nity of Λ and Γ
and ΨΥΘΩ ∈ B(H3,H1) is a quasi-a�nities of Γ and Λ then it follows

Λ ≈ Γ
i.e.Λ ≈ Ξ,Ξ ≈ Γ⇒ Λ ≈ Γ, thus ≈ is transitive.

Hence it follows that ≈ is an equivalence relation.

Theorem 3.3.8.
Let Λ ∈ B(H1) ,Ξ ∈ B(H2) be similar, then Λ and Ξ are quasi-similar.

Proof. If Λ and Ξ are similar, we can �nd Υ ∈ G(H1,H2) satisfying

Λ = Υ−1ΞΥ⇒ ΥΛ = ΞΥ⇒ ΛΥ−1 = Υ−1Ξ

Let Ψ = Υ−1
then ΛΨ = ΨΞ i.e. there exists a quasi-invertible operator

Ψ ∈ B(H2,H1) satisfying ΨΞ = ΛΨ
Now that there exists quasi-a�nities Υ and Ψ satisfying

ΥΛ = ΞΥ

ΨΞ = ΞΨ

it now follows that Λ and Ξ are quasi-similar

Proposition 3.3.9.
Let H1,H2 and H3 be �nite dimensional and

Υ ∈ B(H1,H2),Ψ ∈ B(H2,H3) be quasi-a�nities.
Then the inverse (ΨΥ)−1 ∈ B(H3,H1) of composite operator
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ΨΥ ∈ B(H1,H3) exists and (ΨΥ)−1 = Υ−1Ψ−1

Proof. Recall the composite ΨΥ ∈ B(H1,H3) is a quasi-a�nity and is a

bijection and so (ΨΥ)−1
exists.

Now

(ΨΥ)(ΨΥ)−1 = IH3
is the identity operator in H3

then applying Ψ−1
we have

Ψ−1SΥ(ΨΥ)−1 = Ψ−1IH3
⇒ Υ(ΨΥ)−1 = Ψ−1

and applying Υ−1
we have

Υ−1Υ(ΨΥ)−1 = Υ−1Ψ−1 ⇒ (ΨΥ)−1 = Υ−1Ψ−1

Lemma 3.3.10.
If Λ ∈ B(H1) is quasi-a�ne transform of Ξ ∈ B(H2) then

Ξ∗ ∈ B(H2) is a quasi-a�ne transform of Λ∗ ∈ B(H1)

Lemma 3.3.11.
Let Υ be a quasi-a�nity from H1 to H2

Then | Υ |=
√

Υ∗Υ is a quasi-a�nity from H2 to H1 and Υ | Υ |−1 by
continuity extends to a unitary transformation U : H1 → H2

Theorem 3.3.12.
Let Λ ∈ B(H1) be a quasi-a�ne transform of Ξ ∈ B(H2) given Λ and Ξ are
unitary. Then Λ and Ξ are unitarily equivalent.

Proof. Recall if Λ and Ξ are unitary, then

Λ∗Λ = ΛΛ∗ = I ⇒ Λ∗ = Λ−1

and Ξ∗Ξ = ΞΞ∗ = I ⇒ Ξ∗ = Ξ−1

Let Υ ∈ B(H1,H2 be a quasi-a�nity such that ΥΛ = ΞΥ...................(i)
Then applying Λ−1

on (i),

ΥΛΛ−1 = ΞΥΛ−1 ⇒ Υ = ΞΥΛ−1
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Applying Ξ−1
,

Ξ−1Υ = Ξ−1ΞΥΛ−1 ⇒ Ξ−1Υ = ΥΛ−1 ⇒ Ξ∗Υ = ΥΛ∗.................(ii)

Note that Υ∗ is also a quasi-a�nity and by lemma 3.3.10 ,

| Υ |=
√

Υ∗Υ⇒| Υ |2= Υ∗Υ

So by (i) above, | Υ |2 Λ = Υ∗ΥΛ = Υ∗ΞΥ
Then applying (ii) , Υ∗ΞΥ = ΛΥ∗Υ = Λ | Υ |2
thus | Υ |2 Λ = Λ | Υ |2
and by iteration | Υ |2n Λ = Λ | Υ |2n where n = 0, 1, 2, 3, .......
so for every polynomial Φ(Υ) we have Φ(| Υ |2)Λ = ΛΦ(| Υ |2)
Let {Φn(Υ)} be a sequence of polynomials tending to | Υ | 12 uniformly on

the interval 0 < Υ ≤‖ Υ ‖ 1
2 then Φn(| Υ |2) converges to | Υ | so that

| Υ | Λ = Λ | Υ | ....................(iii)
Note Υ | Υ |−1= U by lemma 3.3.11
thus it follows that ΞU | Υ |= ΞΥ | Υ |−1| Υ |= ΞΥ since | Υ |−1| Υ |= I

but ΞΥ = ΥΛ by (i) above

so ΞU | Υ |= ΥΛ and applying | Υ |−1
,

ΞU | Υ || Υ |−1= ΥΛ | Υ |−1= Υ | Υ |−1 Λ⇒ ΞU = UΛ

i.e. we can have a unitary operator U ∈ B(H1,H2) satisfying

UΛ = ΞU ⇒ Λ = U ∗ΞU
hence Λ and Ξ are unitarily equivalent.
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3.4 Spectral properties of quasi-similar operators

Remark 3.4.1.
On �nite dimensional Hilbert space, quasi-similar operators are also similar.
But in in�nite dimensional spaces, quasi-similarity is a weak relationship,
leading to the operators to have spectra which are not equal in some cases
(Sz-Nagy(3)).
However there are some conditions under which two quasi-similar operators
on in�nite dimensional Hilbert spaces will have equal spectra.

Lemma 3.4.2.
Let Ξ ∈ B(H2) be hypo-normal operator and

{ϑn}∞n=0

a sequence in H2 where Ξϑn+1 = ϑn,∀n ≥ 0
Then either ‖ ϑ0 ‖≥‖ ϑ1 ‖≥‖ ϑ2 ‖≥, .......
or ‖ ϑn ‖→ ∞ as n→∞

Proof. Recall an operator Λ is hypo-normal if Λ∗Λ ≤ ΛΛ∗

For any ϑ ∈ H2 we have

‖ Ξϑ ‖= 〈Ξϑ,Ξϑ〉
1
2 ≤ (‖ Ξ∗Ξϑ ‖‖ ϑ ‖)

1
2

≤ (‖ Ξ2ϑ ‖‖ ϑ ‖)
1
2 ≤ 1

2
(‖ Ξ2ϑ ‖ + ‖ ϑ ‖)

letting ϑ = ϑn+2 we have Ξϑ = ϑn+1 and Ξ2ϑ = ϑn satisfying

‖ ϑn+1 ‖≤
1

2
(‖ ϑn ‖ + ‖ ϑn+2 ‖)

so {‖ϑn‖} is convex, hence the result.

Lemma 3.4.3.
Let Λ ∈ G(H1) and Ξ ∈ B(H2) be hypo-normal.
Let Υ ∈ B(H1,H2) be such that ΥΛ = ΞΥ
then ‖ ΥΛ−1% ‖≤‖ Λ−1 ‖‖ Υ% ‖ for all % ∈ H1



52

Proof. Assume dimH1 ≥ 1 and let λ =‖ Λ−1 ‖> 0
Fix % ∈ H1 and de�ne ϑn = λ−nΥΛ−n% for n > 0
then λΞϑn+1 = ϑn and ‖ ϑn ‖≤‖ Υ ‖‖ % ‖ for all n > 0
since λΞ is hypo-normal then

‖ ϑ0 ‖≥‖ ϑ1 ‖≥‖ ϑ2 ‖≥ .......... by lemma above.

The �rst inequality in this chain ‖ ϑ1 ‖≤‖ ϑ0 ‖ shows that

‖ ΥΛ−1% ‖≤‖ Λ−1 ‖‖ Υ% ‖

Theorem 3.4.4.
Let Λ ∈ G(H1) and Ξ ∈ B(H2) be hypo-normal. Let Λ and Ξ be quasi-
similar operators i.e. we can �nd Υ ∈ B(H1,H2) where Ker(Υ) = 0 and
Ran(Υ) = H2 and satis�es ΥΛ = ΞΥ. Then Ξ ∈ G(H2).

Proof. Assume dimH1 ≥ 1.

Clearly Ran(Ξ) ⊇ Ran(Υ) and so Ran(Ξ) = H2

Now of we set %1 = P−1% in lemma 3.4.3 we have the inequality

‖ Ξ(Υ%1) ‖≥
‖ Υ%1 ‖
‖ Λ−1 ‖

i.e.

‖ Ξ(Υ%1) ‖≥
1

‖ Λ−1 ‖
‖ Υ%1 ‖

thus Ξ is bounded below in the range of Υ and hence Ξ ∈ G(H2)

Theorem 3.4.5.
Let Λ ∈ B(H1) and Ξ ∈ B(H2) be quasi-similar hypo-normal operators. Then
σ(Λ) = σ(Ξ)

Proof. If Λ and Ξ hypo-normal with Λ ≈ Ξ then for any λ ∈ C we have

Λ− λI ≈ Ξ− λI are also hypo-normal operators.

So by theorem (3.4.4), Λ ∈ G(H1),Ξ ∈ G(H2) or both are non invertible

and therefore the σ(Λ) = σ(Ξ)
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Remark 3.4.6.
Note there is proper inclusion relation of operators i.e.

Normal ⊂ Hypo− normal ⊂ Paranormal

Then in view of theorem above, quasi-similar normal operators have equal
spectra since every normal operator is hypo-normal.
Now every hypo-normal operator is paranormal.
So equality of quasi-similar paranormal operators is an area for further re-
search.
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4 ALMOST SIMILARITY OF OPERATORS AND THEIR
SPECTRAL PROPERTIES

4.1 Cartesian and polar decomposition of operators

Remark 4.1.1.
Recall if Λ,Ξ ∈ B(H) are self ad-joint , then ΛΞ is self ad-joint i� Λ commutes
with Ξ.
Also if Φ(Λ) is a polynomial of a self ad-joint operator Λ with real coe�cients
then Φ(Λ) is a self ad-joint operator.
These results show that bounded self ad-joint operator may be comparable to
generalised real numbers.
Then it must be feasible to look upon any bounded linear operator as a gener-
alised complex number.
An object ξ ∈ C has a unique representation ξ = %+ iϑ with %, ϑ ∈
UpsilonΥ.
It must then be feasible to expressΛ ∈ B(H) asΛ = Υ+iΨwithΥ,Ψ ∈ B(H)
being unique and self ad-joint.

Theorem 4.1.2.
For Λ ∈ B(H) we can �nd a unique self ad-joint operators Υ,Ψ ∈ B(H) to
have

Λ = Υ + iΨ

Proof. Since Λ = Υ + iΨ it implies

Λ∗ = (Υ + iΨ)∗ = Υ∗ + (iΨ)∗ = Υ∗ + Ψ∗i∗ = Υ∗ − iΨ∗ = Υ− iΨ

Then

Λ + Λ∗ = Υ + iΨ + Υ− iΨ = 2Υ⇒ Υ =
Λ + Λ∗

2

and

Λ− Λ∗ = Υ + iΨ−Υ + iΨ = 2iΨ⇒ Ψ =
Λ− Λ∗

2i
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so Υ and Ψ are uniquely determined.

Thus

Λ = Υ + iΨ =
Λ + Λ∗

2
+ i

Λ− Λ∗

2i
=

Λ + Λ∗

2
+

Λ− Λ∗

2

Now Υ∗ = (Λ+Λ∗

2 )∗ = 1
2(Λ + Λ∗)∗ = 1

2(Λ∗ + Λ∗∗)

=
1

2
(Λ + Λ∗) =

Λ + Λ∗

2
= Υ

i.e.

Υ∗ = Υ⇒ Υ is self ad-joint.

Also Ψ∗ = (Λ−Λ∗

2i )∗ = − 1
2i(Λ− Λ∗)∗ = − 1

2i(Λ
∗ − Λ∗∗)

= − 1

2i
(Λ∗ − Λ) =

Λ− Λ∗

2i
= Ψ

i.e. Ψ∗ = Ψ⇒ Ψ is self ad-joint.

therefore Υ and Ψ are unique self ad-joint operators

Remark 4.1.3.
However if a complex z = a+ ib then a and b always commute.
But in the operator theory if P ∈ B(H) and P = R+ iS where R, S ∈ B(H)
are self ad-joint operators, then we need not have R commute with S.
But in a special case we may have R commute with S as expressed below.

Theorem 4.1.4.
Let Λ ∈ B(H) and Λ = Υ + iΨ with Υ,Ψ ∈ B(H) as self ad-joint. Then Υ
commutes with Ψ i� Λ is a normal.

ieΥ↔ S ⇔ Λ∗Λ = ΛΛ∗

Proof. Let Υ commute with Ψ then

ΥΨ = ΨΥ⇒ (
Λ + Λ∗

2
)(

Λ− Λ∗

2i
) = (

Λ− Λ∗

2i
)(

Λ + Λ∗

2
)

⇒ (Λ + Λ∗)(Λ− Λ∗) = (Λ− Λ∗)(Λ + Λ∗)

⇒ ΛΛ− ΛΛ∗ + Λ∗Λ− Λ∗Λ∗ = ΛΛ + ΛΛ∗ − Λ∗Λ− Λ∗Λ∗
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⇒ Λ∗Λ + Λ∗Λ = ΛΛ∗ + ΛΛ∗

⇒ 2Λ∗Λ = 2ΛΛ∗

⇒ Λ∗Λ = ΛΛ∗

i.e. Λ is a normal operator.

Conversely let Λ be a normal.

Then

Λ∗Λ = ΛΛ∗ ⇒ (Υ− iΨ)(Υ + iΨ) = (Υ + iΨ)(Υ− iΨ)

⇒ Υ2 + Ψ2 + iΥΨ− iΨΥ = Υ2 + Ψ2 + iΨΥ− iΥΨ

⇒ i(ΥΨ−ΨΥ) = i(ΨΥ−ΥΨ)

⇒ ΥΨ−ΨΥ = ΨΥ−ΥΨ

⇒ 2ΥΨ = 2ΨΥ

⇒ ΥΨ = ΨΥ

ie ΥΨ commutes with ΨΥ.

Remark 4.1.5.
ξ ∈ C can be decomposed into polar form as ξ = reiθ where r is the absolute
value of ξ and eiθ is called the complex sign of ξ.
In mathematics the polar decomposition of a linear operator is a factorization
analogous to ξ ∈ C.

De�nition 4.1.6.
The polar decomposition of Λ ∈ B(H) is a canonical factorization Λ = UG
where U is partialy isometric and G is a positive.

Remark 4.1.7.
The non-negative self ad-joint operator G is such that

G = (Λ∗Λ)
1
2 ⇒ G2 = Λ∗Λ

while U must be partialy isometric, since if U is unitary and Λ is a one sided
shift operator on L2(N) then
(Λ∗Λ)

1
2 = I ⇒ Λ = U(Λ∗Λ)1

2 ⇒ U must be Λ but not unitary
hence a contradiction.
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4.2 Some results on almost similarity of operators

Remark 4.2.1.
Almost similarity is a new class in operator theory and was �rst introduced
by A.A. Jibril (21). He proved various results that relate almost similarity and
other classes of operators.

De�nition 4.2.2.
Two operators Λ,Ξ ∈ B(H) are almost similar denoted Λa.s∼Ξ if we can �nd
an operator Υ ∈ G(H) satisfying

Λ∗Λ = Υ−1(Ξ∗Ξ)Υ

Λ∗ + Λ = Υ−1(Ξ∗ + Ξ)Υ

Remark 4.2.3.
The de�nition of almost similarity above we have made use of both Cartesian
and polar decomposition of Λ and Ξ.
Thus if Λ = UG = Υ+iΨ thenG =

√
Λ∗Λ⇒ Λ∗Λ = G2 and Λ∗+Λ = 2Υ

Theorem 4.2.4.
Almost similarity of operators is an equivalence relation.

Proof. Let
a.s∼ denote almost similarity and let Λ ∈ B(H).

Let Υ be an identity operator I on H. Then

Υ−1(Λ∗Λ)Υ = I(Λ∗Λ)I = Λ∗Λ

Υ−1(Λ∗ + Λ)Υ = I(Λ∗ + Λ)I = Λ∗ + Λ

Thus Λa.s∼Λ i.e. almost similarity of operators is re�exive.

Let Ξ ∈ B(H) and Λa.s∼Ξ
Then we can �nd Υ ∈ G(H) satisfying

Λ∗Λ = Υ−1(Ξ∗Ξ)Υ

Λ∗ + Λ = Υ−1(Ξ∗ + Ξ)Υ

applying Υ and Υ−1
we have

Υ(Λ∗Λ)Υ−1 = ΥΥ−1(Ξ∗Ξ)ΥΥ−1 = Ξ∗Ξ
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Υ(Λ∗ + Λ)Υ−1 = ΥΥ−1(Ξ∗ + Ξ)ΥΥ−1 = Ξ∗ + Ξ

Let Ψ = Υ−1
then Ψ ∈ G(H) and Ψ−1 = Υ and hence we have

Ξ∗Ξ = Ψ−1(Λ∗Λ)Ψ

Ξ∗ + Ξ = Ψ−1(Λ∗ + Λ)Ψ

i.e Ξa.s∼Λ and hence almost similarity of operators is symmetric.

Let Γ ∈ B(H) and let Λa.s∼Ξ and Ξa.s∼Γ.

Then we can �nd Υ,Ψ ∈ G(H) satisfying

Λ∗Λ = Υ−1(Ξ∗Ξ)Υ

Λ∗ + Λ = Υ−1(Ξ∗ + Ξ)Υ

and

Ξ∗Ξ = Ψ−1(Γ∗Γ)Ψ

Ξ∗ + Ξ = Ψ−1(Γ∗ + Γ)Ψ

This implies

Λ∗Λ = Υ−1Ψ−1(Γ∗Γ)ΨΥ

Λ∗ + Λ = Υ−1Ψ−1(Γ∗ + Γ)ΨΥ

which implies

Λ∗Λ = (ΨΥ)−1(Γ∗Γ)ΨΥ

Λ∗ + Λ = (ΨΥ)−1(Γ∗ + Γ)ΨΥ

but ΨΥ ∈ G(H) since it is a composition of operators in G(H).

thus Λa.s∼Γ and hence almost similarity of operators is transitive.

Proposition 4.2.5.
Let Λ,Ξ ∈ B(H).
Then:

1. if Λa.s∼0 then Λ = 0
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2. if Λa.s∼ I then Λ = I

3. if Λa.s∼Ξ and Ξ is isometric then Λ is also isometric.

Proof. 1. Let Λa.s∼0
Then we can �nd Υ ∈ G(H) satisfying

Λ∗Λ = Υ−10Υ = 0

Λ∗ + Λ = Ψ−10Ψ = 0⇒ Λ∗ = −Λ

⇒ Λ∗Λ = −Λ2 = 0⇒ Λ2 = 0⇒ Λ = 0

2. Let Λa.s∼ I
Then we can have Υ ∈ G(H) satisfying

Λ∗Λ = Ψ−1I∗IΨ = Ψ−1IΨ = I

Λ∗ + Λ = Ψ−1(I∗ + I)Ψ = Ψ−1(I + I)Ψ = 2I

Now Λ∗ + Λ = 2I ⇒ Λ∗Λ + ΛΛ = 2Λ i.e. by applying Λ
but Λ∗Λ = I ⇒ I + Λ2 = 2Λ⇒ Λ2 − 2Λ + I = 0
⇒ (Λ− I)(Λ− I) = 0
Let % ∈ H then (Λ− I)(Λ− I)% = 0
Let (Λ− I)% = ϑ then (Λ− I)ϑ = 0⇒ Λϑ = ϑ

Consequently Λ% = %⇒ Λ = I% and hence Λ = I

3. Let Λa.s∼Ξ then we can �nd Υ ∈ G(H) satisfying

Λ∗Λ = Υ−1(Ξ∗Ξ)Υ

Λ∗ + Λ = Υ−1(Ξ∗ + Ξ)Υ

Let Ξ be an isometry then Ξ∗Ξ = I ⇒ Λ∗Λ = Υ−1IΥ = I
i.e. Λ∗Λ = I ⇒ Λ is an isometry.

De�nition 4.2.6.
Λ ∈ B(H) is called a θ − operator if Λ∗ + Λ commutes with Λ∗Λ
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Remark 4.2.7.
Note, the set of θ − operators in B(H) is denoted θ(H)
so

θ(H) = {Λ ∈ B(H) : [Λ∗Λ,Λ∗ + Λ] = 0}

Proposition 4.2.8.
If Λ,Ξ ∈ B(H) with Λa.s∼Ξ and Ξ ∈ θ(H) then Λ ∈ θ(H)

Proof. Since Λa.s∼Ξ we can �nd Υ ∈ G(H) satisfying

Λ∗Λ = Υ−1(Ξ∗Ξ)Υ

Λ∗ + Λ = Υ−1(Ξ∗ + Ξ)Υ

so we have

(Λ∗Λ)(Λ∗ + Λ) = [Υ−1(Ξ∗Ξ)Υ][Υ−1(Ξ∗ + Ξ)Υ]
= Υ−1[(Ξ∗Ξ)(Ξ∗ + Ξ)]Υ............(i)
we also have

(Λ∗ + Λ)(Λ∗Λ) = [Υ−1(Ξ∗ + Ξ)Υ][Υ−1(Ξ∗Ξ)Υ]
= Υ−1[(Ξ∗ + Ξ)(Ξ∗Ξ)]Υ..........(ii)
but Ξ ∈ θ ⇒ (Ξ∗Ξ)(Ξ∗ + Ξ) = (Ξ∗ + Ξ)(Ξ∗Ξ)
so from (i) and (ii)

(Λ∗Λ)(Λ∗ + Λ) = (Λ∗ + Λ)(Λ∗Λ)

i.e. Λ∗Λ commutes with Λ∗ + Λ and hence Λ ∈ θ(H)

Theorem 4.2.9.
Let Λ ∈ B(H), then Λ is Hermitian i� (Λ∗ + Λ)2 ≥ 4Λ∗Λ

Proof. we proof for the case where equality sign holds i.e Λ is Hermitian

i� (Λ + Λ∗)2 = 4Λ∗Λ
Suppose Λ is hermitian

Then

(Λ + Λ∗)2 = (Λ + Λ)2 = (2Λ)2 = 4Λ2

4Λ∗Λ = 4ΛΛ = 4Λ2

So (Λ + Λ∗)2 = 4Λ∗Λ
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Conversely suppose (Λ + Λ∗)2 = 4Λ∗Λ
and let Λ = Υ + iΨ be the Cartesian decomposition of Λ
Then

(Λ + Λ∗)2 = (Υ + iΨ + Υ− iΨ)2 = (2Υ)2 = 4Υ2

4Λ∗Λ = 4[(Υ− iΨ)(Υ + iΨ)] = 4[Υ2 + Ψ2 + i(ΥΨ−ΨΥ)] = 4Υ2 + 4Ψ2

So 4Υ2 = 4Υ2 + 4Ψ2 ⇒ 4Ψ2 = 0⇒ Ψ2 = 0⇒ Ψ = 0
so that Υ = Υ + iΨ⇒ Λ = Υ + 0⇒ Λ = Υ
Now since Υ is Hermitian it follows Λ is Hermitian.

Proposition 4.2.10.
If Λ,Ξ ∈ B(H) such that Λa.s∼Ξ and Ξ is Hermitian, then Λ is Hermitian.

Proof. Since Λa.s∼Ξ, we can have Υ ∈ G(H) so that

Λ∗Λ = Υ−1(Ξ∗Ξ)Υ⇒ 4Λ∗Λ = Υ−1(4Ξ∗Ξ)R............(i)

Λ∗+ Λ = Υ−1(Ξ∗+ Ξ)Υ⇒ (Λ + Λ∗)2 = [Υ−1(Ξ + Ξ∗)Υ][Υ−1(Ξ + Ξ∗)Υ]

⇒ (Λ + Λ∗)2 = Υ−1(Ξ + Ξ∗)2Υ...............(ii)

Since Ξ is Hermitian then (Ξ + Ξ∗)2 = 4Ξ∗Ξ and then (ii) becomes

(Λ + Λ∗)2 = Υ−14Ξ∗ΞΥ...................(iii)

but from (i) we have Υ−1(4Ξ∗Ξ)Υ = 4Λ∗Λ then (iii) becomes

(Λ + Λ∗)2 = 4ΛΛ∗ i.e. Λ is Hermitian.

Remark 4.2.11.
Recall if Λ ∈ B(H) and Λ is an isometry then Λ∗Λ = I

De�nition 4.2.12.
Λ ∈ B(H) is a partial isometry if ΛΛ∗Λ = Λ
i.e. if Λ∗ΛΛ∗Λ = Λ∗Λ⇒ (Λ∗Λ)2 = Λ∗Λ
and (Λ∗Λ)∗ = Λ∗Λ implying Λ∗Λ is a projection.

Proposition 4.2.13.
Let Λ,Ξ ∈ B(H) and Λa.s∼Ξ with Λ partially isometric. Then Ξ is also a partial
isometry.
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Proof. If Λa.s∼Ξ then we can have Υ ∈ G(H) so that

Λ∗Λ = Υ−1Ξ∗ΞΥ...................(i)

So

(Λ∗Λ)2 = [Υ−1(Ξ∗Ξ)Υ][Υ−1(Ξ∗Ξ)Υ] = Υ−1(Ξ∗Ξ)2Υ.......(ii)

Now (Λ∗Λ)2 = Λ∗Λ and from (i) and (ii) we have

Υ−1Ξ∗ΞΥ = Υ−1(Ξ∗Ξ)2Υ⇒ (Ξ∗Ξ)2 = Ξ∗Ξ............(iii)

Also (Ξ∗Ξ)∗ = Ξ∗Ξ∗∗ = Ξ∗Ξ............(iv) i.e.

(iii) and (iv) imply that Ξ∗Ξ is a projection and hence Ξ is partially iso-

metric.

Proposition 4.2.14.
Let Λ ∈ B(H) and Λa.s∼Ξ. If Λ is a projection, then Ξ also.

Proof. If Λa.s∼Ξ we can �nd Υ ∈ G(H) so that

Λ∗Λ = Υ−1Ξ∗ΞΥ.........(i)

Λ∗ + Λ = Υ−1(Ξ∗ + Ξ)Υ...........(ii)

Since Λ is a projection then Λ is Hermitian thus Λ∗ = Λ and by proposition

4.2.10, Ξ is also Hermitian thus Ξ∗ = Ξ
Now from i

Λ∗Λ = ΛΛ = Λ2 = Υ−1Ξ∗ΞΥ = Υ−1ΞΞΥ = Υ−1Ξ2Υ

i.e. Λ2 = Υ−1Ξ2Υ
but Λ is a projection implying that Λ2 = Λ so that

Λ = Υ−1Ξ2Υ.................(iii)

Also from ii

Λ∗ + Λ = Λ + Λ = 2Λ = Υ−1(Ξ∗ + Ξ)Υ = Υ−1(Ξ + Ξ)Υ = Υ−12ΞΥ
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i.e. 2Λ = Υ−12ΞΥ⇒ Λ = Υ−1ΞΥ..........(iv)
From iii and iv, Υ−1ΞΥ = Υ−1Ξ2Υ ⇒ Ξ2 = Ξ and since Ξ is Hermi-

tian,then Ξ is a projection.

Proposition 4.2.15.
Let Λ,Ξ ∈ B(H). If Λ and Ξ are unitarily equivalent, then Λa.s∼Ξ

Proof. Let Λ and Ξ be unitarily equivalent, then

Λ = U ∗ΞU ⇒ Λ∗ = (U ∗ΞU)∗ = U ∗Ξ∗U

So

Λ∗Λ = (U ∗Ξ∗U)(U ∗ΞU) = U ∗Ξ∗ΞU = U−1Ξ∗ΞU

i.e. we can �nd U ∈ G(H) satisfying

Λ∗Λ = U−1Ξ∗ΞU...............(i)

Also

Λ∗ + Λ = U ∗Ξ∗U + U ∗ΞU = U ∗(Ξ∗ + Ξ)U = U−1(Ξ∗ + Ξ)U

ie there is U ∈ G(H) which satis�es

Λ∗ + Λ = U−1(Ξ∗ + Ξ)U...............(ii)

The results (i) and (ii) imply that Λa.s∼Ξ

Remark 4.2.16.
The following proposition gives the condition under which quasi-similarity
implies almost similarity.

Proposition 4.2.17.
Let Λ,Ξ ∈ B(H) and Λ ≈ Ξ with equal unitary quasi-a�nities and that H
has �nite dimension. Then Λa.s∼Ξ
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Proof. Let Λ ≈ Ξ, then we can have two quasi-a�nities Υ,Ψ ∈ B(H)
which satisfy

ΥΛ = ΞΥ

ΨΞ = ΛΨ

Assume Υ and Ψ are unitary and Υ = Ψ
then Υ∗Υ = ΥΥ∗ = I ⇒ Υ∗ = Υ−1

but ΥΛ = ΞΥ⇒ Λ = Υ−1ΞΥ = Υ∗ΞΥ⇒ Λ∗ = (Υ∗ΞΥ)∗ = Υ∗Ξ∗Υ
So Λ∗Λ = (Υ∗Ξ∗Υ)Υ∗ΞΥ = Υ∗Ξ∗ΞΥ = Υ−1Ξ∗ΞΥ.........(i)
and Λ∗ + Λ = Υ∗Ξ∗Υ + Υ∗ΞΥ = Υ∗(Ξ∗ + Ξ)Υ
= Υ−1(Ξ∗ + Ξ)Υ......(ii)
The results (i) and (ii) imply that Λa.s∼Ξ

Proposition 4.2.18.
Let Λ,Ξ ∈ B(H) and Λa.s∼Ξ. If Λ is Hermitian, then Λ ∼ Ξ.

Proof. If Λa.s∼Ξ, we can �nd Υ ∈ G(H) satisfying

Λ∗ + Λ = Υ−1(Ξ∗ + Ξ)Υ

Since Λ is Hermitian then Ξ is Hermitian by proposition 4.2.10
Thus

Λ + Λ = Υ−1(Ξ + Ξ)Υ⇒ 2Λ = Υ−12ΞΥ⇒ Λ = Υ−1ΞΥ

Hence we have Λ ∼ Ξ

Remark 4.2.19.
Note that in the above proposition, since Λ and Ξ are Hermitian then both Λ
and Ξ are normal and so Λ ∼= Ξ.

Proposition 4.2.20.
Let Λ ∈ B(H), if Λ is normal then Λa.s∼Λ∗

Proof. Since Λ is normal then Λ∗Λ = ΛΛ∗

So Λ∗Λ = I−1ΛΛ∗I
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but ΛΛ∗ = (Λ∗)∗Λ∗ thus Λ∗Λ = I−1(Λ∗)∗Λ∗I..............(i)
Now Λ∗ + Λ = Λ + Λ∗ = (Λ∗)∗ + Λ∗

⇒ Λ∗ + Λ = I−1(Λ∗)∗ + Λ∗I.............(ii)

The results (i) and (ii) imply that Λa.s∼Λ∗

Proposition 4.2.21.
Let U ∈ B(H), if U is a unitary, then Λ ∈ B(H) is isometric i� Λa.s∼U

Proof. Suppose Λa.s∼U , then there is Υ ∈ G(H) which satisfy

Λ∗Λ = Υ−1U ∗UΥ = Υ−1IΥ = I

i.e. Λ∗Λ = I thus Λ is isometric.

Now let Λ be isometric then Λ ∈ θ
thus we can �nd Υ ∈ G(H) with Λa.s∼Υ implying Υ is isometric by proposi-

tion 4.2.5, thus Υ is unitary and hence Λa.s∼U
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4.3 Spectral properties of almost similar operators

Proposition 4.3.1.
Let Λ,Ξ ∈ B(H) and Λa.s∼Ξ. Then (Λ + λI)a.s∼ (Ξ + λI) for all real λ

Proof. If Λa.s∼Ξ, we can �nd Υ ∈ G(H) satisfying

Λ∗Λ = Υ−1Ξ∗ΞΥ...................(i)

Λ∗ + Λ = Υ−1(Ξ∗ + Ξ)Υ..................(ii)

Now from (ii) we have

Λ∗ + Λ = Υ−1Ξ∗Υ + Υ−1ΞΥ

So that

Λ∗ + Λ + 2λ = Υ−1Ξ∗Υ + Υ−1ΞΥ + Υ−12λΥ = Υ−1(Ξ∗ + Ξ + 2λ)Υ

⇒ (Λ∗ + λI) + (Λ + λI) = Υ−1[(Ξ∗ + λI) + (Ξ + λI)]Υ

⇒ (Λ + λI)∗ + (Λ + λI) = Υ−1[(Ξ + λI)∗ + (Ξ + λI)]Υ...........(iii)

So that

λΛ∗ + λΛ + λ2 = Υ−1λΞ∗Υ + Υ−1λΞΥ + Υ−1λ2Υ.............(iv)

Thus adding (i) and (iv) we have

Λ∗Λ + λΛ∗ + λΛ + λ2 = Υ−1Ξ∗ΞΥ + Υ−1λΞ∗Υ + Υ−1λΞΥ + Υ−1λ2Υ

⇒ Λ∗Λ + λΛ∗ + λΛ + λ2 = Υ−1(Ξ∗Ξ + λΞ∗ + λΞ + λ2)Υ

⇒ (Λ∗ + λI)(Λ + λI) = Υ−1(Ξ∗ + λI)(Ξ + λI)Υ..............(v)

but (Λ + λI)∗ = Λ∗ + λI and (Ξ + λI)∗ = Ξ∗ + λI for λ ∈ R
Thus (v) becomes

(Λ + λI)∗(Λ + λI) = Υ−1(Ξ + λI)∗(Ξ + λI)Υ............(vi)

The results (iii) and (vi) imply that (Λ + λI)a.s∼ (Ξ + λI)
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Remark 4.3.2.
The following corollary gives the conditions under which the spectra of almost
similar operators are equal.

Corollary 4.3.3.
Let Λ,Ξ ∈ B(H) and Λa.s∼Ξ such that (Λ + λI)a.s∼ (Ξ + λI) for all real λ. If
Λ and Ξ are Hermitian or projections then

σ(Λ) = σ(Ξ)

Proof. Since Λa.s∼Ξ then we can �nd Υ ∈ G(H) which satisfy

Λ∗Λ = Υ−1Ξ∗ΞΥ................(i)

Λ∗ + Λ = Υ−1(Ξ∗ + Ξ)Υ.................(ii)

If Λ and Ξ are Hermitian, i.e. Λ∗ = Λ and Ξ∗ = Ξ then ii becomes

Λ + Λ = Υ−1(Ξ + Ξ)R⇒ 2Λ = Υ−12ΞΥ

⇒ Λ = Υ−1ΞΥ

i.e. Λ ∼ Ξ and therefore

σ(Λ) = σ(Ξ)

Similarly if Λ and Ξ are projections then Λ2 = Λ = Λ∗ and Ξ2 = Ξ = Ξ∗

so (i) becomes

ΛΛ = Υ−1ΞΞΥ⇒ Λ2 = Υ−1Ξ2Υ⇒ Λ = Υ−1ΞΥ

i.e. Λ ∼ Ξ and hence

σ(Λ) = σ(Ξ)
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5 CONCLUSION AND RECOMMENDATION

5.1 Conclusion

In this project we have seen that a Hilbert space is a Banach space H where
the norm on objects in H is induced by the I.P function.
The set of all operators in B(H) is a Banach space.

σ(Λ) is the compliment of the ρ(Λ) and subset of C i.e σ(Λ) = {ρ(Λ)}C ⊆
C.
If Λ ∈ B(H) the σ(Λ) = σP (Λ) ∪ σC(Λ) ∪ σR(Λ) but if H is finite dimen-
sional we have σ(Λ) = σP (Λ) since σC(Λ) and σR(Λ) are empty sets.
To Λ ∈ B(H), the π(Λ) ⊆ σ(Λ) but if Λ is normal, π(Λ) = σ(Λ).
In general σP (Λ) ∪ σC(Λ) ⊆ π(Λ).

Similarity of operators is an equivalence relation and similar operators
have equal spectra.
Υ ∈ B(H) is invertible if it is le� or right invertible i.e. if ΥΨ = ΨΥ =
I,∀Ψ ∈ B(H). Therefore a unitary operator U is invertible since U ∗U =
UU ∗ = I .
Unitary equivalent operators are also similar operators, i.e. Unitary equiva-
lence⇒ similarity.

If Υ and Ψ are quasi-a�inities, then there composites, inverses and there
ad-joints are also quasi-a�inities.
�asi-similarity is an equivalence relation and the spectra of quasi-similar
hypo-normal operators are equal since quasi-similar hypo-normal operators
are similar.
Normal operators are also hypo − normal and therefore the spectra of
quasi-similar normal operators are also equal.
Two operators which are similar are also quasi-similar, so that we have
a chain of implication: unitary equivalence ⇒ similarity⇒ quasi−
similarity.
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Almost similarity of operators is an equivalence relation and Hermitian
almost similar operators have equal spectra since they are similar.
Also two projections which are almost similar have equal spectra.
Two quasi− similar operators Λ,Ξ ∈ B(H) are also almost similar if they
have equal unitary quasi-a�inities and H has finite dimension.
A normal operator is almost similar to its ad-joint operator.
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5.2 Recommendations for further research

1. We have seen that quasi-similar operators Λ,Ξ ∈ B(H) are almost simi-
lar if they have equal unitary quasi-a�inities and H is finite dimensional.

• We need to investigate whether there are other conditions under
which quasi-similar operators can be almost similar.

• We also need to find out the conditions under which we can have
the converse.

2. If an operator Λ is normal then we have the implication: Λ is normal
⇒ Λ is quasi− normal⇒ Λ is hypo− normal⇒ Λ is paranormal

We have seen that quasi-similar hypo-normal operators have equal
spectra.
We have similar results for quasi-similar normal operators.

• We need to investigate whether there are some conditions under
which paranormal operators can have equal spectra.

3. Almost similar operators have equal spectra if they are Hermitian or
projections.

• We need to research the behaviour of subsets of their spectra.
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