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ABSTRACT

A major method for analyzing resource selection of species, predicting and mapping habitat 

suitability is by use of a geographic Information System (GIS). This research combines data 

relating to Primus Africana (also known as Pygeum africanum, or African Stinkwood) in 

Kenya with spatially explicit environmental factors to understand the Prunus Africana 

resource selection and habitat preference using a logistic model as developed from the 

generalized linear model (GLM). Resource selection among the Prunus Africana was similar 

in that across all sub-regions they selected an area which has similar related factors in terms 

of the surrounding.

Prunus africana is a large evergreen tree from the Rosaceaea family. It is found in the 

montaine forests of Kenya. It is an upper canopy tree that can grow as high as thirty meters. 

Prunus bark contains three active constituents including phytosterols, which are anti­

inflammatory agents. It takes fifteen years for the bark to develop the active ingredients 

necessary for medicinal use. Traditional medicinal uses of the bark include the treatment of 

stomach aches, urinary and bladder infections, chest pain, malaria, and kidney disease.

In addition, a GIS was used to construct an expert-based habitat suitability map for the 

Prunus africana across Kenya using a spatial model approach. The map integrates spatial 

information on biological habitat requirements of the species. This can serve as a useful tool 

for determining the future of the tree in our forests and the prevention prioritization in Kenya.
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DEFINITION OF TERMS

Species Distribution model

A model that relates species distribution data (occurrence or abundance at known locations) 

with information on the environmental and/or spatial characteristics of those locations

Spatial Statistics

Spatial Statistics concerns the quantitative analysis of spatial data, including their 

dependencies and uncertainties. Spatial-temporal statistics extend this to the spatial-temporal 

domain. Three major groups of data exist: lattice data that are collected on a predefined 

lattice, geostatistical data that represent continuous spatial variation and spatial point data that 

are observed at random locations. These types of data have their logical extension into the 

space-time domain, where the relations remain similar, but estimation may be different.

Spatial dependency or auto-correlation

Spatial dependency is the co-variation of properties within geographic space: characteristics 

at proximal locations appear to be correlated, either positively or negatively. Spatial 

dependency leads to the spatial autocorrelation problem in statistics since, like temporal 

autocorrelation; this violates standard statistical techniques that assume independence among 

observations.

Spatial sampling

This involves determining a limited number of locations in geographic space for faithfully 

measuring phenomena that are subject to dependency and heterogeneity. Dependency
• f

suggests that since one location can predict the value of another location, we do not need

f'
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observations in both places. But heterogeneity suggests that this relation can change across 

space, and therefore we cannot trust an observed degree of dependency beyond a region that 

may be small. Basic spatial sampling schemes include random, clustered and systematic. 

These basic schemes can be applied at multiple levels in a designated spatial hierarchy (e.g., 

urban area, city, and neighborhood).

Spatial interpolation

This is the method for estimating the variables at unobserved locations in geographic space 

based on the values at observed locations.

Spatial regression

Spatial regression methods capture spatial dependency in regression analysis, avoiding 

statistical problems such as unstable parameters and unreliable significance tests, as well as 

providing information on spatial relationships among the variables involved.

Spatial interaction

A spatial interaction or gravity model is the estimate of flow of people, material or 

information between locations in geographic space.
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CHAPTER ONE

INTRODUCTION

1.0: Introduction

The distribution of different animal and plant species on earth and in space has been a major 

concern of many people and especially, the scientists and hence has a long history. As a result 

these people, especially the scientists have sought explanations on this issue of distribution 

for a very long time. The major challenge to their answers being the complexity of the 

environmental factors and the ecological processes, that is, dispersal, reproduction, 

competition, and the dynamics of large and small populations and also the challenge of 

insufficient data on the species distributions.

With the raise of new powerful statistical techniques and the Geographic Information 

Systems (GIS) tools there has been increased developments of predictive habitant distribution 

models in ecology. This has also led to increased analysis of the spatial data by many 

scientists.GIS are an innovative and powerful tool that helps analysts and decision makers 

organize, visualize, analyze, present and understand complex layers of data. The key to 

spatial analysis is that most data contain a geographic component that can be tied to a specific 

location, such as a county, zip code, census block or single address. The geographic analysis 

therefore enables users to explore and overlay data by location, revealing hidden trends that 

are not readily apparent in the traditional spreadsheets and statistical packages. A Species 

Distribution Model(s) (SDM) can be defined as statistical and / or analytical algorithm that 

predicts distribution of species, given field observations and auxiliary maps or more 

specifically, species distribution models can also be looked at as numerical tools that combine
• t

observations of species occurrence or abundance with environmental estimates. With the
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SDMs we can gain ecological and evolutionary insights and be able to predict distributions 

across landscapes, sometimes requiring extrapolation in space and time. In general, these 

models seek to provide the users with the statistical relationship between the response and a 

series of environmental variables for use in predicting the species distributions and estimating 

the number of organisms in new previously unsampled geographic locations.

Currently and in previous years, many scientists have increasingly carried out predictive 

modeling of species distributions in order to address a number of issues that are involved in 

ecology, biogeography, biology and climate change. In the early, 19th century, climate was 

recognized has one of the key geographical elements that explained the distribution of plant 

and animals species across the world. There are quite a number of modeling techniques that 

are available to assess the relationship between the distribution of species and the sets of 

predictor variables (ecological gradients). There are three types of ecological gradients, these 

include; Resource, direct and indirect gradients (Austin et.al, 1984). It is important to note 

that the distribution patterns of species and ecosystems are not only a function of post-glacial 

migrations and human influences, but also present day response to ecological gradients. 

Ecological gradients are measures of the physical environment that explain the distribution of 

organisms and ecosystems in terms of environmental tolerances.

Prunus Africana in Kakamega forest

Kakamega rainforest is the only tropical rain forest in Kenya of the Guineo-congolian type. It 

once stretched across the Central Africa to East Africa. Kakamega forest is located in 

Western Kenya, Kakamega East District (Kakamega County).

Kakamega forest is one region where high population growth has resulted in deforestation. 

The Kakamega forest is an afromontaine forest in western Kenya. It is a small fragment of

d
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the Guineo-Congolian rainforest that once spanned the equatorial region as well as parts of 

the western coast of Africa (Earlham University, 1999). Within the forest, land cover is very 

heterogeneous, resulting in many different forest types. As a result, the forest is an area of 

high biodiversity. Though the forest is small in area, it is species-rich, with over 350 bird 

species, and over 380 plant species identified (Earlham University, 1999; ICIPE, 2005). In 

fact, around 20% of all Kenyan plant and animal species are endemic to the forest, including 

up to 75% of all butterfly species in the country (KIFCON, 1994).

The Kakamega forest has a very complex land use history, and has been highly influenced by 

the growth and development of the surrounding communities. The dominant tribe 

surrounding the forest is the Luhya, one of Kenya’s most populous tribes, extending across 

Kenya’s western border into Uganda (KIFCON, 1994). Most of the communities survive by 

practicing subsistence agriculture, growing mostly maize with a mix of other food crops 

including bananas, tomatoes, sukuma wiki (collard greens) and sweet potatoes (KIFCON, 

1994; ICIPE, 2005). The soil in and around the forest is a moderately fertile clay-loam 

mixture, and the river system within the forest makes fresh water easily attainable, making 

agricultural initiatives much more successful than in other regions of the country (Earlham 

University, 1999).

The promise of agricultural success has long resulted in dense settlement surrounding the 

Forest, making this area have one of the fastest growing populations in the country, with a 

2.8% annual growth rate (Earlham University, 1999). With the steady increase in human 

population has come a corresponding increase in demands on the forest, Local populations
f

rely on forest products for religious, medicinal, building, grazing, fuelwood, charcoal

production, and water needs. Where once these extractive uses did not interfere with the
3



natural regeneration of the forest, they now result in widespread species endangerment, as 

well as loss of ecosystem function.

Some NGOs have intervened to try and merge conservation issues with income generation 

and environmental education for local communities. International Centre of Insect 

Physiology and Ecology (ICIPE) and the Kenya Forestry Research Institute (KEFRI) have 

collaborated to initiate agro-forestry projects that emphasize the cultivation of medicinal 

plants that have been traditionally gathered from the forest (ICIPE, 2005). These plants are 

then processed by ICIPE into powder, salves and other forms, and sold in markets around the 

forest as well as in neighboring towns and as far away as Nairobi.

Two medicinal plants have been integrated into such programs with great success: Ocimum 

kilamscharium and Mondia whytei. Many farmers around the Kakamega forest are raising 

Ocimum. ICIPE purchases the raw plant material from farmers and processes it into a
s' ~~

medicinal salve, Naturub, which is then sold at local and regional markets. Prunus africana is 

another important medicinal species that inhabits the forest. Attempts to incorporate this tree 

into afro-forestry projects have failed thus far (Cunningham, 1993)

In the Kakamega Forest, Western Kenya, human encroachment on the forest for agricultural 

land and forest products has resulted in wide spread deforestation, with the result that only a 

small fragment of intact forest remains. One species suffering from this increased pressure in 

Kakamega forest is Prunus africana. One method of combating these detrimental effects is 

through agro forestry, which seeks to mirror forest structure by establishing multiple canopies 

of growth including timber species, medicinal and food crops in one integrated system. 

Figure 1.2 shows the map of Africa, with locations of Kenya and Kakamega County.
t'
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Figure 1.2: Map of Africa with Location of Kenya and Kakamega (Glenday, 2004)

important is that, Kakamega Forest has other species of plants and animals which include; 

(Wagner et al. 2008) over 330 species of birds, 380 species of plants, 400 species of 

butterflies, 7 species of primates, other animals include chameleons, skinks and lizards, 

other mammals includes ,squirrels, Bush bucks, Aardvarks, porcupines, giant forest hogs and 

many others. The Rainforest is penetrated by a network of walking/hiking trails silent with 

only melody of singing birds, whispering trees, rasp of butterflies as they fly on by, the 

croaking frogs, chattering of monkeys as they move from one tree to another and gurgling 

streams nearby. Table 1.1 summarizes the taxa in the Kakamega forest (Wagner et al. 2008).



Table 1.1: Biodiversity by taxa in Kakamega Forest (Wagner et al. 2008)

GROUP /TAXA ESTIMATED NUMBER OF SPECIES

Plants 380

T rees/shrubs/vines 150

Orchids 60

Lepidoptera (Butterflies/moths) 400

Odonata (Dragonflies) 72

Reptiles 58

Snakes 36

Lizards 21

Turtles 1

Birds 330

Mammals 50

Primates 7

Prunus Africana

Prunus africana (Hook f.), also known as Pygeum africanum, or African Stinkwood, is a large 

evergreen tree from the Rosaceaea family. It is found in the montaine forests of Kenya. It is 

an upper canopy tree that can grow as high as thirty meters (Hall et al, 2000). Prunus bark 

contains three active constituents including phytosterols, which are anti-inflammatory agents 

(Hall et al, 2000; Longo, 1981). It takes fifteen years for the bark to develop the active 

ingredients necessary for medicinal use (Longo, 1981). Traditional medicinal uses of the bark 

include the treatment of stomach aches, urinary and bladder infections, chest pain, malaria, 

and kidney disease. Figure 1.1(a) and (b) shows a photograph of the Prunus Africana tree;



Figure 1.1 (a); A branch of the Prunus Africana tree

Figure 1.1 (b); Prunus Africana trees in Kakamega forest

*
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Models of the geographic distributions of species have wide application in ecology. But the 

nonspatial, single-level, regression models that ecologists have often employed do not deal 

with problems of irregular sampling intensity/irregularity or spatial dependence, and do not 

adequately quantify uncertainty. In this study, we focus on how to build statistical models 

that can handle the features of spatial prediction and provide richer, more powerful inference 

about species niche relations, distributions, and the effects of human disturbance. We 

therefore want to extend the generalized linear model (GLM) to be explicit in their use of the 

spatial information.

In Kenya, species are threatened by mounting pressure from humans including habitat 

fragmentation.In addition,invasive species can be a threat if not identified early enough for 

ease of management.The future of species in Kenya (especially the rare ones) is uncertain 

today and thus stepping up efforts to protect, conserve, map and predict their existence is of 

greatest urgency. Further,the species relative location contributes on spatial autocorrelation 

and thus quantifying uncertainity during prediction is an important focus. The knowledge of 

species distribution modelling and use of maps by Geographic Information system is one step 

towards aiding the conservation,establishment and prediction of such species. As a result, 

this research examines the environmental factors contributing to species distributions with a 

key focus to the primus africana , in order to make use of the information on the species 

survey data and hence we predict and map the distribution of species for the purpose of 

planning.

1.1: Statement of the problem

8'



The objectives of this study were divided into two:General objective and the specific 

objectives

1.2.1: General objective

The overall objective of this study is to develop a species distribution model to be used for 

describing the Primus Africana patterns as well as make predictions and map the species 

distributions. Species Distribution models assist in characterising the natural distribution of 

species. In addition,when a well designed survey data and functionally relevant predictors 

are analysed with a good model (Elith et al,2009),the results can contribute well to this 

objective thus providing useful ecological insight and strong predictive capability.

1.2.2: Specific Objectives

The research aims at three specific objectives;

a) To study Generalized Linear Models (GLMs) that relates the distribution of 

Prunus Africana data to environmental factors;

The spatial area covered by the species distributions is larger than the sampled area; also, the 

spatial unit of prediction is usually larger than the sites sampled on the ground. Furthermore, 

there is the challenge that relates to the heterogeneity of the sampling intensity: that is, while 

large parts of the domain may be unsampled, there are other areas that may have been heavily 

sampled. Finally, the environmental data for the region of interest are typically available at a 

much coarser spatial resolution than the scale at which species distribution data may be 

collected. Relating the species distribution data to the environmental data and to the region of 

where prediction is sought thus often presents problems of spatial misalignment since at

1.2: Objectives of the study

9



times one may only have point data, data in form of regular grid or irregular polygons, and 

hence the different kinds of data sources don’t lineup.

This study aimed at looking into those factors that make Prunus Africana to inhibit a specific 

area, that is, choice of those species in relation to the environment.The major environmental 

concerns are rainfall,temperature and altitude.Other relating factors that the research establish 

are human population and market distribution for the Prunus Africana products.

b) To measure the degree of the spatial dependence or spatial autocorrelation on the 

distribution of Prunus Africana species

In ecological data, pairs of observations that are closer together often tend to be more similar 

than pairs of observations that are further apart. This is known to produce positive 

autocorrelation. Using models that ignore the dependence can lead to inaccurate parameter 

estimates and inadequate quantification of uncertainty. In addition, if spatial dependence is 

ignored, then much of the meaningful information will be left out and hence the need for the 

determination of the degree of the spatial autocorrelation.

This research aims at establishing a set of scale -dependent predictors to represent factors 

affecting the distribution of Prunus Africana at more than one spatial scale.This objective 

will be enhanced further by use of GIS for mapping the species to see their distribution in 

those sampled locality. Geographic Information System (GIS) is a useful tool for analyzing 

resource selection of species and predicting and mapping habitat suitabilitywhen the degree 

of correlation among observations depends on their relative locations.

c) To determine the quantification of uncertainty in spatial models and perform 

predictions for Prunus Africana

Predictions involve extrapolation to unobserved parts of the study region and the large scale
• t

areal units. Thus, assessment of uncertainty in such predictions is crucial when they are used
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to set conservation policy or to evaluate the impact of climate change on species. It is 

important to note that ecological distribution models that focus exclusively on the mean 

(average) yield false confidence in the predictions made (Ver Hoef et al. 2001)

The research aims at establishing a model to predict the new and unsampled domains.This 

will be done by assessing the environment in these new times and places, in particular for 

new combinations of predictor values or for predictor values outside the given data.This 

prediction to new environments is generally termed forecasting or extrapolation 

(Arau jo,2007, Miller et al. 2004). The model thus established will aim at capturing those 

features that will reflect major attributes of the data like the spatial autocorrelation(e.g. 

objective (b)).The research will show that there is a strong case for making a species model 

spatially explicit.

1.3: Justification of the study

Species distribution maps are important to the conservation managers, planners and 

ecological researchers wishing to generate species red lists, measure rate of decline, identify 

the areas of endesm and locate ‘hotspot’ of diversity Gaston and Blackburn (2000). In the 

previous studies this distribution maps have represented the probabilities of occurrence on the 

sampled locations only. Thus, with recent advances in species distribution models one is able 

to potentially forecast anthropogenic effects on patterns of biodiversity at different spatial 

scales, for instance, Araujo and Williams (2000) suggest that probabilities of occurrence 

could be used as attributes for species-based selection. These probabilities would be regarded 

as estimates of the likelihood that a species might occur at a given unsampled location.

11



CHAPTER TW O

LITERATURE REVIEW

This chapter reviews existing literature on the variables of the study. The literature has been 

derived from various sources such as past studies, documented reports, researches and 

secondary available information in support of the study.

2.1: Introduction

Ecologists increasingly use species distribution models to address theoretical and practical 

issues, including predicting the response of species to climate change (Midgley et al. 2002), 

identifying and managing conservation areas (Austin and Meyers 1996). In addition 

ecologists are also interested in finding additional populations of known species or closely 

related sibling species (Raxworthy et al. 2003), and they are also interested in seeking 

evidence of competition among species (Leathwick 2002). In all of these applications, the 

core problem is to use information about where a species occurs (and where it does not) and 

about the associated environment to predict how likely the species is to be present or absent 

in unsampled locations.

Spatial prediction of species distributions is directly related to the concept of the 

environmental niche, a specification of a species’ response to suite of environmental factors 

(MacArthur et al. 1966, Austin et al 1980, Brown et al. 1995). However, the environmental 

factors alone are not sufficient to account for the species distributions. According to (Gaston 

2003) there are other ecological processes that may also affect the spatial arrangement of 

species distributions which include; dispersal, reproduction, competition and the dynamics of
• f

large and small populations.
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There are various statistical techniques that have been used to model species probabilities of 

occurrence in response to the environmental variables. These techniques differ in their ability 

to summarize useful relationships between the response and the predictor variables. The 

models can be grouped into three categories as follows;

Analytical or mathematical models; They focus on generality and precision and are designed 

to predict accurate response within a limited or simplified reality

Mechanistic, physiological, causal or process models: They are designed to be realistic and 

general. The base predictions on real cause-effect relationships

Empirical/ statistical/ phenomenological models: They sacrifices generality for precision and 

reality.

Gaisan and Zimmermann (2000) reviewed various modeling techniques.

2.2: Generalized regressions

Regressions relate response variable to a single (simple regression) or a combination 

(multiple regression) of environmental predictors (explanatory variables). An important 

statistical development has been the advance in regression analysis provided by generalized 

linear models (GLM) and generalized additive models (GAM). GLM s are mathematical 

extensions of linear models that do not force data into unnatural scales, and thereby allow for 

non-linearity and non-constant variance structures in the data (Hastie & Tibshirani 1990). 

They are based on an assumed relationship (called the link function) between the mean of the 

response variable and the linear combination of the explanatory variables. The GLMs are 

more flexible and better suited for analyzing ecological relationships, which can be poorly
• 4

represented in classical Gaussian distributions (Austin 1987).
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Generalized Additive Models (GAMs), are semi-parametric extensions of GLMs; the only 

underlying assumption made is that the functions are additive and that the components are 

smooth (Hastie & Tibshirani 1986, 1990). A GAM also uses the link function just like the 

GLM in order to establish a relationship between the mean of the response variable and a 

‘smoothed’ function of the explanatory variable(s). GAMs are simply data driven rather than 

model driven, that is, they allow the data to determine the nature of the relationship between 

the response and the set of the explanatory variables rather than assuming some form of 

parametric relationship (Yee & Mitchell 1991).

2.3 Geographic and Environmental Space.

SDMs have that element of the ability to establish distinction between geographic and 

environmental space.Geogragic space is characteistically defined by two-dimensional map 

cordinates or three-dimensional digital elevation models and on the other hand environmental 

space is potentially multi-dimensional,defined by some set of environmental predictors as 

seen in the figure 1 below adapted from Elith et.al,2009.If an SDM is fitted using solely 

environmental predictors,it models variation in occurrence or abundance of a species in 

environmental space thus any predictions is also based on the species locations rather than 

geographic space(Elith et.al.2009).Geographic proximity is hereby ignored and hence the 

mapped predictions show clustering which reflects the spatial autocorrelation of the 

environment as in figure 2.1.

14



Figure 2.1: Spatial Autocorrelation of the Environment

Mapped predictions

-h !

Figure 2.1 :( Elith et.al,2009) The left figure shows relationship between mapped species 
and environment,centre is the environmetal space and in the right figure are the mapped 
predictions based on these environmental predictors.Points a and c are geographically close 
but not environmentally whereas mapped predictions shows spatial autocorrelation of 
environmental predictors

Geographic clumping of species can also result from their response to spatially 

autocorrelated environmental factors and/or the effects of factors operating primarily in 

geographic space

Strong residual geographic patteming(Elith et.al,2009) generally indicates that either key 

environmental predictors are missing (Leathwick & Whitehead 2001), the model is mis- 

specified (e.g., only linear terms where nonlinear are required), or geographic factors are 

influential (Dormann et al. 2007,Miller et al. 2007). The latter include glaciation, fire, 

contagious disease, connectivity, movement,dispersal, or biotic interactions. For these, the 

model might require additional relevant predictors,geographic variables and/or realistic 

estimates of dispersal distances or movement (Ferrier et al. 2002). Alternatively, some

modelers enhance SDMs with process-based information to jointly characterize the
* *

environmental and spatial influences on distribution (e.g., Rouget & Richardson 2003, Schurr

et al. 2007)
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The techniques include the methods such as classification and regression tree (CART), rule- 

based classification and the maximum likelihood classifications. The classification techniques 

assign a class of binary or multinomial response variable to each combination (nominal or 

continuous) environmental predictor

2.5: Ordination techniques

Most models use the ordination techniques to predict the distribution of species. They are 

based on canonical correspondence analysis (CCA). It is a direct gradient analysis where the 

principal ordination axes are constrained to be a linear combination of environmental 

descriptors.

2.6: Bayesian Technique

Bayesian modeling has been rarely applied to ecological spatial prediction. A few early 

applications have used Bayes’ Theorem to combine relationships between observed data and 

individual predictive factors with prior probabilities of presence to produce probability 

surfaces for species (Aspinall 1992; Aspinall and Veitch 1993; Royle et al. 2002) or 

vegetation types (Fischer 1990). Since these approaches use a contingency table approach 

and carry over only point estimates from the data stage to the generation of predictions, they 

are not directly comparable to hierarchical regression models. Only very recently have Wikle 

and collaborators presented examples of full Bayesian hierarchical 50 Explaining Species

Distribution Patterns modeling applied to individual plant or bird species(Wikle 2002, 2003;
• *

Wikle and Royle 2002). See also Clark et al. (2003) in this regard. A Bayesian model also

2.4: Classification techniques
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allows the introduction of spatial dependence naturally into the model through random effects 

that capture spatial association not contained in the other covariates. Through 

marginalization, the spatial random effects are incorporated directly into the model 

likelihood, and are fitted simultaneously with the other model parameters. They are 

introduced into the mean (on a transformed scale) and, controlling for the other covariates in 

the mean, encourage mean behavior to be similar when cells are close to each other. Like 

random effects in general, they soak up the lack of explanation of the fixed component of the 

mean but in a spatial fashion. Thus, they account for omitted or unmeasured explanatory 

variables having spatial content. Like other parameters, the spatial random effects have fully 

specified probability distributions, providing information about both their magnitude and 

uncertainty. Their effect in explaining potential presence is explicitly specified, so their 

contribution to the model and to prediction may be rigorously investigated. Random effects 

may be introduced in different ways, e.g., through a conditional auto-regressive (CAR) model 

as implemented here (Besag et al., 1974) or via a matrix of spectral functions (Hooten et al. 

2003). Finally, through the implicit dependence structure, spatial modeling for random effects 

allows learning about their contribution even for cells where there has been no sampling, 

accommodating gaps in sampling and irregular intensity in sampling.

2.7: Prunus Africana

Prunus africana (Hook f.), also known as Pygeum africanum, or African Stinkwood, is a large 

evergreen tree from the Rosaceaea family. It is found in the montaine forests of Kenya, 

Cameroon, Zaire, and Madagascar (Figure 2.2)
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Figure 2.2: Locations of Prunus Africana in Africa

It is an upper canopy tree that can grow as high as thirty meters (Hall et al, 2000). Prunus 

bark contains three active constituents including phytosterols, which are anti-inflammatory 

agents (Hall et al, 2000; Longo, 1981). It takes fifteen years for the bark to develop the active 

ingredients necessary for medicinal use (Longo, 1981). Traditional medicinal uses of the bark 

include the treatment of stomach aches, urinary and bladder infections, chest pain, malaria, 

and kidney disease.

The international market for Prunus bark is focused on its use as a treatment of prostate gland 

hypertrophy and the closely related but more serious condition benign prostatic hyperplasia
f

(Hall et al, 2000; Cunningham & Mbenkum, 1993). Prostate enlargement currently affects r

>50% of men over the age of 50. The market for prostrate treatments, especially herbal
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remedies, is growing every year. Global demand rose from 2,800 Mg (tonne) in 1995 to 

3,100 Mg in 1997 (Anonymous, 2000). The over-the-counter value of retail trade in the 

United States alone is approximately $220 million a year (Cunningham et al, 2002). The bark 

of Prunus africana is exported from Africa to Europe, mainly France, where it is processed 

and then distributed globally (Cunningham & Mbenkum, 1993). The demand of the market 

and the limited geographic distribution of Prunus africana has resulted in widespread 

endangerment due to over-harvesting Cunningham & Mbenkum, 1993; Hall et al, 2000).

In response to the growing scarcity, Prunus africana was declared endangered under CITES 

II (the convention on trade in endangered species) (Cunningham et al, 1997), and listed as 

vulnerable by the IUCN (IUCN, 2002). As a result, all imports and exports of Prunus must be 

declared. In addition, exporting countries must demonstrate that the source of the Prunus 

africana was harvested in a “sustainable” manner. Unfortunately, monitoring trade is difficult 

because Prunus africana is exported in many forms, including bark, bark extract, capsules, 

and tonic (Hall et al, 2000). In addition, a lack of regulatory infrastructure within forests 

where Prunus africana thrives lessens the efficacy of harvesting limitations.

Within the Kakamega forest, no large scale bark harvesting is currently occurring. In fact, 

there is no knowledge of the potential for a widespread Prunus africana bark market 

(Fashing, 2004). Prunus africana has been found to play a key role in forest ecology. It is the 

primary food source for Columbus monkeys, the dominant primate species in the forest. 

Studies have shown that the tree is scarce throughout the forest (Fashing, 2004; Tsingalia, 

1989). Attempts to propagate Prunus africana seedlings in nurseries as well as attempts to 

integrate them into agroforestry projects have largely failed.
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2.8: Problems associated with Spatial Prediction

Spatial ecological prediction problems normally arise from those features associated with 

the species distribution and the data describing those distributions(Latimer et al,2006). 

First,the spatial unit of prediction is usually larger than the sites sampled on the ground from 

the fact that the spatial area covered is large than the area sampled.This brings the issue of 

sampling errors since lage parts in consideration may be unsampled while others may be 

heavily sampled hence heterogenity of the sampling intensity.Spatial misalignment problems 

are likely to occur when the environmental data is related to the species distribution data and 

the region where prediction is based.Whereas some data are in form of a regular and/or 

irregular grid,some are available at point locations(point data) thus bringing inconsistencies,b 

iasness(AgarwaI et al. 2002) resulting to unevenly distributed sample locations with respect 

to the relevant characteristics of the region sampled(Mugglin et al. 2000,Gelfand et al.2002)

Secondly, when the degree of correlation among observations depends on their relative 

locations,the problem of spatial dependence or spatial autocorrelation arises.In 

ecology,observations which are close to one another tend to acquire similarities than those 

that are further apart resulting to positive autocorrelation.Based on the fact that process like 

dispersion and reproduction generate spatial autocorrelation in species occurrences,predictive 

models often exhibit some degree of autocorrelation.In addition, some residual 

autocorrelation in environmental factors do remain even when many environmental factors 

are included in the model.lt thus calls upon any model to consider this dependency to avoid 

inaccurate parameter estimates and inadequate quantification of uncertainity(Ver Hoef et al. 

2001).Generalised linear regression analysis and Spatial prediction solves this problem by 

including data that reflects neighborhhod values in model predictions though this does not 

quantify the strength of spatial pattern in the residualls.

Finally, the spatial domain of prediction is large relative to that in whih data is collected thus 

envimmental data are not available on a scale as fine as that experienced by individual 

organisms.This resuts to the problem in quantifying uncertainity.Since predictions helps in 

extrapolating to areas not observed in the study,assessing uncertainity helps to set 

conservation policy and evaluating the impact of climate change on species (Thomas et 

al.2004).The model adapted in this reseach will assist in addressing these problem.
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CHAPTER THREE

DATA AND M ETHODOLOGY

3.0: Introduction

A number of plausible models in statistical applications of species has to be 

considered.Wide availability of advances in technology have also allowed for the collection 

of vast quantities of data with geo-referenced sample locations.While choosing model, 

greater attention is given to one that incorporates information that influences the response 

variable despite the fact that not everything associated with the response is known.Thus an 

error process should be included to account for unknowns(Hoeting et al.,2004).

Field-based ecological studies of species-habitat association is nowadays based on 

regression methods that provide coherent treatments for the error distributions of presence- 

absence data. In particular, Generalised linear Models has enabled regression-based SDMs 

with their key features of non-normal error distributions, additive terms and nonlinear fitted 

functions (Manly et al. 2002). In Marine and terrestrial environments, remote sensing of 

surface conditions climatic parameters interpolation allows robust and preparation of digital 

models thus enhancing SDMs capabilities.

The development of Geographic Information system (GIS) assist also in storage and 

manipulation of both species records and environmental data. A Geographic Information 

System (GIS) is a useful tool for analyzing resource selection of species and predicting and 

mapping habitat suitability. In addition, a GIS can be used to construct an expert-based 

habitat suitability map for the species under study using a spatial model approach. The map 

can integrate spatial information on biological habitat requirements of the species with 

information on severity of human threats.
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3.1: The study Area

The Kakamega National Forest is located in the Western Province (0.28° N and 34.8° E) of 

Kenya. It is a montaine forest, located approximately 1600m above sea level, has an average 

annual rainfall of 2,000mm, and temperature ranges between 11° and 26° C in both the rainy 

(April-November) and the dry season (December-March). The forest lies in the Lake Victoria 

Basin, and is an important watershed for rivers that flow into Lake Victoria such as the 

Isiukhu and Yala (Figure 3.1).

The forest is governed by two separate management bodies: the Forest Department (FD) and 

the Kenya Wildlife Service (KWS). The majority of the forest (approximately 200 KM2) is 

managed by the Forest Department. This area was established as a National Forest in 1933, 

and affords free entrance to the public. Within this area limited extractive use is permitted, 

including deadwood and grass collection and licensed cattle grazing. In the past, some 

licensed commercial logging of plantations was also permitted, though currently there is a 

country-wide logging ban which prohibits such activity. Kenya Wildlife Service (KWS) 

governs only approximately 40KM2 of the northern area of the forest, which was designated a 

National Reserve in 1986. There is only one legal entrance into this area, through the forest 

station. Within this portion of the forest there is a policy of allowing no extraction of natural 

resources or biota. Prunus Africana is one of the trees found in the forest and hence a suitable 

region to study the distribution of the species. Figure 3.1 shows the distribution of Prunus 

Africana in Kakamega forest of Western Kenya.

- *
I
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Figure 3.1: Prunus Africana Distribution map in Kakamega Forest

Key

I Parts of the Forest with the high numbers of Prunus Africana 

I Forest cover

3.2: Reliability and validity of data

Reliability and validity of data is an essential component in ensuring that the tools used for
* f

data collection is precise in capturing the intended information and is able to gather consistent

The data was stored in GIS 'showing spatial locations thus very reliable and valid.
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Further Kenya Forest Department is a credited institution and the economy depends on its 

data for research and development not only in Kenya but also internationally.

3.3: Data Collection

The land cover of the Kakamega forest is very heterogeneous. Plots were stratified based on 

land cover type, age, and managing agency. This was done using land cover maps from 1975- 

2000 obtained from the Kenya Department of Remote Sensing and Resource Survey 

(DRSRS). These maps were created by DRSRS using aerial photography as well as Landsat 

TM satellite images (Rogo et al., 2003). The maps identified three types of tree cover: 

indigenous forest, hardwood timber plantation, and softwood timber plantation. Field 

observations as well as Forest Department registry records resulted in the addition of a fourth 

forest class: mixed indigenous plantation.

In addition to land-use cover, plots were further stratified according to age. ‘Young plots 

were identified as areas that had regenerated or been planted between 1986 and 2000 (< 14 

years old in 2000), while ‘old’ plots were present before 1986 (> 14 years old in 2000). 

Indigenous forest plots were also classified according to the management body: Kenya 

Wildlife Service (KWS) or Forest Department (FD). It should be noted that within the 

indigenous forest classification an ‘old’ plot would contain vegetation of many ages, due to 

forest successional patterns as well as local disturbances. In addition, both ‘old’ and ‘young’ 

plots represent a range of stand ages. For example, registry data indicates that while some 

hardwood plantations were established 50 years ago, others may be only 25 years old 

(Kakamega Forest Department, 2003, Glenday, 2004).

A total of 95 plots were sampled. The number of plots sampled in each sampling class was 

roughly proportional to the amount of forest area covered by each class. In addition,
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heterogeneity of indigenous forest structure (as opposed to plantations) was also considered 

(table 1).

Table 3.1: Plot stratification Strata

Plot stratification Strata Number of Number of Total number

‘old’ plots ‘young’ plots of plots

Forest Department Indigenous 32 11 43

Forest (IF-FD)

Kenya Wildlife Service Indigenous 14 5 19

Forest (IF-KWS)

Mixed Indigenous Plantation (MI) 4 6 10

Softwood Timber Plantation (SW) 5 5 10

Hardwood Timber Plantation (HW) 6 7 13
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3.4: Modeling of Species Distributions

3.4.1: Linear regression

In modeling statistical data, the classical linear model involves a relationship of the form:

Data = Pattern + Re sidual 3.1

Where;

Data is the response (dependent) variable

Pattern is the set of predictor variables. It is the part of the model that explains the variability 

in the data

Residual represents measurement error, as well as any variation unexplained by the linear 

model (i.e. it is stochastic part and is the unexplained variability in the data). This model 

assumes a Gaussian (normal) distribution for the response variable and an identity link. The 

linear regression is limited by three basic assumptions namely;

i. The errors are assumed to be identically and independently distributed; this includes

the assumption that the variance of Y is a constant across observations.

ii. The errors are assumed to follow a normal (Gaussian) distribution

iii. The regression function is linear in the predictors

3.4.2: Generalized linear models

The generalized linear model is a mathematical extension of linear model that allows for non­

linearity of non-constant variance structures in the data. In order to build a generalized linear 

model three decisions have to be put into consideration, these are;
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a. What is the distribution of the data (for fixed values of the predictors and possibly 

after a transformation)?

b. What function of the mean will be modeled as linear in the predictors?

c. What will the predictors be?

This model is defined in terms of a set of independent random variables; Yl,Y2,Y3,...,YN each 

with a distribution from the exponential family (Binomial, Poisson, Gamma, Negative 

Binomial and Normal) and has the following properties;

i. The distribution of each Yf has the conical form and depends on the single parameter

Q  (the Q ' s do not all have to be the same), thus

A y ,  A )  = exp [y,b, A ) + c, A ) + df (y,)] 3.2

ii. The distribution of all they, ’s are of the same form so that the subscripts of b, c and d

are all needed. Thus the joint probability density function of Yl,Y2,Yi ...,YN is;

/ ( » ... yN; 9,..... ) = n  exP [y,bA,)+cA, )+d(y ,)]
1=1

= exp [£  y,6(0,) + c(0, ) + £«/(> ,)] 3.3
/=1 /=1 /=1

iii. The linear relationship between predictors X  and the response variate y  is given by;

y  = X p  + e 3.4

Where; E[y] = /u, V (y ) -c r 2I N and f± =

The vector e is the error term that measures the discrepancy of the fitted model and the 

observed data. The error terms are assumed to be normally distributed with zero mean and

4 '
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unit variance and /? is a set of unknown regression coefficients. Equation 3.4 is often referred 

to as the generalized linear model. This model has three main components namely;

i. Response component -  the response variables YI,Y2,Y3,...,YN are assumed to share

the same distribution from the exponential family

ii. The systematic component ; a set of parameters /? and explanatory variables X

produce a linear predictor 77 given by;

i = Y .x i />i 3 -5
y=i

iii. The monotone differentiable link function g that gives the relationship between the 

mean response variable and the linear combination of the explanatory variables, 

such that;

g O t , ) = £ l 3 .6

Where /uj = E(y.), ^ i s  a PX1 vector explaining of explanatory variables (dummy

variables for factor levels and measured values for covariates); X t , so that

X ]  = [x„ xlp\, and /? is the PX  1 vector of parameters; =

It is important to mention that the generalized linear models (G.L.Ms) are more flexible and 

better suited for analyzing ecological relationships which can be poorly represented by 

classical Gaussian distributions.

28



3.4.3: Logistic regression and Binomial models

Logistic regression is widely used for analyzing data involving binary or binomial responses 

and several explanatory variables. In this study we use the Binomial GLM with a logit link to

Y
model the probability binomial observations of the form— / = 1,2 ,...,n such that

E(Yi) = niPi 3.7

Where /?(is the probability of species being present and nfis the number of observations

made in site/

The linear logistic model relating Pito the k explanatory variables; X u,...,^associated  

with i'h observations is;

log'7 (a ) = Po + P\X\t + ••• + Pk̂ Ki 3.8

Where logit(pf) -  log A
-P i

This is the logistic transformation of the probability of presence of species. To obtain the 

expected values we compute the inverse link function.

Let;

Po +  P\X\i + PlX2i + • • •  +  PkXa ~ ni 3.9

This implies that;

log Pi
! - A

= /

This implies that; p t = (1 - p ,)en 

Therefore the logit inverse is:

1-e"

3.10

3.11
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In order to fit a linear logistic model to given set of data, the k + 1 unknown parameters 

P0,P lt...,Pk are estimated using the method of maximum likelihood estimation. The 

likelihood function is given by;

,- w

The log-likelihood function is given by

In L = ± In
/  „nt _c+ _c1 ̂g~ 

+

- P i )

/-I u -

n
Z InM + y, Inf *  ] + «/ ln(l -  p,
i=l U J

n (n )
z In nt

+ yi", -  nt ln(l - e n‘)
1-1 U J

We then differentiate the log-likelihood with respect to the unknown k +1 parameters and 

equate to zero to get the maximum likelihood estimates of p

3.4.4: Generalized additive model (GAM)

From the above background on GLMs, we note that likelihood-based regression models such 

as the normal linear regression models and the linear logistic model assume a linear (or some 

other parametric) form for the covariatesX l,X 2,...,Xk. The class of generalized additive

models replaces the linear form Hl PjX j by a sum of smooth functions £  Sj (x,). The Sj Qs  

are unspecified functions that are estimated using a scatter plot smoother, in an iterative 

procedure. The linear predictor ’Y_,Pj xj *s replaced by the additive predictorZ^C*./)- 

Hence the name generalized additive model.

This is a statistical model for blending properties of generalized linear models with additive 

models. The model specifies a distribution (such as normal distribution, or a binomial
4'
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distribution) and a link function g  relating the expected value of the distribution to the m 

predictor variables, and attempts to fit functions f i (xt) to satisfy:

& ( £  ( ^ ) ) =  P o  +  / l ( * l  )  +  • • •  + / « ( * * )

or generally

€(y/x = Io + s; .,v J

Where e Sj (x; ) = 0 for every j

The functions / ,  (xi ) may be fit using parametric or non-parametric means, thus providing 

the potential for better fits to data than other methods. The method hence is very general -  a 

typical GAM might use a scatter plot smoothing function such as a locally weighted mean for 

/,(x,)and then use a factor model for f 2{x2). By allowing nonparametric fits, well designed 

GAMs allow good fits to the training data with relaxed assumptions on the actual 

relationship, perhaps at the expense of interpretability of results.

Over fitting can be a problem with GAMs. The number of smoothing parameters can be 

specified, and this number should be reasonably small, certainly well under the degrees of 

freedom offered by the data. Cross-validation can be used to detect and/or reduce over fitting 

problems with GAMs (or other statistical methods). Other models such as GLMs may be 

preferable to GAMs unless GAMs improve predictive ability substantially for the application 

in question.

3.14(a)

3.14 (b)

<y
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3.4.5: Getting spatially explicit model: A built up from GLM

In the problems associated with spatial prediction, it was noted that degree of correlation 

among observations depends on their relative locations. This is due to similarities in 

ecological attributes among the neighbouring cells and the dispersions associated with the 

populations.The products of this is the autocorrelation and the models seeks also to respond 

to this spatial dependence while retaining the environmental response (xT p )  which is 

catered for by the logistic (Logit) function.

Considering equation; Y,+ ~ Binomial(«,./>,); meaning that the probability /?, that a species 

occurs in cell i is related to the environmental variable) and modelling at the grid -cell level, 

a spatial term ^  associated with grid cell i is added to equation vii to get the equation 

below.

- ? — = exp(j30 + filx l +,..., Ppxp)+0l 3.15
1 ~P

In this case, is a random effect associated with each grid cell and it adjusts the probability

of presence of the modeled species up or down depending on the values of 0 in cell i ’s 

spatial neighborhood (Latimer et al,2006).

Let X . , X X  be a finite collection of random variables which are associated with sitesl 7 z 7 7 n

labelled 1 ,2  ...n,respectively.For each site, P (x,/x l,...,xi_l,xM,...,xn) the conditional

probality of X ,, given all other site values, is specified and thus we require also the joint 

distibutions of the variables(Besag 1974). Thus if xx,...,xn, can individually occur at the sites 

1,2,..., n respectively, then they can occur together. Statistically then if P(x,) > Ofor each i,

then P(xx,x 2,...xn)> 0. Considering a set of sites i , j  site y(* /') is said to be a neighbour of
• *

site i iff the functional form of P(xi/x l ,...,xi_i,x i+.... .) is dependent upon the variable xr
t'
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CHAPTER FOUR

RESULTS

4.0: Introduction

This chapter discusses the research data obtained. The relationships of Prunus Africana to 

various environmental factors are discussed as well as showing the maps of spatial locations, 

distribution and predictions by use of GIS. The various figures drawn are meant to show how 

the species relates with other factors independently and also dependently.

4.1: Results from the Model

The statistical methods in use had confirmed that that adding complexity to basic generalized 

linear models improved the models’ characterization of the distributions of species. The 

research now turns to a more thorough evaluation of the model output, including the 

estimates for the environmental coefficients, the spatial random effect variables, and the 

uncertainty associated with model parameters. To simplify the analayis,the reseach started by 

giving the various factors variable names as follows in relation to the model

g(u,) = a  + f t  X, + f t X 2 + f t X 2 + f t X 4 W 4.1

Where; g(«, ) is the Prunus Africana density (PA)

is the population density (P) in the area; X 2 is market distribution (M); X 3 is the 

average ranifall expericed in the given area(R), and X 4 is the temperature in the area (T)
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4.1.1: Summary of the data

The section gives the summary of the data considered. Continuous variables include 

population density (P), rainfall (R) and temperature(T) while the outcome, prunus africana 

occurrence and market occurence are binary(0 /l) response.

4.1.2: Continuos variables summary

Population density Rainfall Temperature

Min. : 0.00 Min. : 400 Min. : 9.00

1st Qu.: 42.18 1st Qu.: 875 1st Qu.:15.00

Median : 71.12 Median : 1000 Median : 17.50

Mean : 66.46 Mean : 1060 Mean : 18.27

4.1.3: Binary variables summary

PA represent Prunus Africana and M reprents market 

table(PA.M)

M

PA 0 1

0 1 1

1 0 38

4.1.4: Using the logit Model

Here, a logistic regression model is estimated using the GLM (generalised linear model ) 

function.The use of ‘as.factor (M)’ indicates that the market should be treated as a factor (i.e 

categorical) variable. Having given the model name (mylogit), R will not produce any output 

from the regression but instead the research used summary commands.

Deviance Residuals:

Min IQ Median 3Q Max

-1.587 -0.7962 -0.6072 1.1462 2.421



Coefficients:

Estimate Std. Error z value Pr(>\z\)

Intercept 0.864 1.628 2.04 0.000524

P -1.0063 0.003142 -2 .1 0.04056

R 0.24 0.332973 2.627 0.02681

T -0.2378 0.31254 -2.133 0.032356

As.factor(M)! 1.8645 0.215201 2.976 0.000345

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 48.084 on 39 degrees of freedom 

Residual deviance: 37.27 on 35 degrees of freedom 

AIC: 10

In the output above, the first thing is the call reminding r about the model we ran and the 

options specified. Next are the deviance residuals,which are a measure of the model fit. This 

part shows the distribution of the deviance for individual cases used in the model.

The logistic regression gives the change in the log odds of the outcome for one unit increase 

in the predictor variable.

The following can be noted:

i. For every unit change in population density, the log odds of prunus africana density 

(versus none) decreaeses by 1.0063.

ii. For every unit change in in rainfall,the log odds prunus africana density (versus 

none) increases by 0 .2

iii. For every unit change in temperature,the log odds of prunus africana density (versus 

none) decreases by 0.2378

iv. Having the market for Prunus Africana in the region increases the log odds of prunus 

africana density by 1.8645. This can be interprated to mean there is an effect of
•  f

prunus africana density which can be associated with the market for the tree products.



The model can thus be written as:

= 0.864 - 1 .0063JT, + 0.24A”2 -  0.2378X3 +1.8645X4 4.2

The cefficient estimates for the confidence intervals were also confirmed using R software 

and the results were tabulated as follows.

2.5% 97.5%

Intercept -2.36402 -0.94831

P 0.006285 0.007834

R 0.150346 1.4100695

T -1.28901 0.412901

As.factor(M)* 4.3984 NA

4.1.5: Exponeniating the coefficients

By exponentiating the coefficients, we interplate them as odds-ratio.

Intercept P R T As.factor(M)x

1.189028 2.802643 1.20341 4.23108 7.58201

This means that for one unit increase in market demand, the odds of having Prunus Africana 

in the area decreases by a factor of 7.58201

4.1.6: Predicted probabilities

This was carried out for both categorical and continuous predictor variables. To carryout this, 

a new data frame was created with the values whose independent variables were to be taken 

to create the predictors.

The research started by calculating the predicted probability of Prunus Africana at each 

value of the market demand, holding population density, rainfall and temperature constant. 

An object was created In R with the observations of presence and absence (1/0). The second,
•  f

third and fourth objects of P, T and R were created that only took on one value each. In this
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case, the variables were set to their means using the R commands, but this can also be set at 

any value. It is notable that these objects must have the same names as the variables in the 

logistic regression discussed. In the last command, the objects created were combined into a 

data frame called newdata and the final code asked R to display the data frame newdata

4.1.7: New data Results.

M P R T

1 0 56.3490 1280 20.675

2  1 56.3490 1280 20.675

This data frame was then used to calculate the predicted probabilities through R.

M P R T Mjc

1 0 56.3490 1280 20.675 0.74

2 1 56.3490 1280 20.675 0.13

The output confirms that the predicted probability of having the Pntnus Africana is 0.74 

when there is no market demand for its products and 0.13 when there is market demand for 

Primus Africana.

4.1.8: Model fit

This is useful when comparing competing models. The output obtained from the 

summary(mylogit) included indices of fit(shown below the coefficients), including the null 

and deviance residuals and the AIC. One measure of model fit is the significance of the 

overall model. This test confirms whether the model with predictors fits significantly better 

than a model with just an intercept (i.e. null model).

The test statistic is the difference between the residual deviance for the model with predictors

and the null model. The test statistic is distributed chi-squared with degrees of freedom equal

to the differences in degree of freedom between the current and the null model(i.e. the
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number of predictors variables in the model). To find the difference in deviance for the two 

models (i.e. the test statistic) we used the R commands and the following result was obtained. 

[1] 15.88122

The degrees of freedom for the difference between the two models are equal to the number of 

predictor variables in the model, and was also obtained using R. The result obtained was;

[1J2

Finally, the p-value was as well obtained from R, and the value obtained was;

[1] 6.456192 

Interpretations

The chi-square of 15.88122 with 4 degrees of freedom and an associated p-value of less than 

0.001 tells us that the model as a whole fits significantly better than an empty model. This is 

sometimes called a likelihood ratio test (the deviance residualis -2 *log likelihood)

4.2: The Relationship between the variables

This sections checks the correlation and covariance exhibited by the variables in the study

4.2.1: Correlation

Further the correlation matrix was obtained through R as follows;

PD P M R T

PD 1.0000000 0.3748285 0.6979824 0.4016462 -0.3206608

P 0.3748285 1.0000000 0.3066419 0.7686704 -0.5443849

M 0.6979824 0.3066419 1.0000000 0.2573632 -0.2570967

R 0.4016462 0.7686704 0.2573632 1.0000000 -0.4945105

T -0.3206608 -0.5443849 -0.2570967 -0.4945105 1.0000000

Notable is that all immediate factors that the researcher put into focus were all positively 

correlated with the Primus Africanp density, that is, Population density in the area, Rainfall
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and market demand. Temperature showed negative association perhaps due to the selective 

nature of this Prunus Africana habitant determined by the other variables like the altitude. 

4.2.2: Covariance

In addition, the covariance matrix was obtained using R and tabulated as follows;

PD P M R T

PD 0.04871795 2.907855 0.02435897 31.28205 -0.3448718

P 2.90785474 1235.353546 1.70410814 9533.29097 -93.2328613

M 0.02435897 1.704108 0.02500000 14.35897 -0.1980769

R 31.28205128 9533.290974 14.35897436 124512.82051 -850.256413

T -0.34487179 -93.232861 -0.19807692 -850.25641 23.7429487

The covariance between Prunus Africana density and 3 of the researched factors was 

observed to be positive. This is an emphasis to the fact that the Prunus Africana occurrence is 

determined by these factors.

4.3: G.I.S Mapping

An expert-oriented map of Prunus Africana presence in Kakamega was created by 

combining spatially explicit information on the Prunus Africana habitat and environmental 

factors which favour the prunus Africana occurence.

4.3.1: Prunus Africana Density prediction model.

Using ArcGIS 10, the four variables, rainfall, temperature, market distribution and population 

densities within the study area were modeled together using the geo-processing tool in Arc­

GIS software. The Prunus Africana distribution modeling tool was developed and spatial join 

used to spatially join the four variable polygon layers and using mathematical operations 

available in ArcGIS, the model was subsequently run taking consideration the four variables.

Parameter containing nominal values was set for the output layer whereby the results from 

the model showing areas with very high degree of Prunus Africana occurrence noted 1 and
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the areas with the very low chance of Primus Africana occurrence noted 5. The software 

automatically generated an output layer with an attributes field containing the nominal values 

assigned. This was symbolized and an additional field interested in the shape file attributes 

table describing the state of each field i.e 1 representing very high chances of Prunus 

Africana occurrence, 2-high; 3-average; 4-low and 5-very low. This was extrapolated to 

produce Prunus Africana density prediction map for the entire study area.

4.4: Assumption

The assumptions in the model was that temperature, rainfall, Population density and Market 

demand are the main factors that influence Prunus Africana occurrence and distribution 

within a region. This relationship was assumed as this were the only variables used in the 

model. It was also assumed that the datasets used in the model was collected and compiled 

accurately, and this was taken into consideration since datasets from forest department (FD) 

which collects and compile datasets on trees was used for it has a higher chance of being 

accurate as compared to data from other sources.

4.5: Limitation of the model

The model used only four variables in generating Prunus Africana distribution density, and 

this may be a limitation since there are many other variables which have an influence on 

Prunus Africana distribution. In addition, the accuracy of the data used could not be precisely 

determined, but was assumed to be accurate based on the institution which processed and 

compiled the datasets.

i '
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.0: Introduction

This chapter presents the discussion of key data findings, conclusion drawn from the findings 

highlighted and recommendation made there-to. The conclusions and recommendations 

drawn were focused on addressing the purpose of this study which was; to develop a species 

distribution model to be used for describing the Prunus Africana patterns as well as making 

predictions. This was towards one goal of biodiversity and management.

5.1: Conclusions

The research has been able to meet its main objective and thus can conclude the various 

aspects of the Prunus Africana as discussed here. The basic nonspatial logistic 

regression model can be improved by adding features to the model that reflect major known 

attributes of the data, including variable sampling intensity and spatial autocorrelation. There 

is a strong case for making these models spatially explicit. Indeed,Gaston (2003) and others 

have called for the incorporation of spatially explicit methods in determining the structure 

and dynamics of species geographic range. Further, one of the problems in comparative 

biogeography is that sampling and data gathering are conducted with a multitude of different 

methodologies (Gaston 2003, Graham et al. 2004). The consequence is uncertainty in 

comparing and interpreting spatial patterns in species distributions.



This model results confirm that the spatial pattern of presence and absence of a species 

includes more information than can be explained through just the mean effect of a suite of 

environmental variables, that is, the temperature, rainfall, population density and further 

addition of the market demand presence like cutting trees for timber, firewood and so on. 

There are two main explanations for this. One is that biological processes tend to generate 

spatial pattern. In the case of the Primus Africana, the probability that a site contains a 

species depends on not only on its climatic and edaphic characteristics, but also on its 

neighborhood. Such spatial dependence can arise from biological processes at a number of 

levels. Processes in the life history of individual organisms, including reproduction, 

territoriality, and dispersal, can generate clustering or evenness in species distributions. 

Interactions of species with each other and with resources (for instance, effects of population 

desisty on the Prunus Africana occurence, the role of temperature and rainfall to determine 

inhabitant) can likewise cause and perpetuate spatial association. The particular occupancy 

history of a site can also exert a long-term spatial influence on its neighborhood. These 

spatial patterns are not mere epiphenomena, but rather can strongly influence individual 

species distributions, as well as interspecific interactions and thus community composition 

and potentially ecosystem processes.

The second explanation for autocorrelation is the influence of unobserved environmental 

variables, and of nonlinearities in interactions among sets of (observed and unobserved) 

factors, all of which may have some degree of spatial dependence and interdependence (Ver 

Hoef et al. 2001). Moreover, it is inevitable that the identity of critical explanatory variables 

may change from one part of geographical range to another (Gaston 2003). Since models 

cannot include all important variables, and may include some unimportant ones, there will 

usually be some degree of autocorrelation in model residuals. Critically, without spatial
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structure in the model, the level of uncertainty about model parameters can bedramatically 

underestimated and poorly characterized. One effect of this is that a model will identify more 

explanatory variables as significantly related to species presence/absence (Ver Hoef et al. 

2001) .

Additional studies which seek to understand resource selection of the Primus Africana at fine 

scales are crucial to developing a foundation for determining appropriate management, 

prevention and conservation strategies for this species. In the subregion studied, the Prunus 

Africana preferred proximity to one or many ecological features present in these regions 

including population density, temperature scales and rainfall .We note here that these factors 

are some of those that influence the occurrence of the Prunus Africana and have been noted 

to positively influence this existence except the the population density and the market 

demand. It is upon the government and all stake hokders concerned to minimise or control 

completely the destruction of the trees from their inhabitants. As it has been statistically 

noted, all these factors are interelated and influnce this distribution of Prunus Africana. From 

the prediction by GIS and that by modeling, it has been noted that the Prunus Africana is set 

to decrease with time. This is a big threat to the Kenyan economy.

5.2: Recommendations

The following are the research recommendations

5.2.1: Resource selection of the Prunus Africana

GIS proved to be an extremely useful tool for elucidating relationships between Prunus 

Africana abundance and several biological and human threat covariates. Certain 

considerations should be followed for future work. One fundamental problem with the results
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of the analysis overall was that many covariate responses in the data are non-linear. The tests 

of trying to use mixed models step was eliminated in the current analysis, however, because 

more time must be given to assessing the ecological significance of using mixed models and 

polynomials for analyzing particular covariates. An alternative route might be to explore the 

use of generalized additive models (GAMs), which have also been found to be useful and 

sometimes more flexible for ecological modeling.

Scale plays a significant role in the manner in which forest elephants select their habitats and 

resources. Senft et al. (1987) and Boyce et al. (2003) found that because resource distribution, 

foraging costs and threats vary with scale, animals may pursue different resources at large 

and small spatial scales. This finding is certainly applicable in the case of this analysis, 

especially at a 1 kilometer resolution. The presence of this Prunus Africana in a certain area 

might be due to more of one of the environmental conditions being abundant in the area 

rendering the other to have strong influence to its existence.These relationships are still 

being understood by ecologists and this issue must be addressed for future work. In some 

cases, the spatial covariate data used in the analysis was lacking and could have contributed 

particular sources of error to the results.

5.2.2: Modeling Prunus Africana in the region

Maps showing habitat suitability and species distribution can provide a strong foundation for 

applied research and conservation planning (Graham and Hijmans2006). These maps are only 

as effective as the data and methods used to create them, However a major challenge in 

undertaking any type of modeling effort that exists in overcoming problems and challenges

relating to the quality and type of data used for the suitability model. Overcoming data
•  *

shortages and limitations proved to be aparticular challenge -  for example, Prunus Africana
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grow in montane areas (High altitude areas). There is no comprehensive dataset of locations 

of the Primus Africana for the entire region so the model excluded this important influence 

on Prunus Africana habitat.

As with all expert models, the model depends on multiple iterations of revisions and “fine- 

tuning” based on

i. trial and error and;

ii. expert opinion by biologists and wildlife ecology experts who are familiar with the 

biological habitat selection of the Prnus Africana.

It is recommended that both the Biological layers should be considered working hypotheses 

which should be improved and revised as new data layers become available and as 

knowledge of covariate layer relationships relating to the species’ habitat suitability is 

enhanced.

5.2.2: Stakeholders

This research recomends to stakeholders to speed up measures for the control of deforestation 

and especially to the destruction of Prunus Africana as it poses as a major threat to the 

Kenyan economy. The Kenya Forest Department can use such a research background to 

determmine best areas to grow more trees and also to encourage farmers to carry out 

agroforestry for not only increased production of tree products but also to prevent 

desertification in the country. Kenya Wildlife Service and the National Museums of Kenya 

can use it for conservation purposes,management and control mechanisms.
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Appendix 1: R commands that were used

In all the commands the name data stands for the name of the database that was developed in

excel Microsoft software and savesd as CSV comma delimited.

data=read.csv(file.choose())

attach(data)

names(data)

summary(data)

table(PD,T)

mylogit<-glm(PD~P+R+T+as.factor(M),family=binomial(link="logit"),na.action=na.pass)

mylogit

summary(mylogit)

confmt(mylogit)

M<-c(0,l)

P<-c(mean(data$P))

R<-c(mean(data$R))

T-c(mean(data$T)) 

newdata<-data.frame(M,P,R, T) 

newdata

newdataSecfl <-predict (mylogit,newdata=new data, type="response ") 

newdata

mylogitSnull.deviance-mylogitSdeviance 

mylogitSdf. null. deviance-mylogitSdf. residual

l-pchisq(mylogit$null.deviance-mylogit$deviance,mylogitSdf null.deviance-

mylogitSdf residual)

logLik(mylogit)

exp(mylogitScoefficients) is used to do so. 

exp(mylogit$coefficients)

newdataSecfl <-predict (mylogit, newdata=newdata, type="response ")

newdata

M<-c(0,l)

P<-c(mean(data$P))

R<-c(mean(data$R))
< '
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T<-c(mean(data$T ))

new data<-data.frame (M,P, R, T)

newdata

glm(PA~P+R+T+as.factor(M)Jamily=binomial(link="logit"),na.action=na.pass)

call:

glm(formula = P A -  P + R + T+ as.factor(M), family = binomial(link = "logit"), 

na. act ion = na.pass) 

mylogitSnull.deviance-mylogitSdeviance

mylogitSdf. null. deviance-mylogitSdf residual

l-pchisq(mylogit$null.deviance-mylogit$deviance,mylogit$df.null.deviance-

mylogit$df. residual)

logLik(mylogit)

'log Lik.' -2.021658 (df=5)

cor(data)

cov(data)
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