SUPPORTING MATERIALS

Synthesis, structural assignments and antiinfective activities of 3-*O*-benzylcarvotacetone and 3-hydroxy-2-isopropyl-5-methyl-*p*-benzoquinone

Veronica M. Masila ^{a,b}*, Albert J. Ndakala ^b, Robert Byamukama ^a, Jacob O. Midiwo ^b,
Rahab W. Kamau ^c, Mei Wang ^e, Mallika Kumarihamy ^e, Jianping Zhao ^e, Matthias
Heydreich ^d and Ilias Muhammad ^e
^aDepartment of Chemistry, College of Natural and Applied Sciences, Makerere University,
P. O. Box 7062, Kampala, Uganda.
^bDepartment of Chemistry, School of Physical Sciences, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya.
^cDepartment of Chemistry, College of Natural and Applied Sciences, University of Dar es Salaam, Tanzania. P.O. Box 35091- Dar es Salaam, Tanzania.
^dInstitut fu[°]r Chemie, Universita[°]t Potsdam, P. O. Box 60 15 53, D-14415 Potsdam,

Germany.

^eNational Centre for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Mississippi, USA. MS 38677 USA. Corresponding author: Veronica Masila; Email: masilaveronica@gmail.com

ABSTRACT

In an attempt to synthesize carvotacetone analogues, new 3-*O*-benzyl-carvotacetone (**10**) and previously reported 3-hydroxy-2-isopropyl-5-methyl-*p*-benzoquinone (**11**) were synthesized from piperitone (**7**). In this work, we describe synthesis of **10** and other analogues from **7**. Luche reduction of **7** to *cis*-piperitol (**8**), followed by benzylation yielded 3-*O*-benzyl-piperitol (**9**). Riley oxidation of **9** afforded corresponding ketone **10**, **11** and 3-benzyloxy-4-isopropylcyclohex-1-enecarbaldehyde (**12**). Structures of these compounds were determined based on NMR, IR and LC-MS spectral data. Compound **11**, exhibited antiplasmodial activities against chloroquinesensitive (D6) and resistant (W2) strains of *Plasmodium falciparum* with IC₅₀ values of 0.697 and 0.653 µg/mL, respectively. In addition, compound **11** was active against *Cryptococcus neoformans* with an IC₅₀ value of 3.11 µg/mL, compared to reference standard fluconazole (IC₅₀ value of 1.87 µg/mL), while **10** and **12** were

inactive against both organisms. This is the first report of the antiplasmodial and anticryptococcal activity of compound **11**.

Key words: Piperitone, Riley oxidation, 3-Hydroxy-2-isopropyl-5-methyl-*p*-benzoquinone, 3-*O*-benzyl-carvotacetone, Anti-plasmodial, Cryptococcosis.

SUPPLEMENTARY INFORMATION

Table S1: ¹H and ¹³C-NMR spectral Data assignment of compound **9** by 2D experiments

- Figure S2: ¹H-NMR spectrum of compound **9**
- Figure S3: ¹³C-NMR spectrum of compound **9**
- Figure S4: COSY spectrum of compound 9
- Figure S5: HSQC spectrum of compound 9
- Figure S6: HMBC spectrum of compound 9
- Figure S7: LC-MS spectrum for compound 9
- Figure S8: IR spectrum of compound 9
- Table S9: ¹H and ¹³C-NMR spectral Data assignment of compound **10** by 2D experiments
- Figure S10: ¹H-NMR spectrum data of compound **10**
- Figure S11: ¹³C-NMR spectrum data of compound **10**
- Figure S12: COSY spectrum of compound 10
- Figure S13: HSQC spectrum of compound 10
- Figure S14: HMBC spectrum of compound 10
- Figure S15: LC-MS spectrum for compound 10
- Figure S16: IR spectrum of compound 10
- Table S17: ¹H and ¹³C-NMR spectral Data assignment of compound **12** by 2D experiments
- Figure S18: ¹H-NMR spectrum of compound **12**
- Figure S19: ¹³C-NMR spectrumof compound **12**
- Figure S20: COSY spectrum of compound 12
- Figure S21: HSQC spectrum of compound **12**
- Figure S22: HMBC spectrum of compound 12
- Figure S23: IR spectrum of compound 12
- Figure S24: LC-MS spectrum for compound 12

Position	¹³ C NMR, δ , ppm	¹ H NMR, δ , ppm	НМВС
1	140.3		
2	121.1	5.82, <i>m</i> , 1H	C-7, C-6, C-4, C-3
3	71.7	3.89, (<i>t</i>), 1H	C-7′, C-5, C-2, C-1
4	46.2	1.09, 1H	C-9, C-8, C-6, C-5
5	21.4	1.63, (<i>m</i>), 2H	C-6, C-4, C-3, C-1
6	31.7	2.02, (<i>dd</i>)/2.07, (<i>dd</i>), 2H	C-5, C-4, C-2, C-1
7	23.7	1.77, (s), 3H	C-6, C-2, C-1
8	28.3	1.86, (<i>m</i>), 1H	C-10, C-9, C-4
9	21.0	0.98, (d), 3H, J = 6.5 Hz	C-10, C-8, C-4
10	21.1	1.0, (d), 3H, J = 6.5 Hz	C-9, C-8, C-4
1′	139.6		
2′/6′	127.5	7.39, (<i>m</i>), 2H	C-4′, C-1′
3'/5'	128.2	7.36, (<i>m</i>), 2H	C-3′/5′, C-1′
4′	127.2	7.28, (<i>m</i>), 1H	C-2'/C-6', C-1'
7′	70.1	4.73, (<i>d</i>), J=11.7 <i>Hz</i> / 4.49, (<i>d</i>), J=11.7 <i>Hz</i>	C-3, C-1′, C-2′/C-6′

Table S1: ¹H and ¹³C-NMR spectral Data assignment of compound 9 by 2D experiments

Figure S2: ¹H-NMR spectrum of compound 9

Figure S3: ¹³C-NMR spectrum of compound 9

Figure S4: COSY spectrum of compound 9

Figure S5: HSQC spectrum of compound 9

Figure S6: HMBC spectrum of compound 9

Figure S7: LC-MS spectrum for compound 9

Figure S8: IR spectrum of compound 9

Position	¹³ C NMR, δ , ppm	¹ H NMR, δ , ppm	НМВС
1	132.7		
2	146.4	6.78, <i>m</i> , 1H	C-6, C-7, C-4
3	78.7	3.85, <i>d</i> , J = 2.4 <i>Hz</i> , 1H	C-7′, C-5, C-4, C-2
4	46.9	1.65, <i>m</i> , 1H	C-10, C-9, C-8
5	27.3	2.39, <i>m</i> , 2H	C-4, C-3, C-1
6	198.1		
7	15.6	1.83, <i>s</i> , 3H	C-6, C-2, C-1
8	28.2	1.94, <i>m</i> , 1H	C-10, C-9, C-4
9	20.5*	0.86, <i>d</i> , 3H, J=6.6Hz	C-10, C-8
10	20.4*	0.96, <i>d</i> , 3H, J=6.6Hz	C-9, C-8
1′	138.1		
2′/6′	127.9	7.33, <i>m</i> , 2H	C-7′, C-4′
3'/5'	128.3	7.36, <i>m</i> , 2H	C-2′/6′, C′4, C-1′
4′	127.6	7.30, <i>m</i> , 2H	C-3'/5', C-2'/6"
7′	71.3	4.48, <i>d</i> , J = 12.0 <i>Hz</i> , 1H	C-3, C-2′/6′, C-1′
		4.58, <i>d</i> , J = 12.0 <i>Hz</i> , 1H	C-3, C-2′/6′, C-1′

Table S9: ¹H and ¹³ C-NMR spectral Data assignment of compound 10 by 2D experiments

Figure S10: ¹H-NMR spectrum data of compound 10

Figure S11: ¹³C-NMR spectrum data of compound 10

Figure S12: COSY spectrum of compound 10

Figure S13: HSQC spectrum of compound 10

Figure S14: HMBC spectrum of compound 10

Figure S15: LC-MS spectrum for compound 10

Figure S16: IR spectrum of compound 10

Position	¹³ C NMR, δ , ppm	¹ H NMR, δ , ppm	НМВС
1	143.7		
2	146.4	6.93 1H	C-6, C-5
3	71.4	4.20 <i>t</i> , 1H	C-6, C-7′
4	46.4	1.19 m, 1H	C-10, C-9, C-8
5	20.1	1.55 <i>m</i> 1H	C-5, C-4, C-3, C-1
		1.89 <i>m</i> ,1H	
6	22.7	2.53 <i>m</i> , 1H	C-7, C-5, C-4, C-2, C-1
		2.03 <i>m</i> , 1H	
7	194.7	9.54 s, 1H	C-5, C-2, C-1
8	28	1.89 <i>m</i> , 1H	C-4, C-3
9	21.1*	1.02 <i>d</i> , 3H	C-10, C-8, C-4
10	21.0*	1.02 <i>d</i> , 3H	C-9, C-8, C-4
1′	138.6		
2′/6′	128.4	7.38 d J = 4.8 Hz	C-7', C-4', C-3'/5', C-1'
3'/5'	127.6	7.32 m	C-2′/6′, C-1′
4′	127.7	7.34 <i>m</i>	C-3′, C-2′
7'	71.5	4.76 <i>d</i> J=11.5 <i>Hz</i> / 4.64 <i>d</i> J=11.5 <i>Hz</i>	C-3, C-2′/6′, C-1′

Table S17: ¹H and ¹³ C-NMR spectral Data assignment of compound 12 by 2D experiments

Figure S18: ¹H-NMR spectrum of compound 12

Figure S19: ¹³C-NMR spectrumof compound 12

Figure S20: COSY spectrum of compound 12

Figure S21: HSQC spectrum of compound 12

Figure S22: : HMBC spectrum of compound 12

Figure S23: IR spectrum of compound 12

Figure S24: LC-MS spectrum for compound 12