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a b s t r a c t

A major method for analyzing resource selection of species predicting and mapping habitat 

suitability is by use of a Geographic Information Systcm(GIS).This research combines data relating 

to Rhipicephalus appendiculatus{Brown Ear Tick) in Kenya with spatially explicit environmental 

factors to understand its resource selection and habitat preference using a logistic model as developed 

from the generalized linear model(GLM).Resource selection among the brown ear tick was similar in 

that across all sub-regions, they selected areas which has similar related factors in terms of the 

surrounding. The tick actively avoided at least one source of human threat including human 

settlements in all four of the studied regions and inhabited those areas that ecologically favour it.

The Brown Ear Tick (Rhipicephalus appendiculatus) which is a threat to livestock has not been 

studied until more recently in Zambia where a sudden and severe outbreak of Brown Ear Tick in the 

Central and Eastern areas of Zambia was reported. In Kenya its effect and spatial occurrence has not 

been understood. Resource selection analyses such as the one conducted in this study could help with 

planning of proper conservation if need be, prevention corridors for diseases control and 

manifestation in new areas especially as threats to livestock and wildlife increases.

In addition, a GIS was used to construct an expert-based habitat suitability map for the brown ear tick 

across Kenya using a spatial model approach. The map integrates spatial information on biological

habitat requirements of the species with information on severity of threats to its prey. This can serve/
as a useful tool for determining future brown ear tick prevention prioritization in Kenya.
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CHAPTER ONE:

INTRODUCTION

1.0 Introduction

Rhipicephalus appendiculatus is a hard tick found in the ears of cattle, other livestock, buffalo and 

antelope. This tick is considered to be a major pest in areas where it is endemic. Heavy infestations 

can cause anaemia, severe damage to the cars, or toxicities that result in the loss of resistance to some 

tick-borne infections.More than a thousand ticks have been found on some animals. R. 

appendiculatus can transmit a number of pathogens including Theileria parva (East Coast fever), 

Nairobi sheep disease virus and Thogoto virus (Arthur DR, 1961).

R. appendiculatus mainly infests cattle, buffalo and large antelope, but it can occur on other species 

including sheep and goats. Immature ticks may also be seen on small antelope, carnivores, hares and 

other speciesdl.appendiculatus prefers relatively cool, shaded, shrubby or woody savannas or 

woodlands with at least 24 inches of annual rainfall. This tick occurs in parts of eastern, central and 

southeastern Africa, and can be found from sea level to 7400 feet (2300 meters).Its distribution 

within this area is limited to suitable environments with appropriate hosts. It is a three-host tick. 

These ticks can be found on the host for several days while they feed, then they drop to the ground to 

develop to the next stage.

1.1 R. appendiculatus Control Measures

Measures used to exclude exotic ticks from a country include pre-export inspection and certification 

that the animals arc free of ectoparasites, quarantines upon entry, and treatment with acaricides 

(Madder M,2005).Thrce-host ticks can be very difficult to eradicate once they have become established. 

In endemic areas, acaricides can eliminate these ticks from the animal, but do not prevent rc- 

mfestation. Three-host ticks spend at least 90% of their life cycle in the environment rjfther than on 

the host animal; ticks must also be controlled in the environment to prevent their spread. This 

research aims at providing the statistical ground for such control mechanisms.



In Kenya, livestock are threatened by the presence of brown ear tick .The presence of favourable 

environmental conditions in some parts of the country are where they inhabit causing a major threat 

to both livestock and tourism. This has an adverse effect to the two pillars of the Kenyan economy 

that is agriculture and tourism as they infest livestock and antelope. When both diminish, milk, meat 

and skin production goes down whereas decline of antelopes due to tick manifestation reduces wild 

games hence tourism loss. Stepping up efforts to control this vital species, therefore, is of greatest 

urgency. Increasing our knowledge of brown ear tick habitat selection and predicting their 

geographic distribution in Kenya using spatially explicit information and maps created by a 

Geographic Information System (GIS) is one step toward aiding in their control. To that aim, this 

analysis examines environmental factors contributing to brown car tick habitat preference and uses a 

modeling approach to create a prediction map of brown ear tick suitability in other parts of Kenya. It 

is hoped that this research will aid in geographic targeting of control strategies for controlling brown 

ear tick and for biodiversity in Kenya.

1.2 Background of the Study.

Understanding how wildlife use surrounding habitats is of paramount importance to ecology and 

species management(McClean et al. 1998,Boyce and McDonald 1999).Habitat selection studies 

usually compare assessments of habitat use to habitat availability,showing how animals actively 

select the environments where they spend most of their time (Manly ct al. 1993).

Interest in species distribution models (SDMs) of plants and animals allows us to potentially forecast
/

the effects on patterns of biodiversity at different spatial scales .The question on how plants and 

animals are distributed on earth is a vital one as its results helps in analyzing their 

presence,history,adaptations and predictions. Early identification of species that pose a. significant 

threat of becoming invasive contributes to effective management of those same species. By this, we 

control the plant or animal community structures and ecosystem functions thus controlling the 

economic costs from the effects felt on this ecosystem (Herron ct.al.2007).
■<«

4 ,

Species distribution models (SDMs) are common in conservation biology, ecology and wildlife 

management. In this regard, the nature is studied and the status of Earth’s biodiversity with the aim of 

protecting species, their habitats and the ecosystem from excessive rate of extinction. The dispersal,
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migration,dem°graphics,elYcctivc population size, inbreeding ,depressions and minimum population 

viability of rare or endangered species can be studied via the knowledge of SDMs.The phenomena 

that affect the maintenance, loss and restoration of biodiversity and the science of sustaining 

evolutionary processes is put into focus since if we don’t preserve what is there, the planet can loose 

some of its species contributing to poverty, starvation and this can reset the course of evolution on 

this planet. By fitting the SDM model, we look at the pattern-recognition approaches whereby 

associations between geographic occurrence of a species and a set of predictor variables are explored 

to allow or support statements of the mechanisms governing species’ distributions(Arau'jo,2006).The 

interlinked stages that need to be checked include: Compile data on the biodiversity of the planning 

region; Identify conservation goals for the planning region; Review existing conservation areas; 

Select additional conservation areas; Implement conservation actions and Maintain the required 

values of conservation areas.

The species models allows analyses of such data which is considered to be of large spatial point sets 

thus allowing estimation of species ecological requirements, by combining observations of species 

occurrence or abundance with environmental estimates(Elith et.al,2009).Constructing an SDM relies 

on a description of the species’ relationship with its environment to depict areas within a region of 

interest where the species is likely to occur and thus useful tool for estimating the potential for 

species to occur in areas not previously surveyed (Guisan and Thuiller 2005 and Hernandez 

et.al,2008).The analytical part then models the species and their habitat at a spatial scale.The 

limitations is only that of environmental data availability and species locality which is so minimal for 

ideal modelling.

Some species can cause immense economic value in the countries when introduced and Tit the same 

time wreak havoc in the ecosystem ,resulting in the loss of endemic species and alter ecosystems 

with knock on effects for livelihood.In Africa for example some important 

ecosystems are under threat,consequently undermining development and livelihood opportunities,
-c«

increasing human vulnerability and threatening human well-being(Chenje,2002) dud' to invasive 

species.This affects Africa’s ability to meet Millenium development goals.
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The challenges,however encountered while building on SDMs models cannt be over emphasized. 

Spatial misalignment problems arc likely to occur when the environmental data is related to the 

species distribution data and the region where prediction is based.In addition, degree of correlation 

among observations depends on their relative locations and further there is always problem in 

quantifying uncertainity in spatial models hence the predictive capabilities

In Kenya,species distribution is also a key part of the ecosystem and the challenges mentioned above 

are not exception.The Strategy for Conservation and Management of Commercial Aloe Species in 

Kenya is an example of government attemps to focus on spccies.This can guide sustainable 

conservation and utilization of the species resource in the country. The strategy focuses on striking a 

balance between socio-cultural, economic and ecological needs as the core pillars of sustainable 

development.The aim here is to integrate interests in biodiversity conservation and economic 

devclopment.The government through the National Museums has the role to correct such data 

involving various species in its soil.The Kenya Wildlife Service has also established a draft strategy 

for management of the invasive species in protected conservation areas.

It is against this background that I wish to establish the model for the species in 

Kenya.Specifically,this research is aimed at studying Rhipicephalus appendiculalus commonly called 

brown ear tick due to its stong influence to both agricultural and tourism aspect in the Kenyan 

economy. If uncontrolled,(Arthur DR, 1961) Rhipicephalus appendiculatus, targets cattle,horses,sheep, 

goats,antelopes,dogs and rodents transmitting diseases like Tlieileriaparva(East coast fever,), 

Hepalozoon canis and Theileria mulan.Thc ticks occur in the east,central and coastal areas.They 

prefer savannah habitat with trees. Cattle may get heavy infestations of all stages: the adults cluster in 

the ears where they cause the “bleeding ear” syndrome. Immature ticks are found on the head and 

neck. In game, especially Eland and Kudu, the ears are the most affected.

1.3 Problem Statement

Species are an important part of ccosystem.They play an important role in the*, survival of 

other species and also contibuting heavily to environmental and landscape features.

Understanding how species use surounding habitats is of paramount importance to ecology and their 

management.Habitat selection studies usually compare assessments of habitat use to habitat
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availability, showing how animals actively select the environments where they spend most of their 

time (Manly ct al. 1993) while species distribution models can be used to analyze intensity of 

resource use and predict the geographical distribution of a particular species by combining 

information from point occurrence data and environmental variables (Boyce et al. 2002, Graham and 

Hijmans 2006).

To achieve this,a statistical approach can be used to model the species distribution.For example 

generalised linear models have been used to model wildlife distributions (Walker 1990, Osborne 

and Tigar 1992,Bucklandand Elston 1993).Due to their ability to provide a solid statistical foundation 

for realistically modeling ecological relationships(Austin 2002),GLMs are useful for species 

distribution(Janet R. Nackoney).A study region is divided into grid cells and data on 

presence/abundance can then be determined by relating the response variable to spatially referenced 

covariates(Augustin ct al. 1996, Boyce et al. 2002).

In Kenya,species are threatened by mounting pressure from humans including habitat 

fragmentation.In addition,invasive species can be a threat if not identified early enough for ease of 

management.The future of species in Kenya is uncertain today and thus stepping up efforts to 

protect,conserve,map and predict their existence is of greatest urgcncy.Furthcr,lhe species relative 

location contributes on spatial autocorrelation and thus quantifying uncertainty during prediction is 

an important focus.The knowledge of species distribution modelling and use of maps by Geographic 

Information system is one step towards aiding the conservation,establishment and prediction of such 

species.

To that aim,this reserach examines the environmental factors contributing to species with a strong 

focus to the brown ear tick biologically called Rhipicephalus appendiculatus and uses a 

mathematical modelling approach to create Rhipicephalus appendiculatus species distribution 

model(SDM) that helps in prediction.lt is hoped that the reseach can --assist thet,
concerned stakeholders like Kenya Government through the Museums of Kenya and International 

Livestock Research Institute (ILRI) in establishing and or controlling new environments for the 

brown ear tick,establish conservation measures and creating biodiversity. -
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4,4 Objectives:

The objective of this study shall be divided into two:General and Specific Objectives

1.4.1 General Objective

The general objective of the study is:

To develop a species distribution model to be used for describing the Rhipicephalus 

appendiculatus patterns as well as making predictions.

Species Distribution models assist in characterising the natural distribution of species .In 

addition,when when well designed survey data and functionally relevant predictors are analysed 

with a good model(Elith et al,2009),the results can contribute well to this objective thus providing 

useful ecological insight and strong predictive capability.

1.4.2 Specific Objectives.

The research will aim at three specific objectives

i. To establish the influences of environment on Rhipicephalus appendiculatus  
distributions:

The presecnc/absence of a species depends on particular environmental conditions.Studies 

describe biological patterns in relation to environmental gradicnts(Grinncll 1904, Murray 

1866,Schimper 1903).Sessile species have capabilities of characterising its environment while 

mobile species use the resources that are patchily distibuted across a landscape(Elith et 

al,2009).Thus this reseach aims at looking into those factors that make the brown ear tick to 

inhibit a specific area i.e choice of those species in relation to the environment.The major 

environmental concerns are rainfall,temperature and forests.Other relating factors that the 

research will establish are cattle density and East coast fever distribution.

ii. Establishing the spatial dependancy of Rhipicephalus appendiculatus:
Data are considered to be autocorrelated when the degree of correlation among the observations 

depends on their relative locations. -c«
4 ,

The scale disparities when fitting model is an important area in species distribution.Again ,thc 

scale of pattern in ecological data is an important aspect in any modelling as it helps in evaluating 

the inherent structures in data.This reseach aims at establishing a set of scale -dependent
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predictors to represent factors affecting the distribution of the Rhipicephalus appendiculatus 
at more than one spatial scale.This objective will be enhanced further by use of GIS for mapping 

the species to see their distribution in those sampled localities. Geographic Information System 

(GIS) is a useful tool for analyzing resource selection of species and predicting and mapping 

habitat suitability when the degree of correlation among observations depends on their relative 

locations, that is the problem of spatial dependence, 

iii. Predicting new habitats for Rhipicephalus appendiculatus:

The research aims at establishing a model to predict the new and unsampled domains.This will 

be done by assessing the environment in these new times and places ,particulary for new 

combinations of predictor values or for predictor values outside the given data.This prediction 

to new environments is generally termed extrapolation or forecasting (Arau jo,2007, Miller ct al. 

2004).Thc model thus established will aim at capturing those features that will reflect major 

attiributes of the data like the spatial autocorrelation's shown in second objective).The research 

will show that there is a strong case for making a species model spatially explicit.

1.5 Signifance of the study.

Understanding how wildlife use surrounding habitats is of paramount importance to ecology and 

species managcment(McClcan ct al. 1998, Boyce and McDonald 1999).Habitat selection studies 

usually compare assessments of habitat use to habitat availability,showing how animals actively 

select the environments where they spend most of their time (Manly et al. 1993).

Upon fulfillment of its objectives, this research will be an important tool in shaping the distribution 

of various species in the Kenyan context. Though there are various models that can model the 

species, researchers have proved GLMs as one of such tools whose results can be used, to model 

various other species.

The results can be used to establish conservation strategies as well as in preservation of the 

ecosystem. By this better fruits of conservation will be seen not only via economic empowerment of 

the citizens but also positive concern to the environment. Further, by identifying species that pose a 

significant threat of becoming a threat to economy in advance will contribute to effective 

management of those same species. To the Kenya National Museum,’ it can improve domestic 

awareness, attracting more resources allocation from the government hence better planning via
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conservation and this will be a mark of national well being.To ILRI,this can assist in putting control 

measures for Rhipicephalus appendiculatus hence assist in control of livestock related disease. To 

K.WS, it is a great relieve management as it can assist in antelope and other wildlife conservation by 

reducing the threats from brown ear tick. Its products will be used by future generations to identify 

any areas of improvements in any future modeling of species.

The maps in this research integrates spatial information on biological habitat requirements of the 

species with information on severity of human threats. Increasing our knowledge of species habitat 

selection and predicting their geographic distribution using spatially explicit information and maps 

created by a Geographic Information System (G1S) is one step toward aiding in their conservation. 

To that aim, this analysis examines environmental factors contributing to Rhipicephalus 
appendiculatus preference and uses a modeling approach to create a prediction map of this species 

suitability in Kenya.lt is hoped that this research will aid in geographic targeting of conservation 

strategies for protection and control of Rhipicephalus appendiculatus and for biodiversity in 

general.

The next chapter will now explore what others have written and researched upon

regarding the species distribution and how their work will build on this research and improve on the

same where need be.

$
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CHAPTER TWO:

LITERATURE REVIEW

2.0 Introduction.

This chapter provides an overview of species distribution and global commitments towards species 

conservation, prevention and control. It also reviews the current efforts made in species prediction, 

mapping, explores the concept of conservations and discusses related research undertaken in the area 

of species mathematical modelling. The literature also elaborates on the concept of social threats and 

the theoretical underpinnings of this study.

2.1 The General Overview of Species Modeling.

In prediction of where species are likely to occur, conservationists arc increasingly relying on 

distribution modcls.The knowledge is being extended to predict the response of species to climate 

changes, and identifying conservation areas. However,Modeling can be challenging in these cases 

because locality data necessary for model formation are often scarce and spatially imprecise.

Hernandez et al(2008) observes that constructing an SDM relics on a description of the species’ 

relationship with its environment to depict areas within a region of interest where the species is likely 

to occur.In this regard,it is strived to utilise the information on species occurrence /non-occurrence in 

prediction of the likelihhod of the species presence or absence in unsampled locations(Latimer 

et.al,2006).In estimating the potential for species to occur in areas not previously surveyed,SDMs 

becomes an important tool(Guisan and Thuillcr 2005).These SDMs have conservation utility as they 

can be used to identify high priority sites for conservation (Arau'jo and Williams 2000; Ferrier et al. 

2002;Loiselle et al. 2003; Wilson et al. 2005), direct biologicalsurveys towards places where species 

arc likely to be found (Raxworthy et al. 2003;Engleret al. 2004; Bourg et al. 2005) and provide a 

baseline for predicting a species’ response to landscape alterations and/or climate change (Thuillcr 

2003; Arau'jo et al. 2006).

Predictive species distribution models arc essential tools in biodiversity conservation and 

management (Cote & Reynolds, 2002). Fitting an SDM involves a scries of steps, each requiring a
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number of choices and well-justified decisions (Ferrier et al .,2002b;Guisan &Thuiller, 2005). 

Species distribution models (SDMs) can thus perform well in characterizing the natural distributions 

0f species (within theircurrent range), particularly when well-designed survey data and functionally 

relevant predictorsare analyzed with an appropriately specified model(Elith ct.al,2009).They provide 

strong capabilities to predict from the ecological insight theat tey depict.

Roots of SDMs can be traced in early studies describing biological patterns in tenns of their 

relationships with geographical and environmental ingradients(Grinnell 1904, Murray 1866,Schimper 

1903).Researches have provided strong conceptual argument for modelling species rather than 

communinities for not only vegetation but also birds(Whittaker 1956; and MacArthur 1958).

2.2 Development and Diversity in the Species Modeling Landscape

Applications that use inadequate data are challenging not forgetting those that model species not 

in equilibrium with their environment,that extrapolate in time and space.Alot of literature has 

explored applications that fit species which arc also invasive as for example Invasive plants can alter 

plant community structure and ecosystem function (Vitousek et a l ., 1987), result in large economic 

costsfrom lost ecosystem services (Pimentel et al ., 2005), and detract from an intrinsic or aesthetic 

value associated with native biodiversity and native plant dominanee(Herron et.al,2007).SDMs can 

be used to provide understanding and even in prediction of species distribution across landscape.

SDMs normally take different terms depending on the context of the meaning taken and the/
emphases there on.They can thus be termed as bioclamatic models,climate envelopes,ecological 

niche models,habitat models c.tc(Elith ct.al,2009)

«•»

Hernandez et al(2008) shows how species distibuition can be predicted from a poory studied 

landscape where comparison of the success of three algorithms(Maxent,MahalanobisTypicalities and 

Random Forests) at predicting distributions of eight bird and eight mammal species endemic to the 

eastern slopes of the central Andes was done.He observed that the three method's performed 

similarly for species with restricted distributions and the three methods have both strengths and 

weaknesses in some situations.
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A biologist familiar with the species can define the species -environment relationship or analyses of 

the environmental conditions at points of occurrence in a statistical anlaysis can also define the 

same.This however will require construction of a defination of the species’ relationship with the 

said environment.The analytical approach can be used to model specieswhose habitat requirements 

arc poorly understood and can be developed at any spatial scale(Hcrnandez et al,2008).The only 

limitation is the data availabilty and species locality.ln poor landscapes,data arc often not collected 

systematically but gathered in an adhoe manner.Data from species can span many years.Due to lack 

of surveys also,the number of records available for any species is usually limited and because of 

species’ relatively spatial distributions,the observations are not frequent.

Modeling with small numbers of spatially imprecise localities is challenging but not impossible 

(Pearson et al. 2007).Some methods have proven to be more effective under certain modeling 

conditions than others (Elith et al.2006; Hernandez et al. 2006) and according to Guisan and Thuillcr 

2005,they are several species distibution modelling methaods available.

Comparative analyses have investigated the efficacy of differennt methods for species 

distibuitions(Segurado and Araujo 2004; Elith et al. 2006;Hcrnandez ct al. 2006; Tsoar et al. 

2007).Some methods arc effective at predictying species’ distribution than others and none has been 

proven as best.The factors that influence model performance include quantity and quality of the 

species occurrence data, the accuracy and completeness (i.e.inclusion of all relevant factors 

contributing to the processes driving the species’ distribution pattern) of the environmental data, the 

spatial scale (extent and size of analysisunit), and the ecological characteristics of the species being 

modeled(Segurado and Arau jo2004; Elith et al. 2006; Hernandez et al. 2006; McPherson and Jetz 

2007).For example in modelling species from poorly surveyed landsacpe, purpose may be to 

generate potential distribution maps for many species with as much confidence as possible, thereby 

providing baseline biological diversity information previously unavailable (Hernandez ct al,2008). 

Previous comparative studies demonstrated that Maxent, a statistical mechanics approach, performs
4 ,

very well (Elith et al.2006;Phillips et al.2006) even with small samples(Hernandez et al.2006). 

Mahalanobis Typicalities, a method adopted from remote sensing analyses (IDRISI 2006), and 

Random Forests, a model averaging approach to the non-parametric procedure classification and



regression tree (CART) (Breiman 2001) also perform well. Researchers have demonstrated that both 

methods can produce useful results.

In plant species modelling,revealing mechanisms that allow a large number of plant species to 

coexist is of key interest within community ecology (Murrell et al.,2001; Lorcau ct al., 2001). 

Species coexistence is directly linked to local inter- and intra-specific interactions in a community 

(Durrctt and Levin, 1998). For example, each plant has a dependence on local growing conditions 

(Stoll and Weiner, 2000) and interacts mainly with its immediate neighbours, as plants are non- 

motile organisms, most applications of spatial point processes inccology have been either of a merely 

descriptive nature using second ordersummary statistics such as Ripley's K-function (Dale et al., 

2002; Liebholdand Gurevitch, 2002; Wiegand and Moloney, 2004) or the models were restrictedto a 

very small number of species, typically not more than two orthrec (Mateu et al., 1998). A traditional 

spatial point process analysis involvingthc inspection of first and second order summary statistics for 

each of thespecies as well as pairwise cross species summary statistics (Digglc,2003; Miller and 

Waagepetersen, 2003) becomes a very tedious task with highnumbers of species.In plant 

modelling,researchers have observed difficulties of modelling spatial interactions in a plant 

community which requires very complcxmodels with a large number of parameters.Bayesian 

approach is found to be more useful than the frequentist approach as it allowcda more fcxiblc and 

realistic model.

2.3 Modelling across Terrestrial,Freshwater,and Marine Environments.

Across terrestial,freshwater and marine environments, SDMs have also played a role.Terrestrialplant 

analyses were prevalent in early years and are still common, along with studies ofterrestrial animals 

(including invertebrates); marine and freshwater applications were relativclyrare antk soil-based 

organisms are still only infrequently modeled.SDMs from these diverse fields display commonalities 

and contrasts, with differences in mobilitybetween species prompting some major differences in 

modeling approach. When a speciesis sessile it is relatively easy to characterize its environment, even 

including the wider influence of landscape. Species which are considered mobile on the other hand 

use the resources which are patchily distributed across a landscape(Elith et.al,2009).Mobile species 

with small home ranges are often fitted using methods similar to those for sessileorganisms, perhaps 

with focal predictors summarizing information from the near-neighboring landscape (Fcrrier et al.
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2002) . In contrast, models for highly mobile species (e.g., diadromous fish) need to include 

movement or access-related descriptors (e.g., stream-based distance to coast;Lcathwick ct al. 2008). 

In aquatic studies, observations are otlentreated as probabilities of capture and analyzed using similar 

methods as for sessile species, sometimesincluding temporal predictors to accommodate seasonal 

variation in catchability/presence(Venablcs&Dichmont 2004). Alternatively, specialized modeling 

techniques have been devclopedto account for imperfect detection (e.g., MacKcnzie ct al. 2002, 

Royle et al. 2004).Historic differences in the way data are collected also create different emphases 

across disciplines.Plant quadrats are usually regarded as statistically independent samples provided 

theyarc sufficiently geographically separated(Alieth et al,2009).Thus,thc understanding of species’ 

geographic ranges (the areas where these species occur) is an important and classical ecological 

challenge(Brown et al. 1996; Gaston 2003).Apart from studying relationships between organisms 

and their environment that involve characterizing and explaining statistical patterns of abundance, 

distribution, and diversity”(Brown 1995, p. 10; sec also Brown &Maurcr 1989; Blackburn & Gaston

2003) ,this also helps estimate where an invasive species or disease will spread, or to predict the late 

of endangered species(Jeschke et.al,2008).

2.4 Spatial Scale .

Another aspect that is importatant in distribuitions of both species and environment is the scale in 

terms of grain extent.The domain reflects the purpose of the analysis whrercas grain describe the 

properties of the data or analysis.For example, macroecological and global change studies tend to be

continental to global in scope (e.g. Ara ' ujo&New 2007), whereas studies targeting detailed/
ecological understanding or conservation planningtcnd toward local to regional extents (Fleishman ct 

al. 2001, Fcrrier et al. 2002).This shows the extent nature of species distribution models.On the 

other hand, grain should be consistent with the information content of the data,though in practice this 

is not always feasible.There is no single natural scale at which ecological patterns should be 

studied(Levin 1992). Rather, the appropriate scale is dictated by the study goals, the system, and 

available data(Jeschke cl.al,2008) and several methods descibes scale of pattern in ecological 

data.Thc modern SDMs when linked with Geographic Information system(GlS) can represent 

convergence of site-based ecology and spatial data.

/
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Climatic conditions determine the geographic ranges of species and this forms the basis of any 

boclimatic model.Researchers have have grouped these models into two.The first consideration is 

the use of species tolerance to heat,cold,or frost to predict the species range range (Doley 1977; 

Patterson et al. 1979; Prentice et al. 1992; Sykes et al. 1996;Kearney & Porter 2004; Hijmans 

&Graham2006).These are called the mechanistic models(Jeschke et.al,2008).The second approach 

use the knowledge of unknown physiological tolerances where it is not assumed that species 

geographic range is determined by tolerance but rather a number of climatic variables e.g 

minimum/maximum temperature,precipitation e.t.c.In this case these variables are measured for 

various locations and statisticall compared to the occurrence of the focal species at those 

locations.This gives the climatic range limits of this species distribution and helps in prediction 

hence their name empirical models( Jeschke et.al,2008).

It is assumed that the functional properties of species are constant over space and time.That is the 

phenotype and genotype do not change during the entire period during model building.During 

modelling, the new environment where for example range has shifted does not cause genetic or 

phenotypic changes.This collaborates (Peterson ,2003) that Ecological niches are often 

conservative.Species also occur at all locations with favourable climates i.c their dispersal is 

unlimited.This means there is species ability and sufficient time to populate all locations with 

favourable climates.However , many species lack the means to reach suitable but distant 

locations,and species such as trees need long time periods to extend their range even to relatively 

closelocations (Pearson 2006).Further,in determining the geographic ranges,biotic interactions arc 

unimportant and they are constant over space ant time(Jeschke et.al,2008).

2.5 Conceptual and Technical Underpinnings of Species Modelling. ^

In species distributions,spatial prediction is an important aspect as it relates directly to the 

environmental niche.Factors like dispersion, reproduction competition and population dynamics also 

affect this kind of prediction (MacArthur et al. 1966, Gaston 2003).The assumptions that species 

distribuitiona arc determined by the evironmental factors and that species have reached or nearly 

reached equilibrium with these factors are the cornerstone of the generalised linear models(GLM) 

and generalised additive models(GAM) that are used in the species distribuition 

modeling.Depending on the the evironmental changes,these assumptuons may be adequate or
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ina<Jequate(Peterson 2003).Underestimation of the degree of uncertainity in model predictions may 

arise if the assumptions arc violated or due to inadequate data.Spatial mismatch(Agarwal ct al. 

2002) betwen different data sources,observer error,variable sampling intensity and gaps in sampling 

also arise as part of aspect of ecological issues.This reseach and modeliing here on aims at solving 

these issue.

Resource selection and species distribution models can be used to analyzeintensity of resource use 

and predict the geographical distribution of a particularspecies by combining information from point 

occurrence data and environmentalvariables (Boyce ct al. 2002, Graham and Hijmans 2006). A 

variety of statisticalapproaches can be used. Many studies have utilized generalized linear 

models(GLMs) for modeling wildlife distributions (Walker 1990, Osborne and Tigar 1992,Buekland 

and Elston 1993). A GLM provides a method to estimate a function of themean response of a 

dependent variable as a linear combination of a set of predictors.GLMs are particularly useful for 

species distribution modeling because they provide a solid statistical foundation for realistically 

modeling ecological relationships (Austin 2002). Using this method, a study region is divided into 

grid cells and data on abundance or presenee/absence is tabulated for each cell.The spatial 

distribution of a species within the grid can then be determined by relating the response variable 

(abundance or presenee/absence of each grid cell) to spatially referenced covariates (Augustin ct al. 

1996, Boyce et al. 2002).For example , a poisson regression utilizes abundance or count data as the 

dependant variable.lt belongs to a family of the GLM and was has been used in studies of elephant to 

examine the response of forest elephant telemetry hit abundance to a set of covariate predictors.The 

model is used as a means to explore relationships between telemetry fix abundance and a set of 

covariates.

As noted earlier,effective management of introduced species requires the early identification of those 

species that pose a significant threat of becoming invasivc(Herron et.al,2007) as they have the ability 

to alter ecoystem .This is not an exceptional in Kenya where the increase in population and
t.

consequent shortable of arable land has resulted to migration into semi-arid ares with low agriculture 

Potential(Otengi ct al., 1995).This has resulted to clearance of the natural forest to provide the much 

needed land for cultivation(Lott et al.,200) hence meet the basic community nceds.This does not 

niean that species of ecological use should dissapear as their habitats diminish and the community
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should strive to preserve them.However with little data on them,their conservation strategy and poor 

predictive measures of their existence,this cant be achievcd.lt is against this backgound that I wish to 

model the species distribuition in the Kenya to solve such historic problems.

2.6 Geographic and Environmental Space.

SDMs have that element of the ability to establish distinction between geographic and

environmental space.Geogragic space is characteistically defined by two-dimensional map 

cordinates or three-dimensional digital elevation models and on the other hand environmental space 

is potentially multi-dimensional,defined by some set of environmental predictors as seen in the 

figure 1 below adapted from Elith et.al,2009.If an SDM is fitted using solely environmental 

predictors,it models variation in occurrence or abundance of a species in environmental space thus 

any predictions is also based on the species locations rather than geographic space(Elith 

et.al.2009).Geographic proximity is hereby ignored and hence the mapped predictions show 

clustering which reflects the spatial autocorrelation of the environment as in figure 1.
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Figure 1 :( Elith et.al,2009) The left figure shows relationship between mapped 'Species and 
environment,centre is the environmetal space and in the right figure are the mapped predictions 
based on these environmental predictors.Points a and c are geographically close but not 
environmentally whereas mapped predictions shows spatial autocorrelation o f environmental 
predictors.

Geographic clumping of species can also result from their response to spatially autocorrelatcd 

environmental factors and/or the effects of factors operating primarily in geographic space

/
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Strong residual geographic patterning(Elith et.al,2009) generally indicates that either key 

environmental predictors are missing (Leathwick & Whitehead 2001), the model is mis-specified 

(e.g., only linear terms where nonlinear are required), or geographic factors are influential (Dormann 

et al. 2007,Miller et al. 2007). The latter include glaciation, fire, contagious disease, connectivity, 

movement,dispersal, or biotic interactions. For these, the model might require additional relevant 

predictors,geographic variables and/or realistic estimates of dispersal distances or movement (Ferrier 

et al. 2002). Alternatively, some modelers enhance SDMs with process-based information to jointly 

characterize the environmental and spatial influences on distribution (e.g., Rouget & Richardson 

2003, Schurr et al. 2007)

2.7 The Rhipicephalus appendiculatus (Brown Ear Tick)

If uncontrolled and managed properly, some species become a threat to the biodiversity and can nail 

down any developing economy through the sector that it touches.

It is upon this background and the literature here in that this research singles down Rhipicephalus 

appendicula(us{Brown car tick) and seeks to model its spatial existence and prediction as it poses as a 

threat to the Kenyan economy.As noted earlier,the Kenyan economy relics heavily on its 

agriculutural capabilities and tourism sector.This tick has the behaviour tendancy of attacking these 

sectors and if it goes unchchecked it can contribute heavily to economic fall. R. appendiculatus is a 

member of the family Ixodidac (hard ticks). Hard ticks have a dorsal shield (scutum) and their 

mouthparts (capilulum) protrude forward when they are seen from above.

Rhipicephalus spp. ticks are brown ticks with short palps. The basis capitulum is usually hexagonal 

and generally inornate. Eyes and festoons arc both present and Coxa I is deeply cleft. The spiracular 

plates arc comma-shaped. The males of this genus have adanal shields and usually haveticccssory 

shields. The Male and Female R. appendiculatus are brownish, reddish-brown or very dark. This 

research will not look on the physical appearance of this species but goes ahead to model and 

providing statistical background for its control in the next chapters.
x*

4 ,

As noted, this literature concentrates on general cases of species be it animals or plants in general and 

hs application to specific cases is minimal. In addition, GLM and its signifance influence in species 

modeling has not been completely utilized as well as mapping of their prescnce/absencc using GIS.In
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Kenya particularly, very few researches have been done in species modeling and where is done it is 

the general exploration of the species done, species influence to landscape, factors affecting the 

presence/absence with no keen focus on species modeling and prediction.

Further to this, the literature in the Kenyan context focuses on strategies on prevention and control 

and fails to identify how such species are distributed in various parts in the country and how they can 

inhabit other areas. For example a paper on strategy for tsetsefly and trypanosomiasis eradication in 

Kenya 2011-2021 explores the economic signifance of tsetsefly, control method and situational 

analysis.In this no statistical background and modelling to predict future occurrences has been 

done.The case of tick is also an isolated one as none of such nature has been done in Kenya.Tick 

causes anaemia, depriving animals nutrients thus lowering animals survival and their tolerance.When 

uncontrolled and the environmental to which ticks survive is unchecked,agriculture and tourism 

sector can be affected and particularly in Kenya where agriculture is backnonc of the economy while 

Tourism sector gives the country foreign exchange.

This research therefore aims at improving on the gaps of species modeling by singling out a specific 

case of brown car tick and intends to move away from general literature of species modeling to this 

specific case.

2.8 Concepts and Terms Definitions

i. Species Distribution model;

A model that relates species distribution data (occurrence or abundance at known locations) 

with information on the environmental and/or spatial characteristics of those locations.

ii. Spatial Statistics; **

Spatial Statistics concerns the quantitative analysis of spatial data, including their 

dependencies and uncertainties. Spatial-temporal statistics extend this to the spatial-temporal 

domain.Three major groups of data exist: lattice data that arc collected on a predefined lattice, 

geostatistical data that represent continuous spatial variation and spatial point data that are 

observed at random locations. These types of data have their logical extension into the space- 

time domain, where the relations remain similar, but estimation may be different.
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iii. Spatial dependency or auto-correlation;

Spatial dependency is the co-variation of properties within geographic space: characteristics 

at proximal locations appear to be correlated, either positively or negatively. Spatial 

dependency leads to the spatial autocorrelation problem in statistics since, like temporal 

autocorrelation; this violates standard statistical techniques that assume independence among 

observations.

iv. Spatial sampling;

This involves determining a limited number of locations in geographic space for faithfully 

measuring phenomena that are subject to dependency and heterogeneity. Dependency 

suggests that since one location can predict the value of another location, we do not need 

observations in both places. But heterogeneity suggests that this relation can change across 

space, and therefore we cannot trust an observed degree of dependency beyond a region that 

may be small. Basic spatial sampling schemes include random, clustered and systematic. 

These basic schemes can be applied at multiple levels in a designated spatial hierarchy (e.g., 

urban area, city, and neighborhood).

v. Spatial interpolation;

This is the method for estimating the variables at unobserved locations in geographic space 

based on the values at observed locations.

vi. Spatial regression;

Spatial regression methods capture spatial dependency in regression analysis, avoiding 

statistical problems such as unstable parameters and unreliable significance tests, as well as 

providing information on spatial relationships among the variables involved. -

vii. Spatial interaction;

Spatial interaction or gravity models arc the estimate of flow of people, material or 

information between locations in geographic space. ^
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CHAPTER THREE:

RESEARCH METHODS

3.0 Introduction.

A number of plausible models in statistieal applications of species has to be considered.Wide 

availability of advances in technology have also allowed for the collection of vast quantities of data 

with geo-referenced sample locations.While choosing model,greater attention is given to one that 

incorporates information that influences the response variable despite the fact that not everything 

associated with the response is known.Thus an error process should be included to account for 

unknowns(Hoeting et ah,2004).

Field-based ecological studies of species-habitat association is nowadyas based on regression 

methods that provide coherent treatments for the error distributions of presence-absence data.In 

particular,Generalised linear Models has enabled regression-based SDMs with their key features of 

non-normal error distributions,additive terms and nonlinear fitted functions(Manly et al. 2002).In 

Marine and terrestrial environments,remote sensing of surface conditions climatic parameters 

interpolation allows robust and preparation of digital models thus enhancing SDMs capabilities.

The development of Geographic Information system (GIS) assist also in storage and manipulation of 

both species records and environmental data. A Geographic Information System (GIS) is a useful 

tool for analyzing resource selection of wildlife species and predicting and mapping habitat 

suitability. In addition, a GIS can be used to construct an expert-based habitat suitability map for the 

species under study using a spatial model approach. The map can integrate spatial information on 

biological habitat requirements of the species with information on severity of human threats.

3.1 Problems Associated with Spatial Prediction

Spatial ecological prediction problems normally arise from those features associated with the 

species distribution and the data describing those distributions(Latimer et al,2006).

First,the spatial unit of prediction is usually larger than the sites sampled on the ground from the fact 

that the spatial area covered is large than the area sampled.This brings the issue of sampling errors 

since lage parts in consideration may be unsampled while others may be heavily sampled hence
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heterogenity of the sampling intensity.Spatial misalignment problems are likely to oecur when the 

environmental data is related to the speeies distribution data and the region where prediction is 

based.Whereas some data are in form of a regular and/onnirregular grid, some are available at 

point locations(point data) thus bringing inconsistencies,biasness(Agarwal et al. 2002) resulting to 

unevenly distributed sample locations with respect to the relevant characteristics of the region 

sampled(Mugglin ct al. 2000,Gclland et al.2002)

Secondly, when the degree of correlation among observations depends on their relative locations,the 

problem of spatial dependence or spatial autocorrelation arises.In ecology,observations which are 

close to one another tend to acquire similarities than those that arc further apart resulting to positive 

autocorrelation.Based on the fact that process like dispersion and reproduction generate spatial 

autocorrelation in species occurrences,predictive models often exhibit some degree of 

autocorrelation.In addition, some residual autocorrelation in environmental factors do remain even 

when many environmental factors are included in the modcl.lt thus calls upon any model to consider 

this dependency to avoid inaccurate parameter estimates and inadequate quantification of 

uncertainity(Ver Hoef et al. 2001).Generalised linear regression analysis and Spatial prediction 

solves this problem by including data that reflects neighborhhod values in model predictions 

though this docs not quantify the strength of spatial pattern in the rcsidualls.

Finally, the spatial domain of prediction is large relative to that in whih data is collected thus 

cnvirnmcntal data are not available on a scale as fine as that experienced by individual 

organisms.This resuts to the problem in quantifying uncertainly.Since predictions helps in 

extrapolating to areas not observed in the study,assessing uneertainity helps to set conservation 

policy and evaluating the impact of climate change on species(Thomas et al.2004).The model 

adapted in this reseach will assist in addressing these problems.

3.2 Data.

In this section,study area,reliability/validity of data,statistical methods used,data analaysi^'and 

mapping habita suitability will be discussed

/
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3.2.1 Study Area.

This study adopted survey research design where GIS based secondary data was obtained directly 

from ILRI via http://www.ilri.org/GIS .The data available was based on Kenya in whole and where 

brown ear ticks have recently been identified. Due to the bulkiness of data, the research chose four 

major parts of Kenya namely: Nairobi, Rift valley, Eastern and Central .The areas were chosen as it 

was identified as the areas with high number of Rhipicephalus appendiculatus (Brown Ear Tick).In 

addition, these areas are considered as neighboring each other as it is the case in Kenya map locations 

identifications. This would help in showing any relationships and correlations in those areas infested 

by this species.

3.2.2 Reliability and Validity of Data.

Reliability and validity of data is an essential component in ensuring that the tools used for data 

collection is precise in capturing the intended information and is able to gather consistent data. The 

data was stored in GIS showing spatial locations thus very reliable and valid. Further ILRI is a 

credited institution and the economy depends on its data for research and development not only in 

Kenya but also internationally

3.2.3 Statistical Models

A statistical model has its main roots in the ability to provide a mathematical basis for interpretation, 

examining the parameters determining the strength of association and to ascertain the contributions 

and roles of the different variables.Ecologists use explanatory models to provide insights into the 

ecological processes that produce patterns (Austin et al. 1990) and predictive models to provide the 

user with a statistical relationship between the response and a series or predictor variables in 

predicting the probability of species occurrence or estimating numbers of an orgafilsmat new, 

previously unsampled locations(Guisan, et al,2002.)

3.2.4 Simple Generalized Linear Model.

Recall the general linear regression model of the form :

Y = a + x Tf i + £  (3.1)
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where Y denotes the response variable; a  is a constant called the intercept and reflects the value of Y 

when P -  X ~  ^ X l 'X z ......X k) is a vector of k predictor variables;

/? = {/?,j(?2,..../?k}is A:-by-1 vector of unknown parameters (one for each predictor),and ( zero-mean 

stochastic disturbances) is the error that represents measurement error, as well as any variation 

unexplained by the linear model. This model tries to minimise the unexplained variations through 

the least square methods.The model assumes :

i. Stochastic component: the Tare usually assumed to have independent normal 

distributions with € (V) = p with constant variance

ii. Systematic component: the covariates /combine linearly with the coefficients to form 

the linear predictor# = xP

iii. Link between the random and systematic components: the linear predictor xP = is

a function of the mean parameter pvia a linkfunction,#(p). Note that for the normallinear 

model, g is an identity.

Violation of assumption 1 constitutes a limitation to the application of most parametric statistical 

models,and is directly related to data sampling(Guisan, et al,2002).Many data in ecology are not 

Gaussian and do not have a constant variance and their variance is proportional to their mean 

(Davison 2001).Through advent of maximum likelihood GLM has been developed.

Generalized Linear Models(GLM) relates presence/absence data to environmental explanatory 

variables directly.They aremathematical extensions of linear models that do not force data into 

unnatural scales,and thereby allow for non-linearity and non-constant variance structures in the data 

(Hastie &Tibshirani 1990). They are based on an assumed relationshipbetween the mean of the 

response variable and the linear combination of the explanatoryvariablcs. Data may be assumed to be 

from several families of probability distributions,including the normal,binomial,Poisson,negative 

binomial,or gamma distribution, many ofwhich better fit the non-normal error structures of most 

ecological data.Thus,GLMs are moreflexible and better suited for analysing ecological 

relationships(Guisan, et al,2002.)
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Here,we deal with the misalignment between the speeies presence /absence data which are

referenced to point locations and the the environmental data which are referenced to grid cells. 

Guisan, et al(2002) recommends that working at the scale of the respose i.e the sample sites,and 

assigning to each sample site the values of the environmental factors for the grid cell in which the site 

falls is the best option as it results to a binomial variable reflecting the number of trials on the grid 

cell.

By use of GLM, the predictor variables xj(J — 12...p) are combined to produce a linear predictor 

(iiP)which is related to the expected value p =6 (y)of the response variable Ythrough a link 

function# (.), such as

00) — L'P -  X‘ ft + E (3.2)

where ci,x>P are those previously described in equation 3.1 

The corresponding terms for the /^'observation in the sample is:

# (p )=  tt +  P1Xl +  P2̂ + - ^ „  (3.3)

We note that unlike the multiple linear regressin modelfequation i), which assumes a normal 

distribution and anidentity link, the distribution ofYin a GLMs may be any of the exponential family 

distributions and the link function may be any monotonic differentiable function (like logarithm or 

logit).The variance of Y depends on p =€ (T) through the variance functionV(p-),giving 

Par(K) = 0V(p)where0 is a scale (also known as a dispersion) parameter.

Hie main improvements of GLMs over LS regression are:

i. The ability to handle a larger class of distributions for the response variable^. A (Tart from the 

Gaussian, other distributions arc the binomial, Poisson and Gamma. GLMs can also 

accommodate more generalqualitative (Davis & Goetz 1990) and semi-quantitative (ordinal; 

Guisan & Harrell 2000) response variables, usually based on a series of logistic binary GLMs.
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ii. The relationship of the response variable Y to the linear predictorCiJ5) through the link 

function ^ ( e (K)). In addition to ensuring linearity, this is an efficient way of constraining 

the predictions to be within a range of possible values for the response variable (e.g., between 

0 and 1 for probabilities of presenee).

iii. Incorporates potential solutions (e.g quasilikelihood) to deal with overdispcrsion(Davison

2001).

Our data set consists of the average number of the observed speeies and a gco-refercncc for each 

site.lt is not feasible to collect data at all possible locations, thus we are assumingthat n sites are 

representative of the entire area of interest.If T(s) is the prcsenee/absencc (1/0) of the particular 

speeies at sample location s in cell i,thcn by summing up T(^)over the number of sample sites in 

cell(n)wc get grid-cell level count Y +

Assuming the independence^ noted on GLM) for the trials and since all the sites are assigned the 

same levels for the environmental factors,we get a binomial distribution for Y +

Yj + 'vBinomial(ni,Pi) (3 4)

meaning that the probability p that a species occurs in a cell is related to the environmental variable.

The distribution of these kind of observations is drawn from exponential family. The density of these 

distributions has the form

/( * )  = exp
By + b{6)
. '  «(0)

c(y,0)
(3.5)

where 6 is a parameter that determines the location of the distribution, 0 is a parameter that scales the 

variability, and a(.), b (.)and c(.,.)  are functions.The quantity«(0)(usually just 0) scales the 

variablity up or down without changing this relationship, thus allowing the model to accommodate 

overdispersed or (less often) underdispersed observations.

Although any function can be used for the link, the model is simplest when the location parameter 

oithe link function is the same as the location parameter 0 of the distribution. The link function 

thenhas a canonical form that is determined by the distribution itself(Thomas D. Wickens,2004).With 

Binomial data,the canonical link function is logistic. , '
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The generalized linear model docs not have closed-form estimation equations. However, there arc 

manyiterative algorithms by which it can be fitted. For example, maximum likelihood fits can be 

obtained byrepeatedly applying the weighted least squares after generating the variances from 

thcmodel. (Thomas D. Wickens,2004).

The fit of the generalized linear model is measured by a quantity known as the deviance, which is 

justtwice the negative log likelihood:

deviance = — 2 logf n.6)

(where f  is the likelihood)

When the model allows for overdispersion or underdispersion by estimating the parameter®, the 

deviance cannot be interpreted as measuring goodness of fit—there is no independent estimate of the 

error as there isfor the general linear model(Thomas D. Wickens,2004)

Relation of to the linear predictor Xr[t can be conviniently done using a logistic (Logit) function 

getting:

lo3 ( j ~ ^ j  = Po +  P iX i  +  -  +  PpXp
(3.7)

where X P is as earlier defined.

If the cell is unsampled (n = 0) there will be no contribution to the likelihood but if sampled (n > l)  

there will be a contribution to the likelihood component.

3.2.5 The Generalized Additive Model (GAM).

From the above background on GLMs,we note that likelihood-based regression models such as the 

normal linear regression models and the linear logistic model assume a linear (or some other 

parametric) form for the covariates X i’X z ..... jffc.The class of generalized additive modcls<*rcplaces
4.

the linear form 2/9jj; hy a sum of smooth functions £  s; (j.).The Sj (. are unspecified functions 

that are estimated using a scatter plot smoother, in an iterative procedure. The linear predictor 

>s replaced by the additive predictor^] s^Xj)- Hencc the name generalized additive model.
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This is a statistical model for blending properties of generalized linear models with additive models. 

The model specifies a distribution (such as normal distribution, or a binomial distribution) and a link 

function g relating the expected value of the distribution to the m  predietor variables, and attempts 

to fit functions f  ( / , )  to satisfy:

The functions f t (^f)may be fit using parametric or non-parametric means, thus providing the 

potential for better fits to data than other methods. The method hence is very general -  a typical 

GAM might use a scatter plot smoothing function such as a locally weighted mean for and

then use a factor model for f 2 (X /)- By allowing nonparametric fits, well designed GAMs allow 

good fits to the training data with relaxed assumptions on the actual relationship, perhaps at the 

expense of interpretabi 1 ity of results.

/

Overfitting can be a problem with GAMs. The number of smoothing parameters can be specified, and 

this number should be reasonably small, certainly well under the degrees of freedom offered by the 

data. Cross-validation can be used to delect and/or reduce over fitting problems with GAMs (or other 

statistical methods). Other models such as GLMs may be preferable to GAMs unless GAMs improve 

predictive ability substantially for the application in question.
-c«

3-2.6 Diagnostics Involving GLMs and GAMs. '•

When using GLMs and GAMs,Akaike Information Criterion(AIC) can be used during the variable 

selection(Sakamoloct al. 1988) and Inference tests for predictors selection explain a signifanct 

Portion of the variance. This is done especially when spatial correlation is typically

(*0) -  A> + / i (AT) +  + (3.8)

The equation 3.8 above can generally be written as shown in equation 3.9 below.
p

(3.9)

where e Sj{Xj) = 0 for every j
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ignored in the selection of explanatory variables and this can influence model selection results. For 

example, the inclusion or exclusion of particular explanatory variables may not be apparent when 

spatial correlation is ignored.

In species modelling,shapes of the responses curves is given attention as well as incorporation of 

ecological features like dispersion and competition.Researchers including Jari Oksanen and Peter 

Minchin used data on vascular plant distribution along an elevation gradient to test four models for 

lotting such responses.On testing hierarchical(lluisman ct al. (HOF)( 1997); binomial GLMs(logistic 

link);binomial GAMs (logistic link) and beta-functions (Austin et al. 1994),they concluded that HOF 

arc more effective and that GAMs too provided similar results.

3.2.7 Getting Spatially Explicit Model: Built up from GLM

In the problems associated with spatial prediction,it was noted that degree of correlation among 

observations depends on their relative locations.This is due to similarities in ecological attributes 

among the neighbouring cells and the dispersions associated with the populations.The products of 

this is the autocorrelation and the models seeks also to respond to this spatial dependence while 

retaining the environmental response^7/?) which is catered for by the logistic (Logit) function.

Considering equation iv and modelling at the grid -cell level,a spatial term 0, associated with grid 

cell i  is added to equation vii to get the equation below.
/

—- — = + " +0p*p 4. Q
1 ~ P  ' (3.10)

In this case,6?, is a random effect associated with each grid cell and it adjusts the probability of 

presence of the modeled species up or down depending on the values of O in cell ^’s spatial 

neighborhood(Latimer et al,2006). •c*
4 ,

Let Xx,X2, ...,Xn be a finite collection of random variables which are associated with sites 

labelled 1,2 ...n,respectively.For each site, ... at,,),the conditional probably of

given all other site values ,is specified and thus we require also the joint distibutions of the

28



variables(Besag 1974).Thus if x v ...,xn ,can individually occur at the sites 1,2 ...n,respectively,then 

they can occur together.Statistically then if P(x,) > 0 for each i,then P(xv x2, ...,xn) > 0. 

Considering a set of sites i ,j ,site / ( ^  i) is said to be a neighbour of site tiff the functional form of 

P(xt| * i x i+1, ... xn) is dependent upon the variable xjt

3.3 Data Analysis

The data will be coded and then a data base will be developed in statistical software. Due to the type 

of analysis required, the researcher opt R-Software and Microsoft software. A form of matrix will be 

developed where environmental attribute were each given a variable name. The data base was first 

established in excel sheet and saved as CSV comma delimited. Then R Command were used to 

export the data from excel to R-Software where modeling and analysis was done.

The data obtained was first arranged in logical order followed by drawing tables and graphs. . 

Descriptive analysis was used and also an aspect of correlation to show if there is any association 

between various environmental factors. The data was fitted to give a logistic model with various 

aspects relating Rhipicephalus appendiculatus (Brown Ear Tick) to the environmental factors.

3.3.1 Analysis Involving Logistic Regression.

Logistic regression analysis extends the techniques of multiple regression analysis to research 

situations in which the outcome variable is binary. Let Y be binary outcome; then Y is coded as Y=1 

if event of interest occurs and Y=0 if it does not occur. Specifically in the case of Rhipicephalus 

appendiculatus

• 1 = presence of Rhipicephalus appendiculatus

• 0= absence of Rhipicephalus appendiculatus —

Let Y=1 indicate that Rhipicephalus appendiculatus is present in the region, then statistical theory 

tells us that the mean of Y is a probability in this case that measures the probability of occurrence of 

this tick. This model is based on probabilities associated with the binary outcome as opposed to the 

actual outcome thus it describes probabilities as functions of explanatory variables. The explanatory 

variables are either continuous and/or categorical variables. The function of mean it uses is the logit 

function or the logarithm of the odds.
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The estimated coefficients from a logistic regression fit are interpreted in terms of odds and odds 

ratios.The following requirements have to be specified:

• An outcome variable with two possible categorical outcomes (l=prescnce; 0=abscncc).

• A way to estimate the probability p  of the occurrence of the outcome variable.

• A way of linking the outcome variable to the explanatory variables.

• A way of estimating the coefficients of the regression equation, as well as their confidence 

intervals.

• A way to test the goodness of fit of the regression model

3.3.2 Odds and Odds-Ratio.

By definition, if p is the probability of event occurring, then the probability of event not occurring

is 1 — p, and odds are defined as:

probability o f  event occurring ■p
Odds = -----— —----------------------------------- = -------

probibihty o f  event not occurring 1 — p (3.11)

The odds ratio compares the odds of events of two groups. It is the ratio of two sets of odds.

Odds ratio =
Odds o f  group A 
Odds o f  group B

= 1 ~ PAi
I

- L' i  -
(3.12)

We note therefore that in logistic regression we model the natural log of the odds of event. Equation 

3.7 represents such a model where I30, ... jG^are to be estimated using sample information.

3.3.3 Interpretation of Regression Coefficient.

Consider >  0 where i  is greater than 0,

• If pi > 0 then there is an increase in the log odds of the event for every unit increase in

explanatory variable . *

• If pi < 0 then there is a decrease in the log odds of the event for every unit increase in the 

explanatory variable.

• If = 0 , then there is no relationship between the log odds and'the explanatory variable.
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is the change in risk for everyIt the explanatory is a continuous variable then  ̂

additional measure of the explanatory variable.

0 4

If the predictor is a categorical variable then e  is the odds ratio of one group to other; one 

group is taken to be the reference.

3.4 Mapping Habitat Suitability.

Spatially explicit information on the brown car tick and factors that influence will be combined to 

create a map.This approach aim at providing a GIS-bascd method to model and predict habitat 

suitability for wide-ranging species. The components of the model include deriving a “Biological 

Landscape” layer, which takes into account biological covariates thought to influence a particular 

species’ habitat and a “Human Landscape” layer, which takes into account human covariatcs which 

might exert significant pressure on, or pose certain threats to, the species’ habitat. Both Biological 

and Human Landscape layer model inputs are based on expert opinion of known information about 

the species’ biological preferences and relationships to human factors. The model approach combines 

both landscape layers to create a “Conservation Landscape” layer, or habitat suitability surface, for 

the species.

3.5 Tick Density Prediction Model.

Predictive mapping applied was based on reflecting the relationship between occurrence and

covariates ad hoc. This involved application of appropriate mathematical models which permits a
/

statistical estimation of the relationship between the occurrences of ticks.

Tick occurrence is primarily determined by macro-climatic factors hence macroclimate is commonly 

exploited in prediction models. In carrying out the modeling, the most frequently applied ‘expert’ 

systems; CL1MEX model (Sutherst & Maywald, 1985) procedure was used in developing the model. 

Such prediction model is based on the assumption that an area of occurrence is limited by a ‘climatic 

envelope. ’ The envelope is positively delimited by a ‘Growth Index’ which combines favorable 

temperature and humidity, and negatively delimited by ‘Stress Indices’ represented by ̂ Extremes in 

temperature and humidity.

3.6 Kriging.

fhe simplest point referenced models assume that the process that generated the observed data has a 

spatial component, and represent this spatial component through functions of distance between
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observation points. The best-known example of this approaeh is kriging, which was developed to 

predict locations of ore deposits from point-level drill samplcs(Banerjec et al. 2004). Ecological 

point-referenced modelling has been limited to relatively modest-sized data sets until recently 

(Latimer et al. 2006)

Kriging is perhaps the most familiar use of point level modeling: kriging is a way of predicting the 

values of a response variable (like species abundance or soil characteristics) at new, unmeasured 

locations (Bannerjee et al. 2003). The goal here, is not simply to predict but also to investigate the 

relationships between the brown ear tick distributions, environmental variables, and spatial pattern, 

so the modeling also includes environmental covariatcs as well as spatial random effects. In addition 

to estimating regression coefficients,a geostatistieal regression model involves fitting a spatial 

correlation function to the regression errors. The function allows correlation between observations to 

decrease as separation in space increases.This is the universal kriging modeling concept.



CHAPTER FOUR:

RESULTS

This chapter discusses the research data obtained. The relationships of Rhipicephalus appendiculalus 

to various environmental factors are discussed as well as showing the maps of spatial locations, 

distribution and predictions by use of G1S. The various figures drawn are meant to show how the 

species relates with other factors independently and also dependency.

4.1 Results from the Model.

The statistical methods in use had confirmed that that adding complexity to basic generalized linear 

models improved the models’ characterizationof the distributions of species. The research now turns 

to a more thorough evaluationof the model output, including the estimates for theenvironmental 

coefficients, the spatial random effectvariablcs, and the uncertainty associated with modelparameters.

For ease of analayis,thc reseach started by giving the various factors variable names as follows in

relation to the model S W  — a +  P1X1 + 02^1 PpX? described in equation 3.3 where 

(jf(p)is the Rhipicephalus appendiculalus density(7Z),) ;x is the cattle density in the arcafCD),/., is 

the east coast fever distribution(ECF);x3 is the average ranifall expericed in the given area(RF) and 

X4 is the temperature in the area(TE)

4.1.1 Summary of the data.

This section gives the summary of the data considered .Continuous variables include cattle 

density(CD),rainfall(RF) and temperature(TE) while the outcome,tick occurrence and easUcoast fever 

occurence are binary(0/l) response.

4.1.2 Continuos variables summary.

This shows the continuos variables namely cattle density,rainfall and temperature that affects the 

brown ear tick distribution.The cattle density was measured in square kilometres,rainfall in 

milimetres and temeperature in degree celcius.

/
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Tablet :Continuous variables used in (lie study.

Cattle Dcnsity(sq km) Rainfall(mm) Tcmpcralure(cclsius)

Minimum 0.00 400 9.00

1st Quartile 42.18 875 12.00

Median 71.12 1000 17.50

Mean 66.46 1060 18.27

4.1.3 Binary variables summary.

TD represent ticks and ECF reprents East Coast Fever.These variables are in terms of 

prcscnce/absenee(0/1) and 38 is the total data set involved.

Table 2:Binary variables in the study.

E as t C oa s t F eve r
T ic k  D ens ity 0 1

0 1 1

1 0 38

4.1.4 The Logit Model

This section estimates a logistic regression model using the generalised linear model (glm) function 

as discussed in chapter 3.East coast fever was treated as a factor (i.c catcgorical)variablc.I laving 

given the model name,R does not produce any output from the regression but instead the reseach 

used summary commands.

Model summary

The summary of the residuals and coefficients in the model is given below 

Table 3:Deviance Residuals Summary

Deviance Residuals

Minimum 1st Quartile Median 3rd Quartile Maximum
4 .

-1.675 -0.8552 -0.6287 1.1380 2.056
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Table 4: Coefficients Summary

Coefficients Estimate Std.Error Z value rr(>\z\)
Intercept -1.127 1.895 -3.2 0.000435
Cattle Density 1.684 0.002126 2.1 0.034876
Rainfall 0.1 0.332973 2.627 0.01624
Temperature -0.57243 0.31254 2.133 0.022346
East Coast Fever 1 -1.2146 0.215201 -2.976 0.000345

The dispersion parameter for binomial family taken to be 1 was also derived where null deviance was 

49.998 on 39 degrees of freedom,Residual deviance: 38.41 on 35 degrees of freedom and Alkaikc 

Information criteria (AIC) is 10

In the output above,the deviance residuals are a measure of the model fit.This part shows the 

distribution of the deviance for individual cases used in the model.The logistic regression gives the 

change in the log odds of the outcome for one unit increase in the predictor variable.

We note the following:

• For every unit change in in cattle density,the log odds of tick density(versus none) 

increases by 1.684.

• For every unit change in in rainfall,the log odds of tick density(versus none) increases by

0.1

• For every unit change in in temperature,the log odds of tick density(versus none) 

decreases by 0.57

• Having East coast fever in the region decreases the log odds of tick density by

1.2146.This can be interprated to mean there is no effect of tick density which can be 

associated with East Coast fever presence or absence. *

The model can thus be written as:

lo g {~ ^ —  \ =  - 1.127 +  1.684* ! +  0.1* , -  0 '57245*, -  1.2146*4
\ 1  - p /
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By definition, if p  is the probability of event occurring, then the probability of event not occurring

i s l  — p.Thus, for every unit increase in cattle density and rainfall, the log of odds of having brown 

ear tick increases by 1.684 and 0.1 respectively.

Table 5; Obtained confidence intervals for the coefficient estimates.

2.5 % 97.5 %

(Intercept) -5.17351 -1.50643

CD -0.001346 -1.50643

RF 0.150346 1.4100695

TE -1..63019 0.31317

(ECF)l -1.27433 NA

4.1.5 Exponeniating the coefficients

By exponentiating the coefficients,we interplate them as odds-ratio.

Table 6:Exponeniated Coefficients

Variable (Intercept) Cattle Density Rainfall Temperature East Coast 

Fever

Odds-Ratio 1.189028 1.855969 1.363994 7.005278 6.489016

Considering that tick density, temperature, rainfall and temperature arc continuous variables then, 

there is the change in risk for every additional measure of each of these variables.On the other 

hand,for one unit increse in east coast fever,the odds of having brown ear tick in the area increases by 

a factor of 6.48. The research therefore confirms that all these factors have a positive influence in the 

occurrence of brown ear tick. *'

4.1.6 Predicted Probabilities

This was be done for both categorical and continuous predictor variables.To do this,a new data frame 

was created with the values whose independent variables we want to takd on to create the predictors.

36



The research started by calculating the predicted probability of Rhipicephalus appendiculatus 

(Brown Ear Tick) at each value of cast coast fever, holding cattle density, rainfall and temperature 

constant. An object was created in R software with the observations of presence and absence 

(l/0).The second, third and fourth objects of cattle density, temperature and rainfall were created that 

only took on one value each. In this case, the variables were set to their means, but this can also be 

set at any value. It is notable that these objects must have the same names as the variables in the 

logistic regression discussed. In the last command, the objects created were combined into a new data 

frame.

4.1.7 New Data Results.

This shows the data set established from the previous for prediction purpose. 

Table 7: Established new data

East Coast Fever(ECF) Cattle Density(CD) Rainfall(RF) Temperature(TE)
0 66.46022 1060 18.275
1 66.46022 1060 18.275

This data frame in table 7 above was then used to calculate the predicted probabilities.

Table X: Predicted Probabilities of Occurrence.

East Coast Fever(ECF) Cattle Density(CD) Rainfall(RF) Temperaturc(TE) ECFp

0 66.46022 1060 18.275 0.89

1 66.46022 1060 18.275 1

The output confirms that the predicted probability of having the Rhipicephalus appendiculatus 
(Brown Ear Tick ) is 0.89 when east coast fever is not observed and 1 when is observed. This 

confirms that the brown ear tick occurrence will also influence the presence of cast coast fever in the 

studied areas now and in future.
t«

4.1.8 Model Fit. '*

This is useful when comparing competing models. The output produced by the model summary 

included indices of fit (shown below the coefficients), including-the null ami deviance residuals and
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the AIC.Onc measure of model fit is the significance of the overall model. This test asks whether the 

model with predictors fits significantly better than a model with just an intercept (i.c. null model).

The test statistic is the difference between the residual deviance for the model with predictors and the 

null model. The test statistic is distributed chi-squared with degrees of freedom equal to the 

differences in degree of freedom between the current and the null model(i.e the number of predictors 

variables in the model).To find the difference in deviance for the two models(i.e the test statistic), R 

commands are used giving 15.88122 as the result. The degrees of freedom for the difference between 

the two models is equal to the number of predictor variables in the model and was obtained as

2.Finally, the p-value was obtained as 6.456192.

The chi-square of 15.88122 with 4 degrees of freedom and an associated p-value of less than 0.001 

tells us that the model as a whole fits significantly better than an empty model. This is sometimes 

called a likelihood ratio test (the deviance residual is -2*log likelihood) obtained as -2.021658 (df=5).

4.2 The Relationship between the Variables.

This sections checks the correlation and covariance exhibited by the variables in the study

4.2.1 Correlation

The correlation matrix was obtained through R as follows

f TD CD ECF RF TE \
TD 1.0000000 0.3748285 0.6979824 0.4016462 -0.3206608
CD 0.3748285 1.0000000 0.3066419 0.7686704 -  0.5443849
ECF 0.6979824 0.3066419 1.0000000 0.2573632 -  0.2570967

RF 0.4016462 0.7686704 0.2573632 1.0000000 -0.4945TD5
 ̂ TE -
\

0.3206608 -0.5443849 -0 .2570967 -  0,4945105 1.0000000

Notable is that all immediate factors that the research put into focus were all positively correlated

with the tick density i.e Cattle density in the area, Rainfall and east coast fever’ occurrence.

Temperature showed negative association perhaps due to the selective nature of this tick’s habitant 

determined by the other variables.

t
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4.3 G.I.S Mapping

An expert-oriented map of brown ear tick presence in Nairobi,central..Eastern and Riftvalley was 

created by combining spatially explicit information on the tick habitat and environmental factors 

which favour this tick.

4.3.1 Data Sources, Description and Processing

This section gives focus to the GIS layers involved in the research. This incorporates the aspect of 

relationships exhibited by the factors under study.

4.3.2 Temperature Layer (Figure 2)

Figure 2 shows the temperature layer coverage derived from the Exploratory Soil Survey Report 

number El, Kenya Soil survey, Nairobi 1982 and shows the principle Agro-Climatic Zones of Kenya 

based on a combination of both moisture availability zones (I-IV) and temperature zones (1-9). 

Temperature covering the study areas was generated and merged to produce continuous temperature 

distribution within the study area and this was compiled based on temperature zones categorized on a 

1-9 scale. ................................................
Fig 2: Temperature as an Influential Factor In the Brown Ear Tick 

_________________________Spatial Location____________________________________

Fig. 2.The Region o f study (Nairobi,Central, Riftvalley and Eastern) with temperature layer overlaid. 
The different colouration shows the region’s levels o f temperature intensity and the cells used for 
modeling and sample locations scattered across these cells, including both sample locations at which 
Rhipicephalus appendiculatus was likely to occur.

39



4.3.3 Rainfall layer (Figure 3)

Rainfall layer obtained from ILRI GIS database shows the annual rainfall distribution in millimeters 

per year for Kenya. The layer was done by the Japanese International Co-operation Agency (JICA), 

Rational Water Master Plan, Kenya and compiled and stored by ILRI GIS department. The rainfall 

categorized on a nominal scale, (2-10) representing areas with similar rainfall amounts in millimeter 

per year compiled. Rainfall distribution for the specific study districts was extracted, merged with the 

other districts and study area rainfall distribution generated as shown in figure 3.

Fig 3: Rainfall as an Influential factor In the Brown Ear 
_______________Tick Spatial Location ___________________________

j S tu d y  R e g io n s

Naintall Oi«t(mm )

Fig. 3.The Region o f study (Nairobi,Central, Riftvalley and Eastern) with rainfall layer overlaid. The 
different colouration shows the region’s levels o f rainfall distribution and the cells used for 
modeling and sample locations scattered across these cells, including both sample locations at which 
Rhipicephalus appendiculatus occurs.

t«
4 ,

4.3.4 ECF Distribution layer.

The coverage showing the distribution of East Coast Fever (ECF) in Kenya was obtained from a 

study on distribution of T. parva, based on epidemiological surveys by (FAO, 1975) studies and

40



\vere compiled and mapped by (Lessard et al. 1990). The map also included ‘expert opinion’ based 

0n an extensive survey of local experts. The layer was extracted for the study area and used for 

analysis.

4.3.5 Cattle density distribution (Figure 4)

Cattle distribution map was compiled based on 1995-1997 division level zebu and dairy animal 

density reports from the Ministry of Agriculture, Livestock Development and Marketing, (MALDM). 

The reports were based on data collected by District Livestock Officers. Cattle distribution density 

was extracted for the study districts and used together with the above variables to run the model 

which produced tick density distribution map. Figure 4 below shows cattle density in the studied

region.

N

A
Cattle Density

^  Study R*<|lan*
| | No Data

| -8 0000 - 14 2321
__ ) 14.2322 38 0806

38 0007-710306 
m  71.0307 - 112 7780 
^ 1 1  1127700 - 100 1003 

m  16B 1604 - 270.2703 
2762764 -480 7003

Fig 4: A nim al Density as an Influential Factor In Brown  
Ear Tick Spatial D istribution_____________________

Fig. 4.The Region o f study (Nairobi, Central, Riftvalley and Eastern) with cattle density sample points 
overlaid. The different colouration shows the region’s levels o f cattle density concentration and the 
cells used for modeling and sample locations scattered across these cells, including both sample 
locations at which Rhipicephalus appendiculatus occurs.

/

41



4.3.6 Tick Density Prediction.

Using ArcGIS 10, the four variables, rainfall, temperature, east coast fever distribution and cattle 

densities within the study area were modeled together using the geo-processing tool in Arc-GIS 

software. The tick distribution modeling tool was developed and spatial joint used to spatially join 

the four variable polygon layers and using mathematical operations available in ArcGIS, the model 

was subsequently run taking consideration the four variables.

Parameter containing nominal values was set for the output layer whereby the results from the model 

showing areas with very high degree of tick occurrence noted 1 and the areas with the very low 

chance of tick occurrence noted 5. The software automatically generated an output layer with an 

attributes field containing the nominal values assigned. This was symbolized and an additional field 

interested in the shape file attributes table describing the state of each field i.e 1 representing very 

high chances of occurrence, 2-high; 3-average; 4-low and 5-very low. This was extrapolated to 

produce tick density prediction map for the entire study area.

4.3.7 The Kriging Process.

Kriging technique which is a popular and widely implemented method of surface mapping in G1S 

packages was applied in the model so as to spatially link and determine the relationships 

between the four variables.The output results generated using kriging technique was combination of 

all the input variables to produce single output. However, this technique lacks a unique solution and 

needs a large amount of interactive input and subjective assessment during the processing. By this 

process the model was able to establish other areas of occurrence of the brown ear tick in the area of 

study. The relationships between the brown ear tick distributions, environmental variables, and 

spatial pattern are incorporated via kriging showing a high relationship of these factors. In addition to 

estimating regression coefficients,a gcostatistical regression model involves fitting a spatial 

correlation function to the regression errors. This has indeed shown the tick is set to be established in 

the neighbourhood of the study region.Thus,kriging addresses spatial dependence while retaining the
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environmental response .Figure 5 and 6 shows this further where figure 5 shows intial areas of the 

tick spatial location and figure 6 the predicted areas of occurrence.

Fig 6: Brown Ear Tick Predicted Areas of Occurrence

Fig. 5. The Region o f study (Nairobi, Central, Riftvalley and Eastern)with Rhipicephalus appendiculatus 
sample points overlaid. The different colouration shows the region’s levels o f the tick spatial 
locations and concentrations there on and the cells used for modeling and sample locations scattered 
across these cells.

Fig. 6. Predicted distribution for Rhipicephalus appendiculatus.For purposes o f visualization, pullout 
colouration is used to present portions o f the predicted region. Sample locations at which the species 
were observed are overlaid with the other layers namely rainfall, temperature,cattle density and'East 
Coast Fever.

/
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4.4 Assum ption.

The assumptions in the model was that temperature, rainfall, eattle density and rainfall arc the main 

factors that influence tick spread and distribution within a region. This relationship was assumed as 

this were the only variables used in the model. It was also assumed that the datasets used in the 

model was collected and compiled accurately, and this was taken into consideration since datasets 

from an ILRI, an institution which collects and compile datasets on livestock was used for it has a 

higher chance of being accurate as compared to data from other sources.

4.5 Limitation of the Model.

The model used only four variables in generating tick distribution density, and this may be a 

limitation since there are many other variables which have an influence on tick distribution. 

Additionally, the accuracy of the data used could not be precisely determined, but was assumed to be 

accurate based on the institution which processed and compiled the datasets.

t.

/
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CHAPTER 5:

CONCLUSIONS AND RECOMMENDATIONS

While embarking on this researh projeet,one point was clear;the rescareh was to develop a 

species distribution model to be used for describing the Rhipicephalus appendiculatus patterns as 

•well as making predictions.This was towards one goal of biodiversity and management.

5.1 Conclusions.

The research has been able to meet its main objective and thus can conclude the various aspects of 

the brown car tick as discussed here.

The basic nonspatial logistic regression model can be improved by adding features to the model that 

reflect major known attributes of the data, including variable sampling intensity and spatial 

autocorrelation.There is a strong case for making these models spatially explicit. Indeed,Gaston 

(2003) and others have called for the incorporation of spatially explicit methods in determining the 

structure and dynamics of species geographic range.Further, one of the problems in comparative 

biogeography is that sampling and data gathering arc conducted with a multitude of different 

methodologies (Gaston 2003, Graham ct al. 2004). The consequence is uncertainty in comparing and 

interpreting spatial patterns in species distributions.

This model results confirm that the spatial pattern of presence and absence of the brown ear tick 

includes more information than can be explained through just the mean effect of a suite of 

environmental variables ic the temperature ,rainfall,cattle density and further addition of the disease 

presence like the East coast fever which is known to be caused by this tick.There are two main 

explanations for this. One is that biological processes tend to generate spatial pattern. In the case of 

the brown ear tick, the probability that a site contains a species depends not only on its climatic and 

edaphic characteristics, but also on its neighborhood.Such spatial dependence can arise from 

biological processes at a number of levels. Processes in the life history of individual organisms, 

including reproduction,territoriality, and dispersal, can generate clustering or evenness in species 

distributions. Interactions of species with each other and with resources (e.g. effects of cattle dcsisty 

on the brown ear tick presence,the role of temperature and rainfall to determine inhabitant) can
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likewise eausc and perpetuate spatial assoeiation. The particular occupancy history of a site can also 

exert a long-term spatial influence on its neighborhood.These spatial patterns are not mere 

epiphenomena,but rather can strongly influence individuals species distributions, as well as 

interspecific interactions and thus community composition and potentially ecosystem processes.

The second explanation for autocorrelations the influence of unobserved environmental variables, 

and of nonlinearities in interactions among sets of (observed and unobserved) factors, all of which 

may have some degree of spatial dependence and interdependence (Ver Hoef et al. 2001). 

Moreover,it is inevitable that the identity of critical explanatory variables may change from one part 

of brow ear tick geographical range to another. Since models cannot include all important variables, 

and may include some unimportant ones, there will usually be some degree of autocorrelation in 

model residuals.Critically, without spatial structure in the model, the level of uncertainty about model 

parameters can be dramatically underestimated and poorly characterized.One effect of this is that a 

model will identify more explanatory variables as significantly related to species presence/absence 

(VerHoefetal.2001).ln this study the kriging process has eliminated uncertainly in the model by 

showing the spatial dependence of factors under study(Rainfall, temperature,cattle density and East 

coast fever)

Additional studies which seek to understand resource selection of the brown ear tick at fine 

scales are crucial to developing a foundation for determining appropriate management,prevention and 

conservation strategics for this species. In every subregion studied, the brown -car tick preferred 

proximity to one or many ecological features present in these regions including cattle 

density,temperature scales and rainfall .We note here that these factors are some of those that 

influence the occurrence of the brown ear tick and have all been noted to positively influence this 

existence except the East Coast fever.lt was observed that even if ticks were absent the disease which 

is one of those this ticks causes still occurs in minority areas.This can be attributed to other ticks 

prey like antelopes.Indeed when predictions are done, the probability of the tick occurrence was 0.89 

and 1 when east coast fever is not observed and 1 when is observed. This is a strong indication of 

the damage the tick is set to cause.lt is upon all stake holders concerned to minimise or control 

completely the brown car tick survival.
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As it has been statistically noted,all these faetors are interelated and inllunec this tiek oecurrcnee.By 

controlling one factor perhaps can render its existence to be minimal.For example,analysis noted that 

when catle density increases,the likelihood of the tick occurrence increases.This can be a well utilised 

factor especially when these cattle can only be configured in areas they perform well where the 

existence of the tick will be easy to controll considering that it is as if the tiek will be located in one 

known location.By this other measures like the use of aearieide can be used to control this tiek which 

is a disaster to the Kenyan economy.Though,rainfall and temperature are hard variables to control,it 

is in view of this reseach that they can be naturally managed.For example,it is known that the forest 

cover attracts rainfall and by so doing controls temperatures too.Further,the data on forest cover and 

distribution is readily availbalc to the government through the relevant sectors and concerned stake 

holders like 1LR1,KWS and Kenya National Museums.This information can be utilsed to offset some 

areas considered a high risk for the disesess by increasing/decreasing the cover as per the plan in 

placc.lt is in view of the research that by for example increasing the forest cover in some predicted 

areas,the rainfall would increase and the temperature reduced.Statistically,it was noted these 

variables relate and correlate to each other and this would decrease the tiek absence due to reduction 

of one of the related factor.

In reference to the model,when /? =£ O.The implication of this is that the explanatory variables arc 

significant in predicting the dependent variablc.Thcrefore using the value 1 as a reference point, 

then for the model with cattle density as an explanatory variable; exp(l ,684)=5.3870 can be 

interpreted as: there is a 438% increase in odds of the brown ear tick occurrence for every unit 

increase in cattle dcnsity(5.3870-1 =4.3870) .This is a very huge percentage increase and shows how 

strong the influence of cattle density is to the tiek occurrence. This is not an exception to the other 

variables though with different percentages. For the rainfall, exp(0.1)=1.1051 which means a 10 % 

increase in odds of the tick occurrence and for temperature,exp(-0.57245)=0.5641 meaning 45% 

decrease. We note that these changes are attributed to the changes in the environmental conditions a 

strong influence of one factor affects the rest either positively or negatively .This kind of statistical 

approach can help to manage, control and preserve the brown ear tiek when need be.

From the prediction by GIS and that by modelling,it has been noted that the tick is set to increase
t

with time.This is a big threat to the Kenyan economy.Figures 2,3,4 have shown the different layers

47



that influences the occurrence of Rhipicephalus appendiculatus(Brown Ear Tick) while figure 6 

shows the predicted areas. In Figure 2, the temperature layer has been shown, figure 3 the rainfall 

layer, figure 4 we have the cattle density, figure 5 the areas of occurrence and figure 6 the predicted 

areas. Notable is the relation that the maps 2,3 and 4 show when the predicted areas are mapped. 

Comparing figure 2 and 6, this tick is observed in the areas with different rainfall pattern and this is 

the ease with the rest of the environmental factors. When prediction is done we see the possibility of 

the tick being observed in other regions due to the favorable conditions. Figure 6 generally shows 

these predicted areas and thus conclude that if this tick is not controlled it is bound to inhibit other 

areas due to shifting environmental factors. As noted earlier, these factors can be controlled thus 

helping to control the invasion attributed to the brown car tick.

The spatial predictive process model described here can greatly speed computation in ecological 

models for point data. This approach offers a statistical method for analysing point-referenced data 

sets to learn about environmental relationships in the presence of spatially correlated errors. In 

addition to making regressions robust to spatial autocorrelation, this approach can help us learn 

whether any two processes are significantly associated in space, and what the scale of their spatial 

autocorrelation is. This is broadly applicable, as we often want to answer questions such as whether 

the prevalence of a particular animal behaviour is spatially associated with environmental factors, or 

whether trophically or competitively interacting species show residual spatial association. The

simplicity, power and many important potential applications make the spatial predictive process
✓

approach a useful addition to ecologists.

From a statistical point of view, our analysis shows how the difficulties of modelling spatial
a*

interactions and modelling species especially in animal community which requires complex 

models with a large number of parameters can be eliminated. In this situation, it is found that GLM 

allows a realistic model.In addition,use of GIS mapping and kriging reduces uncertainty in a species 

model. Finally, from an ecological perspective, we are able both to confirm existing knowledge on 

species' interactions and to generate new biological questions and hypotheses on species' interactions 

and association with the environment.
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5.2 Recommendations.

The following arc the research recommendations:

5.2.1 Resource Selection of the Brown Ear Tick.
GIS proved to be an extremely useful tool for elucidating relationships between brown car tick 

abundance and several biological and human threat covariates. Certain considerations should be 

followed for future work.One fundamental problem with the results of the analysis overall was that 

many covariate responses in the data arc non-linear.The tests of trying to use mixed models step was 

eliminated in the current analysis, however, because more time must be given to assessing the 

ecological significance of using mixed models and polynomials for analyzing particular covariates. 

An alternative route might be to explore the use of generalized additive models (GAMs), which have 

also been found to be useful and sometimes more flexible for ecological modeling.

Scale plays a significant role in the manner in which forest elephants select their habitats and 

resources. Senft et al. (1987) and Boyce et al. (2003) found that because resource distribution, 

foraging costs and threats vary with scale, animals may pursue different resources at large and small 

spatial scales. This finding is certainly applicable in the ease of this analysis.Thc presence of this tick 

in a certain area might be due to more of one of the environmental conditions being abundant in the 

area rendering the other to have strong influence to its existence.These relationships are still being 

understood by ecologists and this issue must be addressed for future work.In some eases, the spatial

covariate data used in the analysis was lacking and could have contributed particular sources of error
/

to the results.

5.2.2 Modeling Brown Ear Tick in the Region.

Maps showing habitat suitability and species distribution can provide a strong foundation for applied 

research and conservation planning (Graham and Hijmans2006). These maps are only as effective as 

the data and methods used to create them,however. A major challenge in undertaking any type of 

modeling effort exists in overcoming problems and challenges relating to the quality and type of data

used for the suitability model. Overcoming data shortages and limitations proved to be a particular 

challenge -for example, brown ear tick prefer to spend large amounts of time with the prey 

.Unfortunately, there is no comprehensive dataset of locations of all types of this tick’s prey for the 

entire region so the model excluded this important influence on brown ear jick habitat.
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As with all expert models, the model depends on multiple iterations of revisions and “fine-tuning” 

based on a) trial and error and b) expert opinion by biologists and wildlife eeology experts who are 

familiar with the biologieal habitat selection of the brown ear tiek.lt is recommended that both the 

Biological and Human Landscape layers should be considered working hypotheses which should be 

improved and revised as new data layers become available and as knowledge of covariate layer 

relationships relating to the species’ habitat suitability is enhanced.

5.2.3 Statistical Control and Conservation of Brown Ear Tick.

The research has offered not only how brown ear tick relates to its evironment but also has 

statistically predicted its future occurrence.Such knowledge based statistics can be used to control 

spread of the tick thus saving the economy from tick’s threat especially the agriculture and tourism 

sector.ln addition,conservation where need be of this tick can use such knowledge to identify where 

the tick survises well due to different ecologocal factors.

5.2.4 Stakeholders.

This research reccomcnds to stakeholders to speed up measures for the control of brown ear tick as it 

poses as a major threat to the Kenyan economy.Such research can be used in any other species which 

pose as a threat to environment and landsacpe.lt is indeed a bases on which other species 

occurrence/absence in Kenya can be based on.

/
Further, various organisation can use such basis in species control and management in Kenya.For 

example,ILR1 can use such a research background to determmine best areas for the livestock 

productivity to enhance development of the agriculture sector.KWS and KNM can use it tor 

conservation purposes,management and control mechanisms.

/
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A ppendixes

Appendix 1 :GIS Maps

Fig 2: Temperature at an Influential Factor In the Brown Ear Tick 
________________ Spatial Location___________________
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Fig 4: Animal Density as an Influential Factor in Brown 
Ear Tick Spatial Distribution_________________
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Fig 6: B r o w n  Ea r  T i c k  P r e d i c t e d  A r e a s  of O c c u r r e n c e
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Appendix 2: Programme codes

Appendices 2: R commands that were used used
In all the commands the name data stands for the name of the database that was developed in excel 

Microsoft software and savesd as CSV comma delimited.
data=read.csv(file.choose())

attach(data)

names(data)

summary(data)

table(TD.ECF)
mylogit<-glm(TD-CD+RF+TE+as.factor(ECF),family=binomial(link="logit"),na.action=na.pass) 

glm(formula = TD ~ CD + RF + TE + as.factor(ECF), family = binomial(link = "logit"), 
na.action = na.pass) 

mylogit

summary(mylogit)

confint(mylogit)

ECF<-c(0,l)

CD<-c(mean(data$CD))

RF <-c(mean(data$RF))

TE<-c(mean(data$TE))

newdata <-data.frame(ECF, CD, RF, TE)

newdata

newdala$ecfl <-predicl(mylogit, newdala=newdaia, type="response ") 

newdata

mylogit$mdl.deviance-mylogit$deviance

mylogit$dfnull.deviance-mylogil$df residual -

l-pchisq(inylogit$null.deviance-inylogit$deviance,inylogit$df null. deviance-mylogilSdf. residual) 

logLik(mylogit)

/
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