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Abstract

A considerable amount of work has been done regarding the fertility study 
in mathematical demography. Most researchers used Beta distribution since 
it a classic example of a distributions in the [0,1] domain.This project is 
prepared with the intention of reviewing some probability models gener­
ated through mixed and Compound distributions by different researchers, 
considering other distributions in the [0,1] as mixing distributions well as 
modifying some the distributions for applications to specific populations.
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Chapter 1

G E N E R A L  IN T R O D U C T IO N

1.1 Introduction
In the recent past, several probability models have been constructed to study 
the distribution between marriage and first conception, and between two 
parities of any order. In this project a review of these distributions will be 
discussed in details and further modifications to the distributions discussed. 
The following techniques will be used to generate the distributions

1 .1 .1  D istribution  M ixtures techniques

In probability and statistics, a mixture distribution is the probability distri­
bution of a random variable whose values can be interpreted as being derived 
in a simple way from an underlying set of other random variables. Let /  (t , 6) 
be a Probability Density Function or Probability Mass Function of a random 
variable t then if 6 is also a random variable then the Probability Density 
Function or Probability Mass Function of t becomes

if 6 is continuous, where g (0) the p.d.f. of random variable 6 and ;

(1.1)

( 1. 2)

6
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if 6 is discrete, where g (0) is the p.m.f of random variable 6
If the p.d.f. or the p.m.f of a random variable can be expressed as a 

weighted sum, with non-negative weights that sum to 1 of other p.d.f.’s or 
p.m.f’s, then the formed p.d.f. or p.m.f are also called mixture distribution . 
The individual distributions that are combined to form the mixture distrib­
ution are called the mixture components, and the probabilities (or weights) 
associated with each component are called the mixture weights. Let /  (<) be 
a p.d.f. or p.m.f of the random variable t, if;

/  (t) =  ^  Pif (U) for ^~^Pi =  1 and /  (t, ) =  individual distributions

1 .1 .2  C onvolution  and C om pou n d  D istributions 

C onvolution

D iscrete Consider three sequences of real numbers: {a fc} , {bk} and {c*} we 
say that {c.k} is a convolution of {a fc} and{6fc} denoted by {c fc} =  {a fcj * {bk}

C{s) =  A (s) * B{s)

Where :A(s), B(s ) and C(s) are generating functions of {a*.} , {6fc} and {ck}
respectively. If Sn =  X\ -f Xi  4 - .....+ X n and X's  are independent and
identically distributed random variables, then;

{prob(Sjy =  i) }  =  {P (X x)} * {P (X 2) }  * ......... * {P (X * ) }
and since X's  are identical;

{Prob(SN = i)j  =  ......... * { P ( * i ) }  =  {P {Xi ) }Nm (1-4) *.

This is referred to as an A^-fold convolution of {P (X l)}

(1.3)
then /  (t) is referred to as mixture distribution.

if

k

r= 0

and
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Continuous Let X  and Y  be two identically and independently distrib­
uted continuous random variables with density functions /  (x) and g (y ) 
respectively, and Z =  X  +  Y  ,then /  (z ) is a convolution of /  (x) and

g (y) denoted by /  (2) =  ( f  * g) (Z) =  j  f  (2 -  x) /  (x) dx .More generally

if Ss ~  Xi +  { X 2 +  X 3.....+  X at} , the distribution of Sn is the sum of
(n — 1) independent and identically distributed random variables with com­
mon parameter A2 convolved with that of an exponential random variable 
X\ with parameter Aj i.e.

f\{t -  x) fn—l (A2 , t) dx (1.5)

C om pound D istribution

For Sn =  X\ +  X 2 H-----—  + X n where N is a random variable independent
of X tfs and with probability density function;

And p.g.f,

p(N = n) =  gn

9 ( s) =  Y1 9nSn
n

Then the probability distribution of Sn is given by;

OO

hi =  prob^Sjy =  0  =  ^   ̂\jpvob (TV =  ti)}  pvobX\ +  X 2 -h Xjy =  j }
n=0

Is called the Compound distribution of S^. Using generating functions;

OO

M s) =  $ 3  [ /( « ) ] "  (!-6)
n=0

1.2 Problem Statement

The analysis of intervals between marriage and first birth and subsequent 
births is a another approach to the study of human fertility. The fact that 
birth intervals are obviously related to intervals between birth immediately

3
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suggests a reason for the potential interest of this analysis. There was lim­
itations in this field since only Classic Beta distribution was considered to 
lie in the [0,1] domain. We seek to identify more distributions in this [0,1] 
domain and use them as mixing distributions to generate more alternative 
distribution in the study of human fertility.

1.3 Objectives

The main objective of this work is to derive several fertility models based on 
the following techniques

i) Distribution Mixtures

ii) Convolution

iii) Compound distribution

With modifications of others with the aim of constructing the best dis­
tribution to describe the waiting time intervals between marriage and first 
birth and consecutive births.

1.4 Significance
The study of birth intervals is increasingly attracting the attention of re­
searchers on account of their possible use as sensitive indices to detect changes 
in the level of fertility which may be due to natural or unnatural causes,Mixtures 
and Compound models have become popular because , among other reasons 
they;

a) Provide a simple mechanism to incorporate extra variation and corre­
lation in the model

b) Add model flexibility

c) Are a natural approach for modeling data that arise in multiple stages

In this research models of the distribution of births in human population ~ 
will be discussed, these models are designed to describe , broadly, the main 
features common to a wide variety of communities. Their use for closer study 
of individual populations would require modifications accordingly.

4
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1.5 Literature Review

Attempts to analyze first birth interval for the estimation of natural con­
ception rate(fecundability) dates back to Gini(1924). Since then several at­
tempts have been made to investigate this interval as well as interval for 
subsequent birth intervals and a number of demographers have formulated 
several stochastic models to describe this intervals under various sets of as­
sumptions for related situations. In recent years due to a variety of reasons 
demographers have shown keen interest in the study of probability models 
relating to fertility in general and to birth interval in particular. While some 
have been attracted to it for finding practical solutions to problems connected 
with decision-making and evaluation of family planning action programmes, 
some are attracted to it due to the promise the field holds for analytic model 
building involving theories of stochastic processes. These demographers have 
used different approach in their research and the breakdown is as follows;

1.5.1 Initial study
Gini(1924) considered birth intervals as waiting time problem dependent on 
constant fecundability,In his approach, he considered that the probability 
that the conception does not occur in the first month but in the tth month 
is;

h(t) =  9(  1 -  0)t_1
giving a Geometric distribution with probability of conception given by 9.

1 .5 .2  D istribution  M ixtures techniques

The assumption of constant fecundability by Gini(1924) was limiting since 
in reality this probability varies from woman to woman, The fecundability 
parameter is assumed to be a random variable that follows a certain distri­
bution. The following demographers have used this technique to formulate 
different stochastic models.

i Henry(1958) originally proposed beta distribution for the probability of 
conception (fecundability) i.e. /  (9) =  3)9a~l (1 -  9)0~l , with the
probability that the conception does not occur in the first month but 
in the tth month given by;

h(t) =  0(1 -  9) t-1

5
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resulting to a Beta-Geometric distribution.

ii Singh(1964) developed a probability model of waiting time to first con­
ception with fecundability parameter following Gamma distribution i.e. 
f  (8) =  —  using Exponential distribution as the conditional
distribution

f { t \ 8 )  =  8e~et

Resulting to a Pareto distribution

iii Brass (1958) initially suggested the fecundability parameters to follow 
the same distribution(Gamma distribution) with truncated exponential 
.and Biswas and Shrestha(1986) extended this model by truncating the 
Exponential distribution at a fixed point u  i.e.

6e~et 
1 — e~e“

with fecundability parameter following Gamma distribution i.e.,

/ ( « )  =
pae - pe6° -1

r »

1 .5 .3  C om pound  D istributions Technique

In an effort to include more variables in the development of waiting time
models, Compound distributions technique Sn — X\ +  X<i +  • • •___+  X N
was used. With this techniques the waiting time from marriage till first 
birth, denoted by 7) was expressed as a component of several variables such 
as non-susceptibility period,susceptibility period, gestation period among 
others which were all considered to be random variables. That is;

Ti =  m + X\-{-X2+.......+  X n+ll+Li+L2-i-.... + Ln+ 9

Where

• m postpartum amenorrhoea following the ith birth

• X(,i =  1,2, ...n +  ldenotes the number of months the mother goes on 
without conception in the susceptible state. X's  are independent and 
identically distributed random variables.

6



• Lt,i =  1 , 2 , n denotes the period of nonsusceptibility associated with 
a defective termination (including period of pregnancy and period of 
amenorrhoea following termination) for any women in the interval Tt .
L\s are all independently and identically distributed random variables.

• '9' denotes the period of pregnancy leading to a live birth 

with Probability Generating Function (p.g.f) of T, given by

H(s)  =  E  [sm] { E  [sXi] } n+1 { £  [sL'] } n s9

several demographers have used this technique to generate statistical models 
which include;

i) Srinivasan (1966) developed a simple probability model describing the 
distribution of birth intervals between successive parities, In his re­
search the distribution of n assumed a geometric distribution

prob (N =  n) =  g (n) =  6 (1 — 6)n

with distribution of Xi given by prob (Xi =  x) =  f  (x) =  pqr and m 
assuming a triangular distribution. He applied the model generated to 
data on birth intervals of Indian women.

ii) Aleyamma George(1975) used Srinivasan approach but considered the 
case where the various distributions were both discrete and continuous.
He considered a case where ,For a single woman of constant probabil­
ity of conception and the distribution of n was geometric, given by 
prob(N =  n) =  g (n) =  6 (1 — 0)n, and the distribution of X t was Ex­
ponential given by prob (Xi =  x) =  f  ( x )=  Xe~Xx and the distribution 
of Lt given by prob (Li =  l) =  /  (x) =  Xie~x'x ’

iii) John Bongraats (1975) considered the waiting time from marriage to
first live birth to be a random variable T with all variables in other two 
cases except the variable m (postpartum amenorrhoea following the ith 
birth).W ith random variables X[s , L\s and n assuming geometric dis­
tributions with different parameters. That is; prob (N =  n) =  g (n) =  6 (1 6)n,
prob(Xi = x ) =  f ( x ) =  f ( l  -  f ) x~ \ x  =  1,2,3, ....and theprofr (Z* =  l) =  g(l) =  g(\ -  g)1
1,2.....

7
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1.5.4 Modifications to models
Pathak (1999) provided an analytical review of several distributions devel­
oped by earlier demographers, Pathak(2006) developed a model specific to 
rural parts of India factoring in their cultural practices.

This research project aims to review these distributions and extend the 
work to more distribution construction and specific modifications to some of 
the reviewed distributions.

8
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Chapter 2

F E R T IL IT Y  M O D E L S B A S E D  ON  M IX E D  D IS T R IB U T IO N

2 . 1  In troduction

In this chapter we will review several distributions used to study the waiting 
time from marriage till conception. Gini(1924 ) first considered birth intervals 
as waiting time problem dependent on fecundability. His work deals with 
pregnancies and birth of first order under constant fecundability. Geometric 
distribution was the only distribution considered under the assumption of 
constant fecundability. However further studies have shown and proved that 
fecundability, the probability of conception varies from woman to woman, and 
that the fecundability parameter is assumed to follow a certain distribution. 
Under this study the Mixed distribution techniques given by,

a 6 denotes the probability of conception

b t is the waiting time from marriage till first conception

has been used. Under mixing distributions the following mixtures have 
been discussed;

where;

/  {t | 9) being geometric and g (9) being Beta distribution 

/  {t | 6) being exponential and g (0) being Gamma distribution



3. /  (t | 9) being Truncated exponential and g (9) being gamma dis­
tribution

4. f  (t | 9) being Poisson and g (9) being Beta distribution

In this chapter these distributions (considering both homogeneous and 
heterogeneous fecundability) and their applications on Srinivasan’s data will 
be discussed in details.

2.2 G eom etric M ixtures

These are distributions of the form,

/ ( * ) =  f  9 ( l - 9 ) x~1g(9)d9 

when the mixing distribution g (9) is continuos and

f ( x )  =  ' £ 9 ( l - 9 ) x~1g(9)

when the mixing distribution g (9) is discrete, the mixing p.d.f. or m.g.f. is 
g (9) for any random variable between [0,1]

2 .2 .1  Beta m ixture o f  G eom etric D istribution

T he D istribution

In this case both 9 (fecundability) and T (waiting time from marriage till 
conception) are considered to be random variables with the following distri­
butions

/  (t | 9) =  9 (1 -  9)t~1 (Geometric distribution) and (2.1) 

f  (&) =  •g  ^  ^  ~ (Beta distribution) (2.2)

The unconditional distribution of T is given by;

f ( t ) =  [ ' [ 9 ( 1 - 9)'-1] 
Jo

1
B j ^ j ) 9a~1 ( 1 - 0 ) 8-1 d9

ar(/3 + f - l ) r >  + /3)
/ ( 0 " “  (a + 0 +  t ) r (3 )  wth (2.3)

10
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Proof.

Mean =  E(T)  — — I  and
a — 1

Variance =  var (T ) =  _Q^ (Q + 3— 1)_ 
( a - l ) ! ( a - 2)

f ( t ) = p r o b ( T  =  t ) = [  f i t  | 6) gift) d$
JO

■ / w - j f [ # ( i - » n  t1 - » )

\t+f)—2

/<,) = { i ( b ) } (B(a+1’‘ +5- 1)}
/ w -

r ( a  +  /9) 
Lr(a)r(/?)J

r (a  + l ) r ( t  + /9 - 2 )
r (a +  /? +  < -  1)

/ (<)  =  +  ^ 2) r ( a  +  /3) t -  I 2 3
/ u  r(a + /? + t - i ) r ( /5) ’ ’ ’

Param eter Estim ations

Letting £  (T) =  /z and war (!T) =  S2. and using the method of moments to 
estimate the parameters we have;

E(T) = v = a + 0 -  l 
a -  1 and var (T ) =  62 = aft (a +  0 -  1) 

( a -  1)2 (q - 2)
then

= » n (a - 1) = (a — 1) + 0 = 0 = (M — 1) (a -  1)
— j, $2 _  a [(m -  1) (a -  1)] [(a -  1) + (/x -  1) (a -  1)]

(a -  l)2 (a -  2)

= j »  <52 =  a ( Q ~  ! ) 2 ( M  ~  1 ) [ 1  +  M ~  1]  _  ( M  ~  1 )  =  ,-2 
(a — l)2 (a — 2) (a — 2)

262
= * a =  p  _ m2 + m and 0  =  (/i -  1) (a -  1) (2.4)

11
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2.3 Exponential Mixtures

These are distributions of the form,

f ( x ) =  f 9 t ~ 6x g (9) dO

when the mixing distribution g (9) is continuos and

f { x )  =  Y j ee -6xg{9)

when the mixing distribution g (0) is discrete, the mixing p.d.f. or m.g.f. is 
g (9) for any random variable between [0, oo)

2 .3 .1  Gam m a m ixture o f  E xponential D istribution (P areto)

The D istribution

In this case both 9 (fecundability) and T (waiting time from marriage till 
conception) are considered to be random variables with the following distri­
butions;

/  {t | 9) =  9e et (Exponential) and

/ ( * )  =
a ,,-86 na-10ae

T(a) (Gamma-with two parameters)

(2.5)

(2.6)

Thus the unconditional density function of the waiting time T. is given by;

/  (<) =  f
Jo

9e-etP°e•a 86 na—1

r ( a )
-d9

f ( t )  =
a0‘

P roof.
ifi +  t)

s+r,< >- o ,a ,0  >- 0 (2.7)

for / w =  r
Jo r  (a) r  (a) J0 6{B+t)d9

letting u =  9{0 +  t ) ^ 9 =  — and d9 =
\P + 1)

12

du
(P + 1)

thus
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= * f ( t )  =  

f i t ) -

du

0°
I » 0 s +  t) 

0°

Q+l

/ W «

T (a) (0  +  t) 
a0°

^+ir ( Q +  1) =

roc
/  uae~udu
J o

a0°

09 +  *)

(0 +  t)

(,0 +  t)Q+1

o+1 , t y  o , a , 0 y  0.

This is referred to as Pareto distribution with

0Mean =  E (T ) =  — and variance — var IT) = ------------ ------
a ~ 1 (a  — l ) 2 (a —2)

Param eter Estim ations

By method of moments let E (T) =  /z and var (T) =  52 then we have

E (T ) =  n =  - and var (T) =  62 = --------------------
(a — l )2 (a  —2)

i g = M ( a - l ) m i g l =  °
M(a-l) i 2

a
,2 /_ i \2

( a - l ) > - 2)

S2 =  (a ~~ 1) _  ^ ^
a 2 (a — l )2 (a — 2) a  (a — 2) a 2 — 2a

^  _  . 2  n .  M2a (a -  2) =  - 5- <=> a 2 -  2a  -  ^  =  0

2 ±
a =

y/22- 4(-g) 2 ± , / 2 =  +  4 ( ^

„  =  i ± . M d /? =
V o  a (2 .8)

13



2.4 Truncated Exponential Mixtures

These axe of the form.distributions

f  9e~et
/ ( * > - /  r h x s w d ? (2.9)

when the mixing distribution g (9) is continuos and

( 2 . 10 )

when the mixing distribution g (9) is discrete, the mixing p.d.f. or m.g.f. is 
g (9) for any random variable between [0, oo)

2 .4 .1  B eta  m ixture o f  Truncated Exponential 

The d istribution

In 1986 Biswras and Shrestha modified model in 2.4 above by considering 
the conditional distribution to be a exponential distribution truncated at u, 
thus,

9e~et
f  (* I =  i _  e-eu ! * =  1 ,2 ,3....W, q  >~ 0,P y  0 (Truncated Exponential) and

The unconditional density function of waiting time till first conception is 
given by;

/  (9) =  — — —  (Gamma-with two parameters)
pae-(3ega-l

oo 1
f( t)  = (/3 +  t +  a j ) °+1 ’

,t =  1 , 2 , a  0 ,^  >- 0 with (2.11)
c=0

14



variance =  var (T) = 0
( a - 1  r

Proof.

a0
(  0 Va - 2 \0 + u )

0e~et \ {  0° e~ 06 0C

Q  — 1 au (a -  1) +  20 
a  — 2 + 0 0

0 + OJ

Q  — 1

» “  roo
/  (0  =  p | -j { e -6{t+^ e a) { l  +  e- e“  +  (e"®")2 +  (e -e" ) 3 + .....}

d6

from
1 — x

=  1 +  x  +  x2 +  x3 +  x4 +

/oa (  /*°° roc poo

f  w  =  r % ) \y0 (e_®(t+̂ ° ) de +  /  (e- e(t+̂ r )  e -* -^  + /  (e- « « + ^ )  e- 29- ^  +  

0a
/W" m { ( ^ r(ft+1) +
/W = f^ )r(a + 1){(< + ̂  +

f ( t )  =  a 0 ° ' £

a+rF (<* +  !)  +
____ 1_
(i +  /3 +  w)

1
(f +  /? +  <j)°+1 ' (t + /?  +  2<j)a+T 

1

(l +  /J +  2a , r ' r ( “ + 1 )  +

+ 1 +
....}

(0 +  t +  CLd)
a+1 ,, t >- 0, a, p >■ 0

^•O A pplication  to  Srinivasan’s data

In this section a comparison is made by applying Geometric distribution and 
the distributions discussed above to Srinivasan’s data. Under assumption of 
constant fecundability Geometric distribution was the only distribution con­
sidered. However further studies have shown and proved that fecundability, *. 
the probability of conception varies from woman to woman, and that the 
fecundability parameter is assumed to follow a certain distribution. In this

15
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section we discuss the application of Geometric distribution and the above 
mixed distributions to data from Srinivasan(1966)______

'l ime interval 
in Months

Observed
frequency

Mid-point
X f x f x 2

1-13 121 7 847 5929
14-25 90 19.5 1755 34222.5
26-37 43 31.5 1354.5 42666.75
38-49 13 43.5 565.5 24599
50-61 18 55.5 999 55444.5
62-73 11 67.5 742.5 50118.75
74-156 19 115 2185 251275

: 315 339.5 8448.5 464255.8
rrom K. Srinivasan (1966) TABLE 1;

• sample mean =  X  =  — 8448,5 =  26. 82 and

• sample variance =  S2 =  -  ( X ) 2 =  464255 8 -  26. 822 =  754.52

2 .5 .1  G eom etric D istribution

The D istribution

The probability model of waiting time from marriage till conception for 
women with constant fecundability is given by; /

h (t) =  prob (T =  t)

The probability of conceiving in the first month is thus given by,

M l)  = p r o b { T =  1)

letting h(l )  — 9 denote the probability of conception for a woman in suscep­
tible period. The probability that the conception does not occur in the first 
month but in the tth month is;

h(t) =  6 ( l - 6 ) t~1

this is the probability density function of a geometric distribution with; *•

Mean =  E (T) =  -  and variance — var (T) =  — ^
9 62
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Param eter Estim ation

M axim um  Likelihood E stim ator for G rou ped  data

Consider the frequency function f  (x \ 9) depending on a single parameter 
9. Let the real line, R, be partitioned into intervals of equal width h and 
centres xr . A random sample of size N is now drawn from a population with 
frequency function /  and the numbers falling in each interval counted. Let 
Nj be the number of observations falling in interval [xj - 5 , ^  +  5], then the 
maximum likelihood estimate of 9 from the grouped sample.

If we let
Pi (0) =  pi~ob(xj -  -  < x <  xj +  - )

then,

Pi (0) =  J ( /  (x | 9) dx =  F (x j  +  ^ | 9̂ j -  F

for continuos case and

Pi (0) =  f ( x I 0)
r  - h X J 2

(2.12)

for discrete cases,then an 
to maximize

i  ( « ) = n  \p,  w f '
i=1

application of standard techniques would lead us

/
k

= f a + \ 1e)  - f  ( * i  -  \ 10) (2.i3)

\\ ith respect to 9. These were the results obtained by G. M. Tallis(1967).
Similarly from the book Loss Models by Stuart A. Klugman, Harry H. 

Panjer, Gordon E. Willmot, page 341, 3rd Edition (December 9r 2008), from 
the sample , let nj be the number of observations in the interval (cj_1; e,] for 
such data, the Maximum likelihood function is given by;

k
^ w  =  r i [ F (ci i 0) - F (ci - i i 0 r  (2.14)

i=1

17
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which is similar to the previous result;

L(6) =  f l
1=1

with Xj +  | = Cj =upper limit and Xj -  | =  c,_j = lower limit of j th class.
With

K

log L (9) =  £  nj log [F(Cj | 9) -  F (cj_ ! | 0)] 
j=i

E l-. !/(<=> I ») -  /(< * -. I »)]
^ (l08lW)- g =1%[ffe K )-r fe-,|.)] (2.15)

To estimate 9 from the data using the method of maximum likelihood 
based of grouped geometric data, the likelihood function is given by;

i > ( i - » ) m
ci-1

where
k =number of classes,

(2.16)

T]j =frequency of the j th class 
Cj_! =lower bound of the j th class 
Cj =upper bound of the j th class 
Based on Srinivasan data above, then

r 13 'l 121 f 25 'l 90 ( 37 ^43

r 49  ̂ 13 r 85 'i 19
......j E ^ l - f l ) * - 1 !

V. 1=38 )  (t= 74  J

' 13 121 6 ‘13+12r
L = X>u-0)t_1 n.«=! r=l . 2+12r

18
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where r)T is the frequency of conceptions in different age groups starting from 
the second class. Getting the Log of L and solving for 6 we have

d\ogL 
dO ~

{ 13 ) 6 f 13+12r 1
61 ~ 6,),_1 f +  X ^ log l

t= l ) r= 1 U=2+12r J

6
=  1 21 E t= 2 a - g )  q - g Q

E i ^ q - * ) * " 1
E S I S r  (1 -  *)M  (1 -  *«)

T S S & r H i - o )r = 1
t- 1

A pplication  to  Srinivasan’s data

Prom Srinivasan’s data, the sample mean waiting time from marriage till 
conception is given by;

X  =  35.82

therefore the mean waiting time to first conception is 35.82 -  9 =  26.86 
months. Thus

*  =* * = 2̂ 82 =*• S = 003728
Using the method of maximum likelihood based on grouped Srinivasavan’s 
data we have;

19



r

1 21

'1 3  1
E ( i - 0)‘ " 2 ( i - f t )

’ 25

E ( i - ^ ' 2 ( 1 - ^ )t=2 ► + 9 0  < 14
Et =2^( i

>

----------V

7l

_____
y

+  (2.17)

37

+43 26
37

26
E ^ i - * ) * " 1 
26

49

+  13 38
49 +

38
61

18 50
61

50

+ 1 1

38

E (i-* ) ‘-2(i-0t)
73

62
73

62
156

E ( i - ^ _a(i-w)
+19 74

156 = o
E «(i-«)w
74

and by using r program , we get;

9 =  0.0414

therefore 9 and 6 are approximately equal.

2 .5 .2  B eta-G eom etric

(2.18)

Given that T and S2 as the observed mean and variance from Srinivasan’s 
data, the moment estimates of a and /? are obtained by putting f  =  p and 
& = 6 , resulting to

T =  26.82 =  /z and S2 =  754. 52 =  62 by equation 2.4 .then

20
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Q = 2(754.52)
=  24.33 and754. 52 -  26.822 +  26.82 

0 =  (24.33 -  1) (26.82 -  1) =  602.38

/ ( * )  =
ar(t + 0 - l ) r ( a  + 0) _ a(a + 0)\ f (t + 0 -  2)! ) 

T (q + 0 + t) r  (0) 09 — 1)! \ (a +  0 +  t -  1)! J

_  13.86 (13.86 +  331.52)! f (t + 0 -  2)\ 
n  ) (331.52 -  1)! \ (a +  0 +  t - l )\

2 .5 .3  P areto

Given that T and 5 2 as the observed mean and variance from Srinivasan’s 
data, the moment estimates of a and 0 are obtained by putting T =  /z and 
S2 =  82 so that we have

T =  26.82 and S2 =  754. 52 

from equation 2.4.2.a we have

, 26.822
q =  1 =fc \ /l H— gig-  =  2.3733

.  26.86(2.3733 -  1)0 = ---------- ----------------------- =  15. 561

/ w -

2.3733 
a8a

( p + t

/ ( ( )  =  2.3733(15.561)—  _  ^
(0 +  t) (0  +  0

a+1

2.6 Sum m ary

The table below observed and expected frequencies of waiting time distribu­
tion of conception of first order for the various distributions discussed above 
applicable to data from Srinivasan’s 1966

21
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1. Geometric distribution;,

9 =  0.0414

p{t) = 8 ( \ - 8 )t~l

prob{ 1 <  t <  13) =  0.0414(0.9586)° +  0.0414(0.9586)1 + .......+  0.0414(0.9586)12
0.0414 (1 +  (0.9586)1 +  (0.9586)2 +  .... +  (0.9586)12)

prob{ 1 <  t <  13) =  0 .0 4 1 4 /-— - 9j8613 1
1 0.0414 /

=  1 -  0.958613 =  0.4228
frequency =  315 (0.4228) =  133.20

pro£>( 14 < t <  25) =  0.0414(0.9586)13+0.0414(0.9586)14+ .......+0.0414(0.9586)24

prob(U < t <  25) =  0.0414(0.9586)13 { l  +  (0.9586)1 +  (0.9586)2 +  .... +  (0.9586)11} 
(0.9586)13 {1 -  (0.9586)11} =  0.214, frequency=0.214 * 315 =  67.62

prob(74 < t <  156) =  (0.9586)73 { l  -  0.958682} =  0.0442 
frequency =  0.0423 * 315 =  13.93

2 Beta Geometric,
With p.m.f given by

ar(t +  ̂—2)r(q + /3) 
r (a + p + 1 - 1) r (/?)

22



with a =  24.33 and 0 =  602.38,

„ m  _  24.33r (t +  600.38) T (626.71) _  25.33!
P[ > T (625.71 + t ) r  (602.38) “  (t +  25.44)!

25.33! 25.33! 25.33!
'  26.44! 27.44! 38.44! ’

frequency= (0.4228) 315 =  133.2

25.33! 25.33! 25.33!proh( 14 < t <  25) =  7on +  ... +  =  0.231,
(39.44)! (40.44)! ........  (50.44)!

frequency= (0.231)315 =  72.88

and so on

3 Pareto;

The p.d.f is given by;

/(*)-
apQ

(J3 +  t)a+1

with a  =  2.3976 and 0 =  15. 657, Therefore;

/(<) = 2.3733(15.561) 
(15.657 +  t)

2. 374 2 1605.0
2.3976 (* +  15.657)f - n2.3976

prob(1 

1605.0

rl3
< t <  13) =  J 1605.0

3. 3733(t +  15. 657)

2.3976(f +  15.657)1-3976

13

prob(\ < t <  13) =  1605.0 / ------------- —
1 2.3733 (15.f(15.657)2 3733 2.3733 (28.657)2'3733

=  0.507, frequency =  0.5066 * 315 =  159.59

23
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r 25
prob (1 <  t <  13) =  /

J 14

=  1605 ° k
1

1605.0
(t +  15.657)3 3733 

1 1
3733 (29.657)-■rv 2.3733 2.3733 (40.657)- - , n2.3733

frequency=0.21433 *315 =  67.51

0.21433

...and so on
Giving the table as below;

Time interval 
in Months

Observed
frequency Expected Frequency

Geometric Beta-Geometric
r(.,+d+i)r (»)

Pareto
f ( i \ —3' '

1-13 121 133.29 133.20 159.59
14-25 90 67.62 72.88 67.51
26-37 43 40.71 44.59 37.96
38-49 13 24.51 27.74 23.57
50-61 18 14.75 17.59 15.63
62-73 11 8.88 11.17 10.90
74-156 19 13.33 6.59 7.89
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. Chapter 3

Geometric Mixtures with [0 , 1 ] 

Domain Mixing

In chapter two only classic Beta Distribution was considered as the mixing 
distribution. Special cases of Beta distributions and other distributions in 
the [0,1] domain have not been discussed. In this chapter our objective is to 
consider these distributions and construct the mixed distributions based on 
these distributions.

3.1 Special Cases of Beta Distribution

3.1.1 Casel

a > 1,/? =  l

D istribution

Becomes;

(3.1)

25
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*)‘ ' 1 (1 - 9)" ' dd

Pt =
1 * > + 1 ) ^r(a + l)r(0_aT(a + l)r(t) 

£(<*,!)' ’ '  r ( l ) r (a )  r(t + a + l) r(t + a + l)
Therefore the distribution of T becomes;

aT(a + l ) r ( i )
* T (t +  a  +  1) , l  1’ 2 ,3 ’ " "  a > 0 (3-2)

Moments

First moment is given by;

M 1 = J 2 tPt
t=i

Using recussive relation technique,

ap _  a F (a +  1) T (t) _  aT (a +  1) T (t — 1) „
r  (t +  a +  1) r  (t +  a) 1 (ct +  1)

Pt oT (a +  1) r (t) T(t + a ) r {t) r (t + a) t -  1
Pt-1 r (t +  Q +  1) aT (a +  1) r (t -  1 ) r (t +  a +  1) r (t -  1) t +  a

Pt t - 1
P — f i ’  ̂— 2> 3 ,4 , ...Cf-i i +  a
(f +  a) Pt =  (t -  1) Pt_ x

OO o o

t=2  t=2

OO OO OO

a  E  tpt +  E =  E  K ^ 1) +  1] (* "  1) Pt- 1
t=2 t=2 t=2 

oo

a (Mx -  Pj) +  M2 -  Pj =  ^  {(t -  l)2 + (t -  1)} Pt-1
t=2

a M j  -  a P i  + M2 -  P\ = M2 + Mi 

Mi ( a  -  1) =  aPi +  Pi = P i ( a  +  1)

Mi (a  — 1) = a
(a +  1)

26

(a -F 1) =  a

t



Mi = Q

Second moment is given by;
( a  -  1 )

(3-3)

M2 =  £  t2Pt
t=1

Using the recussive relation (t +  a )Pt =  (t -  1) Pt_j multiplying by t2 and 
summing over t we have;

o o

£ V ( i  +  a )P t =  5 ^ t*(i -  1)
t=2 t=2

oo oo oo

E f3p< + a E =  E [(* -  *)* -  2< +  1] (t -  1) Pt—i
t —2  t = 2  t=2

oo

M3 - P i + a  (M2 -  Pi) =  ] T  [(* ~ l ) 2 ~ 2 [{t -  1) +  1] +  l] (t -  1) pt_x
t —2

oo

Ms -  Pi +  a  (M2 -  Pj) =  [(* -  l ) 2 ~ 2 (t -  1) -  2 +  1] (f -  1) Pt_!
t=2

M3-P !+ Q  (M2 -  P1) =  j T ( t -  l )3 Pt_ ! - 2  ^  (t -  l ) 2 P t - i - j h '  (t -  1) P(_j
t=2 t=2 t=2

M3 -  Pj +  a  (M2 -  Pi) =  M3 -  2M2 -  Ml
/

a (a  — 1) aM2 (a -  2) =  Pj (a -  1) -  Mi =  

M2 (a — 2) =

(a + 1 )  (a  -  1) 
a (a — 1) (a  -  1) — a (a +  1) a 2 (a  +  l) 

(a +  1) (a -  1) (a  — 1) (a +  1)

M2 (a — 2) = a
(a -  1)

M2 = a
(a -  1) (a -  2) (3-4)

Therefore the distribution Pt =  i f j g g l ,  t =  1,2 ,3 ,.... and a  > 0 has mean * 
given by; 1 1

E (T) =  Mi =  -—
(a -  1)

27



and variance:

var (T) =  M2 -  (M j)2 =  --------- ^-----------
(a -  1) (a -  2)

3.1.2 Case2

c* =  P = \

D istribution

/ ( * )  = ea~l (i -  e)8-1

Becomes;

and
/ W a s ¥ 7 ^ T T ^ "1 ( 1 _ ^)1D V. 2 ’ 2 /

—1 (3.5)

=  Jo(1 - = S M  j f '

P‘ = btH  f  e l~ '(I" *>( H H =

P - - - I W  . r ( i ) r (( - s )  _ (  r ( i )  \ / r ( f ) r f t - i )
r (I)r (I) r(¥ + l) vr (i)r (|J Vr(‘ -5 + i)

Therefore the distribution of T becomes;

\2 y/Kj \ r ( t  +  l ) J (3-6)
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Moments

First moment is given by;

Mj =  ] T  tPt
t=1

Using recussive relation technique,

P t -1

P  =

(  ■ )  II f c i )
U l U i l  _  r <‘ ) r ( t  — 5)

_M /Eiill = jA _ 1
| T (2) J 2 y/n 2

A  = 1M)
P<-1 t

tp‘ =  ( ,< -  2 )  P-

Using the recussive relation tP* =  (t -  §) Pt_j multiplying by t and summing 
over t we have;

00 00 /  o\
E ‘ 2p. =  £ < ( < -  k .
t —2 t =2

M,2 ~  Pi =  E  K* - ! )  +  !]
t=2 (̂  ~  1) ~  2 P t-i

Ms
00 ̂  1 o° 00 oo

- pi = E (* - !)2 p*-i - 2 E (‘ - !) p-i + E (* - !) ̂ -1- 5 E P‘-1
‘~2 t=2 (=2 1  t=2

M2 -  Pl = M 2 -  +  M i - ~  
 ̂ 2

- P l  =  -  -
2 2

M =0 (3.7)
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Second moment is given by;

M2 =  f 2 t2Pt
1=1

Using the recussive relation tPt = (t -  §) Pt_x multiplying by t2 and sum­
ming over t we have;

1=2 1=2 '

M3 - P x= J 2  [(< -  l )2 +  2t -  1] ^   ̂j  P[_!

Ms -  Px =  E  [(* -  l ) 2 + 2 (t -  1 +  1) -  1]
t—2

oo

M s - P i  = ^ [ ( t - l ) 2 +  2 ( ( - l )  +  l]
1 = 2

( ^ - D - 2

P t -1

P t - i

oo oo
M3 - A  =  E ^ - 1)3^ - i + 2 ^ ( t - l ) 2Pt_1 +  £ ( t - i ) P t_1

*=2 t=2 t= 2
1 00 oo oo

1=2

A/3 — Px — M3 +  2A/2 +  A / j ---- M2 — Mx -----

2 2
M2 — 0 (3.8)

3.1.3 Case 3
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Weinberg and Gladen modified this model by considering a beta distrib­
ution with parameters a =  — and /? — — where p is the mean parameter 
and A "shape" parameter. Therefore the distributions becomes;

/  (t | 6) =  8 (1 -  6)‘ (Geometric distribution) and

« ' f  - r
J S h v - J f r h (Gamma distribution)

(3-9)
And the unconditional distribution of T is given by;

, ( S/ ( < ) =  [ '  [6 ( i - e ? - 1}
Jo d6

/ ( * ) = /  [9 (1 -  9)* *] —  1----(1 - 6 ) - ^
Jo 1 -M de

f ( t )  =

1 -  n
+  t -  2 ) 1  4  !

(3.10)

Proof.

/ ( « ) = / " [ # (  1 -  - 7 - 4 -------- ^  (1 -  0) ^Jo ^ f  M 1 -  "  N

/ ( < ) = -
1 ~  AM Jo

0 V  + 1 (1 _  0 )M -*+ ‘ - !

A ’ A J

f ( t ) = -
B l t 1 ~ AM ./o

n A i - A + A  . 1 - v — 1 -t A -A
6 * ( i - 0 ) ^ s ----- d6

X' X J
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/ ( * ) =  =
B

/ ( * )  =
B [ ±  1 _ M

7— 7 [  0^(1 -  0)*ltx->'-2X+V d6
( a 1 - / M  ./o
U ’ A ;

—/x +  1J , (f A — fi — 2A -f 1) + 1^

A’ A

/ ( * )  =  =
B M 1 ~ M 

A’ A

B  ̂ (/x +  A), T— (tA — /x — A +  1)

/ (<)  =

r  i -  + 1 ___^
A A y r(A (M +  A)) r (A (tA -  /x -  a +1))

r ( i ( /x + A) +  i ( a - / x _  A +  i))

/ ( * ) -
r( i l _  r(f+1)r(ii i!+t- 1)

(!)
i -

r | i + t

/ < ( ) = =

Therefore

i V  f l ~ H +  t -  2 !
/ (<)=■ 1 - / x - i  Mr r + i - i  !

,t =  1,2,3,....
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\

3.1.4 Generalized Beta
D istribution

/ ( ? )  =
1

B (a ,P )P° (1 P)
For p = 8C then the distribution of 8 is given by;

B- 1

/ ( * )  =  / ( ? )
dp
dd

---------- Q c ( 0 - 1) _  QC \ B - l  I 0 C - 1  |

=  <3-n >
Which is the generalized beta distribution. To get the distribution of T given
by;

/ ( < ) = /  f(t\0)f(0)d8
Jo

/ ( * ) =  f  f { t\e) f {8 )d8= ( \ ( i - e ) t--'1J - - c e c° - ' { \ - e ‘ )t-'d8
Jo Jo B(a,P)

Rewriting =  (1 -  6 =  2̂(* ~ M  ( - *  )* =  £  1* ~  ( -1 )* ^ *

o  - • l - ’ - g C  l 1)  ( - * ) ■ « •

x=0 '  /

/ (t)=^ « S C  ; 1) (- i)' f (‘ »” (i ^ )w

!d0

d0

dO
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f  { t )=w b )  g C x') (- I)‘ . [  e< ‘ + i) <» - 1»' -»

1 (<) =  £  (  x 1) < _ i r B (“  +  f  +  l ’ '3)

« - i , 2 , 3 ..... > o

Mean

To get the mean of the distribution of t from the relationship;

E(T) =  E{E{T\9)}

£(T |«) =  V w ( i - S) * - i = l
t=l “

E(T) = E b \ [ \ B h ) a a " ( l - ^ ' de

let u =  6C <=> du =  c6c~l dO, 6 =  b  

E  <r > -  - w r ^  f  9“ " J (1 -  — ~ rB{a,P)Jo  '  C0c- X

E ( r ) = s < ^ l  (1 - du= s b )B ( a -

34
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1

E (T) =  ^  (a  ~  c'@)
( } B ( a J )

Variance -

To get the variance of the distribution of t from the relationship;

var (T) =  var {E  (T\9)} +  E {var (T|0)}

var cn = yar{̂ } + £:{V }̂

var (T ) =

e  ; +  E (V )
1 1 1

(3.13)

cO™ - 1 (1
o 0 B (a, /3)

+ f 1-Jo
- 9  1

o 92 B(a,/3)
c9CQ- 1 (l  -  9C y - 1 d913-1

var (T ) = C0 c ° - 3 ( i _ 0 c  ^ - i d e _ B { ^ 0 )
B ( a , 0 )J o  B ( a , P )

let u =  9C <*=>■ du =  c6c~l d6 , 6 =  v\

ri i j
/  ~n~(— ^rc^CQ_3(l - 9 c )0~l d9 =  — -------  /  9CQ- 3 (i _  u)B~l du

J °  B { < * , 0 )  B ( a , P ) J 0 U U U > c f - i

K  =  W ( ^ ) l u'c{co~2~c)^ - u^ ~ ldu

T & 0 ) l uia~'c)~1(1 - u'>B~ldu =
E
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var (T ) = s ( o - M )
B(a,(3)

B ( a - i , p ) ] 2 B ( a - l 0 )  B ( a - l 0 )
B(a,/3) J B  (a,/?) B (a,/3 )

(3.14)

3.2 Triangular Distribution

3.2.1 Distribution
For Triangular distribution with lower limit a =  0, upper limit 6 = 1 ,  and 

2the mode c =  \ then;

/ ( 0 ) = / 4e' O < 0 < ^
' 1 4 ( 1 - 0 ) ,  |< 0 < 1

and the unconditional distribution of T is given by;

/  (0  =  f j  f  m  f  (o) d s + f f  m  f  (0) do

This becomes;

/  (t) =  j j  0 (1 -  0 ) '" 1 46d9 +  J  0 ( 1 -  0)t_1 4 ( 1 - 0 )  d0

/ (< )  = 4 #2 (1 -  0)t_1d0 +  4 J  0(1 -  0)t_1 (1 -  0) d0

/ ( * ) .■  4 { j f *  02 (i  -  0)t_1 de +  0 (1 -  0)* cwj

/ ( * )  =  4 | ^  ^(1 - 0 ) ' d0 +  ^ 2 02 (l  — 0)t_1 d0 

letting u =  (1 -  0) «=>■ 0 =  1 -  u, d0 =  -d it

/ (0 = 4 (1 -u)ul (-du) + J (1 - u)2 ut_1 (—du) |
36
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/ (f) — 4 | ^  ul — ut+1 (—du) +  J ( l  — 2u +  u2) ul 1 (—du) ĵ

f  2tt* — ul~l — ut+ldu
J o

f ( t )  =  4 „i+ i u'du +

V + 2 ut+1 1
+

12

I2 ut+1 ul ut+2
t +  2 t +  i. ! t + 1 t t +  2

f ( t )  =  4
(1 -  0)t+2 (1 -  6)t+i 1  i

t -+- 2 « +  l
+ 2 (1 -  ey+1 ( i - e y  ( i - e ) t-\- 2

_ l \

* +  i t ~h 2

/ ( 0 - 4

' (<+i)(i-e),+2-(t+2)(i-fl),+1 
(t+2)(t+l) +

t(t+2)2(l—9)l + 1 — (t+l)(t+2)(l—g)1 —t(t+l)( l—9)l+2 
t(t+l)(i+2)

/ ( < )  =  4
( ( ( + ! ) ( ! - < ) ) - ( ( +  2))

- t(t+2)2(l—9)1+1 —(t+l)(t+2)(l —9)( —t(l+l )(1—9),+s 
t(t+l)(t+2)

, 1 
2

Jo >

/  (*) =  4
+

/ ( 0  =  4<

/ ( * )  =  4 j o -  

/  (t) =  4 |o  -  

/ W  =  4 r

(t+2)(t+l) ( ^  ”  0  “  1)

+l)(t+2) (2t (t +  2) (1 -  0) -  (t +  1) (t +  2 ) -  t (t +  1) (1 -  e f )

( 1  -  ef

_ i 
2

t 1

(i +  2) (t +  1)

( i r
(t +  2)(t +  1) V 2 2

a r

j +  .*(* +  ! ) ( < +  2) ( 2te 2 ^  W2)

1 +

(i +  2)(t  +  l) V 2 2

2 (I) ‘+1

t 1 .
x - 1  +

7(T+ 1 ) ( ? 1 2) (~ 2W - 2 -  -  to2)

_____M ____ f —2t- —2 — t2 ( ~ ' ) 2 -
i ( f + l ) ( l  +  2) I JI2 '  1, 2J

t(t +  l )( t  +  2 ) (t + 2) (t +  1) I, 2 24 - 1 - n -
4\

_____ (l)______ { _ 2, I  _  2
t (t +  l ) ( i  +  2) l 2

37



/ ( * ) - (t+  l)(* +  2)

(t +  1) (t (3.16)

Mean

To get the mean of the distribution of t from the relationship;

E(T)  =  E{E{T\ 6)}

°°  n
E(T\e) =  ' £ t e ( i - 6)t- 1 =  l

t=i 6

E ( T )  = A j ' u e  + l  J  1(1 -9)dJ9

E ( T )  =  4 { [e ]c0 +  [ \ n e - 9 ] l }

E (T) =  4 {c  +  [In 1 -  1 - l n c  +  c]}

E  (T ) =  4 {2c — In c — 1}

Thus the mean waiting time is given by,

E  (T ) =  -  {2c — Inc — 1}
c

Variance

To get the variance of the distribution of t from the relationship;

var (T ) =  var { E (T\6)}  +  E {var (T|0)}

u a r ( T ) = u a r  j l j  +  £

var (T)
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r  1 ( 2 e\ r1 i
~ l  ? { t ) M + l  v

2 - 2  e 1de = -{ I -dte+ -  rawe i i

9l e
2  i .....  r r 1

-  C V ln + e -  [ln̂]c i = ~c  |Inc - InO - 1 +  ̂- 1 + Incj
2 f 1=  -  < 2 In c -  In H------ 2
c c

3.3 Kumaraswamy Distribution
The distribution of 9 is as follows;

/  {9) =  c*P9Q- 1 (1 -  9a )f3~ 1 

and the conditional distribution of T given 9 is given by;

f  (t\9) =  9 (1 -  9)1- 1

Therefore the unconditional distribution of T is given by;

/  (t) =  m  f  (9) d9 =  f  (t) =  J \ (1 -  9y - 1 ap9°-'  (1 -  9af ~ 1

f  (i) =  a/3 f  9a (1 -  9y - 1 (1 -  9af ~ l 
./o

(3.19)

d9

d9

Rewriting =  (1 -  9 )* 1 =  1%) ( - 9  )x =  ^  f* 1 ) ( -1 )*  g *
\ xx=0 x '  x=o

t-1
f ( t )  =  a/3 J \ a ( l - 9 a)0- 1' £ ^ ~ 1̂  ( -1  )*g -

f ( o  =  aP ~ ! )  ( - 1 ) 1 Jo (1  “  8°f_1 & '
f ( t )  =  <*P'52 ( f ~  M  ( - 1 ) 1 /  9Q+X (1 -  9Q)P~ 1 

*=o V x /  do

rd9

Td9

d9
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/  (t) =  a 0  g  ^ ^  ( -1 )*  J o1 <?“ (1+5) (1 -  0“ )s~' de

m  =  a /3| ( ‘ ;  > ) ( - ! ) •  b ( ^ + 2 , ()

Forct,js >- 0 and * =  1,2,3,....

Mean
To get the mean of the distribution of t from the relationship;

E(T)  =  E{E{T\0)}

00 i

t=i

E(T) =  E  =  ] '  I a /5 ^ " 1 (1 -  6a)B~l

E (T) =  [  ap6°-2 (1 -  0a) ^ 1 
Jo

E (T) =  a/3 f  0°~2(1 - e a)p~l 
Jo

d6

de

dO

du
let u =  0° —  =  a 0a 1, 0 =  u°

du

E(T)  =  a/3
Jo OLU

E(T)  =  p £ 1-( l -  u)p~l du =  / 3 j f  u - 7, (1 -  u)p~l

E(T)  =  0 I '  ui1- 1* ) - 1 (1 -  u f - 1 du 
Jo

Therefore the mean waiting time to conception is given by;

du

E(T)  =  / 3 { B [ l - J - , 0

(3.20)

(3-21)
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Variance

To get the variance of the distribution of t from the relationship;

var (T ) =  var {E  (T|0)} +  E  { var (T \6)}

var (T) =  m r | U  +  E

var

E - +  E L z l \  
o2 /

+  [ l—J-ocpea-x ( i  -  e*)*-1 de
J O  v

var ( T )  =  [  a pea- 3 (i -  ea) B~l de -  
Jo

+  [  c*/30a~3 (1 -  6a )^~1 (1 — 9) d9 
Jo

letting u = 9a du =  o#*-1d0 <3 - d0 = du
a0a—1

<*P l  9° 3 ( !  -  « )*  1 =  P £  ea~3~Q+1 (1 -  u) 8- 1 du

=  P [  u~" (1 — u)8~ 1 du 
Jo

Jo aP0a 3(i-9af  x ( i  -e)de = apea~3 ( i  -  e*?-1 de- C apea- ( i -
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var(T) = p \ B  ( 1 -  - , / ? )  1 -
Q

n 2
+0  <B  1 -

var(T) =  2 p { B  ( l - ±  /?)  h
I 2

- 0 1

3.4 Van Dorp and Kotz’s(2004b)

The distribution of 0 is given by

f ( 0) =  a — 2 (a — 1 ) 6,
0 <  a < 2 , 0 -< 0 -< 1

and
f(t\9) =  6 (1 -  6 ? - 1

The unconditional distribution of T is given by;

/ ( < ) =  [  f(t\0)f(O)d9 
Jo

f { t ) =  I 6 (1 -  e f - 1 {a  -  2 (a -  1) 6} d6 
Jo

f ( t )  =  a f \ ( l - 0t ' - 2 ( a - l )  f e ' d - e y - '

f ( t )  =  aB ( 2 , t ) - 2 ( a - l ) B ( 3 , t )

de

f  (t) =  a ^ ~ 1) ! _  2 ( a - l ) 2 ( t - l ) !

f ( t )  =
a

( t+  1)! (t +  2)!
_____________ 4 ( a - l )  _  a ( t  +  2 ) - 4 ( a -  1
t(t +  l)  t ( t + l ) ( t  +  2 ) t(t +  l ) ( t  +  2 )

f it)  =  a ^ ~ 2) +  4
* ( < + ! ) ( * +  2)

0 <  a  < 2 , t =  1,2,3,...

(3.22)

(3.23)

(3.24)
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Mean
To get the mean of the distribution of t from the relationship;

E {T) =  E {E  (T\6)}

£ (r| * ) =  £ > ( i - « ) ■ - '  =  j

E I T > =  E ( f )  =  J a J { a - 2 ( a - l

/ ’ { ? - 2 (“ - » } < *

= [aln̂ -2(a-l)0]J

3.5 Truncated Exponential
Let the distribution of y be given by;

f  (y) =  [  ote~aydy =  a f  e~aydy 
Jo Jo

— p-ocy

f ( y )  =
ae - a y

letting y =  IcO, then;
1 -  e~ak

,dy

0 <  V < k

/ W  =  ^ S . ° < « < 1
Now using this distribution and mixing it with geometric we have;

o—ak0
-de

- a k 9

(3.25)

f 1 . , L~rvp~ak,>

/ ( < ) = /7o 1 -  e-a*
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r l o - o w
de

f  (<) = r ^ - k [  e (i - e but e-“fce = V  (_i)-6 ,/n *  ̂ r!
z=0

2=0 

* /•!

2=0  '4 '  1/0
<20

/ca
^ ( * ) = r 3 7 ^ E < - 1)‘ ^ s ( - + 2 , * )

/ w - E < - i r  (afer+I

2+1

2=0

Mean

« ! ( 1 - e - “ fc) 5 ^  +  2 ,t)

To get the mean of the distribution of t from the relationship;

E (T) =  E {E  (T\d)}

E ( T \ e )  =  j r t e ( i - 6 ? - 1 =  ].
t=1

E ( T )  =  E  f i )  =  [ '  akl>W  Jo e i - e - ^
de

-e~ akedOE {T) =  — — —t  r ~  1 - e~ ak J0 e

de

de

(3.26)
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Chapter 4
F E R T IL IT Y  M O D E LS B A S E D  ON  C O M P O U N D  
D IS T R IB U T IO N S

4.1 Introduction : Sums o f  Independent R andom  Variables

Let Sn =  X\ +  X 2 + .....+  X n where X's  for i =  1,2, ...N are independent
and identically distributed random variables.

a When N  is fixed then the distribution of SN is called a Convolution of
A *

b When N  is also a random variable independent of X's  , then the dis­
tribution is called a Compound distribution of N.

4 .1 .1  C onvolution

Consider three sequences of real numbers: {ak} , {bk} and {c fc} we say that 
{c fc} is a convolution of {a fc} and{bfc} denoted by {ck} =  {a fc} * { 6*} if

and

k
ck =  O-rbk-r

r= 0

C(s) =  A (s) * B(s)

Where :A(s), B(s) and C(s) are generating functions of {ak} , { 6fc} and {c*.}
respectively. More generally; If SN =  X t +  X 2 + .... +  X N and X's  are
independent and identically distributed random variables, then;

1*
4\

{prob(SN =  i)} =  {P iX i ) }  * {P (X 2)} * ......... * {P (X * ) }
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and since X 's  are identical;

{prob(SN =  i )}  = {P(Xi)} * {P p Q } * .........* {P (*i)} =  {P{Xi)}N*

This is referred to as an A^-fold convolution of { P(Art) } .Using the generating 
functions

H( s ) -  g (x1)(s)G(x3)(s) ................G (X l ) ( s )  =  [G i(s ) ]N (4 .1 )

Where Gi(s) is the probability generating functions of each of Xits. For
SN =  Xi +  {X 2 +  X 3.....+  X N) , the distribution of Sn is the sum of (n -  1)
independent and identically distributed exponential random variables with 
common parameter A2 convolved with that of an exponential random variable 
X\ with parameter Ai i.e.

/  {Sn ) — f  f\ (t — x) /„ _ !  (A2 , t)
Jo

where;

fi  (x) =  Aie- Al1 and Fi (t) = [  \ie~x'x =  1 -
Jo

and
Fi (t -  x) =  1 -

For A y  2, the distribution of the sum X 2 +  X 3.... +  X n of Independent
and identically distributed exponential random variables is a gamma function 
given by;

r (n -  1 )

Therefore the convolution of the two distributions becomes;

Fn(SN) =  [  Fi(t -  x) Fn_! (A2 ,t)
Jo

F " (S „ )  -  f (1 -
Jo T (n -  1)

* A ? -1  x n -2 e ~ AsI
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\n-l ft
F n (5 " )  =  r r 2— FT /  ( ! -r ( n - i ) y 0

A n - 1  r t

,-A ,(t-x)) X n - 2 e - \ 3 x d x

Fn{SN) =  r < — r\ f  xn- 2e~X3Xdx -r (” - l ) 7 o  r ( n - l ) . / 0
-2 -A2Xe~^xdx

F n (SN) =  r n_! (Aj, t) —
V *1— 1

r ( n - l ) Alt [  xn-2 e~xV*-x''>dx 
Jo

Letting s =  x (A2 -  Ai) x =
(A2 — A^

dx = ds

Fn (S’# ) — r n_! (A2, t) —
A"-1^ ------ e-A

T ( n - l )

F ”  (SN) =  r n_j (Aa,«) -

(A2 — Aj)

" / '  *

n—2 ds
(A2 — Ai)J (A2 — Ai)

A" -1a 2
------------ e~Xlt f  sn~

r  in -  1) ( \ 2 -  A1)n_1 ./„

F - (S„) = r_, (A* 1) - e_Al‘ Y ~ ' r„_, (., t)

F" (SN) = r„_, (Aj, t) -  e-A'‘ (— r_,  (., t)

ds

4 .1 .2  Compound distribution 

General introduction

Let {X *} be a sequence of mutually independent random variables with iden­
tical distributions(i.i.d). Let p(Xi =  j ) =  / ,  be the probability density func­
tion of X( with probability generating function,

/ w - £ v
i

For Sn =  X\ -I- X 2 H----- -------f Xj\ where N is a random variable independent
of X{fs and with probability density function;

p(N =  n ) = g „
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And p.g.f,

9 ( s) =
n

Then the probability distribution of SN is given by;
00

hi =  prob(SN = i )  =  ^ 2  {prob (N  =  n )} probX^ +  X 2 +  •••. . . .+ X N =  j }
n=0

using generating functions;
OO

i/wr
n=0

this is referred to as Compound distribution of SN.

C om pou n d  G eom etric D istribution

T heorem  4.1.1 Let N, X 1 X 2,......be independent discrete random variables.
If the {A ,}  are identically distributed each with Probability Generating Func­
tion Gx  (s), then

Sn =  X\ +  A2 +  •••.... +  X x  
has Probability Generating Function given by

(s) — Gn (Gx  (s))

If Xi is geometrically distributed, i.e.
/

gn = prob (N  =  n) =  pqn, n =  0,1,2.....

with probability generating function,
OO OO

9 (*) =  Y ,P 9 nsn =  p ^ 2  9nsn =  p{(qs)° +  (qs)1 +  (qs)2 +  (qs)3 + .......}
n=0 n=0

The pi'obability generating function of Sx — X\ +  A 2 +  •••.... +  X x  vs given
by,

H(s)  =  g { f ( s ) }  =
1 - ? { / ( * ) }

considering the various cases of X 's we have the following;
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X ' s  Being Geom etric For

p(Xi =  x) =  gn =  pqn 1 ,2 ,3 ,.....

Then the p.g.f of X t is given by;
PC OC

/  (s) =  ^ P 9 n_1sn = p s ^ 2  =  PS {(9s)0 +  (gs)1 +  (qs)2 + .....}
n =  1 n = l

and

/ ( « )  =
ps

1 — qs

P
1 —qs—pqs 

1 —qs

l -  qs — pqs
Using the method of moments to determine the mean and variance of the 
distribution of we have;

Jij f  (8) =  A  {  ~ 9^  \ =  (! -gg-Pgg)(~Pg) -  (P ~ Pqs) { - {q + pg)}
(1 - q s -  pqs)2as as [ 1  — qs — pqs J

H> ^  _  -p q  +  pg2 +  p2q2s + pq + p2q -  pq2s -  p2q2s
(1 -  q s - p q s )2

H' (s) =
p2q

H'(  1) =

H' (s) =

(1 -  q s-p q sY

p2q
( l - q - p q )2

p2q q
(p -  pq) p2

Getting the second derivative of H (s) we have H (s) =  £ 5  j  — - Ŝ  j  -

H" ( , )  =  -j- p2q
ds \ (1 -  qS -  pqs)2 
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H (s) = -jj-{p2q (l -  qs -  pqs) 2}

H (s) =  p2q ( - 2 )  (1 -  qs -  pqs)~3 ( - )  (q +  pq)

H "  ( , )  =  J f 9 ( 9  +  Pq)
(1 -  q s -  pqs)3

H" (1) =  2p2q (q +  PqS) =  2p2q ^  +  Pq  ̂ = 2p2q2 +  P ? _  V ( 1  +  p)
( l - 9 - p 9)3 p 3 ( i - g )3 p6 p4

war (S „) =  H" (1) -  { # '  (s )}2 +  H' (s)

var (Sjy) —2g2 (1 + p )
P4

q _ q2 +  pq{2 q +  p)
p2 p4

Thus 5jv has the mean given — and variance given by q2 +  pq (2q +  p) 
P4

X[s Being Bernoulli For

p(Xi =  x) =  gn =  pnql n , n =  0,1 

Then the p.g.f of X t is given by;

l
f { s )  =  ^ P nql nsn =  q +  ps

and
n=0

PH (s) =  -----  j ---------
1 -  q [q + ps) 1 — q2 -  pqs

Using the method of moments to determine the mean and variance of the 
distribution of Sn we have;

— H (s) =  — I  P \ 
ds ds \ 1 — q2 — pqs J

H ' (s) =  p (1  -  q2 -  pqs) 1 =  p ( - 1 )  { - p q )  ( l  -  q 2 -  p q s )  2 = P'q
(i -  q2 -  pqsY
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H '( 1) =
op q P*Q p2q p2q

=  ~ 4 = Q  (3.2.7)(1 ~ q 2 ~ p q ) 2 { l - 9(g + p)}2 ( l -g)2 p 2

Getting the second derivative of H (s) we have —  H (s) =  —  / _____P \
ds2 ds2 \ 1 — q2 — pqs )

H (s) =  Ts { |  { *  ( '  -  -  p2? ( - 2) (i  -  ?2 -  n s )  “ 3 ( - m )

2p3q2

H" (1) =

" (s) =  ■ _______.
(1 -  q2 -  pqs)

2p3q2 2 p3q2 2p3q2

{ l - 9 ( 9  + p)}3 (1 — q)3 P3
var (SN) =  H" (s) -  {H' ( l ) } 2 -  H' (1) 

92 “  {9 }2 +  9 =  9

=  9

var (SV) =  q

X-s Being B inom ial For

p{Xi =  x) =  gn = pkqn~\k =  0,1, .n

with p.g.f of Xi is given by;

/ w  =  E ( I ) j> V - v  =  (S+P 5)

and therefore,

H(s) = P
1 -  9 { / ( « ) }

P
\ - q ( q  +  ps)n

Using the method of moments to determine the mean and variance of the 
distribution of SN we have;

ds ds \ 1 —q{q +  ps)n
0 p [0 — nq (q +  ps)n 1 p] ^  np2q (q +  ps)n 1 

[ l - 9 ( 9  +  Fs)n]2 “  [ l - 9 ( ?  +  ps)n]2
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zji / 1 \ np2q {q  +  p )n 1 np2g

Getting the second derivative of H (s) we have (s) =  | --------J !---------  |

H (s) =  ±
d J np2g (<7 +  ps) n— 1

[  [1 -  <7 (<7 +  ps)"]2 J 

letting u =  np2g (q +  ps)"-1 and v =  [1 -  q {q +  ps)"]2

n (n -  1) p39 (q + ps) [1 -  q {q +  ps)"]2 +
H" / x _  2npg [1 -  9 (9 +  ps)"] (g +  p s ) " '1 [np2g (g +  ps)"-1]

[1 -  9 (9 +  Ps)"]4

n (n -  1) p3q (q +  p) [1 -  q (q +  p)n]2 +
= 2npg [1 - q ( q  +  p ) n) (q +  p )"-1 [np2q (g +  p )"-1] 

[1 ~ q ( q  +  p ) n]4
but q + p =  1

# " ( ! )  =

«4
tf" (i) =

n (n -  l )p 3g (1 -  g)2 +  2n2p3q2 (1 -  g)

(i -  q)4
{n (n — l)q  +  2n2q2} 2
-------------------------------=  n q — nq +  2n V

uar (5a,) =  H" (s ) -  {H'  ( l ) } 2 -  H' (1) 

var (Sjv) =  n2q -  nq +  2n2q2 -  n2q2 +  nq =  n2q + n2q2 

var (5 a,) =  n2q (1 +  q)

Table of Summary
Distribution of N Distribution of Xi H(s) Mean Variance
Geometric Gecmetric(pn =  pqn~x,n  =  1,2,) p(l-gs)

1 —q s —pqs
±  
P2

W  +  PQ (2q + p
p4

Geometric Bernoulli(pn =  pnqx~n, n =  0,1) l-Q̂ -VOS q q
Geometric Binomial(pn =  (nk)pkqn~k, k =  0,1,..n)

l - q ( q + p s ) u
nq n2q ( l + q )
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1
( t - 1  ■>-♦»-« t . n - t h

4.2 Waiting Time Distribution for the nth Live Birth

4 .2 .1  Description of Waiting time process

Consider a time interval 7) between the ithand (i +  l )th live births for any 
married woman for i =  1,2,3,....

Therefore

Ti = m + X 1 + X 2+ ........ +  X n+i+ L i+ L 2+.... + Ln+ 9 (4 .2 )

Where

• m denotes the period of non-susceptibility (postpartum amenorrhoea) 
following the ith birth

• Xi,i =  1 , 2 , ...n +  1 denotes the number of months the mother goes on 
without conception in the susceptible state. X 's  are independent and 
identically distributed random variables.

• Li,i =  1 , 2 n denotes the period of non-susceptibility associated 
with a defective termination (including period of pregnancy and period 
of amenorrhoea following termination) for any women in the interval 
Ti. L\s are all independently and identically distributed random vari­
ables.

• '9' denotes the period of pregnancy leading to a live birth

4 .2 .2  The Probability Generating Function (p.g.f) of T)

T h eorem  4.2.1 Let X  and Y be independent discrete random variables 
with p.g.f Gx (s) and Gy (s) respectively, and let Z = X  +  Y\then

Gz (s) =  Gx +y (s) =  Gx  (s) Gy (s)
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M ore generally if

U — W(j) + +  V(n) + Z(i) +  k (4.3)

Where;

• Wu) =  tci +  rn2 + ......... +  u>j with p.g.f Gw (s)

• X(m) — xi +  x2 + ......... +  with p.g.f Gx  (s)

• V(n) =  2/1 +  2/2 + .........+  2/n with p.g.f Gy (s)

• •£(*) =  Z\ + Zi + ......... +  zn with p.g.f Gz (s)

and A: is a constant, then the p.g.f of U denoted by Gv (s) is given by

Gv (s) =  Sk [Gw (s)F  [Gx  (s)}m [Gy (s)]n [Gz  («)]' (4.4)
let H  (s) denote the p.g.f of 7 ), then

^ ( S) =  £ [ s T' ]

H  (s) = E  [s m+ * i + * 2+ ......+ X n+1+Li +L2+....+L „+9 j

Since all the random variables are independent of each other;

H  (s) = E  [sm] E  [sx '+x>+......+ *«+ > ] E  [5 i i +•**+••••+£«+] E  [s 9j

and since X's  are identically distributed and L's are also identically distrib­
uted, then

H(s) = E [."] {£  [»*•] } " +1 {E [ ^ ]  }  V  ' (4.5)

Letting

i) E [sm] the probability generating function of m be denoted by 4>m(s)

ii) E  [s**] the probability generating function of X t be denoted by 4>x(s)

iii) E [sLl] the probability generating function of Lt be denoted by 4>,(s) 

then
H  (s) =  * m(s) [$x(S)]n+1 [$,(5)]" s9 (4.6) -

This is the Probability density function of 7) for a fixed n.
Hence knowing the distribution functions of m, X 's, L's and N we wall 

be able to obtain the distribution function of T)
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4 .2 .3  Special Cases 

Case 1

For a single woman of constant probability of conception p and the distrib­
ution of N  given by

prob (N =  n) =  g (n) =  6 (1 -  6)' 

and distribution of Xi given by

prob (Xi =  x) =  f  (x) =  pqr 

with probability generating function

•Ms) = 1 — qs

H(s) =  Y J9 ( l - e ) n^m(s)
n

H i *0 =

P
i n+1

1 — qs 

p0$ m(s)s9

[ * i M r v

l - q s - p ( l - e )  4>,(s)

Proof.

H(s)  =  £ > ( 1  - 0 )n $ m(s)
n n-f 1

1 — qs [*/(«)]
n Q

1 — qs

p(  i - 0) M s )

[<Ms)]r

qs

(4.7)

(4.8)

(4.9)

(4.10)

* «  -  w  { 1+ (pJ1r T ,))+ 2+ (sfl fi* ) * / ( « ) V
qs +

/,!s :' n -  q s ) - m -\ 1 —qs

i _  p(l-fl)»,(s)
l-<7«

P6
f (1 - g s )
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H(s)  = p0$ m(s)s9
l - q s - p ( l -  6)$t(s)

Equation 3.4.2.d is the p.g.f for any single woman. If we consider data 
from a group of women, then p (fecundability) is also found to be a random 
variable. K. Srinivasan (1966) considered a case where p assumed a bivariate 
Beta distribution with parameters a and /?. For this case the probability 
generating functions becomes;

H  ̂ L  B (<*,
paq3e$m(s)s9

P ) [ \ - q s - p { \ -  6)<t>i{s)}

H(s)  =

H M  =  g<M s)s9 f 1______ ?!
[ > B ( a ,P ) M s ) J o  [1 - q s -
9$m(s)s9

°qB
p ( l - 6)}

dp

dp

4>,(s)
paqB

Jo B (<*, P) [1 ~ qs -  p (1 -  #)]

(4.11)

(4.12)

(4.13)

It can be seen that H  (s) is of the form L (s) .M ( s ) , where L (1) =  1 and 
M ( l )  =  1.Hence L (s) and M  (s) represents the p.g.f’s of two independent 
random variables Y  and Z, such that Tt =  Y +  Z. where Y  stands for the 
sum total of all nosusceptible periods in the interval T) and Z stands for the 
susceptible periods (ovulation cycle) spent without conception in 7). Knowing 
the p.g.f we can use the same for derivation of the moments of any order 
for the random variable 7).These theoretical expressions for the moments 
which will be functions of the parameters can be equated to the observed 
moments of the distribution of birth intervals and consistent estimates of the 
parameters arrived at.

The expression for the probability generating function for the interval 
from marriage (date of consummation) to the first live birth differ from other 
birth intervals only in the component m(the postpartum amenorrhoea) as­
sociated with a live birth. So that

T0 — Xi  +  Xi  + ........+  X n +i +  L\ +  L2 +  . . . .  +  Ln +  9

Therefore;

G o (x +  9 )  =  £  e a  -  e)n [ 7  ( x ) ] (n+1)* [Q 0o r
n

57
t



and  therefore,

H(s) J f L U  f 1________ pV ________ \
$i(s)i\Jo  [1 -  qs - p ( l  -  6)] J

Case 2

Aleyamma George (1973) considered a case where .For a single woman of 
constant probability of conception and the distribution of N  given by

prob(N =  n) =  g ( n ) =  1 -  6>)n (4.14)

distribution of X l given by;

prob (Xi =  x) =  f  (x) =  \e~Xx

with characteristic function;

* . ( « )  = :
A

(A — it)

and the distribution of L, given by

prob (Li =  l) =  f  (x) =  Xie~XlX 

with characteristic function given by;

M s )  = 7T~~p;(Ai -  it)

then the Characteristic function of T) ;

H(s) =  X > ( n ) * m(«) [$x(S)]n+1 [*,(«)]" «9
n

becomes;

(4.15)

(4.16)

(4.17)

(4.18)

H( s )  =
* n (s)s9 ( l  -  

it (it — A — Ai) +  AAi$
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n

‘ A ' n+1
Ai

(A — it) (Ai -  it)

H(s )  =
X

(A -  it) * m (* y  £  ( i - « r
n

i--1__ n i---i__

(A — it) (Ai -  it)

\/Q n ’ A (1 -  fl) At
(A — it) (Ai — it)

H(s )  = ( X 3 5 ) ^ I I +
xe

A ( l - 0 ) A j  \ + (  X ( l - 6)Xl
(A -  it) (Ai -  i t ) )  ' V ( A -  it) (Ai -  it)

1 ]
1 _  A(l—g)Ai

(X— it) (X \— it)

l (A-*t)(A,-it) J

H (s) = __ —__$ (s)s9 { _______ (A -  it) (At -  it)______ )
U  (A -  it) * m[S)S {  (A -  it) (A! -  it) -  XX, ( l - e ) j

A04>m(s)s9 (A: -  it) _ *m(s)s9XXi6 ( l  -  g )  
it (it -  X -  X,) +  XX,6  it (it -  X -  X, ) +  XX,d '(4.19)

This is the PGF for any single woman. If we consider data from a group 
of women, A is considered to be a random variable. A. George considered a 
case where A assumed a Gamma distribution with parameters a and 8 i.e.

9 (A) = 0 °
F  ( a )

Xa~'e~0x

For this case the probability generating functions becomes;

H(s)  =
j ( < * y

\ a - l  - 0 X
r$ m(s)s°XX,6  ( l  -  jt'j 
it (it — A — Aj) ~f~ AAi$ dX
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Ba6Q> (s)s9 r°° (  AAiflfl —_  P W m\8)8 / 1 0X \
r(Q) ./„ lit (it-A-A,)+~ dA

/9°0*m(*)*9Ai f l - f )
H (s) = ----------------------A------ d Z

r  a

it (it — A — A i)  +  A A j$

/■°° (  A“ e-** \
Jo \ i t ( i t - \ i )  +\\r f )  dX (4'20)

Case 3

John Bongraats (1975) considered the waiting time from marriage to first 
live birth to be a random variable T with all variables in other two cases 
except the variable m (postpartum amenorrhoea following the ith birth). I.e.

T0 =  X 1+ X 2+ ...... -f X n+i+L\+L2+.... +  Ln+9 or
^0 — 9 =  X 1+ X 2+ ......+  X n+i+Li+L,2+.... +  Ln

letting T0 -  9 =  Z then,

Z — X 1+ X 2+ ......+  X n+i+Li+L 2+.... 4- Ln (4.21)

He considered a case where the random variables X's  , L's and n assumed 
geometric distributions with different parameters. That is;

prob(N =  n) =  g ( n ) =  0(1 -  6)n (4.22)

distribution of X t given by;

prob(Xi =  x)= f(x) =  f(  1 -  f ) x~l , x = 1,2,3,.... (4.23)

with characteristic function;

*« (« )
f s

1 - ( 1  ~ f ) s
and the distribution of Li given by

prob (Li = l )  =  g(l) =  g ( l - g )1 1 , Z =  1,2,....

with characteristic function given by;

4>,(s)
Is

1 -  (1 - l ) s

(4.24)

(4.25)

(4.26)
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hen the Characteristic function of Z ;

Hz (a) =  9 (n) [$x(a)]"+1 [4>/(s)]n

becomes;

P roof.

Hz (s) = f l / a [ l - ( l - Z )  s]
1 - ( 2  — /  — 0  * +  [ ! - / - /  +  fW] s2

(4.27)

n=0

^  oo

H (s) = Y , 9 («) [^(s)]”+1 [*/(«)]" = Y ,6 (1 -  eT [*.(®)]n+1 [$,(«)]"
n=0 

oo

H  (a) = 0 * x (s ) £  {(1 - 6) 4>x(s)4>,(s)}n
n = 0

6$x(s 6 ( l - ( W ) « )77(S) = r
(i  o)$x(s)$i(s)  i _  n -  f __ /» \ f  is

^(^)=7TT7Tr
9 / 8

# ( « )  =

( l - ( l - / ) 8 ) ( l - ( I - Q 8 ) - ( l - 9 ) / ^  
( l - ( i - / ) 8 ) ( l - ( l - / ) 8 )

* /*  [1 - ( ! - / )  a] [1 -  (1 -  0  3]
I1 “  (1 -  / ) « ]  [(1 - ( ! - / )  a) (1 -  (1 -  l) s) -  (1 -  6) f l s2] 

0/ a [ l - ( l - Z ) a ]
# ( * )  =

# ( * )  =

[(1 ~  (1 — / )  5) (1 — (1 -  0  a) — (1 — 9) f l s2]
e f s  [i -  (1 - 1) 8]

1 — ( 2 - /  — l )s  +  [ 1 - / - Z  +  /Z0] S2
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Chapter 5
F U R T H E R  M O D IF IC A T IO N S  T O  P A R T IC U L A R  
D IS T R IB U T IO N S

Another way of mixing two of more distribution if by use of the formulae

/  W  =  afi W +  (1 -  a) / 2 (t) (5.1)

or more generally

f ( t) =  Y l Pi^ [ f fY l Pi =  l (5-2)
i t

Consider the illustration below

With the probability of falling in Group A given by a  and that of falling 
in Group B given by 1 -  a,then;

/ ( i )  =  a / ( x 1) +  ( l - a ) / ( x 2) (5.3)

In this chapter we will be Constructing distributions based on this distribu­
tion mixing technique.
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5.1 Exponential M ixture

5 .1 .1  D istribution

A model to estimate adolescent sterility among married women is presented 
using the principle of convex combination of two or more probability density 
functions, For a group of women married when they under 20 years, there 
are two groups;

a) Group A-those who are biologically mature at the time of marriage, 
with proportion a and p.d.f fi(t)

b) Group B- those who are biologically immature at the time of marriage, 
with proportion (1 -  a) and p.d.f / 2 (t)

If /  (t) is the p.d.f of the interval between marriage and first conception, 
among a given group of women not stratified into groups A and B, then

f\ (t) was considered to be a negative binomial with parameter A i.e. \e~Xt 
/ 2 (t) =  J0 / 4 (t/x) f 3 (x) dx where / 4 (t/x) is the p.d.f of waiting time 

from marriage to ovulation and f 3 (t) =  is the p.d.f of waiting time
from first ovulation to first conception

f  {t) — a f  1 (t) + (1 — a) f 2 (t) (5.4)

fi (t/x) =  I \e Mdt =  A /  e~Mdt =  A
X J  X

therefore the p.d.f. / 4 (t/x) is given by

=  Xe X(t X) (5.5)

and
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/x -  A 1 1

and therefore;

(5.6)

f ( t )  =  a Ae A'+  (1 -  a) — [e"At -  e""*] , i f  A ^  /x (5.7) 

and if A =  /x

/ a ( 0 =  [  /ie -^ A e - ^ - ^ d x  
Jo

h  (0 = f
Jo

e "AxA 2e~x(t~x)d.'x =  A2 f
Jo

e Xldx =  A2e At

M t )  =  \he~M

f ( t )  =  a  Ae"A‘ +  (1 -  Q) A2te~At, i f  A =  /x

[ '  dx =  X2e~xt [x]‘
Vo

(5.8)

5 .1 .2  Parameter Estimation

To estimate a, A, /x using the method of moments for A ^  /x we get the first 
three moments as follows;

First moment

M i=  y  < / (0  dt =  JQ * |a Ae A<+ C1 “  Q) [e_At ~  | dt f5.9)

' a  a r  te~u + i ^ r  r 1 [e_“  -  e' ' ‘ ! *
Using integration by parts

Mi =  a A +
(1 — a) A/x 

(A* ~ A)
1_

A"
1 ■ a  (1 -  a) /x A'

M2J A (/x -  A) A /x

^  _  £; , (1 oQ (/x A) (/x +  A) _  a (1 — a) (/x +  A) 
A (/x — A) A/x A A/x

Mi — [a/x +  /x -  a/x +  A -  aA]
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Second moment

— -— f/x +  A — aA] A/i (5.10)

M2=  I  t2f  (t) d t= f o t2 j a  Ae-At+  (1 -  a) [e- *  _  c-* ]  jAt -  e -^ l !> dt

(5.11)

/ /•O O  p o o  X '

t2f  (t) dt =  t2a \e~xt+  /  t2 (1 -  a) fe- At -  e ^ l  dt
Jo Jo /x -  A L J

using integration by part

A3;  ' (a* — A) Va3 " 3

Ma“  a2 +  a2/x2 ) +  ^  +  A/") =  K 2 +  ( ! - « )  (A2 +  /X2 +  A/x)]

^2^2 ~ +  A +  /x — aA2) =  - [(A + /x)2 — A/x — aA (A +  /x)]

M2 ^2^2 d" A1) — A/x — aA (A + /x)] (5.12)

and , Third moment 

M3 =  J t zf ( t )dt  =  j ~ t 3 L  A e - " + ( l - a ) - ^ L  [e- « -

, »  ^  (5 .1 3 )

dtM3 =  [  t3a \e~M+ f  t3 (1 -  a) [e~A< -  e ^ l
Jo Jo /x -  A L J

Using integration by parts

M3= a A f  ( 1 _ 1
\ A /  (m — A) yA4 /x4

6of
^ 3=A V  + + JJ-3~ a  ̂-  a/x3+A/x2+A2/x -  aA/x2-a A 2/x)

Ms=j 3~3 (A3 +  /X3+A/X (/X +  A) -a A  (l +  /x2 +  A/x)) (5.14)
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5.2 Geometric M ixture

In a population like India where pre-puberty marriages have been practiced, 
certain proportion of women remain adolescent infertile in the beginning but 
become fecund in subsequent months, there are two groups in the married 
women category;

a) Group A-those who are biologically mature at the time of marriage, 
with proportion a and p.d.f. /j(t )

b) Group B- those who are biologically immature at the time of marriage, 
with proportion (1 -  a) and p.d.f. / 2 (t)

If /  (t) is the p.d.f. of the interval between marriage and first conception, 
among a given group of women not stratified into groups A and B, then

f  {t) — oifi(t) +  (1 -  a) f 2 (t)

Let fi(t) be a geometric distribution with parameter p i.e.

M t ) = p q t~ \ t =  1,2,3... (5.15)

and
t

h  (0  =  5 ^ /4  h  (x )

where / 4 (t/x) is the p.m.f of waiting time from marriage to ovulation and 
h  (0  =  $  (1 — $ ) :r’ ' is the p.d.f. of waiting time from first ovulation to first 
conception

and therefore,

+
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h ( t )
qtp$

( 1 - * )
l -  $

9

/> (< )=
qtp$ 

(1 -  * )

+
/ I — $
V 9

/a (0 =
g‘p4> / I  -  <I>\ [  — 0T-<t>)<

( l - 4 > )
9

_  9^^  [9* ~ (1 ~ $)*] 
/2() 9((9-(l-4>))

f (t) _  [«* -  ( !  "  *)*] 
A ( t ) _  I? - ( ! - » ) ]

f ( t ) =  afi(t) +  (1 — a) / 2 (t)

/ ( ( ) -  <l - “) ( [ , - ^ - j , ) ] )  [«■ -  -  *)1
If p =  <3? then

f a ( t )  =  J * x$(l - $)x 1
X=1

/a (0  =  1 (P9* *) =  P2 9

/a (0 =  P2<9

t—x+x— 1

x= l 1 = 1

1

/ ( * ) =  a /iW  +  ( l - a )  / 2 (t)
f ( t ) =  apqt~1+ ( l  -  a )p 2tqt~ 1

o:pqt~1+  (1 -  a) ( f i= f£ v i)  [ql ~ (1 -  S )‘ ] , P ±  $ 
apqt_1+  (1 — a )p 2tg<_1, p =  $

(5.17)

(5.18)

(5.19)
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5 .2 .1  Param eter Estim ation

To estimate a, p and <I> using the method of moments for A ^  p we get the 

first three moments as follows;

OC s .
First moment—Mi =  V " t i apql~l+ (1 -  a) ( ------— -------  ] In1 _

t i l  1

let (1 -  $) = flr
00 00 /  I \

=  E  +  E  4 -  a ) [9* -  * ‘ ]

(1 -  4>)‘ 

(5.20)

M i  — ap ̂  1 + (1 — a)
t=i

p<E>
[9 - a - * ) ] /  t r

[g4- * 4

Mi =  ap {1 +  2 q +  3q2 +  4q3 +  ...} +  
p$

and

and

0 - -  <*) {  [<? +  V  +  393 +  ....] -  [*  +  2tf2 +  3 * 3 +  ...] }

1 +  2q + 3q2 +  4q3 +  ... =  f  - (q +  q2 +  q3 +  ..) =  -—
d q K (1 -  q)

q + 2q2 +  3q3 +  .... =  q (l  +  2q + 3q2 +  4q3) =  — 2

>2 , oiT/3#  +  24' +  3'I''3 +  ... =
(i  - * r

therefore

Mi =  ap
(i -  ? r

+ (1 -  a) p4> S'
[ < ? - * ] /  1(1 - 9 ) 2 ( 1 - 4 0 S

Mi =
a (1 -  a) f g4> p(l-<f>)

(1 “  9) ' <7- (1 -  $ )  l  P $
+ (5.21)
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Second moment =  M2 =  j S 2 j a p ^ " 1*  (1 -  a ) ( ^  )  W  -  (1 -  $ ) t] J
(5.22)

M2 — ap t2ql l+  (1 -  q )

let (1 -  $ ) =

p4>

t=i [9 - ( i - $ ) ] y  Ê t2 [ « * - * * ]

M2 =  ap { l  +  49 +  992+1693+ ....} +

(x -  “ ) ( [•—  ( f _ 4 > ) ] )  { fa +  V  +  993 +  ....] - [ 9  +  4 * 2 +  9 * 3 +  ....] }

but

l +  4q +  9q2+\6q3+.... =  — (q +  2 q2 +  3q3 +  4q4)

1 +  9

and

Therefore

M2

d(l L(i -  g)2J (1 -  9)3

9 +  492 +993+ ..„  =  9 (1 +  49 +  992+ 16 9 3) =  ^

= ap{(T^} +  ( l - a ) P$ \ 1 9(1 +  g) _  ^ (1 +  ¥) 1
[ ? - ( ! - * ) ] /  l ( l - 9 ) 3 ( 1 - « 0 3 J

,, _ a(!+g) (l-a) fg*(l + g) p̂ (l + ̂ )
2 (1 -  9)2 9 -  (1 -  «>) 1 ( 1 - 9 ) 2 ( l - * ) 2

_  a ( l + 9 )  (1 ~ a) f g$ (2 -  p) _  p ( l  -  $ )  (2 -  $)
2 (1 - 9 ) 2 g -  (1 -  $ )  \ p  ̂ 4>2

and the Third moment

(5.23)

M 3 =  E '+  (1 -  a) fa* -  (1 -  * ) ‘ ] }  (5-24)^
~~ *.

Ms =  o c p ^ q ,- '  +  (1 -  a) ( |9_ (l^ _ t )1 )  £ t 3 [«‘ -  * ‘ ]
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But

M,  =  aP { l  +  8 ,  +  27^  +  ....} +  ( l - „ ) ( 1_ ^ - i j ] )

{ [9 +  8c?2+2792+...] -  [l'+ 8 'I '2+27'I'2-h .] }

l +  89 +  2792 +  .... =  ^  {q +  492+9g3+ }

d_ ( ^(l +  g)) _  1 + Aq +  q2
dq 1 ( 1 -  9) (1 -  qy

and

9 +  892+2792+... =  q (1 +  89 +  27q2 +  ....) =  - - 1 +  4g +  ^
(1 ~  9)

Therefore
(1  +  4 9 +  92 ]

[ + ( ! - < * )  1
(  P* \, (  9 (1 +  Aq +  q2) A/ (1 +  4^  +  ^ 2) )

l  ( 1 - 9 )4 J U 9 - ( 1 - * ) ) J 1 l  ( l - ? ) 4 ( I - # ) 4 J

(1  +  4 9 +  9211 ( ! - « )  1f 9$  (1 +  49 +  q2) pty (1 +  4<P +  ty2) )
l  ( 1 - 9 ) 3 J1 [ 9 - ( l - * ) J  1L p3 4>3 (

M3 =  a

The first three moments are give by

M  _  a , (1 ~ a) f 9$ _  P(1 ~ $ )
1 ( 1 - 9 )  9-  (1 ~ $) 1 P $

_ a (1+9) , (1-cv) (9$(2-p) p(l -  $) (2 -  $))
+  --------------------- « i ---------- )■  “ d

A/f _  /  1 +  49 +  92 ) ,  (1 - a )  (9 $  (1 +  4g +  g2) p'P (1 +  4^ +  ty2)
3 Q l  ( 1 - 9 ) 3 /  [ 9 - ( 1 - $ ) ]  I P3 P~ ~

(5.25)

5 . 3  M odified  Beta G eom etric 

5 .3 .1  T he D istribution

This is a extension of the previous distribution that is taking care of the fact 
that some women conceive prior to the marriage and report to have conceived

70



in the first month of marriage. Letting (1 — /?) be the probability that the 
woman is pregnant before marriage, therefore

t-1

becomes;

/  (t =  1 I 9) =  (1 -  /?) +/3 [6 (1 -  0)1- 1] =  (1 -  /?) +09

and

becomes;

Proof.

f ( t ) =  f  f ( t\ 9) g9d9 
Jo

/ ( ( )  =  ( l - / ? ) + , S ^ ± i ^ f o r r  =  l

f ( t ) = [  ( ( 1 - 0 ) +  00] - J — r 9a- l ( l - 9 )<’ - 1 d9

' w - <* - » /  a lb r1 p "
/ W - d - f l K g ^ j C  * • { ! - » ) * - » *

f ( t )  =  ( 1 - 0 ) + - 0 -B ( a  +  1,0)B ( a J )
■

If the pregnancy was not achieved in the first month, then;

f ( t \ 9 ) = 9 ( l - 9 )t~ 1

becomes;
f ( t  \9) =  ( 3 9 { l - 9 )t~ 1 

and the unconditional distribution of T becomes

/  (t) =  £  (39 (1 -  9)*~1 (1 -  Qf~l d9
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(5.27)

(1 -  9)p~l

t



Therefore

£ / 0B [a +  1, /3 +  t — 1)
/ ( < ) - / ?  B(aJj)  (5.28)

/() = 1 * * ^ , <  =  2 ,3 ,4 .......... )  «5-29>
End

+,
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Chapter 6

Conclusion

The application of stochastic models so far have been confined towards their 
validation to describe the data from different populations and demonstrate 
various estimation procedures to estimate different parameters and there­
after fitting them to data. Earlier works have been confined to mixture of 
geometric distribution with beta distribution since these were the only distri­
butions considered to be in the [0,1] domain, but further research have shown 
more distribution within this [0,1] domain and distributions from mixtures of 
these distributions with geometric distributions has been constructed. How­
ever further work is required on estimating the parameters of these distri­
bution and application to data of birth intervals to test their usefulness to 
this study. Conducting of National Family Health surveys in India and De­
mographic Health Surveys in other countries have certainly opened up new 
areas for exploring the uses of these models. There is need to validate many 
of these models in their original or modified form for different populations 
and prepare comparison of estimates of different parameters of reproduction. 
These models have also been applied to find out the extent of infertility 
among married women after each birth (Postpartum Amenorrhea)

Most of these models are applicable for analyzing reproduction process of 
a cohort of married women but none of them is suitable for studying period 
effects n the biosocial parameters affecting conception and birth intervals.
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