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Abstract

Great work has been done on modeling of financial instruments namely,shares,equities,
stocks and many more.The focus of this thesis is mainly modeling of stocks based on
normal mixtures.The essence of this work is to do a comparison between the Normal
Variance Mean Model and Normal Variance model and determine which of the two is best
for modeling stocks.

Normal mixtures is a combination of two distributions where the normal distribution is
the conditional distribution and is mixed with another distribution as the mixing distri-
bution.The two mixing distribution discussed in this thesis are both Gamma and Inverse
Gaussian distributions ,out of which we get the Variance Gamma and Normal Inverse
Gaussian distributions respectively.Data is fitted on the distributions, Normal variance
model and the Normal Variance Mean Model and a comparison is done to ascertain which
model gives the best goodness of fit and is the best model.

Construction of the two distributions based on Normal Variance is done using two ap-
proaches that is; Saralees Nadarajah and Ole Barndoff, and their respective properties are
given. Their respective Maximum likelihood Estimators based on the two distributions
is also determined. Estimation of the two models is effected using Method of Moments.
Data from Standard and Poor’s 500 index,January 1977- December has been used for the
analysis of the given work,and the results have been discussed accordingly. With regard to
AIC test done in the analysis Skewed Variance Gamma distribution gives the best goodness
of fit as compared to the other distributions While Nadarajah’s Approach Normal Inverse
Gaussian distribution tends to be the model for fitting stock returns.
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0.1 Abbreviations and Notations

Abbreviation and notations for specific:

Probability Density function of y
Conditional Probability of y given v
mixing distribution

Hankel function index v

Expectation of q

Conditional Expectation of q given v
{.}- set of variables

Likelihood function

log likelihood function

variance Gamma distribution
Normal Inverse Gaussian distribution
Maximum Likelihood Estimator
Normal Variance Mean Model

Normal Variance Model



1.1

Introduction

Background Information

In the financial world there has been broad work done based for the modeling of financial
instruments such as shares,equities,stocks and many others. In this thesis great focus has
been drawn to the modeling of stocks based on normal mixtures. Market stock is a type
of security that signifies proportionate ownership in the issuing corporation. This entitles
the stockholder to that proportion of the corporation’s asset and earning. Market Stocks
are bought and sold predominantly on stock exchange,though there can be private sales
and are the foundation of nearly every portfolio.

The flow chart below demonstrates a vivid description of the stock market business. It
sets out the relationship between a company with its investor and also elaborates the
stock transactions. In order for a company to raise capital it issues shares for the first
time(IPO) thereby securing finance at the first instance for its operations from the investor.
The pricing of stocks at the initial stage is based on the estimated worth of the company
and the number of shares being issued. This amount becomes the base of the company
,but also gains from future profits. The investor also acquires voting rights on account
of the shares of the company as a stockholder. In order for the company to maintain
its stockholders it pays dividends as a form of bonus. Dividends are just a percentage
of the profit made by the company and are paid quaterly or annually according to the
company’s respective policy. In the stock market transaction we have both the buyer and
seller. Buying and selling in the stock market is determined by the company percieved

value.
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Figure 1. lllustration of the Stock Market

The figure below illustrates vividly the stock market movement. The bull market is when
the stock rises,Investors who sell shares at this point are known as "bullish" investors. They
that sell when prices go down that is in the bear market are known "bearish" investors.
Share prices are described by the volume this is defined by the number of shares that
change hands each day. High volume and Low volume depend on the differences between
the selling and buying prices.

Daily Stock Movements
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Figure 2. Stock Movement



In this thesis, the normal mixtures model is constructed where the normal distribution
is the conditional distribution and both the Gamma and Inverse Gaussian distributions
are the mixing distributions respectively. Based on two approaches normal mixtures

distribution takes the form:-

1. Ole Barndoff(1977) Approach:Normal Mean variance.
In this approach we consider the mean as a function of variance;
where,(x/v) ~ N(u+ Bv,v)
Therefore

—(x— ﬁv)
_ / ST g(v) dv

271:v

we take,u =0and B =v

2. Saralees Nadarajah (2012):Normal- variance. In this approach we consider;

where,(y/A) ~ N(u,A)

Therefore

1 ~(-w)?
e 21

fO/A) =

where, —co <y > 00, —co < I > 001 >0

2
we take, p =0and 5 =x



1.2

1.3

Chapter Five Maximum Likelihood Estimator has been discussed and derived accordingly
based on the two distributions constructed. Chapter Six estimation is done based on the
two models. Data analysis has been done based on the data obtained from Standard and
Poor’s 500 index from January 1977 to December 1981 .The S and P 500 or just the S and
P was developed and continues to be maintained by S and P Dow Jones indices a joint
venture majority owned by S and P global. It is an American stock market index based
on the market capitalization of 500 large companies having common stock listed on the
NYSE,NASDAQ or the Eboe BVX exchange.The results have been presented in Chapter
Seven. Chapter Eight we have the conclusion and recommendations. Finally, Chapter
Nine is the Appendix.

Statement Of The Problem

In the stock market, stocks returns are never normally distributed, this is because of the
risk measures in the financial world. These risk measures include interest rates, Economic
Outlook, Inflation, Deflation, Political Shocks, Terrorism, Investor Sentiments. Most
research done in modeling stocks returns is based on the Normal variance Mean model.

The aim of this thesis is to model stocks returns using the Normal Variance Model
based on two distributions Normal Inverse Gaussian and Variance Gamma distributions
respectively. A comparison of the two distributions is done based on the NV.M and N.V
models respectively to identify the best model.

Study Objectives

The overall objective is to investigate the distribution that is best for modeling stock
returns.

1.3.1 Specific objectives

i) To Construct the normal mixtures distributions, Variance Gamma and Normal Inverse
Gaussian respectively, their respective properties and Maximum Likelihood Estimator.

ii) To Estimate the parameters of the respective distribution based on the Method of
Moments.



1.4

iii) To Fit the Standard and Poor’s 500 index from January 1977 to December 1981 data to
the respective distributions.

Literature Review
1.4.1 Normal Mixtures

A discrete mixture of normal distributions is proposed to explain the observed significant
kurtosis(fat tails)and significant positive skewness in the distribution of daily rates of
returns for a sample of common stocks and indexes. The result comparison between
the models is that the discrete mixture of normal distributions has substantially more
descriptive validity than the student model.[KON84]

Mixtures of normal distribution is proposed to accomodate the normality and asymmetry
characteristics of financial time series data as found in the distribution of monthly rates of
returns for their indices.Maximum likelihood estimation via EM algorithm to fit the two
component mixture of normal distribution using data sets on logarithmic stock returns of
Bursa Malaysia indices.The mixture distribution was found to accommodate leptokurtic
as well as skewed in the data .Mixture of normal distribution is proposed to accommodate
the non-normality and asymetric characteristics of financial time series data as found in
the distribution of monthly rates of returns for the indices.[KAM12]]

The normal variance model has been used to describe stock return distribution.The model is
based on taking the conditional stock return distribution to be normal with it’s varaince.the
estimation procedures are based on the method of moment and the method of maximum
likelihood [NAD12]

The normal mixture distribution is proposed to accommodate the non-normality and
asymmetry characteristics of financial time seried data as found in the distribution of re-
turns.In support of determining the number of component in the mixture the information
criterion for model selection is used.The goodness of fit measures provides supporting evi-
dence in favour of the two component normal mixture model distribution at all frequency
levels.Empirical results indicate that the normal mixture distribution offer a plausible
description of the data, and is shown to be more superior compared the use of other
distributions(Gumbel minimum distribution and Laplace distribution).[KAM15]

1.4.2 Normal Inverse Gaussian Distribution
The Normal Inverse Gaussian Distribution (NIG) distribution determines an homogenous

levy process,and the process is representable through subbodination of brownian motion
by the inverse gaussian process.The canonical, levy type,decomposition of the process is



also determined.A brief review of the connection of the NIG distribution to the classes of
generalived hyperbolic and inverse Gaussian distribution is also discussed ,[BARN97].In
order to investigate if NIG levy process is a suitable model the uniform residuals by
means of an algorithm which simulates random variables from the NIG distribution is
calculated. The algorithm uses the characterivation of the NIG as a normal variance mean
mixture.An approximation of the process that only relies on the fact that the process is a
levy process with characteristic triplet is provided which will make it more tractable from
a mathematical point of view [RYB97] In a comparison of various distribution to model
the leptokurtic marginal distribution of asset is done.This is to identify a distribution the
best fits empirical asset returns.Based on the results obtained after the analysis done for
index returns,NIG distribution can be describe as a distribution which does not explain
the tail properties acccurately enough,'underestimate the tail thickness" [HUR97]]

The gap between the traditional ARCH modelling and recent advances on realived volatil-
ities.The implied daily GARCH model with NIG errors estimated for the ECU returns
results in very accurate out of sample predictions for the three years actual daily exchange
rules.Empirical results coroborate the argument in favour the GARCH-NIG model as prov-
ing accurate and parsimonious representations of daily exchange rate dynamics.Hence,in
the case of equities, skewness in the returns may necessitate the use of more general NIG
mixture distribution,[FORS02]

Alternative approach for VaR calculation based on realized moments. The EMWA was
used to compute the forecast realized moments which were then used to parameterive
the NIG distribution in a method of moments,[LAU14]

1.4.3 Variance Gamma Distribution

A continuous time stochastic process, termed the VG model is introduced , for modeling
the underlying uncertainity during stock market returns.Given that the GH distribution
improves only marginally on the VG distribution and the t-distribution, if at all, we
postulate that in most cases it is sufficient to consider only the latter two models. The
authors concede that, although the VG distribution seems marginally superior here,
modelling of rare events may be better captured by the t-distribution[MAD90].A three
parameter stochastic process termed the VG prices that generalives brownian motion is
developed as a model for the dynamics of log stock prices .These additional parameters
provides control over the skewness and kurtosis of the return distribution.The additional
parameters also correct for pricing biases of the blackscholes model,[MAD9S]]

Inside the class of processes which allow to build a model free from arbritrage,which we
have seen corresponds to the class semi-martingales, the attention is focused on the vari-
ance gamma process.The Variance Gamma process can be obtained by replacing the two
parameter compose with the black and scholes model, that allow to control the skeweness



and kurtosis of the process followed by the underlying returns allowing to price options
with different strikes without need to modify implied volatility or other parameter as the
moneyness change,[[FIO04].Fitting of the variance gamma distribution allows for skewness
by moment method.The fitting procedure allows for possible dependence of increments in
log returns, while retaining their stationarity.Standard estimation and hypothesis-testing
theory depends on a large sample of observations which are independently as well as iden-
tically distributed and consequently may give inappropriate conclusions in the presence
of dependence.[SEN04]

A review of the evolution of the theme of the pre-1990 papers is the estimation of parame-
ters of log prices increment distributions that have real simple closed form characteristic
function directly on simulated data and Sydney stock exchange data,[SEN06].Financial
returns (log increments)data Y;,t = 1,2...., are treated as a stationery process, with the
common distribution of each time point being not necessarily symmetric.Expository ex-
ploration of the applicability of the method of moments in both symmetric and skewed
settings ,using moment estimates of EY;, VarY;,skewness and kurtosis to clarify the use-
fulness of this methods.[JET06]

A scaled self-decomposable stochastic process is used to model long term equity returns
and options prices. This parsimonious model is compared to a number of other one
dimensional continous time stochastic process that are commonly used in finance and
the actuarial Sciences.A test is done to test if the models can reproduce a typical implied
volatility surface seen in the market. Based on evidence from options prices the variance
gamma scaled self- decomposable and the Regime switching lognormal process[MOL 10]

A method to process options using a multinomial method is proposed when the underlying
price is modeled with a Variance Gamma process.The continuous time V.G process is
approximated by a continuous time process with the same first four cumulants and
then discretived in time and space. This approach is particulary convenient for pricing
options which can be exercised before the expiration date.Numerical computations of the
given options are presented and compared with results obtained with finite difference
method and with the black scholes. It turns out that the multinomial method is easier
to complement than the finite difference method . The algorithm does not involve any
matrix multiplication or matrix inversion as in the case of implicit and explicit method
PIDE’s, which means the computational time is much smaller.[CAN18]

The outline of the thesis is as follows:
Chapter 2: Deriving the propeties and first derivative of Hankel function based in their

respective intergration properties, Constuction of the Generalized Inverse Gaussian and
its special cases .



Chapter 3:Construction of the Normal Inverse Gaussian distribution based on Nadarajah
and Ole-Barndoff approach and deriving its properties

Chapter 4:Construction of the Variance Gamma distribution based on Nadarajah and
Ole-Barndoff approach and deriving its properties

Chapter 5:Deriving of the Maximum likelihood estimators of the respective distributions
based on the two approaches mentioned above

Chapter 6:Estimation based on Method of Moments of the two distributions respectively
Chapter 7:Data analysis done on the two distributions

Chapter 8:Conclusion and Recomendation

Chapter 9:Appendix
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2.1

2.2

Generalised Inverse Gaussian Distribution

Introduction

In this chapter,Construction of GIG pdf and two of it’s special cases is considered.Their

construction is based on the Hankel function.

Hankel function

2.2.1 First Integral Representation and its properties

1 [ —w
K,(w) = 5/0 e ) gy

property one

K,(w) = K_v(w)(symmetry)

Proof.

1 [ —w
K,(w) = 5/0 K le 2 (h ) gy

let, 2% = x,Therefore,d(x) = 2_s2 W ds

Thus:

v—1 _y,w s\, —
/ {W ez(zsﬂ)(_v;}ds

hencelet,s = 1 thus ds = _CZZV
v

0 1 e ( —1
_ +V
v 2/ 2 )(—z)d\/

=)
z/{i G}
—K_v(

(1)

(2
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2.2.2 Second Integral Representation and its properties

1 *° 1
Kv(w) — (g)v F(z) )/ (SZ— 1)v—§e—ws ds

r(v+3
property two

Kj+é(w):\/27 7W{1+Z J+]1) (>2::)l}

Proof.
let,v=j+ = ,for] 0,1,2,...
hence,
w1 D(3) e ,
__]+7—2 2_11—wsd
T ]+% oo .
:—f i / (s —1)/e™ ds
2721 N
T ]+% 0 .
= le / (52— 1) e " ds
2722 j!
Therefore,

w/WﬂWJ 1 — 1) e ™ ds
2] ]!
_] —w Lp WS
_ jwmwle / (sz—l)fe_w ds
J
”wﬂvzvje' [(s—1D)(s+ 1) e ™™ ds
J 1
wrw/ eV _
=/ — T /1 [(s—1)(s+1)]e —wis=1) g

d
let,v=w(s— 1),thus,K =s—1I;s+1 =2+1,hence,ds: av
w w w

&)

4)



12

Wit _, i —ydv
Kjy (0) =/ e ZJJ,/{ @+ 2o
1 jwr _, 2v j
=[S 2/11/{ )}e dv
T e " w 2v
_ J
_‘/2w i 2]/ {(— 1+ )}e dv

T e—W oo

Voo [ AW+ S e av

Hence,

—-w / ! +1 —i
\/je {1+Zijj'((fj D
g G DI
\/Ze {1—1—;](] D! }

First Corollary of property 2;

T _y
K%(w):@lﬁe (6
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Proof.

Ki(w)

Second Corollary of property 2;

Proof.

2w

e "[1+0]

Z|a| 2]

= (-

T _, (1+1)12w)~!
:\/%e U=y
e 212wt
:\/ge {1+ (0!1? }

T ., 1
=\/;e {1+;}

2.2.3 Derivatives of hankel function

First Derivatives

Ty g G0

(6)

o))
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Proof.
2 k) = [T e F et gy
w2 Jo
1 />~ —1 w
-1 .1 7/, 2w (prl) I [~ 5 = (pr )
5y, peE U e o E T apy
—1
=S K1 () + K1)
]
recall,
Lw v ~ —v—1_—p w2
KW =3(5) [ p e dp
0
Proof.
0 Jd 1l w oo WP
—K —_— (= V/ —v—1 P—z d
ow v(w) 9w2(2) 0 p ¢ " ap
1 vw., [ 1 _, W w o v =D
= GG e ap (D) [T e R w) dp)
1 vw _ w W w oW =D
=5 GGG e dp Gy [ e (W) dp)
1 v w W W, W [ . w2
:E{E(E)V/o p e T dp—(g)v(g)/o p e 4”(@@ dp}
v 1w L w 1 w < v
=S GG e ap) S [ e dp
\%
:;Kv (W) - Kv—H (W)
]

Equating the two derivatives we get,

ig-wﬂm—1&1W0=£K@”_mHW0

Kvi1(w) = —Ko(w) + 5Kyt (W) ®)
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2.3 GIG distribution with its special cases
2.3.1 Constuction of GIG

Generalised inverse Gaussian distribution has a pdf of the form;-

_ X vl (k)
2k (V2 Y)

where K,(.) is the hankel function index v.

proof,

Barndoff - Nielsen et al (1977),proofs that GIG is infinetly divisible.

K,(w) = %ffxvfle%w(”%) dx

let,
Y L4
and,x = | —v,=>dx =,/ —dv
e fns i 7
maintaining the integration limits,
| . - X 1
2/\/>vvlex{\/_w\/> [}dv
v v— 1 ‘I/X‘I/ XXW
S e e

=50/ % [ exp{T(Zvﬁ_h’)}d

hence the pdf,

@)

2K, (VXY)

forc(x:v, x, W) = vle7 (W)
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2.3.2 Special cases of GIG

Gamma distribution

Gamma~ (x =0,v > 0)

let, x =0,
substituting to the equation,

Inverse Gaussian Distribution

Inverse Gausssian is a special case of GIG,where v=%1,

—1
ficvix,v) = feic(vs ERA V)

f (x-_—lx y) = Sill p2 Lo (W)
GIG b 2 ) 9 ZK%(\/X_II/)
v -1
__GE ey
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by symmetry,equation[2]

Thus,equation6]

letw = /Xy
T _
KWW =[5 vay
__ VT v
V2(xy)3

VAL I

2.3.3 Raw Moments for Normal Mixtures

let,g/v ~ N(8+ 6v,6%v)

\/E(XV’)M\I/W 3 o2 (wtrd)

=1
2

_ VX3 v +vaw

v

(wv+xd)



General formula

First Moments

E(q) =E(E(q/v))
=E(0+0v)
=6+ 0E(v)

Second Moments

E(E(q°/v))

E(q*) =E(
E(var(q/v)+(E(q/))?)
(
2

E(c?v+ (8 +6v)?)
G°E(v) +E(8%+205v+6%7?)
=02 +82+205+60°E(\?)

Third Moments

EGE(¢/v) —2u")

E(3(8+6v)(c v+(5+9v)2)—2(5+9v)3)
E(3(8+6v) 62v+ (5 +6v)°))

—E(386%v 4300617 + 8% +308% +36%6v* + 6°1°)
=3562+306°E(V*) + 8 +308% 4+ 362SE(v}) + 0°E(v®)

E(q)
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Fourth Moments

E(g"/v) =30" +4"E(q* /v) — 6" W2 E(q* /v) + 31"

—36* +45(E(q3/v)) +49vE(q3/v) +3(6+ 9v)4 —6(0+ GV)Z(GZV +(0+ 9v)2)

=36" +45(35062v+300%2 + 5% +305%v+3625v% + 0%°) +40v(356%v + 30027 + 57
+308%v+3028V7 + 0°v) —6(82 +208v+ 62?) (0%v+ 82 +208v+ 02+
3(8* +408%v+ 660367 + 64

=36" +4(386%6%v+3056%% + 84 +305%y + 362627 + 50%1°) +4(350017 + 30261
+8%0v+38%0%% +356° + 011 — 6(8%0% v+ 84 +28°0v+ 826%?) —6(205 62V +
208 +4628%7 +26°8v%) — 6(0%8%v + 52047 +2860° + 04Y) +3(8% +408°v+
602522 +46°5v + 0%v*)

=302 + 6% +12080%% + 68262y +48°0v + 60282 + 60262V +46361° + o4

E(q*) =36*E(v*) 4+ §*+12086°E(v?) + 682062 +48°0 + 60252 E(v?*) + 60262 E(v¥) + 403 S E(v?)
+0*E(v)
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3.1

Normal Inverse Gaussian Distribution

Introduction to Normal mixtures

Normal mixtures is a mixtures of the normal distribution as the conditional distribu-
tion and another distribution as a prior (mixing) distribution.In this chapter focus has
been made on the construction of Normal Inverse Gaussian distribution,based on two

approaches.

1. Ole Barndoff(1977) Approach:Normal Mean variance.
In this approach we consider the mean as a function of variance;

(x/0?) = (x/z) where (z = 6?)
(x/2) ~N (1 +Pz,z)
Therefore,
1 —G-u—pv?

flef2) = e

-/ °°f<x/v>g<z>dz

(x— ﬁv)
—/ o g(z)dz

27rv

we take, u =0and f =v

2. Saralees Nadarajah (2012):Normal- variance. In this approach we consider;

(v/6%) = (v/A), where(A = 6%),and, (y/A) ~ N(u,A)

fo/A) =
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where, —c0 <y > 00 —co < I >0 v > ()

10 = [ 10/2)eR)an

_/oo 1 e*(yzflﬂ)z (ﬁ,)dl
0 V2mA 8

2
we take, 4 =0and 5 =x

3.2 Construction of Normal inverse Gaussian distribution

3.2.1 Barndoff Nielsen approach

£x) = / F(x/2)g(2) dz

where,




therefore,

1 —w? 3 -
f(x) :/ e 2z lz%e%
0

) 2
1 _\/7_5/ Lef(z? Lot W) vavy,
0

Xevw/“ g2
~— | z
0

Introducing Barndoff Nielsen (1977);GIG pdf,

3 _
e % z2e7 (Yz+(

(Ve D) +VIAV g,

. 2 s
:\/_7 / Z%le (21) ZT3€TI(WZ+X%)+VXWdZ
0

:—% / Zfze%z%e%l(WZer%)Jﬂ/x‘de
0

1

1
)H—xz)g)dz

l[_/ v
—(x)z Zv_lg%l(‘llx'i‘%)
2Ky (VXY)
substituting in the function,
vy =l
flx) = VA 2KV txz)l’/) /w ) R (22
2m (%J":xz)7 0 2K 1(/(x+x*)y)
Since,
v ozl
/°° ) Il (et )
0 2K_1(v/ (X +x*)y)
therefore,

VZ i 2K (/W)

flx) =

27 (II/

)H—xz)7

T STN[PERCIIE

—E ok Jo 2w [

X+ x?

x+x

3.2.2 Moments of Inverse Gaussian Distribution

ol—
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First moments

o] KR e Wt ) AV 4,
27
/ e (et g,

em/ 17 e E) g
0

TT‘VH dz

Recall,

hence,

- 2K (y/
/ Ale T (vetd) _ 1Y)
0 (%)%
Hankel function ,equation
T _y
T
K /ur) — e VY

Substitute in the function,
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Second Moments

/ \/ 2262"’Z+ )eVIV 47
27

_ /iem/ 2wt E) g
27 0

=1/ = e\ﬁ/ z2e2 (w3 )dz
27

o le\/ﬁ/ Zfil _I(WZ+ )dz
27 0

hence,

()
Hankel function ,equation]g]
Kiw) =/ Fe (14 )
W= 20 w
T AT 1
K = ei a4 1
V= T )

X 3
(‘l_/)4 VXY
VX 1
=—(1+ )
(Jcl//3)Z 44
Xz
%
1
=y(l+——)
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Third moment

/ \/ 2262"’Z+ )eVIV 47
27

_ /iem/ 3wt E) g
27 0

=/ == e\ﬁ/ z2e2 (w3 )dz
27

o le\/ﬁ/ Zfil _I(WZ+ )dz
27 0

hence,

Substitute in the function,

let,j = 2,
2 W)
Ky 1(w) =\/§e_w{1 +i; (24 Di@w) ™ ?212!5)2!”) ¥
T 3! 4!
:\/2: [H{mv( ) 0!2!(2w)2}]
o 6
:\/ge [1+{E+W}]
therefore,
T _ 3
Ksw)=1/5 e "(I+{+ 2})
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substituting w = /X,

T
Ks(Vxy) = 2\/96_11/ VEY[L 4 {\/—_Vf X_II/}]
substituting back to the equation:,
3y = | X vV */%"’ — 4=
FE) \/; i ()3 o {W xw}]
__VZ 3 .3
_(xw)fw% [1+{\/X_‘V+%‘/’H
x4
i 2
=70 +{\/_+%l/f}]

Fourth moment

hence,

substutute in the function,



Hankel function,equation [4]

let,j =3,

4! 51 6!
{2!1 2w) 121w 0!3!(2W)3}>
6,15 15

(w2 (w)?

Il

|
Q
=
—
+

substituting w = /X,

VD) =[5 Ut )

substituting back to the equation:,

15

4 NI 6 5
E(Z) =/ 57¢ o %z Uty e
6 15
- [H{\/_ v (\/95_1/1)3}]
<\%>%
1515
—(~ )[ {\/— (\/X_—‘W}]

3.2.3 Convolution Property

Convolution property is one of the properties of NIG where it is said to be closed under
convolution.
that is,

NIG(xla¢lau) *NIG()Cz,d)Z,‘Ll) :NIG<xl +X2,¢1 +¢27“)



let
Y = (X1 —|—X2)

based on MGF technique,

M)’<t> :Mx1<t> *sz(t)

Proof.
My (t) =E[e"]
—EE[ef]
—Ele)
RS YV
:/me“’“LéMzg(l)dl
0
let,u =0

M.(1) = / T g (2)dA

l’ltzwzn_)u?e%l VAT VAV ),
=4/ —e\/w/ M) 7 ¢ 7 (VA1) ),
2
— X eF/ A7 e WA+E)+2A2 gy
\/ er/ A7 e WAHE-A2) gy
_ /_emf / A2 e (v=D2+%) 47
2)

=/ er/ AR T Mt
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let,
X X
A= 2, = dA = dz
(v —12) (y—12)
. *(‘4/242)( (qu—crz)z—’— 2 i 7 )

_ | X vy / (%7 v X g

n o 'V (v-1?) (y=2)
Rty [T [y ¥ T R,

T 0 (y—1%)
Eetr [ [ e

T

Ky (2 (=) = | |- VAV

substitute in the equation,

—2, | L eviv( (‘/’_’2))%1 VD)
2n 2\ 2v/x

_ NI A1)
_NIWT= Y1)
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proof for convolution property,

My(t) =E[e™"] « E[e™]
=My, (1) % My, (1)

— NI WT=AY=1) | (T Y1)
— VTR (T Y1)

3.3 Construction of NIG

3.3.1 Sareless Nadarajah’s Approach

_ e¢\/_ / AT exp(Z)AT exp{(T(p)(ﬁJrz)}d’l

mm
> —<7“’>< +))an

//1 2ex —(9/1 % %)}dl
—<"’ PHEZ) Jan

Introducing J@rgansen(1982)concept to the integral part of the equation below,

o>

G
2K (VYY)
Ler,% = ,and, pp+2x = ¥

o) = Texp{(5H(Y )

Therefore,

exp{ (‘lf/l +7 )}
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Representing everything to take the form of modified bessel function,

_ Vg 2k 1(y vy (V)2 1 -1
- 2n (¥) = / 2[{ \/W))L( l ])exP{(T)(‘IUL-F ) }dA
Thus,

MM (=1=1) o -1
0 21{21(\/%—”,)7L Pl )(yA+> )}d?t—l

. since it is a pdf.

Hence,replacing back y and x to their original variable representation we have

3.3.2 Moments of IG



First moments

xy:/wxvggﬂz?wpﬁj%9+%ywx
\/; / AT exp{— - —i—lb;b—q))}d?t

Introducing J@rgensen(1982)pdf,with intergral representation;

<

[ e e = ()

_19¢ _
let,y = w=

5 =wandu¢ =y

therefore;

replacing back the original parameters;
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recall the equation(5)

thus;

substitute to the equation;

) VT
E(A):\/ﬁ\/ae(p \ﬁ\/ﬁe—(])
2 1
Ve
:\/E =/ (u)>=u
m
=u
Second Moments
B0 = [ 2 L
0 27

hence,
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substutute in the function,

Hankel function ;equatior(6}

substituting back to the equation,

NG
VO 5, V2/s
E(?Lz)—\/ﬁ e?2 3 e (1+
\/E\/% %2
(14 )
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Third moment

thus,

substutute in the function,

5
((})“)4
Hankel function ,equation(d),
T L (4 1)12w)
K =/ e
i) =4 g5e +Z‘1 Goipi
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let,j = 2,
, y
T (241)1(2w) "
K o E ey B SEw)
2y ) =y {+l.; CEOIT
T, 31 41
=/ —e "1
¢ M e T oy
T _, 6 6
=) — 4 —
2w [ +{2w+(2w)2}]
therefore,

substituting w = ¢,

1)

substituting back to the equation:,

\/g"’2 (W iG+ )

VG, \/_
“VavE ff

=H (1+{$+@})

e ?(1 +{5 +W})ﬂ§
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Fourth moment

hence,

substutute in the function,

Hankel function property 2:,
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let,j =3,

K

(w) = . W{IJFZM}

3+3 2w’ i)l
7 41 51 6!
Vo U amee T e T osiaes
7 6 15 15
S G D ST
2w ( +{w * (w)? * (w)3})

substituting w = ¢,

K0 =\ [35e 0+ G+ g1+ b

substituting back to the equation:,

ot gt
f\/_ \/_ 15 "
VRS Ve <1+{¢ TRl
15
=u (1+{¢ 5 F})

3.3.3 Convolution property

Convolution property is one of the properties of NIG where it is said to be closed under
convolution.
that is,

NIG(xla¢lau) *NIG()Cz,d)Z,‘Ll) :NIG<xl +x27¢1 +¢27“)
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based on MGF technique,

Proof.

letY = (x1 +x2)

My(t) :Mx1(t) *sz(t)
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Jogernsen ,IG pdf takes the form,

/Oo [ X vav, 3 ) — g
0 2

xR 27 - yav
X
let, = ol,and,\/XY = (%—ﬂ)w

Substitute back to the equation,

_ O e 27—\ Gon
2n ou

_ (9 _p2
— oV amr)ou

— PV 9(9—nur?)
hence,
MY(t) :Mxl (t) * sz (t)

— M=V 91 (G1—ur?) |, 02—/ 92 ($2—pr?)
:e(¢1+¢2)—\/¢1(¢1—le)—\/¢2(¢2—ﬂf2)

This approach does not clearly show the concept of convolution property.
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4  Variance Gamma

4.1 Introduction

In this chapter construction and properties of Gamma is considered.Variance Gamma is a
mixture of normal distribution as the conditional distribution and Gamma distribution as
the prior diatribution. The construction is based on two approaches;-

1. Ole Barndoff approach.

70 = [ 7(x/0)8(6) do
= [ fe2ea:

where,

2. Nadarajah’s approach.



where,

1 ¥

f5/3) = e

AP exp(=2)

)L - n
)= BT ()

4.2 Constuction of Variance Gamma

4.2.1 Based on Ole Barndoff approach

10 = [ s/

2 (YA
2—2(2) A—1 —1

Sl |
:/o Vam - T4

(2 oole%zz’l le=1¥egy
L(A)v2mJo z
= (3)" T A e ) g,
T(A)v27 Jo
($H* e
- 2K 2y)(2) =2
e )
&) lia—1
Ay P Dy
1 Ayl a1
T RN R
(Wit
TR V)

4.2.2 Moments of Gamma distribution

First Moments
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Second Moment

Third Moment
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Fourth Moment

4.2.3 Convolution property

Convolution property is one of the properties of VG where it is said to be closed under

convolution.
that is,
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VG(x1,AL, W) *VG(x2, 2, W) =VG(x1 +x2,A1 + A2, W)

let,Y = (x1 +x2)

Based on MGF technique,

Proof.



VS
SIS
SThreY

|
e 4

SIS
+

for,VG to be closed under convolution,then

MY(I) :Mxl (t) *sz(t)
(Y YV A
(l/f+t2) *(WHZ)
( W )lr#lg
y+12

4.3 Construction based on the Second Approach

4.3.1 Based on Nadarajah’s approach
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First Moment

/Aﬁ Gt an
uﬁr V2rm

/ L P s 2
uﬁr V2m

let,A = \/Uux z,and,dA = \/lx dz

_3
2e

1
~ uBT(B) \/27:/ )

Zﬁ_%ei\/F(ZJr%)dz

1
uﬁl“ \/ﬁ/

,ux ﬁ 2 1/ Bf’ . ﬁ 7)
uﬁr \/27:2 dz

2P ;
a1y
\/_‘uz ZX%([B 7) X
S R
V2
- T(B)Vau )

4.3.2 Moments of Gamma distribution

1
—u (VIR ) (\/Hx)dz



Second Momment

L(B)
=1*(B)(B+1)

Third moment
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~—~

B+2)(B+1)(B)T(B)
I(B)
=1 (B)(B+1)(B+2)

Fourth moment

/ w2 le 2
uPT(B

lﬁl; / 7L[H4 1eﬂd7L
_ T(B+4)

- uPT(B) ()P

I'(B+4)

(B)uPu—p-4
(B+4)
“T(B)u

_HH(B+3)(B+2)(B+1)(B)T(B)

I'(B)

=u*(B)(B+1)(B+2)(B+3)

T
T

4.3.3 Convolution Property
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Convolution property is one of the properties of VG where it is said to be closed under
convolution.
that is,

VG(x1,B1,1) xVG(x2, B2, 1b) = VG(x1 +x2,B1 + B2, 1)

let,Y = (x1+x2)

Based on MGF technique,

My<t) :Mm(t) *sz(t)

Proof.

M, (t) =Ele"]
—EE[ef]
—E[e?]

1942
:e”t—i_j)’t

= /Ooo e“”“%xtzg(l)dl

let,u =0
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_ p-1, Y
uﬁrw)/o 4 a2

R S by SO i
_uﬂr(ﬁ)/o APlem(  5)AdA

L(B)

For,VG to be closed under convolution,therefore,

M)’(t) :Mxl (t) *sz(t)
(L-%) )

= *
‘uﬁl(%_%)ﬁl ‘uﬁz(% f_)ﬁz

2
(-2
uﬁﬁrﬁz(% %)ﬁl +B
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5.1

Maximum likelihood Estimator

Introduction

In this chapter, the maximum likelihood estimator method is considered as a method of
estimation. MLE’s for the two distribution are derived based on both approaches used for
construction of the distributions.

MLE method has the following steps,

. Likelihood

where ¢ = {.}

. Log Likelihood

t

logL(@) =) f(xi;9)

i=1

. First partial derivative of the Log Likelihood with respect to the parameters being

estimated

0
90 logL(9)

. Maximization of the derivative

d
%logL((p) =0

5.2 Maximum likelihood estimator for NIG distribution

5.2.1 MLE for NIG distribution
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Based on Nadarajah’s approach

i=1
! 2x

I 7= M,Hx Ki(y[0(0+70))

te(])t 2X

TR, (op+2x) H T

g L(9) = log+19 —rlog 7~ Y-/ (o + 20)) + Y Ki(y[0(6 +21)
i=1 i=1

t - d L dlogK;(w)

dlogL(¢ )__ B .
30) +1 Za((/) log(/¢ u+2Xl)+i:1 50)

J e 1 J

and u:¢u+2x,~):>v:u%

M\»—A

let,v = ((P[,l +2xl)

thus,
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where,

thus,

Recall, equation|7| hankel function derivative,

A R )




8K1 (W) 1

5, = ~LoKi(w)+Ko(w)]
differentiating with respect to ¢ we get,
dlogL(e) 1 =Ny 8[(1
50 —t(¢+1) ;2(¢“+2 —i—Z
- l t H X — l w w )ﬁ l
=i(G+1) - L5 (0u+20)" +2K1(W) K100+ Ko(w)] (97
EUVL PR o L -1yl Kow), oy a1
, Ko(1/9(0+%1)
)Y B Y — |
¢ L L O(0+2)  Ki(y/9(9+2))
Xi 1
(¢+—)
VOGRS
1 TR , 1 Ko(1/0(9+31))
=t(—-+1)—% - ) [ +
o T ik Gurz K 0(0+2)  Ki(y/0(0+30)
Xi 1
(¢+-) )
Ry oo+
hence,
t | Ko( ¢(¢+2,f)) X 1 1 u 1
a —t(—+1)—%
L (0 +25) K ¢(¢+2;f))]( “) 90 +2) G kG
Y l—




differentiating with respect to U,

810gL

t
d
Za— og(\/ou) +2xl+2 10gK1

0 1 0
ﬂlog(v ou)+2x;) = Wﬂ(v ou)+2x;)

let,v = (¢,u—|—2x,')%and,u =QU)+2x; =>v= u?

thus,
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let,
_ s 02w 1
w=v2and,v = (¢~ + r )s 5, = 5"
av _—¢2x,l —1
ou  u? 2
—¢xi
02
oK 1
00— L)+ Koo
dLogKi(w) _ -1 1 ow
) LK)+ K]
_[l KO(W)]_¢xi -1
wo Ki(w) p?
:i)ﬂ[l KO(W)]
urww o Ki(w)
therefore,
dLogL(¢) S —0xi v ¢ oxi 1 Ko(w)
= +Y S
u Z] u? ,Zluzw[w Kl(W)]
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hence,
t ) Ko(\/o(9+30) 2
Z 2x 2x + 2x; ] - 7
= W’ ¢+ 2 W’ 0+20)  Ki(y/9(0+3))

The two equations for the maximum likelihood estimators are

¥

i=1

1 Ko( ¢(¢+%)) X; 1 1

v o+ =ty
JOO+35)  Ki(y/9(9+2) HoJo(o+2) 9 2,-221@

and,

Ko(y/9(9+ 7)) _u_z
2

t Xi 1
1 [ + ]_
i; Vo2 Joo+2)  Ki(\/o(o+2)

Based on Ole Barndoff

\f\ﬁ

let,w = a?,and, y = 8>

)C—I—x2

2

i=1

1
(o +2x;)
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z=17 \% 52—‘[-)62
at 51‘ (S t 1 t
= _— Kl(Ot\/ 52+x2)
! ,IJ V82 4 x2 ,I:I

t 1 t
logL(@)=tlogo+tlogd +tlogm+tad+ Y log———+ Y logK;(a
gL(p) =tlog g g ; g s ; gKi(

differentiating with respect to o,

t
dlogl(p) _ 1 +t5+2%10g1(1(0‘\/m)
i=1

o o

let,

d
w:a\/52+xl~2,:>£: 8% +x?

Recall hankel function ,equation|7]

N
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maximizing,

dlogL(p)
o

Ko(otr /82 +2)
——l—t5 Z 82 +x7 | ]=0
/o o ey

82+x?  Ki(ay/8%+x?)

hence,

: . Ko(ay/8+3) 4
;\/62+x . —52+xi2+K1(06 —]—aﬂa

82 +x?)

differentiating with respect to &

L
—810g o) _ 1 +ro+

13 a t
95 o tetlast st ks
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9 I 1a o
%log—_——log(S +x;7)

\/ 62 +x? 296
_ -1t
=3

—25( 1

2 52+xl2
b}
=( )

8% +x?

d
2,2y 9 (2 2
0 +xi>86 (6°+x7)

)

let,w = ot/ 52—|—xl-2,:> 3—2} = a5(52—|—xi2)_71

Recall hankel function ,equation

maximizes,
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' ! Ko(oty /8% +x?)
et Y (Y ° ad

_|_

)l ]
5 R C o oy /62 +x7 Kl(oc\/82+xi2) \/52+x,-2

Yl il 62+xz2)] DBty (2
=l “\/52+Xi2 Kl(“\/52+xi2> \/52+x,~2 0 5 6%+

=0

The two equations for the maximum likelihood estimators are,

f 1 Ko(o\/82+x7)
Y o v

+ |=—+16

i=1 oy/82 4+ Ki(oy/82+x2) @

L LT R L SRS TR
Hafered roferd) Jorg & F 8

and,

5.2.2 Maximum Likelihood Estimator for Variance Gamma Distribution

Based on Nadarajah’s approach

\/ix%(ﬁ_%) <
f(xnu“?B) — 2641 Kﬁ_l(2 _)
F(ﬁ) \/E,LL(T) 2 u
1 1
t \/Ex?(ﬁ_z) 7
L(o) =[] o Ky (207
i=1 F(ﬁ) \/E,U(T) u
2% 1 t %_% : N
77:% (F(B))t ‘LL(]-FZIS)% gxl ZIZII ﬁ_;( ‘LL)

t t 142B)t 1 d
logL(¢p) ==1log2 — Elogﬂ —tlog(T(B)) — Mlogu + (g - 4_1) Zlogxi + ZlogKﬁfé(Z
' i~

1
2 4 =

i=1

differentiating with respect to i

Xi

U

~—



dlogL(p) —1(1+2B) K2 i
ou 4u +,~:Zia logKB_é(z\/;)
810gKﬁ_%(2 ) 1 8K 2 Xi)
= = _1 -
I K, %(2\/%)8#’32 u
1 Jd X, 00
— K _1(2\/2) 5
KH(Z\/E) do P27\ u’ ou
let,
Xi
w=(2,/—
( u)
—2 & u?
ow  —/X
8u ‘u%
Recall, P
k,(w v
afv ) = ;KV(W) _Kv+1(w)
But in our case ,
Xi
v:(ﬁ—i),and,w=(2\/£)
therefore,
dKg_1(w) g1
ﬁa; = [ 2Ky (W)~ Kg 1 (w)
dlog Kg_1(2, /%)) 1 [ﬁ_% Ky (205 =Ky 1 (2, ]2]
(9.“ Xi Xi B—3 u B+s M
Kg_1(24/%) (2\/%)
—ﬁi[ﬁ—l Ky /)
3 X; Xi
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dlogL(p) 1+2[3 ! ﬁ ~1 Kp+1 2\/7
0 B = 3
i = % 2[ K o 2[
dlogL(9)
=0
u

_ 1 (2
t1(1+2B) 132\/_[_ K1 \/>

W R e

2
3 Xi X,
4 urisi Cyu) Kg_1(2y/3)
18 K@) gt
= ) Vil ]
wE k05 oD

Z’:\/E[KW(Z\/%)_ B3, _tp>(1+2p)
i=1 Kﬁf%(2 )ﬁ) (2 )ﬁ) 4u

differentiating with respect to (f3)

dlogL(e)  —tlogl'(B) d(1+2B)zlogu 1{ . -2
) 9B +§.21°gx’+§ 9B
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_talogrﬁ 1 J1pB

o8 'TB B

—rﬁ Om eyP 1 log(y) d(y)
g

=—ft—

Ip

I(1+2B) logp  dlogu (%4

ap 0B
=5 ogu
8logKﬁ7%(2 ) 1 dKg 1(24/%)
d x; d
B K 1(2\/3) B
0K, 1(2,/%)
dlogL() ' f 1 B T
= —ty(B) —5logu+ - ) logxi+
op gloskty Lloent L PRICVE
8logL((p)_0
B
0K, 1(2,/%)
t 1< 1 B3
—tw(ﬁ)—ilogu%—EZlogx,—l— - 9B =0
i=1 B Zﬁ:l%& “)




The two equations for the maximum likelihood estimators are

Z\/f + @ u>_ By rui(+2p)
and,
t 1 aKﬁ_%@ %) n t
) =1y(B)+5logu — > ) logx;
i=1Kg_1(2,/%) B 2 i=1
N
Based on Ole Barndoff approach
1
L(@) =] ] (xi. 0)
i=1
T ! 1 Ay Ad
_z:1 Zlféﬁ ﬁKA %(XZ,OO oA
— 1 zlttK _ k+%ttl*%
i) () T e @ I
1 1 1 VR P
=)' (=) (=) [1K, 1 () (@2 F2) T
2A-3" “\/m' "TA Ul A=z Q

—_

1
logL(¢) :(l—E)tlogZ—tlogF/l—tlog\/ﬁ—l—(?L—k )tloga—l—ZlogK/l 1x,,

Z logx 2

(A — i)logZ—tlogFl —tlogV/m+1(A+ E)loga—f— Z’logK;L 1 (x,00)

1 4
+(A - E)i_zilogxi
differentiating with respect to (),

dlogL(9) t(l+%) 0 .
S0 p —I—;%logl{lf%(xl,a)
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ow

let,w :xi,a,é,ﬁ =

Xi

d d aw
EIOgK;L_%(Xi,OC) :mlogl(/l_%(x,-,a) Ja
__ 1 d, (xi, ) ow
K o) ow A1 gy
2

Recall,
oK, (w
S0V k)~ Ko ()
therefore,
d 1 A—1 aw
ﬁl()gKli(xi’a)_KAé(xi,a)[ 5 K-y =Ky (w)] 5
A—i K i(w)
(-l
w Kl_%(w)

Ay o2 _1 K, i(w)
8lo§L(<P) :t( +3) +) n[—=- At ]
a o A w K
A 1 t A _1 K l(xiaa)
_t(A+3) Yot 2o Ats ]
o i=1 xl) K/'L—%(x”a)
dlogL(o)
0
do
t(A+3) Ay Kybeo)
+i;x’[xl',0¢ _Kl_;(xi,a)] =0
- KpiiGao)  r(a+ 1)
i_ZIXI[ Xi, O Kl_%cxiaa)] B «
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differentiating,with respect to,A

dlogL(p) dlogTA ! v d .
Sy —tlog2 —t 91 —H‘logoc—1—121102(;)6,—1—21 91 logK,L_%(xl,oc)
talogfl _1ad
oA AdA
A
=f—
A
—ty(2)
hence,
dlogL(¢) _ " oo Y 2 .
—= —t10g2—tl//(),)+tlogoc+i;10gx,+i;ﬁlogl(l_%(x,,a)
dlogL(y) _o
oA

t t a
—tlog2 —ty(A)+tloga+ Zlogxi+ Z ﬁlogK)Lf%(xi, a)=0
i=1 i=1

t t
i; %log[(l_é(xi, o) =tlog2 —ty(A)+rloga — Zlogx,-

i=1

The two equations for the maximum likelihood estimators are,

Ztlxi[l —3 Kb a)] _1(A+3)
= Xi, O Kl_%(x,-, OC) o

and,

1

1
; %log[(l_i(xhoc) =tlog2—ty(A)+rloga — ;logx,-

1=
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6.1

Estimation Based on Method of Moments

Assymetric Variance Gamma

let g;,denote the financial returns(log increments) where r = 1,2......,
Two models have been discussed in this paper.These are:

i) Generalived Normal variance Mean Model(G. N .V.M)
where g/v ~ N(a(b+v),c*v+d*) V= denotes non negative random variable and

a,b,c,d are constants

i) Normal Variance Mean Model
let § =ab,d =0,c* =0%,a=0
thus ¢/v ~ N(8 + 0v,6%v)
where v is gamma distributed and q is variance gamma distributed

The general formula for central moments

My =E(X —E(X))*, where,k =2,3,4

Formula for skewness

B = ‘ )

<
[\
SN—

[\ST[9]
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Formula for Kurtosis

EX—-EX))*
(E(X - E(X))?*)?

(M)

M;
k = —(M2)2 (10)

The general formula for skewness

E(X3) = 3uwEX?) +2u*

Skew(X) = 3
G*
For a normal distribution,Skew(X) =0
hence,
3 * 2 #3
E(X") =3u"E(X")—2u (1)

The general formula for Kurtosis

E(X%) —4u*E(X?) + o*u2E(X?) — 3u*

Kurt(X) = 7
G*
For a normal distribution,Kurt(X) =3
hence,
E(X*) =36 +4p*E(X?) — 6" u2E(X?) +3u* (12)

6.1.1 Normal Variance Mean Model
where,

q/v~N(8+6v,06%)
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Central moments of Gamma distribution

k=2,3,4 and v ~ gamma distributed ,AssumingE(v) = 1

Second Gamma Central Moments

hence,
EGWV) =My +1

Third Gamma Central Moments

(
—E(v—1)°
—E(v =32 +3v—1)
—E(v}) —3E(v*)+2
—E(V?)=3(My+1)+2
—E(v) —3(Mp) —3+2
—E(®) —3(Ms) —1

hence,
E(WV) =M3+3My+1

(13)

(14)
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Fourth Gamma Central Moments

(v—E(v)*

(v—1)*

=E(V* =4+ 602 —dv+1)

=E(WY —4E(V) +6E(*) —4+1

—E(v") —4(M34+3Mr +1) +6(My + 1) —4+1
(VY —4M3 — 12My) —4+6Mr +6— 4+ 1

=E(W*) —4M3 — 6M; — 1

hence,
E(WV*) = My +4M3+6M, + 1 (15)

Raw moments of variance Gamma distribution
q/v ~N(8+ 6v,6%)

and,q ~ varianceGamma,E(v) = 1

First variance Gamma Raw Moments

E(q) =E(E(q/v))
=E(S6+6v)
=6+ 0E(v)
=0+0

E(q)=6+06 (16)
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Second variance Gamma Raw Moments

E(E(q°/v))

E(q*) =E(
=E(var(q/v) +(E(q/))*)
(
2

E(c?v+(8+6v)?)

G2E(v) +E(8%+205v+6%7?)
=62+ 824205+ 0°E(\?)
=02+ 824208+ 60*(My+1)

Second variance Gamma Central Moments

Var(q) =E(q*) — (E(q))*
=62+ 8%+206+60*My+ 6> — (5 +6)°
=02 +68%+205+6°M>+ 6% — 5> —256 — 62
=02+ 0°M,

Var(q) = 6>+ 6°M,

Third variance Gamma Raw Moments

E(q’) =E(E(q/v))
recall,equation(T1)

E(3u*E(q*/v) —2p")

EB(5+6v)(o v+<5+9v>2)—2(5+9v)3)
E(3(8+6v) ctv+(5+6v)%))
—E(3862v+300H7% + 8> +3082+3628v + 63°)

E(¢)

=35062+300°E(V*) +8° +308% 4+ 362SE(v*) + 0°E(?)

(17)
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Third variance Gamma Central Moments

Q3 =E(q—E(q))’
=E(q° —3¢"E(q) +3Y(E(q))* — (E(q))’)
=E(q°) —3E(q°)(8+ 6) +3E(q)(E(9))* — (E(q))’
—E(q°) —3E(¢*)(6+0)+3(8+6)(5+6)>—(5+6)°
—E(q°) —3E(4*)(6+0)+2(5+6)°

—E(¢°) — (36% 4+ 8% 4208 + 6°E(v*)) (5 +6) +2(5 4+ 6)°

=3802 +306°E(v*) + 8% +3608° +36°8E(v?) + 0°E(v®) —3806% —38° — 206 —356°E(v?)
—300%—36082—60%6 —30°E(v?)+28° +605%+665 +26°

=308%E(v?) + 0°E(v* — 3608 —360°E(v?) +26°)

recall,equation(13)

EGWV) =My +1

and, recall,equation(13)
E(W) =M3+3My+ 1

substitute to the equation,

03 =308%(Ma+ 1)+ 60> (M3 +3My +1) —3608% — 3603 (My 4+ 1) +267)
=308°M, + 6°M;

03 = 3952M2+93M3 (18)

Fourth Variance Gamma Raw Moments

E(q*) =E(E(q"/v))
recall,equation(12)

E(X*) =30 +4u*E(X?) — o i2E(X?) +3u*
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hence,

E(g"/v) =30" +4u"E(g /v) — 0" W?E (¢ /v) + 3"

=36" +48(E(q/v)) +40VE(q®/v) +3(8 + 0v)* — 6(8 + 0v)2 (62 + (5 + 0v)?)

=30" +45(350%v+300%2 + 5% +305%v+3625v% + 0%%) + 40v(350%v + 30027 + 57
+308%v 43602817+ 6°1°) — 6(8% +208v+ 6%v?)(62v + 82 4+208v + 62?) +3(8*
+408%v+ 603520 + 6**)

=36* +4(36262v 4305022 + 8% +3605%v + 302822 + 56°%) +4(36062% + 36261
+8%0v+3820%7% +380% + 01 —6(8%6%v+ 8% +28%0v + 526%?) — 6(20562V?
+208%v+4028%17 +20°6V) — 6(6%26%v° + 526117 +256%° + 61*) +3(5* +4608%y
+66°5%v +40°5v° + o)

=302+ 6+ 1208047 + 66262 +48°0v +60%5%* + 60262y +46°6v° + 6H*

Therefore,

E(q") =30*E(*) 4+ 8* + 1208 6%E(v?) + 68%0% +48°0 + 60°5°E(v?) + 60262 E(v?) + 403 8E(v})
+0*E(vY)
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Fourth Variance Gamma Central Moments

04

E(q—E(q ))

E(q' —44°E(Y) + 647 (E(q))* —4Y (E(9)) + (E(9))*)

E(q")—4E(q’)(8+6) +6E(q°)(5+6)* —3(5+6)*

E(¢") —4E(¢*) (8 +6)+6E(4*)(8%+205 +6%) —3(5+6)*

—E(q*) —4(8+0)(3606% +300%E(v?) + 8% +308%2+3625E(V) + 0°E(v?)) +6(5 + 6)?
(67482 +205+6°E(v?)) —3(8* +4608° + 66282 +46°5 + 6%)

=30*E(v?) + 8*+ 1208 6°E(1?) +68%0% + 480 + 60%8E(v*) + 60> 62E(v}) + 403 SE(v®)
+0*E(W") —4(5+6)(386% +306°E(V?) + 82 +3082+30%5E(?) +0°E(v})) +6(5+6)?
(62 + 824206+ 0°E(1?)) —3(8* +408° + 6025 +46°5 + 6)

=306*E(1?) +60%62E(v}) + 0*E(v*) — 1202 62E(v?) —40*E(v}) — 36* + 60*E(v?) + 66%5*
=36*E(vV}) 4+ 60%62(E(v}) —2E(v*) + 1)+ 04 (E(v*) —4E(1®) + 6E(v?) —3)

=36%(My +1)+6026>(M3 +3My +1—2(My + 1)) + 0*(My +4M3 + 6My + 1 — 4(M3 +3M, + 1)
+6(My+1)—3)

=364 (My+ 1) +60%6% (M3 + My + 6*M,)

O4 :30'4(M2+1)+69262(M3 +M2+94M4) (19)

Skewness Variance Gamma

recall,equation@ therefore,

306%M, + 0°M
B= 2 = (20)
(62 + 92M2)7

Kurtosis Variance Gamma

recall,equation(10) therefore,

304(Ms + 1) + 60202 (M3 + M, + 0*M,)

k—
(62 + 92M2)2

(21)

Parameters
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6.2

ok
. V—§—1
5 B
. o0=L
. 5=p-6

Normal Variance Model

let X;,denote the financial returns(log increments) where t = 1,2......,

and,

X /A ~N((u+BAr),cA)

where A is gamma distributed and X is variance gamma distributed let,u = B = 0, and, 6% =
1

Gamma Distribution Moments

Recall,
E(A)=up
E(A?) = 12(B)(B+1)
EAR) = (B)(B+1)(B+2)

E(A%)=p*(B)(B+1)(B+2)(B+3)

Central moments of Variance Gamma distribution

First Central moment

E(X)=E(E(X/A))
=E(u+pA)
=u+BER)

=0
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Second Raw moment

E(X?)=E(E(X*/1))
—E(var(X/A) + (E(X/2)%)

—E (6?4 +0)

2

Second Central moment

Third Raw moment

recall,equation(11) thus,

E(X®) =E(E(X3/1))
—EGUE(X?/A)—2u*)
=E(3(1+BA)oA —2(u +BA)?)
=0
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6.3

Fourth Raw moment

Recall,equation(12) thus,

E(X*)=E(E(X*/1))
EGo™ +4(u+BMEX3/A) — " E(X?) +3u™)
—E(3062?)
=36*E(A?)
=3E(A?)
=3(WB(B+1))

Skewness = Skew(X) =0

3(u*B(B+1))
up

_3(B+1)

B

kurtosis = k =

Normal Inverse Gaussian Distribution
6.3.1 Assymetric Normal Inverse Gaussian

Let g;,denote the financial returns(log increments) wheret =1,2......,

Normal Variance Mean
Assymetric Normal inverse Gaussian
let the conditional distribution is normally distributed takin the form ¢/v ~ N(u + Bv,c%v)

where v is Inverse Gaussian distributed taking the form v ~ IG(a,A) and q is Normal

Inverse Gaussian distributed

Symetric Normal Inverse Gaussian
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LetB = 0 the conditional distribution is normally distributed takin the form g/v ~
N(u,0%)
where v is Inverse Gaussian distributed taking the form v ~ IG(a,A) and q is Normal

Inverse Gaussian distributed

Normal Variance
LetB = 0,u = 0,6% = 1 the conditional distribution is normally distributed taking the
form g/v ~ N(0,v)

where v is Inverse Gaussian distributed taking the form v ~ IG(a,A) and q is Normal

Inverse Gaussian distributed

6.3.2 Central Moments of Normal Inverse Gaussian

A
- Elg)=p+y

52
. var(q) = o3
. Skewness=a=—P I
5(a*)2
2
, 3(1+457)
«  Kurtosis=b = 2
[0

6.3.3 Parameters

A 3
. O = ———
sV 3by—5ar?
. [; = —WS(AX
B2+a2
. i _ AszécA
ﬁ2+a2
1oy B
. ‘LL — x+ &
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7.1

Data Analysis

The analysis of data was done by fitting Standard and Poor’s from January 1977 to

December 1981 on the respective distribution.

Table 1. Descriptive statistics

Stocks Return data

sample size

samplemean

o

sample skewness

sample kurtosis

S and P 500

1262

0.000106

0.008032

-0.022525

4.215883

The table above gives the descriptive statistics for the parameter estimates.The parameter

estimates were estimated using raw data readings on S and p 500 Index as from

1977 to 31% December 1981.

Daily Adjusted Closing Prices of sp500 Index

from 3rd Jan. 1977 - 31st Dec. 1981

3 rd

January

@

£ ]
-
I‘:L<::I
s
g =
—

w _
(@)

[

& O
o =
— =
O

L= —]
L]

a

[1}]
N s |
= @ T
=T

I
200

400 600

800

1000 1200

Days [3rd Jan. 1977 - 31st Dec. 1981]

Figure 3. Graph for the adjusted closing prices

The figure above gives a vivid description on the stock movement based on the adjusted

closing prices for S and p 500 Index as from 3 January 1977 to 31* December 1981.

Variance Gamma Distribution

Tables extracted from the results
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Table 2. Parameters Description

S and P 500 0 0 o
skewed -0.00014305 | 0.00024905 | 0.008032
symetric 0 0.000106 | 0.00803
NV 0 0 1

Table 2: above gives a description of the parameter estimates for Variance Gamma distri-

bution.The estimates are given based on the specified three models Skewed,Symmetric
and N.V.

Goodness of fit

Analysis for Goodness of fit was based on the log likelihood and AIC.

Table 3. Goodness of fit

Distribution Skewed VG | Symmetric VG | Nad VG

Log likehood | 4315.2145216 4314.5013559 | 4314.103

AlIC -8622.4290432 | -8623.0027117 | -8624.206

Table 3: gives values of Goodness of fit based on the three models.The analysis was done
based on the log likelihood and AIC test. Skewed Variance Gamma has a better goodness
of fit as compared to the others since it gives a greater log likelihood value.Based on AlC,
Variance Gamma Distribution constructed(Nadarajah’s approach) gives a lower value

as compared to Skewed and Symmetric hence can be taken as the best model for fitting
stock returns.
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Graphs
sp500 density
] — Skewed VG

o = = Mormal

a = Symmetric VG
> _
uw o |
% o
D —

o

o d =

[ I I I [ [ I I
003 -002 -0.01 0.00 0.01 0.02 0.03 0.04

sp500 daily log returns

Figure 4. Skewed and symmetric

The graph above gives a comparison of the Skewed VG, Symmetric VG and Normal
distribution. Both Skewed VG and Symmetric VG are highly peaked at the center as
compared to the normal distribution .Though Skewed VG tends to be slightly higher than
Symmetric.
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7.2

sp500 density
] — Symmetric VG

= _| = = Mormal

o — Centered-Symmetric VG
> _
L)) O |
5 O]
D —

o

o - o=

I I I I [ [ I I
003 -002 -0.01 0.00 0.01 0.02 0.03 0.04

sp500 daily log returns

Figure 5. Symmetric and Centered - symmetric

The graph above gives a comparison of the Symmetric VG, Centered -Symmetric VG(Nadarajah’s
Approach) and Normal distribution. Both Symmetric VG and Centered -Symmetric
VG(Nadarajah’s Approach) are highly peaked at the center as compared to the normal
distribution .Though Symmetric VG tends to be slightly higher than Centered -Symmetric.

Normal Inverse Gaussian Distribution

7.2.1 Tables extracted from the results
Table 4. Parameters Description
S and P 500 B A o u
skewed -11.2594 | 0.01211 | 188.7253 | 0.00083
symetric 0 | 0.01223 | 189.5669 | 0.00018
NV 0] 0.01233 | 191.2142 0

Table 4: above gives a description of the parameter estimates for Normal Inverse Gaussian

Distribution.The estimates are given based on the specified three models Skewed,Symmetric
and N.V.

Goodness of fit
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Analysis for Goodness of fit was based on the log likelihood and AIC.

Table 5. Goodness of fit

NIG Skewed Symmetric NV
Log likehood | 4315.0755799 | 4314.5836310 | 4314.2525
AlIC -8622.1511597 | -8623.1672619 | -8624.5045

Table 5: gives values of Goodness of fit based on the three models.The analysis was
done based on the log likelihood and AIC test. Skewed NIG has a better goodness of
fit as compared to the others since it gives a greater log likelihood value.Based on AIC,
NIG Distribution constructed(Nadarajah’s approach) gives a lower value as compared to
Skewed and Symmetric hence can be taken as the best model for fitting stock returns.
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Graphs

sp500 density
n f_""'i — Symmetric NIG

o | N = = Normal

TS — Centered-Symmetric NIG
. -
wn =
% o
D —_—

o

o - ==

[ I I I [ [ I I
003 -002 -0.01 0.00 0.01 0.02 0.03 0.04

sp500 daily log returns

Figure 6. Symmetric and Centered - symmetric

The graph above gives a comparison of the Symmetric NIG, Centered -Symmetric NIG
(Nadarajah’s Approach) and Normal distribution. Both Symmetric NIG and Centered
-Symmetric NIG(Nadarajah’s Approach) are highly peaked at the center as compared to
the normal distribution .



sp500 density
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Figure 7. Skewed and Centered - symmetric

The graph above gives a comparison of the Skewed NIG, Centered -Symmetric NIG
(Nadarajah’s Approach) and Normal distribution. Both Skewed NIG and Centered -

Symmetric NIG(Nadarajah’s Approach) are highly peaked at the center as compared to
the normal distribution .
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8.1

8.2

Conclusion and Recommendations

Conclusion

According to the analysis done on the three Models Asymetric(Skewed), Symmetric and
the distribution constructed using Nadarajah’s approach on the respective Distibutions
that is NIG and VG.

The log likelihood test shows that the Skewed Variance Gamma distribution gives the
best goodness of fit since it has a greater log likelihood value as compared to the other
distributions.According to AIC test Nadarajah’s Approach Normal Inverse Gaussian distri-
bution tends to be the best model for fitting stock returns this is because it gives a lower
value as compared to the others.

Recommendation

1. Estimation of the respective distributions can be done based on EM algorithm

2. Study can be done to investigate whether or not there is a relation between Variance
Gamma distribution and Normal Inverse Gaussian distribution with an absorbing
Brownian Motion.
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Appendix
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SP500 Index: Symmetric VG Q-Q plot
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