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ABSTRACT
The USA dollar (US$) is the most prominent currency around the world for transactions 

and also as foreign reserves for many Central Banks, for example in 2006, Central Bank 

o f  Kenya had 52% o f its foreign reserves in US dollar currency. The change in the 

strength o f the US$ relative to Kenya shilling (KES) has an impact on many socio­

economic sectors in Kenya. This research focuses on KES against USS daily exchange 

rate returns from 2nd November 2004 to 31s1 December 2010. The Box-Jenkins models 

for time scries assume homoscedasticity in the time series, however the returns exhibits 

stylized facts which can only be well modeled using conditional hctcroscedacity-typc o f 

models. This project considers the application o f Autoregressive Integrated Moving 

Average (ARIM A) models on the exchange rate. The ARIMA (4,1,2) model was fitted 

and its residuals exhibited volatility clustering and hence Generalized Auto regression 

Conditional Heteroscedacity (GARCH) was applied to address these characteristics. A 

quasi maximum likelihood estimation procedure was used and the estimators given. It 

was found that the returns are leptokurtic and have fat tails. GARCH(1,I) were fitted on 

the returns and was found to fit the returns well and its residuals found to be white noise 

and homoscedastic. The one day ahead forecasting are quite good implying that it could 

be used for future prediction on the volatilities o f the returns.
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CHAPTER 1
INTRODUCTION

The sequence o f random Variables { Yt: t = 0, ±1, ±2, ±3...} is called a stochastic 

process and serves as a model for an observed time series. In other words, time 

series is an ordered sequence o f values (data points) o f variables at equally spaced 

time intervals. It is known that the complete probabilistic structure o f such a process 

is determined by the set o f distributions o f all finite collections o f the Y ’s.

Time series is highly applied in economics, marketing, demography among others. A 

time series is made up o f several components which include; trend, seasonal 

variations, cyclic variation and random movements.

The main objectives o f time-series analysis are:

❖ Description. To describe the data using summary statistics and/or 

graphical methods. A time plot o f  the data is particularly valuable.

<* Modelling. To find a suitable statistical model to describe the data 

generating process. A univariate model for a given variable is based only 

on past values o f that Variable, while a multivariate model for a given 

Variable may be based, not only on past values o f that Variable, but also 

on present and past values o f  other (predictor) Variables. In the latter 

case, the Variation in one series may help to explain the Variation in 

another series. O f course, all models are approximations and model 

building is an art as much as a science.

Forecasting. To estimate the future values o f the series. Most authors use 

the terms ‘ forecasting' and ‘prediction’ interchangeably and we follow



this convention. There is a clear distinction between steady-state 

forecasting, where we expect the future to be much like the past, and 

What-if forecasting where a multivariate model is used to explore the 

effect o f  changing the policy Variables.

Control. Good forecasts enable the analyst to take action so as to control 

a given process, whether it is an industrial process, or an economy or 

whatever. This is linked to “ What i f . . . ”  forecasting.

1.1 International role of the US Dollar
The dollar is the most prominent currency in the world. It plays a central role in 

international trade and finance as both a store o f value and a medium o f exchange. 

Many countries maintain an exchange rate regime that anchors the value o f their 

home currency to that o f the dollar. Dollar holdings make up a large share o f official 

foreign exchange reserves, the foreign currency deposits and bonds maintained by 

central banks and monetary authorities. In international trade, the dollar is widely 

used for invoicing and settling import and export transactions around the world1. In 

2009, the dollar assets accounted for about two-thirds o f the reserve assets o f 

industrialized and developing countries.

In 2006 the Central Bank o f Kenya (CBK) held 52% o f its foreign currency reserves 

in US Dollar currency. CBK licenses and monitors activities o f all the agencies that 

do forex trading which include banks, hotels and forex bureaus that are found in 

major towns in the country. The exchange rate is important because it allows the 

conversion o f Kenya shilling into foreign currencies thus facilitating purchase o f 

goods and services from other countries (CBK, 2008).

Most businesses in Kenya such as manufacturing, stock exchange, tourism, 

petroleum who import or export products and services depend a lot on the KES/USS 

exchange rates as it is the accepted global exchange currency. A weak shilling 

makes Kenyan goods and services cheaper in the international market but makes

1 www.voxeu.org/index.php?q=node/4819
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imports more expensive. So exporters benefit while importers lose (i.e. they import 

less goods from abroad). Conversely, a strong shilling makes our goods and services 

expensive in the international market and makes our imports more affordable. In this 

case, importers gain while the exporters lose (CBK, 2008). It’s hence imperative to 

have an excellent time series model to approximate the exchange rate value at a time 

t in the future putting into consideration the prevailing world conditions. With this 

significant share it means that the country's business transactions are pegged on the 

dollar, as any depreciation or appreciation has an impact on the Kenya shilling.

Holmes (2003) found that exchange rate depreciation was inflationary although the 

impact could not prevail over the gains from increased external competitiveness. 

Depreciation reduces the real value o f assets denominated in the local currency and 

increases the real value o f  foreign currency denominated assets. Assuming a constant 

money supply, domestic inflation increases i f  the first effect dominates the second 

effect.

When price change is defined relative to some initial price, it is known as a return. In 

this research we w ill measure change in value o f a portfolio (often referred to as the 

adverse price move) in terms o f log price changes also known as continuously 

compounded returns.

1.2 Determinants of Exchange Rates
Numerous factors determine exchange rates, and all are related to the trading 

relationship between two countries. Exchange rates are relative, and are expressed as 

a comparison o f the currencies o f two countries.

The following are some o f the principal determinants o f the exchange rate between 

two countries. Note that these factors are in no particular order; like many aspects 

o f economics, the relative importance o f  these factors is subject to much debate.

3



1.2.1 Inflation
As a general rule, a country with a consistently lower inflation rate exhibit a rising 

currency value, as its purchasing power increases relative to other currencies. Those 

countries with higher inflation typically see depreciation in their currency in relation 

to the currencies o f their trading partners. This is also usually accompanied by higher 

interest rates.

1.2.2 Interest Rates
Interest rates, inflation and exchange rates are all highly correlated. By manipulating 

interest rates, central banks exert influence over both inflation and exchange rates, 

and changing interest rates impact inflation and currency values. Higher interest 

rates offer lenders in an economy a higher return relative to other countries. The 

impact o f higher interest rates is mitigated, however, i f  inflation in the country is 

much higher than in others, or i f  additional factors serve to drive the currency down. 

The opposite relationship exists for decreasing interest rates - that is, lower interest 

rates tend to decrease exchange rates.

1.2.3 Current-Account Deficits
The current account is the balance o f trade between a country and its trading 

partners, reflecting all payments between countries for goods, services, interest and 

dividends. A deficit in the current account shows the country is spending more on 

foreign trade than it is earning, and that it is borrowing capital from foreign sources 

to make up the deficit. In other words, the country requires more foreign currency 

than it receives through sales o f exports, and it supplies more o f its own currency 

than foreigners demand for its products. The excess demand for foreign currency 

lowers the country’s exchange rate until domestic goods and services are cheap 

enough for foreigners, and foreign assets are too expensive to generate sales for 

domestic interests.
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1.2.4 Public Debt
Countries w ill engage in large-scale deficit financing to pay for public sector 

projects and governmental funding. While such activity stimulates the domestic 

economy, nations with large public deficits and debts are less attractive to foreign 

investors. The reason is that large debt encourages inflation, and i f  inflation is high, 

the debt w ill be serviced and ultimately paid o ff  with cheaper real dollars in the 

future.

In the worst case scenario, a government may print money to pay part o f a large 

debt, but increasing the money supply inevitably causes inflation. Moreover, i f  a 

government is not able to service its deficit through domestic means (selling 

domestic bonds, increasing the money supply), then it must increase the supply o f 

securities for sale to foreigners, thereby lowering their prices. Finally, a large debt 

may prove worrisome to foreigners i f  they believe the country risks defaulting on its 

obligations. Foreigners w ill be less willing to own securities denominated in that 

currency i f  the risk o f default is great. For this reason, the country's debt rating (as 

determined by Moody's or Standard & Poor's, for example) is a crucial determinant 

o f  its exchange rate.

1.2.5 Terms o f  Trade
A ratio comparing export prices to import prices, the terms o f trade is related to 

current accounts and the balance o f payments. I f  the price o f a country's exports rises 

by a greater rate than that o f its imports, its terms o f trade have favorably improved. 

Increasing terms o f  trade shows greater demand for the country's exports. I his, in 

turn, results in rising revenues from exports, which provides increased demand for 

the country's currency (and an increase in the currency's value). I f  the price o f 

exports rises by a smaller rate than that o f  its imports, the currency's value will 

decrease in relation to its trading partners.

1.2.6 Political Stability and E conom ic Performance
Foreign investors inevitably seek out stable countries with strong economic

5



performance in which to invest their capital. A country with such positive attributes 

w ill draw investment funds away from other countries perceived to have more 

political and economic risk. Political turmoil, for example, can cause a loss o f 

confidence in a currency and a movement o f  capital to the currencies o f more stable 

countries. In Kenya during the December 2007-March 2008 a period when the 

country experienced the post-election violence, the KES/USS skyrocketed to the 

highest levels due to the political instability.

1.3 Characteristics of financial statistics
Financial return statistics exhibit the characteristics called the stylized facts. The four 

facts are listed below (Christian Francq, 2010):

1. The mean o f the return series is close to zero.

2. Returns R, are leptokurtic distribution. The empirically estimated

kurtosis is mostly greater than 3

3. The return process is white noise

4. Volatility tends to form clusters. After a large (small) price change 

(positive or negative) a large (small) price change tends to occur. This 

effect is called volatility clustering.

Research into the time series models o f changing variances and covariance is really 

important in the daily volatility analysis. Financial series are characterized by 

clustered periods o f  large volatility followed by periods that have low volatility. This 

idea led to the fact that the clustering can be predicted. Auto Regression Conditional 

Heteroscedacity (ARCH) by Engle (1982) and Generalized Auto Regression 

Conditional Heteroscedacity (GARCH) by Bollcrslev (1986) models are very good 

at predicting this volatility than the conventional statistical methods. In these 

models, the key concept is the conditional variance. In the classical GARCH models, 

the conditional variance is expressed as a linear function o f the squared past values 

o f  the series. This particular specification is able to capture the main stylized facts 

characterizing financial series.
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Reliable estimates and forecasts are important for large credit institutes where 

volatility is directly used to measure risk. Smith et al. (1990) found that volatility in 

prices has implications on the profits and survival o f business enterprises as most 

industries depend on imports and exports. In economics, factors have some 

forecasting capabilities; the most important factors have been lagged endogenous 

return. The classics linear AR7 ARIMA processes nor non-linear generalization can 

fu lfill this task, but by use o f GARCH model that can replicate stylized facts 

appropriately (Jurgen Franke, 2008) as it provides an accurate assessment o f 

variances and covariances through its ability to model time-varying conditional 

variances.

It is with these stylized facts that I want to investigate on the exchange returns since 

they have a great implications to the Kenyan economy.

Picture I: Exchange rate chart
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This electronic chart picture was taken at Leo Foreign Exchange Bureau (LI B) in 

Mombasa town on 3rd may 2011 indicating the KLS against other international 

currency rates o f exchange.

1.4 Problem Statement
Assume we have observations of a financial time series ol KES/USS

and in this research we are interested in formulating a function o f the observed data
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say, f(Y ,s) that would help us model us do predictions, such that the time series can 

be represented by

W O : - )

where / ( ^ _ , )  is a smooth function containing an error term function.

From the literature review, financial time series returns exhibit negative 

skewness and have excess kurtosis such that the function / ( K , , )  is

heteroscedastic and cannot be modeled assuming normality.

1.5 Research Objectives
Given the function)^ = / ( ^ _ , ) ,  t e Z  , the objectives o f the research are:

a) To estimate / ( ^ _ , )

b) To estimate the parameters o f / ( ^ _ , )

c) To find the properties o f the parameters

d) To perform model diagnostics

e) Test model for forecasting

1.6 Purpose of the research
The main purpose o f  this research is therefore to forecast the KES/USS exchange 

rates return’s and volatilities by using time series and GARCH(I,1) approach. By 

coming up with a mathematical model that can predict the returns in the future, 

many banks and other stakeholders would strategically know when to trade to 

maximize their revenues.

1.7 Significance of the research
The research looks at two time series components in the KES/USS exchange rate; 

the exchange rate prices and the volatility using the daily returns. By forecasting the 

returns at a day, t + k in the future, the forex players would be able to predict the 

returns and hence avert the losses.
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1.8 Scope
This study is uses ARIMA-type modelling for the exchange rate and GARCH (p,q) on 

historical data to measure volatility.
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CHAPTER 2
LITERATURE REVIEW

There are several methods used in time series analysis such as Auto regressive 

process (AR), Moving Average (MA), Auto regressive Moving Average (ARMA) 

and Auto regressive Integrated Moving Average (ARIMA).

ARIM A models have been used for forecasting different types o f time series and 

have been compared with a benchmark model for its validity. Leseps and Morell 

(1977) in their study found that the exchange rate follows a long-term trend with 

short-term fluctuation. Therefore, to capture the long term trend, many authors had 

used ARIM A model as proposed by Box-Jenkins (1976), to forecast the exchange 

rate.

Chen (1995) introduced a new pre-differencing transformation for the AR IM A 

model for forecasting Standard and Poor's (S&P 500) index volatility. The out o f 

sample forecasting performance o f the AR IM A model using the pre-differencing 

transformation was compared with the out o f sample forecasting performance o f the 

mean reversion model and the GARCH model. The ARIMA model using the pre- 

differencing transformation introduced in this study was found to be superior to both 

the mean reversion model and the GARCH model in forecasting monthly S&P 500 

index volatility for the forecast comparison periods used in this study.

Madura, et. al (1999) assessed the forecast bias and accuracy o f the three commonly 

used forecast methods for 12 divergent emerging market currencies. The random 

walk method outperformed the forward rate and ARIMA methods for some 

emerging market currencies, and was not outperformed by these alternative methods. 

In general, it appears that the incorporation o f expectation components by the 

implicit forward and ARIMA methods do not improve the forecast, and actually 

reduce forecast accuracy in some cases.
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Lim and McAleer (2002) used various AR IM A models over the period 1975(1)- 

1989(4) for tourist arrivals to Australia from Hong Kong, Malaysia and Singapore. 

The fitted ARIMA model is found to be valid when tourist arrivals were forecasted 

for Singapore for the period 1990(1)-1996(4).

In the Indian context, Mahadevan (2002) found that while forecasting 10 year 

government securities yield, ARIMA had a marginally better directional accuracy 

than that o f the moving average model in a static forecast, whereas the lagged 

moving averages for 10-year government securities outperforms ARIM A model in 

dynamic forecasting.

The ARCH and GARCH (p,q) model was originally introduced by Bollerslev (1986) 

and Engle (1982) in order to model the fluctuations o f the variances o f the time 

series data. To model returns ARCH and GARCH have been touted to be the best 

due to heteroscedastic nature o f the daily returns. Financial time series have 

volatility clustering effect and hence conditional heteroscedastic based models are 

being used to develop a more robust model for forecast. The literature shows that 

attempt has been made to forecast the returns or the volatility o f  returns using 

conditional heteroscedastic-based models. Engle suggests ARCH and GARCH 

provide better forecasts o f variance.

Kearns and Pagan (1991) examined monthly volatility o f the Australian stock market 

over the period 1875-1987, and fitted ARCH and GARCH models to the data. It was 

found that the GARCH (1,1) model outperformed the ARCH model for forecasting 

the volatility o f the returns.

Brooks and Lee (1997) used ARCH/GARCH models to investigate Australian 

financial futures data. The extent to which the parameters o f the models change over 

time, were examined by analyzing the data. I he results vary over lime and simple 

models such as the ARCH (1) model provides a reasonably good fit to the data.
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I abak and Guerra (2002) examine the relationship between stock returns and 

volatility over the period o f  June 1990 to April 2002. The relationship between stock 

returns and volatility is tested using seemingly unrelated regressions methods and 

AR (l)-GARCH (1,1) estimation. They conclude that using both a seemingly 

unrelated regressions (SUR) methodology and an AR (l)-GARCH (1,1) estimation 

changes in volatility are negatively related to stock returns.

Radha et. al (2008) applied ARMA, ARIMA-GARCH and Random Walk models 

on the short-term interest rates forecasting. The results indicate that the short-term 

interest rates do have volatility clustering effect in the time scries and this captured 

by the GARCH model. Moreover, the ARIM A and random walk model developed 

were not a good fit. The comparison o f the models for forecasting Short-term interest 

rates - Implicit Yield on 91 day Treasury bill, call money and overnight MIBOR 

show that ARIMA-GARCH is an appropriate model for forecasting.

Maana et al (2010) applied GARCH (1,1) in the estimation o f volatility in the 

Kenyan foreign exchange market data for the period 1993 - 2006. Exploratory 

analysis showed that the exchange rates are leptokurtic and slightly positively 

skewed. This implies that the exchange rate depreciation was preferred during the 

period, probably to ensure that Kenya’s exports remained competitive. The 

GARCH( 1,1) fitted the returns well.

A key role is played by forecasts o f exchange rate variability is key for businesses as 

they reduce uncertainty concerning future changes in prices o f individual currencies. 

Correctly constructed forecasts enable currency market participants to gain proceeds 

from speculative or arbitrage investments, and are also used in the process o f 

currency risk management, by extension, better measures o f Value at Risk (Engle, 

2001).

Yu (2002) evaluated the performance o f nine alternative models such as the random 

walk, historical average, Moving average, Simple regression, exponential
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smoothening, exponentially weighted moving average, ARCII and GARCH. He 

concludes that the (i) ARCH-type models can perform well or badly depending on 

the form chosen; (ii) the performance o f the GARCH(3,2) model, the best model 

within the ARCH family, is sensitive to the choice o f assessment measures; and (iii) 

the regression and exponentially weighted moving average models do not perform 

well according to any assessment measure, in contrast to the results found in various 

markets.

In the chapter 3 we w ill explain how to adopt ARIMA-type models to come up w ith 

the model for the exchange rates and use GARC H procedure in the estimation of 

volatility o f the KES/USS exchange rates spanning the period 2 nd November 2004 to 

31s1 December 2010.
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CHAPTER 3
METHODOLOGY

3 .1  Data
To achieve the goal o f  the study, the data o f  daily average exchange rate o f Kenya 

Shilling versus US dollar, are taken for 1531 trading days. The daily data is taken 

from the Central Bank o f Kenya’s website www.centralbank.20.ke for the period 2nJ 

November 2004 to 31s' December 2010, that’s from Monday to Friday only on 

trading days. For simplicity, we w ill analyze the data as i f  they were equally spaced.

The choice o f  the US dollar currency was based on their relative proportions in the 

Bank’s foreign exchange reserve portfolio.. The currency composition o f Kenya's 

imports comprised about 52% in US dollars in December 2006 (CBK, 2006).

3 .2  Statistical software
To analyze the data We w ill use R statistical software. The software is chosen 

because o f  its wide application and acceptance in the field o f Statistics and 

Econometrics.

3 .3  Model building for the exchange rates
3.3.1 Introduction  to time series

In this research We w ill first graph the trend for the period mentioned. We will then 

give a description o f  the results based on the occurrences in Kenya in the period, to 

model using time series data, the series has to be stationary to give robust results and

predictions.

14
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Time series are either stationary or non-stat ionary, in the case o f stationary a time series 

is stationary i f  there's no systematic change in the mean i.e. no trend or there's no 

systematic change in the Variance. A time series is strictly stationary i f  the joint 

distribution o f Yl t YlitY , y tYlm is the same as the jo int distribution

ofYt +h,Y,,.h,Ylx+h,'“ ,Y, „*and /ibeing the distance between the observations. In other

words shifting the time origin by an amount h has no effect on the joint distribution 

which must only depend on the interval between/,,/2 ...,/„. That means that for instance

i f  h= l, the distribution o f X , must be the same for all values o f/ i.e. the mean p,=p and 

a,2=CTt, both constants don’t depend on /.

To test for stationarity we w ill use the Autocorrelation coefficient functions (ACF) 

and Partial Autocorrelation functions (PACF) graphs. I f  the ACF is decaying 

exponentially, it implies that the data series is not stationary. However this w ill be 

formally tested by using the Augmented Dickey-Fuller (ADF) test for stationarity. 

ADF tests to determine whether a time series is stationary or, specifically, whether 

the null hypothesis o f a unit root can be rejected.

Consider the model Yt =cxYl_l + X, for / = 1,2,... Where {X,] is a stationary 

process, the process {T,}is non-stationary i f  the coefficient a = I but it becomes 

stationary i f  abs[a)<  1. Suppose that {A',} is an AR(k) 

process: X t =<f>]Xl_] +••• + 0*X,_k +e, . Under the null hypothesis 

that a  = \ ,X t =YI-Y l_r  Lettinga = a -1 ,  we have

Yl -Y l,= (a -\ )Y I_ ^ X I
-aY,_x + ^ _ ,  +*•• + & *,_* +e,

= a r,-,+ t,(r ,.l - y , - , ) + - + A ( K - . - r ,

Test statistic is basically a t-statistic

(3.1)
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Hypothesis tested is

Ho: o = 0 (the data is not stationary (unit root))

Hi: a < 0 (the data is stationary (no unit root))

Decision rule:

I f  t*  > ADF critical value, we do not reject null hypothesis, i.e., unit root exists.

I f  t*  < ADF critical value, we reject null hypothesis, i.e., unit root does not exist.

This w ill call for differencing i f  it is found that P-  value >a = 0.05 then we 

conclude Ho that the data is not stationary.

This w ill now call for first-order differencing o f  logarithms o f  the data. This is first- 

order differences are same as calculating the compounded returns or log returns in 

finance.

This transformation w ill make the data stationary.

There are several models that are employed in time series analysis, namely: Auto 

Regressive (AR), Moving Average (MA), Auto Regressive Moving Average 

(ARMA), and Auto Regressive Integrated Moving Average (ARIMA) among others.

We’ ll discuss them briefly in the following subsections.

3.3 .2  Autoregressive m odel (AR) model 
The notation AR (p) refers to the autoregressive model o f order p. The AR (p) model 

is written

X, = a , * , . ,  +  a 2X,_v + e, ( 3.2)

Where e, -N (0, a2) and i.i.d., a , are the parameters o f the model.

Some constraints are necessary on the values o f the parameters o f this model in order 

that the model remains stationary. For example, processes in the AR (1) model with 

|cp 11 > 1 are not stationary.

The simplest o f  the A R process is when p = l i.e. AR ( I )
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i f  abs(6l)< 1

The properties ofAR( l )  process: £ ();) = 0

I - 0 2

Corr(YiyY'_t ) -  pk if abs(0t)<\,k>0

3 .3 .3  Moving Average (MA) m odel

The notation MA (q) refers to the moving average model o f  order q:

Y, = P0e, + A*,-. +..+Pqe^  + e,
Where /3i 's are the parameters o f the model, p is the expectation o f Y t (often 

assumed to equal 0), £l are white noise error terms and Var(Y,) = cr

3 .3 .4  Autoregressive Moving Average model
The notation ARMA (p,q) refers to the model with p autoregressive terms and q

moving average terms. This model contains the AR(p) and MA(q) models,

y, =  O f,I'm  +  0C2Y,_2 +  ■■ ■■ ■• +  a pY +  pxe,_, +  P2e,_2 +  • • • +  +  e,

(3.3)

(3.4)

Where e, ~ (0,1), p, q > 0 are integers and p, q are the order o f the model.

3.3 .5  Auto-Regressive Integrated Moving Average 

(ARIMA)
AR1MA models are, in theory, the most general class o f models for forecasting a 

time series which can be stationarized by transformations such as differencing and 

logging. In fact, the easiest way to think o f ARIM A models is as fine-tuned versions 

o f random-walk and random-trend models: the fine-tuning consists o f  adding lags o f 

the differenced series and/or lags o f the forecast errors to the prediction equation, as 

needed to remove any last traces o f autocorrelation from the forecast errors.
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Lags o f  the differenced series appearing in the forecasting equation are called "auto­

regressive" terms, lags o f the forecast errors are called "moving average" terms, and 

a time series which needs to be differenced to be made stationary is said to be an 

"integrated" version o f a stationary series. A non-seasonal ARIM A model is 

classified as an "ARIM A (p,d,q)" model, where:

• p is the number o f autoregressive terms,

• d is the number o f non-seasonal differences, and

• q is the number o f lagged forecast errors in the prediction equation.

For an ARIMA{p,d,q)

is a non-stationary ARMA (p,q). AJYI = Wt

W , = t < 3 5 >

For d = 1

Or in other terms,

v - k , - « + •  • <3-6)

To identify the appropriate ARIMA model for a time series, we begin by identifying 

the order(s) o f differencing needing to stationarize the series and remove the gross 

features o f  seasonality, perhaps in conjunction with a variance-stabilizing 

transformation such as logging or deflating. If you stop at this point and predict that 

the differenced series is constant, you have merely fitted a random walk or random 

trend model. However, the best random walk or random trend model may still have 

auto correlated errors, suggesting that additional factors of some kind are needed in the 

prediction equation.
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\Ke w ill develop a multistep model-building strategy espoused so well by Box and 

Jenkins (1976). There are three main steps in the process, that is; Model 

specification (or identification), Model fitting, and Model diagnostics.

I o determine the order o f the exchange rates time scries, we follow the steps below;

Step 1: Examination oftime-series plot

T he first step is to produce a time-series plot; namely, to plot X, against i 

and examine the plot to identify obvious trends, seasonal components, and 

outliers. We shall there by conduct tests on the data to ascertain i f  the series 

is stationary using the Augmented Dickey Fuller (ADF) test. These 

components should be removed through differencing or other appropriate 

methods.

♦> Step 2. Examination o f correlogram

Trend and seasonal components may show up in a correlogram (i.e., the plot 

o f sample ACF pk against k ). A slowly damping correlogram is indicative o f 

a slowly varying trend component. A periodic fluctuating correlogram is 

indicative o f a periodic component (with the same period). Taking the 

difference at appropriate time lags may remove those non-stationary 

components.

•> Step 3. Determining the MA-order from the ACF and the AR-order from the 

PACF

I f  the data appear stationary in both the time-series plot and correlogram, we 

may try to identify the order (p,q) from the sample ACF { p (k )}  and the

sample PACF { f l  (k)} first. As a rule o f  thumb, we fit an AR (p) model to 

the data i f  |n , | ^  1 96/V/? for about 95% o f k's among all k>p and n is the

sample size. Below are the classical characteristics o f ACF and PACF o f 

ARMA-type o f models.

19



Table I: Characteristics o f ACF and PACF
Behavior of theoretical ACF and PACK for stationary process

Model ACF PACF
MA(q) Cuts o ff after lag q Exponential decay 

and/or damped sinusoid

AR(p) Exponential decay and/or 

damped sinusoid

Cuts o ff after lag p

ARIMA(p,q) Exponential decay and/or 

damped sinusoid

Exponential decay 

and/or damped sinusoid

Step 4. Determining the orders using AIC, AICC or BIC. Each method has its 

own merit. A practically relevant question is when to use what, although a 

general answer to this question is inconceivable. The choice should depend 

on the nature and the aim o f the data analysis. Empirical experience suggests 

that AIC is a good starting point. AIC is defined as

AIC = -2  * log - likelihood + 2p (3.7)

An alternative widely used criterion is the Bayesian Information Criterion 

(BIC) which essentially replaces the term 2p in the AIC with the

expression p + p\n N .

Hence BIC is

BIC=-2 * log- likelihood + p{ 1 + In N) 

The corrected AIC i.e. AICC

AICC = AIC +
2 (*  + l) ( *  + 2)

n - k - 2

(3.8)

(3.9)

Where n is the sample is size and k is the total number o f  parameters 

excluding the noise variance.

So far ARIMA-type models concern with the conditional mean structure of time 

series data however; there are cases where there exist inconsistencies between the 

data and after basic transformations. For example, squaring the residuals of the data
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or e\en taking the absolute values, we expect the ACFs o f the data to remain 

insignificant but any deviations from this would imply the data exhibits high order 

dependency in its structure. 7o counter this we’ ll test for conditional heteroscedacity 

using McLeod and Li test o f the squared residuals fitting the ARIMA-type model 

after the transformations, i f  the test is significant we reject the absence o f conditional 

heteroscedacity.

3 .4  Model building for the returns
Returns are defined by

Where { Y} are the exchange rates at the respective times.

(3.10)

Now, i f  we have many periods, say, N, in one time interval (i.e. 12 months in an 

interval o f one year) then the total return o f the entire interval is simply the sum o f 

all the individual period's returns, i.e.

Z
N N f Y - Y  '-*/ l!-\

)
(3.11)

However, what happens i f  we start to slice time into smaller and smaller intervals. 

Say, we start slicing time (one year) into minutes, seconds, nanoseconds and so on 

until we get to the mathematical definition o f an infinitesimally small interval o f 

time. We are now talking about the limit when delta t (the smallest measurable unit 

o f  time) goes to zero. Mathematically speaking, we sayA /->0 . In the limit, the 

above expression for return w ill reduce to:

n A_K

Y

In the limiting case i fA / -> 0 ,  then A T -^ T a n d  the summation sign w ill get 

replaced by an integral. Therefore, the expression for the return (dropping the 

subscript for time) becomes:
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(3.12)

In this research therefore we w ill model the returns as indicated in equation 3.12.

Conditional heteroscedastic models are the econometric tools used to estimate and 

forecast asset returns volatility. In this research we w ill consider the application o f 

the GARCH (1,1) process in the estimation o f  volatility in the exchange rates. We 

w ill apply a quasi-maximum likelihood estimation (QMLE) procedure and w ill come 

up with asymptotic properties o f its estimators. We w ill carry out exploratory data 

analysis to the data to come up with the underlying structure o f the data series.

The GARCH (1, 1) is the most robust o f the family o f volatility models. GARCH 

models have been applied to a wide range o f time series analyses, but applications in 

finance have been particularly successful and have been the focus o f  this 

introduction.

3.4.1 GARCH
In that case, the GARCH (p,q)  model (where p is the order o f the GARCH terms 

a 2 and q is the order o f the ARCH terms R2) is given by

The lag length p of a GARCH (p,q)  process is established in three steps: 

1. Estimate the best fitting AR(q) model

(3.13)

(3.14)

(3.15)
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2. Compute and plot the autocorrelations o f e' by

P = (3.16)

3. The asymptotic that is for large samples standard deviation o f p(i)  \s\/\fn .

Individual values that are larger than this indicate OARCH errors. To 

estimate the total number o f lags, use the Ljung-Box test until the value o f 

these are less than, say, 10% significant. The Ljung-Box Q-statistic follows 

X2 distribution with n degrees o f freedom i f  the squared residuals e 2 are

uncorrelated. It is recommended to consider up to T/4 values o f n. The null 

hypothesis states that there are no ARCH or GARCH errors. Rejecting the 

null thus means that there exists such error in the conditional Variance.

3.4 .2  Estim ating o f  GARCH parameters by Quasi 

M aximum Likelihood
A GARCH, model with orders p > I and qZ 0 is defined as

R, =  <y,z,

and

a? = 0 ,(6?  = c + £  b,R ,l + L atf-/
“  I 7->

(3.17)

(3.18)

where c>0, bt ^Oand o l >0are unknown parameters, 0 — (c,6|,62 ...,b/1>Q̂ y...yct̂ ) , 

zt ~ A^(0,1) and zt is independent o f [X,_k,k >1, V/} (Christian Krancq, 2010). 0

belongs to a parameter space o f the form© c  (0,+co) *(0,oo)/
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1 he distribution o f Rt is unknown. When q = 0 , reduces to an ARCH model. The 

necessary and sufficient condition for above equation to define a unique strictly

stationary process {X t = 0, ±1, ±2,- • with E(X? )<oo is that X ^ , + X a / <]
>■1 /•!

Where E(X, ) = 0 and Var(X,) = c /j I -  X  b, + X  a j 

Under the condition cr,2 2<7,(0)2may be expressed as

<r, 0?)2 =  -n—  + X  btf-t + £ * < Z £ * *  j

y-i

Where the multiple sums vanishes i f  q = 0

<■' *-• Jx h

The true value o f the parameter 6 is unknown and is denoted by

To write the likelihood o f the model, a distribution must be specified for the i.i.d. 

variables q,. Here we don’t make any assumption on the distribution o f these 

variables, but we work with a function called the (Gaussian) quasi-likelihood which 

conditionally on some initial values coincides with the likelihood when the qt are

distributed as standard Gaussian. Given initial values ” ’S^p to

be specified below, the conditional Gaussian quasi-likelihood is given by

4 ( 0 ) = 4  (g-,e„e2, - s . )  = n  7 ^ 7  exP

where £,2are recursively defined for / > 1 by

<j2 = cr, {Of = c + X  +X!
/-i /-i

(3.19)

(3.20)

(3.21)
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For a given value o f 0, under the second-order stationary assumption, the 

unconditional variance corresponding to 6 is a reasonable choice for the unknown 

in itia l values:

R0 S — SSK , S^ ! = — = o l pmC 

A Q M LE is defined as measurable solution o f the equation

„̂ = argmin I „{(/>)
#C0

Taking the logarithm, it is seen that maximizing the likelihood is equivalent to 

minim izing with respect to 0,

n /=i

r 2
Where /' = / (0 )  = —y  + logo,2

The choice o f the initial values is unimportant for the asymptotic properties o f the 

QM LE, however in practice this choice may be important.

Note that other methods are possible for generating the sequencer; ; for example,

/-i
by taking cr2 = co(0) + (^)^-<  where the c/(^ ) are recursive,y computed.

!=\

Note that for computing / „ (# ) ,  this procedure involves a number o f operations o f 

order n2, whereas the one we propose involves a number o f order n . It w ill be 

convenient to approximate the sequence 1,(0) by an ergodic stationary sequence. 

Assuming that the roots o f /?0(z)are outside the unit disk, the non-anticipative and 

ergodic strictly stationary sequence ( c r ; = (a 2 (0 )} is defined as the solution o f

(3.22)

(3.23)

(3.24)
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(3.25)

Where Z* is a set o f positive integers.

=c + '£,btR12_ + '£ a Jo l J , V /€ Z

3 .4 .3  Model identification
As defined in equations 3.7,3.8 and 3.9 AIC, BIC and AICC are used to select the 

appropriate model. However, empirical evidence, according to Bollerslev et al. 

(1992), has shown that whilst relatively long lags are required in ARCH models, the 

GARCH (1, 1) is usually adequate in describing many financial time series. This 

paper has adopted the latter one. So we select the model with the least combination 

o f  the Information Criterion statistic.

To test for dependence in the data we use the sample auto-correlation function. 

Consider any sequence o f  data Yv Y2,...,Yn then the autocorrelation function rk for a

variety o f lags k = 1,2,... is calculated as

I ( y , - r ) ( r , - > - r )
(3.26)

for k = 1,2,...

So we a plot o f  pk versus k is often called the auto-correlogram. However, ACF is

not as useful in the identification o f the order o f an AR (p) process for which it ill 

most likely have a mixture o f  exponential decay and damped sinusoid expressions.

Partia l Autocorrelation Function (PACF)

The PACF between y, and y,_k is the autocorrelation between y, and y,_k after 

adjusting for •
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(3.27)

Where
* -i

pk -  Z  +t-\ .,pk-,
K  = --------r r r ------------------

1 -  Z  ^> -i.,P i-)
y-i

w/iere ^  = 0 ,_ , y -  f  ̂  0 4_M _ y , j  = 1 ,2 ,— , *  -  1.

3 .4 .4  Tests to be conducted
Testing for autocorrelation-Ljung-Box test

Ljung-Box test is performed to test whether series have significant autocorrelation or 

not;

The hypothesis is;

Ho: data are not correlated.

H i: data are correlated (not random).

Ljung-Box test statistic for a number o f tested lags is

Q(k) = N(N +

where N is the sample size, p,2 is the sample autocorrelation at lag h.

Null hypothesis is rejected at a%  significance level i f  . where x\-o*

is a a  -quantile o f the chi-square distribution w ith k degrees o f freedom

Testing for Normality o f the data

Some o f the stylized facts are determined by measuring the third and fourth 

moment’s i.e. skewness and kurtosis respectively.

(3.28)
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v  Skewness is the ratio o f the third order moment and is defined as

T E ( y - f b f
—

*♦* For normality assumption, 5 = 0, and kurtosis is a ratio o f the fourth order 

moment, which is assumed to exist to the squared second-order moment and 

is represented as

<*t*

And under normality assumption, k = 0

❖ QQ plots: It tests for normality and the randomness o f the data, we use the 

QQ plots are used. Normality can be checked more carefully by plotting the 

so-called normal scores or QQ plot. Such a plot displays the quantiles o f the 

data versus the theoretical quantiles o f  a normal distribution. With normally 

distributed data, the QQ plot looks approximately like a straight line and 

hence the values arc expected to fall along or close to the line otherwise the 

data isn’t.

*  Shapiro-Wilk’s test: It essentially calculates the correlation between the 

residuals and the corresponding normal quantiles. I he lower this correlation, 

the more evidence we have against normality alternatively, it p — value > cx

we reject the null hypothesis.

Conditional heteroscedacity effects test

To test for ARCH effects, we'll conduct a

•> McLeod and Li test o f  conditional heteroscedacity o f the data, the test

statistic is given by

/ # ( * 2)
Q = S ( N + 2)l

(3.29)

(3.30)

(3.31)

28



(3.32)

❖ Box-Ljung test with the squared residuals, the test statistic is given b>

Where N= sample size, L= the number o f autocorrelations included in the statistic, 
and rl is the squared sample autocorrelation o f residual series {e, j at lag k. Under 
the null hypothesis o f model adequacy, the test statistic is asymptotically 
X ' ( L - p - q )  distributed.

In this the null hypothesis is the absence o f the conditional heteroscedacity. If 

p — value <0.05 we reject the null hypothesis and conclude the presence o f the 

effects.

3 .4 .5  Forecasting using GARCH (1,1)
Predictions using GARCH (1, 1) model can be made by repeated substitutions. First, 

we prov ide an estimate for the expected squared residuals:

Given that R, = In and that

}^ -G tZt\ Zt ~ A f(0,l) and cr, is the standard deviation

o f the data.

More so

£ ( * , )  = o
Vctr(R,) = a ]

(3.33)

And we know that

And we assume that the probability distribution function (pdf) of R, is

(3.34)

approximately normal

(3.35)
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We can say

E 1 ° ' ] = E  (a » + a 'R< + ^|£7'- ')
= a 0 +  a ,£ (A , : ) +  /? ,(< r,l,)

This implies

£ (c r ;)  = a 0 + (a| +/?,)£(<x,!.1)

a o = [ l - ( a i +  A ) ] £ ( f f i - i )

We can say that the long run variance of a G ARC H( 1,1) converges to

«o
1 - a , - A

The conditional variance ct,2 and 1-step ahead forecast is known at tim er :

Using the fact that £ ^ ct2+] J = cr/+1 we obtain

<t,2+2 = a 0+ a 1̂ 2+1 + A ^ i  = «o+ (« .

Similarly,

ct,2,2 =  ^ + ( 0 ,  + / ? , ) ct2 , = « „  + « o ( a ,  + A ) + ( « i  +  A ) 2‘£ i

= a„ + a 0(a, + A ) + a0(a, + A  )’ ♦(«> + A )’ [<*. A* + / W  ]

Therefore, considering forecasting horizon r  , we have

* 1 = __^ — - + ( a ,  + [ « , * , '  + / W 1 ]

Moreover, i f  a, + A  < ' <he forecast w i"  “ nvergC ‘ ° ,he uncondi,ional varianCe “  

indicated in equation 3.37 above.

(3.36)

(3.37)

(3.38)
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(3.39)a.2
a r

l-(a, + A)

The same reasoning may be applied for GARCH models o f higher orders allo\\ ing 

us to compute multistep ahead forecasts.

In the next chapter we will analyze the data based on this methodology.
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CHAPTER 4
RESULTS AND DISCUSSIONS

4 .1  Exploratory data analysis
T he exchange rates indicated are represented by the following relationship

w $ =A
KSh

(4.1)

Where X is the daily average exchange rate.

Because o f  the inverse relation, i f  the exchange rate increases it implies the KES has 

depreciated and vice versa. The trend o f the exchange rate is shown in figure 1 

below.

Figure 1: A time plot the daily average KES/USS exchange rates
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The time plot easily shows that there was a general strengthening Kenya shilling 

from Jan 2005 to Dec 2007. This was attributed to the socio-economic reforms and 

transformation as a result o f  the NARC government headed by President Mwai 

Kibaki which came to power in the year 2002 on the platform o f economic growth 

and zero-tolerance on corruption which made the major development partners and 

donors have great confidence in the country. Indeed the period 2003-2007 witnessed 

high economic growth rates in the country. The period from around January 2008 

shows a weakening o f the Kenya shilling that is seen w ith in the weakening o f the 

KES in the rates in the first 3months o f 2008. indeed this was the period when the 

country faced post election violence that paralyzed the country’s economic activities 

after the disputed 2007 general elections. Once the coalition government was formed 

in the 1sl quarter o f 2008, the KES strengthened again.

There was weakening o f the KES from May 2008, indeed this period was w hen the 

world faced the global financial crisis that highly affected the financial sectors in the 

USA, UK and Germany and many other countries around the world. Thereafter there 

is a steady weakening KES up to around January 2009.from about mid-2009, the 

KES strengthened up to late 2009 when it weakened till January 2011.

In table 2 indicates the basic descriptive statistics o f the exchange rates. The 

exchange rate are negatively skewed, this is also explained in the case where median 

is greater than the mean. Kurtosis is less than 3.0 implies platykurtic and hence the 

curve is flatter than the normal distribution bell curve.

Table 2: The descriptive statistics o f the KES/USS exchange rate

Standard Deviation 5.19

Mean 73.70

Median 74.68

Skewness -0.44

Kurtosis -0.699
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I lie QQ plot indicates that indeed the rates are not normally distributed as 

emphasized in the Shapiro test for normality.

Figure 2: QQ plot o f the exchange rates

Normal Q-Q Plot

The figure 3 below indicates that the ACF are decaying exponentially, this indicates 

that the rates are not stationary. For us to do any model fitting on a time series we 

need to stationarise the rates. In this case we difference to gain stationarity.

Figure 3: ACF and PACF for the rates
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The appropriate AR and MA terms are identified for each o f the exchange rate using 

the ACF and PACF, which indicates the significant lags for the MA and AR terms. 

Looking at the daily exchange rates means, the ACF is decaying exponentially and 

the PACF exhibit damped sinusoid. Using this empirical analysis, the prices exhibit 

AR(p) and MA(q). We shall formally therefore conduct ADF test for stationarity 

a -  0.05 significance level.

The hypotheses are;

Ho: The data series is not stationary 

H i: The data series is stationary

We shall reject the null hypothesis i f  the p-value < 0.05 and accept the alternative. 

In the analysis the ADF=-2.1055,p-value = 0.5336 hence we accept the null 

hypothesis and conclude that the data is indeed not stationary.

This calls for a transformation that would make the data stationary; in this case we 

take first order difference o f the natural logarithms of the exchange rates and is 

determined as

Where Y: is the exchange rate on day t and Y,_x is the rate on the pre\ ious trading 

d a y / - l .

The equation 4.2 also is used in the calculation o f compounded returns or simply 

called returns.

This transformation gives the time plot output in figure 4 below. In the time plot we 

now see the volatility clustering phenomena i.e. the shocks are not uniform 

throughout, hence introducing the heteroscedastic characteristic o f financial time

series.
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Returns

We can conduct an ADF test again to check i f  the log-differencing has made the 

series stationary. The test indeed indicates ADF = -10.2248, p-value < 0.05

implying the time series has become stationary. We can confirm this ADF test by 

plotting the ACF and PACF o f the log-differenced data. The ACF stabilizes, indeed 

after the differencing the ACF and PACF on differencing once are shown in figure 5 

below indicating that the data tends to stabilize after the single differencing o f the

logs.

Figure 5: ACF and PACF o f the returns
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We then investigate the descriptive statistics, and are shown in table 3 below.

Table 3: The descriptive statistics o f the returns

Standard Deviation 0.006

Mean 0.000( approx.)

Median 0.000( approx.)

Skewness 0.077

Kurtosis 18.122

The results indicate that the mean is approximately zero, skewness indicates a near­

normal distribution i.e. approximately zero but then kurtosis is > 3 indicating 

leptokurtic characteristic. And on running a Shapiro-Wilk’s test o f normality indeed 

we get W -  0.7609,/? < 0.05 and hence conclude that the returns are not normally 

distributed. A ll these have been identified in literature review to be the main 

characteristics o f financial time series data returns.

Once we have established that the data is now stationary, we can now start the 

process o f  identifying the parameters, we will attempt to fit an ARIMA model.

4 .2  Exchange Rates Model Estimation
Using several combinations o f  ARIMA model’ s for the analysis, the parameters 

that have the least AIC,AICC and BIC are for ARIMA(4,1,2) and have the output I

below.

Output 1: The ARIM A analysis result

Series: prices [, 2]
ARIMA (4,1, 2)

Coefficients:
arl ar2 ar3 ar4 mal ma2
0.0815 0.6229-0.0776 0.2096 -0.0146 -0.7862 

s.e. 0.0686 0.0666 0.0250 0.0252 0.0669 0.0645 
SigmaA2 estimated as 2.898e-05: log likelihood = 5822.33 
AIC = -11630.66 AICc = -11630.58 BIC = -11593.33
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And as A R IM A  model defined in equation 3.5, the equation no* becomes.

R, =0.0815/?_1+0.6229/?_2-0.0776/?_3-0 .20 96 /^  +et +0.0146e ,+0.7862£'

Before using the model for forecasting, it must be checked for adequacy. On doing 

the diagnostics, the figure 6 below shows that the ACF and PACF o f the residuals 

are generally not significant.

e II formally test for autocorrelation as a group by applying the Ljung-Box test. 

The hypothesis are;

Ho: The residuals arc uncorrelated 

H 1: The residuals are correlated

We get the test statistic Q=0.001, p-value=0.9745>0.05, hence we accept that the 

residuals are uncorrelated.

A  model is adequate i f  the residuals left over after fitting the model are simply white 

noise. We can now say that it’s the best fitting model. The standardized residuals 

however indicate volatility clustering, that is, periods o f low volatilities being 

followed by periods low-volatilities and vice versa.

I f  time series values are truly independent, then nonlinear instantaneous 

transformations such as taking absolute values or squaring preserve independence. 

However, the same is not true o f correlation, as correlation is only a measure o f 

linear dependence. Higher-order serial dependence structure in data can be explored 

by studying the autocorrelation structure o f the absolute returns (o f lesser sampling 

variability  w ith less mathematical tractability) or that o f the squared returns (of 

greater sampling variability but with more manageability in terms o f statistical 

theory). I f  the returns are independently and identically distributed, then so are the 

absolute returns (as are the squared returns), and hence they w ill be white noise as 

well. The Variance is 0.00004 and mean -0.000003, the mean is not statistically 

significantly different from zero. However, the volatility clustering observed in the

(4.3)
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return data (see figure 6 (standardized residuals)) gives us a hint that they may not be 

'•i d. otherwise the variance would be constant over time.

V igure 6: I he diagnostics o f the residuals returns
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In figure 7, the ACFs show several characteristics, which have several 

inconsistencies. I hat is, if we take the squares o f the returns and also take absolute 

values, the ACFs become significant. All the returns with the various 

transformations are supposed to indicate white noise characteristics, but that is not 

the case here! Hence, i f  the transformations o f the returns admit some significant 

autocorrelations, then these autocorrelations furnish some evidence against the 

hypothesis that the returns are i.i.d. These plots indicate the existence o f significant 

autocorrelation patterns in the absolute and squared data and indicate that the returns 

are in fact serially dependent.

Further analysis on the residuals using Shapiro-Wilk’s normality test under the 

normality assumption indicate W = 0.7785,/?-value < 0.05 hence we reject the 

hypothesis that the residuals are normally distributed at 95% confidence

In summary, the returns are found to be serially uncorrelated but admit a higher- 

order dependence structure, namely volatility clustering, and a heavy-tailed 

distribution.

4 .3  Testing for Conditional Heteroscedacity
So far ARIMA-type models concern with the conditional mean structure o f time 

series data however, more recently, there has been much work on modeling the 

conditional variance structure o f time series data— mainly motivated by the needs 

for financial modeling.

These visual tools are formally testing whether the squared data are auto-correlated 

using the Box-Ljung test. Because no model fitting is required, the degree of 

freedom o f the approximating Chi-square distribution for the Box-Ljung statistic 

equals the number o f correlations used in the test. Hence, i f  we use m 

autocorrelations o f the squared data in the test, the test statistic is approximately ( hi- 

square distributed with m degrees o f  freedom, i f  there is no ARCH. In w hich case,
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the firs t m autocorrelations o f the squared residuals from this model can be used to 

test fo r the presence o f ARCH.

The hypothesis are;

H0: No ARCH effect in residual squared

H,: Presence o f ARCH effect in residual squared

W e get that X(\) = 162.05,p-value <0.05 , we conclude the alternative hypothesis, 

tha t there’s presence o f ARCH effects to the data.

T h is  can be confirmed by applying the McLeod and Li test which checks 

presence o f conditional heteroscedacity by computing the Ljung-Bo* (portmanteau) 

test w ith the squared residuals from an ARIMA model.

The McLeod and L i test statistic is given by

Q = N(N + 2 ) X l
/. ? (* 2) (4.4)

N - k
The McLeod and L i test output shown in the figure below i, indicates .ha, all the P- 

values are significant indicating a strong ARCH effect in the daily returns.

41



H a\ ing realized that the returns have conditional hcteroscedacitv effects wc w ill now 

f it  an ARCH-type model. It is commonly obser\ed that such characteristics are 

ra ther prevalent among financial time series data. The GARCH models introduced in 

the next sections attempts to provide a framework for modeling and anal>/ing time 

series that display such characteristics.

4 . 4  GARCH
O n doing GARCH analysis we get the follow ing output.

Output 2: The GARCH (1,1) fit output

Coefficient(s):
Estimate Std. Error t value Pr(> 111) 
aO 8.050e-07 6.283e-08 12.81 <2e-16*** 
al 1.849e-01 1.372e-02 13.48 <2e-16*~ 
b l 7.962e-01 1.115e-02 71.42 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 0.05 7  0 .1 "  1
Diagnostic Tests:
Box-Ljung test
data: Squared.Residuals
X-squared = 0.2179, df = 1, p-value = 0.6407

In te rp re ta tio n :

The GARCH (1,1) model is
<r,2 = 0.00000081 + 0.1849r,i, + 0.7962a,!, (4.5)

Where the long-run variance. = « 0 / ( I - d  -  4 ) =0.000043, 0.1849 is the ARCH 

parameter and 0.7962 is the GARCH parameter, all the parameters are significant at 

almost 99.9% level.

The Ljung-Box test for conditional hcteroscedacity on squared returns indicates X- 

squared = 0.2179, d f = 1, p-value = 0.6407 indicating that the residuals do not 

exhibit conditional heteroscedacity. The Shapiro-Wilk’s test for Normality on the 

residuals gives W = 0.9037, P-value <0.05 under the null hypothesis that the
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residuals are normally distributed; we therefore conclude that the residuals are not 
norm ally  distributed.

I f  the G A R C I1 model is correctly specified, then the standardized residuals should 

be close to i.i.d. by examining their ACF. Figure 12 indicate the sample ACF o f the 

returns, squared and absolute standardized residuals from the fitted GARCH (1,1) 

model. The (individual) critical limits in the figure are based on the I In nominal 

variance under the assumption o f i.i.d. data. This nominal value could be very 

d ifferent from the actual variance o f  the autocorrelations o f the squared residuals 

even when the model is correctly specified. Nonetheless, the general impression 

from  the figure 9 is that the squared and absolute residuals are serially uncorrelatcd.

Figure 9: ACF o f the residuals, Absolute and Squared residuals o f GARCH (1,1)

This could also be reinforced by conducting Ljung-Box test (also called portmanteau 

test) which Perform a goodness-of-fit test for the GARCH model by checking 

whether the standardized residuals are i.i.d. based on the ACF o f the absolute 

residuals or squared residuals (Chan, 2008). Figure 10 and 11 displays the p-values 

o f  the generalized portmanteau tests with the absolute and squared standardized 

residuals, respectively, from the fitted G ARCH(U ) model o f the exchange rate data
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fo r  rn 1 to 20. A ll p-values are higher than 5%, suggesting that the squared 

residuals are uncorrelated over time, and hence the standardized residuals arc 

independent and indicates that the model fits the data *ell.

Figure 10: P-values o f Portmanteau tests for absolute residuals

Figure 11: P-values o f Portmanteau tests for squared residuals

Having noticed that there are no autocorrelations in the residuals, we can now 

predict for a time r  in future.

4 .5  Prediction of Volatilities
Given that the GARCH (1,1) model provides a good fit to the exchange rate data, we 

may use it to forecast the future conditional variances. We can predict at 95  ̂

confidence for example for a 10 days trading ahead. I his can be seen in the figure 13 

below indicates the forecasted period (note that the index axis is n*x = .25 1531
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i-e. 382 days, where n is the number o f observations in the dataset and x is a constant
0.25).

Figure 12: Predicting using GARCH (1,1) at 95% confidence

Prediction with confidence intervals

In  figure 13 below one day a head prediction for GARCH with ±6, is shown. 

Indeed the model created, from observations in this figure mimics the returns. Hence 

the  model can be used to give an approximation o f how the returns predictions at a 

tim e  in the future. The GARCH model, in most cases o f high volatility tends to 

under-predict the volatilities for the next day. In low volatility periods, the 

predictions seem to have a good prediction. Generally on average the model predicts 

the returns well.

Figure 13: One step prediction o f Volatility

One Step ahead prediction of Volatility
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4 .6  Conclusions
Exploratory analysis showed that the exchange rates are platyliurtic and slightly 

negatively skewed. ARIM A(4,1,2) model was fitted on the exchange rate returns 

data by picking the model with the least AIC, AICC and BIC statistics. Then 

diagnostic checks done showed the residuals were white noise but exhibited 

v o la ti lity  clustering which is an indication that the data is not homoscedachic. 

G AR C H (1,1) was then applied to counter the volatility clustering characteristic 

exhibited in the residuals o f ARIMA(4,I,2) on the KES vs. US$ daily exchange 

returns for the period 2nd November 2004 to 3 ls! December 2010. GARCH (1,1) 

fitted  well on the data and indeed the residuals after the G AR C H (l.l) fitting showed 

homoscedasticity and white noise properties

The Quasi-likelihood procedure used has parametric estimators that are consistent 

and asymptotically normal. The estimated models fit the data well, thereby 

confirm ing the empirical evidence in Bollerslev et al. (1992), that the GARCH (1,1) 

is adequate in describing volatility in many financial time series. Therefore, the 

knowledge o f volatility and its estimation can ensure mitigation o f the long term risk 

o f  any investment, (Choy, 2002). This in turn assists in promoting economic growth, 

since investment is the main channel o f  increasing real output and employment.

4 .7  Recommendations
Prediction generated match the volatility that is being exhibited o f late on the KI S 

depreciation against the US dollar, which causes inflationary effects in the econorn) 

and generate great losses to many highly exposed business such as tourism, 

commercial banks, exports and imports among others. Urgent actions need to be 

taken by the CBK to caution businesses against such losses.

4 .8  Limitations of GARCH models
Below are the limitations o f GARCH (1, 1);

i. It assumes that the negative and positive shocks have same effect because

volatility depends on squared returns.

ii. The likelihood is flat unless the number o f observations is very large;

46



i i i .  The model tends to overpredict volatility because it responds slowly to large

isolated returns.

F u tu re  researchers interested in the GARC H analysis can apply the other muhods to 

address these limitations.
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a p p e n d i c e s

A p p en d ix  1: Sample data of the KES/US$
exch an ge rate
D a te Average Exchange 

rate
1 1/2/2004 81.2078
1 1/3/2004 81.2117
1 1/4/2004 81.1472
1 1/5/2004 81.1306
1 1/8/2004 81.1444
1 1/9/2004 81.1500

1 1/10/2004 81.1439
1 1/11/2004 81.0689
1 1/12/2004 81.1139

1/16/2004 81.1139
1 1/17/2004 81.2111

h l 1/18/2004 81.2411
1 1/19/2004 81.2944
1 1/22/2004 81.3389
1 1/23/2004 81.3500
1 1 /24/2004 81.2400
1 1/25/2004 81.2444
1 1/26/2004 81.2278
1 1/29/2004 81.2278
1 1/30/2004 81.2422

12/1/2004 81.2506
12/2/2004 81.2461
12/3/2004 81.2494
12/6/2004 81.2278
12/7/2004 81.2333
12/8/2004 81.2267
12/9/2004 81.2294

12/10/2004 81.2011
12/14/2004 81.2278
12/15/2004 80.3611
12/16/2004 79.8744
12/17/2004 79.6356
12/20/2004 79.6578
12/21/2004 79.4889
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A p p e n d ix  2: Program Code
A p p e n d ix  2.1 : Exploratory Data Analysis

T h e  R  Statistical Packages used are fracdiff, tseries, moments, forecast, stats. 
S e r ie s ,  graphics, MASS, FinTS, FArma. TSA eGarch and fGarch (R Deselopmcnt 
C o r e  Team  (2011).

£ # im p o r t in g  the data from .csv file extension 
prices=read.csv("exchangel .csv", header=T)
^ ^ E x p lo ra to ry  data analysis, the rates are in 2nd column..Exchange rate time plot fig 
1
plo t(prices[,2 ],type= 'T ',x lab="days", ylab="KES/US$ rates", main-Time Series 
K .E S /U S S  rates")
# # Q Q  plots and other normality analysis
qqnorm (prices[,2]);qqline(prices[,2])
shap iro .test(prices[,2 ])
sum m ary(p rices [,2 ])
ku rtos is (p rice s [,2 ])
skew ness(prices[,2 ])
# # # c h e c k in g  for stationarity o f exchange rate prices
# # a c f  and pacf o f the rates fig 3
p a r(m fro w = c (  1,2))
a c f((p rices [,2 ]),50 )
pacf((p rices[,2 ]),50 )
##A u gm en ted  Dickey-Fuller test 
ad  f.test(prices[,2])
# # # T h e  returns 
sum m ary(d iff(log(prices[,2 ]))) 
v a r (d  iff(log(prices[,2]))) 
ku rtos is(d iff(log(prices[,2 ]))) 
s k e w  ness(d iff( log(pr ices[,2])))

A p p en d ix  2 .2  : Log- Differencing
# # M o d e l parameter estimation by log-differencing to gain stationarity
acf(d iff(log(prices[,2 ])),50)
pacf(d iff(log(prices[,2 ])),50)
# A D F  test for returns 
adf.test(d iff(log(prices[,2])))
# # te s t for normality
shapiro.test(diff(log(prices[,2])))
qqnorm (diff(log(prices[,2]))); qqline(diff(log(prices[,2])))
# # th e  plot fig 4
p lo t(d iff(log(prices[,2 ])), type="r,xlab="days", main- 
w in .graph(w idth=4.875, height=3,pointsize=8)
a u to 0=auto.arima(diff(log(prices[,2 ])))
summary(autoO)

’Returns")
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tfdiagnistic tests for residuals pg 6 
Box.test(autoO$residuals, typc="Ljung") 
par(mfrow=c(3,l))
plot(rstandard(autoO), main="Standardiscd residuals", t>pc "I") 
acf(autoO$residuals, 100, main="ACF Standardised Residuals") 
pacf( autoOSresiduals, 100, main="PACF Standardised Residuals")
##checking for characteristics that allude high-order dependency fig 7
returns=d i fi^ log(pr ices[,2])) 
par(mfrow=c(3,l)) 
acf( returns,30) 
acf|>eturnsA2,30) 
acf(abs( returns), 30)
Box.test(returns, type="Ljung")
Box.test(returnsA2, type="Ljung")
Box.test(abs(returns), type-'Ljung") 
shapiro.test(autoO$residuals)

A ppendix 2.3: Conditional H eteroscedasticity
##Testing for ARCH effects, fig 8 
McLeod.Li.test(autoO,y=diff{log(prices[,2])))
###fitting G arch(l,l) 
returns=diff(log(prices[,2])) 
m 1 =garch(x=returns,order=c( 1,1)) 
summary(ml)
##determining the properties o f the GARCH fit, fig 9 
plot(residuals(m 1 ),type-T ’,ylab="standardized residuals", xlab="days") 
qqnorm(residuals(m 1 ));qq line(residuals(m 1)) 
shapiro.test(residuals(m 1))
plot(residuals(m 1 ),ylab="standardized residuals")
#garch residuals autocorrelations 
par(mfrow=c(3,1))
acf(residuals(m 1), 100,na.action=na.omit) 
acf(abs(residuals(m 1)), 100,na.action=na.omit) 
acf(residuals(m 1 )A2,100,na.action=na.omit)
Box.test(residuals(m 1 )A2,type="Ljung")
^checking for goodness o f fit, fig 10 and 11 
gBox(m 1 ,x=returns,method-squared') 
gBox(m 1 ,x=returns, method- absolute')
#prediction, fig 12
fitO = garchFit(~ garch( 1, 1), data = returns, trace = F) 
predict(fit0, n.ahead = 10, plot=TRUE, crit_val=l .96)
#One-step ahead prediction o f volatility, fig 13
p lo t(1 : 1530,re turns[l:l530],type-T',xlab="Time",ylab="KES/US$ Exchange Rate 
Returns")
lines(fit0 predictf, 1 ],col="red",lty="dashed",lwd=2) 
Iines(fit0_predict[,2],col="red",lty="dashed",lwd=2) 
title(main="One Step ahead prediction o f Volatility")
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