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Abstract

Background: Di�erentiated care is a new innovative approach for managing HIV/AIDS

where ART treatment services are customized by staggering patients’ visits for stable

status while reducing unnecessary burdens on the health system. Through provision of

di�erentiated care, the health system can reallocate resources to patients most in need

who are failing treatment.

Objective: The main objective of this study is to develop a data-driven longitudinal model

which is applicable to HIV di�erentiated care.

Method: We used routine data of HIV positive patients initiated to ART at the point of care

from 4 medical facilities in Nairobi in the year 2018. Since both the GLMM and GEE are

extensions of the GLM, we start with a brief overview of GEE then relooked at extensions

of GLMM. We specify f(µ) and g(µ) to be dependent on the type of response Yi. For a

binary Yi , we consider f(µ) as Bernoulli distribution and g(µ) as the logit function, g(µ)
= log[µ/1−µ] resulting to GLM is the logistic regression.

Results and conclusion: Results show the binary response which was di�erentiated

care category �ts well with GLMM. We also found TB-HIV co-infection to be the only

signi�cant predictor of di�erentiated care under both GEE and GLMM.
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1 Introduction

1.1 Background to the Study

There is considerable literature on finding suitable statistical models for HIV/AIDS data
so as to be able to administer the right antiretroviral therapy(ART) to the patients. The
most widely used data are the CD4 counts and the viral loads. More recently, a�empts to
model di�erentiated care have become important.

Di�erentiated care is a new approach of managing HIV/AIDS whereby ART services are
customized to capture the preferences and expectations of HIV positive patients while
reducing unnecessary burdens on the health system. Through provision of di�erentiated
care, the health system can reallocate resources to patients most in need. Di�erentiated
care is meant for the HIV positive patients who are stable and therefore they do not
need frequent clinical consultations or frequent medical a�ention. Di�erentiated care
is characterized by: taking the services to the doorsteps of the clients, less frequent
visits to clinics, ge�ing drugs out of facilities, communication with health-care providers
through some sort of technology without visiting the facility, creating support networks
etc (Grimsrud et al., 2017; Organization et al., 2016).

Some markers of HIV/AIDS such as CD4+ counts and viral loads among others are
longitudinally measured. In longitudinal studies, there are variables which are repeatedly
measured over time, and these variables may be used either as responses or predictors,
depending on the objectives of the study . A common challenge of longitudinal studies
is that data on some of these variables may be missing at times of interest, or may be
measured with errors. Other challenges include correlation of the data which violates the
assumption of independence of observations.

Therefore longitudinal data should be modeled using appropriate statistical models for
correct statistical inference. The dominant longitudinal models include the generalized
linear mixed models (GLMM) and generalized estimating equations (GEE) which are
capable of analyzing correlated, non-normal or missing data (Gamerman and Lopes, 1997;
Lee and Nelder, 2001; Liang and Zeger, 1986; Magder and Zeger, 1996).

The response variable in this study is di�erentiated care. This research a�empts to develop
a statistical model that will be used to predict whether or not a patient should be placed
under di�erentiated care. The relationship between di�erentiated care and other HIV



2

variables such as CD4+ counts, viral loads, TB-HIV co-infection, age among others will
also be brought to light.

Chapter two of this research discusses some of the existing studies on suitable models for
HIV data as well as the progression of HIV/AIDS. Chapter three discusses the application
of the longitudinal models to HIV/AIDS data. Chapter four is on results and discussions
a�er analysis of longitudinal data. Finally, conclusions on this study will be discussed in
chapter five.

1.2 Problem Statement

Currently in Kenya, all HIV patients are advised to visit the hospital regularly without
failing for ART services. This is a one way fits all approach. This approach is so far not
e�ective in combating HIV/AIDS due to three major reasons: First, most patients, as
dictated by their lifestyles are not commi�ed to faithfully keeping these appointments
and thus with time end up not responding to the prescribed treatment. Such lifestyles
include busy work schedules, drug abuse etc.

The second major factor is the limited resources available to conduct these activities
within the hospitals. There are few understa�ed hospitals. Finally, stigmatization. Some
HIV positive patients may be uncomfortable to have their status publicized for fear of
discrimination. Ultimately these challenges lead to unresponsiveness to the ART and thus
puts the patients at a graver risk (Institut National de Sante’ Publique du �ebec, 2014).

In line with the above problems, there are HIV/AIDS prediction systems that are currently
existing to manage HIV/AIDS. These prediction systems are so far not e�ective because
they only determine the levels and kinds of ARVs to be administered and they support
the one way fits all approach. This leaves the health facilities burdened and the unstable
patients may not receive adequate treatment. The expectations and preferences of the
stable HIV patients may also be unrealized. In addition, Some of the existing prediction
models used regression techniques that cannot support non-normal, missing or correlated
data therefore they produced biased statistical inferences (Culshaw, 2006; Degru�ola et al.,
1991). They did not use the most flexible and powerful longitudinal models to handle
non-normal data like GLMM and GEE.

All the studies that have been done so far did not model the relationship between di�eren-
tiated care and other longitudinally measured HIV/AIDS data. The challenges above call
for the implementation of di�erentiated service delivery. This study a�empts to develop
a model that will be used to predict whether or not a patient should be placed under
di�erentiated care by using the most flexible and powerful longitudinal models to handle
non-normal, missing or correlated data; the GEE and the GLMM.
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1.3 Objectives

1.3.1 General Objectives

The general aim of this study is to develop a data-driven longitudinal model with applica-
tion to HIV di�erentiated care data.

1.3.2 Specific Objectives

1. To model the association between longitudinally measured HIV variables and di�eren-
tiated care using GLMM and GEE and to compare the two models.

2. To determine which statistical model is be�er using goodness of fit.

3. To identify factors which predict di�erentiated care.

1.4 Justification of the Study

The significance of this study is that; we will be able to accurately derive a longitudinal
model to predict whether or not a patient should be initiated in di�erentiated care. With
di�erentiated ART delivery, patients are able to return to their normal daily routines
and not waste time queuing at the clinics. The research will also enable the government
to accurately allocate medical resources. With di�erentiated ART delivery, doctors and
nurses will be able to provide quality care without feeling rushed especially to the unstable
patients. With di�erentiated ART delivery HIV/AIDS patients will not be exposed to
stigmatization. All these benefits will allow the various people living with HIV to obtain
proper care that reflects their preferences and expectations (Organization et al., 2016;
Phillips et al., 2015).
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2 Literature Review

2.1 The Human Immunodeficiency Virus (HIV)

The Human Immunodeficiency Virus (HIV) leads to Acquired Immuno-Deficiency Syn-
drome (AIDS), a condition in which the immune system begins to decline, exposing infected
individuals to life-threatening opportunistic infections (Callaway et al., 1999). The HIV
virus is a retrovirus that a�acks the human Cluster of Di�erential 4 (CD4+) cells, leading
to a decline in their natural defenses against pathogenic microorganisms (Rosa et al.,
2014). A cure or vaccine for HIV/AIDS does not currently exist. However, great strides
have been made in treatment termed as Highly Active Anti-Retroviral Therapy (HAART).
HAART is made up of cocktails of at least two to three di�erent classes of antiretroviral
therapies and e�ectively lowers the concentration of the virus in the body by increasing
the immune system which is called CD4+ T cells and suppressing the viral loads. In most
developed countries, where these drugs are available, a large reduction in HIV-associated
morbidity and mortality has been registered.

Archer (2008) states that there are two major phenotypes of HIV virus, namely HIV-1 and
HIV-2. HIV -1, which this study will focus on has three strains; labelled as M (Major), O
(Outlier) and N (New i.e. not M or O). He also states that the strain that is almost entirely
to blame for the global pandemic is the Group M, which has a lot of diversity. HIV-2 is
relatively uncommon and is concentrated majorly in the West of Africa. This phenotype is
less infectious and progresses slower as compared to HIV -1. HIV in this study, will refer
to the more common HIV -1 phenotype.

The majority of the infected people within Kenya are aged between 15-39 years. The
prevalence rate of HIV amongst this group is 5.9%. The main contributor to the high
incidence of HIV in Kenya has been a�ributed to the high level of poverty. Organization
et al. (2016). Consequentially, a lot of research has gone into trying to come up with
a solution to HIV/AIDS with the recent temporal solution being the invention of the
Antiretroviral Therapy (ART) drugs, composed of a compound of medicines aimed at
slowing down the rate at which the HIV virus replicates itself. However, a bigger quartile
of the population of the third world countries is still su�ering from logistical challenges
such as lack of adequate medical equipment and medical supplies in the hospitals, and
the high prices of undertaking the activities and tests. Worst case scenarios have included
the introduction of ART in the late stages of a HIV patients (Lopez, 2011).



5

In the recent decades the use of data relating to HIV protein levels in the plasma, also
known as clinical markers have been used to predict progression in HIV-1 infection. The
most common clinical markers are the CD4+ counts and the viral loads. The CD4+ count
is a measure of the number of white blood cells per milliliter of blood that contain the CD4
glycoproteins. The CD4+ cells are usually developed in response to infections Tunduny
(2017). Viral load on the other end, is a measure of the actual number of viral particles per
milliliter of blood. This count is more accurate than the CD4+ count since CD4+ cells are
usually detected a�er the drug resistance has been developed, and can also be a�ected by
other factors other than HIV infection, such as other infection (Tunduny, 2017).

2.2 Longitudinal Models for HIV/AIDS Data

2.2.1 Generalized Linear Mixed Models (GLMM)

GLMM are extensions of the generalized linear models(GLM). Breslow and Clayton (1993),
McCullagh (81). They are obtained by adding random e�ects into the GLM. GLMM are
useful for modeling the correlation among response variables inherent in longitudinal or
repeated measures studies, for accommodating over dispersion among binomial or Poisson
responses, and for producing shrinkage estimators in multi-parameter problems. One way
to account for the within subject correlation is through the introduction of random e�ects
in generalized linear models which leads to a class of models known as GLMM. GLMM are
parametric. They are estimated using maximum likelihood estimation method. GLMM
have a wide range of applications which has made them receive significant a�ention. They
are now available in the major so�ware packages such as R and STATA.

GLMM have a computational burden due to the high dimensional numerical integration
which has limited past studies of GLMM to the case of simplified models (e.g., random
intercept models); to tractable random e�ects distributions; or to conditional inference for
the regression coe�icients, conditioning on the random e�ects (Zeger and Karim, 1991).
A variety of ways have been suggested to overcome the computational di�iculties so
as to improve inference and estimation procedures for the fixed e�ects in GLMM. They
include Gibbs sampling Zeger and Karim (1991), penalized quasi-likelihood and marginal
quasi-likelihood Breslow and Clayton (1993), pseudo-likelihood based on approximate
marginal models Wolfinger and O’connell (1993), and maximum likelihood with Monte
Carlo versions of EM, Newton-Raphson and simulated maximum likelihood algorithms
(McCulloch, 1997). These methods require normal distribution assumptions for the random
e�ects. Methods for non-normal random e�ects are less common and limited to specialized
cases (Gamerman and Lopes, 1997; Lee and Nelder, 2001; Magder and Zeger, 1996).
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2.2.2 Generalized Estimating Equations (GEE)

GEE advanced by Liang and Zeger (1986) is a class of estimating equations which take
into account the correlation arising due to a repeated study design so as to increase the
e�iciency of standard error estimates. GEE are based on quasi- likelihood theory and can
be used for continuous as well as for discrete outcome. Nelder and Wedderburn (1972).
The GEE is also an extension of the GLM. One of the advantages of using the GEE is
that the solutions are consistent, i.e. the estimate of parameters are nearly e�icient and
asymptotically Gaussian, even when the time dependence is mis-specified. In a GEE,
the parameter estimates are estimated parametrically and the variances are estimated
non-parametrically. Hence the GEE is semi-parametric. GEE deals with the within subject
correlation caused by the collection of several samples from each subject by adjusting
the standard error to compensate for the absence of independence among samples. GEE
focus on estimating the average response over the population (“population-averaged
e�ects) rather than the regression parameters that would enable prediction of the e�ect
of changing one or more components of X on a given individual.

2.3 HIV Di�erentiated Care

Grimsrud et al. (2017); Organization et al. (2016) introduced HIV Di�erentiated Care.
Di�erentiated care is a client-centred approach that simplifies and adapts HIV services
across the cascade to reflect the preferences and expectations of various groups of people
living with HIV (PLHIV) while reducing unnecessary burdens on the health system. By
providing di�erentiated care, also called di�erentiated service delivery, the health system
can reallocate resources to those most in need. Di�erentiated care can be organized based
on the specific needs of groups of patients, such as clinical characteristics of patients (e.g.
patients with advanced disease), sub-populations (e.g. pregnant and breastfeeding women,
adolescents, children, key populations), or context (e.g. low-prevalence vs. high-prevalence
se�ings).

Di�erentiated care applies across the HIV continuum to all three of the 90-90-90 targets
(90% of people living with HIV should know their status; 90% who know their status
should be on ART; 90% of those on ART should be virologically suppressed). The aim of
di�erentiated care is to enhance the quality of the client experience. The main driver to
adapting service provision is the patient’s needs.

Who is a Stable Client?

Organization et al. (2016) stable clients are those PLHIV on ART who are adherent and do
not require frequent clinical consultation. They have received ART for at least one year
and have no adverse drug reactions that require regular monitoring, no current illnesses
such as TB or pregnancy, are not currently breastfeeding, have good understanding of
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lifelong adherence and evidence of treatment success (i.e. two consecutive viral load
measurements below 1000 copies/mL). In the absence of viral load monitoring, rising CD4
cell counts i.e. CD4 counts > 200 cells/mm3, an objective adherence measure, can be used
to indicate treatment success.” It is dependent on access to resources, such as routine viral
load monitoring.

2.4 Review of Previous Studies

A number of researches have been carried out on finding suitable models for clinical
markers of HIV as well as the progression of HIV. The most widely used markers are the
Cluster of Di�erential 4 (CD4+) cells and measures of HIV viral loads. A review of these
previous studies will be discussed in this chapter.

Wu and Zhang (2018) studied mixed e�ects models with censored covariates, with appli-
cations in HIV/AIDS Studies. This study brought to light the fact that these models are
capable of handling censoring and missing data in covariates, since the “predicted values”
based on these models are more reliable than the commonly used empirical covariate
models. However, they reported the following limitations: (i) in many applications such
models may not be available and (ii) computational di�iculties. This is because these
models are o�en non-linear, hence computation is a main challenge in likelihood inference.

In 2018, Yu and Wu (2018) did a research on modeling the relationship between CD4
counts and Viral Loads for Complex HIV/AIDS data. The study established that Viral load
and CD4 play a central role in HIV/AIDS studies. The study reported that much of the
research in the literature failed to address measurement errors, outliers and missing data,
which are typical features of AIDS datasets. To their knowledge, their research was the
first a�empt to address all these data complications simultaneously. The results in the
paper confirmed that CD4 and viral load are negatively associated over time, whether CD4
is viewed as continuous, binary, count or CD4 is viewed as response or covariate. However,
the level of strength of the association can be severely mis-estimated if measurement
errors and outliers are not addressed in data analysis. Simulation results confirmed that
the proposed robust two-step methods for joint LME/GLMM and joint NLME/LME models
performed well. The proposed methods can be applied to missing data by incorporating a
missing data model (e.g. a binary mixed e�ects model for the missing data indicators),
which also leads to a joint model.

In 2014, Lu (2014) suggested that statistical analyses and modeling have contributed
greatly to the understanding of the progression of HIV-1 infection; they also provide
guidance for the treatment of AIDS patients and evaluation of ART. Various statistical
models, nonlinear mixed-e�ects models in particular, were used to model the CD4 counts
and the viral loads. A common assumption in these methods is all HIV patients come from
a homogeneous population following one mean trajectories. This assumption obscures
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important characteristic di�erence between subgroups of patients whose response to
treatment and whose disease trajectories are biologically di�erent. This may lead to biased
inference. In their research, they developed mixture dynamic model and related Bayesian
inferences via Markov chain Monte Carlo (MCMC). Finite mixture models, also known as
latent class models, are commonly used to model non-predetermined heterogeneity in a
population; they provide an empirical representation of heterogeneity by grouping the
population into a finite number of latent classes and modeling the population through a
mixture distribution. This important feature may help physicians to be�er understand a
particular patient disease progression and refine the ART strategy in advance.

In 2012, Taye (2012) evaluated the association between the progressions of HIV infection
using longitudinally measured CD4 count and its possible predictors via longitudinal
analysis methodologies. Statistically two modeling approaches (GEE and GLMM) were
compared for the analysis of ART data and found that GLMM exhibited the best fit for
these data with small disturbance than GEE. The study also found that on average CD4
count increases in a quadratic pa�ern over time a�er patients initiated to ART program
(i.e. the immune system increases whereas the progression of the disease goes down due
to the therapy). Furthermore, though the choice between GEE and GLMM for longitudinal
data can only be made on subject ma�er grounds, using generalized linear mixed model
is much emphasized than generalized estimating equations for correlated data as GEE
can only handle the within subject variations through the assigned working correlation
structure where as GLMM in addition to within measurement variation, between individual
variations can be accounted by incorporating the random e�ects. Due to that, GLMM fits
a given data with a small disturbance than GEE.

Boscardin et al. (1998) did a research on longitudinal models for AIDS marker data. The
study reviewed the existing literature including the preferred models which involved mixed
e�ects, stochastic terms and independent measurement error. Adding stochastic terms
to standard mixed e�ects models gives an interpretable and parsimonious method for
generalizing the covariance structure of the measurement error and short-term variability.

Hughes et al. (1994), did a research on within-subject variation in CD4 counts in HIV
Infection: Implications for patient monitoring. The study found out that Changes in CD4
counts are widely used in monitoring HIV-infected patients for disease progression. They
noted that, random fluctuations may obscure clinically significant changes. They assessed
for up to 2 years CD4 cell counts from 1020 untreated subjects with HIV infection who
were monitored by standardized methods. The within-subject coe�icient of variation
averaged 25% but was higher in subjects with lower CD4 counts. They reported that
using multiple counts and other markers may provide more precise assessment of immune
status.
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Degru�ola et al. (1991) did a research on modeling the progression of HIV Infection.The
study found out that statistical modeling of the progression of markers of HIV infection
is complicated by three problems: (1) censored information; (2) missing data; and (3)
correlation within and between subjects. The studied the CD4 counts. As a result of the
three problems, it is di�icult to distinguish between di�erent models for the decline in CD4
count over time for HIV-infected individuals. They concluded that models that assume a
steady linear decline of CD4 counts on the square root scale and accommodate the three
sources of variation mentioned previously provide adequate fits to the study data. They
also noted that the linear decline does not apply near the time of seroconversion; this
event seems to be accompanied by a sharp drop in CD4 counts.

The previous studies did not model di�erentiated care using GLMM and GEE. This research
a�empts to model di�erentiated care by applying the robust longitudinal models; the
GLMM and the GEE which are capable of handling challenges in longitudinal data sets.
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3 Methodology

3.1 Research Design

3.1.1 Data Source and its Description

The study used routine data of HIV positive patients initiated to ART at the point of care
from 4 medical facilities in Nairobi in the year 2018. The medical record is a so�ware called
IQ Care. The data was pulled from IQ Care then stored in excel. The study population is
made up of HIV positive patients between 10 and 58 years of age whose viral loads and
CD4+ T cells were measured at least once. The data consists of 193 individuals with a
minimum of one and a maximum of three measurements per individual. The data was
recorded in medical charts by assigning an identification number per individual which
helps to find the patients profile easily during his/her next visit time. The data in excel was
cleaned and coded in R so�ware version 3.6.0. All analysis was done in R so�ware save for
the descriptive statistics in table 4.1 which was done in SPSS version 25. A�er obtaining
Ethical Clearance at Strathmore University Institutional Ethics Review Commi�ee (SU-
IERC), the data was collected via extracting the required variables from medical charts in
a check list format.

3.1.2 Study Variables

Dependent variable/response variable: Di�erentiated care
Independent variables/predictors: Age when last visited clinic, Sex, TB-HIV Co-infection,
Viral loads and CD4+ T- cells (CD4 count) for each individual measured in every visitation.

3.1.3 Exploratory Data Analysis

It is a technique to visualize the pa�erns of data relative to research interests. Since
exploratory data analysis can serve to discover as much of the information regarding
raw data as possible, plo�ing individual curves to carefully examine the data should be
performed first before any formal model fi�ing is carried out.

3.2 The Statistical Models for Longitudinal Data

Since both the GLMM and GEE are extensions of the GLM, we start with a brief overview
of the la�er (Lin et al., 2016)
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Table 3.1. Variable description and coding for ART data

Variable Coding

Age Age when last visited clinic

Gender Male = 1, Female = 2

TB-HIV Co-infection

Yes = 1

No = 2

Viral loads

suppression category

< 1000 copies/ml = 1

> 1000 copies/ml = 2

CD4 counts category

0-200 = 1

200-400 = 2

400-600 = 3

600+ = 4

Di�erentiated care

Yes = 1

No = 0

3.2.1 Generalized Linear Models (GLM)

McCullagh and Nelder (1989) introduced the concept of Generalized Linear Models (GLM).
Consider a sample of n subjects and let Yi(xi) denote a continuous response. The classic
linear model is given by:

Yi =XT
i β+ εi, εi ∼N(0,σ2),1≤ i≤ n, (1)

where N(0,σ2) denotes a normal distribution with mean µ and σ2 variance. One major
limitation is that it only applies to continuous response Yi . The generalized linear models
(GLM) extend the classic linear model to non-continuous response such as binary. To
express the GLM, we first rewrite the linear regression in (3.1) as:

Yi|Xi ∼N(µi,σ2),µi = E(Yi|Xi) =XT
i β,1≤ i≤ n, (2)

where Yi|Xi denotes the conditional distribution of Yi given Xi and E(Yi|Xi) denotes the
conditional mean of Yi given Xi. By replacing the normal in (3.2) with other distributions
appropriate for the type of response, we obtain the class of GLM:

Yi|Xi ∼ f(µi),g(µi) =XT
i β,1≤ i≤ n, (3)
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where f(µ) denotes some distribution with mean µ and g(µ) is a function of µ. Since g(µ)
links the mean to the explanatory variables, g(µ) is called the link function. µ , the pdf of
Y, is the random component of the GLM. XT

i β is the systematic component.

The specification of f(µ) and g(µ) depends on the type of response Yi. For a binary
Yi, f(µ) is the Bernoulli distribution and g(µ) is o�en set as the logit function, g(µ) =
log[ µ

1−µ ]. The resulting GLM is the logistic regression.

Inference for GLM can be based on maximum likelihood (ML) or estimating equations (EE).
The classic ML provides most e�icient estimates, if the response Yi follows the specified
distribution such as the normal in the linear regression in (3.1). In many studies, it may be
di�icult to specify the right distribution, in which case the ML will yield biased estimates
if the specified distribution does not match the data distribution. The modern alternative
EE uses an approach for inference that does not require specification of a mathematical
distribution for Yi, thereby providing valid inference for a wider class of data distribution.
Since no distribution is required under EE, we may also express the GLM in this case as:

µi = E(Yi|Xi),g(µi) =XT
i β,1≤ i≤ n, (4)

or simply
g(E(Yi|Xi)) =XT

i β,1≤ i≤ n, (5)

or equivalently
E(Yi|Xi) = h(XT

i β),1≤ i≤ n, (6)

where h= g−1 is the inverse of g(µ). When specified without the distribution component,
(3.4), (3.5) or (3.6) are also called the semi-parametric GLM. In comparison, (3.3) is called
the parametric GLM.

3.2.2 Extension of GLM to Longitudinal Data

Generalized Estimating Equations (GEE)

Let T = time points in a longitudinal study and let Yit and Xit denote the same response
and predictors, but with t indicating their dependence on the time of assessment (1≤
i≤ n,1≤ t≤ T ). For each time t , we can apply the GLM in (3.3) to model the regression
relationship between Yit and Xit at each point:

Yit|Xit ∼ f(µit),µit = E(Yit|Xit),g(µit) =XT
itβt,1≤ t≤ T,1≤ i≤ n
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We can then get estimates of βt for each time point t. However, it is di�icult to interpret
di�erent βt across the di�erent time points. Moreover, it is technically challenging to
combine estimates of βt to test hypotheses concerning temporal trends because of inter-
dependence between such estimates. The GEE addresses the aforementioned di�iculties
by using a single estimate β to model changes over time based on multiple assessment
times. Since the GEE estimates β using a set of equations that do not rely on assumed
distribution f(µit) in (3.7), the resulting model becomes:

µit = E(Yit|Xit),g(µit) =XT
itβ,1≤ t≤ T,1≤ i≤ n (7)

By comparing the GEE above with the model in (3.4), it is seen that the GEE is an extension
of the semi-parametric GLM to longitudinal data. The key di�erence between (3.4) and
(3.7) is that (3.7) is not simply an application of GLM to each of the time points, but
rather an extension of the model in (3.4) to provide a single parameter vector β for easy
interpretation and estimate this parameter vector by using data from all time points and
accounting for correlations between the repeated assessments. Like the semi-parametric
GLM, the GEE provides robust statistical inference for a wider class of data distributions.

Suppose that Yit is binary and is modeled by a GEE for binary response as follows:

logit(E(Yit|Xti)) =XT
itβ,1≤ i≤ n,1≤ t≤ T (8)

or

E(Yit|Xti) = exp(XT
itβ)

1 + exp(XT
itβ)

,1≤ i≤ n,1≤ t≤ T (9)

Method of Estimation and Statistical Inference for GEE:

A �asi-likelihood method of estimation is used since likelihood based methods are not
available for testing fit, comparing models and conducting inference about parameters.
Inference can only use Wald statistics constructed with asymptotic normality of the
estimators together with their estimated covariance matrix. Moreover, even though GEE
estimates are consistent with misspecification of the covariance structure, it is important
to choose the covariance structure that closely approximates the true underlying one for
greater e�iciency.

Working Correlation Structures: Because the repeated observations within one subject
are not independent from each other, a correction must be made for these within-subject
correlations. With GEE, this correction is done by assuming in advance a certain ‘working’
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correlation structure for the repeated measurements of the outcome variable Y. Before
carrying out a GEE analysis, the within-subject correlation structure was chosen based
on the results of exploring correlation structure of the observed data. Accordingly, two
proposed working correlations were compared.

1. Independence structure: This is the correlation that GEE model assumes by default. It
assumes that the correlations between subsequent measurements are assumed to be
zero or measurements are independent to each other within individuals.

2. Exchangeable correlation structure (compound symmetry): it assumes the correlations
between subsequent measurements are assumed to be the same, irrespective of the
length of the time interval.

Generally, assuming no missing data, the J×J covariance matrix for Y is modeled as:

Vi = φA
1/2
i RiA

1/2
i (10)

Where φ is a glm dispersion parameter which is assumed 1 for count data, Ai is a diagonal
matrix of variance functions, and Ri is the working correlation matrix of Y. GEE can be
used to model correlated data with the variance covariance matrix V by iteratively solving
the quasi- score equations. The score function of a GEE for β has the form:

N∑
x=1

(∂µi
∂βt

)V −1
i (Yi−µi) = 0 (11)

Whereµi is the fi�ed mean, which is given by g(µit) =Xitβ for covariatesX =Xi1,Xi2, · · · ,Xin

and regression parameters β = β1,β2,β3, · · · ,βp.
Starting Ri as the identity matrix and φ= 1, the parameters β are estimated by solving
equations as follows:

i.e in a normal case
µi =Xiβ and ∂µi

∂βt
=Xi, Vi = φ̂Ri

N∑
i=1

(XT
i )R−1

i (Yi−µi) = 0
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β̂ = [
N∑
i=1

(XT
i )R−1

i Xi]−1[
N∑
i=1

(XT
i′ )R−1

i Yi]

ˆβt+1 = β̂t− [
N∑
x=1

(∂µi
∂βt

)TV −1
i (∂µi

∂βt
)]−1

N∑
x=1

(∂µi
∂βt

)TV −1
i (Yi−µi)

let Di = ∂µi
∂βt

andSi = (Yi− µ̂i)(Yi− µ̂i)T Then:

1. βt+1 = βt− [
N∑
x=1

(Di)T ˆV −1
i (Di)]−1 N∑

x=1
(Di)T ˆV −1

i (Di)

2. var(β̂) =N [
N∑
x=1

(Di)T ˆV −1
i (Di)]−1 N∑

x=1
(Di)T ˆV −1

i Ŝi
ˆV −1
i (Di)[

N∑
x=1

(Di)T ˆV −1
i (Di)]−1

More generally, because the solution only depends on the mean and variance of Y, these
are quasi-likelihood estimates. The estimates from a GEE analysis are robust to miss-
specification of the covariance matrix (Liang and Zeger, 1986), so, the regression parameter
estimates are consistent even for independent covariance matrix. Upon convergence, in
order to perform hypothesis tests and construct confidence intervals, it is of interest
to obtain standard errors associated with the estimated regression coe�icients. These
standard errors are obtained as the square root of the diagonal elements of the matrix
V (β̂) . The GEE provides two versions of these estimates:

1. Naive or "model based", V (β̂) = [
N∑
x=1

(Di)T ˆV −1
i (Di)]−1

2. Robust or “empirical” V (β̂) =M−1
0 M1M

−1
0

Where:

M0 =
N∑
x=1

(Di)T ˆV −1
i (Di)

M1 =
N∑
x=1

(Di)T ˆV −1
i (Y − µ̂i)(Y − µ̂i)T ˆV −1

i (Di)

Here, V̂i denotes (Y − µ̂i)(Y − µ̂i)T

In the more general case, the robust or “sandwich” estimator, provides a consistent esti-
mator of V (β̂) (even if the working correlation structure is not the true correlation of Yi).
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Variable Selection Technique for GEE

In both GEE and GLMM, to select the significant covariates, avoid non-significant vari-
ables one by one starting from the most non-significant terms and finally the two models
are compared using generalized Wald test for GEE and likelihood ratio test for GLMM.
(Pate�a, 2002)

Model Comparison Technique for GEE

�asi Information Criterion (QIC): The quasi-likelihood counterpart to the AIC is
the QIC, or the “quasi-likelihood under the independence model information criterion"
(Pan, 2001). The QIC was derived from the AIC and they are conceptually the same. The
quasi-likelihood function takes the following form: (McCullagh and Nelder, 1989)

Q(µ) =
∫ µ

y

y− t
φv(t)dt. Where µ=E(Y ) and V ar(Y ) = φV (µ)withφ being the dispersion

parameter.
An equation for the QIC is:
QIC = −2Q(µ̂, I) + 2trace[Ω−1

I V̂R]

Where I represents the independent correlation structure and R is the specified working
correlation structure. The p-dimensional matrices ΩI and V̂R are variance estimators
of the regression coe�icients under the correlation structure I and R respectively. The
QIC value is computed based on the quasi-likelihood estimate µ̂ and is used to select
the appropriate working correlation structure for the model. However, Hin and Wang
(2009) proposed using half of the second term in QIC is appropriate for the selection of the
working correlation structure in GEE. This statistic is called the Correlation Information
Criterion (CIC).
CIC = trace[Ω−1

I V̂R]
The first term in QIC, which is based on the quasi-likelihood, is free from both the
working correlation structure as well as the true correlation structure, so it would not
be informative in the selection of the covariance structure. Moreover, the form of quasi-
likelihood is constructed under the assumption of the independent observations, although
the parameters are estimated under the hypothesized working correlation structure. On
the other hand, the second term in QIC contains information about the hypothesized
correlation structure via the sandwich variance estimator.
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The generalized Wald test: is used to compare models with di�erent subsets of the
regression parameters. That is, one can use the generalized Wald tests to test the joint
null hypothesis that a set of regression parameters βs are equal to zero (Hedeker and
Gibbons, 2006). In general, for any matrix L a test for hypothesis can be wri�en as follows:

H0 : Lβ = 0 versus H1 : Lβ 6= 0

Where L is a p× q indicator matrix of ones and zeros. Here, p is equal to the number
of parameters in the full model (including the intercept) and q equals the number of
parameters in the generalized Wald test (that is, the di�erence in parameters between the
full and reduced model). The Wald statistic is a quadratic form defined as follows:
W 2
stat = β̂tLt(LV ar(β)Lt)−1Lβ̂

And is distributed as χ2 with q degrees of freedom under the null hypothesis.

3.2.3 Generalized Linear Mixed Models (GLMM)

Consider again a longitudinal study with T time points and let Yit and Xit denote the
same response and predictors/covariates as in the GEE above in (3.7). The GLMM is
specified by:

Yit|Xit,Zit, bi ∼ f(µ̂it).

g(µit) =XT
it β̂+ZTit bi, bi ∼N(0,Σb),1≤ i≤ n,1≤ t≤ T (12)

where N(µ,N(µ,Σ) denotes a multivariate normal with mean µ and variance Σ,Zit is
a vector of predictors/ covariates (o�en set equal to Xit ), and g(µ) is the appropriate
link function for the type of response Yit. The vector of latent variables, bi , is called
the random e�ects, denoting individual di�erences from the population mean bi , which
is known as the fixed e�ects. Although β̂ is typically assumed to follow a multivariate
normal as in (3.3), other types of distributions may also be considered.

Unlike the GEE, the GLMM accommodates correlated responses Yit by directly modeling
their joint distribution. Latent variables bi are generally employed to model the correlated
responses. Thus, although Yit is still modeled for each time point t, by including the
random e�ect bi in the specification of the conditional distribution of Yit given bi(Xit and
Zit), the GLMM in (3.12) allows the resulting Yit ’s to be correlated (conditional on Xit

and Zit only). This approach allows one to specify multivariate distributions using familiar
univariate distributions such as the Bernoulli (for binary responses) and the Poisson (for
count responses).

Suppose that Yit is binary and is modeled by a GLMM for binary response as follows:

Yit|Xit,Zit, bi ∼Bernoulli(µ̂it)
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logit(µ̂it) =XT
it β̂+ZTit bi ∼N(0,Σb),1≤ i≤ n,1≤ t≤ T (13)

We note that models (3.8) and (3.13) look the same, except for the additional random e�ect
in (3.13).

Method of Estimation and Statistical Inference for GLMM

Maximum likelihood (ML) by Laplace approximation technique is used to estimate the
parameters. ML estimates standard deviations of the random e�ects assuming that the
fixed-e�ect estimates are correct. The following derivations are done with respect to
ML. Such likelihood may involve high-dimensional integrals that cannot be evaluated
analytically so that much so�ware are able to solve such complex manipulation using
iteration technique. The likelihood of the data expressed as a function of unknown
parameters is:

L(β,α,Y ) = πmi=1

∫
πnii=1f(Yij |β,bi)f(bi|α)dbi

It is the integral over the unobserved random e�ects of the joint distribution of the data
and random e�ects. With Gaussian data, the integral has a closed form solution and
relatively simple methods exist for maximizing the likelihood or restricted likelihood. With
non-linear models, numerical techniques are needed. We consider the random e�ects as
no missing data so that the ‘complete’ data for a unit is (Yi1, bi).

Denote L= log(L) and µij = g−1(Xijβ+Zijbi) the score equation for β and b are:

∂L
∂β = S(β,α|yb) =

m∑
i=1

ni∑
i=1

Xij(Yij−µij) = 0
The score equation for G is:
S(β,α|yb) = 1

2G
−1{E(bibti|y)}G−1− m

2 G
−1

Where, G is variance covariance matrix for random e�ect. Hereby α denotes the unknown
parameter in the density. These are solved using the E-M algorithm. In the estimation
step, the expectations are evaluated using current parameter values and this may involve
multivariable integration of large dimension. This will usually be done by Monte-Carlo
integration.
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Model Comparison Technique for GLMM

Akaike’s Information Criterion (AIC) is used which is a measure of goodness of fit
of an estimated statistical model. It is a tool for model selection. The AIC penalizes the
likelihood by the number of covariance parameters in the model, therefore:
AIC =−2Log(L) + 2p
Where, L is the maximized value likelihood function for the estimated model and p is the
number of parameters in the model. The model with the lowest AIC value is preferred.
Likelihood Ratio Test (LRT): It is constructed by comparing the maximized log likeli-
hoods for the full and reduced models respectively and the test statistic is defined as:
T 2
LR = −2ln(LML( ˆαml,0)

LML( ˆαml) )

Where ˆαml,0 and ˆαml are respective maximum likelihood estimates which maximize the
likelihood functions of the reduced and full model. The asymptotic null distribution of the
likelihood ratio test statistic is a chi-square distribution with degrees of freedom equal to
the di�erence between the numbers of parameters in the two models.

Model Checking Technique for GLMM

In GLMM, it is assumed that the random e�ects are normally distributed and uncorrelated
with the error term. Residual plots can be used visually to check normality of these e�ects
and to identify any outlying e�ect categories. Examining the plot of the standardized
residuals versus fi�ed values by any covariates of interest can give a be�er feeling (Verbeke
and Molenberghs, 2009).

3.3 Ethical Considerations

A permission to undertake the study has been obtained from Ethical Clearance at Strath-
more University Institutional Ethics Review Commi�ee (SU-IERC).
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4 Data Analysis and Results

4.1 Results

A total of 193 HIV positive patients were included to this study. Some patients were on dif-
ferentiated care others were not. The total number of observations was 480 for 8 variables.
The baseline characteristics of patient observations are displayed in table 4.1 below. Among
these observations 61(69.3%) males were not on di�erentiated care, 27(30.7%) were on
di�erentiated care. 275(70.2%) observations were females not on di�erentiated care while
117(29.8%) were on di�erentiated care. 180(62.9%) of observations without TB were not on
di�erentiated care while 106(37.1%) without TB were on di�erentiated care. 156(80.4%)
observations not on di�erentiated care had TB, while 38(19.6%) observations with TB
were on di�erentiated care. 245(70.4%) observations not on di�erentiated care were virally
suppressed, while 103(29.6%) observations on di�erentiated care were virally suppressed.
91(68.9%) observations that were not virally suppressed were not on di�erentiated care,
while 41(31.1%) observations that were not virally suppressed were on di�erentiated care.
143(72.6%) observations not on di�erentiated care were on CD4 category 1, while 54(27.4%)
observations in CD4 category 1 were on di�erentiated care. 90(68.7%) observations on
CD4 category 2 were not on di�erentiated care while 41(31.3%) observations were on
di�erentiated care. 58(66.7%) observations on CD4 category 3 were not on di�erentiated
care while 29(33.3%) observations were on di�erentiated care. 45(66.7%) observations on
CD4 category 4 were not on di�erentiated care while 20(33.3%) observations were on
di�erentiated care. The mean age for the last visit not on di�erentiated care was 21.63,
the confidence interval was [20.70, 22.56]. The mean age for the last visit on di�erentiated
care was 20.22, the confidence interval was [19.01, 21.42].

4.1.1 Exploratory Data Analysis

From the sca�er plot matrix given in Figure 4.1, the diagonal alignment of the variables
shows that the correlation structure is the independence structure. With this structure the
correlations between subsequent measurements are assumed to be zero or measurements
are independent to each other within individuals.

As shown in Figure 4.2, increase in CD4 counts leads to the movement towards di�erenti-
ated care. More CD4 counts in a HIV positive patient, implies that the patient is stable.
Stable patients should be placed under di�erentiated care.
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Table 4.1. Baseline demographic and clinical characteristics of HIV patients on ART data who
were either initiated or not initiated on di�erentiated care

Di�erentiated Care

No Yes Total p-value

CD4Category

0-200 143(72.6%) 54(27.4%) 197(100.0%)

0.75

200-400 90 (68.7%) 41 (31.3%) 131 (100.0%)

400-600 58 (66.7%) 29 (33.3%) 87 (100.0%)

> 600 45 (69.2%) 20 (30.8%) 65 (100.0%)

Total 336(70.0%) 144(30.0%) 480(100.0%)

VL Suppression

< 1,000 copies 245 (70.4%) 103 (29.6%) 348 (100.0%)

0.755

Category > 1,000 copies 91 (68.9%) 41 (31.1%) 132 (100.0%)

Total 336 (70.0%) 144 (30.0%) 480 (100.0%)

TB HIV

No 180 (62.9%) 106 (37.1%) 286 (100.0%)

< 0.001
Coinfection Yes 156 (80.4%) 38 (19.6%) 194 (100.0%)

Total 336 (70.0%) 144 (30.0%) 480 (100.0%)

Gender

Male 61 (69.3%) 27 (30.7%) 88 (100.0%)

0.877

Female 275 (70.2%) 117 (29.8%) 392 (100.0%)

Total 336 (70.0%) 144 (30.0%) 480 (100.0%)

Mean age 21.63[20.70, 22.56] 20.22[19.01, 21.42]

at last visit

From Figure 4.3, it is evident that absence of TB-HIV co-infection leads to the movement
towards di�erentiated care. The highest point of the curve, towards di�erentiated care, is
where there is absence of TB-HIV co-infection. Absence of TB-HIV co-infection implies a
stable patient. Stable patients qualify for di�erentiated care.

The horizontal line in Figure 4.4 suggests that gender does influence whether or not a HIV
positive patient should be initiated to di�erentiated care.

From Figure 4.5, the horizontal line suggests that there is no significant relationship
between viral loads suppression category and di�erentiated care.

4.1.2 Modeling Di�erentiated Care Using GEE and GLMM

Generalized Estimating Equations (GEE)

In this section the ART data is analyzed using the generalized estimating equation. The
output was as shown in Table 4.2:

The resulting output from Table 4.2 shows that the working correlation structure is the
independence structure.
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Figure 4.1. Sca�er plots matrix of the variables

Looking at the p-values in Table 4.2 for each of the coe�icients in the output, and comparing
with the level of significance 0.05, only TB-HIV Coinfection is a significant predictor of
whether or not a patient will need Di�erentiated Care (p-value = 0.00028< 0.05). As shown
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Figure 4.2. Plot of di�erentiated care vs CD4 Category

in table 2, the non-significant predictors were CD4 Category, Gender and VL Suppression
Category.
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Figure 4.3. Plot of di�erentiated care vs TB-HIV co-infection

Interpretation of regression coe�icients: The coe�icient for TB-HIV Coinfection is
-0.8789. This gives an odds ratio of 0.42 i.e. (exp−0.8789). Now 100(1-0.42)% = 58%, thus
a patient with TB-HIV Co-infection is 58% less likely to be put on di�erentiated care as
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Figure 4.4. Plot of di�erentiated care vs gender

compared to a patient who is not TB-HIV co-infected. This patient is not likely to be
stable. Di�erentiated care is for the stable patients.
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Figure 4.5. Plot of di�erentiated care vs viral loads suppression category

Generalized Linear Mixed Model (GLMM)

Table 4.3 shows the results from the GLMM.
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Table 4.2. Resulting output from GEE
Coe�cients: estimate san.se wald p

Inter:0 -0.62162125 0.3252790 3.652073873 0.0559994410

CD4Category2 0.07408740 0.2435099 0.092566877 0.7609389191

CD4Category3 0.23008731 0.2790967 0.679635344 0.4097123204

CD4Categor 0.12747292 0.3289662 0.150152795 0.6983893847

TB_HIV_Coinfection1 -0.87892649 0.2418493 13.207341572 0.0002788546

VL_Suppression_Category2 -0.02535246 0.2631146 0.009284325 0.9232384691

Scale is �xed

Correlation Model:

Correlation structure: independence

Returned Error Value: 0

Number of clusters: 193 Maximum cluster size: 4

Table 4.3. Output from GLMM
AIC BIC logLik deviance df.resid

573.4 606.8 -278.7 557.4 472

Scaled residuals:

Min 1Q Median 3Q Max

-1.0927 -0.5463 -0.3728 0.8925 2.3468

Random e�ects:

Groups Name Variance Std.Dev.

ID (Intercept) 1.163 1.078

Number of obs: 480 groups: ID, 193

Fixed e�ects:

Coe�cients: estimate san.se wald p

Inter:0 -0.85898 0.38197 -2.249 0.024525

CD4Category2 0.06883 0.29756 0.231 0.817062

CD4Category3 0.30553 0.33601 0.909 0.363189

CD4Category4 0.22228 0.37674 0.590 0.555174

Gender2 0.10179 0.32163 0.316 0.751642

TB_HIV_Coinfection1 -1.06007 0.27602 -3.841 0.000123

VL_Suppression_Category2 -0.03404 0.30881 -0.110 0.912218

Correlation of Fixed E�ects:

(Intr) CD4Ct2 CD4Ct3 CD4Ct4 Gendr2 TB_HIV

CD4Categry2 -0.395

CD4Categry3 -0.374 0.383

CD4Categry4 -0.312 0.338 0.342

Gender2 -0.732 0.047 0.067 0.024

TB_HIV_Cnf1 -0.207 0.125 0.019 0.004 -0.047

VL_Spprs_C2 -0.281 0.023 0.018 0.022 0.035 0.095

In longitudinal data analysis, what random e�ect should be included to the model in
order to account for between individual variability is a critical issue. In this study ID was
considered as a random e�ect and CD4 Category, TB-HIV Coinfection, Gender and VL
Suppression Category as fixed factors. ID was used as a random e�ect since the patients
in this study are a random sample of all the possible patients that can be included.
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From the column standard deviation under random e�ects in Table 4.3, the standard devia-
tion of 1.078 is a measure of how much variability in the dependent measure(di�erentiated
care) there is due to ID.

From the output in Table 4.3, at 5% level of significance, the fixed e�ect TB-HIV coinfection
significantly predicts Di�erentiated Care (p-value = 0.00012 ). In addition, the estimate
of the variance for the random e�ect ID is 1.16. Since this di�ers from zero, it implies
that there is variation in Di�erentiated Care for the di�erent patients with TB-HIV Co-
infection.

Interpretation of regression coe�icients: The coe�icient for TB-HIV Coinfection is
-1.0601. This gives an odds ratio of 0.346 i.e. (exp−0.8789). Now 100(1-0.346)% = 65.5%, thus
a patient with TB-HIV Co-infection is 66% less likely to be put on di�erentiated care as
compared to a patient who is not TB-HIV co-infected.This patient is not likely to be stable.
Di�erentiated care is for the stable patients.

Significance of the model fit: The likelihood ratio test was used. We compare the
GLMM model with a random e�ect for ID included to the binary logistic regression model
with only the fixed factors. The logic of the likelihood ratio test is to compare the likelihood
of two models with each other. First, the model without the factor that you’re interested
in (the null model), then the model with the factor that you’re interested in.
1 - pchisq(568.33 - 557.41, 8 - 7) = 0.0009513161. The p-value for the test of the hypothesis
that the GLMM model is not a significantly be�er fit than the binary logistic regression
model is 0.00095. Thus at 5% level of significacnce we reject this hypothesis and conclude
that the GLMM model is a significantly be�er fit.

We also compared the GLMM model with a random e�ect for ID included to the binary
logistic regression model with only the fixed factors(GLM). The results of the GLM are
shown in Table 4.4.

Comparing the output in Table 4.3 to Table 4.4, we find that the AIC for the GLMM is
573 while the AIC in the reduced model(GLM) is 582.33. The AIC of the model with the
random e�ect(GLMM) was lower, hence the be�er model.
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Table 4.4. Resulting output from GLM-Binary Logistic Regression
Deviance Residuals:

Min 1Q Median 3Q Max

-1.0245 -0.9351 -0.6622 1.3839 1.8561

Coe�cients:

Estimate Std.Error z value Pr(> |z|)
(Intercept) -0.62162 0.29334 -2.119 0.0341

CD4Category2 0.07409 0.25287 0.293 0.7695

CD4Category3 0.23009 0.28357 0.811 0.4171

CD4Category4 0.12747 0.31852 0.400 0.6890

Gender2 0.02069 0.26174 0.079 0.9370

TB HIV Coinfection1 -0.87893 0.22120 -3.973 7.09e-05

VL Suppression Category2 -0.02535 0.22706 -0.112 0.9111

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 586.43 on 479 degrees of freedom

Residual deviance: 568.33 on 473 degrees of freedom

AIC: 582.33

Number of Fisher Scoring iterations: 4
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5 Conclusions and Recommendations

The main objective of this research was to develop a data-driven longitudinal model with
application to HIV di�erentiated care data. This objective was split into two specific
objectives in order to adequately achieve the main objective. These specific objectives
were as follows:

1. To model the association between longitudinally measured HIV variables and di�eren-
tiated care using GLMM and GEE and to compare the two models.

2. To determine which statistical model is be�er using goodness of fit.

3. To identify factors which predict di�erentiated care.

In this study we evaluated the association between HIV di�erentiated care and its possible
predictors using longitudinal models. Statistically two modeling approaches; the GEE and
the GLMM which are extensions of the GLM were used for the analysis of ART data of
patients who were either initiated or not initiated to di�erentiated care. We focused on
interpretation and computation of model parameters. For parameter interpretation, we
discussed di�erences between the GLMM and GEE when applied to model a binary re-
sponse. Our binary response was di�erentiated care which is a new approach of managing
HIV/AIDS.

The study also found TB-HIV co-infection to be the only significant predictor of di�er-
entiated care under both GEE and GLMM. In addition, from both models we saw that
some of the fixed e�ect coe�icients (β0,β5,β6) had opposite signs for the two models,
this result is due to subject specific and population average interpretation for the two
models. This supported the findings of (Fu, 2010; Renard, 2002). We also concluded that
GLMM fits data be�er than GLM.

Since HIV/AIDS is a critical disease, modeling the HIV data helps to identify the factors
that determine the success of ART so as to delay the quick progression of HIV. Thus
further studies should be done in HIV research using these flexible statistical methodolo-
gies by including additional covariates like regimen, income status, weight, relationship
status(single, married), number of years of being HIV positive in order to further improve
the models’ prediction performance. This would help in the monitoring and follow-up of
the patients to ensure appropriate care is given.
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Furthermore, though the choice between GEE and GLMM for longitudinal data can
only be made on subject ma�er grounds, using GLMM is much emphasized than GEE
for correlated data as GEE can only handle the within subject variations through the
assigned working correlation structure where as GLMM in addition to within measurement
variation, between individual variations can be accounted by incorporating the random
e�ects. Due to that, GLMM fits a given data with a small disturbance than GEE. Although
this research is motivated by HIV/AIDS studies, the basic concepts and methods developed
here have much broader applications in management of other chronic diseases.
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