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Abstract

Options are a popular type of investment in the �nancial derivatives market. The intention

of buying or selling options is to make pro�ts. However, investors might end up making

losses if the market goes against their anticipation. The Greeks describe di�erent dimen-

sions of risk involved when taking an option’s position. The Greeks are Delta, Gamma,

Rho, Kappa and Theta. The main aim of this study is achieved by creating a linear program

that maximizes a calculated theoretical pro�t. The pro�t is calculated by subtracting the

real market price of Net�ix options from prices calculated using the Black-Scholes formula.

We observe that the theoretical prices are higher than the market price. The constraints

in our linear program are Greek neutralities. The neutrality of each Greek is achieved by

equating the sum of the positional Greeks to zero. The results of the discussion show that

Linear Programming can be applied to options to hedge against a combination of all risks

that are experienced in the �nancial derivatives market. The case study reviewed how

the pro�t related to options changes when we include all Greeks and when we reduce the

number of Greeks. It was observed that pro�t is lowest when we include all Greeks and is

highest when we use one Greek. The number of shares to buy and sell in order to achieve

an optimal strategy for our portfolio are also derived. The e�ect of shadow price on the

risks experienced in the market were also observed.
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1 Introduction

1.1 Background

1.1.1 Options

Options are financial derivative instruments that provide the holder the right but not
the obligation to trade a specified quantity of underlying asset at a fixed price called the
exercise price, at or before the expiration date of the option. Selling an option is also called
taking a short position on the option while as buying an option is also called taking a
long position on the option. Options can be categorized into di�erent categories. when
we consider either buying or selling options, they can be categorized into call and put
options. Put options grants the owner the right to sell the underlying asset at an agreed
exercise price by the expiration date while as the holder of the call option has the right to
buy the underlying asset at an agreed strike price by the expiration date. Options can also
be categorized as per their expiration date. The two categories are American option and
European option. American options can be exercised on or before expiration. European
options are exercised on the date of expiration itself. Another example is the exotic options
which include; Chooser, Compound, barrier, Binary, Bermuda, �antity-Adjusting, Look-
Back, Asian, Basket, Extendible, Spread, Shout and Range options. Currency options is
also another example.

1.1.2 Options Pricing

The value of options can be categorised into two aspects

Intrinsic Value

This is the value of options assuming that the options contract expires immediately instead
of sometime later.
Let the current stock price=A and strike price=B. For a call option, the intrinsic value is

Intrinsicvalue = max(A−B,0) (1)

The following terms are used to define the intrinsic value of the call option
in-the-money - when (A > B)
at-the-money - when (A = B)
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out-of-the-money - when (A < B)
For a put option, the intrinsic value at time c is;

Intrinsicvalue = max(B−A,0) (2)

The following terms are used to define the intrinsic value of the put option
in-the-money - when (B > A)
at-the-money - when (B = A)
out-of-the-money - when (B < A)

Time Value

The time value of an option is the excess option’s premium over the intrinsic value of the
option.

Timevalue = OptionPremium− Intrinsicvalue (3)

Option pricing is the process of using mathematical models to value options. The mathe-
matical models use the following parameters which a�ect their prices; underlying share
price, strike price, time to expiration, risk free interest rate, volatility of the underlying
share. The following shows how the above parameters a�ect the values of options prices.

Underlying Share price

A call option with a high stock price implies a high value in the intrinsic value of the
option which implies a high option premium. A call option with a low stock price implies
a low value in the intrinsic value of the option and thus a low option premium. A put
option with a high stock price implies a low intrinsic value and thus a low premium on
the option. A high stock price on put options implies a high intrinsic value and thus the
option premium is also high.

Strike Price

A call option with a high strike price implies a low intrinsic value and thus a low premium
on the option. A call option with a low strike price implies a high intrinsic value and thus
a high option’s premium. A high strike price on put options would give rise to a high
intrinsic value and thus a high premium of the option. The vice-versa holds true too.
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Time to expiration

When the time to expiration is long, there is a high possibility that the underlying share
price might shi� in favour of the option holder just before expiration. Thus the value of
the option increases with increase in time to maturity. However, this condition might
not hold true for European put options which is deeply in the money. This is because the
sooner you exercise the option the higher the possibility of gaining more than waiting for
the market to move in favour of you when the time to expiration is long.

Risk free interest rate

A high risk free interest rate gives a higher value of the call option. A high risk free interest
rate implies a low value in the put option.

Volatility of the Underlying asset

Volatility shows the variability of the price of the underlying asset in the market. High
volatility implies a high value of options too. This is because there is a high chance that
the prices of the underlying asset might move in favour of options by expiration. The
vice-versa holds true too.
Historically, researchers have established numerous mathematical models that are used
to estimate the theoretical values of options. The assumptions made while creating the
models do not exist in the real market. This in return gives values that are not equal to
the market values because the market values are defined by demand and supply of the
options. In our study we shall deal with European options. In order for the European
call option holders to make profits, they buy the option when the underlying asset has
a low stock price and sell the underlying asset when the stock price is higher than the
strike price, at or before the expiration date. If by the expiration date of the option the
stock price is lower than the strike price, then the call option holder su�ers a loss of the
premium he had paid for the that option. If by expiration, the stock price of the underlying
asset is equal to the strike price, then the holder of the European call option does not earn
any profit or loss. The put option holder will buy the option if they predict that the price
of the option will move downwards.



1.1.3 Hedging Options

The financial market experiences many risks which is the case in every other market.
Greeks describe the dimensions of risks faced in the derivatives market. There are six
greeks namely; delta, gamma, Vega, rho, lambda and theta. Hedging Options is the
process of protecting options against risks experienced in the derivatives market in order to
maximize profits. Risks include losses caused by; changes in future prices of the Underlying
assets,changes in return for a given security, changes in interest rate and changes in the
time value for money . Traders might hedge their options using strategies that are decided
in advance. The strategies are based on the future expectations of the investors towards
the price of the underlying assets. Bull spread, buy- and sell ratio and vertical put spread,
are examples of hedging strategies that are decided in advance. Hedging options using
Greeks involves creating a ”Delta-Vega” , “Delta-Neutral” or “Gamma-Neutral” portfolios
in order to obtain high profits.

1.1.4 Linear Programming

Linear Programming is a mathematical process that maximizes or minimizes the values of
the parameters involved. A linear program is composed of:

(i) Decision variables which are the quantities to be determined

(ii) Objective function which defines the quantity to be maximized or minimized.

(iii) Constraints which represents how the decision variables use resources that are avail-
able in limited quantities

(iv) Data which quantifies the relationships shown in the objective function and the
constraints.

We can formulate a linear program for maximizing profits of options. The constraints are
calculated neutrality of our greeks and our objective function will be theoretical values of
options prices.

1.1.5 Problem Statement

The main challenge experienced by option traders and investors is how to maximize their
profits and reduce the risks in the market at the same time. When using Greeks to hedge
option prices, traders base their strategy using the Delta neutral, and gamma-neutral
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strategies which considers only one risk in the market and ignores the other risks which
also a�ect the price of options. Thus the strategies are ine�icient and there is need for a
strategy that can consider all the Greeks derivatives at the same time.

1.1.6 Significance of study

In order for an option investor to be sure of making a profit , he has to reduce the amount of
risks experienced in the market. However reducing all the risks concurrently is complicated.
This is because every change in the value of a greek causes a corresponding change in the
value of another greek. Thus one can hedge one risk but increase the level of another risk.
This implies that there is a need for a strategy that can handle all the risks in the market.
Linear Programming is known for handling constraints that are related. Using a linear
program, an investor can reduce the risks in the market at the same time.

1.1.7 Objectives of the study

Throughout this project, we will seek to accomplish the following:

General Objective

To create a linear program that hedges a portfolio against all risks in the derivatives market

Speci�c Objectives

(i) To Calculate values of options and Greeks that will be used to create a linear program.

(ii) To show the options to buy or sell

(iii) To Estimate the e�ect of shadow prices on our profit.

(iv) To calculate the e�ects on profit when all Greeks are present and when one or more
Greeks are not present in the portfolio.

the outline of the thesis is as follows:

Chapter 1:
In chapter two we have described option pricing using linear programming and discussed
studies carried out by other researchers concerning hedging options
Chapter 3:



6

In chapter three, we have formed a linear program that hedges against risks in the financial
market
Chapter 4:
Chapter 4 discusses results found in chapter three and finally chapter 5 contains conclu-
sions.



7

2 Literature Review

This section analyses the literature on determining the use of Greeks as the hedging
tools in the derivatives market. Hull and White (1987) carried out a study to decide
which was the best hedging strategy among Delta hedging, Delta-Vega hedging and
Delta-Gamma hedging, and they established that the Delta-Vega was the best among the
three. Using an option pricing context, Ogden (1987) compared the price behaviour and
risk characteristics of a yield curve note model which paid interest rate inversely to rate of
short term models and another one with a fixed-rate model. He found out that the risk rate
on the model with the fixed rate was approximately half as great as the risk on the yield
curve note model with the same maturity. The yield curve note was used in immunization
strategies as liabilities by financial institutions. Delta hedging has been vastly applied by
investors and hedgers who have positions of long or short options in their portfolio to
hedge risks from the constantly changing prices of an option. Delta hedging is widely
applied in financial engineering, thus there is a vast literature on the topic. Hull (2003)
discussed an introduction of hedging strategies including delta hedging and found out
that a long position may be delta hedged by using a short position. Jarrow and Turnbull
(1999) provided a well explained lesson on how to replicate portfolios in order to a�ain a
delta-neutral position and implementation of dynamic delta hedging.The options traders
can reduce risks faced in the derivatives markets if they have a vast knowledge of the
Greeks associated with the options. This project focuses on providing the knowledge
of the Greeks and their application in risk management. The knowledge of the e�ect
of hedging Greeks using di�erent strategies will help us to determine how much risk
is related to each Greek and potential reward when we neutralize the risk. The impact
of the Greeks is shown using a linear programming model. This research will focus on
maximizing a theoretical profit using di�erent hedging strategies. This will assist the
investor to determine the risk-return-ratio, prior to entry in the trade. Reducing risks
faced in the financial market using Greeks can be taken to a new level with the help of
a linear program. This project will enhance the existing knowledge on reducing risks
faced by options and will assist in determining the best strategy strategy has the greatest
impact on profits.
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3 Methodology

3.1 The Black-Scholes Model

The Black-Scholes model was developed in 1973. The model is used to generate a theoretical
value of European Options. Pricing of American Options is not possible while using Black-
Scholes model because the model only allows a specified time to expiration. Our research
will involve a European option because we will use Black-Scholes to calculate the prices
that are used in the linear programming model that is introduced later.
Assumptions of the Black-Scholes Formula:

(i) The price of the underlying share follows a geometric Brownian motion i.e. the share
price changes continuously through time according to the SDE( stochastic di�erential
equation):

(ii) Taxes and transaction costs are not included.There are no taxes or transaction costs.

(iii) There is no change in the risk-free interest rate. It is always the same for all maturities
and the same for borrowing and lending.The risk-free rate of interest is constant, the same
for all maturities and the same for borrowing or lending.

(iv) There are no risk-free arbitrage opportunities.

(v) The underlying asset can be traded continuously and with infinitely small size of units.

(vi) Unlimited short selling is allowed. Under these assumptions, the value of the option
will depend on the risk-free interest rate, the price of the stock, the strike price of the
asset associated with the option, volatility and time to expiration.
For the European option, Let, f be the price of the call option and g the price of the put
option at time c.

(i) A is the stock price of the underlying asset.

(ii) ε is the time to expiration date of the option.

(iii) B is the strike price of the underlying asset.
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Then, for such a call option:

f = AN(h1)−Bexp−dε N(h2) (4)

The N is the probability that a normally distributed stochastic variable Y will be less than
or equal to h. The values are read from normal distribution tables. For a put option we
also have:

g = Bexp−dε N(−h2)−AN(−h1) (5)

The call and put equations are valid if no dividends are paid over this period and the
option is of European type.

3.2 Greek parameters of the Black-Scholes Model

3.2.1 Introduction

The Greeks are used to assess risks faced by options portfolios in derivative markets.
The risk level of an options portfolio can be hedged by using greek neutralities namely;
Theta-neutral, Delta-neutral, gamma-neutral, Vega-neutral, rho-neutral and kappa-neutral
strategies. Let us take a deeper look at the named strategies.

3.2.2 Delta

Delta measures how the value of an option varies with change in the price of the underlying
asset. Given that f is the call option , g is the put option price price and B is the stock
price,then for a call option

∆ =
∂ f
∂B

(6)

For a put option,

∆ =
∂g
∂B

(7)

Thus, the delta is the slope of a graph of an option against stock price. From Black-Scholes
formula, we know that the price of a non-dividend paying call option can be wri�en as

f = AN(h1)−Bexp−dε N(h2) (8)

The put price of a non-dividend paying stock can be wri�en as

g = Bexp−dε N(−h2)−AN(−h1) (9)

where,

h1 =
ln
(A

B

)
+
(

d +
ω2

a
2

)
ε

ωa
√

ε
(10)
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and

h2 =
ln
(A

B

)
+
(

d− ω2
a

2

)
ε

ωa
√

ε
(11)

From the equations, it’s clear that

h2 = h1−ωa
√

ε

N(.) is the cumulative density function of normal distribution. Thus N(h1) can be shown
as follows:

N(h1) =

h1∫
−∞

f (s)ds = N(h1) =

h1∫
−∞

1√
2π

exp
−s2

2 ds (12)

First we calculate

N′(h1) =
∂N(h1)

∂h1
=

1√
2π

exp
−h2

1
2 (13)

Then,

N′(h2) =
∂N(h2)

∂h2
=

1√
2π

exp
−h2

2
2 (14)

Replacing h2 = h1−ωa
√

ε , we get:

=
1√
2π

exp
−(h1−ωa

√
ε)2

2 (15)

=
1

2π
exp

−h2
1

2 ·exph1ωa
√

ε ·exp
−ω2

a ε

2 (16)

=
1

2π
exp

−h2
1

2 ·exp
ln(A

B)+
(

d+ω2
a

2

)
ε

·exp
−ω2

a ε

2 (17)

=
1√
2π

exp
−h2

1
2 ·A

B
· expdε (18)

For a European call option where the underlying asset is a non-dividend paying stock, the
equation of delta is shown below

∆ = N(h1) (19)

The derivation of the equation above is shown next
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Proof.

∆ =
∂ f
∂A

= N(h1)+A
∂N(h1)

∂A
Bexp−dε ∂N(h2)

∂A
(20)

= N(h1)+A
∂N(h1)

∂h1

∂h1

∂A
−Bexp−dε ∂N(h2)

∂h2

∂h2

∂A
(21)

= N(h1)+A
1√
2π

exp
−h2

1
2 · 1

Aωa
√

ε
−Bexp−dε

1√
2π

exp
−h2

1
2 ·A

B
· expdε · 1

Aωa
√

ε
(22)

= N(h1)+A
1

Aωa
√

2πε
exp

−h2
1

2 −A
1

Aωa
√

2πε
exp

−h2
1

2 (23)

= N(h1).

For a European put option with a non-dividend paying stock, delta can be shown as

∆ = N(h1)−1 (24)

The derivation of this equation is as shown below

Proof.

∆ =
∂g
∂A

= Bexp−dε ∂N(−h2)

∂A
−N(−h1)−A

∂N(−h1)

∂A
(25)

= Bexp−dε ∂ (1−N(h2))

∂h2

∂h2

∂A
− (1−N(h1))−A

∂ (1−N(h1))

∂h1

∂h1

∂A
(26)

=−Bexp−dε 1
2π

exp
−h2

1
2 ·A

B
· expdε · 1

Aωa
√

ε
− (1−N(h1))+A

1√
2π

exp
−h2

1
2 · 1

Aωa
√

ε

(27)

=−A
1

Aωa
√

2πε
exp

−h1
2 −N(h1)−1+A

1
Aωa
√

2πε
exp

−h1
2 (28)

= N(h1)−1.

Application of Delta

A delta neutral position hedges the risk imposed by delta. Creating a delta neutral portfolio
involves combining multiple positions with positive and negative deltas of the options to
finally give the overall delta of the underlying assets involved equal to zero. A delta-neutral
portfolio equals out the response to market movements for a certain range to bring the
net change of the position to zero. The positional Greeks in the delta neutral portfolio
are not linear thus they change with change in the value of the underlying asset. The
positions shi� between being negative, neutral and positive. A seller of an option can
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calculate a delta ratio to achieve the neutral position. The following example shows how
delta neutrality is achieved. Take an example of an option which has a premium of $8,
the stock price of the underlying asset is $90 and delta is 0.5. If the seller sold 5 options
to the buyer, this means that the buyer has the right to purchase 500 shares at time of
maturity. The seller constructs a delta neutral position by buying (0.5×500 = 250) shares
of stock. Suppose that the price goes up to $1, the price of the option goes up by $0.5.
In this situation, the seller has a gain of $250 in stock position and a loss of $250 in the
option position i.e (0.5×500). The seller has a pay o� of zero on that transaction. If the
stock price decreases by $1 the option price will also decrease by $0.5. The total pay o� of
the seller is also 0 on that transaction Our model involved adding the positional Greeks
on all transactions and equating them to zero.

3.2.3 Theta

The value of an option has both the stock value and time value. Theta is a Greek that
measures the rate at which options lose their value as they near their expiration date. It
is also called the option’s time decay. If every assumption of the Black-Scholes model is
held constant, the value of the option diminishes as we approach the time to maturity of
our option. Since time always moves in the same direction, Theta is always negative. The
following is the equation for theta for a call option.

Θ =
∂ f
∂c

=
∂ f
∂ε

∂ε

∂c
=−1

∂ f
∂ε

(29)

where
ε =C− c

. The general equation for theta of a put option is

Θ =
∂g
∂c

=
∂g
∂ε

∂ε

∂c
=−1

∂g
∂ε

(30)

where
ε =C− c

. The equation of theta of European call option in a non-dividend paying stock is as follows

Θ =
−Aωa

2
√

ε
·N′ (h1)−dB · exp−dε N (h2) (31)
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Proof.

Θ =−∂ f
∂ε

=−A
∂N (h1)

∂ε
+(−d) ·B · exp−dε N (h2)+Bexp−dε ∂N (h2)

∂ε
(32)

=−A
∂N (h1)

∂h1

∂h1

∂ε
−dB · exp−dε N (h2)+Bexp−dε ∂N (h2)

∂h2

∂h2

∂ε
(33)

=−A
1√
2π

exp
−h2

1
2

(
d +

ω2
a

2
ωa
√

ε
−

ln A
B

2ωaε
3
2
−

d +
ω2

a
2

2ωa
√

ε

)
−dB · exp−dεN (h2) (34)

+Bexp−dε ·
(

1
2π

exp
−h2

1
2 ·A

B
· expdε

)
·

(
d

ωa
√

ε
−

ln A
B

2ωaε
3
2
− d +ω2

a

2ωa
√

ε

)
(35)

−dB · exp−dε N (h2)+A
1√
2π

exp
−h2

1
2 ·

(
d

ωaε
3
2
−

d +
ω2

a
2

2ωa
√

ε

)
(36)

=−A
1√
2π

exp
−h2

1
2 ·

(
ω2

a
2

ωa
√

ε

)
−dB · exp−dε N (h2) (37)

=
−Aωa

2
√

ε
·N′ (h1)+dBexp−dε N (h2) .

The equation of a put option with a non-dividend paying stock is shown below

Θ =−Aωa

2
√

ε
·N′ (h−1)+dBexp−dε n(−h2) (38)

The proof of the equation is shown next
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Proof.

Θ =−∂g
∂ε

=−(−d) ·B · exp−dε N (−h2)−Bexp−dε ∂N (−h2)

∂ε
(39)

+A
∂ −h1

∂ε
(40)

=−(−d)B · exp−dε (1−N (h2))−Bexp−dε ∂ (1−N (h2))

∂h2

∂h2

∂ε
(41)

+A
∂ (1−N (h1))

∂h1

∂h1

∂ε
(42)

=−(−d)B · exp−dε (1−N (h2))+Bexp−dε

(
1√
2π

exp
−h2

1
2 ·A

B
· expdε

)
(43)

·

(
d

ωa
√

ε
−

ln A
B

2ωaε
3
2
−

d +
ω2

a
2

2ωa
√

ε

)
−A

1√
2π

exp
−h2

1
2

(
d +

ω2
a

2
ωa
√

ε
−

ln A
B

2ωaε
3
2
−

d +
ω2

a
2

2ωa
√

ε

)
(44)

= dBexp−dε (1−N (h2))+A
1√
2π

exp
−h2

1
2

(
d +

ω2
a

2
ωa
√

ε
−

ln A
B

2ωaε
3
2
−

d +
ω2

a
2

2ωa
√

ε

)
(45)

−A
1√
2π

exp
−h2

1
2 ·

(
d +

ω2
a

2
ωa
√

ε
−

ln
(A

B

)
2ωaε

3
2
−

d +
ω2

a
2

2ωa
√

ε

)
(46)

= dB · exp−dε (1−N (h2))−A
1√
2π

exp
−h2

1
2 ·

(
ω2

a
2

ωa
√

ε

)
(47)

= dB · exp−dε (1−N (h2))−
Aωa

2
√

ε
·N′ (h1) (48)

= dB · exp−dε N (−h2)−
Aωa

2
√

ε
·N′ (h1) (49)

Application of Theta

The passage of time of an option is guaranteed. Thus it is not compulsory to make a hedge
on theta. However, theta is used to approximate gamma in a delta neutral portfolio. Theta
Neutrality is achieved when the sum of all positional thetas in a portfolio adds up to zero.



3.2.4 Gamma

The gamma measures the rate of change of its delta. Neutralizing gamma is a method
usedfor managing risk in options trading. This is the general formula for gamma of a call
option

Γ =
∂∆

∂A
=

∂ 2 f
∂A2 (50)

This is the general formula for gamma of a call option

Γ =
∂∆

∂A
=

∂ 2g
∂A2 (51)

For a European Call Option which has a non-dividend paying stock, Gamma takes the
following formula

Γ =
1

Aωa
√

ε
N′(h1) (52)

The derivation of the formula is as follows

Proof.

Γ =
∂ 2 f
∂A2 =

∂

(
∂ f
∂A

)
∂A

(53)

=
∂N(h1)

∂h1
· ∂h1

∂A
(54)

= N′(h1) ·
1
A

ωa
√

ε
(55)

=
1

Aωa
√

ε
N′(h1).

For a European Put Option that has no dividends paid on the underlying asset, the
equation is as shown below:

Γ =
1

Aωa
√

ε
N′(h1) (56)
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Proof.

Γ =
∂ 2g
∂A2 =

∂

(
∂gc
∂A

)
∂A

(57)

=
∂N(h1)

∂h1
· ∂h1

∂A
(58)

= N′(h1) ·
1
A

ωa
√

ε
(59)

=
1

Aωa
√

ε
N′(h1).

The first step towards achieving gamma neutrality is establishing a portfolio with the
rate of change of the delta being equal to zero. A good gamma-neutral position hedges
the option against risks associated with volatility. Gamma neutral options strategies are
used to generate new security positions or to modify an existing one. When establishing a
gamma neutral strategy we combine di�erent gamma positions of the option, making the
total gamma value equal to zero. When the value of the gamma is zero or near zero, the
delta’s value movement should be very minimal in response to the price of the underlying
security moves.

Application Of Gamma

Delta and gamma are used together to calculate the change in stock value of an option.
The following equation approximates the relation between the two greeks.
ChangeinStockvalue≈ ∆× changeinStockprice+ 1

2 × γ× (Changeinstockprice)2

It is clearly shown from the equation that gamma is used to correct the fact that delta is a
linear function of stock price. The approximation shown above suggests a Taylor series
expansion. Let us show the Taylor series. For a call option price f, A be the stock price, A0

be the initial stock price, then the Taylor series expansion around A0 yields the following:
f (A)≈ f (A0)+

∂P(A0)
∂A (A−A0)+

1
2!

∂Ao
∂A2 (A−A0)+ ·+ 1

2!
∂ n f (A0)

∂An (A−A0)
n

For a put option price g, A be the stock price, A0 be the initial stock price, then the Taylor
series expansion around A0 yields the following:
g(A)≈ g(A0)+

∂P(A0)
∂A (A−A0)+

1
2!

∂A0
∂A2 (A−A0)+ ·+ 1

2!
∂ ng(A0)

∂An (A−A0)
n

Considering the first three terms, the approximation of the call delta can be wri�en as

f (A)− f (A0)≈ ∂ f (A0)
∂A (A−A0)+

1
2!

∂ 2 f (A0)
∂A2 (A−A0)

2

Considering the first three terms, the approximation of the put delta can be wri�en as

g(A)−g(A0)≈ ∂g(A0)
∂A (A−A0)+

1
2!

∂ 2g(A0)
∂A2 (A−A0)

2

Take an example of a portfolio of call options with a delta equal of $5000 and gamma
equal to $2500. The change in the value of the portfolio if the stock price drop to $18 from
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$19 is approximately
f (A)− f (A0)≈ ($5000)× ($18−$19)+ 1

2 × ($2500)× ($18−$19)2

The above approximation can also be used to measure Modified Duration and Convexity
as risk measures corresponding to delta and gamma. Modified duration measures the
portfolio value which is a result of a percentage change in interest rate.
Modified duration = ∆×changeininterestrate

P
Modified duration = (−Duration×P)× change in interest rate
Modified duration is similar to delta in that it only shows the first order approximation
of the changes in the linear relation between the value of the portfolio and interest rate.
Convexity is the interest rate gamma divided by price.
Convexity = Γ

P It is used to capture the non-linear change in the changes of prices due to
change in interest rate. Combining modified duration and convexity make the two work
as delta and gamma.
Change in portfolio=−Duration×P×(changeinrate)+ 1

2 +Convexity×P×(changeinrate)2

The delta and gamma can be used in measuring risk in interest rate related portfolios.
Consider the gamma of a delta-neutral portfolio to be Γ, the gamma of an option in this
portfolio will be Γ0 and the number of options added to the delta neutral portfolio will be
φ0. Gamma of this new portfolio will be:
φ0Γ0 +Γ.
A gamma-neutral portfolio is achieved if we trade
φ0 =

−Γ

Γ0
options

The position of options changes thus the new portfolio is not delta-neutral. Thus we
change the position of the underlying asset to make it delta-neutral. Taking the delta
and gamma of a call option to be 0.5 and 1.6 respectively, a delta-neutral portfolio has a
gamma of -1360. To make the portfolio both delta-neutral and gamma-neutral, we buy
1360
1.6 = 850 shares and sell 850×0.5 = 425 shares in the original portfolio.

3.2.5 Vega

Vega measures the sensitivity of the value of an option with respect to volatility of the
underlying asset. The general formula for call Vega is as shown below

ν =
∂ f
∂ω

(60)

The general formula for put Vega is as shown below

ν =
∂g
∂ω

(61)

Now, let us look at derivation of various kinds of options starting with call options which
have a non-dividend paying underlying asset

ν = A
√

ε ·N′ (h1) (62)
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Proof. The equation is derived as shown below

ν =
∂ f

∂ωa
= A

∂N (h1)

∂ωa
−Bexp−dε ∂N (h2)

∂ωa
(63)

= A
∂N (h1)

∂h1

∂h1

∂ωa
−Bexp−dε ∂N (h2)

h2

∂h2

ωa
(64)

= A
1√
2π

exp
−h2

1
2 ·

ω
2
a ε

3
2 −

[
ln A

B +
(

d +
ω2

a
2

)
ε

]
· ε 1

2

ω2
a ε

 (65)

−Bexp−dε

(
1√
2π

exp
−h2

1
2 ·A

B
· expdε

)
·

−
[
ln A

B +
(

d +
ω2

a
2

)
ε

]
ω2

a ε

 (66)

= A
1√
2π

exp
−h2

1
2 ·

ω2
a ε

3
2 −
[
ln A

B +
(

d +
ω2

a
2

)
ε

]
· ε 1

2

ω2
a ε

 (67)

−A
1

2π
exp

−h2
1

2

−
[
ln A

B +
(

d +
ω2

a
2

)
ε

]
· ε 1

2

ω2
a ε

 (68)

= A
1√
2π

exp
−h2

1
2 ·

(
ω2

a ε
3
2

ω2
a ε

)
(69)

= A
√

ε ·N′ (h1) .

Vega of a put option that has a non-dividend paying underlying asset takes the following
equation

ν = A
√

ε ·N′ (h1) (70)

The proof of the above equation is shown below
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Proof.

ν =
∂g

∂ωa
= Bexp−dε ∂N (−h2)

∂ωa
−A

∂N (−h1)

∂ωa
(71)

= Bexp−dε ∂ (1−N (h2))

∂h2

∂h2

∂ωa
−A

∂ (1−N (−h1))

∂h1

∂h1

∂ωa
(72)

=−Bexp−dε

(
1√
2π

exp
−h2

1
2 ·A

B
· expdε

)
·

−
[
ln A

B +
(

d +
ω2

a
2

)
ε

]
ε

1
2

ω2
a ε

 (73)

+A
1√
2π

exp
−h2

1
2 ·

ω2
a ε

3
2 −
[
ln A

B +
(

d +
ω2

a
2

)
ε

]
· ε 1

2

ω2
a ε

 (74)

=−A
1√
2π

exp
−h2

1
2 ·

−
[
ln A

B +
(

d +
ω2

a
2

)
ε

]
· ε 1

2

ω2
a ε

 (75)

=+A
1√
2π

exp
−h2

1
2 ·

ω2
a ε

3
2 −
[
ln A

B +
(

a+ ω2
a

2

)
ε

]
· ε 1

2

ω2
a ε

 (76)

= A
1√
2π

exp
−h2

1
2 ·

(
ω2

a ε
3
2

ω2
a ε

)
.

Application of Vega

Vega is the Greek that relates with the Black-Scholes price factor for volatility, but it
signifies the sensitivity of the price of an option to volatility and not volatility itself.
Options traders have always used a Vega-neutral strategy when they believe that volatility
presents a risk to the profits. Calculating the Vega-neutrality of an options portfolio,
involves summing up the Vegas of all the positions involved. In a Vega-neutral portfolio,
total Vega of all the positions will be zero. The following example illustrates vega-neutrality
Consider a portfolio that is both delta-neutral and gamma-neutral. Given that the portfolio
has a vega equal to V and the vega of an option in the portfolio is V0. We add a position of
−V
V0

in an option to make the portfolio vega neutral. For a portfolio to be vega-neutral we
ought to consider taking at least two kinds of options on the same underlying asset in the
portfolio. Take an example of a portfolio that has two options H and I and an underlying
asset. Both options are delta-neutral and gamma-neutral. Let gamma and vega be 1600
and 1550 respectively. Option H has a delta of 0.5, gamma of 1.6, and vega of 1.8. Option
I has a delta of 0.3, gamma of 1.4 and vega of 0.9. The new portfolio will be both vega
neutral and gamma neutral when adding φ1 of option H and φ2 of option I into the original
portfolio.
Gammaneutral :−1600+1.6φ1 +1.8φ2 = 0
Veganeutral :−1550+1.4φ1 +0.9φ2 = 0
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Solving the equation gives φ1 = 750, φ2 = 150.
The delta of new portfolio is 750×0.5+150×0.3 = 420
To maintain delta neutral we sell shares of the underlying asset.

3.2.6 Rho

Rho measures the rate at which the value of the option changes with respect to change of
the risk-free interest rate. The equation of Rho is as shown below

ρ = Bε · exp−dε N(h2) (77)

Proof.

ρ =
∂ f
∂d

= A
∂N(h1)

∂d
− (−ε) ·B · exp−dε N(h2)−Bexp−dε ∂N(h2)

∂d
(78)

= A
∂N(h1)

∂h1

∂h1

∂d
+Bε · exp−dε N(h2)−Bexp−dε ∂N(h2)

∂h2

∂h2

∂d
(79)

= A
1√
2π

exp
−h2

1
2 ·
(√

ε

ωa

)
+Bε · exp−dε N (h2)−Bexp−dε ∂N (h2)

∂h2

∂h2

∂d
(80)

= A
1√
2π

exp
−h2

1
2 ·
(√

ε

ωa

)
+Bε · exp−dε N (h2)−A

1√
2π

exp
−h2

1
2 ·
(√

ε

ωa

)
(81)

= Bε · exp−dε N (h2) .

The rho of a put option of a non-dividend paying stock is shown below

ρ =
∂g
∂d

= (−ε) ·B · exp−dε N (−h2)+Bexp−dε ∂N (−h2)

∂d
−A

∂N (−h1)

∂d
(82)

Proof.

= Bε · exp−dε (1−N (h2))+Bexp−dε ∂ (1−N (h2))

∂h2
−A

∂ (1−N (h1))

∂h1

∂h1

∂d
(83)

= Bε · exp−dε (1−N (h2))−Bexp−dε ·
(

1√
2π

exp
−h2

1
2 ·A

B
· expdε

)
·
(√

ε

ωa

)
(84)

+A
1√
2π

exp
−h2

1
2 ·
(√

ε

ωa

)
(85)

= Bε · exp−dε (1−N (h2))−A
1√
2π

exp
−h1

2 ·
(√

ε

ωa

)
+A

1√
2π

exp
−h2

1
2 ·
(√

ε

ωa

)
(86)

=−Bε · exp−dε N (−h2) .
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Application of Rho

Let A=$40 and B=$32, d= 4 per annum and is 27 per annum. The rho of a 6 months put
option can be calculated as

ρ =Bε ·exp−dε (1−N (h2))= (32)(0.27)exp−0.04×0.27 N
ln 40

32 +
[
0.04− 1

2

(
0.32)](0.5)

0.27
√

0.5
≈ 7.496

(87)
The rho neutrality of an option portfolio is achieved when their respective rho positions
are equal to zero.

3.3 Linear Programming Model

We now want to minimize all the risks in the financial derivative market. However combin-
ing all Greek neutralities would require so much work because it would involve adjusting
the position of other neutralities every time you neutralize one Greek. Linear programming
is known to combine constraints to provide a solution for really complex problems. In this
study we construct a standard linear program which maximizes profit while reducing the
risks in the market altogether.
The following notations will apply to the constraints and variables
Variables
W- Buy a call option
X- Sell a call option
Y- Buy a put option
Z-Sell a put Option.
Constraints
f and g are the call and put options (This is value a�ained a�er subtracting the option
premium from options black-scholes price )
∆W - Buy Call Delta.
ΓX - Sell Call Gamma.
νY - Buy Put Vega.
ρZ - Sell Put Rho.
ΘW - Buy Call Theta.

maximize fW + f X +gY +gZ

subject to

∆W +∆X +∆Y +∆Z = 0

ΓW +ΓX +ΓY +ΓZ = 0

νW +νX +νY +νZ = 0

ρW +ρX +ρY +ρZ = 0

ΘW +ΘX +ΘY +ΘZ = 0

(88)
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such that
f = ( f1, . . . , f8)

g = (g1, . . . ,g8)

W = (W1, . . . ,W8)

X = (X1, . . . ,X8)

Y = (Y1, . . . ,Y8)

Z = (Z1, . . . ,Z8)

Thus
fW = ( f1W1, . . . , f8W8), ∆W = (∆W1, . . . ,∆W8),ΓX = (ΓX1, . . . ,ΓX8), etc
This Linear programming model used in this study applies assumptions like the ones used
by Christos and is applied to Netflix options. The following are the assumptions that were
made for the linear program.
(a) No a priori strategies are considered or all combinations are possible.
(b) All transaction costs are not considered. Hull argues that this assumption holds true
for options with big portfolios because the transaction costs are insignificantly small. Thus
this model can be applied to large options portfolios
(c)An arbitrage profit is possible if one takes a position now and an opposite position upon
the option expiration date. In our case upon expiration of the option. The values of the
Greeks were also calculated and plugged in the linear program.

3.3.1 Data Collection

The data was obtained from the website finance.yahoo.com. We focused on the adjusted
closing stock prices of 8 call and 8 put Netflix options. Netflix is one of the best performers
in the 500 index. The range of data was a full trading year, from 22/10/2018-22/10/2019. The
market premium of the options was observed from www.nasdaq.com on their expiration
date.

3.3.2 Excel Calculations that were used to calculate values found in the linear
program

The following calculations were used to find values of our Greek constraint parameters
and theoretical prices in the objective function.

Net�x Historical Volatility

This type of volatility relies on past price movements of an asset. In our case, this will
equal a 21- day standard deviation of daily returns and a 31-day standard deviation both
expressed in yearly terms.These computations were done using Excel with the steps out-
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lined below;
(i) First the log returns were calculated using the formula H = ln

(
Xc

Xc−1

)
where Xt is the

adjusted close of the current day and Xc−1 the adjusted close of the previous day.

(ii) The sample standard deviation of a rolling block of 21 days and 31 days respectively
was then calculated and each of the results annualized by multiplying with 252.
The graphs of annual historical volatility against time are found in the appendix.

Net�x Options Prices and Greeks

The Black-Scholes formula was used to calculate the put and call options prices using
excel. The Greeks were calculated using excel too. The values of the Greeks were used
as the parameters in the constraints of our linear program. The Excel tables are shown
below. we start with a table for 21 days then 31 days. Then calculations of options prices
and Greeks.

The table below is for options prices with expiration date of 21 days, a risk free interest
rate of 0.019 and historical volatility of 0.3640

Table 1. Table of Call Option Prices with expiration date of 21 days

Strike price d1 d2 N(d1) N(d2) Call value

260 0.179665408 0.074564854 0.571292374 0.529719531 12.78641516

262.5 0.088614975 -0.016485579 0.535306047 0.493423503 11.50956203

265 -0.001572408 -0.106672962 0.4993727 0.457524217 10.32287023

The table below shows values of Greeks with expiration date of 21 days, risk free interest
rate of 0.019 and historical volatility of 0.3640

Table 2. Table of Call Greeks with expiration date of 21 days

Stock Price Strike price Call Delta Gamma Call Theta Vega Call Rho

263.08 260 0.571292 0.014197366 -65.13493144 0.298124616 0.114590986

263.08 262.5 0.535306 0.014371829 -65.93459021 0.301788094 0.107765627

263.08 265 0.499373 0.014428351 -66.19323403 0.302974962 0.10087675
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The next table is for call options prices with expiration date of 31 days, a risk free interest
rate of 0.019 and historical volatility of 0.3290

Table 3. Table of Call Option prices with expiration date of 31 days

Stock price Strike price d1 d2 N(d1) N(d2) Call value

263.08 260 0.180001515 0.064597735 0.571424311 0.525752856 13.95369116

263.08 262.5 0.097080045 -0.018323734 0.538668586 0.492690297 12.68366184

263.08 265 0.014944573 -0.100459207 0.5059618 0.459989884 11.49568932

263.08 267.5 -0.066419662 -0.181823442 0.473521858 0.427860643 10.38860649

263.08 270 -0.147027011 -0.262430791 0.44155535 0.396494668 9.360745346
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The table below shows values of Greeks with expiration date of 31 days, risk free interest
rate of 0.019 and historical volatility of 0.3290

Table 4. Table of Call Greeks with expiration date of 31 days

Stock price Strike price Call Delta Gamma Call Theta Vega Call Rho

263.08 260 0.571424 0.012929047 -48.448828 0.36219528 0.167764885

263.08 262.5 0.538669 0.013078432 -49.00794489 0.366380173 0.158726483

263.08 265 0.505962 0.013138739 -49.23332611 0.368069624 0.149602975

263.08 267.5 0.473522 0.013111254 -49.1297929 0.36729965 0.140466319

263.08 270 0.441555 0.012998946 -48.70847468 0.364153439 0.131385425

The table below is for put options prices with expiration date of 21 days, a risk free interest
rate of 0.019 and historical volatility of 0.3640

Table 5. Table of Put Option Prices with expiration date of 21 days

Stock Price Strike price d1 d2 N(-d1) N(-d2) Put Value

263.08 260 -0.179665408 -0.074564854 0.428707626 0.470280469 9.295074221

263.08 262.5 -0.088614975 0.016485579 0.464693953 0.506576497 10.5142659

263.08 265 0.001572408 0.106672962 0.5006273 0.542475783 11.82361889

The table below shows values of Greeks with expiration date of 21 days, risk free interest
rate of 0.019 and historical volatility of 0.3640

Table 6. Table of Put Greeks with expiration date of 21 days

Stock Price Strike price Put Delta Gamma Put theta Vega Put Rho

263.08 260 -0.428707626 0.014197366 -64.64010489 0.298124616 -0.101732897

263.08 262.5 -0.464693953 0.014371829 -65.39797553 0.301788094 -0.110638293

263.08 265 -0.5006273 0.014428351 -65.61453449 0.302974962 -0.119607207
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The table below is for put options prices with expiration date of 31 days, a risk free interest
rate of 0.019 and historical volatility of 0.3290

Table 7. Table of Put Option Prices with expiration date of 21 days

Stock price Strike price d1 d2 N(-d1) N(-d2) Put Value

263.08 260 -0.180001515 -0.064597735 0.428575689 0.474247144 10.26670238

263.08 262.5 -0.097080045 0.018323734 0.461331414 0.507309703 11.49083663

263.08 265 -0.014944573 0.100459207 0.4940382 0.540010116 12.79702768

263.08 267.5 0.066419662 0.181823442 0.526478142 0.572139357 14.18410842

263.08 270 0.147027011 0.262430791 0.55844465 0.603505332 15.65041085

The table below shows values of Greeks with expiration date of 31 days, risk free interest
rate of 0.019 and historical volatility of 0.3290

Table 8. Table of Put Greeks with expiration date of 31 days

Stock price Strike price put delta Gamma Put theta Vega Put Rho

263.08 260 -0.428575689 0.012929047 -47.95001714 0.36219528 -0.151329692

263.08 262.5 -0.461331414 0.013078432 -48.47060493 0.366380173 -0.163436312

263.08 265 -0.4940382 0.013138739 -48.65718752 0.368069624 -0.175628036

263.08 267.5 -0.526478142 0.013111254 -48.51481405 0.36729965 -0.187832909

263.08 270 -0.55844465 0.012998946 -48.05483217 0.364153439 -0.19998202
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The calculated values were plugged in the linear programming model below, which is part
of the complete linear program. The full linear program is found in the appendix
Max
1.6W1+2.1W2+1.6W3+1.27W4+2.12W5+1.63W6+1.56W7+1.93W8−1.6X1−2.1X2−
1.6X3−1.27X4−2.12X5−1.63X6−1.56X7−1.93X8+2.4Y1+2Y2+1.6Y3+1.88Y4+2.09Y5+

1.75Y6+2.3Y7+1.63Y8−2.4Z1−2Z2−1.6Z3−1.88Z4−2.09Z5−1.75Z6−2.3Y P267.5Z7−
1.63Z8

Subject to:
0.57129W1+0.53531W2+0.49937W3+0.57142W4+0.53867W5+0.50596W6+0.47352W7+

0.44156W8−0.57129X1−0.53531X2−0.49937X3−0.57142X4−0.53867X5−0.50596X6−
0.47352X7−0.44156X8−0.42871Y1−0.46469Y2−0.50063Y3−0.42858Y4−0.46133Y5−
0.49404Y6−0.52648Y7−O.55884Y8−0.42871Z1+0.46469Z2+0.50063Z3+0.42858Z4+

0.46133Z5 +0.49404Z6 +0.52648Z7 +0.55884Z8 +K−S = 0
...
...
...
It was observed that the linear program with the five risk constraints could not observe a
unique solution and one had to repeat the same equation ten times in order to achieve
ten times the profit thus we added a scale constraint to ensure a unique solution. The
scale constraint
0.57129W1+0.53531W2+0.49937W3+0.57142W4+0.53867W5+0.50596W6+0.47352W7+

0.44156W8+0.42871Z1+0.46469Z2+0.50063Z3+0.42858Z4+0.46133Z5+0.49404Z6+

0.52648Z7 +0.55845Z8 +K = 1700
Buying an option at the market price and selling at the Black-Scholes price would lead to
a profit and buying the option at black-scholes price and then selling at the market price
would lead to a loss.
It was observed that some values in our general equation took a negative sign. The neg-
ative sign in the objective function means that the investor has sold the option at the
option premium . The values were then ran in excel solver and used a simplex method. The
results are shown in the appendix. The complete Linear program containing calculated
values is found in the appendix. In order for us to determine the e�ect of the Greeks
on the option, we started deleting one Greek at a time and observed the changes in the
results of our model. The adjustment gave rise to five more solutions which are briefly
described below:
(1) Solution 1 - Consisted of Delta, Gamma, Kappa, Rho, Theta and the Scale constraints.
(2) Solution 2 - Consisted of Delta, Gamma, Kappa, Rho and the Scale constraints.
(3) Solution 3 - Consisted of Delta, Gamma, Kappa and the Scale constraints.
(4) Solution 4 - Consisted of Delta, Gamma and the Scale constraints.
(5) Solution 5 - Consisted of Delta and the Scale constraints.
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4 Data Analysis And Results

4.1 Solution 1
Table 9. Summary of Answer and Sensitivity Reports for Delta, Gamma, Kappa, Rho, Theta and

Constant

Solution 1

Greek Name Shadow Price Allowable in-

crease

Transaction

name and num-

ber of shares

Max Pro�t

Delta $-1.58 1700 W5 - 349.61 $2682.4

Gamma $-19040.34 0.56 X3 - 752.48

Kappa $325.69 1.02 Y1 - 3088.89

Rho $-3.52 158.3 Z3 - 2286.97

Theta $-2.7 272.5 Z6 - 348.01

Constant $1.58 in�nity K - 194.8

4.1.1 Answers Report

In solution 1, the Linear Programming model o�ers the following optimization strategy;
buying 3.4961 call options equivalent to 349.61 shares (with strike price of 262.5 and time
to maturity of 31 days), selling 7.5248 call options equivalent to 752.48 shares with a strike
price of 265 and time to maturity of 21 days), buying 30.8889 put options equivalent to
3088.89 shares with a strike price of is 260 and time to maturity is 21 days, selling 22.8696
put options equivalent to 2286.96 shares with a strike price of 265 and a time to maturity
of 21 days), selling 3.48006 put options equivalent to 348.006 shares with a strike price of
267.5 and time to maturity of 31 days), sell 194.82 shares. All constraints were found to be
binding thus no slack variables and the maximum profit is $2682.40.

4.1.2 Shadow Price

The Delta shadow price for the solution 1 is -1.578. The shadow price suggests that there
is a loss of 1.578 if we increase delta risk by one unit. An example of increasing delta risk
is by buying one more share. The gamma constraint has a shadow price of -19040.34 .The
price suggests that there will be a loss of 19040.34 if we increase the gamma risk by one
unit. The shadow price associated with Kappa constraint is 325.69. This suggests that if
we increase kappa risk by one unit, the profit goes down by 325.69. However, the risk has
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an allowable increase of 0.31 thus the profit can only increase by 32.57. If we increase the
rho risk by one unit, then there will be a loss of 3.516 on the maximum profit. Thus its
not profitable move. If we increase theta risk by one unit, there will be a loss of 2.701 on
the maximum profit. If we increase the constant risk by one unit, the maximum profit
will increase by 1.578. The allowable increase is 0.55 giving a maximum increase of 0.8679
on the profit. From the results above, we note that the critical constraint is the kappa
constraint.

4.2 solution 2
Table 10. Summary of Answer and Sensitivity Reports for Delta, Gamma, Kappa, Rho and

Constant

Solution 2

Greek Name Shadow Price Allowable in-

crease

Transaction

name and num-

ber of shares

Max Pro�t

Delta $-0.86 50.37 X3 165.7 $3048.24

Gamma $152.04 0.56 X4 60.13

Kappa $-0.49 9.71 Y1 3619.41

Rho $-0.17 6.9 Y7 59.29

Constant $1.79 in�nity X3 3395.74

4.2.1 Answers Report

In solution 2, when the theta constraint is deleted, the Linear Programming model gives
the following optimization strategy; selling 1.657 call options equivalent to 165.7 shares
with a strike price of $265 and time to maturity of 21 days), sell 6.013 call options equivalent
to 60.13 shares with a strike price of $260 and expires a�er 31 days, buy 36.19 put options
equivalent to 3619 shares with a strike price of $260 and expires a�er 21 days, sell 0.5929
put options equivalent to 59.29 shares with a strike price of $267.5 and time to expiration
of 31 days, sell 33.9574 put options equivalent to 3395.74 shares the strike price of the
underlying asset is $265 and time to maturity is 21 days

4.2.2 Shadow Price

The Delta shadow price for the models 2 is $-0.8603. The price suggests that there is a
loss of $0.8603 change in profit if we increase the delta risk by one unit. The gamma
constraint has a shadow price of $152.04. The figure suggests that the maximum profit
increases by $152.04 if the gamma risk is increased by one unit. The allowable increase
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of the constraint is 0.56 which means that the increase on the maximum profit can only
get to $85.14. The shadow price associated with Kappa constraint is $-0.48. This suggests
that if we increase the kappa risk by one unit, the maximum profit would decrease by
$0.48. The shadow price for Rho constraint is $-0.16. This suggests that if we increase the
Rho risk by one unit, the maximum profit would su�er a loss of $0.16. The shadow prices
for the size constraints in our model is $1.79. The price suggests that if we buy an extra
share the profit increases by $1.79. However, the size constraint is a slack variable thus
the critical constraint is the gamma constraint.

4.3 Solution 3
Table 11. Summary of Answer and Sensitivity Reports for Delta, Gamma, Kappa and Constant

Solution 3

Greek Name Shadow Price Allowable in-

crease

Transaction

name and num-

ber of shares

Max Pro�t

Delta $-0.92 220.54 X4 202.22 $3051.01

Gamma $149.6 0.87 Y1 3450.99

Kappa $-0.39 155.36 Y7 199.41

Constant $1.79 in�nity Z3 3395.74

4.3.1 Answer Report

In solution 3, a�er deleting theta and rho, the optimal solution gave us the following
strategy; selling 2.022 call options equivalent to 202.2 shares (the strike price of the
underlying asset is 260 and the time to maturity is 31 days), buying 34.51 put options
equivalent to 3451 shares (the strike price of the underlying asset is 260 and time to
maturity is 21 days), buying 1.994 put options equivalent to 199.4 shares (the strike price
of the underlying asset is 265 and time to maturity is 21 days), buying 33.96 put options
equivalent to 3396 shares (the strike price of the underlying asset is 267.5 and time to
maturity is 21 days).

4.3.2 Shadow Price

The Delta shadow price for solution 3 is $-0.9151. The price suggests that there is a loss
of $0.9151 in the profit if we increase the delta risk by one unit. The gamma constraint
has a shadow price of $149.6.The figure suggests that the profit increases by $149.6 if
the gamma risk was increased by one unit. The allowable increase associated with the
shadow price is 0.8721. This gives a maximum increase of $130.2 on the maximized profit.
The shadow price associated with Kappa constraint is $-0.3901. This indicates that if we
increase the kappa risk by one unit, the maximized profit would decrease by $-0.3901. The
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shadow prices for the size constraints in our model is $1.794. The critical constraint in
this solution is the gamma.

4.4 Solution 4
Table 12. Summary of Answer and Sensitivity Reports for Delta, Gamma and Constant

Solution 4

Greek Name Shadow Price Allowable in-

crease

Transaction

name and num-

ber of shares

Max Pro�t

Delta $-0.95 50.37 X4 229.29 $3048.24

Gamma $140.3 0.56 Y1 3659.79

Constant $1.79 in�nity Z3 3395.74

4.4.1 Answer Report

In solution 4, a�er deleting theta, rho and kappa, the optimal solution gave the following
strategy; sell 2.2929 call options equivalent to 229.29 shares (where the underlying asset
has a strike price of 260 and time to maturity is 31 days), buy 36.5979 put options equiva-
lent to 3659.74 shares (where the underlying asset has a strike price of 260 and time to
expiration is 21 days), sell 33.9574 put options equivalent to 3395.74 shares (with the under-
lying asset of the options having a strike price of 265 and time to expiration date is 21 days).

4.4.2 Shadow Price

The Delta shadow price for the models 3 is $-0.9519. The $-0.9519 shadow price suggests
that there is a loss of $0.9519 in the maximized profit if we increase the delta risk value by
one unit. The gamma constraint has a shadow price of $140.3.The figure suggests that the
maximized profit increased by $140.3 if the gamma risk was increased by one unit. The
allowable increase is 7.30. This indicates that the profit can increase upto $1024.19.. The
shadow price for the size constraints in our model is $1.799. Thus gamma is our critical
constraint.

4.5 Solution 5

4.5.1 Answers Report

In solution 5, a�er deleting, theta, rho, kappa and gamma constraints the optimal solution
took the form; buying 38.5003 call options equivalent to 3850.03 shares with a strike price
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Table 13. Summary of Answer and Sensitivity Reports for Delta and Constant

Solution 5

Greek Name Shadow Price Allowable in-

crease

Transaction

name and num-

ber of shares

Max Pro�t

Delta $-5.6 1700 W8 3850.03 $16947.53

Constant $9.97 in�nity Y1 3965.41

of 270 and time to maturity is 31 days and buying 39.6541 put options equivalent to 3965.41
shares with a strike price of 260 and time to maturity is 21 days.

4.5.2 Shadow Price

The Delta shadow price for the models 5 is $-5.60. The $-5.60 shadow price suggests that
there is a loss of $5.60 in the profit if we increase the delta risk by one unit. The constant
constraint has a shadow price of $9.969. The price suggests that if we buy an extra share
the profit increases by $9.97.

4.6 Comment

It was observed that profit was lowest in solution 1 and highest in solution 5. That is when
one includes all Greeks the profit reduces and when one considers only one Greek and
the size constraint the profit is highest. This means that the investing in a risky option
gives more profit than an option that is hedged from all risks in the market.
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5 Conclusion

Linear Programming models provide an e�icient way for solving complicated problems.
The case study in this study is a good example. We found the optimal strategy for
hedging a portfolio of options. The solution provided by the Linear Programming model
gives the best strategy for optimizing the portfolio compared to delta-neutral, delta-vega,
delta-gamma neutral and even a guess work practised by speculative traders. The Linear
Program hedges the options portfolio against all risks in the market, something that
would have been more complicated due to the fact that hedging one Greek influences the
value of another Greek. This study contributed in specifying the number of options to be
bought or sold when the linear program is optimized and gave the critical constraint in
every solution. The shadow price in the excel solver solutions provide the investor with
information on how the profit would be a�ected by increasing the risk level by one unit. It
was observed that the profit was lowest when all five Greeks were included and increased
with decrease in number of constraints. linear, yet they are not.
Future Research
The assumption that transaction costs and margins are not included also give profit values
that might be higher than the ones experienced in the market. Thus need for more research
on this study
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6 Appendix

6.1 Annual Historical Volatility Graphs

Figure 1. The Historical Volatility for 21 days
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Figure 2. The Historical Volatility for 31 days
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Max
1.6W1+2.1W2+1.6W3+1.27W4+2.12W5+1.63W6+1.56W7+1.93W8−1.6X1−2.1X2−
1.6X3−1.27X4−2.12X5−1.63X6−1.56X7−1.93X8+2.4Y1+2Y2+1.6Y3+1.88Y4+2.09Y5+

1.75Y6+2.3Y7+1.63Y8−2.4Z1−2Z2−1.6Z3−1.88Z4−2.09Z5−1.75Z6−2.3Y P267.5Z7−
1.63Z8

0.57129W1+0.53531W2+0.49937W3+0.57142W4+0.53867W5+0.50596W6+0.47352W7+

0.44156W8−0.57129X1−0.53531X2−0.49937X3−0.57142X4−0.53867X5−0.50596X6−
0.47352X7−0.44156X8−0.42871Y1−0.46469Y2−0.50063Y3−0.42858Y4−0.46133Y5−
0.49404Y6−0.52648Y7−O.55884Y8−0.42871Z1+0.46469Z2+0.50063Z3+0.42858Z4+

0.46133Z5 +0.49404Z6 +0.52648Z7 +0.55884Z8 +K−S = 0
0.0142W1+0.01437W2+0.01443W3+0.01293W4+0.01308W5+0.01314W6+0.01311W7+

0.013W8− 0.0142X1− 0.01437X2− 0.01443X3− 0.01293X4− 0.01308X5− 0.01314X6−
0.01311X7−0.013X8+0.0142Y1+0.01437Y2+0.01443Y3+0.01293Y4+0.01308Y5+0.01314Y6+

0.01311Y7 + 0.013Y8 − 0.0142Z1 − 0.01437Z2 − 0.01443Z3 − 0.01293Z4 − 0.01308Z5 −
0.01314Z6−0.01311Z7−0.013Z8 = 0
0.29812W1+0.30179W2+0.30298W3+0.36280W4+0.36638W5+0.36807W6+0.3673W7+

0.36415W8−0.29812X1−0.30179X2−0.30298X3−0.36280X4−0.36638X5−0.36807X6−
0.3673X7 − 0.36415X8 + 0.29812Y1 + 0.30179Y2 + 0.30298Y3 + 0.3622Y4 + 0.36638Y5 +

0.36807Y6 + 0.3673Y7 + 0.36415Y8− 0.29812Z1− 0.30179Z2− 0.30297Z3− 0.3622Z4−
0.36638Z5−0.36807Z6−0.3673Z7−0.36415Z8 = 0
0.11459W1+0.10777W2+0.10088W3+0.16777W4+0.15873W5+0.1496W6+0.14047W7+

0.13139W8−0.11459X1−0.10777X2−0.10088X3−0.16777X4−0.15873X5−0.1496X6−
0.14047X7−0.13139X8−0.10173Y1−0.11064Y2−0.11961Y3−0.15133Y4−0.16344Y5−
0.17563Y6−0.18783Y7−0.19998Y8+0.10173Z1+0.11064Z2+0.11961Z3+0.15133Z4+

0.16344Z5 +0.17563Z6 +0.18783Z7 +0.19998Z8 = 0
−65.135W1−65.935W2−66.193W3−48.449W4−49.008W5−49.233W6−49.13W7−48.709W8+

65.135X1+65.935X2+66.193X3+48.449X4+49.008X5+49.233X6+49.13X7+48.708X8−
64.64Y1−65.398Y2−65.615Y3−47.95Y4−48.471Y5−48.657Y6−48.515Y7−48.055Y8+

64.64Z1+65.398Z2+65.615Z3+47.95Z4+48.471Z5+48.657Z6+48.515Z7+48.055Z8 =

0
0.57129W1+0.53531W2+0.49937W3+0.57142W4+0.53867W5+0.50596W6+0.47352W7+

0.44156W8+0.42871Z1+0.46469Z2+0.50063Z3+0.42858Z4+0.46133Z5+0.49404Z6+

0.52648Z7 +0.55845Z8 +K = 1700
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6.2 Excel Solver Results

6.2.1 Answers report when Delta, Gamma, Vega, Rho, Theta and Scale Con-
straints are included

Table 14. Profits

Name Original Value Final Value

Total Pro�t 2682.400607 2682.400607

Table 15. Variables

Name Original Value Final Value Integer

Transaction XC262.5W 349.6107221 349.6107221 Contin

Transaction YC265V 752.4780646 752.4780646 Contin

Transaction XP260V 3088.894836 3088.894836 Contin

Transaction YP265V 2286.966457 2286.966457 Contin

Transaction YP265W 348.005998 348.005998 Contin

Transaction K 194.8294433 194.8294433 Contin

Table 16. Constraints

Name Cell Value Status Slack

Delta 7.95808E-13 Binding 0

Gamma 8.88178E-15 Binding 0

Kappa 5.40012E-13 Binding 0

Rho 2.34479E-13 Binding 0

Theta -4.36557E-11 Binding 0

Constant 1700 Binding 0



6.2.2 Sensitivity Report when Delta, Gamma, Vega, Rho, Theta and Scale Con-
straints are included

Table 17. Variables

Final Reduced Objective Allowable Allowable

Name Value Cost Coe�cient Increase Decrease

Transaction XC262.5W 349.6107221 0 2.12 0.117608243 0.335140026

Transaction YC265V 752.4780646 0 -1.6 0.227016961 0.219012049

Transaction XP260V 3088.894836 0 2.4 0.312218142 0.100156887

Transaction YP265V 2286.966457 0 -1.6 0.169455125 0.105776947

Transaction YP265W 348.005998 0 -1.75 0.241925155 0.036643621

Transaction K 194.8294433 0 0 0.554657928 0.896750674

Table 18. Constraints

Final Shadow Constraint Allowable Allowable

Name Value Price R.H. Side Increase Decrease

Delta 7.95808E-13 -1.57788271 0 1700 220.048188

Gamma 8.88178E-15 -19040.3434 0 0.038404736 0.017477667

Kappa 5.40012E-13 325.6858056 0 1.020667793 2.265715994

Rho 2.34479E-13 -3.515549066 0 158.3282812 44.69541638

Theta -4.36557E-11 -2.701011651 0 272.5107859 124.7389757

Constant 1700 1.57788271 1700 1E+30 1700



6.2.3 Answers Report When Theta is deleted

Table 19. Profit

Name Original Value Final Value

Total pro�t 2.66454E-15 3048.24471

Table 20. Variables

Name Original Value Final Value Integer

Transaction YC265V 1 165.722755 Contin

Transaction YC260W 1 60.1288673 Contin

Transaction XP260V 1 3619.405759 Contin

Transaction XP267.5W 1 59.29325527 Contin

Transaction YP265V 1 3395.739706 Contin

Table 21. Constraints

Name Cell Value Status Slack

Delta 3.18323E-12 Binding 0

Gamma 7.81597E-14 Binding 0

Kappa 2.27374E-12 Binding 0

Rho 7.95808E-13 Binding 0

Constant 1700 Binding 0



6.2.4 Sensitivity when Theta is deleted

Table 22. Variables

Final Reduced Objective Allowable Allowable

Name Value Cost Coe�cient Increase Decrease

Transaction YC265V 165.722755 0 -1.6 0.292178051 0.088867813

Transaction YC260W 60.1288673 0 -1.27 0.171102939 0.183769668

Transaction XP260V 3619.405759 0 2.4 0.768105608 0.142715719

Transaction XP267.5W 59.29325527 0 2.3 0.310585379 0.159346168

Transaction YP265V 3395.739706 0 -1.6 8.54664E+13 0.154529944

Table 23. Constraints

Final Shadow Constraint Allowable Allowable

Name Value Price R.H. Side Increase Decrease

Delta 3.18323E-12 -0.860334258 0 50.37334771 31.5840249

Gamma 7.81597E-14 152.0408147 0 0.564944112 0.480744419

Kappa 2.27374E-12 -0.485154977 0 9.709871507 12.44292728

Rho 7.95808E-13 -0.169322287 0 6.899595085 16.30423129

Constant 1700 1.793085124 1700 1E+30 1700



6.2.5 Answer report when Theta and Rho are deleted

Table 24. Profit

Name Original Value Final Value

Total pro�t 2.66454E-15 3051.00538

Table 25. Variables

Name Original Value Final Value Integer

Transaction YC260W 1 202.2176345 Contin

Transaction XP260V 1 3450.986774 Contin

Transaction XP267.5W 1 199.4074121 Contin

Transaction YP265V 1 3395.739706 Contin

Table 26. Constraints

Name Cell Value Status Slack

Delta -2.27374E-13 Binding 0

Gamma 7.10543E-15 Binding 0

Kappa 2.27374E-13 Binding 0

Constant 1700 Binding 0



6.2.6 Sensitivity report when Theta and rho are deleted

Table 27. Variables

Final Reduced Objective Allowable Allowable

Name Value Cost Coe�cient Increase Decrease

Transaction YC260W 202.2176345 0 -1.27 0.18372528 0.019429191

Transaction XP260V 3450.986774 0 2.4 0.016391678 0.153128854

Transaction XP267.5W 199.4074121 0 2.3 0.332216599 0.019703004

Transaction YP265V 3395.739706 0 -1.6 1E+30 0.155620187

Table 28. Constraints

Final Shadow Constraint Allowable Allowable

Name Value Price R.H. Side Increase Decrease

Delta -2.27374E-13 -0.915138432 0 220.5356534 3.30678E+17

Gamma 7.10543E-15 149.6037873 0 0.872136955 12.2696653

Kappa 2.27374E-13 -0.390127432 0 155.3629074 20.79713508

Constant 1700 1.794709047 1700 1E+30 1700



6.2.7 Answer report when Theta, Rho and Kappa are deleted

Table 29. Profit

Name Original Value Final Value

Total Pro�t 2.66454E-15 3059.118913

Table 30. Variables

Name Original Value Final Value Integer

Transaction YC260W 1 229.2868207 Contin

Transaction XP260V 1 3659.790294 Contin

Transaction YP265V 1 3395.739706 Contin

Table 31. Constraints

Name Cell Value Status Slack

Delta 4.54747E-13 Binding 0

Gamma 2.13163E-14 Binding 0

Constant 1700 Binding 0

6.2.8 Sensitivity Report when Theta, Rho and Kappa are deleted

Table 32. Variables

Final Reduced Objective Allowable Allowable

Name Value Cost Coe�cient Increase Decrease

Transaction YC260W 229.2868207 0 -1.27 0.190943969 0.05252137

Transaction XP260V 3659.790294 0 2.4 0.389891285 0.038857261

Transaction YP265V 3395.739706 0 -1.6 1E+30 0.159355219

Table 33. Constraints

Final Shadow Constraint Allowable Allowable

Name Value Price R.H. Side Increase Decrease

Delta 4.54747E-13 -0.951928551 0 220.5356534 1E+30

Gamma 2.13163E-14 140.3007382 0 7.303405076 87.45914544

Constant 1700 1.799481713 1700 1E+30 1700



6.2.9 Answers Report when Theta, Rho, Kappa and Gamma have been deleted

Table 34. Profit

Name Original Value Final Value

Total Pro�t 2.66454E-15 16947.53348

Table 35. Variables

Name Original Value Final Value Integer

Transaction XC270W 1 3850.030008 Contin

Transaction XP260V 1 3965.406486 Contin

Table 36. Constraints

Name Cell Value Status Slack

Constant 1700 Binding 0

Delta -4.54747E-13 Binding 0

6.2.10 SensitivityReportwhenTheta, Rho, Kappa andGammahavebeendeleted

Table 37. Variables

Final Reduced Objective Allowable Allowable

Name Value Cost Coe�cient Increase Decrease

Transaction XC270W 3850.030008 0 1.93 1E+30 0.192204434

Transaction XP260V 3965.406486 0 2.4 1E+30 0.457797689

Table 38. Constraints

Final Shadow Constraint Allowable Allowable

Name Value Price R.H. Side Increase Decrease

Constant 1700 9.969137342 1700 1E+30 1700

Delta -4.54747E-13 -5.598220921 0 1700 1E+30
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