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Abstract

Precise and accurate predictive models are extremely important in tuberculosis (TB) 

treatment outcome modeling. Tuberculosis (TB) treatment with patient supervision and 

support is one of the elements of global plan to stop TB designed by World Health Or­

ganization in 2006 that requires prediction of patient treatment outcome in order to deter­

mine how intensive should be the level of supplying services and supports in DOTS (di­

rectly-observed treatment, short course). This study was aimed to develop a model using 

MARS technique to forecast TB cases treatment outcomes. MARS is a relatively new 

methodology, due to Friedman, for nonlinear regression modeling. MARS can be concep­

tualized as a generalization of recursive partitioning that uses spline fitting in lieu of other 

simple functions. Given a set of predictor variables, MARS fits a model in the form of an 

expansion in product spline basis functions of predictors chosen during a forward and 

backward recursive partitioning strategy. MARS produces continuous models for high di­

mensional data that can have multiple partitions and predictor variable interactions.

The five given outcomes included getting cured, completion of treatment courses, quit 

the treatment course or out of control, fail in treatment, and death. 16 predictor variables 

were applied as predictors. The data set with 4,605 Kenyan patients was divided as train­

ing to build a model and testing datasets to check the predictive ability of MARS model. 

Nine (9) variables were identified as important by the MARS algorithm and 8 basis func­

tions were created for model building.

The Predictive model was developed by learning from given historical datasets, based 

on an MARS algorithm. After applying the developed model by training set, the validation 

set risk estimate was 0.1725. In conclusion, the good results obtained in this application 

suggest that the proposed MARS prediction model is highly reasonable, desirable and ef­

fective in producing a valid and transparent intelligent exploratory predictive model in 

predicting multiple response variables. To support TB patients actively, this valid model 

can support health workers to realize how intensive their follow up should be in frame of 

DOTS.
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CHAPTER 1

________  INTRODUCTION

This section introduces the concept of predictive analytics and the tuberculosis (TB) control un­

der the DOTS approach.

Precise and accurate predictive models are very important in screening initiatives. Advances in 

soft computing and data mining techniques like artificial intelligence in prediction provides an 

alternative to the existing statistical prediction techniques in disease susceptibility studies (Gari­

baldi and Ozen, 2007; Catto et al., 2006; Muzio et al., 2005; Abbod et al., 2004; Dreiseitl and 

Ohno-Machado, 2003; Speight and Hammond, 1998; Speight et al., 1995;).

Many machine learning algorithms that have been developed to analyze medical datasets, have 

revealed immense information about the underlying datasets and therefore proved indispensable 

tools for intelligent data analysis (Garibaldi and Ifeachor, 2000; Butcher, 2004; Mendonca, 2004; 

Liu et al., 2005). However, there are limitations of the scientific foundation of decision making 

algorithms and unfounded resistance by practitioners that have been identified among the factors 

that contribute to the slow widespread of such systems (Mendonca, 2004; Goggin et al., 2007). 

Therefore, some criteria is reckoned important in order for computer technology and the associ­

ated robust statistical techniques so as to be acceptable and useful in medical diagnosis and 

prognosis; such studies and models must depict good performance as measured by accuracy, sen­

sitivity and specificity; transparency in explaining decisions achieved; and ability to work with 

small sample and ambiguous data (Dreiseitl and Binder, 2005; Kononenko, 2000; Bradley, 

1996).
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BACKGROUND

PREDICTIVE ANALYTICS AND MARS

Predictive modeling is a process that deals with extracting information from data and using it to 

make forecast about future trends and behavior patterns, in this process multiple predictors are 

combined into a predictive model, which, when subjected to analysis, can be used to estimate 

future probabilities with an acceptable level of reliability. Data mining is a component of predic­

tive analytics that entails analysis of data to identify trends, patterns, or relationships among the 

data. This information can then be used to develop a predictive model. Predictive analytics, 

along with most predictive models and data mining techniques, rely on increasingly sophisticated 

statistical methods, including multivariate analysis techniques such as advanced regression or 

time series models. Such techniques enable institutions to determine trends and relationships that 

may not be readily apparent, but still enable it to better predict future events or behaviors. One 

can think of data mining as gathering knowledge about relationships, and the resulting predictive 

analytics models as applying that knowledge. Data mining catalogs all relationships or correla­

tions that may be found among data, regardless of what causes that relationship. The strength 

areas of predictive modeling are: (a) an ability to incorporate any type of variable into the analy­

sis, (b) Dynamic, as they can easily accommodate any information as they become available to 

adjust the model accordingly. Regression models are the backbone of predictive modeling. The 

goal of regression, as in many competing techniques, is to model the relationship between pre­

dictor variables and the desired outcome variables so that in the future, when the outcome vari­

able is unknown, it can be estimated or predicted. Therefore, regression is the process of estab­

lishing a mathematical model as a function to represent the relation between the different predic­

tor variables and the expected outcome. The method of arriving at the mathematical formulation 

depends on the structural assumptions of the relationship between predictors and expected out­

come, as well as distributional assumptions regarding the outcome variable.A predictive model 

captures relationships between explanatory variables (predictors) and the predicted variables 

(dependent variables) from past occurrences, and exploits it to predict future outcomes. Predic­

tive modeling has a wide application for example in marketing, a customer's gender, age, and 

purchase history might predict the likelihood of a future sale, other applications include customer
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relationship management (CRM), meteorology, credit scoring, insurance, healthcare and phar­

maceuticals.

Successful modeling of a complex data is part science, part statistical methods, and part experi­

ence and common sense and thus modeling is part a science and an art. Multivariate analysis en­

compasses all methods that simultaneously analyse multiple measurements on each individual or 

object under investigation. It is an appropriate method of analysis when the research problem 

involves a single dependent variable that is presumed to be related to one or more independent 

variables. The objective is to predict the changes in the dependent variable using the changes in 

the independent variable.

Predictive analytics and data mining is concerned with constructing statistical models from his­

torical data. These models are applied to predict future unknown data values, and/or to help gain 

an insight of the predictive relationships inherent in the data. The measured variables (denoted 

by y) is designated as the one to be predicted, given future values of the other variables denoted 

by x = {x i, X2,...,x„}. Depending on the field of study, y is referred to as the response variable in 

Statistics, output variable in neural networks, or concept in Machine Learning techniques. The x- 

variables are referred to as predictor variables, input variables, or attributes in these respective 

fields.

The data base consists of a collection of N previously solved cases;

(yp *il» •••» 1» # AT (1.1)

The predictive model takes the abstract form:

y  =  / ( * , , - , * „ ) ,  ( 1-2)

where /  is a prediction rule that maps a set of predictor variable values to a response value. The 

goal is to use the data to produce an accurate mapping. The notion of accuracy depends on the 

type of the response variable y in terms of the set of values it can assume. If y assumes numeric 

values the problem is known as regression and lack of accuracy is defined in terms of a distance
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measure d(y,y) between the predicted value y and the unknown true value y. Common measures 

of inaccuracy are average absolute error:

or root mean squared error

ME = ave |y - y I

RSME= yjave{y -  y ) 2

(1.3)

(1.4)

Here ave represents the average over future values to be predicted. If y assumes unorderable 

categorical values (class labels), the problem is called classification. In this case inaccuracy is 

generally defined to be the fraction of incorrect future predictions (error rate).

There is an ever-growing number of high dimensional, super large databases across different in­

dustries that require effective analysis techniques to mine interesting information from such data. 

This project work applies a flexible Multivariate Adaptive Regression Splines (MARS) method 

for modeling of high dimensional data to model the treatment outcomes of tuberculosis patients 

under the directly observed therapy support (DOTS) strategy. The MARS model takes the form 

of an expansion in product spline basis functions, where the number of basis functions as well as 

the parameters associated with each one (product degree and knot locations) are automatically 

determined by the data. This procedure is an improvement of the recursive partitioning approach 

to regression since unlike recursive partitioning; it produces continuous models with continuous 

derivatives. MARS is a generalization of the recursive partitioning regression strategy, or the ad­

ditive modeling approach of Friedman and Silverman (1989). An adaptive computation is one 

that dynamically adjusts its strategy to take into account the behaviour of the particular problem 

to be solved, e.g. the behaviour of the function to be approximated. Adaptive algorithms have 

been in long use in numerical quadrature [Lyness (1970); Friedman and Wright (1981).] In sta-v '
tistics, adaptive algorithms for function approximation have been developed based on two para­

digms, recursive partitioning [Morgan and Sonquist (1963), Breiman, et al. (1984)], and projec­

tion pursuit [Friedman and Stuetzle (1981), Friedman, Grosse,and Stuetzle (1983), and Fried­
man, (1985)].
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Below is a very simple example of a model predicting annual income (I) using the categorical 

variables Education Level (E) and Region (R) and the continuous predictor Age (A):

I = 10.0 + 0.5-A + [-5.0|R=rural] + [5.0|R=urban and E=H.S.] + [10.0|R=urban and E>H.S.]

In this example, a 30 year old rural resident with a high school education would have a predicted 

annual income of $20,000 (10+.5*30-5) a year, while a 50 year old urbanite with a college de­

gree would have a predicted annual income of $45,000 (10+.5*50+10). Note that the first two 

terms are applied to the entire population, while the last three terms are applied only to specific 

regions of the data. The relationship between Region and Education Level, where the weights 

differ depending on the level of the two variables, is an example of an interaction.

TUBERCULOSIS

A modern medical dictionary defines tuberculosis as: “a specific disease caused by the presence 

of Mycobacterium tuberculosis, which may affect almost any tissue or organ of the body, the 

most common seat of the disease being the lungs; the anatomical lesion is the tubercle....; local 

symptoms vary according to the part affected; general symptoms are those of sepsis: hectic fever, 

sweats, and emaciation; often progressive with high mortality if not treated."[l], TB is spread 

through the air from one person to another when a person with active TB disease of the lungs or 

throat coughs, sneezes, speaks, or sings. People nearby may breathe in these bacteria and become 

infected.

Further the disease has been defined as a disease of poverty affecting mostly young adults in 

their most productive years, 95% of TB deaths occur in the developing world. TB bacteria can 

live in the body without making a person sick. This is called latent TB infection (LTBI). In 

most people who breathe in TB bacteria and become infected, the body is able to fight the bacte­

ria to stop it from growing. People with latent TB infection do not feel sick and do not have any 

symptoms of the disease, the TB bacteria become active if the immune system can't stop it from 

growing. When TB bacteria are active i.e. multiplying in the body, this is called active TB dis­

ease. The sign of TB infection is a positive reaction to the tuberculin skin test or special TB 

blood test.
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Kenya has a large and rising TB disease burden and is ranked 15th among the 22 countries that 

collectively share about 80 percent of the world's TB cases. In 1991, the 44th World Health As­

sembly set two key targets for global tuberculosis (TB) control to be reached by the year 2000: 

70% case detection of acid-fast bacilli smear-positive TB patients under the DOTS strategy rec­

ommended by WHO and 85% treatment success of those detected [2], Studies reported that 

WHO's target of treatment success is achievable in people with smear-positive TB even in un­

der-resourced developing countries.

In 1993, the World Health Organization (WHO) adopted a national case management strategy 

(DOTS) to reduce the increasing global burden of tuberculosis (TB), especially in developing 

countries. The five elements of the DOTS strategy are:

(1) Sustainable government commitment.

(2) Quality assurance of sputum microscopy.

(3) Standardized short-course treatment (including direct observation of therapy).

(4) Regular supply of drugs and,

(5) Establishment of reporting and recording systems [3],

The DOTS policy which is a key policy in TB management, has been highly successful in 

terms of national alignment: in 2008, 202 countries had reported implementing the strat­

egy. This policy evolved into the STOP TB policy in 2006, in response to indications 

that the DOTS strategy alone was not sufficient to achieve the 2015 TB-related MDGs. 

However, the Stop TB policy re-emphasises the importance and central position of 

DOTS. The general aim of the Stop TB strategy is to dramatically reduce the global bur­

den of TB which, it suggests, can be achieved through the following six initiatives [4]:
v'

(1) Pursue high-quality DOTS expansion and enhancement;

(2) Address TB /HIV, MDR TB, and the needs of poor and vulnerable popula­

tions;

(3) Contribute to health system strengthening based on primary health care;
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(4) Engage all care providers;

(5) Empower people with TB, and communities through partnership; and

(6) Enable and promote research.

As from the foregoing, the Stop TB policy has expanded its focus from the DOTS policy by in­

cluding the wider drivers of the TB epidemic. However, the Stop TB policy retains DOTS ex­

pansion as one of its goals.

Despite optimal efforts invested in curbing the menace in Kenya, TB remains a major cause of 

morbidity and mortality affecting all age groups, but has its greatest toll in the most productive 

age group of 15 to 44 years. The major factor responsible for the large TB disease burden in 

Kenya is the concurrent HIV epidemic. Other factors that have contributed to this large TB dis­

ease burden include poverty and social deprivation that has led to a mushrooming of peri-urban 

slums, congestion in prisons and limited access to general health care services.

With a case notification rate of 338 per 100, 000 population in 2006 to 28 per 100, 000 in 2009, 

Kenya now ranks at position five in Africa according to facts released by WHO as at March 

2012. Through the DLTLD, Kenya adopted the Directly Observed Therapy Short Course 

(DOTS) strategy for the control of TB in 1993 and achieved countrywide geographic DOTS cov­

erage by 1997. The Division of Leprosy, Tuberculosis and Lung Disease (DLTLD) is imple­

menting initiatives towards achieving internationally agreed TB control targets including the TB 

relevant Millennium Development Goals (MDGs). The TB MDGs are, to have halted and begin 

to reverse the incidence and mortality due to TB by 2015. Therefore, DLTLD, in line with inter­

national trends, has launched several new approaches to increase access to DOTS and truly ex­

pand population DOTS coverage. These approaches include community based DOTS (CB-

DOTS), Public-Private Mix for DOTS (PPMDOTS), collaboration between TB and HIV control>*•'
programs and the development of an elaborate advocacy, communication and social mobilization 

strategy aimed at influencing communities to seek care early when TB symptoms occur and to 

remain on treatment until this is completed when treatment is initiated. The initiatives have fur­

ther been complicated by the growing resistance to TB medications i.e. the emergence of "exten­

sively drug-resistant” tuberculosis (XDR-TB). In Kenya, So far, there are more than 334 cases of
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MDR-TB cases on treatment in 101 treatment sites scattered in the country. It was reported that 

two patients lost their lives due to XDR-TB, in 2010 and 2011 respectively. In addition, Kenya is 

currently treating its third case of extensively drug resistance TB having lost the previous two 

cases. The 57% of MDR cases have the potential risk of infecting 2,107 people in one year at the 

rate of 7 infections per year per one MDR untreated patient. However, the Ministry of Public 

Health & Sanitation with support from donor funding, total health budget, private (including 

households) and public sector resources, have put efforts to ensure that they reduce the incidence 

and mortality due to TB by 2015 and work towards eradicating TB by 2050 as outlined in the 

Millennium Development Goals (MDGs). The Ministry of Health in partnership with the World 

Bank is also decentralising TB culture services from the only laboratory in Nairobi based at the 

Kenya Medical Research Institute for the Multi Drug Resistant (MDR) Tuberculosis to ease con­

gestion at the central TB testing unit to five additional laboratories scattered throughout the 

country.

Approximately one-third of people in the world today are infected with tuberculosis (latent TB), 

and nine million people develop tuberculosis disease (active TB) every year, with 90% of all ac­

tive TB cases occurring in developing countries. This implies that more than 8 million people 

become sick with TB each year. Other facts alludes that someone gets sick from TB every 4 

seconds and Someone also dies of TB every 10 seconds, TB worldwide kills more youth and 

adults than any other infectious disease. The world health organization's prioritized plan for tu­

berculosis control in 2006 through patient supervision and support requires prediction of patient 

treatment course destination to determine how intensive should be the level of supplying services 

and supports in DOTS (directly-observed treatment, short course), this seeks to improve the 

DOTS quality. Consequently, there needs to be developed a tool to predict the patients' treatment 

course destination to spot high risk cases for non-compliance which can assist DOTS more pro­

gressively. In this regard, a valid regression and or classification model to predict the treatment**'
outcome in TB treatment course will be usable to determine the level of patients' supervision and 

support.

Advancements in technology have led to a wide range of genetic and biological markers that 

hold great potential in improving the prediction of treatment destination outcomes. Although
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such new markers promise better disease prognosis, the accuracy in identifying short term and 

long term outcomes remains unsatisfactory for most complex diseases. It has often been argued 

that short term clinical outcomes may have potential in predicting long term outcomes. Ensuring 

that the TB patient completes therapy to cure in order to prevent drug resistance cases and devel­

oping TB in the community is one of the crucial objectives of DOTS.

Some controversies have been raised in the past about the application of DOTS to control TB in 

practice. This came about as a result of the rising incidences of TB starting from mid-1980s thus 

it seemed that the strategy was failing practically in many countries. It has also been recorded 

that DOTS imposes extra burdens on the patient and health care system in lengthened admission 

and frequent attendance at clinics at the expense of self-administration with suitable cure rate in 

some other cases. On the other hand, other empirical investigations have confirmed the DOTS' 

role in treatment success rather than case detection. In overall, it seems that DOTS as one of the 

most widely-implemented and longest running global health intervention in health history is 

going to continue as a foundation strategy for TB control. However, because of pointed imper­

fections in practice, it needs some additional change and support to promote the quality of treat­

ment and gain the defined objectives. Hence. WHO in “Stop TB Strategy" has focused on pur­

suing high-quality DOTS expansion and enhancement; one of the most crucial components of 

this worldwide plan is standardized treatment, with supervision and patient support. It has been 

emphasized that services for TB care should identify and address factors that may make patients 

interrupt or stop treatment. Moreover, supervision must be carried out in a context-specific and 

patient-sensitive manner, and is designed to ensure adherence on the part both of providers (in 

giving proper care and support) and of patients (in taking regular treatment). Also, it has been 

brought to light that preferred patient groups, for example prisoners, drug users, and affected 

people by mental health disorders may need intensive support including DOTS [5].
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PROBLEM STATEMENT

Many health institution information systems are designed to support services like patient billing, 

inventory management and generation of basic statistics. Despite the fact that some hospitals use 

decision support systems, they are to a large extent limited. These systems are designed to pro­

vide simple pieces of information like "What is the average age of patients who have a certain 

disease?”, "How many patients were admitted in the hospital more than once in a year or for a 

particular period?”, "Identify the number of patients from a particular gender, their marital status 

and age, and summaries of patients treated for a particular ailment.” However, situations may 

demand the need for complex queries like to identify the most important causal agents that pro­

long the patient's stay in hospital. Which treatment combination suits a particular patient and to 

some extent predict the probability of patients getting a disease or of a disease that will advance 

to another stage.

The all-important question that this study seeks to answer is how to help healthcare practitioners 

in combating the TB menace to make better informed clinical decisions on how to turn know­

ledge-rich data into some useful information in forecasting the treatment course destination of 

tuberculosis (TB) patients. This will be achieved by making use of historical patients' attributes 

to build a predictive model using MARS and validate the same using real data for patients in 

Kenya. By doing this, health institutions can make informed decisions relating to the optimal use 

of health resources and implementation of disease-specific intervention strategies.
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OBJECTIVES OF THE STUDY

OVERALL OBJECTIVE

The overall objective of this study is to construct and validate a comprehensive clinical tool us­

ing multivariate adaptive regression splines to forecast TB cases treatment course destination by 

a vector of covariates.

D a ta

M o d e l

P r e d i c t i o n

SPECIFIC OBJECTIVES

The specific objectives of this study include:

i. To measure TB treatment outcomes defined as getting cured, completion treatment 

courses, quit the treatment course, fail in treatment, and death among patients receiving 

TB treatment.

ii. To identify tuberculosis (TB) risk predictive factors that contribute to the treatment out­

comes defined in (i) above, that is. to generate an 'optimal' input variable predictor set 

by utilizing the goodness of fit measurement indices for the proposed model

i. To investigate the feasibility of applying multivariate adaptive regression splines 

(MARS) algorithm in predicting tuberculosis (TB) course destination under the DOTS 

strategy.
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JUSTIFICATION

Many healthcare organizations including hospitals and medical centers are challenged majorly 

by inadequate information in the provision of quality healthcare services at affordable costs. 

While at the same time the industry collects huge amounts of data which needs to be well uti­

lized to discover vital infonnation for effective decision making. The discovery of hidden pat­

terns and relationships needs to be fully exploited by use of appropriate data mining and analysis 

techniques. Poor clinical decisions can lead to disastrous consequences which can have adverse 

unethical and legal effects. Health institutions must also minimize the cost of clinical tests. They 

can achieve these results by employing appropriate computer-based infonnation and/or decision 

support systems.

Most hospitals today employ some sort of hospital information systems to manage their health­

care or patient data. The systems typically hold huge amounts of data in the fonn of numbers, 

text, charts and images. Unfortunately, these data are rarely used to support clinical decision 

making. There is a wealth of hidden infonnation in these data that is largely underutilized.

The world health organization's prioritized plan for tuberculosis control in 2006 through patient 

supervision and support requires prediction of patient treatment course destination to determine 

how intensive should be the level of supplying services and supports in DOTS (directly-observed 

treatment, short course), this seeks to improve the DOTS quality. Correct treatment of tuberculo­

sis (TB) aims at curing the individual patient, interrupting transmission of TB to other persons, 

and preventing bacilli from becoming drug resistant. Monitoring the treatment outcome of TB is 

essential in order to evaluate the effectiveness and efficiency of TB intervention programs such 

as treatment method, procedure, protocol, including diagnosis and follow up. However, these 

aims have not been achieved in many regions of the world even when anti- tuberculosis drugs are 

available. The main reasons are death "of the patients during treatment, default before the sched­

uled end of treatment or resistance to the drugs prescribed. Patient non-adherence to treatment is 

interpreted as a failure of the health care system to cope with the natural tendency of humans to 

quit treatment as soon as they feel subjectively better, or better without treatment if adverse drug 
events supervene [6],
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The foregoing situation necessitates the need to develop a tool to predict the patients' treatment 

course destination to spot high risk cases for non-compliance which can assist healthcare profes­

sionals in achieving DOTS more progressively. In this regard, a valid regression model to predict 

the treatment outcome in TB treatment course might be usable to determine the level of patients' 

supervision and support. The applied methodology Mars adapts to its data in a splines-like way 

by fitting piecewise linear basis functions of the explanatory variables that best predict the de­

pendent variable. Together, the many fitted pieces often resemble a polynomial curve. An initial 

forward pass in the Mars algorithm chooses the predictors and accompanying basis or hinge 

functions so as maximize the reduction in the sum-of-squares residual error. The process contin­

ues until a given number of terms is reached or the residual reduction is not meaningful. A major 

advantage of Mars is the routinized and tunable handling of curvilinearity and interactions 

among predictors, both of which are challenges with parametric linear regression. At the same 

time, Mars is flexible in providing modelers the option to enter predictors linearly, in which case 

the results look a lot like least squares regression.

RESEARCH QUESTIONS__

(1) Can a multiple statistical technique such as multivariate adaptive regression splines 

analysis be successfully integrated and applied to problem such as the prediction of a 

treatment course destination degree?

This question will be examined by fitting the model and determining if the predic­

tive results of the model achieve acceptable accuracy.

(2) What are the TB treatment outcomes and factors associated with TB "negative'' 

treatment outcomes in persons receiving TB treatment in various parts of Kenya?

To be explored by determining the set of variables that were measured for a group of pa- 

tients as they progressed in treatment that affect the probability that a given patient fails 

to complete the treatment therapy or any of the other "‘negative" treatment outcomes.
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RESEARCH SIGNIFICANCE AND CONTRIBUTIONS

This research is the first attempt to use MARS to forecast the tuberculosis (TB) course destina­

tion or treatment outcome to a Kenyan database and to a large extent globally at least as per the 

comprehensive literature review done. The main contributions of this work are both conceptual 

and practical. The conceptual contribution refers to the development of an adaptive algorithm for 

the prediction of multiple response variable based on MARS technique. This adapted algorithm 

is suitable to be used for small and large sample sizes and for variables governed by ambiguous 

relationship. The practical contribution of this research work refers to the possibility of using the 

model as a prediction tool that can be further developed into an automated technique for TB de­

tection and screening purposes. The models may be utilized to predict the treatment course desti­

nation with modest discriminatory accuracy, similar to that of other tuberculosis prediction mod­

els. The statistically significant variables in the models can be assessed by patient interview 

and probably clinical examination.

The findings of this research will also provide some initial parameters for forecasting TB disease 

susceptibility at individual and group levels. These findings will help clinician device better 

screening procedures by differentiating between the high-risk and the low-risk group. Similarly, 

knowledge on the impact of risk factors on disease treatment outcome as revealed by the pro­

posed MARS prediction model will provide guidelines for patient counselling and health quality 

improvement efforts. It is hoped that the proposed MARS prediction model may serve as an aid 

in screening procedure applicable in reducing morbidity and mortality from TB by early detec­
tion.
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CHAPTER 2

LITERATURE REVIEW

Most data found in the real-world problems are finite or discrete, in such a situation, the regres­

sion models used for analyzing such data sets to disclose the relationship between the predictors 

and response variable(s) are also called discrete or Gaussian approximation. Regression analysis 

is the most widely used statistical technique, in investigating and modeling the relationship be­

tween variables. There are many regression models used for several purposes such as data de­

scription, parameter estimation for learning, prediction and control.

A multivariate modeling is undertaken when an individual sets to relate a set of independent va­

riables X‘s to a dependent variable Y by using some form of mathematical model with an expec­

tation to uncover the complex inter-relationships among the many variables. Currently, there are 

many available statistical techniques for solving multivariate problems. However, these statistic­

al methods are restricted by assumptions about the distribution of the dependent variable and the 

distribution of the residuals (Miles and Shevlin, 2003). When these assumptions are not satisfied, 

the conclusion derived from the statistical analysis will be incorrect.

Soft computing and data mining provides an alternative to statistical multivariate modeling when 

variables distributions problems arise. Literature is rich and has shown that there is an increasing 

trend in the use of soft computing in diseases diagnostic and prognostic prediction modeling 

(Abdul Kareem, 2002; Garibaldi and Ozen, 2007; Dreiseitl and Ohno-Machado, 2002; Speight 

and Hammond, 1998; Catto etal, 2006; Liu et al, 2005; Matheny and Ohno-Machado; 2007).

The goal of predictive modeling in clinical medicine is to derive models that can be used to pre­

dict the outcome of interest thus supporting clinical decision making in prognosis, diagnosis or 

treatment planning based on patient-specific information (Bellazi and Zupan, 2008). Commonly 

used predictive techniques include decision trees, logistic regression, artificial neural networks, 

k-nearest neighbors and support vector machine.
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tuberculosis treatm ent outcome prediction and  related works

There are areas related to the above techniques in which significant progress has been made and 

this includes: The developing of mathematical models of disease transmission within human 

populations that has been acknowledged in helping policy makers and epidemiologists to interp­

ret epidemiological trends, understand the dynamics of disease spread and to measure the effi­

ciency of disease prevention and control, such as measles, HIV and other emerging infections

in

In risk prediction, the context of cardio- vascular diseases is most well developed, for which 

prediction models use a combination of variables (blood pressure, smoking history, lipid levels, 

and family history of heart disease) to assess an individual's risk of heart disease [8], Risk data 

from the Framingham Heart Study have been used to construct the Framingham Coronary Risk 

Prediction Model and to formulate guidelines for cholesterol-lowering therapy As Grundy et al. 

note, the Framingham risk scores can both motivate and reassure the patient; they also illu­

strate the cumulative nature of multiple risk factors [9],

Developing a model to predict between a positive outcome and any another outcome for a given 

patient involves using data to discriminate between the two potential results. A valuable tool in 

assessing the accuracy of the discrimination is Receiver Operating Characteristics (ROC) curve 

[10], analysis. ROC curve analysis was developed as a concept in signal detection theory during 

World War II where radar operators examined radar signals to detect oncoming Japanese aircraft 

and distinguish such readings from "noise” in the signal. The goal was to increase the accuracy 

of predictions and decrease the likelihood of false alanns or missed detections. The prediction 

accuracy is a trade-off between sensitivity and specificity. Sensitivity is the probability of cor­

rectly identifying a signal while specificity is the probability of correctly identifying system 

"noise." This type of analysis has been widely adapted in other fields to evaluate how well mod- 

els discriminate between potential outcomes. In the medical research, the concept has been used 

to evaluate the diagnostic value of medical tests as well as to determine the therapeutic value of 

treatments [11]. A medical test may result in concluding that a disease is present i.e. a "positive” 

test result, or that it is not present i.e. a "negative” test result. Ideally, a diagnostic test should 

accurately detect when a disease is present and accurately indicate when it is not. False positive
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test results lead to unwarranted concern and potentially unnecessary treatment while false nega­

tive test results may lead to adverse health results as a condition goes untreated.

Discriminating between two outcomes leads to four possible results. The test could classify a re­

sult as positive or negative. The classification could be correct or incorrect. The four possible 

results are correct disease detection (true positive), incorrect disease detection (false positive), 

correct healthy status (true negative), and incorrect healthy status (false negative). The sensitivity 

of a diagnostic test measures its ability to identify the presence of disease and the specificity of 

the test measures its ability to identify the absence of disease. In this context, sensitivity is the 

probability of a true positive while specificity is the probability of a true negative. The cutoff 

point used in the outcome discrimination determines the sensitivity vs. (1 - specificity) for the 

diagnostic test. The two measures are directly associated for a given cut off point value. This as­

sociation means there is a tradeoff between achieving good sensitivity and good specificity in 

outcome discrimination.

ROC curve analysis is used in predictive modeling to evaluate models by examining the resulting 

ROC curve for a wide range of cut off points. The models that result in an ideally shaped ROC 

curve have a better ability to discriminate between two potential outcomes than those with a (lat­

ter ROC curve. A shallow ROC curve implies that the model has negligible discrimination pow­

er. Such a model is as likely to predict a true positive as a false positive and has no useful pre­

dictive ability. The area under the ROC curve ("AUC") provides an estimate of the model's pre­

dictive ability. A model with a high value for AUC is judged to better discriminate between the 

potential outcomes. Hosmer and Lemeshow [12], indicate that a value for AUC of 0.5 indicates 

that the model is of little use since it is as likely to correctly predict a binary outcome as flipping 

a fair coin. A result of 0.7 < AUC < 0.8 represents "acceptable" ability to discriminate between 

potential outcomes. A result of 0.8 < AUC < 0.9 represents "excellent" ability to discriminate 

between potential outcomes. A result of AUC > 0.9 represents ''outstanding'’ ability to discri- 

minate between potential outcomes.

Some modeling studies enrich the basic model framework with heterogeneities by subdividing 

subgroups, so as to generate greater and more realistic structure, [Grenfell et al (2001), K. M. 

Hassmiller (2010), Osgood et al (2011)]. Such disaggregation which uses the technique of
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attribute-based disaggregation [N.D. Osgood (2004)], can be used to stratify a model to reflect 

more complex hierarchy of population or to integrate personal characteristics to generate rich 

dynamical behaviors. The Tuberculosis (TB) model by [Osgood et al (2011)] integrated trans­

mission preference to express the mixing preferences of different age groups and ethnic catego­

ries. In addition. Hassmiller's TB model [K. M. Hassmiller (2007)] with smoking impact evalu­

ation also stratified people into subgroups regarding smoking status and apply specific mixing 

patterns.

In 2001, in order to reduce the risk of developing active TB especially among those 

within their first two years of infection and who are at particular risk of progression to 

Active TB, a mathematical model of the TB epidemic was developed to quantify the 

effectiveness of treatment for early latent TB infection [13], Positive effects have been 

observed in lowering the incidence of TB and eliminating the disease especially in latent 

tuberculosis, which suggests that targeted preventive therapy for newly infected contacts 

through may ultimately offer great contribution in TB control. Another TB model includ­

ing preventive treatment for Latent TB infection produces similar outcome and confirms 

the effectiveness of contact tracing in decreasing the incidence rate of TB [14].

Recently, Osgood and Mohamoud et al.[ 15] have extended their aggregate TB models 

by incorporating age as well as ethnic stratification to fit TB data from the Canadian 

province of Saskatchewan and to investigate targeted intervention strategies for high risk 

subgroups and their impact on lifetime TB outcome. It is observed that a temporary 

elevation in incidence rate can bring notable influence on individuals' lifelong risk of 

TB, and it indicates the presence of system memory in the form of latently infected 

population.

w'
In a study done in a rural South Africa to determine tuberculosis (TB) treatment outcomes in 

adult patients attending a rural HIV clinic, it was found out that the outcomes of TB treatment 

are improved in HIV-infected persons taking TB treatment under the support of DOT supporter. 

It was further shown that a twice-weekly directly observed therapy (DOT) for TB in HIV- 

•ntected and non-infected persons was effective. After six months of follow-up; 71% of the par­
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ticipants were cured, 3% completed treatment without being cured, 2% transferred out and only 

2% reported treatment failure. The study concluded that a twice-weekly rifampicin- containing 

drug regimen given under DOT cures most adherent patients irrespective of HIV status and pre­

vious TB treatment history [16]. There is generally no disparity on the outcomes of TB treatment 

between males and females, except on people at 25 years of age and older [Nsubuga P et al 

2002]. Age was further reported to be a predictor of TB mortality among with other factors such 

as residence in rural area, sputum smear-negative disease, defaulting TB treatment and prolonged 

symptom duration prior to initial diagnosis [17].

In Uganda a study enrolled a cohort of 105 male and 109 female HIV-infected adults receiving 

treatment for initial episodes of culture confirmed TB between March 1993 and March 1995. In 

this study favorable outcomes were defined as cured or alive while unfavorable outcomes were 

not being cured or dead. At the end of one year of follow-up there was no difference in the like­

lihood of experiencing a favorable outcome (RR 1.02, 95 Cl 0.89-1.17). While differences ex­

isted between males and females with HIV-associated TB at baseline, the outcomes at one year 

after initiation of TB treatment were similar [18],

Modeling studies have employed different statistical techniques to unravel the complexity of in­

teractions between distributions and environmental factors. Those include Generalized Linear 

Models (GLM; Guisan et al. 1998), especially Logistic Multiple Regression (LMR; Naruinalani 

et al. 1997; Felicisimo et al. 2002); Generalized Additive Models (GAM; Yee & Mitchell 1991) 

and Classification and Regression Trees. In addition, Guisan & Zimmermann (2000) made a 

comprehensive review of predictive modelling and noticed the lack of comparative studies in 

which more than two statistical techniques were applied to the same data set.

Most studies on predictive modelling are based on methodologies that assume a Gaussian rela­

tion between response variable and the predictors, and also that the contribution to the response 

from the interactions among predictors is uniform across their range of values. Both assumptions 

are unwarranted in most cases (Austin & Cunningham 1981; Austin et al. 1990, 1994). Neverthe­

less, logistic multiple regressions (LMR) with a quadratic function to represent Gaussian res­

ponses have often implied high predictive success. Further problems associated with classical
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regression analysis arise when many predictors are used. Such increase in the number of predic­

tors implies an increase greater than exponential in the number of possible regression structures, 

and the almost inevitable problem with multicollinearity.

To avoid these problems, analysts impose strong model assumptions, forcing the variables to act 

globally over the response by limiting or eliminating local changes in response or interactions. 

This strategy can no longer be justified if suitable predictors are likely to act and interact diffe­

rently on the response variable across their range of values. The search for a model that handles 

the above problems brings us to explore and seek to improve a relatively new statistical tech­

nique employed in data-mining strategies in fields such as chemical engineering, marketing 

campaigns or weather forecasting: multivariate adaptive regression splines (MARS; Friedman 

1991).

SUMMARY

The reviews of literature for this research has been developed based on the importance of accu­

rate, transparent and reliable prediction modeling on systems relying on unclear relationships 

among variables within a multi faceted databases. Thus based on this literature review I propose 

a data mining based prediction tool that can be incorporated as a screening aid for predicting a 

polytomous outcome in disease treatment outcome prediction.
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CHAPTER 3

METHODOLOGY __

INTRODUCTION

The purpose of the model is to identify the significant quantitative and qualitative factors of the 

patients and to utilize them to accurately project the treatment outcome status. The model uses 

this set of variables as inputs to multivariate adaptive regression splines. The model's output is a 

predicted probability that a patient's treatment outcome is with a given multivariate vector is 

positive. This permits the identification of those patients for whom an intervention could be 

beneficial in terms of prompting them to comprehensive support program. The model's value is 

assessed by comparing how accurately the predicted outcomes for a group of patients match the 

actual results.

Statistical analysis and modelling involves the application of appropriate statistical analysis 

techniques that each requires certain assumptions be met so as to perform hypothesis tests, in­

terpret the data, and reach valid conclusions.

Basically, there are two goals when analyzing data:

(i) Predietion: By analyzing the past, one assumes that conclusions drawn can be used to

predict the future.

(ii) Inferential: In this^ase, one may be interested to investigate the nature of the

relationship between different sides of a complex phenomenon.

We pursue the first goal.

Irrespective of the goals of the analysis, we always have a set of output variables, a set of input 

variables and an unknown mechanism that relates the output with the input. This mechanism can 

be called the Data Generating Mechanism:
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Discussing briefly about the middle stage i.e. data generating mechanism, statisticians are di­

vided into two main groups:

• Stochastic modelling. One assumes that the relationship between the input and 

output is driven from a stochastic process: linear regression, logistic, regression, 

Cox model,...

• The algorithmic approach. According to this approach, the relationship is too 

complex and unknown. Instead of a concrete equation, this approach looks for an 

algorithm that can help predict the future of the output from the input: Decision 

Trees, Neural nets, Genetic models,...

Regardless of what standpoint of the above that one chooses to adopt, statistical analysis and 

modelling requires careful selection of analytic techniques, verification of assumptions, and veri­

fication of data. Descriptive statistics, graphs, and relational plots of the data should first be ex­

amined to evaluate the legitimacy of the data, identify possible outliers and assumption viola­

tions, and form preliminary ideas on variable relationships for modelling. This project will ad­

here to the above requirements in this section to the letter but briefly let's look at the origin of 

MARS.

In recursive partitioning, the main goal is to use the data to simultaneously estimate a good set of 

sub-regions and the parameters associated with the separate functions in each sub-region. Conti-*s» '
nuity at sub-region boundaries is not enforced. The partitioning is accomplished through the re­

cursive splitting of previous sub-regions. The starting region is the entire domain. At each stage 

°f the partitioning all existing sub-regions are each optimally split into two sub-regions. The re­

cursive subdivision is continued until a large number of sub-regions are generated. The sub- 

regions are then recombined in a reverse manner until an optimal set is reached, based on a crite-
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non that penalizes both for lack-of-fit and increasing number of regions (Breiman et al., 1984). 

Variables that locally have less influence on the response are less likely to be used for splitting. 

This gives rise to a local variable subset selection. Global variable subset selection emerges as a 

natural consequence. Recursive partitioning based on linear functions lacks this local variable 

subset selection feature which tends to limit its power and interpretability. Also, recursive parti­

tioning regression exploits the marginal consequences of interaction effects whereby local intrin­

sic dependence on several variables, when best approximated by an additive function, does not 

lead to a constant model.

Unlike regression that returns a subset of variables, classification trees can rank order the factors 

that affect the retention rate. When recursive partitioning models use piecewise constant ap­

proximations they are fairly easily interpretable owing to the fact that they are very simple and 

can be represented by a binary tree [Breiman et al. (1984)]. They are also fairly especially rapid 

to evaluate.

However, recursive partitioning as a multivariate function approximation suffers from some se­

vere restrictions that limit its effectiveness. Firstly, the approximating function is discontinuous 

at the sub-region boundaries. This problem limits the accuracy of the approximation, especially 

when the true underlying function is continuous. Another problem with recursive partitioning is 

that certain types of simple functions are difficult to approximate. These include linear functions 

with more than a few nonzero coefficients. More generally, it has difficulty when the dominant 

interactions involve a small fraction of the total number of variables. In addition, one cannot dis­

cern from the representation of the model whether the approximating function is close to a sim­

ple one, such as linear or additive, or whether it involves complex interactions among the vari­

ables. To overcome some oflhe above limitations, we describe the multivariate adaptive regres­

sion spline (MARS) approach to multivariate non-parametric regression. Multivariate adaptive 

regression spline (MARS) denotes a tool from statistics, important in classification and regression, 

with applicability in many areas of finance, science and technology. It is very useful in high dimen­

sional problems and shows a great promise for fitting nonlinear multivariate functions [ 19],
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l in e a r  r e g r e s s i o n  m o d e l

If a regression model is linear in fitted parameters, it is called as linear regression model (LRM). 

In general, the following equation represents an LRM.

y = Po + PiX, +p2X2 +... + pkXk + e, (3.1)

In the above equation, y is called the response variable or the dependent variable and Xj (j = 1,

2.....k) are called the regressor variables (predictor or independent variables). Furthermore, e is

a random error component. The errors are assumed to have a normal distribution with a mean of 

zero and unknown constant variance, o'. It is also assumed that the errors are uncorrelated. In 

other words, the value of one error is independent from the value of any other error. The parame­

ter Po means the intercept and the other parameters Pj (j = 1; 2; k) are the regression coeffi­

cients. The parameter Pi represents the expected change in the response y per unit change in xi 

when all of the remaining regressor variables Xj (j = 1; 2; ...; k; j J-1) are held constant.

To solve most real-world problems, we need to find the values of the regression coefficients P, 

and the error variance o: which are always not known. These parameters and the error variance 

must be estimated from a sample data set. The fitted regression equation or the model enables us 

to predict future observations of the response variable y. Least squares estimation (LSE) or 

maximum likelihood estimation (MLE) are two widely used optimization methods applied on the 

regression model for estimating the unknown regression parameters.

GENERALIZED LINEAR MODEL

We combine both linear and nonlinear regression models under the framework of generalized 

linear models (GLMs). This approach is used when the assumptions of normality and constant 

variance are not satisfied. It ehables the incorporation of non-normal response distributions. It 

allows the mean of a dependent variable, y, to depend on a linear predictor through a nonlinear 

link function and also allows the probability distribution of y, to be any member of an exponen­

tial family of distributions. Many widely used statistical models belong to GLMs. These include 

classical linear models with normal errors, logistic and probit models for binary data, and log- 

linear models for multinomial data and many other useful statistical models such as the Poisson,
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binomial, Gamma, and normal distribution have been formulated as GLMs by the selection of an 

appropriate link function and response probability distribution.

A GLM has the following basic structure:

hOO = (3,2)

where p, = E(Yi), h is a smooth monotonic "link function", x, is the input variable of predictors, 

and P is a vector of an unknown parameters. A GLM usually imposes the distributional as­

sumption that the response variables Y, are independent and can have any distribution from ex­

ponential family density of the form:

Yi~fYi(yi.Oi.&) = exp
OiYi ~ b; (dt)

a,(0) + G(y*;0)} (t = 1 ,2,
(3.3)

Where aj, bj, and Cj are arbitrary functions, <P is an arbitrary "scale" parameter and 0) is called a 

natural parameter. We can also obtain a general expression for the mean and variance of depend­

ent variable Y, using log likelihood of p, = E(Yi) = bj'( 0,) and Var(Yi)= b,"( #,).aj(<t>). The 

symbol is used for differentiation [20],

NONPARAMETRIC REGRESSION MODELS AND ACCURACY MEASURES

A general nonparametric regression model is of the form;

y = f(x) +s; (3.4)

Where x = (xi, xi,...,Xk)T. The aim of traditional regression analysis is to estimate the parameters 

of the model, while the aim of nonparametric regression is to estimate the regression function f 

directly, this function is implicitly assumed to be a generally smooth and a continuous function 

and in the model the error term £ has zero mean and constant variance a2. However, in some 

cases it can be non-smooth.

The additive regression model is of the fonn;
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y = P„+ f,(x,) + f,(x:) +'...+ fk(Xk) + e, (3.5)

Where P„is the unknown bias (intercept) and the partial regression functions fj (j =1, 2,...,k) are 

assumed to be smooth. Both p ,and the functions f  (j =1, 2,...,k) are to be estimated from the data. 

Variations of the additive regression models are the semiparametric regression model, in which 

predictor variables are "additively" separated by the unknown functions like:

y = P„+ p,x,+fi(x,) + fi(x2) + ...+ tl(Xk) + e, (3.6)

or interactions of some predictor variables are expressed in unknown functions that appear as 

higher-dimensional terms such as:

y = p„+ fi>(x„ X:) + f,(x,) + ... + fk(Xk) + e. (3.7)

These models have also been extended to generalized nonparametric regression.

MULTIVARIATE ADAPTIVE REGRESSION SPLINES (MARS)

The Multivariate adaptive regression splines (MARS) is a data mining technique (Friedman, 

1991; Hastie, Tishirani and Friedman, 2001) that can be used for solving regression-type prob­

lems. It is a non-parametric procedure, for fitting adaptive regressions that uses piecewise basis 

functions to define relationships between a dependent variable and a set of predictors and thus no 

functional relationship between the dependent and independent variables is assumed prior to the 

analysis. The 1988 brain child of Jerome Friedman, MARS combines properties of regression 

and tree techniques. Like regression, MARS attempts to optimize a fit of a dependent variable 

using the least squares method. Unlike regression, MARS allows for the specification of more 

complex terms than linear and additive ones in the model. Like trees, MARS partitions data, but 

unlike trees, MARS allows for the capture of linear and additive relationships and for the split­

ting over all nodes at each step, rather than just the currently terminal ones. Either Categorical or 

continuous outcomes can be modeled using categorical or continuous predictors with this tech­

nique. Therefore, the MARS model splits the data into several splines on an equivalent interval
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basis (Friedman, 1991). In every spline, MARS splits the data further into many sub­

groups. Several knots are created by MARS. These knots can be located between different input 

variables or different intervals in the same input variable, to separate the subgroups. The data of 

each subgroup are represented by a basis function (BF). The model takes the form of an expan­

sion in product spline basis functions, where the number of basis functions as well as the para­

meters associated with each one (product degree and knot locations) are automatically deter­

mined by the data. Splines are curves which are required to be continuous and smooth. Splines 

are generally n-degree piecewise polynomials whose function values and first n-1 derivatives 

agree at the points where they join (the abscissa values of the join points are called “'knots"). 

MARS replaces the step function used in trees with a truncated power spline in order to produce 

a continuous model.

This procedure is motivated by the recursive partitioning approach to regression and shares its 

attractive properties. Unlike recursive partitioning, however, this method produces continuous 

models with continuous derivatives. It has more power and flexibility to model relationships that 

are nearly additive or involve interactions in at most a few variables. In addition, the model can 

be represented in a form that separately identifies the additive contributions and those associated 

with the different multivariable interactions. The modeling procedure is inspired by the recursive 

partitioning technique governing CART and generalized additive modeling (Hastie and Tibshi- 

rani, 1990), resulting in a model that is continuous with continuous derivatives. MARS excels at 

finding optimal variable transformations and interactions, the complex data structure that often 

hides in high-dimensional data. And hence it can effectively uncover important data patterns and 

relationships that are difficult, if not impossible, for other methods to reveal.

MARS essentially builds flexible models by fitting piecewise linear regressions; that is, the 

nonlinearity of a model is approximated through the use of separate regression slopes in distinct 

intervals of the independent variable space. Therefore the slope of the regression line is allowed 

to change from one interval to the other as the two "knot" points are crossed. The variables to 

use and the end points of the intervals for each variable are found via a fast but intensive search 

procedure. In addition to searching variables one by one, MARS also searches for interactions 

between variables, allowing any degree of interaction to be considered.
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Basis Functions

In multivariate and adaptive regression splines, basis functions are the tools used for generalizing 

the search for knots. Basis functions are a set of functions used to represent the information con­

tained in one or more variables. The functions used to re-express the relations between depend­

ent and independent variables. Multivariate and Adaptive Regression Splines model almost al­

ways creates the basis functions in pairs. For example, basis function (BF1) on the variable ele­

vation is defined by MARS as:

BF,= max(0, elevation - 219) (3.8)

Data for elevation variables are grouped into two sets: the first set is assigned 0 for all elevation 

values that are below a threshold (e.g., c = 219 m), and the second set contains the elevation val­

ues that are more than 219 m. Elevation has no relation to the probability of presence (i.e., slope 

= 0) for values below the threshold of 219 m, but has a negative relationship (slope < 0) above 

this threshold.

The MARS model is a spline regression model that uses a specific class of basis functions as 

predictors in place of the original data [21]. The MARS basis function transform makes it possi­

ble to selectively blank out certain regions of a variable by making them zero, allowing MARS 

to focus on specific sub-regions of the data. MARS excels at finding optimal variable transfor­

mations and interactions, as well as the complex data structure that often hides in high­

dimensional data.

MARS uses two-sided truncated functions of the form shown below as basis functions for linear 

or nonlinear expansion, which approximates the relationships between the response and predictor 

variables.
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Figure 3.1: The BFs used by MARS (x-t)+ and (t-x)+.

Shown above is a simple example of two basis functions (t-x)+ and (x-t)+ (Hastie, et al., 2001). 

Parameter t is the knot of the basis functions that defines the "pieces" of the piecewise linear re­

gression; these knots or parameters are determined from the data. The "+" signs next to the terms 

(t-x) and (x-t) simply denotes that only positive results of the respective equations are considered; 

otherwise the respective functions evaluate to zero.

The collection of basis functions is:

C = {(Xj - t ) +, ( t - X j )+} 

t e {jqj ,x2j,...,xNj f 
j  = 1,2

(3.9)

If the input values are distinct: 2Np basis functions.

The example below is a function h(Xi, X2) = (X|-x5|)+.(x72-X2)+, resulting from multiplication of 

two piecewise linear MARS Basis functions.
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h( Xx x2)

Figure 3.2: Two-way interaction basis functions.

The result is non zero only over the small part of the feature space where both component func­

tions are nonzero.

The MARS Model

The MARS model invented by Friedman (1991) is a flexible nonparametric regression model for 

high dimensional data. For the presumed system that generated the data:

y = f ( x  1....* p ) + £ (3.10)

The general MARS model equation (Hastie et al., 2001,) is given as:

M
y =  / (* )  =  Po + 2  Pm M *) + £

" m=l (3.H)

Where, y  is predicted as a function of the predictor variables X  and in some cases together with

their interactions; this function consists of an intercept parameter (|30) and the weighted (f?J sum 
of one or more basis functions hm(X). The summation is over the M non-constant terms in the 
model. The basis functions together with the model parameters which are estimated through least 
squares estimation are combined to produce the predictions given the inputs.
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Each basis function |3j(x) takes one of the following three forms:

1) A constant 1. When there is just one such term, the intercept.

2) A hinge function. A hinge function has the form; max(O.x-const) or max(0, const-x). 

MARS automatically selects variables and values of those variables for knots of the hinge 

functions.

3) A product of two or more hinge functions. These basis functions can model interaction 

between two or more variables.

A basis function can be as simple as a constant, or as complex as one or the product of multiple 

sub-functions that add non-linearities called hinge functions.

The MARS model "selects'" a weighted sum of basis functions from the set of a large number of 

basis functions that span all values of each predictor. The MARS algorithm then searches over 

the space of all inputs and predictor values i.e. knot locations t as well as interactions between 

variables. During this search, an increasingly larger number of basis functions are added to the 

model (selected from the set of possible basis functions), to maximize an overall least squares 

goodness-of-fit criterion. As a result of these operations, MARS automatically determines the 

most important independent variables as well as the most significant interactions among them. 

The basic underlying assumption of MARS is that the function /  is locally smooth. Friedman 

(1993) extended the MARS methodology to the model having nominal categorical explanatory 

variables to which the usual definition of smoothness s does not apply. For the case of a simple 

categorical variable x such that x t[c  i ,..., ck }, the function estimate is:

where I is the indicator function and (A| ,..., Am) are subsets of {ci ,..., ck. }. The estimate with

smaller M is said to be smoother. Friedman (1993) developed the MARS algorithm which ac­

commodates mixed (i.e. categorical and continuous) explanatory variables.

(3.12)
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Hinge Functions

Hinge functions are a key part of MARS models. A hinge function takes the form max(0,x-c) or 

max(0, c-x) where 0 is the minimum value for the function, x is the variable, and c is a constant 

that provides a kink or sharp turn in one-dimension called the knot. A Knot is where one local 

regression model gives way to another and thus is the point of intersection between two splines. 

An example is shown below of a mirrored pair of hinge functions with a knot at 3.1.

X

Figure 3.3: A mirrored pair of hinge functions with a knot at x=3.1

Apart from forming piecewise linear functions from hinge functions, the hinge functions can 

also be multiplied together to form non-linear functions.

The Model Building Process: MARS Approach

There are two phases of building a model in MARS, namely the forward and the backward pass. 

The two stage approach is synonymous to that used by recursive partitioning trees.

The MARS algorithm uses expansions in piecewise linear basis functions to build models from 

two sided truncated functions of the predictors (x) of the form (x-t)+ and (t-x)+ where means 

positive part, with a knotting value at t. so:

The following two functions are truncated where .yGM:

• w * '

[ x - t  i f  X > t 
{ x - t ) +=\

, 0 otherwise

(3.13)
J t — x if  x < t 
[O otherwise

32



In Figure 3.1, each function is piecewise linear whose knot is on the point of value t. The equa­

tion (.)+ means that only the positive parts are used, if not it is given a zero value. These two 

functions are named as a reflected pair. Here, as to every input x,y, each input Xj with knot consti­

tutes a reflected pair. So the collection of BFs is:

l j ’X2j’ '■Nj,1 ) e (1.2.....p}j
(3.14)

If each input value is not equal to any other one, there will be 2Np BFs totally. Although every 

BF is only related to single Xj, we can still consider it a function over the whole input space Rp. 

The usual method for generalizing spline fitting in higher dimensions is to employ BF that are 

the tensor products of univariate spline functions. Therefore, multivariate splines BFs take the 

following form:

k m
= ]^[[skm. 0 v(fem) -  tfcm)]+,

k=i (3.15)

where Km is the total number of truncated linear functions in the mth BF, xY(km) is the input vari­

able corresponding to the kth truncated linear function in the mth basis function, tkm is the corre­

sponding knot value and skmE {+) [22]

The way to construct model is analogous to forward stepwise linear regression, but it allows the 

use of functions and their products from the set C, not the initial value. The form of the model is 

as follows:

M

/ ( * )  =  Po+  2  f tA lO O  + e , ~ "
m=l (3.16)

Where each Bm(x) is a function from the set C, or the product of two or more functions from C. 

Given Bm a choice, coefficient (>m could be estimated by minimizing the sum of squares of resid­

ual differences, that is, by standard linear regression. However, the important issue is how to
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structure the function Firstly, there is only a constant function B0(x) = 1, and the other 

functions in set C are candidate functions.
At each phase, we consider the product of the function Bm in model collection N and the 

function of its reflective pair in C a new basis function pair. Then putting the following 

formula as an item into the model M, we get:

PM+iBi(.x)(xj -  t )+ + pMJr2Bt{x){t -  *y)+,Bi € M (3.17)

This procedure minimizes training errors. Here, /?M+1 and /?M+2 are the coefficients which can 
be estimated by least squares along with other M + 1 coefficients. The better product can be 

put into the model. This process will restart until the number of items in the collection M 
reaches the given maximum number.

The total model normally overfits the data, in order to avoid this; we start the backward 
elimination process. In each step we delete the term which causes the smallest increase in the 
residual squared error. We continue until we attain the best model fa with the optimal value
a.

In order to estimate the optimal value of a reducing computational cost, generalized cross- 
validation  (GCV) is used. The GCV parameter is an adjusted residual sum of squares, in 
which a penalty is imposed on the model complexity. Based on the GCV criterion, MARS 
balances between overfitting and underfitting, in order to return an optimal model. GCV 
gives the amount of degradation in the model when a variable is deleted. Because a global 
model tends to be biased but have low variance while local models are more likely to have 
less bias but suffer from high variance, the MARS approach could be conceptualized as a 
way to balance between bias and variance. This formulation, also known as lack of fit 
criterion, is defined in detail in page 37.

These serve as basis functions for linear or nonlinear expansion that approximates some true
, /

underlying function f(x).

The MARS model for a dependent variable y, and M terms, can be summarized in the 
following equation:
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(3.18)

M
} ' =  / ( * )  =  P o  +  ^  P m  +  tf fcrn(*v(k ,m)) 

m = l

where the summation is over the M terms in the model, and and ^  are parameters of the model

(along with the knots t for each basis function, which are also estimated from the data). Function 

H is defined as:

Hikm (Xv(k,m)) = [  | lkm
k = 1 (3.19)

where is the predictor in the k'th of the m'th product. For order of interactions K=l,  the 

model is additive and for K=2 the model is pairwise interactive.

The procedure starts with the constant function: h0(X) = 1 and all functions in the set C are can­

didate functions.

We consider as a new basis function pair all products of a function h,„ in the model set M with 

one of the reflected pairs in C. We add to the model M the term of the form:

PM+ih , (X)*(Xj - t ) ++PM+2hl( X ) * ( t - X j )+,h l e M  (3'20)

that produces the largest decreases in training error.

The winning products are added to the model and the process is continued until the model set M 

contains some preset maximum number of terms.

The Forward Pass

In this phase, MARS starts with a model which consists of only just the intercept term which is 

the mean of the response values. MARS then repeatedly adds basis function in pairs to the mod­

el. At each step it finds the pair of basis functions that gives the maximum reduction in sum-of- 

squares of the residual error. The two basis functions in the pair are identical except that a differ­

ent side of a mirrored hinge function is used for each function. Each new basis function consists 

of a term already in the model and that could perhaps be the intercept i.e. a constant 1 multiplied
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by a new hinge function. A hinge function is defined by a variable and a knot, so to add a new 

basis function; MARS must search over all combinations of the following:

1) Existing tenns - called parent terms.

2) All variables - to select one for the new basis function.

3) All values of each variable - for the knot of the new hinge function.

This process of adding tenns continues until the change in residual error is too small to continue 

or until the maximum number of terms is reached. The maximum number of terms is specified 

by the user before model building starts. Because of the nature of the hinge functions, the search 

can be done relatively quickly by a heuristic that reduces the number of parent tenns to consider 

at each step [23].

The Backward Pass

After the forward pass, the usually large model made up of many predictors model that remains 

is almost always overfit to its training data. Overfitting is undesirable since the ‘'model’' that 

emerges from training will generally not project to new data i.e. an overfit model has a good fit 

to the data used to build the model but will not generalize well to new data. To build a model 

with better generalization ability, the backward pass prunes the model much like it is done with 

CART (Classification and Regressions Trees). It removes terms one by one, deleting the least 

effective term at each step until it finds the best sub-model. Model subsets are compared using 

the Generalized cross validation (GCV) criterion described below. Models can then be further 

cross-validated with test data to assess their fidelity. Analysts can also address overfitting by 

proactively limiting the number of terms in the model and "penalizing” new entrants on the for­

ward pass.

The backward pass has an advantage over the forward pass: at any step it can choose any term to 

delete, whereas the forward pass at eaoh step can only see the next pair of terms.

The forward pass adds tenns in pairs, but the backward pass typically discards one side of the 

pair and so terms are often not seen in pairs in the final model.

36



Generalized Cross Validation (GCV)

The backward pass uses GCV to compare the performance of model subsets in order to choose 

the best subset: lower values of GCV are better. The GCV is a form of regularization that trades 

off goodness-of-fit against model complexity. In most cases, we want to estimate how well a 

model perfonns on new data, not on the training data. Such new data is usually not available at 

the time of model building, so instead we use GCV to estimate what performance would be on 

new data. The raw residual sum-of-squares (RSS) on the training data is inadequate for compar­

ing models, because the RSS always increases as MARS terms are dropped. In other words, if 

the RSS were used to compare models, the backward pass would always choose the largest mod­

el - but the largest model typically does not have the best generalization performance.

The formula for the GCV is:

GCV=RSS / (N*( 1-Effective Number Of Parameters/ N) A2)

Where RSS is the residual sum-of-squares measured on the training data and N is the number of 

observations or the number of rows in the x matrix.

The Effective Number of Parameters is defined in the MARS context as:

Effective Number of Parameters =Number of Mars Terms + Penalty* (Number of Mars Terms - 

1) / 2, where Penalty is about 2 or 3.

Note that (Number of Mars Terms - 1) / 2 is the number of hinge-function knots, so the formula 

penalizes the addition of knots. Thus the GCV formula adjusts (i.e. increases) the training RSS to 

take into account the flexibility of the model. We penalize flexibility because models that are too 

flexible will model the specific realization of noise in the data instead of just the systematic 

structure of the data. v

The Generalized Cross Validation error is a measure of the goodness of fit that takes into account 

not only the residual error but also the model complexity as well. It is given by:
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GCV = £?U(r. ~ / ( ^ ) ) 2
(1 - - ) 2
v (3.21)

with

C = 1 + cd

where N  is the number of cases in the data set, d is the effective degrees of freedom, which is 

equal to the number of independent basis functions. The quantity c is the penalty for adding a 

basis function. Typically experiments have shown that the best value for C can be found some­

where in the range 2 < d < 3 (Hastie et al., 2001).

In order to evaluate the appropriateness of the model, MARS uses generalized cross-validation 

(GCV) which is residual square errors penalized by a function related to complexity of the model 

[21]. The numerator in GCV is the average residual squared error and the denominator is a pe­

nalty term that reflects model complexity. The use of the denominator is to prohibit selection of a 

model with many terms that decreases only slightly the residual errors. The GCV statistic is an 

estimate of the variance for error in a regression model that includes a penalty term for the num­

ber of parameters used in the regression. The GCV R-squared statistic is the ordinary R-squared 

statistic calculated with the variance for error replaced with the GCV statistic [21].

Generalized Cross Validation is so named because it uses a formula to approximate the error that 

would be determined by leave-one-out validation. It is just an approximation but works well in 

practice. GCVs were introduced by Craven and Wahba (1979) and extended by Friedman for 

MARS.
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ADVANTAGES AND DISADVANTAGES OF MARS.

No single adaptive regression modeling technique can perform uniformly best for all situations.

Advantages:

MARS has a lot to offer as a predictive modeling mainstay.

• Useful tool for simplifying high-dimensional problems where there are many explanatory 

variables.

• MARS can handle continuous and categorical independent and dependent variables mak­

ing it a powerful general-purpose tool. In addition, like CART and stepwise regression, 

MARS computations can be automated, modelers having to choose only input variables 

and tuning parameters.

• MARS uses piecewise linear functions which produce continuous models and provides a 

more effective way to model nonlinearities.

• MARS is not computationally intensive and is straightforward to implement in order to 

look for suitable interactions between independent variables, which make it in particular 

preferable whenever there is a large number of interacting variables.

• Both the additive and the interactive effects of the predictors are allowed to determine the 

response variable.

• Though it's a non-parainetric technique that makes no assumptions on how dependent va­

riables relate to predictors, MARS feels a lot like traditional least squares regression, al­

beit with much more flexibility, and is easier to interpret than "black box" 'machine 

learners like neural nets and random forests.

• MARS can handle complex (nonlinear) relationships and interactions providing an inter­

pretable model.

• MARS identifies interactions and also produces graphs that help visualize and understand 

interactions.

• MARS has automated capabilities for handling missing data, a common feature of large 

databases.
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• MARS is pretty efficient and able to handle large models in a reasonable amount of time 

and computer resources in as much as it is dependent on execution options.

Disadvantages:

• The MARS methodology has a risk of over-fitting because of very exhaustive search that 

is conducted to identify nonlinearities and interactions. However, there are protections 

against over-fitting such as setting a lower maximum number of BFs and a higher “cost" 

per knot [22].

• The dataset has to be large enough to make the use of MARS possible and worthwhile.

• While MARS has offered a reasonable compromise to the bias/variance challenge and 

has developed a reasonable reputation for predictive accuracy, it is not as good as the 

more computationally-intensive bagging or boosting.
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CHAPTER 4

D A T A  ANALYSIS A N D  R E S U L T S

This chapter describes the data that was used in the project, its collection and the results ob­

tained.

DATA

Six thousands and twenty four (6024) TB-infected patients receiving TB treatment under the 

DOTS strategy in various public and private medical institutions in Kenya were eligible for in­

clusion in the study. A total of 1419 participants had more than 50% missing observations in the 

variables of interest to the study and were excluded from the analysis. Therefore, only 4605 par­

ticipants were included in the analysis.

To check the model validity, whole data set was divided into training set including 67% of the 

instances to build the model and testing sets with 33% of the instances to check the developed 

model validity respectively. (Sharma, 1996) indicated that classification of the same data used in 

model estimation is biased since it only reflects model fit and not necessarily its predictive abil­

ity. The optimal strategy is to develop models using the training samples then apply the models 

to testing samples to evaluate the predictive performance of the models. Applying and refitting 

models using the validation data set protects against model over-fit that can result from aggres­

sive use of data mining procedures. 16 patients' attributions were applied to be explored and af­

ter variable selection process via an automatic process in MARS the model was developed 

through 9 identified components out of 40 predictors.
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DATA COLLECTION

TB is a notifiable disease under the Public Health Act Cap 242 and therefore all TB Cases (di­

agnosed by the public or private sector) must be notified to the Ministry o f Health through Na­

tional TB control program. The Kenya national TB treatment guidelines of 2009, states that all 

patients diagnosed in health care facilities implementing the DOTS must be registered at the start 

of treatment. The TB patients are line listed in TB treatment facility register which is maintained 

at each health facility where tuberculosis treatment provided. These patients are then registered 

by district TB and leprosy coordinator (DTLC) into one combined district register and in which 

patient is given unique district registration number. The register takes the form of either manual 

system or an electronic TB register. The district register forms the basis of notifying the country 

of diagnosed and registered TB patients every calendar year.

In order to standardized management, recording and reporting in TB control, Tuberculosis pa­

tients are classified into three categories narnely:-

1. Category I: New Smear positive PTB patients who have never been treated before or used 

anti-TB drugs for less than one month.

2. Category II: Previously treated TB patients

i. Relapse

ii. Failures

iii. Returnees after default

3. Category III: New tuberculosis patients with less severe form of TB namely

i. New Sputum smear negative PTB

ii. Extra-pulmonary (EPTB).

All the patients diagnosed with TB at one of these Health Facilities (HFs) are given DOT (Di­

rectly observed therapy) in accordance with Division of Leprosy TB and Lung Disease policy 

guidelines. Every dose of treatment is directly observed during intensive phase (IP) and contin­

uation phase (CP) by treatment supporter. The patients make weekly visit during intensive phase 

(2 months) and fortnightly visits in continuation phase (4 months), where the patient is re­

viewed, follow up test done and drug fill up undertaken. In all, the patients, makes minimum of 

16 visits during the 6 months of treatment. At the end of the treatment period, patients are eva­

luated for treatment outcomes. The treatment outcomes of the TB cohort are notified to the na­
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tional program every 13-15 months from the date of registration. These cohort treatment out­

comes include;

1. TB Cured, which refers to a patient who was initially TB smear-positive who then be­

comes smear-negative in the last month of treatment and on at least one previous occa­

sion.

2. TB Completed treatment, which is define as a patient who completed treatment but did 

not meet the criteria for cure or failure. This definition applies to pulmonary smear­

positive and smear-negative patients and to patients with extra pulmonary disease.

3. Died, which refers to a patient who died from any cause during treatment.

4. Treatment failure, which is defined as a patient who was initially smear-positive and 

who remained smear-positive at month 5 or later during treatment.

5. Defaulted/Out of Control, this is defined as a patient whose treatment program was in­

terrupted for 2 consecutive months or more.

Successful treatment therefore refers to a patient who was cured or who completed treatment. 

Based on the proportions of the treatment outcomes, bootstrapping was done on four treatment 

outcomes namely: - Dead, Failed, Out of Control and Transfer out outcomes to generate 2000 

cases for each treatment outcome. From this newly created dataset of 11897 instances, 7972 re­

cords were used to build the model and testing sets with 3925 instances.

VARIABLES

THE OUTCOME VARIABLES

1. Completed treatment- Treatment Success

2. Interrupted treatment -  Out of Control

3. TB mortality -  Dead ^

4. Transfer out

5. Treatment failure
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The proportions of the treatment outcomes in the original data were as follows:

Table 4.1: Treatment outcomes proportion in the original data

Treatment outcome No of cases Proportion %

DEAD 212 4.5

FAILED 27 0.5

OUT OF CONTROL 253 5

TRANSFER OUT 216 5

TREATMENT

SUCCESS

3897 85

EXPOSURE VARIABLES

1. Age

2. ART

3. CotrimPrevTherapy

4. DOTIntPhase

5. Height

6. HIVTest

7. NutriSupport

8. PatientType

9. Region

10. PTBSubType

11. Sex
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12. SputumMoO

13. TBType

14. Weight

15. X Ray

16. BMI

The distributions of the 16 predictor variables were as follows: 

Table 4.2: A summary of continuous predictor variables

variable Min 1st Quartile Median Mean 3rd Quartile Max

Age 1 24 32 32.8 40 99

Height 0.34 1.33 1.6 1.51 1.7 3

Weight 4.7 47 55 54 62 117

BMI 2.8 17.3 21.8 31.65 29.96 51

Table 4.3: A summary of categorical predictors

Variable Levels Number of cases

ART N -N o 1367

Unknown 2106

Y-Yes 1132

CotrimPrevTherapy N
•v

772

Unknown 2083

T 1750

DOTIntPhase CV 147

H 3799

HCW 659
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HIVTest Declined 10

Negative 2292

Not Done 505

Positive 1798

NutriSupport N 2452

U 993

Y 762

ND 233

MN 108

FS 31

VITAMIN 19

FM 7

PatientType F 55

N 3709

R- 307

R+ 381

RAD 32

REP 97

TI 24

Region CENTRAL 333

COAST 154

NAIROBI NORTH 1046

NAIROBI SOUTH 1827

NORTH EASTERN 71

NYANZA NORTH 637
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WESTERN 537

PTBSubType ND -  Not Done 251

Neg -Negative 1580

Pos - Positive 2774

Sex Female 1831

Male 2774

SputumMoO ND - Not Done 1530

Neg - Negative 1486

Pos - Positive 1589

TBType EP- Extra Pulmonary 1304

P- Pulmonary 3301

X_Ray No 1460

Unknown 175

Yes 2970

DATA PROCESSING METHODS AND DATA ANALYSIS

Data management was conducted by the use of Microsoft Office Access by DLTLD. For this 

secondary data analysis study, data was received in Microsoft Office Excel format. R ver­

sion 2.15.1(R Development Core Team (2012). R: A language and environment 

for statistical computing. R Foundation for Statistical Computing, Vienna, Aus­

tria. ISBN 3-900051-07-0, UkL http://www.R-project.org/.) was used for data 

cleaning and statistical analysis. All variables for the study were imported into R version 

2.15.1 and important variables for model building were automatically selected in 

R via the earth package. Data cleaning in R version 2.15.1 included assessing quality of 

data in terms of missing values, and internal consistencies of responses.

http://www.R-project.org/


_____VARIABLE SELECTION AND IMPORTANCE_________

Variable's importance is a measure of the effect that observed changes to the variable have on 

the observed response or the expectation of that effect over the population. It can be measured by 

changing the variable’s value and measuring how the response changes.

THREE CRITERIA FOR ESTIMATING VARIABLE IMPORTANCE IN MARS

(i) The nsubsets criterion counts the number of model subsets that include the variable.

Variables that are included in more subsets are considered more important. "Subsets" 

mean the subsets of terms generated by the pruning pass.

(ii) The rss criterion first calculates the decrease in the RSS for each subset relative to the

previous subset. For multiple response models, RSS’s are calculated over all re­

sponses. Then for each variable it sums these decreases over all subsets that include 

the variable. Variables which cause larger net decreases in the RSS are considered 

more important.

(iii) The gcv criterion is the same, but uses the GCV instead of the RSS. Adding a varia­

ble can increase the GCV, i.e., adding the variable has a deleterious effect on the 

model.
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From the above, 9 of 40 predictors were selected as shown in the table below: 

Table 4.4: A table of variable importance

variable Nsubsets Gcv Rss

SputumMoOPos 12 100 100

HIVTestPos 11 88.6 89

ARTUnknown 10 80.4 81

XRayYes 9 70.8 71.8

Age 8 63.0 64.2

RegionNAIROBINORTH 7 55.2 56.5

NutriSupportND 6 46.0 47.7

Weight 5 36.3 38.5

BMI 4 31.9 33.9

Variable importance
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MULTIVARIATE MODEL BUILDING AND ANALYSIS

If the response y has k columns then MARS via earth builds k simultaneous models. Each model 

has the same set of basis functions i.e. the same selected terms, and cuts but different coeffi­

cients. The returned coefficients will have k columns. The models are built and pruned as usual 

but with the GCVs summed across all k responses.

Factors are treated in the response in a non-standard way that makes use of earth's ability to han­

dle multiple responses, e.g. a two level factor or logical is converted to a single indicator column 

of Is and Os. A factor with three or more levels is converted into k indicator columns of Is and 

Os, where k is the number of levels.

Basis Functions

8 basis functions for predicting the treatment outcomes were generated as follows: 

Table 4,5: A table of basis functions

Basis
function

Definition P-value

b fl h(Age-28) 0.99E-15

bf2 h(28-Age) 0.86E-15

bf3 ARTUnknownHlVTestPosRegionNAIROBINORTHSputum-
MoOPosh(Age-28)

0.1276

bf4 NutriSupportNDH I VTestPosh(BM 1-39.54) 0.2134

bf5 HIVTestPosh(39.54-BMI) 0.1257

bf6 SputumM o0Posh(W eight-70] 0.1923

bf7 SputumM o0Posh(70-W eight) 0.0987

bf8 SputumMoOPosX_RayYes 0.3247
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Treatment Outcome Models

Five (5) simultaneous models for the five treatments outcomes were constructed and they are as 

follows:

DEAD = 0.3689167 + 0.06825529 * bfl + 0.01999946 * bf2 + 0.06876191 * ART Unknown + 
0.1853321 * HIVTestPos -0.07115787 * RegionNAIROBINORTH - 0.1199515 * SputumMoOPos - 
0.09186554 * bfl * NutriSupportND - 0.01830668 * HIVTestPos * h(BMI-39.54) + 0.02430828 * 
HIVTestPos * h(39.54-BMI) - 0.05304674 * SputumMoOPos * h(Weight-70) + 0.08682914 * Sputum­
MoOPos * h(70-Weight) + 0.1304237 * SputumMoOPos * X_RayYes

FAILED = 0.1745858 - 0.02980281 * bfl - 0.0667545 * M2 - 0.06677359 * ARTUnknown - 
0.1761477 * HIVTestPos - 0.01083627 * RegionNAIROBINORTH + 0.4142206 * SputumMoOPos + 
0.01899715 * bfl * NutriSupportND + 0.01778107 * HIVTestPos * h(BMI-39.54) + 0.08410968 * 
HIVTestPos * h(39.54-BMI) - 0.01575885 * SputumMoOPos * h(Weight-70) - 0.08676202 * Sputum­
MoOPos * h(70-Weight) - 0.2733959 * SputumMoOPos * X_RayYes

OUTOFCONTROL = 0.07799735 + 0.001405914 * bfl + 0.06948043 * M2 + 0.08782741 * AR­
TUnknown + 0.05168776 * HIVTestPos + 0.1364471 * RegionNAIROBINORTH - 0.01313107 * Spu­
tumMoOPos + 0.01870312 * bfl * NutriSupportND + 0.01959584 * HIVTestPos * h(BMI-39.54) - 
0.01106825 * HIVTestPos * h(39.54-BMI) - 0.03631802 * SputumMoOPos * h(Weight-70) -
0.05495595 * SputumMoOPos * h(70-Weight) - 0.02850668 * SputumMoOPos * XRayYes

TRANSFEROUT = 0.06120845 - 0.01838049 * bfl + 0.0141061 * M2 + 0.1917132 * ARTUnk­
nown + 0.2715252 * HIVTestPos - 0.103655 * RegionNAIROBINORTH - 0.1143405 * Sputum­
MoOPos - 0.06740918 * bfl * NutriSupportND - 0.02110266 * HIVTestPos * h(BMI-39.54) - 
0.06307808 * HIVTestPos * h(39.54-BMI) + 0.01070733 * SputumMoOPos * h(Weight-70) +
0.04358813 * SputumMoOPos * h(70-Weight) + 0.02295 * SputumMoOPos * X_RayYes

TREATMENTSUCCESS = 0.6493167 - 0.03413113 * bfl + 0.03839638 * bf2 - 0.281529 * AR­
TUnknown - 0.3323974 * HIVTestPos + 0.04920199 * RegionNAIROBINORTH - 0.1667975 * Spu­
tumMoOPos - 0.04939993 * bfl * NutriSupportND + 0.0180354 * HIVTestPos * h(BMI-39.54) - 
0.01239418 * HIVTestPos * h(39.54-BMI) + 0.01071938 * SputumMoOPos * h(Weight-70) +
0.04780119 * SputumMoOPos * h(70-Weight) + 0.1485289 * SputumMoOPos * X_RayYes
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MODEL SUMMARY

Table 4.6: A table of model summary

Treatm ent Outcome GCV RSS RSq ClassRate Sd

DEAD 0.124 98.69 0.97 0.78 0.013

FAILED 0.114 90.49 0.91 0.80 0.018

OUTOFCONTROL 0.134 106.34 0.51 0.83 0.005

TRANSFEROUT 0.133 105.61 0.48 0.83 0.005

TREATMENTSUCCESS 0.204 161.30 0.84 0.66 0.018

All 0.171 562.44 0.79 0.70 0.013

R-squared - 0.79

The GCV and RSq are measures of the generalization ability of the model, i.e., how well the 

model would predict using data not in the training set. The effective number of model parameters 

is a just an estimate in MARS models. With an R-squared value of 0.79, the predictive model has 

a satisfactory discriminative ability.
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MODEL DIAGNOSTICS

Cumulative Distribution

Figure 4.2 The Cumulative Distribution graph

The Cumulative Distribution graph above shows the cumulative distribution of the absolute val­

ues of residuals. An ideal situation in a cumulative distribution curve would be a graph that starts 

at 0 and shoots up quickly to 1. In Figure 4.2, the median absolute residual is about 0.18 (by 

looking at the vertical gray line for 50%). We also see that 90% of the absolute values of residu­

als are less than about 0.7. So in the training data, 90% of the time the predicted value is within 

0.7 units of the observed value.
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N o r m a l  Q - Q

T h e o re tica l Q u an tile s

Figure 4.3 The QQ graph

The QQ (quantile-quantile) plot above compares the distribution of the residuals to a normal dis­

tribution. If the residuals are distributed normally they will lie on the line. Normality of the re­

siduals isn't too important for MARS models build via earth package, but the graph is useful for 

discovering outlying residuals and other anomalies. We see that cases 423, 1099, and 3292 have 

the largest residuals.

MODEL’S PARTIAL RESPONSE

We plot a degree 1 main effect plot to predict the response when changing one variable while 

holding all other variables at their median values. For degree2 or interaction plots, two variables 

are changed while holding others at their medians. The first level is used instead of the median 

for factors. w

The following are plots of a model's response when varying one or two predictors while holding 

the other predictors constant.
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Figure 4.5 A plot of how the failed treatment outcome varies w ith the predictors
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Figure 4.6 A plot of how the out of control treatment outcome varies with the predictors
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Figure 4.7 A plot of how the transfer out treatment outcome varies with the predictors
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Figure 4.8 A plot of how the treatment success treatment outcome varies with the predic­

tors

MODEL ACCURACY

First, the training set was applied to develop the model; afterwards to check the model’s accu­

racy the testing set was used to predict the given outcome which was the TB patients' course 

destination after applying DOTS. The real outcome for each patient in testing set was already 

available and by using model predicted outcome for each case that were defined.
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Figure 4.9 A plot of the distribution of the predicted values for each class

MISCLASSIFICATION MATRIX

Table 4.7 Classification Accuracy Matrix

TREATMENT
OUTCOME

DEAD FAILED OUT OF CON­
TROL

TRANSFER
OUT

TREATMENT
SUCCESS

DEAD 0.63 0.07 0.10 0.05 0.15

FAILED 0.05 0.80 0.04 0.04 0.07

OUT OF CON­
TROL

0.08 0.00 0.66 0.14 0.12

TRANSFER
OUT

0.05 0.07 0.05 0.65 0.18

TREATMENT
SUCCESS

0.05 0.06 0.05 0.06 0.78



Table 4.8 Misclassification matrix

TREATMENT OUT­
COME DEAD FAILED

OUT OF CON­
TROL.

TRANSFER
OUT

TREATMENT
SUCCESS

MISCALSSIFICA- 
TION RATE 0.371 0.202 0.338 0.350 0.220

Risk estimate = 0.1725 

Standard error= 0.079

The misclassification matrix counts up the predicted and actual category values and displays 

them in a table. A correct classification is added to the counts in the diagonal cells of the table. 

The diagonal elements of the table represent agreement between the predicted and actual value, 

this is often called a "hit." An incorrect classification, called a "miss", means that there is dis­

agreement between predicted and actual value. Misclassifications are counted in the off-diagonal 

elements of the matrix.

The risk estimate and standard error of risk estimate are values that indicate how well the model 

classification is performing. In this case, the risk estimate for the five-level treatment outcome 

MARS model is 0.1725, and the standard error for the risk estimate is 0.079. In other words, we 

are missing 17.25% of the time. This estimate implies that more parameters needs to be factored 

into the model to account for the missing variation, nevertheless the statistic is predictive enough 

for the model to be used as a decision support tool.



CHAPTER 5

CONCLUSIONS AND R EC O M M E N D A T IO N S

SUMMARY

The objective of this thesis is to construct and validate a representation of TB Treatment out­

come dynamics using a Multivariate Adaptive regression Splines (MARS), so that we can en­

hance our understanding of the dynamics of TB in terms of inter relationship between factors 

ranging from demographic, clinical and social factors. The accuracy of MARS model is evalu­

ated so that confidence can be built around the applied statistical technique. MARS has proven to 

be a powerful nonparametric regression and classification technique that can unearth hidden pat­

terns in data especially where the underlying dynamics are not generally well known, the auto­

matic variable importance selection and interaction capability of MARS is awesome and should 

be explored further as a statistical and data mining tool to build complex models. Such models 

like TB course destination determining can assist in sorting alternatives and optimizing TB pre­

vention and control programs.

Pursuing the idea of providing the DOTS in different levels to TB patients based on their status 

is a necessary purpose requiring a tool to determine the patient destination after getting DOTS. 

This study was aimed to develop this tool as a valid MARS model. This prediction would be car­

ried out at commence of patient treatment in frame of DOTS. This valid MARS model can de­

termine the level of patient support and supervision assisting the health workers to understand 

how intensive should be their care for each specific patient.
■v

Practical use of studies such as this, should me made use of in order to ensure that every bit of 

information that could help the individuals struggling with this disease find comfort and happi­

ness in their lives.
All the R codes use to generate the various statistics are available in the Appendix.
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LIMITATIONS OF THE STUDY

The data was not having information on drug-resistance TB. Drug-resistance TB cannot be cured 

with standard treatment or first-line drugs and is often associated with high mortality. One of the 

other limitations in this study concerned the application of the earth package in R for modelling 

purposes. There are aspects of MARS mentioned in Friedman's papers but not implemented in 

earth and this includes:

(i) Piecewise cubic models (to smooth out sharpness at the hinges).

(ii) Model slicing.

(iii) Handling missing values.

(iv) Automatic grouping of categorical predictors into subsets.

Also, although several risk factors were examined, there is probably considerable residual con­

founding. CD4 counts, which would be a better measure of the degree of immune suppression in 

HIV-TB co-infection, were available with considerable missing data and were not included in the 

analysis. This study as a secondary data analysis study does not have control over data quality, 

collection methods and missing information. The problem of under-reporting of TB mortality 

may arise where a proportion of patients with "missing outcome" have in fact died with the re­

ported cause of death as TB.

PLAN FOR UTILIZATION AND DISSEMINATION OF RESULTS

Copies of the final report will be submitted to Department of Mathematics, University of Nai­

robi. Results of the study will be presented to the University of Nairobi school of Mathematics. 

Other copies of the final report will be available to the Department of Tuberculosis, Leprosy and 

Lung Disease of the Ministry of Health, Kenya on request. The results will be ready for publish- 

ing in a leading journal.
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FUTURE RESEARCH

A further project in this area especially concerning Tb control could involve investigation of the 

effects of disease features (e.g. length of latent period) upon prevalence level and persistence 

time, by numerical evaluation of quasi-stationary distributions and analytical study of approxi­

mation methods. This includes studying the behavior of an infection which has become estab­

lished in the population, i.e. an endemic disease. Quantities of interest include the endemic level 

of prevalence i.e. proportion of the population infected, and the persistence time i.e. the time un­

til the disease eventually dies out.

Much infectious disease modelling is concerned with studying the initial stages of an epidemic 

outbreak. In order to achieve a major objective of mathematical modelling of disease transmis­

sion and to understand how best to intervene to reduce spread of infection, one approach to this 

is through mathematical control theory, whereby each infection generates a cost, any form of in­

tervention generates a cost, and the aim is to minimize the combined total cost of infection and of 

intervention. A project in this area will involve numerical evaluation of optimal disease of the 

policy.

The next step would be to use the model to predict the practical cases for specific patients. The 

cases will need to take the form of a treatment schedule to make a real difference. This implies 

that a controller for this model should be designed and a method devised to convert the equations 

to physical medical scheme inputs to the system.

Co-infection with other disease could also be modelled. Many co-infections exist which can be 

modelled, verified and simulated.
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APPENDIX R CODE
###Reading the data into R. 
setwd("C:/Users/cheruiyot.erick/Desktop") 
datal=read.csv(file="data2.csv",head=TRUE,sep=",") 
fix(datal)
summary=summary(datal)
write.csvfsummary, file='summary_original.csv')

###Dividing the data into different treatment outcome data frames. 
DEAD<-subset(datal,datal$TreatOutcome =="DEAD") 
fix(DEAD)
write.csv(DEAD,file='Dead.csv')
FAILED<-subset(datal,datal$TreatOutcome ==" FAILED") 
fix(FAILED)
write.csv(FAILED,file='FAIL.csv')
OOC<-subset(datal,datal$TreatOutcome =="OOC") 
fix(OOC)
write. csv(OOC(file='OOC. csv')
TRANSFEROUT<-subset(datal,datal$TreatOutcome=="TRANSFER OUT") 
fix(TRANSFEROUT)
write.csv(TRANSFEROUT,file='Transfer out.csv')
TREATMENTSUCCESS<-subset(datal,datal$TreatOutcome "̂TREATMENT SUCCESS") 
fix(TREATMENTSUCCESS)
write.csv(TREATMENTSUCCESS,file='Treat_Success.csv')

###Creating a factor to get the 2000 records of FAILED 
bb <- (2000/27)

lb <-length(datal$TreatOutcome[datal$TreatOutcome=="FAILED"]) 
lb

###2000 Failed
pb=round(bb*lb)
pb

### Take a random sample of fails 
set.seed(l) ^
sample.rows.rep<-sample(x=nrow(FAILED), size=pb, replace=TRUE)
FAIL_sample <- FAILED[ sample.rows.rep , ]
fix(FAIL_sample)
write.csv(FAIL_sample,file='Failed.csv')

### Creating a factor to get the 2000 records of DEAD 
bb <-(2000/212)
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lb <-length(datal$TreatOutcome[datal$TreatOutcome=="DEAD"]) 
lb

###2000 deads
pb=round(bb*lb)
pb

### Take a random sample of deads 
set.seed(l)
sample.rows.rep<-sample(x=nrow(DEAD), size=pb, replace=TRUE)
Dead_sample <- DEAD[ sample.rows.rep , ]
fix(Dead_sample)
write.csv(Dead_sample,file='Dead.csv')

### Creating a factor to get the 2000 records of OOC 
bb <- (2000/253)

lb <-length(datal$TreatOutcome[datal$TreatOutcome=="OOC"]) 
lb

### 2000 oocs
pb=round(bb*lb)
pb

### Take a random sample of OOCs 
set.seed(l)
sample.rows.rep<-sample(x=nrow(OOC), size=pb, replace=TRUE)
ooc_sample <- OOC[ sample.rows.rep , ]
fix(ooc_sample)
write.csv(ooc_sample,file='OUT OF CONTROL.csv')

### Creating a factor to get the 2000 records of TRANSFER OUT 
bb <- (2000/216)

lb <-length(datal$TreatOutcome[datal$TreatOutcome=="TRANSFER OUT"]) 
lb

### 2000 transfers
pb=round(bb*lb)
pb

### Take a random sample of fails 
set.seed(l)
sample.rows.rep<-sample(x=nrow(TRANSFEROUT), size=pb, replace=TRUE) 
transfer_sample <- TRANSFEROUT[ sample.rows.rep , ]
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fix(transfer_sample)
write.csv(transfer_sample,file='TRANSFER OUT.csv')

########################################################################
setwd("C:/Users/cheruiyot.erick/Desktop")
regression_dataset=read.csv(file="regression_data.csv",head=TRUE,sep=",")
colnames(regression_dataset)
fix(regression_dataset)
s=summary(regression_dataset)
write.csv(s, file='summary_regression data.csv')
#data <- regression_dataset() 
training_set <- sample(11897,7972) 
train <- regression_dataset[training_set,] 
write.csv(train,file='data.csv')
test <- regression_dataset[(l:11897)[-training_set],] 
write. csv( test, file='test. csv') 
trainl=read.csv(file="data.csv")
Summary(trainl)
Summary(test)
########################################################################
library(earth)
model <- earth(TreatOutcome~.,# the formular for prediction 

train, # the training dataset
trace=l, # provide overview information during model building
nk=20, # the maximum number of terms
nfold=10,
ncross=10,
stratify=TRUE,
keepxy=T,
degree=2, # the maximum number of interaction (degrees of freedom) 
penalty=2, # penalty per knot for GCV during pruning 
thresh=0.001, # minimum change in SSR in forward stage 
minspan=2, # minimum distance between knots in the model 
fast.k=0, # disable Fast MARS adding multiple terms per forward step 
fast.beta=0, # aging coefficient used in Fast MARS 
nprune=NULL,
pmethod="backward") # pruning method during backward pass 

head(training_set)
#summarize the model 
summary(model)  ̂ '
summaryfmodel, decomp = "anova",style = "bf") #c("h", "pmax", "max", "bf", di
gits=model$digits, fixed.point=TRUE)
#summary(model, decomp = "anova",style = "pmax") #c("h", "pmax", "max", "bf", di
gits=model$digits, fixed.point=TRUE)
summary(model, decomp = "anova",style = "h") #c("h", "pmax", "max", "bf", di
gits=model$digits, fixed.point^TRUE)
summary(model, decomp = "anova",style = "max") #c("h", "pmax", "max", "bf", di
gits=model$digits, fixed.point=TRUE)
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summaryfmodel, decomp = "none")
cat(format(model,digits = getOptionfdigits"), use.names = TRUE, 
decomp = "anova", style = "bf", colon.char = "*"))
#summarize the importance of input variables
ev=evimp(model)
plot(ev)
print(ev)

evimp(model,trim=FALSE)
tt plot diagnostics of the model
plot(model) tt plots all the four graphs
plot(model, which=l, col.rsq=0)
plot(model, which=2, col.rsq=l)
plot(model, which=3, col.rsq=0)
plot(model, which-4, col.rsq=2)
tt plot the line of best fit for the training data
plotmo(model, nresponse=l, clip=FALSE)
plotmo(model, nresponse=2, ylim=NULL, clip=FALSE)
plotmo(model, nresponse=3, ylim=NULL, clip=FALSE)
plotmofmodel, nresponse=4, ylim=NULL, clip=FALSE)
plotmo(model, nresponse=5, ylim=NULL, clip=FALSE)
#case.names(model) 
extractAIC(model, warn=FALSE) 
model, matrix(model) 
update(model)

ttttttttttttttitltttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttitttttttltttttttttlttttttttttttttttttttttttttttttt
tt make predictions for the test data
predictions <- predict(model, newdata=test, type="class")
write.csv(predictions, file='predictions.csv')
tt plot the line of best fit for the training data
plotmofmodel, nresponse=l, clip=FALSE)
plotmofmodel, nresponse=2, ylim=NULL, clip=FALSE)
plotmofmodel, nresponse=3, ylim=NULL, clip=FALSE)
plotmofmodel, nresponse=4, ylim=NULL, clip=FALSE)
plotmofmodel, nresponse=5, ylim=NULL, clip=FALSE)

tfcase.namesfmodel) 
extractAICfmodel, warn=FALSE) 
model.matrixfmodel) 
updatefmodel)

###update(model)
headfresidfmodel, warn=TRUE)) tt earth residuals, a column for each response 
headfresidfmodel, type="earth")) tt same
headfresidfmodel, type= deviance )) tt GLM deviance residuals, a column for each response 
variable, names(model)
residfmodel)
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print(model) 
deviance(model) 
model.matrix(model)

####################################################################### 
plotd(model, hist = FALSE, nresponse = NULL, dichot = FALSE, 
trace = 2, xlim = NULL, ylim = NULL, jitter = FALSE, main=NULL, 
xlab = "Predicted Value", ylab = "Count",
Ity = 1, col = c("gray70", 1, "lightblue", "brown", "pink", 2, 3, 4), 
fill =1,breaks = "Sturges", labels = TRUE,
kernel = "gaussian", legend = TRUE, legend.names = NULL, legend.pos = NULL,
cex.legend = .8, legend.bg = "white", legend.extra = TRUE,
vline.col = 0, vline.thresh = .5, vline.lty = 1, vline.lwd = 1,
err.thresh = vline.thresh, err.col = c(2,3,4,5,6), err.border = 0, err.lwd = 1,
xaxt = "s", yaxt = "s", xaxis.cex = 1, sd.thresh = 0.01)

##############Misclassification matrix################# 
setwd("C:/Users/cheruiyot.erick/Desktop") 
datal=read.csv(file="pred.csv",head=TRUE,sep=",") 
fix(datal)
w=table(datal$observed,datal$predicted)
s=diag(l-prop.table(table(datal$observed, datal$predicted), 1))
prop.table(s)
prop.table(w, 1)
e=diag(l-prop.table(w, 1))
write.csv (e, file-misclassification.csv')
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