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Abstract

For any linear operator T acting on a Hilbert space H , its Aluthge transform T̃ where

T̃ = |T | 12U |T | 12 is another linear operator on H. It is known that T̃ preserves the spectral

properties of T and more importantly that T has a non trivial closed invariant subspace

if and only if T has. In this project Aluthge transforms of di�erent classes of operators

in Hilbert spaces were studied. In addition, generalized Aluthge transforms, as well as

powers of Aluthge transformations were sort and looked at. Lastly, the numerical range of

T was discussed but for some classes of operators.
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1 Introduction

1.1 DEFINITIONS AND NOTATIONS.

In this chapter terminologies which featured in this write up were defined, di�erent
notations were explained, series of inclusions of di�erent classes of operators in Hilbert
spaces were outlined and a brief historical development of Hilbert spaces was visited.
We start o� by discussing the following terminologies.

De�nition 1.1.1. A set is called Banach space if it is a complete normed vector space with
respect to the norm.

De�nition 1.1.2. A norm is a function denoted f 7→ || f ||, that maps vectors to non negative
scalars and has the following properties:

(i.) If f 6= 0 then || f || 6= 0;

(ii.) Given a scalar k, ||k f ||= |k|.|| f ||, where |k| is the absolute value of k;

(iii.) Given two vectors f ,g; || f +g|| ≤ || f ||+ ||g||.

De�nition 1.1.3. (X , || · ||) is called a normed linear space if for X a linear space and || · || a
norm on X , the map || · || : X → R satis�es:

(i.) ||x|| ≥ 0, with equality i� x = 0.

(ii.) ||αx||= |α|||x||.

(iii.) ||x+ y|| ≤ ||x||+ ||y||.

Remark 1.1.4. Normed linear spaces are denoted by n.l.s.

De�nition 1.1.5. Let H be a vector space over a �eldC. A mapping 〈 , 〉 : H×H→K(where
K is C or R) which associates with every ordered pair (x,y) ∈ H×H , a scalar denoted by
〈x,x〉 is called an inner product on H×H if it satis�es the following properties:

(i.) 〈x,x〉 ≥ 0 for all x ∈ H.

(ii.) 〈x,x〉= 0, if x = 0, for all x ∈ H.

(iii.) 〈x,y〉= 〈y,x〉for all x,y ∈ H (where bar denotes complex conjugate).
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(iv.) 〈αx,y〉= α〈x,y〉 for all x,y ∈ H and α ∈ C.

(v.) 〈x+ y,z〉= 〈x,z〉+ 〈y,z〉 for all x,y,z ∈ H.

De�nition 1.1.6.

Remark 1.1.7. Inner product on a Hilbert space H is denoted by 〈,〉.
Thus the vector space H together with the inner product mapping 〈,〉 is known as an inner
product space over K.

If K = R, then the inner product space is called a real inner product space. If K = C, then the
inner product space is called a complex inner product space.

Remark 1.1.8. Inner product spaces are denoted by i.p.s.

De�nition 1.1.9. An inner product space H is called a Hilbert space if (H, ||.||) is a Banach
space with ||.||, the norm induced by the inner product function.

Remark 1.1.10. Hilbert spaces are denoted by H.

De�nition 1.1.11. A subset M of a vector space X is a set which is itself a vector space with
respect to vector space axioms.

De�nition 1.1.12. LetV andW be vector spaces over the same �eld H.A function f : V →W
is said to be a linear transformation or a linear map if for any two vectors u,v ∈V and any
scalar c ∈ H the following conditions are satis�ed:

(i.) f (u+ v) = f (u)+ f (v)

(ii.) f (cu) = c f (u).

That is the addition and scalar multiplication operations are preserved.

Remark 1.1.13. A linear transformation is a mapping V →W between two vector spaces
that preserves the operations of addition and scalar multiplication.

De�nition 1.1.14. Let X and Y be two sets. A correspondence which assigns a uniquely
de�ned element A(x) ∈ Y to every element x of a subset D⊂ X is called an operator A from
X into Y.Written as A : D→ Y for D⊂ X .

Remark 1.1.15. An operator is a mapping or a function that acts on elements of a space to
produce elements of another space.

De�nition 1.1.16. Let U and V be vector spaces over a �eld K. A mapping A : U → V is
called linear operator if A(αx+βy) = αAx+βAy, ∀x,y ∈U and α,β ∈ K.

Remark 1.1.17. It can easily be noted that a linear operator is a linear transformation.
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De�nition 1.1.18. Let U and V be vector spaces over the same ordered �eld K which are
equipped with norms. Then linear operator fromU toV is called bounded if there existsC > 0
such that ||Ax||V ≤C||x||U , ∀ x ∈V.

De�nition 1.1.19. The spectrum of an operator T is the set σ(T ) = {λ ∈ C : λ I−T} is
not invertible.

De�nition 1.1.20. The point spectrum of an operator T is the setσp(T )= {λ ∈C : Ker(λ I−
T ) 6= 0}

Remark 1.1.21. Point spectrum is the set of eigenvalues of T.

De�nition 1.1.22. The continuous spectrum of an operator T is the set σc(T ) = {λ ∈ C :
Ker(λ I−T ) = 0, (λ I−T ) = H and Ran(λ I−T ) 6= H}

De�nition 1.1.23. The numerical range of an operator T is the setW (T ) = {〈T x,x〉 : ||x||=
1, x ∈ H}

De�nition 1.1.24. Let T be an operator on H. Then Wq(T ) = {〈T x,x〉 : x,y ∈ Cn, ||x|| =
||y||= 1,〈x,y〉= q} is called the q-numerical range of T.

De�nition 1.1.25. The numerical radius of an operatorT is the setω(T )= {sup|λ | : λ ∈W (T )}.

De�nition 1.1.26. The spectral radius of T is the set r(T ) = {sup|λ | : λ ∈ σ(T )}

De�nition 1.1.27. The residual spectrum of an operator T is the set σr(T ) = {λ ∈ C :
Ker(λ I−T ) = 0 and Ran(λ I−T ) 6= H}

Proposition 1.1.28. Let T ∈ B(H), then σ(T ) = σp(T )∪ σc(T )∪ σr(T ) holds, where
σp(T ), σc(T ) and σr(T ) are mutually disjoint parts of σ(T ).

Proposition 1.1.29. Let T ∈ B(H), then σ(T ) = σap(T )∪σcp(T ) holds, where σap(T ) and
σcp(T ) are not necessary disjoint parts of σ(T ). Also, σ(T ) = σr(T )∪σap(T ) holds.

De�nition 1.1.30. Let H be a Hilbert space and T ∈ B(H). Then there exists T ∗ ∈ B(H)

such that 〈T x,y〉= 〈x,T ∗y〉. T ∗ is called the adjoint of the operator T.

De�nition 1.1.31. An operator T in L(H) is compact if it is the limit of a sequence of �nite
rank operators.

Remark 1.1.32. We denote the set of compact operators by K.

De�nition 1.1.33. An operator T ∈ B(H) is said to be self adjoint if T ∗ = T.

De�nition 1.1.34. An operator T ∈ B(H) is called an involution if T 2 = I.

De�nition 1.1.35. An operator T ∈ B(H) is said to be unitary if T ∗T = T T ∗ = I.

De�nition 1.1.36. An operator T ∈ B(H) is said to be normal if T ∗T = T T ∗.
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De�nition 1.1.37. An operator T ∈ B(H)is said to be binormal if T ∗T and T T ∗ commute.
That is [T ∗T,T T ∗] = 0.

De�nition 1.1.38. An operator T ∈ B(H)is said to be subnormal if it has a normal extension.
That is, if there exists a normal operator N on a Hilbert space K such that H is a subspace of
K and the subspace H is invariant under N and the restriction of N to H coincides with T.

De�nition 1.1.39. An operator T ∈ B(H) is said to be hyponormal if T ∗T ≥ T T ∗.

Remark 1.1.40. Every subnormal operator is hyponormal.

De�nition 1.1.41. An operator T ∈ B(H) is said to be seminormal if either T or T ∗ is
hyponormal.

De�nition 1.1.42. An operator T is said to be paranormal if ||T x||2 ≤ ||T 2x|| ||x||.

De�nition 1.1.43. Let q be a positive number with q 6= 1. Let T be a closed, densely de�ned
operator in H. If T satis�es T T ∗ = qT ∗T , then T is called a deformed normal operator with
deformation parameter q.

De�nition 1.1.44. An operator A is said to be a square-normal operator if A2(A∗)2 =

(A∗)2A2.

Proposition 1.1.45. If A is a normal operator then A is a square-normal operator.

Proof. If A is a normal operator then A2(A∗)2 = AAA∗A∗ = AA∗AA∗ = A∗AA∗A =

A∗A∗AA = (A∗)2A2. So A is a square-normal operator.

Remark 1.1.46. The converse for proposition 1.1.45 is not true though. This is proved by
Example 4.1.12 given in the Examples section.

Proposition 1.1.47. A is a square-normal operator if and only if A2 is normal.

Proof. Let A be a square-normal operator, so

A2(A∗)2 = (A∗)2A2

⇔ A2(A2)∗ = (A2)∗A2

⇔ A2
is normal.

Theorem 1.1.48. If A is a square-normal operator and 0 /∈W (A) then A is normal.

De�nition 1.1.49. An operator T ∈ B(H)is said to be an isometry if T ∗T = I.

De�nition 1.1.50. An operator T ∈ B(H) is said to be a co-isometry if T T ∗ = I.

De�nition 1.1.51. An operator T ∈ B(H) is said to be a partial isometry if T = T T ∗I.

De�nition 1.1.52. An operator T ∈ B(H) is said to be quasinormal if T (T ∗T ) = (T ∗T )T ,
or equivalently [T ∗T,T ] = 0.
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Remark 1.1.53. Every quasinormal operator is subnormal.

De�nition 1.1.54. Let T ∈ B(H) be an operator with polar decomposition T =U |T | where
U is a partial isometry and |T |= (T ∗T )

1
2 ; we have T̃ = |T | 12U |T | 12 as its Aluthge transform

denoted by ∆T.

De�nition 1.1.55. Let T = U |T | be the polar decomposition of T and let s, t > 0. Then
generalized Aluthge transformation of T is de�ned as T̃s,t = |T |sU |T |t . Also, we de�ne
T̃ ∗s,t = (T̃s,t)

∗ = |T |tU∗|T |s.

De�nition 1.1.56. Let q be a positive number with q 6= 1. Let T be a closed, densely de�ned
operator in H with polar decomposition T =U |T |. If T satis�es the relationU |T | ⊂ √q|T |U ,
then T is called a deformed quasinormal operator with deformation parameter q.

Remark 1.1.57. For a deformed normal (respectively deformed quasinormal) operator T
with deformation parameter q, we simply say T is q-normal (respectively q-quasinormal).

Proposition 1.1.58. Let T be a closed, densely de�ned operator in a Hilbert space H. Then
the following statements hold:

(i.) If T is q-normal, then T is q-quasinormal.

(ii.) T is q-normal if and only if D(T ) = D(T ∗), and ||T ∗η ||=√q||T η ||, η ∈D(T ) where
D(T ) is the domain of T.

(iii.) If T is q-quasinormal, then D(T )⊆ D(T ∗), and ||T ∗η || ≤ √q||T η ||, η ∈ D(T ).

De�nition 1.1.59. Let q be a positive number with q 6= 1. A densely de�ned operator T is
called q-hyponormal (or a deformed hyponormal operator with deformation parameter q) if it
satis�es D(T )⊆ D(T ∗) and ||T ∗η ||√q||T η || for all η ∈ D(T ). If a q-hyponormal operator
T satis�es ||T ∗η ||=√q||T η || for all η ∈ D(T ), then T is said to be q-formally normal.

Remark 1.1.60. Every q-quasinormal operator is q-hyponormal. One can also check that a
q-hyponormal operator T is closable and that its closure T̃ is also q-hyponormal. Such an
operator with deformation parameter q is sometimes called a q-deformed operator as a generic
term.

Lemma 1.1.61. Let T be a densely de�ned operator in H. Then T is q-hyponormal if and
only if there is a contraction K such that T ∗ ⊃√qKT. In this case, the contraction K is taken
such that R(K∗)⊆ R(T ), or equivalently kerK ⊇ kerT ∗. Moreover, K is uniquely determined
under this condition.

Proof. Suppose that T is q-hyponormal. De�ne an operator K0 from R(T ) to R(T ∗) by

K0T η = 1√
qT ∗η for η2∈D(T ). Then K0 is a contraction on R(T ), so that K0 continuously

extends K̃0 on R(T ). Put K = K̃0 on R(T ) and K = 0 on R(T )⊥. Then K is a contraction

such that T ∗ ⊃√qKT and (K∗)⊆ R(T ). The converse and the uniqueness of K can easily

be shown.
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Corollary 1.1.62. Let T be a q-hyponormal operator inH. ThenR(T )⊆R(T ∗). In particular,
if T is q-normal, then R(T ) = R(T ∗).

Proof. The �rst relation follows from T ⊂√qT ∗K∗. If T is q-normal, then T ∗ is q−1
-

normal. Therefore, R(T ) = R(T ∗).

De�nition 1.1.63. For each q-hyponormal operator T , we denote by KT the contraction K
in previous Lemma uniquely determined in the lemma. KT is called the attached contraction
to T.

Proposition 1.1.64. Let T be a q-hyponormal operator in H. Then T is a q-formally normal
if and only if KT is a partial isometry with initial domain R(T ).

Proof. If T is q-formally normal, ||KT T η ||= 1√
q ||T

∗η ||= ||T η ||, for η ∈D(T ). Hence,

by KT is a partial isometry with initial domain R(T ). The converse is clear.

Theorem 1.1.65. Let T be a closed q-hyponormal operator in H and let T =U |T | be the
polar decomposition. Then T is a q-quasinormal if and only if KT = (U∗)2.

Proof. Suppose that T is q-quasinormal. Since U∗U is the orthogonal projection

onto R(|T |), we have T ∗ = |T |U∗ ⊃ √qU∗|T | = √q(U∗)2T. Since UU∗ is the orthog-

onal projection onto R(T ), it follows that U∗ = 0 on R(T )⊥. Hence, by the uniqueness

of KT , KT = (U∗)2. Assume, conversely KT = (U∗)2. By the de�nition and the same

way as mentioned above, we have |T |U∗ ⊃√qU∗|T |. Hence, U |T | ⊂ √q|T |U. Thus T is

q-quasinormal.

Proposition 1.1.66. The following statements hold:

(i.) A unilateral weighted shift Su in H with weights wn is q-quasinormal if and only if
|wn| = ( 1√

q)
n|w0| for all n ≥ 0. In particular, a unilateral weighted shift cannot be

q-normal.

(ii.) A bilateral weighted shift Sb in H with weights wn is q-normal if and only if the equation
in (i.) is valid for all n ∈ Z.

(iii.) A weighted shift Su (respectively Sb) is q-hyponormal if and only if |wn+1| ≥ 1√
q |wn|

for all n≥ 0 (respectively n ∈ Z).

Proof. Let Su be a unilateral shift with the weights wn and let Su =U |Su| be the polar

decomposition of Su. If Su is q-quasinormal, then U |Su|en =
√

q|Su|Uen, and so

√
q|wn+1|=

|wn| for all n > 0. Hence |wn|= q−
n
2 |w0|, n≥ 0. Conversely, suppose that the equality in
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(i.) is valid for n > 0. It is clear U |Su|en =
√

q|Su|Uen for each n, and so U |Su|=
√

q|Su|U
on Den. For each η ∈D(|Su|) = D(Su), there is a sequence ηn in Den such that ηn→ η and

Suηn→ Suη , as n→ ∞. Since Suηn =U |Su|ηn =
√

q|Su|Uηn, we have

√
q|Su|Uηn→ Suη

and Uηn → Uη , as n→ ∞. Since |Su| is closed, Uη ∈ D(|Su|) and

√
q|Su|Uη = Suη .

Hence U |Su| ⊂
√

q|Su|U. If Su is q−normal, then we have qS∗uSue0 = SuS∗ue0 = 0. Hence

wn = w0 = 0 for all n. Thus statement (i) holds. Next, let Sb be a bilateral weighted shift

with the weights wn. Then SbS∗ben = |wn−1|2en and S∗bSben = |wn|2en for all n ∈ Z. Hence,

if Sb is q-normal, we have |wn| = q−
n
2 |w0|, for all n ∈ Z. Conversely, assume that the

equality in (i.) is valid for all n ∈ Z. Then it is easily seen that D(Sb) = D(S∗b). By our

assumption, SbS∗ben = qS∗bSben for all n ∈ Z. Hence, ||S∗bξ || =√q||Sbξ || for all ξ ∈ Den.

For each η ∈ D(Sb), there is a sequence ξn in Den such that ξn → η and Sbξn → Sbη ,

as n→ ∞. Since S∗b is closed, it follows that the sequence S∗bξn converges to S∗bη .Hence,

||S∗bη ||=√q||Sbη ||. Finally, we have to prove statement (iii.). It is veri�ed by the same

way as in statement (ii).

Corollary 1.1.67. Let T be a (unilateral or bilateral) weighted shift with weights wn, with
respect to a basis en. If T satis�es T ∗T − qT T ∗ = 1, q > 0, q 6= 1. on Den, then T is q−1-
hyponormal with D(T ∗) = D(T ).

Proof. The relation implies that |wn+1|2−q|wn|2 = 1. It follows that D(T ∗) = DD(T ).
Clearly, |wn+1 >

√
q|wn| for all n.Hence, from (ii.) in Proposition 1.1.66 T is q−1

-hyponormal.

De�nition 1.1.68. Let T be a bounded linear operator on a complex Hilbert space H
and let T = U |T | be the polar decomposition of T. Then T is called class p-wA(s, t) if
(|T ∗|t |T |2s|T ∗|t)

t p
s+t ≥ |T ∗|2t p and (|T |s|T ∗|2t |T |s)

sp
s+t ≤ |T |2sp where 0 < s, t and 0 < p≤ 1.

De�nition 1.1.69. Let T be a bounded linear operator on a complex Hilbert space is called
class p-A(s, t) if (|T ∗|t |T |2s|T ∗|t)

t p
s+t ≥ |T ∗|2t p where 0 < s, t and 0 < p≤ 1.

Remark 1.1.70. If p = s = t = 1, then class p-A(s, t) coincides with class A operators.

De�nition 1.1.71. Let T =U |T | be the polar decomposition of T and 0 < p≤ 1, 0 < s, t.
T is called class p-A if |T 2|p ≥ |T |2p.

De�nition 1.1.72. An operator T is said to be w-hyponormal if |T̃ | ≥ |T | ≥ |T̃ ∗|.

De�nition 1.1.73. An operator T ∈ B(H)is said to be a convexoid if W (T ) = conv(σ(T )).

De�nition 1.1.74. An operator T ∈ B(H)is said to be a normaloid if r(T ) = ||T ||.

De�nition 1.1.75. An operator T ∈ B(H)is said to be a spectraloid if ω(T ) = r(T ).

De�nition 1.1.76. An operator T ∈ B(H) is said to be a scalar if it is a scalar multiple of
the identity operator. That is if T = αI, where α ∈ C.
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De�nition 1.1.77. An operator T ∈ B(H) is said to be invertible if there exists an operator
S such that ST = T S = I (where I is the identity).

Remark 1.1.78. The class of invertible linear operators T : H→ K is denoted by G(H,K).

De�nition 1.1.79. The commutator of two operators A and B denoted by [A,B] is de�ned
by [A,B] = AB−BA.

De�nition 1.1.80. The self commutator of an operator A is de�ned by [A∗,A] = A∗A−AA∗.

De�nition 1.1.81. Two operators T ∈ B(H) and S ∈ B(K) are said to be similar(denoted
T ≈ S) if there exists an invertible operator X ∈ G(H,K) such that XT = SX .

De�nition 1.1.82. Two operators T ∈ B(H) and S ∈ B(K) are said to be equivalent (denoted
T ≡ S) if there exists an unitary operator U ∈ G(H,K) such that UT = SU.

De�nition 1.1.83. An operator X ∈ B(H,K) is called quasia�nity or a quasi-invertible if
it is injective and with dense range.

De�nition 1.1.84. An operator T ∈ B(H) is quasia�ne transform of S ∈ B(K) if there exists
a quasia�nity X ∈ B(H,K) such that XT = SX .

De�nition 1.1.85. Two operators T ∈B(H) and S∈B(K) are said to be quasisimilar(denoted
by T ∼ S) if they are quasia�ne transform of each other. That is, if there exists quasia�nites
X ∈ B(H,K) and Y ∈ B(K,H) such that XT = SX and Y S = TY.

De�nition 1.1.86. An operator is said to be Hermitian if it is equal to its own transpose
conjugate.

Remark 1.1.87. Hermitian operators are self adjoint.

De�nition 1.1.88. An operator T ∈ B(H) is idempotent if T 2 = T.

De�nition 1.1.89. An operator T ∈ B(H) is said to be an isoloid if any isolated point of
δ (T ) is an eigenvalue of T.

De�nition 1.1.90. An operator T ∈ B(H) is said to be p-hyponormal if (T ∗T )p ≥ (T T∗)p

for 0 < p≤ 1.

De�nition 1.1.91. An operator T ∈ L(H) is posinormal if there exists a positive P ∈ L(H)

such that T T ∗ = T ∗PT. Here, P is called an interrupter of T.

De�nition 1.1.92. An operator A ∈ B(H) is coposinormal if A∗ is posinormal.

Corollary 1.1.93. Every hyponormal operator is posinormal.

Corollary 1.1.94. In order for a cohyponormal operator A to be posinormal it is necessary
that KerA = KerA∗.

Theorem 1.1.95. Every invertible operator is posinormal.
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Proof. If A is invertible, then A∗ = A∗(A−1A) = (A∗A−1)A, so A∗ ∈ [A].

Corollary 1.1.96. Every invertible operator is coposinormal.

Corollary 1.1.97. Assume A ∈ B(H) and λ 6∈ σ(A), the spectrum of A. Then A− λ is
posinormal.

De�nition 1.1.98. For an operator A ∈ B(H), the posispectrum of A which is denoted p(A)
is the set {λ : A−λ is not posinormal}.

Remark 1.1.99. By Corollary 1.1.98, it is clear that p(A) is a subset of σ(A).

Proposition 1.1.100. If A is hyponormal, then p(A) = /0.

Proof. Since translates of a hyponormal operator are hyponormal, A−λ is hyponormal

and hence posinormal for every λ .

Proposition 1.1.101. If U is the unilateral shift, then p(U) = /0 and p(U∗) = σ(U∗)
= {λ : |λ | ≤ 1}.

Corollary 1.1.102. Assume A−λ is posinormal for three distinct real values of λ and that
the same positive operator P functions as an interrupter for A−λ for each of those three
values. Then A is normal.

Theorem 1.1.103. Assume A−λ is posinormal for two distinct values of λ , and assume
that the same operator B functions as a multiplier for A−λ for both of those values. Then A
is normal.

Proof. Assume (A−λ1)
∗ = B(A−λ1) and (A−λ2)

∗ = B(A−λ2) where λ1 6= λ2. Then

(λ 1−λ 2)I = (λ1−λ2)B, so B = ((λ 1−λ 2)/(λ1−λ2))I. Therefore P = B∗B = I serves as

an interrupter for A−λ when λ = λ1, λ2; it then follows that A is normal.

De�nition 1.1.104. Let p> 0.An operator T ∈ L(H) is said to be p-posinormal if (T T ∗)p≤
µ(T ∗T )p for some µ > 1.

Remark 1.1.105. It is clear that 1-hyponormal and 1-posinormal are hyponormal and
posinormal, respectively. If T is hyponormal then it is isoloid.

De�nition 1.1.106. An operator T ∈ B(H) is said to be semi-hyponormal if (T ∗T )
1
2 ≥

(T T ∗)1
2 .

De�nition 1.1.107. An operator T ∈ B(H) is (r, t) weakly-hyponormal if |Ťr,t | ≥ |T | ≥
|dŤr,t |.

De�nition 1.1.108. An operator T ∈ B(H) is said to be log-hyponomal if T is invertible
and logT ∗T ≥ logT T ∗.
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De�nition 1.1.109. A bounded operator T on a Hilbert space is said to be a quasi-isometry
if and only if T ∗2T 2 = T ∗T. More generally, given a positive integer q, greater than 1, T is
said to be a q-quasi-isometry if and only if T ∗qT q = T ∗T.

De�nition 1.1.110. An operator T ∈ B(H) is said to be complex symmetric if there exists a
conjugate linear involution.

De�nition 1.1.111. An operator T ∈ B(H) is said to be Fredholm if the null space of T and
T ∗ are �nite dimensional and the range of T is closed.

De�nition 1.1.112. An operator T ∈ B(H) is said to be nilpotent if T n = {0} for some
positive integer n.

De�nition 1.1.113. An operator T ∈ B(H) is said to be quasinilpotent if ||T n|| 1n → 0 for
some n.

De�nition 1.1.114. An operator T ∈B(H) is said to be centred if the sequenceT 2(T 2)∗,T T ∗,T ∗T,(T 2)∗T 2, ...

is commutative.

De�nition 1.1.115. An operator T ∈ B(H) is said to be a contraction if ||T || ≤ 1.

De�nition 1.1.116. An operator T ∈ B(H) is reducible if it has a non trivial reducible
subspace, otherwise it is said to be irreducible.

De�nition 1.1.117. An operator T ∈ L(H) is said to be polaroid if every isolated point of
the spectrum σ(T ) is a pole of the resolvent of T.

De�nition 1.1.118. Let T ∈ B(H), then we have:

(i.) KerT = N(T ) = {x ∈ H : T x = 0}, the kernel of T which is a subspace of H that
contains all elements mapped to identity by T.

(ii.) R(T ), the range or image of T.

De�nition 1.1.119. A bounded operator T on aHilbert space is called a generalized projection
if and only if T 2 = T ∗.More generally, given an integer q > 1, T is a generalized q-projection
if and only if T q = T ∗.

De�nition 1.1.120. Let T =U |T | be the polar decomposition of an operator T. Then Aluthge
transformation of T is de�ned as T̃ = |T | 12U |T | 12 and its adjoint is (T̃ )∗ = |T | 12U∗|T | 12 .

Remark 1.1.121. I. Jung, Ko and C. Pearcy in [IEC00] de�ned n-th Aluthge transformation
of an operator.

De�nition 1.1.122. For every T ∈ B(H), the sequence {T̃}(n) of Aluthge iterates of T is

de�ned by {T̃}(0) = T and {T̃}(n+1) =
˜̃
T (n) for every positive integer n.
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De�nition 1.1.123. An operator T is said to be a k-quasi-class A operator if T ∗k(|T 2| −
|T |2)T k ≥ 0, where k is a positive integer number.

De�nition 1.1.124. An operator T ∈ B(H) is powers of N-class Ak if |T |2p ≤ N|T k+1|
2p

k+1

for a �xed N > 0 and 0 < p≤ 1.

De�nition 1.1.125. An integral operator is a linear operator that associates with every
function f another function g by means of an integral equation.

De�nition 1.1.126. A subspace M of H is invariant under T ∈ B(H) or T -invariant if
T x ∈M whenever x ∈M. That is, T M ⊆M, where T M = {T x : x ∈M}

Remark 1.1.127. The collection of all subspaces of H invariant under T is denoted by LatT.
For collections of bounded operators L⊆ B(H), we de�ne Lat(L) = ∩T∈LLatT. For T ∈ B(H),
LatT is closed under intersections and spans and is complete in the sense that both φ and H
are in LatT.
φ and H are called the trivial invariant subspaces. Some linear operators have only the trivial
invariant subspaces. A good example is the rotation operator in two dimensional vector space.
A space V is said to be simple if it has no non trivial invariant subspaces. V is said to be
semisimple if it is a direct sum of simple invariant subspaces. V is said to be diago- nalizable
if there is a basis eii∈I such that for all i ∈ I, Tei ∈ 〈ei〉 equivalently, V is a direct sum of
one-dimensional invariant subspaces. Thus diagonalizable implies semisimple.

Theorem 1.1.128. The following statements are equivalent:

(i.) V is semisimple.

(ii.) If W ⊂ V is an invariant subspace, it has an invariant complement: i.e., there is an
invariant subspace W ′ such that V =W ⊕W ′.

(iii.) V is spanned by its simple invariant subspaces.

Proof. Three times in the following argument we assert the existence of invariant

subspaces of V which are maximal with respect to a certain property. When V is �nite-

dimensional it doesn’t matter what this property is: one cannot have an in�nite, strictly

ascending chain of subspaces of a �nite-dimensional vector space. In the general case the

claimed maximality follows from Zorn’s Lemma; (i)⇒ (ii): Suppose V =⊕i∈ISi, with each

Si a simple invariant. For each J⊂ I, put VJ =⊕i∈JSi.Now let W be an invariant subspace of

V. There is a maximal subset J⊂ I such that W ∩VJ = 0. For i /∈ J we have (VJ⊕Si)∩W 6= 0,

so choose 0 6= x = y+ z, x ∈W , y ∈VJ , z ∈ Si. Then z = x− y ∈ (Vj +W )∩Si, and if z = 0,

then x = y ∈W ∩Vj = 0, contradiction. So (VJ⊕W )∩Si 6= 0. Since Si is simple, this forces

Si ⊂ VJ ⊕W. It follows that V = VJ ⊕W. (ii) ⇒ (i): The hypothesis on V passes to all

invariant subspaces of V. We claim that every non zero invariant subspace C ⊂V contains

a simple invariant subspace. Proof of claim: Choose 0 6= c ∈C, and let D be an invariant
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subspace of C that is maximal with respect to not containing c. By the observation of the

previous paragraph, we may write C = D⊕E. Then E is simple. Indeed, suppose not and

let 0 ( F ( E. Then E = F⊕G so C = D⊕F⊕G. If both D⊕F and D⊕G contained c,

then c ∈ (D⊕F)∩ (D⊕G) = D, contradiction. So either D⊕F or D⊕G is a strictly larger

invariant subspace of C than D which does not contain c, contradiction. So E is simple,

establishing our claim. Now let W ⊂V be maximal with respect to being a direct sum of

simple invariant subspaces, and write V =W ⊕C. If C 6= 0, then by the claim C contains a

non zero simple sub module, contradicting the maximality of W. Thus C = 0 and V is a

direct sum of simple invariant subspaces. (i)⇒ (iii) is immediate. (iii)⇒ (i): There is an

invariant subspace W of V that is maximal with respect to being a direct sum of simple

invariant subspaces. We must show W =V. If not, since V is assumed to be generated by

its simple invariant subspaces, there exists a simple invariant subspace S⊂V that is not

contained in W. Since S is simple we have S∩W = 0 and thus W +S =W ⊕S is a strictly

larger direct sum of simple invariant subspaces than W hence a contradiction.

Theorem 1.1.129. If T ∈ B(H) and P = P|M is the projection onto M, then M ∈ LatT if
and only if T P = PT P.

Proof. Suppose M is invariant under T. Let x ∈ H. Then Px ∈M. Therefore P(T Px) =
T Px∀x ∈ H. That is PT P = T P. Conversely, let PT P = T P. Let x ∈ M. Then (PT P)x =

T Px = T (Px). But (PT P)x = P(T Px) ∈M since M = Ran(P). Therefore T (Px) ∈M. That

is, T x ∈ M since Px = x. This means that T x ∈ M whenever x ∈ M. That is T M ⊆ M.

Therefore M is invariant under T.

Theorem 1.1.130. For any T ∈ B(H), LatT ∗ = {M : M⊥ ∈ LatT}.

Remark 1.1.131. I.Jung, E.Ko and C.Pearcy in [IEC00] proved that an operator T has a non
trivial invariant subspace if and only if T̃ does.

De�nition 1.1.132. For real numbers α and β with 0≤ α ≤ 1≤ β , an operator T acting
on a Hilbert space H is called (α,β )-normal if α2T ∗T ≤ T T ∗ ≤ β 2T ∗T.

De�nition 1.1.133. T ∈ B(H) is called an n-normal operator if T nT ∗ = T ∗T n.

Remark 1.1.134. All non zero nilpotent operators are n-normal operators, for n≤ k where k
is the index of nilpotence, but they are not normal. Example 4.1.19 in the examples section is
used to illustrate this.

Proposition 1.1.135. Let T ∈ B(H). Then T is n-normal if and only if T n is normal where
n ∈ N.

Proof. If T is n-normal, then T nT ∗ = T ∗T n. Therefore T n(T ∗)n = T ∗T n(T ∗)n−1 =

T ∗(T nT ∗)(T ∗)n−2 =(T ∗)2T n(T ∗)n−2 =(T ∗)nT n.Then T n
is normal. Now, let T n

is normal.

Since T nT = T T n
, by Fuglede theorem, T ∗T n = T nT ∗. Therefore T is n-normal.
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Proposition 1.1.136. Let T ∈ B(H) be n-normal. Then

(1.) T ∗ is n-normal.

(2.) If T−1 exists, then (T−1) is n-normal.

(3.) If S ∈ B(H) is unitary equivalent to T , then S is n-normal.

(4.) If M is a closed subspace of H such that M reduces T , then S = T/M is an n-normal
operator.

Proof. (1.) Since T is n-normal, T n
is normal. So (T n)∗ = (T ∗)n

is normal, T ∗ is an

n−normal operator.

(2.) Since T is n−normal, T n
is normal. Since (T n)−1 = (T−1)n

is normal, T−1
is an

n-normal operator.

(3.) Let T be an n-normal operator and S be unitary equivalent of T. Then there exists

unitary operator U such that S = UTU∗ so Sn = UT nU∗. Since T n
is normal, Sn

is

normal. Therefore S is n-normal.

(4.) Since T is n-normal, T n
is normal. So T n = M is normal. And since M is invariant

under T , T n/M = (T/M)n. Thus (T/M)n
is normal. So T/M is n-normal.

De�nition 1.1.137. Let T ∈ L(H), and let T =U |T |= |T ∗|U be the polar decomposition of
T. Then, for every λ ∈ [0,1] the λ -Aluthge transform is de�ned by ∆λ (T ) = |T |λU |T |1−λ .

De�nition 1.1.138. Let T be a bounded linear operator on a complex Hilbert space with the
polar decomposition T =U |T |. Let T (t) = |T |tU |T |1−t for 0 < t < 1, and T (O) =U∗UU |T |
and T (1) = |T |U . T (t) is called the generalized Aluthge transform of T.

De�nition 1.1.139. An operator T ∈ B(H). Let T ∗ =U∗|T ∗| be the polar decomposition of
T ∗. Then ∗-Aluthge transformation is de�ned as T̃ (∗) = (T̃ ∗)∗ = |T ∗| 12U |T ∗| 12 and its adjoint
is (T̃ (∗))∗ = |T ∗| 12U∗|T ∗| 12 .

De�nition 1.1.140. Let M be a subspace of a Hilbert space H. Let H = M⊕M⊥, then the
map PM : H→M de�ned by PMx = x′ where x = x′+ x′′, for x′ ∈M and x′′ ∈M⊥ is called
an orthogonal projection of H onto M. PM is self-adjoint (P∗M = PM), idempotent (P2

M = PM)

and Ker(P)⊥ Ran(P).

De�nition 1.1.141. An operator T ∈ B(H) is called paranormal if ||T x||2 ≤ ||T 2x||||x|| for
all x ∈ H.
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Remark 1.1.142. It is well known that a power of a paranormal operator is paranormal.
This is also true for p(k) operators.

De�nition 1.1.143. An operator T is called k-quasi-paranormal or p(k) operator if it satis�es
the following inequality: ||T k+1x||2 ≤ ||T k+2x|||T kx|| for all x ∈ H and k a positive integer.

Remark 1.1.144. It is obvious that every paranormal operator is a p(k) operator.

Theorem 1.1.145. Let T be an algebraically k-quasi-paranormal operator. Then T is po-
laroid.

Corollary 1.1.146. A k-quasi-paranormal operator is isoloid.

De�nition 1.1.147. An operator T is called k-quasi ∗- paranormal if it satis�es the inequal-
ity: ||T ∗T kx||2 ≤ ||T k+2x|||T kx|| for all unit vector x ∈ H where k is a natural number.

De�nition 1.1.148. An operator T ∈ B(H) is called n–power normal if T n commutes with
T ∗, that is, T nT ∗ = T ∗T n.It is denoted by [nN].

De�nition 1.1.149. An operator T in B(H) is said to be skew symmetric if there exists
conjugation C on H such that CTC =−T ∗. T is said to be complex symmetric if CTC = T ∗

for some conjugation C on H.

De�nition 1.1.150. An operator T ∈ B(H) is called transaloid if T −λ I is normaloid for
all λ ∈ C.

De�nition 1.1.151. An operator T ∈ B(H) is said to be reguloid if for every isolated point
λ of σ(T ), λ I−T is relatively regular, that is there exists Sλ ∈ B(H) such that
(λ I−T )Sλ (λ I−T ) = λ I−T.

De�nition 1.1.152. A bounded linear operator T on H , an arbitrary complex Hilbert space,
is called quasihyponormal if T ∗(T ∗T −T T ∗)T ≥ 0 or equivalently ||T ∗T x|| ≤ ||T T x|| for
all x ∈ H.

De�nition 1.1.153. A Hilbert space operator T ∈ B(H) is said to be p-quasihyponormal for
some 0 < p≤ 1, T ∈ p−QH , if T ∗(|T |2p−|T ∗|2p)T ≥ 0.

De�nition 1.1.154. An operator T is called (p,k)-quasihyponormal if T ∗(k)(|T |(2p) −
|T ∗|(2p))T k ≥ 0, (0 < pleq1; k is an element of Z+), which is a common generalization
of p-quasihyponormality and k-quasihyponormality.

Remark 1.1.155. Hyoun Kim [Kim04] introduced (p,k)-quasihyponormal operators and
proved many interesting properties of (p,k)-quasihyponormal operators.

De�nition 1.1.156. An operator T ∈ B(H) is dominant if Ran(T −λ )⊆ Ran(T −λ )∗ for
all λ ∈ σ(T ).

Remark 1.1.157. Stamp�i and Wadhwa in this publication [JB77] studied dominant opera-
tors.
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De�nition 1.1.158. An operator T ∈ B(H) is M-hyponormal if there exists a real number
M such that ||(T −λ )∗ f || ≤M||(T −λ ) f || for all f ∈ H and all complex numbers λ .

De�nition 1.1.159. Let T ∈ B(T ) and µ ∈ σ(T ), where µ is the Lebesque measure. Then
we denote :

(i.) m(T,µ), the algebraic multiplicity of eigenvalue µ for T.

(ii.) m0(T,µ)−DimKer(T −µI), the algebraic multiplicity of µ .

1.2 OTHER NOTATIONS USED ARE:

1. T =U(T ); The polar decomposition of T where U is unitary.

2. T̃ = ∆(T ) = |T | 12U |T | 12 ; Aluthge transform of T.

3. C; Space of complex numbers.

4. δ_cp(T ) = {λ ∈ C : R(T −λ )( H}; Compressive spectrum of T.

5. ϕ(T ) = {λ ∈ C : λ I−T is invertible }; Resolvent set of T.

6. 〈.〉; Inner product function.

7. Mr(C); Algebra of complex r× r matrices.

8. GLr(C); Group of all invertible elements in Mr(C).

9. U(r); Group of unitary operators.

10. L(H); The algebra of all bounded linear operators on H .

11. {∆n(T )}∞
n=0; The Aluthge sequence.

12. ∆λ (T ) = |T |1−λU |T |λ ; Generalized Aluthge transform of T.

13. W (T ) = {〈T x,x〉 : ||x||= 1,x ∈ H}; Numerical range of T.

14. ω(T ) = Sup{|λ |;λ ∈W (T )}; Numerical radius of T.

15. Wq(T ) = {〈T x,x〉 : x,y ∈ Cn, ||x||= ||y||= 1,〈x,y〉= q}; q-numerical range of T.

16. σ(T ) = {λ ∈ C : λ I−T is not invertible }; Spectrum of T.

17. r(T ) = Sup{|λ | : λ ∈ σ(T )}; Spectral radius of T.

18. σap(T ) = {λ ∈ C : λ I−T is not bounded below }; Approximate point spectrum of T.
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19. || · ||; Norm.

20. Lat(T ); The invariant subspace la�ice of an arbitrary operator T ∈ B(H).

21. R(∆) = {T̃ : T ∈ B(H)}; Range of ∆, where ∆ is a map defined on B(H).

1.3 SERIES OF INCLUSIONS OF CLASSES OF OPERATORS.

In this section, some classes of operators and other higher classes were discussed, more
so those which contain all normal operators, but they are non-normal themselves. Hy-
ponormal operators introduced by Stampfli [Sta62], 1962, generalizes normal operators.
Also, every normal operator is hyponormal. This is seen when the inequality is relaxed to
equality in definition of a hyponormal operator. k-quasihyponormal operators were later
introduced by Campbell and Gupta [CG79], 1978, as the extension of the class of hyponor-
mal operators. He showed that very hyponormal operator is k-quasihyponormal if we let
k = 1. Hyponormal operators were generalized by Aluthge,[AAL], 1990, by introducing
the p-hyponormal operators. Le�ing p = 1 in the definition of a p-hyponormal operator
one gets a hyponormal operator.Thus p-hyponormal operators generalizes hyponormal
operators.p-quasihyponormal operators contains all quasihyponormal operators. This
is obtained by le�ing p = 1 in the definition of p-quasihyponormal operator to get a
quasihyponormal operator. Furuta, 1997, introduced a larger class called class A operators
which contains the class of p-hyponormal operators. Tanahashi [TAN99], 1999 introduced
another class, log-hyponormal operators which contains all invertible hyponormal oper-
ators. He further showed that invertible p-hyponormal operators are log-hyponormal
and log-hyponormal operators are class A operators. later, Fujii, et al. 2000 generalized
class A operators into class A(s, t) and in the same year, the la�er was generalized into the
class of absolute-(s, t) paranormal by Yanagida,2000. Fujii [FJLLN], et al.2000, introduced
another class which contains all invertible operators of class A(s, t), the class AI(s, t),
which contains all invertible operators of class A(s, t). Aluthge [AD00], et al.2000 general-
ized both log- and p-hyponormal operators into w-hyponormal operators using Aluthge
transformations. Every semi-hyponormal operator is w-hyponormal from the definition of
w-hyponormality. For every p≥ 1

2 semi-hyponormal operators contain all p-hyponormal
operators. Therefore w-hyponormal operators contain all p-hyponormal operators. Ito,
2001 introduced class wA(s, t)as a generalization of w-hyponormality. Pu�ing s = 1

2 and
t = 1

2 in the definition of wA(s, t) operator, one gets w-hyponormal operator. The class
wA(1,1) is called wA. This means that T is a member of class wA, if and only if |T 2| ≥ |T |2
and |T ∗|2 ≥ |T 2∗|. Since T belongs to class A if |T 2| ≥ |T |2, from the definition of class A,
then it is clear that class A contains class wA but from analysing class wA(s, t) operators,
it follows that wA(s1, t1) is contained in wA(s2, t2) where s2 ≥ s1 and t2 ≥ t1. This shows
that wA(1

2 ,
1
2) ⊆ wA(1,1). Class A is a generalization of w-hyponormal operators since

wA(1
2 ,

1
2)corresponds to w-hyponormal operators while wA(1,1) corresponds to class A.

Yanagida [Yan03], 2003, introduced class A(k) as a generalization of class A. All class A
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operators are A(k), le�ing k = 1 in definition of class A(k) one gets |T 2| ≥ |T |2. From the
definition of class A(s, t) operators, class A(k,1) equals class A(k), class A(k) is a subclass
of A(s, t). p-quasihyponormal and q-quasihyponormal operators are generalized by (p,k)-
quasihyponormal operators which was introduced by Hyoun, 2003. Pu�ing p = 1 and
k = in the definition of a (p,k)-quasihyponormal operator one gets a k-quasihyponormal
and a p-quasihyponormal operator respectively. q-quasihyponormal operator is a (p,k)-
quasihyponormal operator since 0 < q < p and the (p,k)-quasihyponormal operators
contain p-hyponormal operators. Jibril [AAJ1], 2007, introduced the class of 2−Power
normal operators which is an extension of normal operators. Later [AAJ2] in 2008 he
generalized the class of 2-Power normal operators into n-Power normal, where n is a
positive integer. Ahmed [Ahm11], 2011 generalized the results by Jibril into the class of
n−Power quasinormal operators. He also showed that every n-Power normal operator
is n-Power quasinormal. Panayan [Pan12], 2012, introduced an extension of all normal
operators and called it the n-Power Class(Q) operators.

1.3.1 Series of inclusions of Hilbert space operators.

The following inclusions hold and are known to be proper among the classes of operators
discussed above;

(i.) self-adjoint⊂ normal⊂ hyponormal⊂ p-hyponormal⊂ p-quasihyponormal⊂ (p,k)-
quasihyponormal.

(ii.) hyponormal ⊂ quasihyponormal ⊂ k-quasihyponormal ⊂ (p,k)-quasihyponormal.

(iii.) p-hyponormal ⊂ semi-hyponormal ⊂ w-hyponormal ⊂ wA⊂ class A ⊂ class A(k) ⊂
class A(s, t).

(iv.) p-hyponormal ⊂ semi-hyponormal ⊂ w-hyponormal ⊂ wA ⊂ class A(s, t) ⊂ class
A(s, t).

(v.) log-hyponormal ⊂ w-hyponormal ⊂ class AI(s, t) ⊂ class wA(s, t) ⊂ class A(s, t).

(vi.) ∞-hyponormal ⊂ k-hyponormal ⊂ p-hyponormal ⊂ w-hyponormal ⊂ class AI(s, t) ⊂
class wA(s, t) ⊂ class A(s, t).

(vii.) subnormal ⊂ hyponormal ⊂ quasihyponormal ⊂ class(A) ⊂ paranormal.

(viii.) hyponormal ⊂ transaloid ⊂ convexoid.

(ix.) ∞-hyponormal ⊂ normal ⊂ quasinormal ⊂ n-Power-quasinormal.

(x.) spectroid ⊂ hen-spectroid ⊂ numeroid ⊂ transaloid ⊂ normaloid ⊂ spectraloid.

(xi.) spectroid ⊂ hen-spectroid ⊂ numeroid ⊂ transaloid ⊂ convexoid.



18

(xii.) normal ⊂ hyponormal ⊂ p-hyponormal ⊂ normaloid ⊂ HN.

(xiii.) CT HN ⊂ T HN ⊂ HN.

(xiv.) ∞-hyponormal ⊂ normal ⊂ n-powernormal ⊂ n-Power-quasinormal.

(xv.) ∞-hyponormal ⊂ normal ⊂ quasinormal ⊂ quasihyponormal ⊂ p-quasihyponormal
⊂ (p,k)-quasihyponormal.

1.4 BACKGROUND OF THE STUDY.

Hilbert space was introduced in the 20th century. One of the developments that led
to its introduction was an observation which arose during David Hilbert and Erhard
Schmidt’s study of integral equations, that two square-integrable real valued functions f
and g on an interval [a,b] have an inner product which has many familiar properties of
the Euclidean dot product. John Von Neumann coined the term abstract Hilbert space
in his work on unbounded Hermitian operators. Mathematicians Hermann Weyl and
Norbert Wiener had already studied particular Hilbert spaces but Von Neumann the
first complete and axiomatic treatment of them. It is a generalization of Euclidean space.
Prior to the development of Hilbert spaces, other generalizations of Euclidean spaces
were known to mathematicians and physicists. Particularly, the idea of an abstract linear
space(vector space) had gained some traction towards the end of 19th century. Hilbert
space is a vector space with structure of an inner product whereby length and angle
can be measured. Hilbert spaces were earliest studied in the first decade of the 20th
century by David Hilbert, Erhard Schmidt and Frigyes Riesz. They are crucial tools in the
theories of partial di�erential equations, quantum mechanics, fourier analysis (including
applications to signal processing and heat transfer) and ergodic theory. The success of
Hilbert space methods plays an important role in functional analysis. Ariyadasa Aluthge
[AAL] introduced Aluthge transforms to study p-hyponormal linear operators.
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2 Chapter 2

The aim of this chapter was to showcase the class of T̃ a�er identifying that of T. This chap-
ter was the longest chapter in this project. We started by classifying Aluthge transforms
of some classes of operators. Also generalized Aluthge transforms of di�erent classes were
investigated herein. In addition, di�erent results touching on iterated Aluthge transforms
and those about powers of Aluthge transformations were borrowed and discussed.

2.1 ALUTHGE TRANSFORMS OF DIFFERENT CLASSES OF
OPERATORS.

Remark 2.1.1. Recall that the class of w-hyponormal operators contain all normal oper-
ators but there are some w-hyponormal operators which are not normal operators. The
following result by [AD00], [SJG11], [SJG13], [AF12] and [CHK01] says T̃ is normal if T is
w-hyponormal.

Corollary 2.1.2. Let T =U |T | be a w-hyponormal operator. If T̃ = |T | 12U |T | 12 is normal
then T is also a normal operator.

Proof. Since T is w-hyponormal, it is also quasinormal. Therefore T̃ = |T | 12U |T | 12 =
U |T | and T̃ ∗ = |T |U∗. Hence |T |2 = |T̃ |2 = |T ∗|2. This shows that |T | = |T ∗| so T is

normal.

Proposition 2.1.3. Let T ∈ B(H). Then :

(i.) (̃cT ) = c ˜(T ) for all c ∈ C.

(ii.) ˜(V TV ∗) =V ˜(T )V ∗ for some V being unitary operator.

(iii.) If T = T1 +T2, then ˜(T ) = ˜(T1)+ ˜(T2).

(iv.) ||T̃ ||2 ≤ ||T ||2.

(v.) T and T̃ have the same characteristic polynomial in particular σ(T̃ ) = σ(T ).

Proposition 2.1.4. Let T ∈ B(T ),

(i.) If 0 ∈ σ(T ), then there exist n ∈ N such that m(T,0) = m0(T̃ n), m0(T,µ)≤ m0(T̃ ,µ).
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(ii.) For every µ ∈ σ(T ), m0(T,µ)≤ m0(T̃ ,µ). This implies that if T is diagonalizable. That
is m0(T,µ)) = m(T,µ) for every µ . Then also T̃ is diagonalizable.

Remark 2.1.5. The Aluthge transform of an operator T = U |T | does not depend on the
partial isometry U of the polar decomposition of that operator.

Theorem 2.1.6. Let T =U |T | be the polar decomposition of T ∈ B(H) for a Hilbert space
H. Let T̃ denote the Aluthge transform of T. Then the following assertions hold:

(i.) The spectrum of T , σ(T ) = σ(T̃ )

(ii.) The point spectrum of T , σp(T ) = σp(T̃ )

(iii.) The approximate point spectrum of T , σap(T ) = σap(T̃ )

(iv.) The essential spectrum of T , σe(T ) = σe(T̃ )

(v.) The left essential spectrum of T , σle(T ) = σle(T̃ )

(vi.) The right essential spectrum of T , σre(T ) = σre(T̃ )

(vii.) ||T̃ || ≤ ||T 1
2 || ≤ ||T ||.

Remark 2.1.7. T is quasia�nity, that is T is one-to-one and has a dense range if and only if
|T | is a quasia�nity. U is a unitary operator, and therefore T̃ is quasia�nity if T is. Moreover,
in this case, T and T̃ are quasisimilar. Furthermore, T is invertible if and only if T̃ is and in
this case T and T̃ are similar.

Theorem 2.1.8. Let T =U |T | be an arbitrary quasia�nity for T ∈ L(H) and Lat(T ) the
invariant subspace lattice of an arbitrary operator T ∈ B(H). Then the mapping φ : N −→
(|T | 12 N)−, for N ∈ Lat(T ), maps Lat(T ) into Lat(T̃ ), and moreover if {0} 6= N = H , then
{0} 6= φ(N) = (|T | 12 N)− 6= H. Moreover, the mapping ϕ : M −→ (U |T | 12 M)−, M ∈ Lat(T ),
maps Lat(T̃ ) into Lat(T ) and if {0} 6= M 6= N, then {0} 6= ϕ(M) = (U |T | 12 M)− 6= H.

Consequently, Lat(T ) is a non trivial if and only if Lat(T̃ ) is non trivial.

Remark 2.1.9. The following theorem shows that Aluthge transform preserves complex
symmetry. An article [Ram08] by Stephan Ramon Garcia explains this.

Theorem 2.1.10. The Aluthge transform of a complex symmetric operator is complex sym-
metric. In other words, if T =CT ∗C for some conjugation C, then there exists a conjugation J
such that T̃ = J(T̃ )∗J.

Proof. We may write T =CJ|T | where J is a conjugation on H which commutes with

|T |. Since T̃ = |T | 12CJ|T | 12 and (CJ)∗ = JC, it follows that

J(T̃ )∗J = J|T | 12 JC|T | 12 J
= |T | 12CJ|T | 12 T̃
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Lemma 2.1.11. If T is a complex symmetric operator, then the following are equivalent:

(i.) T is quasinormal,

(ii.) C and |T | commute. That is |T | is also C-symmetric,

(iii.) T is normal.

Theorem 2.1.12. If T complex symmetric then T̃ = T if and only if T is normal.

Proof. Since T̃ = T if and only if T is quasinormal, this follows from Lemma 2.1.11
and the fact that all normal operators are complex symmetric.

Theorem 2.1.13. T̃ = 0 if and only if T is nilpotent of order two. That is T 2 = 0.

Proof. Let T =U |T | denote the polar decomposition of T. If T̃ = 0, then

T 2 =U |T |U |T |=U |T | 12 T̃ |T | 12 = 0
so that T is nilpotent of order two.

Conversely, if T 2 = 0, then U |T |U |T |= 0 whence |T |U |T |= 0 since U∗U is the orthogonal

projection onto cl(ran|T |). This implies that |T | 12 T̃ |T | 12 = 0. Since T̃ vanishes on ker|T |,
it su�ces to show that T̃ also vanishes on cl(ran|T |). Suppose that y ∈ ran|T | but that

z = T̃ y 6= 0. Writing y = |T | 12 x it follows that

0 = |T | 12 T̃ |T | 12 x = |T | 12 T̃ y = |T | 12 z 6= 0
since z is a non zero vector in ran|T |. This is a contradiction that shows T̃ vanishes

identically on ran|T | and hence on cl(ran|T |) as well. Thus T̃ = 0.

Corollary 2.1.14. Let n∈N and T ∈ B(H). Then T̃ is centered if and only if for each positive
integer n, Wn−1U = (W0U)n. In particular, if T is a centered operator, then T̃ is centered if
and only if Wn−1U =Un.

Proof. By the de�nition T̃ is centered if and only if for each positive integer n, Wn−1U =

(W0U)n. If T is centered then T is binormal, and so W0 = I. Thus we conclude that T̃ is

centered if and only if Wn−1U =Un.

Corollary 2.1.15. If T ∈ B(H) is quasinormal, then T̃ is centered.

Remark 2.1.16. An operator A is said to be w-hyponormal if |Ã| ≥ |A| ≥ |Ã∗|. The class of
w-hyponormal operators is more general than that of both semi-hyponormal and hyponormal
operator classes. However, if an operator A is w-hyponormal then its �rst and second Aluthge
transforms are semi-hyonormal and hyponormal respectively as shown in the following
example by A. Aluthge and D. Wang in [AD00].

Lemma 2.1.17. If A is w-hyponormal, then Ã is semi-hyponormal and ˜̃A is hyponormal.
Where ˜̃A is the second Aluthge of operator A.
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Remark 2.1.18. It is known that if A is a normal operator then the kernel condition holds,
that is, kerA = kerA∗. However, if A is w-hyponormal, the kernel condition does not hold. By
imposing an additional requirement on w-hyponormal operators A. Aluthge and D. Wang
[AD00] stated and proved the following result.

Lemma 2.1.19. Let A be w-hyponormal with kerA⊂ kerA∗. If Ã is normal, then A = Ã.

Remark 2.1.20. A p-hyponormal operator for p > 1 is also hypornormal. More interest
has been put on p-hyponormal operators for 0 < p≤ 1. For more information, Aluthge has
discussed this on [AAL].

Lemma 2.1.21. Suppose that T =U |T | (polar decomposition) is an arbitrary p-hyponormal
operator in L(H) for some p ∈ [1

2 ,1]. Then its Aluthge transform T̃ is a hyponormal operator.

Remark 2.1.22. We earlier stated on a remark that Aluthge transform of an operator
T = U |T | does not depend on the partial isometry U. This applies to any other partial
isometry, say for instance V for polar decomposition T =V |T |.

Lemma 2.1.23. Let T = U |T | be the polar decomposition of T. If there exists another de-
composition T =V |T |, then T̃ = |T | 12U |T | 12 = |T | 12V |T | 12 .

Proof. Let H = N(|T | 12 )⊕N(|T | 12 )⊥. In case x ∈ N(|T | 12 ) · T̃ x = |T | 12U |T | 12 x = 0

= |T | 12V |T | 12 x. In case x ∈ N(|T | 12 )⊥ = R(|T | 12 ). There exists y ∈ H such that x = |T | 12 y.
Then we have T̃ x= |T | 12U |T | 12 x= |T | 12U |T |y= |T | 12 Ty = |T | 12V |T |y= |T | 12V |T | 12 x. Hence

we have T̃ = |T | 12U |T | 12 = |T | 12V |T | 12 on H = N(|T | 12 )⊕N(|T |12)
⊥.

Remark 2.1.24. A. Aluthge in [AAL] proved that for a p-hyponormal operator T =U |T | in
L(H) with 0 < p < 1

2 , then the aluthge transform T̃ of T is a (p+ 1
2)-hyponormal operator

and the second aluthge transform ˜̃T of T is a hyponormal operator.

Theorem 2.1.25. Let T ∈ L(H) be p-hyponormal. Then
• If p≥ 1

2 , then T̃ is hyponormal,
• If p < 1

2 , then T̃ is (p+ 1
2)-hyponormal,

• It holds that ˜̃T is hyponormal.

Remark 2.1.26. The following theorem implies that if T̃ has a non trivial invariant subspace
then T does. It is then better when looking for invariant subspaces of T to �nd invariant
subspaces of T̃ in their place.

Theorem 2.1.27. If Lat(T ) denotes the lattice of invariant subspaces of a given operator
T ∈ L(H), then Lat(T )' Lat(T̃ ).

Theorem 2.1.28. If T is a complex symmetric operator, then T̃ =C ˜(T ∗)C.
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Proof. Since T is complex symmetric, it follows that C(T T ∗)C = T ∗T and hence

C(T T ∗)pC = (T ∗T )p
for all p≥ 0.

In particular, we note that

T ∗ =CTC =C(CJ
√

T ∗TC = J
√

T ∗TC = JC
√

T T ∗

whence

C ˜(T ∗)C =C[(T T ∗)(T T ∗)1
4JC(T T ∗)1

4 ]C = (T ∗T )1
4CJ(T ∗T )1

4 = T̃ .

Theorem 2.1.29. Let T =U |T | ∈ B(H) be powers of N-class Ak andU an isometry operator
then T̃ is powers of N-class AK operator.

Proof. From the de�nition of powers of N-class Ak operator |T |2p ≤ T |T k+1|
2p

k+1

(T ∗T )p ≤ N((T ∗T )k+1)
p

k+1

(U∗|T ∗|U |T |)p

≤ N((U∗|T ∗|U |T |)k+1)
p

k+1

(U∗|T ∗| 12 |T ∗| 12U |T | 12 |T | 12 )p

≤ N((U∗|T ∗| 12 |T ∗| 12U |T | 12 |T | 12 )k+1)
p

k+1

U((T̃ ∗)∗T̃ ∗)pU∗

≤ NU(((T̃ ∗)∗T̃ ∗)k+1)
p

k+1U∗

U |T̃ ∗|2pU∗ ≤ NU |(T̃ ∗)2(k+1)|
p

k+1U∗

|T̃ |2p ≤ N|(T̃ )K+1|
2p

k+1 2p

Therefore T̃ is powers of N-class Ak operator.

Lemma 2.1.30. The Aluthge transform map T → T̃ is (||.||, ||.||)-continuous on B(H).

Remark 2.1.31. We know that w-hyponormal operators are normal operators. We also know
that the class of normal operators is contained in the class of quasinormal operators. Jung, Ko
and Pearcy proved in [IEC00] that T̃ = T if and only if T is a quasinormal operator.

Theorem 2.1.32. Let T be a w-hyponormal operator with the polar decomposition T =U |T |.
If T̃ is quasinormal, then T is also quasinormal. Hence T coincides with its Aluthge transform
T̃ = |T | 12U |T | 12 .

Proof. Since T is a w-hyponormal operator, |T̃ | ≥ |T | ≥ |T̃ ∗|. Then Douglass theorem

implies that R(T̃ ) =R(T̃ ∗)⊂R(|T |) =R|T̃ | where M denotes the norm closure of M. Let

T̃ =W |T̃ | be the polar decomposition of T̃ . Then E :=W ∗W =U∗U ≥WW ∗ =: F.
Put

|T̃ ∗|=

 X 0

0 0


W =

 W1 W2

0 0


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on H = R(T̃ )⊕ ker(T̃ ∗).
Then X is injective and has a dense range. Since T̃ is quasinormal, W commutes with |T̃ |
and

|T̃ |=W ∗W |T̃ |=W ∗|T̃ |W ≥W ∗|T |W ≥W ∗|T̃ |W = |T̃ |.
Hence |T̃ |=W ∗|T̃ |W =W ∗|T |W.

and

|T̃ ∗|=W |T̃ |W ∗ =WW ∗, |T̃ |WW ∗ =WW ∗|T |WW ∗ =

 X 0

0 0


Since

WW ∗ =

 1 0

0 0


implying that |T̃ | and T are of the forms

|T̃ |=

 X 0

0 Y

≥ |T |=
 X 0

0 Z


, where R(Y ) = R(|T |)	R(T̃ )
= ker(T̃ ∗)	 ker(T ).
Since W commutes with |T̃ |, W1 W2

0 0

 X 0

0 Y

=

 X 0

0 Y

 W1 W2

0 0


So W1X = XW1 and W2Y = XW2, and hence R(W1) and R(W2) are reducing subspaces of

X . Since W ∗W |T |= |T |, we have W ∗1 W1 = 1 and

Xk = Xk =W ∗1 W1Xk =W ∗1 XkW1,

Y k =W ∗2 W2Y k =W ∗2 XkW2. Put

U =

 U11 U12

U21 U22


Then T̃ = |T | 12U |T |12 =W |T̃ | implies X

1
2 0

0 Z 1
2

 U11 U12

U21 U22

 X
1
2 0

0 Z
1
2

=

 W1 W2

0 0

 X 0

0 Y


Hence X

1
2U11X

1
2 =W1X = X

1
2W1X

1
2 ,

X
1
2U12Z

1
2 =W2Y = XW2
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and

X
1
2 (U11−W1)X

1
2 = 0,

X
1
2 (U12Z

1
2 −X

1
2W2) = 0 Since X is injective and has a dense range, U11 =W1 is isometry

and U12Z
1
2 = X

1
2W2. Then

U∗U =

 U∗11U11 +U∗21U21 U∗11U12 +U∗21U22

U∗12U11 +U∗22U21 U∗12U12 +U∗22U22


on H = R(T̃ )⊕ ker(T̃ ∗) is the orthogonal projection onto R(|T |)⊃ R(T̃ ) and

U∗U =

 1 0

0 U∗12U12 +U∗22U22

 .

Since U12Z
1
2 = X

1
2W2, we have Z ≥ Z

1
2U∗12U12Z

1
2 =W ∗2 XW2 = Y , and Z ≥ Z

1
2U∗12U12Z

1
2 =

W ∗2 XW2 = Y ≥ Z. Hence Z
1
2U∗12U12Z

1
2 = Z = Y , so Z = Y and |T̃ | = |T |. Since Z =

Z
1
2U∗12U12Z

1
2 ≤ Z

1
2

12U12Z
1
2 +Z

1
2U∗22U22Z

1
2 ≤ ZZ

1
2U∗22U22Z

1
2 = 0

and

U22Z
1
2 = 0. This implies R(U∗22)⊂ ker(Z). Since R(U∗12U12+U∗22U22)⊂R(Z) and U∗U22≤

U∗12U12 +U∗22U22, we have R(U∗22)⊂ R(Z).
Hence U22 = 0,

U =

 W1 U12

0 0


and R(U)⊂R(T̃ )⊂R|T |) =R(E). Since W commutes with |T̃ |= |T |, W commutes with

|T | and |T | 12 (W−U)|T | 12 =W |T | 12 |T | 12−|T | 12U |T | 12 =W |T̃ |−T̃ = 0.Hence E(W−U)E =

0 and U = UE = EUE = EWE = WE = W. Thus U = W commutes with |T | and T is

quasinormal.

Remark 2.1.33. Since T and T̃ have the same spectrum, they are both singular or non
singular. Since (T̃−1) = (T̃ )−1 is true in the case where T is invertible.

Lemma 2.1.34. The matrix T ∈ Cn×n is invertible if and only if T̃ is invertible, and in this
case T and T̃ are similar.

Theorem 2.1.35. Let T = U |T | be a contraction such that ker(T ) = Ker(T 2). If T̃ is a
partial isometry, then T = T̃ =U and T is a quasinormal partial isometry.

Proof. We �rst note that

ker(T̃ ) = ker(T 2) = ker(T ) = ker(U),

so R(T̃ ∗) = R(T ∗) = R(|T |).
Since T̃ =U on ran(T̃ ∗) = R(|T |) and

ker(T̃ ) = ker(U) = N(T ),
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T̃ =U because H = R(|T |)⊕ ker(T ). This shows that

R(U) = R(T̃ )⊂ R(|T |) = R(U∗U).

Thus U =UU∗U =U∗UU. Let

|T |=

 X 0

0 0

 ,U∗U =

 1 0

0 0


on H = R|T |⊕ ker(T ).
Since T is a contraction, we have U∗|T |U ≤ 1 and 0≤ X ≤ 1.
Then

U∗U = T̃ ∗T̃ = |T | 12U∗|T |U |T | 12 ≤ |T | ≤U∗U.

Hence |T |=U∗U and T =U |T |=UU∗U =U = T̃ .
Thus T is a quasinormal partial isometry.

Corollary 2.1.36. Let T =U |T | be w-hyponormal operator. If T̃ is a partial isometry, then
T̃ = T and T is a quasinormal partial isometry.

Proof. Since |T̃ | is a contraction and |T̃ | ≥ |T |, it follows that T is a contraction and

ker(T ) = ker(T̃ ) = ker(T 2).

Now the result follows from Theorem 2.1.35.

Corollary 2.1.37. Every bounded, q-quasinormal operator T is quasinilpotent, so that
σ(T ) = {0}.

Proof. Let T be a non-zero bounded, q-quasinormal operator. Then, we have q > 1. By

the equation, ||T n||= |||T n||| ≤ ( 1√
q)

n(n−1)
2 ||T ||n. Since q > 1, ||T n|| 1n ≤ ( 1√

q)
n−1

2 ||T || → 0
as n→ ∞. Hence, T is quasinilpotent and hence σ(T ) = {0}.

Lemma 2.1.38. Let T = U |T | be the polar decomposition of T. If there exists another de-
composition T =V |T |, then T̃ = |T | 12U |T | 12 = |T | 12V |T | 12 .

Proof. Let H = N(|T | 12 )⊕N(|T | 12 )⊥. In case x ∈ N(|T | 12 ). T̃ x = |T | 12U |T | 12 x = 0 =

|T | 12V |T | 12 . In case x ∈ N(|T | 12 )⊥ = R(|T | 12 ). There exists y ∈ H such that x = |T | 12 y. Then

we have T̃ x = |T | 12U |T | 12 x = |T | 12U |T |y = |T | 12 Ty = |T | 12V |T |y = |T | 12V |T | 12 x. Hence we

have T̃ = |T | 12U |T | 12 = |T | 12V |T | 12 on H = N(|T | 12 )⊕N(|T | 12 )⊥.

Theorem 2.1.39. Let T ∈ B(H). Then the following assertions are equivalent:

(i.) T is normaloid.

(ii.) ||T ||= ||T̃n|| for all natural number n.
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Theorem 2.1.40. Let T ∈ B(H). Then limn→∞||T̃n||= r(T ).

Theorem2.1.41. Let T =U |T | be the polar decomposition of powers ofN-classA(k) operator
for N > 0 then T̃ = |T | 12U |T | 12 is (p+ 1

2) powers of N-class A(k) operators for 0 < p≤ 1.

Proof. Let T be the powers of N-class A(k) operator then

|T |2p ≤ N(T ∗|T |2kT )
p

k+1

|T |2p ≤ (T ∗T )p(p+ 1
2 )

= (U∗|T ∗|U |T |)p(p+ 1
2 )

= (U∗|T ∗| 12 |T ∗| 12U |T | 12 |T | 12 )p(p+ 1
2 )

= (T̃ ∗T̃ )p(p+ 1
2 )

= |T̃ |2p(p+ 1
2 )

[N(T ∗|T |2kT )
p

k+1 ](p+ 1
2 ) = [N(T ∗T ∗kT kT )

p
k+1 ](p+ 1

2 )

= [N(U∗|T ∗|U∗k|T ∗|kUk|T |kU |T |)
p

k+1 ](p+ 1
2 )

= [NT̃ ∗|T | k2U∗k|T | k2 |T | k2Uk|T | k2 T̃ )
p

k+1 ](p+ 1
2 )

= [N(T̃ ∗|T |2kT̃ )
p

k+1 ](p+ 1
2 )

Hence |T̃ |2p(p+ 1
2 ) ≤ [N(T̃ ∗|T |2kT̃ )

p
k+1 ](p+ 1

2 )

Theorem 2.1.42. Let T ∈ B(H), then T̃ (∗) is p-hyponormal.

Proof. Let T ∈ B(H) then

|T |2p ≤ N(T ∗|T |2kT )
p

k+1 p
|T |2p = (U∗|T ∗|U |T |)p

= (|T | 12U |T ∗| 12 |T ∗| 12U∗|T | 12 )p

= ( ˜T (∗)( ˜T (∗))∗)p

N(T ∗|T |2kT )
p

k+1 = N(U∗|T ∗|U∗k|T ∗|kUk|T |kU |T |)
p

k+1

= N(|T ∗| 12U∗|T ∗| 12 |T ∗| k2U∗k|T ∗| k2 |T ∗| k2Uk|T ∗| k2 |T ∗| k2U |T ∗| k2 )
p

k+1

= N(T̃ (∗))∗[(T̃ (∗))∗]k(T̃ (∗))kT̃ (∗)
p

k+1

= N[(T̃ (∗))∗T̃ (∗)]p

Hence N((T̃ (∗))∗T̃ (∗))p ≥ (T̃ (∗)(T̃ (∗))∗)p.

Theorem2.1.43. IfT ∈B(H) is powers ofN-classA(k) operator then (T̃ (∗))∗ is p-hyponormal.

Theorem 2.1.44. If T ∈ B(H) is powers of N-class A(k) operator then T̃ is p-hyponormal.

Theorem 2.1.45. If T ∈ B(H) is powers of N-class A(k) operator then T̃ ∗ is p-hyponormal.

Theorem 2.1.46. Let T ∈ B(H), then T̃ is p-hyponormal⇔ T̃ (∗) is p-hyponormal.

Theorem 2.1.47. Let T ∈ B(H), then T̃ ∗ is p-hyponormal⇔ (T̃ (∗))∗ is p-hyponormal.

Corollary 2.1.48. Let T =U |T | be p-posinormal operator for 0 < p < 1. Then

(1.) T̃ = |T | 12U |T | 12 is (p+ 1
2)-posinormal for 0 < p < 1

2 .
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(2.) T̃ is posinormal for 1
2 ≤ p < 1.

Theorem 2.1.49. Let T =U |T | be the polar decomposition of T. Then T is class p−wA(s, t)
if and only if |T̃s,t |

2t p
s+t ≥ |T |2t p and |T |2sp ≥ |T̃ ∗s,t |

2sp
s+t .

Proof. (|T ∗|t |T |2s|T ∗|t)
t p

s+t ≥ |T ∗|2t p

⇔ (U |T |tU∗|T |2sU |T |tU∗)
t p

s+t ≥U |T |2t pU∗

⇔U(|T |tU∗|T |2sU |T |t)
t p

s+t U∗ ≥U |T |2t pU∗

⇔ (|T |tU∗|T |2sU |T |t)
t p

s+t ≥ |T |2t p

⇔ |T̃s,t |
2t p
s+t ≥ |T |2t p.

Also, (|T |s|T ∗|2t |T |s)
sp

s+t ≤ |T |2sp

⇔ (|T |sU |T |2tU∗|T |s)
sp

s+t ≤ |T |2sp⇔ |T̃ ∗s,t |
2sp
s+t ≤ |T |2sp.

Corollary 2.1.50. If T is class p−wA(s, t), then T̃s,t is
min{sp,t p}

s+t -hyponormal.

Theorem 2.1.51. Let T =U |T | be the polar decomposition. Then T̃ =U |T̃ |⇔ T is binormal.

Proof. We now prove the theorem.

⇒ Assume that T̃ = U |T̃ |, we have |T | 12 |T ∗| 12 = |T | 12U |T | 12U∗ = T̃U∗ = U |T̃ T |U∗ ≥ 0,

then |T | 12 |T ∗| 12 = |T ∗| 12 |T | 12 , that is, T is binormal.

⇐ If T is binormal, then 0≤ |T | 12 |T ∗| 12 = ||T | 12 |T ∗| 12 |. Then T̃ = |T | 12U |T | 12 = |T | 12 |T ∗| 12U
= ||T | 12 |T ∗| 12 |U = UU∗(|T ∗| 12 |T ||T ∗| 12 ) 1

2U = U(|T | 12U ∗ |T |U |T | 12 ) 1
2 = U |T̃ |. Hence the

proof is complete.

Remark 2.1.52. Note, T̃ = U |T̃ | in above Theorem is not the polar decomposition since
(U) = N(T̃ ) does not hold. One might expect that T̃ is also binormal if T is binormal. But
there is a counterexample for this expectation as follows:

Example 2.1.53. There exists a binormal operator T such that T̃ is not binormal. Let

T =


0 0 5
1
2

√
3

2 0
√

3
2

−1
2 0


and T =U |T | be the polar decomposition. Then T is binormal since

T
∗
T ·T T ∗ = T T ∗ ·T ∗T =


25 0 0

0 1 0

0 0 25

 ,
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and also

|T |= (T ∗T )
1
2 =


1 0 0

0 1 0

0 0 5

 ,

so that

U = T |T |−1 =


0 0 1
1
2

√
3

2 0
√

3
2

−1
2 0

 .

Therefore

T̃ = |T |
1
2U |T |

1
2 =


0 0 5
1
2

√
3

2 0
√

15
2

−
√

5
2 0


We get that

(T̃ )∗T̃ · T̃ (T̃ )∗ =


20 −

√
3 0

−5
√

3 2 0

0 0 25


and

T̃ (T̃ )∗ · (T̃ )∗T̃ =


20 −5

√
3 0

−
√

3 2 0

0 0 25


Hence T̃ is not binormal.

Theorem 2.1.54. Let T =U |T | be the polar decomposition of a binormal operator T. Then
the following assertions are equivalent:

(i.) T̃ is binormal;

(ii.) [U2|T |(U2)∗, |T |] = 0.

Proof. We �rst note that T is binormal if and only if [U |T |U∗, |T |] = 0. Then we obtain

[U |T |U∗,U2|T |(U2)∗] = 0
since U2|T |(U2)∗ ·U |T |U∗ =U ·U |T |U∗ · |T | ·U∗
=U · |T | ·U |T |U∗ ·U∗ by

=U |T |U∗U̇2|T |(U2)∗. Therefore we have |T̃ |2|T̃ ∗T ∗|∗
= |T | 12U∗|T |U |T | 12 · |T | 12U |T |U∗|T | 12
=U∗ ·U |T | 12U∗ · |T | ·U |T |U∗U̇2|T |(U2)∗ ·U |T |12U∗ ·U
=U∗|T ·U2|T |(U2)∗U |T |2U∗U
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=U∗|T | ·U2|T |(U2)∗U |T |2
and

|T̃ ∗|2|T̃ |2 = |T | 12U |T |U∗|T | 12 · |T | 12U∗|T |U |T | 12
=U∗ ·U |T | 12U∗ ·U2|T |(U2)∗ ·U |T |U∗ · |T | ·U |T | 12U∗ ·U
=U∗U2|T |(U2)∗ |̇T |U |T |2U∗U
=U∗U2|T |(U2)∗ · |T |U |T |2.
Hence proof of (ii.)⇒ (i).

Proof of (i.)⇒ (ii.). Since T̃ is binormal, we have

U2|T |(U2)∗ · |T |U |T |2 =UU∗U2|T |(U2)∗ · |T |U |T |2
=UU∗|T |U̇2|T |(U2)∗U |T |2
= |T |UU∗ ·U2|T |(U2)∗U |T |2
= |T | ·U2|T |(U2)∗U |T |2, that is, U2|T |(U2)∗ · |T |= |T | ·U2|T |(U2)∗

on R(U |T |2) = N(|T |2U∗)⊥ = N(UU∗)⊥ = R(UU∗). In other words, (U2|T |(U2)∗ · |T | ·
UU∗ = |T | ·U2|T |(U2)∗ ·UU∗ holds. Hence, we have U2|T |(U2)∗ · |T | = U2|T |(U2)∗ ·
UU∗ · |T |
=U2|T |(U2)∗ · |T | ·UU∗

= |T | ·U2|T |(U2)∗ ·UU∗

= |T | ·U2|T |(U2)∗. Therefore the proof is complete.

Theorem 2.1.55. Let T = U |T | be the polar decomposition. Then for each non-negative
integer n, the following assertions are equivalent:

(i.) T̃k is binormal for all k = 0,1,2, · · · ,n;

(ii.) [Uk|T |(Uk)∗, |T |] = 0 for all k = 1,2, · · · ,n+1.

Proposition 2.1.56. Let T = U |T | be the polar decomposition of a binormal operator T.
Then T̃ =U∗UU |T̃ | is also the polar decomposition of T̃ .

Proof. Since |T | 12 =U∗U |T | 12 and |T ∗| 12 =UU∗|T ∗| 12 are the polar decompositions of

|T | 12 and |T ∗| 12 respectively, then |T 1
2 ||T ∗| 12 =U∗UUU∗|T | 12 |T ∗| 12 is the polar decompo-

sition of |T | 12 |T ∗| 12 . Therefore we have that T̃ =U∗UUU∗ ·U |T̃ |=U∗UU |T̃ | is also the

polar decomposition of T̃ .

Theorem 2.1.57. Let T =U |T | be the polar decomposition of p-hyponormal for 1≥ p > 0.
ThenT̃ = |T |qU |T |q is hyponormal for any q such that p≥ q > 0.

Proof. As T is p-hyponormal for p > 0, T is q-hyponormal for q such that p≥ q > 0
by the Löwner-Heinz theorem, then we have U∗|T |2qU ≥ |T |2q ≥U |T |2qU∗ for any q such

that p≥ q > 0, this implies (T̃ ∗T̃ )− (T̃ T̃ ∗) = |T |q(U∗|T |2qU−U |T |2qU∗)|T |q ≥ 0 for any

q such that p≥ q > 0, that is, T̃ is hyponormal, so the proof is complete.

Theorem 2.1.58. Let H be a Hilbert space and T ∈ L(H).
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(i.) For 0 < p < 1
2 , if T is p-hyponormal, then T̃ is p+ 1

2 -hyponormal.

(ii.) For 1
2 ≤ p≤ 1, if T is p-hyponormal, then T̃ is 1-hyponormal.

Theorem 2.1.59. Let H be a Hilbert space, T ∈ L(H), and T be invertible. If T is log-
hyponormal, then T̃ is 1

2 -hyponormal.

Theorem 2.1.60. Let T ∈ L(H).

(i.) ||T̃ || ≤ ||T ||.

(ii.) T is quasinormal if and only if T = T̃ .

Proof. Let T = U |T | be the polar decomposition of T. One can note that (if U 6= 0)

||U ||= 1. Further, one can see that ||T ||= |||T |2|| 12 = |||T |||= |||T | 12 ||2 and hence |||T | 12 ||=
||T || 12 . Now ||T̃ ||= |||T | 12U |T | 12 ||
≤ |||T | 12 || · ||U || · |||T | 12 ||
= |||T | 12 ||2
= ||T ||
Further, T = T̃ ⇒ T = |T | 12U |T | 12 ⇒ T |T | 12 = |T | 12U |T | ⇒ T |T | 12 = |T | 12 T ⇒ |T | 12 com-

mutes with T ⇒ |T | commutes with T ⇒ T ∗T commutes with T ⇒ T is quasinormal.

Also, T is quasinormal⇔U and |T | commute thus T̃ = T.

Proposition 2.1.61. Let T be a partial isometry of B(H). Then its Aluthge transform is
given by T̃ = T ∗T 2.

Proof. Since T is a partial isometry, the set R(T ∗) is closed and |T |2 = T ∗T = prR(T ∗).

Thus |T | 12 = prR(T ∗). Let x = x1 + x2 be the decomposition of an arbitrary vector of H
with respect to the (orthogonal) direct sum H = N(T )⊕ R(T ∗). We get T x = T x2 =

T prR(T ∗)x, so U prR(T ∗) = T prR(T ∗) and N(U) = N(T ). Finally we obtain U = T and T̃ =

prR(T ∗)T prR(T ∗) = prR(T ∗)T = T ∗T 2
, because R(T ∗) = [N(T )]⊥.

Theorem2.1.62. Suppose thatB(H) is a Banach algebra with respect to the unitary invariant
norm ||| · ||| and |||I|||= 1. Let T ∈ B(H) be invertible and 0 < λ < 1. Then limn→∞|||T̃ n

λ
|||=

r(T ).

Proof. For each k ∈ N, the sequence {|||(Tn)
k||| 1k }n∈N is non-increasing and converges

to s = limn→∞|||Tn|||. So for all n,k ∈ N, s ≤ |||(Tn)
k||| 1k . Suppose that r(T ) < s, that is

r(Tn)< s for all n. Then for a �xed n ∈ N, and su�ciently large k, we have |||(Tn)
k||| 1k < s;

a contradiction. So r(T ) = s.

Corollary 2.1.63. Let λ ∈ (0,1). If the sequence S̃n
λ
converges for every invertible matrix

S ∈Mr(C) and every r ∈ N, then the sequence T̃ n
λ
converges for all T ∈Mr(C) and every

r ∈ N.
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Proof. Let T ∈Mr(C). We can assume that m(T,0) = m0(T,0). We note that in this

case, N(T̃λ ) = N(T ), since N(T ) ⊆ N(T̃λ ) and m(T̃λ ,0) = m(T,0). On the other hand

R(T̃λ )⊆ R(|T |) so that R(T̃λ ) and N(T̃λ ) are orthogonal subspaces. Thus, there exists a

unitary matrix U such that

UT̃λU∗ =

 S 0

0 0


where S ∈Ms(C) is invertible (s = r−m(T,0)). Since for every n≥ 2,

T̃ n
λ
=U∗

 S̃n−1
λ

0

0 0

U,

the sequence T̃ n
λ

converges because the sequence S̃n−1
λ

converges by hypothesis.

Theorem 2.1.64. Let T = U |T | be the polar decomposition of T. If T is binormal then
T̃ =U∗UU |T̃ | is the polar decomposition of T̃ .

Theorem 2.1.65. Let T be invertible and suppose that T =U |T | is the polar decomposition
of T. If T is binormal, then T̃ =U |T̃ | is the polar decomposition of T̃ .

Proof. Since T is invertible and U is unitary, then by above Theorem the proof follows.

Theorem 2.1.66. Let T be an operator on B(H). Then T̃ is binormal for all n≥ 0 i� T is
centered.

Theorem 2.1.67. If U is a partial isometry, then the following assertions are mutually
equivalent:

(i.) U is binormal.

(ii.) Ũ is a partial isometry.

(iii.) U2 is a partial isometry.

Corollary 2.1.68. Let T = U |T | be paranormal and T̃ = U |T̃ |. Then T is binormal and
hyponormal.

Proof. T̃ =U |T̃ | and T is binormal by Theorem 2.1.67. Since T is binormal and para-

normal, therefore T is hyponormal.
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2.2 GENERALIZED ALUTHGE TRANSFORMS.

Generalized Aluthge transform is very useful in studying p-hyponormal operators which
was studied and discussed by Ariyadasa Aluthge in [AAL].

Proposition 2.2.1. Let T ∈ L(H) and λ ∈ [0,1]. Then:

1. c̃T λ = cT̃λ for every c ∈ C.

2. ˜(V TV ∗)
λ
=V T̃λV ∗ for every V ∈U(H).

3. ||T̃λ || ≤ ||T ||.

4. σ(T̃λ ) = σ(T ).

5. If dimH < ∞, then T and T̃λ have the same characteristic polynomial.

Remark 2.2.2. If dimH = n < ∞, equality holds for k = n. Indeed, if T =U |T | is the polar
decomposition of T , then det|T̃λ |= [det(|T |λU |T |1−λ )∗(|T |λU |T |1−λ )]

1
2

= (det|T |2) 1
2 = det|T |.

Theorem 2.2.3. Let λ ∈ (0,1), 1≤ p < ∞ and T ∈ Lp(H). Then ||T̃λ ||p = ||T ||p if and only
if T is normal.

Remark 2.2.4. Theorem 2.2.3 fails for λ = 1. Take, for example, T ∈ L2(H) with polar de-
composition T =U |T |, whereU ∈U(H). In this case, ||T̃1||2 = ||T ||2. The following example
shows that the Theorem may be false for other unitarily invariant norms. In particular, for
the spectral norm. Let

T =


1 0 0

0 0 1

0 0 0


Then,

T̃λ =


1 0 0

0 0 0

0 0 0


for every λ ∈ (0,1), and therefore 1 = ||T̃λ ||p < ||T ||p = 2

1
p but T̃λ ||= ||T ||= 1.

Corollary 2.2.5. Let T ∈Mn(C) and λ ∈ (0,1). Then, ρ(T ) = limn→∞ ||T̃ n
λ
||.

Proof. Take a subsequence T̃ nk
λ

that converges to a limit point L. Since L is normal and

σ(L) = σ(T ), it holds that ||L|| = ρ(L) = ρ(T ). Hence limk→∞ ||T̃ nk
λ
|| = ||L|| = ρ(L) =

ρ(T ). Finally, since the whole sequence ||T̃ n
λ
|| converges because it is non-increasing, thus

obtain the desired result.
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Remark 2.2.6. If dimH = n < ∞ equality holds for k = n. Indeed if T =U |T | is the polar
decomposition of T , then det|T̃λ | = [det|T |λU |T |1−λ )∗(|T |λU |T |1−λ )]

1
2 = (det|T |2) 1

2 =

det|T |.

Corollary 2.2.7. Let p ≥ 1, T ∈ Lp(H) and λ ∈ [0,1]. Then, T̃λ ∈ Lp(H) and ||T̃λ ||p ≤
||T ||p.

Proof. We have

∑
n
i=1 Si(T̃λ )

p ≤ ∑
k
i=1 Si(T )p

, k ∈ N. By taking limit, we obtain tr|T̃λ |p = ∑
∞
i=1 Si(T̃λ

)p ≤
∑

∞
i=1 Si(T )p = tr|T p

Theorem 2.2.8. Let λ ∈ (0,1), 1 ≤ p < 1∞ and T ∈ Lp(H). Then ||T̃λ ||p = ||T ||p if and
only if T is normal.

Proof. Let T =U |T | be the polar decomposition of T. Fix 1≤ p < ∞. Then with A =

|T |λ and B∗=U |T |1−λ
, we get tr|T̃λ |p≤ tr||T |λ T ∗|1−λ |p. With A = |T |λ and B = |T ∗|1−λ

,

we get tr||T |λ T ∗|1−λ |p ≤ tr(T |pλ |T ∗|p(1−λ
.

Then, for the conjugate numbers λ−1
and (1−λ )−1

, tr|T̃λ |p ≤ tr(T |pλ |T ∗|p(1−λ ))

≤ (1−λ )tr|T |p +λ tr|T ∗||p = tr|T |p. Therefore, if T̃λ ||p = ||T ||p, then equality holds in

Young’s inequality. We now conclude that |T |p = |T ∗|p. Hence T is normal.

Proposition 2.2.9. Let T ∈Mn(C). Then, the limit points of the sequence T̃ n
λ
, n ∈ N are

normal. Moreover, if L is a limit point, then σ(L) = σ(T )with the same algebraic multiplicity.

Proof. Let T̃ nk
λ

, k ∈ N be a subsequence which converges in norm to a limit point L. By

the continuity of Aluthge transforms, T̃ nk+1
λ

−→k→∞ L̃λ .Then ||L̃λ ||2 = limk→∞||T̃ nk+1
λ
||2 =

limn→∞||T̃ n
λ
||2 = limk→∞||T̃ nk

λ
||2 = ||L||2. Hence, by a previous Proposition L is normal. It

only remains to prove that σ(L) = σ(T ) with the same algebraic multiplicity, or equiv-

alently, that tr(T m) = tr(Lm) for every m ∈ N. Indeed, trLm = limk→∞tr(T̃ nk
λ
)m = trT m

,

m ∈N, because, for each k ∈N, σ(T̃ nk
λ
) = σ(T ) (with algebraic multiplicity), and therefore

tr(T̃ nk
λ
)m = trT m.

Theorem 2.2.10. Let T ∈M2(C) and λ ∈ (0,1). Then, the sequence T̃ n
λ
, n ∈ N converges.

Proof. Suppose that σ(T ) = {µ1,µ2}. Since we have proved that the limit points of

the sequence T̃ n
λ

are normal, if µ1 = µ2 = c, then T̃ n
λ
−→n→∞ cI. From now on we shall

consider the case in which

µ1 6= µ2.

We denote Tn = T̃ n
λ
. Fix n≥ 0. If Tn =Un|Tn| is the polar decomposition of Tn, then |T ∗n |t =

U |Tn|tU∗, for every t > 0. Therefore we obtain (Tn+1 − Tn)U∗n = |Tn|λUn|Tn|1−λU∗n −
Un|Tn|U∗n
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= |Tn|λ |T ∗n |1−λ −|T ∗n |
= (|Tn|λ −|T ∗n |λ )|T ∗n |1−λ

, and then

||Tn+1−Tn||2 ≤ |||Tn|λ −|T ∗n |λ ||2|||T ∗n |1−λ ||2
≤ 2|||Tn|λ −|T ∗n |λ ||2|||T ∗n |1−λ ||sp

= 2|||Tn|λ −|T ∗n |λ ||2||Tn||1−λ

≤ |||Tn|λ −|T ∗n |λ ||2||T ||1−λ . Applying previous Proposition to A = T ∗n Tn, B = TnT ∗n and

r = λ

2 , since ||I2||
1− λ

2
2 ≤ 2, we get

||Tn+1 − Tn||2 ≤ 2|||Tn|λ − |T ∗n |λ ||2||T ||1−λ ≤ (4||T ||1−λ )||T ∗n Tn − TnT ∗n ||
λ

2
2 . If γ(T,λ ) ∈

(0,1) is the constant of a previous Lemma, and a = γ(T,λ )
λ

2 < 1, then

||Tn+1−Tn||2 ≤ (4||T ||1−λ )||T ∗n Tn−TnT ∗n ||
λ

2
2

≤ an(4||T ||1−λ ||T ∗T − T T ∗||
λ

2
2 ). Denote N(T,λ ) = 4||T ||1−λ ||T ∗T − T T ∗||

λ

2
2 ). Then, if

n,m ∈ N, with n < m, ||Tm−Tn||2 ≤ ∑
m−1
k=n ||Tk+1−Tk||2

≤ N(T,λ )∑
m−1
k=n ak −→n,m→∞ 0, which shows that the limn→∞Tn = limn→∞T̃ n

λ
exists.

Corollary 2.2.11. Let λ ∈ (0,1). If the sequence S̃m
λ
converges for every invertible matrix

S ∈Mn(C) and every n ∈ N, then the sequence T̃ m
λ

converges for all T ∈Mn(C) and every
n ∈ N.

Proof. Let T ∈Mn(C). By Proposition 2.1.4, we can assume that m(T,0) = m0(T,0).
Note that, in this case, N(T̃λ ) = N(T ) since N(T ) ⊆ N(T̃λ ) and m(T̃λ ,0) = m(T,0). On

the other hand, R(T̃λ )⊆ R(|T |) so that R(T̃λ ) and N(T̃λ ) are orthogonal subspaces. Thus,

there exists a unitary matrix U such that

UT̃λU∗ =

 S 0

0 0


where S ∈Ms(C) is invertible (s = n−m(T,0)). Since for every m≥ 2

T̃ m
λ

=U∗

 S̃m−1
λ

0

0 0

U,

the sequence T̃ m
λ

converges, because the sequence S̃m−1
λ

converges by hypothesis.

Remark 2.2.12. If T ∈Mn(C) is invertible, then |T |λ is invertible, for every λ ∈ (0,1), and
T̃ λ (T ) = |T |λ T |T |−λ .

Theorem 2.2.13. Let T =U |T | be the polar decomposition of a p-posinormal operator for
0 < p≤ 1. Then the following assertions hold:

(1.) T̃s,t = |T |sU |T |t is p+min{s,t}
s+t -posinormal for s, t > 0 such that max{s, t} ≥ p.



36

(2.) T̃s,t is posinormal for 0 < s, t ≤ p.

Proof. Suppose that |T ∗|2p ≤ µ|T |2p
for some µ > 1.

(1.) Let A = µ|T |2p
and B = |T ∗|2p. Then (T̃ ∗s,t T̃s,t)

p+min{s,t}
s+t = (|T |tU∗|T |2sU |T |t)

p+min{s,t}
s+t

=U∗(|T ∗|t |T |2s|T ∗|t)
p+min{s,t}

s+t U

= µ
− s

p
p+min{s,t}

s+t U∗(B
t

2p A
s
p B

t
2p )

p+min{s,t}
s+t U ≥ µ

− s
p

p+min{s,t}
s+t U∗B

p+mins,t
p U by Furuta Inequal-

ity = µ
− s

p
p+min{s,t}

s+t |T |2(p+min{s,t})

since
s+t

p+min{s,t} ≥ 1 and (1+ t
p)

s+t
p+mins,t ≥

s
p +

t
p .

And (T̃s,t T̃ ∗s,t)
p+min{s,t}

s+t

= (|T |sU |T |2tU∗|T |s)
p+min{s,t}

s+t

= (|T |s|T ∗|2t |T |s)
p+min{s,t}

s+t

= µ
− s

p
p+min{s,t}

s+t (A
s

2p B
t
p A

s
2p )

p+min{s,t}
s+t

≤ µ
t−s

p
p+min{s,t}

s+t A
p+min{s,t}

p by Furuta Inequality = µ
t−s

p
p+min{s,t}

s+t |T |2(p+min{s,t})

since
s+t

p+mins,t ≥ 1 and (1+ s
p)

s+t
p+min{s,t} ≥

t
p +

s
p .

We have

(T̃s,t T̃ ∗s,t)
p+min{s,t}

s+t

≤ µ
t
p

p+min{s,t})
s+t (T̃s,t T̃ ∗s,t)

p+min{s,t}
s+t , that is, T̃s,t is

p+min{s,t}
s+t -posinormal for s, t > 0 such that

max{s, t} ≥ p.

(2.) Applying Löwner-Heinz Inequality to the �rst equation, |T ∗|2s ≤ µ
s
p |T |2s

and |T ∗|2t ≤ µ
t
p |T |2t

hold for any 0 < s, t ≤ p.
We then have, T̃ ∗s,t T̃s,t

= |T |tU∗|T |2sU |T |t
≥ µ

− s
p |T |tU∗|T ∗|2sU |T |t

= µ
− s

p |T |2(s+t)
and T̃s,t T̃ ∗s,t

= |T |sU |T |2tU∗|T |s ≤ |T |sµ
t
p |T |2t |T |s

= µ
t
p |T |2(s+t).

So T̃s,t T̃ ∗s,t ≤ µ
s+t

p T̃ ∗s,t T̃s,t and hence T̃s,t is posinormal.

Remark 2.2.14. We note that Theorem 2.2.13 leads the next result by putting s = t = 1
2 .

Proposition 2.2.15. Let V be a co-isometry of B(H). Then we have Ṽ n =V ∗nV n+1 for any
non negative integer n.

Proof. We proceed by induction. It is obvious for n = 0. Let n ∈ N and assume that

Ṽ n =V ∗nV n+1. The equality |Ṽ n|2 =V ∗n+1V nV ∗nV n+1 =V ∗n+1V n+1
shows that |Ṽ n|2 is
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a projection, denoted by Pn+1. Since N(V n+1) = N(Pn+1), the polar decomposition of Ṽ n

is Ṽ n = Ṽ nPn+1. It yields to the equality Ṽ n+1 = Pn+1Ṽ Pn+1 =V ∗n+1V n+2
and the result is

proved.

Lemma 2.2.16. Let T (t) = |T |tU |T |1−t(0≤ t ≤ 1) be the generalized Aluthge transform of
T. Then σa(T ) = σa(T (t)) for 0≤ t < 1. In general, σa(T ) 6= σa(T (1)).

Theorem 2.2.17. Let T =U |T | be the polar decomposition of a binormal operator T ∈ B(H)

withN(T ) = N(T ∗). Then the generalized Aluthge transformation T̃ = |T |qU |T |q accepts
the polar decomposition.

Proof. Note that [|T |, |T ∗|] = 0 implies that [|T |q, |T ∗|q] = 0, for all q > 0. By induction,

the equality [|T | n
m , |T ∗| n

m ] = 0 holds for all positive integers n,m. Hence [|T |q, |T ∗|q] = 0,

as
n
m → q. The proof follows from a previous theorem and the fact that N(|T |) = N(|T |q),

for all q > 0.

Corollary 2.2.18. Let T =U |T | be the polar decomposition of an operator T ∈ B(χ). If T
and T̃ are binormal operators with N(T ) = N(T ∗), then T̃ and ( ˜̃T ) = |T̃ | 12Ũ |T̃ | 12 accept the
polar decompositions.

Proof. We �rst prove that N(T̃ )=N((T̃ )∗). Since N(T )=N(|T |), the de�nition of T̃ im-

plies that N(T )⊆N(T̃ ).Then results we have that ||T̃ x||2χ = ||〈|T | 12U |T | 12 x, |T | 12U |T | 12 x〉||A
= ||〈x, |T | 12U∗|T |U |T | 12 x〉||A = ||〈x,U∗|T ∗| 12 |T ||T ∗| 12Ux〉||A
= ||〈x,U∗||T | 12 |T ∗| 12 |2Ux〉||A
= ||〈x,U∗(|T | 12 |T ∗| 12 )2Ux〉||A
= ||〈x,U∗(|T ||T ∗|)Ux〉||A
= ||〈x,U∗|T ∗||T |Ux〉||A. Now let x ∈ N(T̃ ). By the above equality U∗|T ∗||T |Ux = 0, so

UU∗|T ∗||T |Ux= 0. ProjectingUU∗ on R(|T ∗|) and binormality of T imply that |T ∗||T |Ux=
|T ||T ∗|Ux = 0, that is |T ∗|Ux ∈ N(|T |). Since N(|T |) = N(T )⊆ N(T ∗) = N(|T ∗|), hence

|T ∗|2Ux = 0, so Ux ∈N(|T ∗|2) = N(|T ∗|) = N(U∗), whence U∗Ux = |U |2x = 0. Therefore

N(T̃ )=N(T ).Obviously N(T ∗)⊆N((T̃ )∗), by N(T )=N(T ∗). ||(T̃ )∗x||2χ = ||〈|T | 12U∗|T | 12 x,

|T | 12U∗|T | 12 x〉||A
= ||〈x, |T | 12U |T |U∗|T | 12 x〉||A = ||〈x, |T | 12 |T ∗||T | 12 x〉||A
= ||〈x, ||T ∗| 12 |T | 12 |2x〉||A = ||〈x,(|T ∗| 12 |T | 12 )2x〉||A
= ||〈x, |T ||T ∗ |x〉||A. Suppose that x ∈ N((T̃ )∗). By the assumption and above equality, we

reach that |T ∗|x ∈ N(|T |) = N(T ) ⊆ N(T ∗) = N(|T ∗|), hence x ∈ N(|T ∗|2) = N(|T ∗|) =
N(T ∗), therefore N(T ∗) = N((T̃ )∗). Consequently N((T̃ )∗) = N(T̃ ). This means that T̃
satis�es assumption that T̃ = U∗UU |T̃ | for a binormal operator T , hence the second

Aluthge transformation ( ˜̃T ) possesses the polar decomposition.

Remark 2.2.19. In the above corollary A denotes a C∗-algebra and χ denotes Hilbert A-
modulus.
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2.3 ITERATED ALUTHGE TRANSFORMS.

Remark 2.3.1. For every T ∈ L(H), the sequence ||( ˜(T (n))||
∞

n=0 is decreasing such that
r(T )≤ ˜T (n) ≤ ||T ||.

Proof. Since σ(T ) = σ(T̃ ) = σ( ˜T (n)) for all n ∈ N, we have, r(T ) = r( ˜T (n))≤ || ˜T (n)||
for all n ∈ N. The fact || ˜T (n)|| ≤ ||T || follows easily. Hence ||( ˜T (n))||

∞

n=0 is a convergent

sequence.

Remark 2.3.2. Moreover, T. Yamazaki [Yam] established the following interesting formula
for the spectral radius limn→∞||T̃ n

λ
||= r(T ) where T̃ n

λ
is the n-th iterate of T̃λ , that is T̃ n+1

λ
=

T̃λ (T̃ n
λ
), T̃ 0

λ
= T.

Lemma 2.3.3. The n-th Aluthge iterate of T is given by

T̃ (n) =U |T̃ (n)| (1)

where

|T̃ (n)|=
n

∏
k=0

α̃
k(|T |

 n

k


2n ) (2)

Proof. By induction over n, (1.) and (2.) hold for n = 0. Let N ≥ 1, and assume that (2.)

holds for n = N−1. Then for the N-th Aluthge iterate we have:

T̃ (N) = [∏N−1
k=0 α̃k(|T |

 N−1

k


2N−1 )]

1
2U [∏N−1

l α̃ l(|T |

 N−1

l


2N−1 )]

1
2

= [∏N−1
k=0 α̃k(|T |

 N−1

k


2N )]U [∏N−1

l=0 α̃ l(|T |

 N−1

l


2N )]

= [∏N−1
k=0 α̃k+1(|T |

 N−1

k


2N )]U [∏N−1

l=0 α̃ l(|T |

 N−1

l


2N )]

= [∏N−1
k=1 α̃k(|T |

 N−1

k−1


2N )]U [∏N−1

l=0 α̃ l(|T |

 N−1

l


2N )]
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=Uα̃N(|T |

 N−1

N−1


2N )U [∏N−1

k=1 α̃k(|T |

 N−1

k−1


2N )]+

 N−1

k

/2N)]|T |
1

2N

=U ∏
N
k=0 α̃k(|T |

 N

k


2N ), and this shows that (1.) and (2.) as well hold for n = N.

2.4 POWERS OF ALUTHGE TRANSFORMS.

Corollary 2.4.1. Let T =U |T | be the polar decomposition of an invertible p-hyponormal
operator for 1≥ p > 0, whereU is a unitary operator and |T |> 0. Let q and r be any positive
numbers such that q≥ p and 1

2(1+
p
q )≥ r. Also let T̃ = Ũ |T̃ | be the polar decomposition of

an operator T̃ = |T |qU |T |q. Then ˜̃T = |T̃ |rŨ |T̃ |r is hyponormal.

Proof. As T is invertible p-hyponormal, 1≥ p> 0, T can be decomposed into T =U |T |,
where U is unitary and |T |> 0, so that T̃ = |T |qU |T |q is

1
2(1+

p
q )-hyponormal for q such

that q≥ p. Then we obtain
˜̃T = |T̃ |rŨ |T T̃ |r is hyponormal for any r such that

1
2(1+

p
q )≥ r,

so the proof is complete.

Remark 2.4.2. The following theorem is proved in [Ima]. The equality holds since T is
invertible and therefore all Aluthge transforms of T are same.

Theorem 2.4.3. If T is w-hyponormal operator which is invertible, then T̃ kn and T̃ k
n are also

w-hyponormal operators which are invertible for k,n ∈ J+. Also T̃ kn = T̃ k
n .
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3 Chapter 3

In this chapter spectral properties of di�erent classes of operators were discussed. Further,
numerical ranges including that of Aluthge transform of di�erent operators were looked
at.

3.1 SPECTRAL PROPERTIES OF DIFFERENT CLASSES OF
OPERATORS.

I.Jung, E.Ko and C.Pearcy [IEC00] proved that spectral properties of an operator are
preserved by the Aluthge transform.

Lemma 3.1.1. Let S be a posinormal operator. If z ∈ σp(S) for 0 < p < 1
2 , then z ∈ σp(S∗).

Proof. Suppose 0 is in point spectrum of S. Then there exists a non zero vector x ∈ H
such that Sx = 0. Since |S|2x = S∗Sx = 0 and |S| ≥ 0, we have (S∗S)

1
2 kx = 0(k = 1,2, · · ·).

For m ∈ N such that
1
m < p, we have (S∗S)

1
2 mx = 0. It then follows that, (S∗S)px = 0.

Clearly (SS∗)px = 0 since S is posinormal. Therefore S∗x = 0. Next assume that z ∈ σp(S)
for non zero z∈C. Then there exists a non zero vector y∈H such that Sy= zy. Let S =U |S|
be a polar decomposition of S with unitary operator U. Since U |S|y = zy, it follows that

|S| 12U |S| 12 |S| 12 y = z|S| 12 y. We know that S̃ = |S| 12U |S| 12 .
Hence, we have S̃∗ = |S| 12U∗|S| 12 y = z|S| 12 y.
Thus S∗(|S|y) = z|S|y. Since |S|y 6= 0, then z ∈ σp(S∗).

Lemma 3.1.2. Let S = (S1,S2, · · · ,Sn) be doubly commuting n-tuple of posinormal oper-
ators on H. If z = (z1,z2, · · · ,zn) ∈ σp(S), then z = (z1,z2, · · · ,zn) ∈ σp(S∗), where S∗ =
S∗1,S

∗
2, · · · ,S∗n

Proof. There exists a non-zero vector x ∈ H such that S1x = z1x(i = 1, · · · ,n). We

assume that z1, · · · ,zk are non-zero and zk+1 = · · ·= zn = 0. therefore we obtain S∗k+1 =

· · · = S∗x = 0. Also S∗i (Si|x) = zi|Si|x, where SSi is the positive operator in a polar de-

composition Si = Ui|Si| where i = 1, · · · ,k. Suppose |S1| · · · |Sk|x = 0. Since (S1 · · ·Sk) is

doubly commuting k-tuple of a posinormal operator, then Ui and |Si| commute with U j and

|S j| for every i 6= j. Thus we have S1 · S2 · · ·Skx = 0. It follows that z1, · · · ,zk = 0. Since

every zi 6= 0(i = 1, · · · ,k). Therefore we have |S1| · · · |Sk|x 6= 0. For i(i = 1, · · · ,k), we have

S∗i (|S1| · · · |Sk|x) = |S1| · · · |Si−1| · |S1+1| · · · |Sk| ·S∗i |Si|x
= zi(|Si| · · · |Sk|x). Since also Si commutes with |S1 · · · |Sk|, we have S∗i (|S1| · · · |Sk|x) = 0(i =
k+1, · · · ,n) Therefore it follows that z = (z1, · · · ,zn) ∈ σp(S∗).
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Remark 3.1.3. The following lemma says that both the spectrum and the point spectrum of
an operator T is preserved by generalized aluthge transform of T.

Lemma 3.1.4. Let T (t) = |T |tU |T |1−t(0≤ t ≤ 1) be the generalized Aluthge transform of
T. Then σ(T ) = σ(T (t)) and σp(T ) = σp(T (t)) for 0≤ t ≤ 1.

Remark 3.1.5. The following theorem shows that spectral properties of an operator T are
preserved under the aluthge transform for T = U |T |. Jung, Ko and Pearcy proved this in
[IEC00].

Theorem3.1.6. For every T =U |T | (polar decomposition) inL(H); σ(T )=σ(T̃ ),σap(T )=
σap(T̃ ),σp(T ) = σp(T̃ ),σap(T ∗)/(0) = σap((T̃ )∗)/(0), and σp(T ∗)/(0) = σp((T̃ )∗)/(0).

Corollary 3.1.7. Let T ∈ B(H). Then the following assertions are equivalent:

(i.) T is a spectraloid.

(ii.) ω(T ) = ω ˜(Tn) for a natural number n.

Proof. Since ||T || ≥ ω(T ) ≥ r(T ) , we have limnarrow∞ ω(T̃n) = r(T ). We therefore

obtain the following inequalities: ω(T )≥ω(T̃ )≥ ·· · ≥ω(T̃n).Hence the proof is complete.

Lemma 3.1.8. If T is an algebraic operator, then σ(T ) = σp(T ) (point spectrum of T ).

Proof. It is well known that an operator T is algebraic if and only if its spectrum

consists of poles only. But a pole of an operator is always an eigenvalue. Hence for an

algebraic operator the spectrum and the point spectrum coincide.

Proposition 3.1.9. For any T ∈ B(H), σc(T )⊂ σap(T ).

Proof. If λ ∈ σ(T ) but λ /∈ σap(T ), then there exists c > 0 such that ||T x−λx|| ·c||x||
for all x ∈ H. But this implies R(T −λ I) is closed, so λ /∈ σc(T ).

Proposition 3.1.10. If T is a bounded normal operator, then σr(T ) = φ .

Proof. If λ ∈σr(T ), then ker(T ∗−λ I)=R(T−λ I)⊥ ·0. Since T is normal, so is T−λ I,

and thus for any x, ||(T −λ I)x||= ||(T ∗−λ I)x||, so ker(T −λ I) = ker(T ∗−λ I) ·0. But

this implies λ ∈ σp(T ), which is a contradiction.

Proposition 3.1.11. Let T ∈ B(H) be a normal operator. Then

(a.) T is self-adjoint if and only if σ(T )⊂ R.
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(b.) T is a projection if and only if σ(T )⊂ {0,1}.

(c.) T is unitary if and only if σ(T )⊂ {z ∈ C : |z|= 1}.

Theorem 3.1.12. Let T be a normal operator in B(H). Then

(a.) T is self-adjoint i� σ(T )⊂ R,

(b.) T is unitary i� σ(T )⊂ T = {λ : |λ |= 1}.

Theorem 3.1.13. If T is a normal operator then σ(T ) = σapp(T ).

Proof. Taking into account that T −λ is normal, for any

x ∈ H , ||(T −λ )x||= ||(T ∗−λ )x||
so σp(T ) = σp(T ∗).
Also,

λ ∈ σp(T ∗),
=⇒ Ker(T ∗−λ ) 6= (0),
=⇒ Ran(T ∗−λ )∗ is not dense,

=⇒ Ran(T −λ ) is not dense,

=⇒ λ ∈ σcomp(T ).
Conclusion: σcomp(T )⊂ σp(T )⊂ σapp(T ).
Since σ(T ) = σapp(T )∪σcomp(T ) the result follows.

Theorem 3.1.14. Let T be a compact operator, let λ be a non-zero complex number, and
suppose that T −λ is not bounded below. Then λ ∈ σp(T ).

Proof. Let xn be a sequence of unit vectors such that ||(T −λ )xn|| → 0, n→ ∞. Since

B1 is weakly compact, xn has a weakly convergent subsequence xnk , so the compactness

of T implies that T xnk is a convergent sequence. Let x = limkT xnk . Notice that ||x|| ≥
||λxnk ||− ||(T −λ )xnk || → |λ | so x is a non-zero vector. Moreover, ||(T −λ )x|| ≤ ||(T −
λ )(T xnk− x)||+ ||(T −λ )T xnk || → 0 so λ ∈ σp(T ).

Remark 3.1.15. Since T ∗ is also compact, by above theorem we can conclude that λ ∈
σp(T ∗).

Corollary 3.1.16. The spectrum of a compact operator consists of 0 and its eigenvalues.

Remark 3.1.17. An operator T is quasinilpotent if σ(T ) = {0}. More properties of the
spectrum of T are discussed in the following theorem.

Theorem 3.1.18.(a.) If T is a unitary operator then σ(T ) is a subset of the unit circle.

(b.) If T is a self-adjoint operator then σ(T ) is a subset of the real axis.
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(c.) If T is a positive operator then σ(T ) is a subset of the non-negative real axis.

(d.) If T is a non-trivial projection then σ(T ) = {0,1}.

Proof. All operators listed in the theorem are normal, it su�ces to prove assertions

(a.) to (d.) with σapp(T ) instead of σ(T ). To that end, we will prove that, if λ does not

belong to the appropriate set, then T −λ is bounded below.

(a.) If T is unitary and |λ | 6= 1, then ||T x−λx|| ≥ |||T x||− ||λx|||= |(1−λ )|||x|| so T is

bounded below.

(b.) Let λ = α +β .Then ||T x−λx||2
= ||T x−αx||2−2Re〈T x−αx, iβx〉+ ||iβx||2.

(c.) ||T x−λx||2 = ||T x−αx||2−2Re〈T x−αx, iβx〉+ ||iβx||2. If α,β are real numbers and

T = T ∗ we have that 〈T −αx,x〉 ∈ R, it follows that Re〈T x−αx, iβx〉= 0 Therefore,

||T x−λx||2 ≥ |β |2||x||2, so β 6= 0 implies that T −λ is bounded below.

(d.) If T ≥ 0 then T is self-adjoint, so σ(T ) ⊂ R. Notice that ||T x− λx||2 = ||T x||2−
2Re〈T x,λx〉+ ||λx||2. If λ < 0 then 〈T x,λx〉< 0 (by de�nition of a positive operator)

so ||T x−λx||2 ≥ |λ |2||x||2 and T −λ is bounded below.

(e.) If T is a non-trivial projection then neither T nor I−T (the projection on the orthogonal

complement of the range of T ) can be invertible, so {0,1} ⊂ σ(T ). If λ /∈ {0,1}, a

calculation shows that
1

λ (1−λ )T −
1
λ

is the inverse of T.

Theorem 3.1.19. Let T ∈ B(H) be k-quasi-paranormal operator, the range of T k be not
dense and

T =

 T1 T2

0 T3


on H = [ranT k]⊕ kerT ∗k. Then T1 is paranormal, T k

3 = 0 and σ(T ) = σ(T1)∪{0}.

Theorem 3.1.20. If T is k-quasi-paranormal, then r(T )≥ ||T n||
||T n−1|| for every positive integer

n≥ k+1.

Proof. Since
||T k+n||
T k+n−1|| ≥

||T k+n−1||
||T k+n−2|| ≥ ·· · ≥

||T k+1||
||T k|| ,

||T k+n||
||T k|| ≥ ( ||T

k+1||
||T k|| )

n.

Thus, ||T n|| ≥ ( ||T
k+1||
||T k|| )

n
or ||T n|| 1n ≥ ||T

k+1||
||T k|| .

Letting n→ ∞, we get r(T )≥ ||T
k+1||
||T k|| .
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Similarly r(T )≥ ||T
k+2||

T k+1|| .

In general, r(T )≥ ||T n||
||T n−1|| for every positive integer n≥ k+1.

Remark 3.1.21. Yamazaki in [?] proved that if T and T ∗ are class A operators, then T is
normal. However, corresponding result is not true for k-quasi-paranormals. In case, the adjoint
of a k-quasi-paranormal operator T is hyponormal, then T turns out to be normal. To see this
we note that if T ∗ is hyponormal, then kerT ∗ ⊆ kerT which implies T is paranormal. Hence
we have the following supposition that: If the adjoint of a k-quasi-paranormal operator T is
paranormal, then the operator T is normal.

Theorem 3.1.22. σ is continuous on the set of all hyponormal operators.

3.2 NUMERICAL RANGES OF ALUTHGE TRANSFORMS.

Remark 3.2.1. T. Yamazaki in [Yam] proved the following theorem that the numerical range
of T̃ is contained in the numerical range of T.

Theorem 3.2.2. Let T ∈ B(H). Then w(T )≥ w(T̃ ).

Corollary 3.2.3. Let T ∈ L(H) and λ ∈ [0,1]. Then, for every complex analytic function f
de�ned in a neighbourhood of σ(T ), W ( f (T̃λ ))⊆W ( f (T )). In particular W (T̃λ )⊆W (T ).

Proof. For every µ ∈ C it holds that || f (T̃λ )−µI|| ≤ || f (T )−µI||. So, using the well

known formula W (T ) = ∩µ∈Cz : |z−λ | ≤ ||T −λ I||.
We have that ( f (T̃λ )) = ∩µ∈Cz : |z−µ ≤ || f (T̃λ )−µI||
⊆ ∩µ∈C|z : |z−µ| ≤ || f (T )−µI||=W f (T )).

Corollary 3.2.4. Let T ∈ B(H). Then the following assertions are equivalent:

(i.) T is spectraloid.

(ii.) w(T ) = w(T̃n) for all natural number n.

Proof. Since ||T || ≥ w(T )≥ r(T ), we have limn→∞ w(T̃n) = r(T ) By previous theorem

we obtain the following inequalities: w(T ) ≥ w(T̃ ) ≥ ·· · ≥ w(T̃n). Hence the proof is

complete.

Theorem 3.2.5. Let T = U |T | be a decomposition. If we can choose U as isometry, then
W (T )⊃W (T̃ ).

To prove this theorem, we first cite the following result:
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Theorem 3.2.6. Let T ∈ B(H). Then W (T ) = ∩µ∈Cλ : |λ −µ| ≤ w(T −µI).

The proof is as follows:

Proof. First, we shall show the following assertion: If S =V |S| is a decomposition such

that V is isometry, then for each λ ∈ C, w(S−λ I) ≤ 1→ w(S̃−λ I) ≤ 1. We have the

following inequalities: ||S̃− zI|| ≤ |||S|V − zI|| 12 ||S− zI|| 12
= ||V ∗(S− zI)V || 12 ||S− zI|| 12 (by V ∗V = I)
≤ ||S− zI|| for all z ∈ C. Assume that w(S− λ I) ≤ 1. Then, we have ||S̃− λ I− zI|| ≤
||S−λ I− zI|| ≤ 1+1+ |z|2

1
2

for all z ∈ C. Hence we obtain w(S̃−λ I)≤ 1 by a previous

theorem. Next, for each µ ∈ C, put S = T
w(T−µI) and λ = µ

w(T−µI) . Then |S| = |T |
w(T−µI)

holds, and S =U |T |
w(T−µI) is a decomposition such that U is isometry, and also S̃ = T̃

w(T−µI) .

Moreover, w(S− λ I) ≤ 1. Then, we obtain w(S̃− λ I) = w(T̃−µI)
w(T−µI) ≤ 1. It is equivalent

to w(T̃ − µI) ≤ w(T − µI) for all µ ∈ C. Hence the proof is complete by a previous

theorem.

Corollary 3.2.7. If T is an n×n matrix, then W (T )⊃W (T̃ ).

Proof. Since T is ann×n matrix, we can choose a unitary matrix U such that T =U |T |.
Since it is in the �nite-dimensional case, W (T ) and W (T̃ ) are both closed, and the proof is

complete by a previous theorem.

Corollary 3.2.8. Let T ∈ B(H) with N(T )⊂ N(T ∗). ThenW (T )⊃W (T̃ )⊃W ( ˜T2)⊃ ...⊃
W (T̃n) hold for all natural number n.

Proof. Since N(T )⊂ N(T ∗), we can choose an isometry U such that T =U |T |. Then

we have W (T )⊃W (T̃ ) by a previous theorem. So we have only to prove N(T̃ )⊂ N(T̃ ∗)
if N(T )⊂ N(T ∗). By the de�nition of Aluthge transformation, N(T )⊂ N(T̃ ) and N(T )⊂
N(T̃ ∗) hold easily. So, we shall show N(T ) ⊃ N(T̃ ). Let x ∈ N(T̃ ). Then by N(|T | 12 ) =
N(T )⊂ N(T ∗) = N(|T ∗| 12 ), we

T̃ x = |T | 12U |T | 12 x = 0→ T x = |T ∗| 12U |T | 12 x = 0.
Hence we obtain N(T̃ )⊂ N(T ), and N(T̃ ) = N(T )⊂ N(T̃ ∗). So the proof is complete by

Theorem 3.2.5.

Remark 3.2.9. For each set X , we write coX for the convex hull of X , especially we write
coσ(T ) for the convex hull of the spectrum of T. Recall that an operator T is said to be
hyponormal and convexoid if T ∗T ≥ T T ∗ andW (T ) = coσ(T ), respectively. It is well known
that every hyponormal operator is convexoid and normaloid, and every convexoid operator is
spectraloid.
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Corollary 3.2.10. Let T be a hyponormal operator. Then for each natural number n, we
have W (T ) =W (T̃ ) = · · ·=W (T̃n) = coσ(T ).

Proof. Since T is hyponormal, N(T ) ⊂ N(T
∗
) holds and T is convexoid. Then we

obtain the following inclusion relations:

coσ(T ) =W (T )⊃W (T̃ )⊃W (T̃2)⊃ ·· · ⊃W (T̃n)⊃ coσ(T̃n) = coσ(T ). Hence the proof

is complete.

Theorem 3.2.11. W (Ã)⊆W (A) for any operator A.

Remark 3.2.12. To prove this theorem, we need another dual notion of the Aluthge transform
de�ned by T. Yamazaki. Let A = V |A| be any polar decomposition of A. The ∗-Aluthge
transform ˜A(∗) of A is the operator |A∗| 12V |A∗| 12 . It is easily seen that ˜A(∗) is again independent
of the choice of V in A. Yamazaki showed in a Theorem in [Yam] that the numerical radii
of Ã and ˜A(∗) are equal. Recall that the numerical radius w(A) of operator A is the quantity
sup|z| : z ∈W (A). The next theorem says that more is true.

Theorem 3.2.13. W (Ã) =W ( ˜A(∗)) for any operator A.

To prove this, we need the following two lemmas.

Lemma 3.2.14. Let A =V |A| be any polar decomposition of A. Then

(a.) A∗ =V ∗|A∗| is a polar decomposition of A∗,

(b.) (Ã∗)∗ = ˜A(∗), and

(c.) ˜A(∗) =V ÃV ∗.

Remark 3.2.15. The assertions of the Lemma 3.2.14 can be proved by delving into the
construction of the polar decomposition and using the properties of V , |A| and |A∗|.

Lemma 3.2.16. If A and B are operators such that A = X
∗
BX for some contraction X , then

W (A) ⊆ (W (B)∪{0})∧. If, in addition, X is a co-isometry (XX∗ = 1), then we also have
W (B)⊆W (A).

Proof. If x is a unit vector with Xx = 0, then 〈Ax,x〉 = 〈X∗BXx,x〉 = 0, which is

in W (B) ∪ {0})∧. On the other hand, if Xx 6= 0, then 〈Ax,x〉 = 〈BXx,Xx〉 = ||Xx||2 ·
〈B( Xx
||Xx||),

Xx
||Xx||〉+(1− ||Xx||2) · 0, which shows that 〈Ax,x〉 is again in (W (B)∪{0})∧.

Hence W (A)⊆ (W (B)∪0)∧. If in addition, X is a co-isometry, then from A = X∗BX we

obtain B = XAX∗. For any unit vector x, we have

〈Bx,x〉= 〈XAX∗x,x〉= 〈AX∗x,X∗x〉. Since X∗x is also a unit vector, this shows that 〈Bx,x〉
is in W (A). Hence W (B)⊆W (A) as asserted.
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We are now ready for the proof of the Theorem 3.2.13.

Proof. Two cases are considered separately here.

(i.) dimkerA≤ dimkerA∗. In this case, the partial isometry V in the polar decomposition

A=V |A| of A can be taken to be an isometry. Since
˜A(∗)=V ÃV ∗ by previous lemma part

(c), we may apply the preceding lemma to obtain W (Ã)⊆W ( ˜A(∗))⊆ (W (Ã)∪{0})∧. It

follows thatW (Ã)⊆W ( ˜A(∗))⊆ (W (Ã)∪{0})∧. If 0 is inW (Ã), then these containments

imply that W (Ã) = W ( ˜A(∗)). On the other hand, if 0 is not in W (Ã), then 0 cannot

be in σ(Ã). Hence Ã = |A| 12V |A| 12 is invertible. This implies the invertibility of |A| 12
and V. Thus V is a unitary operator, and Ã and Ã∗ are unitarily equivalent. Hence we

obviously have

W (Ã) =W ( ˜A(∗)).

(ii.) dimkerA∗ ≤ dimkerA. For this case, we apply (i) to A∗ to obtain W (Ã∗) =W ( ˜A∗(∗)). By

Lemma 3.2.14 part (b), we have (Ã∗)∗ = ˜A(∗)
and ( ˜A∗(∗))∗= Ã. Thus W ( ˜A(∗)) =W (Ã)

as required.

Finally, we come to prove first Theorem 3.2.11.

Proof. Again, we consider two cases separately.

(i.) dimkerA≤ dimkerA∗. Here, for completeness, we give a simpli�ed sketch. As before,

we can choose the partial isometry V in A =V |A| to be an isometry. Then

||Ã− zI|| ≤ |||A|V − zI||
1
2 ||A− zI||

1
2 = ||V ∗(A− zI)V ||

1
2 ||A− zI||

1
2 ≤ ||A− zI|| (3)

for any z ∈ C, where inequality (3.) is a consequence of Heinz inequality (||A 1
2 XB

1
2 || ≤

||AXB|| 12 ||X || 12 for positive operators A and B and an arbitrary operator X . This implies

W (Ã)⊆W (A) since W (A) = ∩λ∈Cz ∈ C : |z−λ | ≤ ||A−λ I||
and similarly for W (Ã).

(ii.) dimkerA∗ ≤ dimkerA. For this case, we apply (i) to A∗ to obtain W (Ã∗) ⊆W (A∗).
Therefore,

W (Ã) =W ( ˜A(∗)) =W ((Ã∗)∗)⊆W (A)
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by Theorem 3.2.13 and Lemma 3.2.14 part (b) and by taking the adjoints. This completes

the proof.

Remark 3.2.17. It remains to be seen whetherW (Ã) =W ( ˜A(∗)) andW (Ã)⊆W (A) (without
the closures) hold for an arbitrary operator A. The former is indeed true when 1≤ dimkerA≤
dimkerA∗ or 1 ≤ dimkerA∗ ≤ dimkerA. This is because, assuming that 1 ≤ dimkerA ≤
dimkerA∗, we have 0 as an eigenvalue of A and hence of Ã, which implies that 0 is in W (Ã)
and hence we obtain W ( ˜A(∗)) ⊆W (Ã) from W ( ˜A(∗)) ⊆ (W (Ã)∪{0})∧ and the equality
W (Ã) =W ( ˜A(∗)) as in the proof of case (i) of Theorem 3.2.13.

Corollary 3.2.18. If T is an n×n matrix, then W (T )⊃W (T̃ ).

Proof. Since T is an n×n matrix, there exists a unitary matrix U such that T =U |T | .
Since it is in the �nite dimensional case, W (T ) and W (T̃ ) are both closed, and the proof is

complete.

Theorem 3.2.19. Suppose that T is an n×n matrix and f (z) is a polynomial in z, then the
inclusion Wq( f (T̃ ))⊂Wq( f (T )), holds for every complex number q with |q| ≤ 1.

Theorem 3.2.20. {Toeplitz-Hausdor� theorem} The numerical range of every bounded linear
operator T ∈ B(H) is convex, that is, W (T ) is convex for all T ∈ B(H).

Theorem 3.2.21. {The Ellipse theorem} If T is a linear transformation on C2, then W (T ) is
an elliptical disc.

Theorem 3.2.22. Let T ∈ B(H) be a normal operator. Then W (T ) =Conv(σ(T )).

Theorem 3.2.23. Let T ∈ B(H). Then σe(T )⊆We(T ).

Theorem 3.2.24. Let T ∈ B(H) be a normal operator on an in�nite dimensional Hilbert
space H. Then We(T ) =Conv(σe(T ).

Lemma 3.2.25. Let H be a complex Hilbert space and B(H) the algebra of all bounded
linear operators on H. Let S ∈ B(H) be posinormal then W (S) is an ellipse whose foci are the
eigenvalues of S.

Proof. Let

S =

 λ1 a

0 λ2


where λ1 and λ2 are eigenvalues of S. Now if λ1 = λ2 = λ , we have

S−λ I =

 λ a

0 λ

−
 λ 0

0 λ

=

 0 a

0 0


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Let x = (x1,x2), then

(S−λ I)x =

 0 a

0 0

 x1

x2

=

 ax2

0

= a

 x2

0


Therefore, ||S−λ I||= sup{||a(x2,0)|| : |x1|2 + |x2|2 = 1}= |a|. Hence the radius is

1
2 |a|.

Therefore the numerical range W (S) = {z : |z| ≤ |a|2 }. It thus follows that W (S) is a circle

with center at λ and radius
|a|
2 . Now if λ1 6= λ2 and a = 0 we have

S =

 λ1 0

0 λ2

 .

If x = (x1,x2), then

Sx =

 λ1 0

0 λ2

 x1

x2

=

 λ1x1

λ2x2

 .

Therefore taking the inner product 〈Sx,x〉 we get

〈Sx,x〉=
(

λ1x1λ2x2

) x1

x2

=
(

λ1x1x1 +λ2x2x2

)
=
(

λ1|x1|2 +λ2|x2|2
)
.

So 〈Sx,x〉= λ1|x1|2+λ2|x2|2. Now letting t = |x1|2, we write the above equation as follows

〈Sx,x〉= tλ1+(1− t)λ2, since |x1|2+ |x2|2 = 1. So W (S) is the set of convex combinations

of λ1 and λ2 and is the segment joining them. If λ1 6= λ2 and a 6= 0 we choose λ such that

it lies between λ1 and λ2. We therefore have

S− λ1 +λ2

2
I =

 λ1+λ2
2 a

0 λ2−λ1
2

 .

In this case, we let z = re−iθ
,

λ1−λ2
2 = re−iθ

and
λ2−λ1

2 =−re−iθ

so,

e−iθ (S− λ1 +λ2

2
) =

 λ1−λ2
2 a

0 λ2−λ1
2

= S′.

Here we see that W (S′) is an ellipse with the center at (0,0) and the minor axis |a|, and

foci at (r,0) and (−r,0). Thus, W (S) is an ellipse with foci at λ1 and λ2 and the major axis

has an inclination of θ with the real axis.
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Lemma 3.2.26. If T ∈ B(H) is posinormal, where H is a complex Hilbert space and B(H)

the algebra of all bounded linear operators on H. Then W (T ) is nonempty.

Proof. Let {xn}∞
n=1 be an orthonormal sequence of vectors in H. For {xn}∞

n=1 to exist in

H then limn→∞〈T xn,xn〉= a. The sequence {〈T xn,xn〉}∞
n=1 is bounded and ||x||. Now, using

T = T ∗ (since all posinormal operators are self adjoint because they are all positive opera-

tors) we have 〈T xn−||T ||xn,T xn−||T ||xn〉= 〈T xn,T xn〉−〈T xn, ||T ||xn〉−〈||T ||xn,T xn〉+
〈||T ||xn, ||T ||xn〉
= ||T xn||2−2||T ||〈T xn,xn〉+ ||T ||2||xn||2
≤ 2||T ||2||xn||2−2||T ||〈T xn,xn〉
= 2||T ||2xn||2−2||T ||〈T xn,xn〉
⇒ 2||T ||2||xn||2−2||T ||2||xn||2 = 0 Therefore, as n→ ∞, the sequence {xn}∞

n=1 converges

weakly to 0 in H such that limn→∞〈T xn,xn〉= a. Thus x is an eigenvector for eigenvalue

||T ||. This implies that W (T ) is non empty.

Theorem 3.2.27. Let H be a complex Hilbert space and B(H) the algebra of all bounded
linear operators on H. Let S ∈ B(H) be posinormal then ||S||=W (S).

Corollary 3.2.28. Let S ∈ B(H) be posinormal then 0 ∈W (S).

Proof. Since S is bounded, then every eigenvalue of S that lies on the boundary of

W (S) is a normal eigenvalue. An eigenvalue λ is said to be normal for an operator

S ∈ B(H) if Ker(S−λ I) = Ker(S∗−λ I). Assume without loss of generality that λ = 0.
Suppose there is a unit vector f for which S f = 0 but S∗ f 6= 0. Let g = S∗ f

||S∗ f || . Because

〈 f ,S∗ f 〉= 〈S f , f 〉= 〈0, f 〉= 0 the pair ( f ,g) is orthonormal in H , and therefore spans a

two dimensional subspace M. It follows that W (S) contains the numerical range of the

compression SM of S to M. It is enough to show that 0 is in the interior of W (SM). Now

the matrix of SM with respect to the orthonormal basis ( f ,g) of M is of the form 0 a

0 ∗

 ,

where a = <SMg, f>. We need to show that a 6= 0, this will establish W (SM) as a non

degenerate elliptical disk with one focus at 0, and therefore complete the proof. Now,

a = 〈SMg, f 〉= 〈PSg, f 〉= 〈Sg, f 〉= 〈g,S∗〉>, where the term on the right, upon recalling

that g = S∗ f
||S∗ f || , is just

〈S∗ f ,S∗ f 〉
||S∗ f || = ||S∗ f || 6= 0. Hence the proof.

Theorem 3.2.29. Let S ∈ B(H) on a complex Hilbert space H be posinormal. Then σp(S)⊆
Wp(S).

Proof. If λ is not a member of Wp(S), then d = dist(λ ,Wp(S)) > 0, (where dist is

the distance function derived from the modulus in C) then λ I− S has an inverse and
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||λ I−S)−1||< 1
d . By de�nition of distance d we have

d ≤ |〈Sx,x〉−λ |, ∀x ∈ H||x|| = 1 This implies, d||x||2 ≤ |〈(S−λ I)x,x〉|, ∀x ∈ H and us-

ing the cauchy-Schwatz inequality, we see that (||S−λ I)x|| ≥ d||x||. Since (<S−λ I) is

bounded below, (λ I−S)−1
exists on R(S−λ I) and is bounded. Moreover ||(S−λ I)−1y|| ≥

d−1||y||, ∀λ ∈R(S−λ I) Hence, there are only two possibilities, that is λ ∈ ρ(S) or λ ∈Rσ(S).

Suppose λ ∈ Rσ(S). Since, R(S−λ I)
⊥
= {RS−λ I}⊥

= ker(S∗−λ I). If λ ∈ Rσ(S), then R(S−λ I)
⊥ 6= {0}, that is, ker(S∗−λ I) 6= {0}. Hence λ

is an eigenvalue of S∗. If x ∈H , ||x||= 1 and is such that S∗x = λx, then Sx = λx for x 6= 0
〈Sx,x〉= 〈x,S∗x〉= 〈x,λx〉= λ 〈x,x〉= λ ||x||2 = λ This implies that λ ∈Wp(S), which is a

contradiction. Hence, if λ is not a member of Wp(S) then λ is not a member of σp(S), this

shows that σp(S)⊆Wp(S). Alternatively, λ ∈Wp(S) implies that there exists a sequence

{xn} of unit vectors in H such that since for such xn

|λ − 〈Sxn,xn〉| = |〈(λ I − S)xn,xn〉| ≤ ||(λ I − S)xn||||xn|| ≤ ||(λ I − S)xn|| → 0 as n→ ∞

Therefore λ = limn→∞〈Sxn,xn〉. It therefore follows that λ ∈Wp(S).
Since |λ |= ||S||= w(S) = sup|λ | : λ ∈ σp(S) So ||S|| ∈ σp(S) implies that ||S|| ∈W p(S),
hence σp(S)⊆Wp(S).

Theorem 3.2.30. Let S be posinormal, then We(S) = conv(σe(S)) if and only if ∀λ ∈
conv(σe(S)), ||Rλ (S)|| ≤ (d(λ ,conv(σe(S))), where d = dist(λ ,We(S)) > 0, (dist is the
distance function derived from the modulus in C.)

Proof. We apply the transformation S→αS+β and suppose that [λ < 0, 0∈ convσe(S)⊂
{z ∈ C : Rez0}], ∀λ < 0. Let We(S) = conv(σe(S)). Now for all x ∈ H , we have ||(S−
λ )x||2 = ||Sx||2−λ (Sx,x)+(x,Sx)]+λ 2||x||2≥ λ 2||x||2 Since (S−λ ) is invertible, we have

||x||2 ≥ λ 2||(S−λ )−1x||2, ∀x ∈H. Hence |λ |−1 ≥ ||(S−λ )−1x||, or |λ |= d(λ ,convσ(S)).
Conversely, suppose that ||Rλ (S)|| ≤ (d(λ ,Convσe(S))). We need to prove that We(S) =
conv(σe(S)). It su�ces to show that if λ is not in the convex hull of σe(S), then also λ

is not in We(S). By applying the transformation S→ αS+β we can assume that [λ < 0,

0 ∈ convσe(S) ⊂ {z ∈ C : Rez ≥ 0}], ∀λ < 0. The estimate dist(c,Convσe(S)) ≥ |c| im-

plies ||(S− c)−1|| ≤ |c|−1
, so c2||x||2 ≤ ((S− c)x|(S− c)x). Let c tend to in�nity, there-

fore (Sx|x) + (x|Sx) ≥ 0. Hence, We(S) ⊂ z ∈ C : Rez≥ 0, that is, λ is not in We(S) as

desired.

Theorem 3.2.31. Let S be a posinormal operator on H. Then σe(S)⊆We(S).

Proof. Let σe(S) ∈We(S) and let B = λ IH − S, ∀S ∈ B(H). Here we consider three

cases: the range of B is not closed, the kernel of B is in�nite dimensional, or the kernel of

B∗ is in�nite dimensional. If the range of B is not closed, then B is not bounded below on

the orthogonal complement of ker(B). Let X = ker(B)⊥. Then there exists a unit vector

x1 ∈ X such that ||Bx1|| ≤ 1. Then, since B is not bounded below, there must exist a unit

vector x2 ∈ X orthogonal to x1 such that ||Bx2|| ≤ 1
2 . Repeating this process gives us an
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orthonormal sequence {xn}n≥1 such that limn→∞||Bxn||= 0. Thus λ ∈ σe(S). If the kernel

of B is in�nite dimensional, we can easily construct an orthonormal sequence {xn}n≥1

such that 〈Bxn,xn〉= 0 for all n. In the same way if the kernel of B∗ is in�nite dimensional

then λ ∈We(S∗). We know that We(S∗) = WeA therefore λ ∈WeS hence λ ∈We(S) and

thus σe(S)⊆We(S).
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4 Chapter 4

In this chapter, general examples touching on linear operators and Aluthge transforms
were discussed. Some applications of Aluthge transforms and linear operators in general
were looked at. Lastly, conclusions about this project were outlined.

4.1 EXAMPLES ON LINEAR OPERATORS.

Example 4.1.1. Let

A =

 4 7

2 6


Then

A−1 =

 0.6 −0.7

−0.2 0.4


Example 4.1.2. The following is an example of a normal operator.
Let

T =

 1 0

0 −1


Clearly T T ∗ = T ∗T .

Example 4.1.3. Let

T =


1 2 −1

−2 0 1

1 −1 0


Then

T−1 =


1 1 2

1 1 1

2 3 4


Example 4.1.4. If the linear operator T : R2 → R2 maps each vector on the x-axis, we
can construct a projection operator or a linear transformation P as follows: P(U) = W =

(w1,w2) = (x+0y,0x+0y) = (x,0)

P =

 1 0

0 0


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P maps every vector in R2 to its orthogonal projection in the x-axis.

Example 4.1.5. An example of a quasinilpotent operator which is not nilpotent.
T : l2→ l2

T (x1,x2,x3, · · ·) 7→ (0,x1,
x2
2 ,

x3
3 , · · ·).

Example 4.1.6. If the linear operator T : R3→ R3 maps each vector on the xy-plane, we
can construct a projection operator or a linear transformation P as follows: P(U) = W =

(w1,w2,w3) = (x+0y+0z,0x+ y+0z,0x+0y+0z) = (x,y,0)

P =


1 0 0

0 1 0

0 0 0


P maps every vector in R3 to its orthogonal projection in the xy-plane.

Example 4.1.7.

A =
1
2

 1+ i 1− i

1− i 1+ i


A is unitary since A∗ = A−1.

Example 4.1.8.

A =
1√
2

 1 1

−1 1


A is unitary since A∗ = A−1.

Example 4.1.9. Let T ∈ L(H), T =U |T | a polar decomposition of T , and λ ∈ (0,1). Then:

1. T̃λ = T if and only if U |T |= |T |U.

2. If T 2 = T then T̃λ is the orthogonal projection onto R(T ∗).

Example 4.1.10. Consider the operator d/dx. This operator is linear since:
(d/dx)[ f (x)+g(x)] = (d/dx) f (x)+(d/dx)g(x)
(d/dx)[c f (x)] = c(d/dx) f (x) ∀ f (x),g(x) in some space H and some scalar c. Generally,
given a function f = x2 + x then d f/dx = d/dx(x2 + x) = 2x.

Example 4.1.11. Consider the operator T =
∫ 1

0 f (x) where f (x) = x2 +2−1. Then T (x2 +

2−1) =
∫ 1

0 (x
2 +2−1),0≤ x≤ 1 is a linear operator T : V →V.

The following is an example of a square-normal operator which is not normal:
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Example 4.1.12.

A =

 i 0

i −i

 ,A∗ =

 −i −i

0 i


Since

A2 =

 −1 0

0 −1


and

(A∗)
2
=

 −1 0

0 −1


,

A2(A∗)2 =

 −1 0

0 −1


and

(A∗)2A2 =

 −1 0

0 −1


So A is a square-normal operator. But

AA∗ =

 1 1

1 2


and

A∗A =

 2 −1

−1 1


So A is not normal.

Example 4.1.13.

For vectors x,y ∈ H , let x⊗ y denote the operator de�ned as z ∈ H , x⊗ y(z) = 〈z,y〉x. An
elementary calculation gives: ∆λ (x⊗ y) = ∆(x⊗ y) = 〈x,y〉

||y||2 y⊗ y, for y 6= 0.

Example 4.1.14.

T =

 1 2

−4 −8

 , T̃ =

 −1.4 −2.8

−2.8 −5.6


The following are examples of self adjoint operators.
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Example 4.1.15.

T =

 1 2

2 1

= T ∗

Example 4.1.16.

T =


1 2 3

2 1 3

3 3 3

= T ∗

Example 4.1.17.

T =

 1 0

1 1


in B(C) with α =

√
(3−
√

5)/2 and β =
√

(3+
√

5)/2. is an example of (α,β )-normal
operator which is neither normal nor hyponormal.

Example 4.1.18.

T−1 =

 1 0

−1 1


is also (α,β )-normal.

Example 4.1.19.

T =

 i 2

0 −i


is 2-normal but not normal.

Example 4.1.20. Let U be unilateral shift on L2. That is U(α0,α1, · · ·) = (0,α0,α1, · · ·).
Then U is subnormal but for any n ∈ N, Un is not normal.

Example 4.1.21. Let

A =

 1 0

0 0

 .

We use the standard basis in R2. Let

M1 = span

 1

0

.
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Then AM1 ⊆M1. Therefore M1 is invariant under A. Let

M2 = span

 0

1


Then AM2 ⊆M2 and therefore M2 is also invariant under A.

Example 4.1.22. Let

T =


1 0 0

0 1 0

0 0 0

 .

We use the standard basis in R3. Let

M1 = span


1

0

0

,

M2 = span


0

1

0


and

M3 = span


0

0

1

.

Then T M1 ⊆M1, T M2 ⊆M2, and T M3 ⊆M3. Therefore M1,M2 and M3 are T -invariant or
invariant under T.

Example 4.1.23. Let

T =

 1 2

−4 −8


Then

T̃ =

 −1.4 −2.8

−2.8 −5.6


Example 4.1.24. Let

A =

 −1 −2

2 1


Then σ(A) = {−

√
3i,
√

3i} and r(A) =
√

3
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Example 4.1.25. Let

T =

 1 1

0 −1


Then σ(T ) = {−1,1}

Example 4.1.26. Let

T =

 i 2

0 −i

 .

We want to show by direct decomposition that

T 2T ∗ =

 i 0

−2 −i

= T ∗T 2

hence T is 2-normal operators. Again we show that;

(T ∗)2T 4 =

 −1 0

0 −1

= (T ∗T 2)2

so T is 2- power class (Q) operator.

Example 4.1.27. Consider the operator

T =

 i 2

0 −i

 .

So

T ∗ =

 −i 0

2 i

 .

We see that

(T ∗)2T 4 =

 −1 0

0 −1

= (T ∗T 2)2

holds and hence T is 2- power class (Q) operator. Again, we see that

T 2T ∗T 2 =

 −i 0

2 i

= T ∗T 4

and therefore T is a 2- power quasi 2- normal operator.
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Example 4.1.28. Let T be the unilateral shift on l2 of square summable sequences. For any
x ∈ l2, x = (x1,x2,x3, · · ·), with ||x||= 1 and Σ∞

i=1|xi|2 < ∞, the unilateral right shift operator
T : l1→ l2 is given by
T x = (0,x1,x2,x3, · · ·). Now,

〈T x,x〉= 〈


0

x1

x2

 ,


x1

x2

x3

〉= 0(x1)+ x1x2 + x2x3 + · · ·= x1x2 + x2x3 + · · ·

Thus, (|x1| − |x2|)2 ≥ 0 by the arithmetic-geometric mean inequality implies that |x1|2 +
|x2|2 ≥ 2(|x1||x2|).Similarly, |x2|2+ |x3|2 ≥ 2(|x2||x3|), also |x3|2+ |x4|2 ≥ 2(|x3||x4|) and so
on. Therefore adding all the terms on the left and similarly on the right of the above equations,
we obtain |x1|2 +2|x2|2 +2|x3|2 +2|x4|2 + · · · ≥ 2|x1||x2|+2|x2||x3|+2|x3||x4|+ · · ·
We therefore have |〈T x,x〉| ≤ |x1x2|+ |x2x3|+ · · ·= |x1||x2|+ |x2||x3|+ · · ·
= |x1||x2|+ |x2||x3|+ · · ·
= 1

2(2|x1||x2|+2|x2||x3|+ · · ·)
Now since ||x||= |x1|2 + |x2|2 + · · ·= 1,
we have |〈T x,x〉|= 1

2 [|x1|2 +2|x2|2 +2|x3|2 + · · · ]
= 1

2 [(|x
2
1|+ |x2|2 + |x3|2 + · · ·)+(|x2|2 + |x3|2 + · · ·)]

= 1
2 [(1+ |x2|2 + |x3|2 + · · ·)

= 1
2 [1+(1−|x1|2)]

= 1
2 [2−|x1|2]

If |x1| 6= 0 we see that |〈T x,x〉| ≤ 1. For if |x1|= 0 and x contains a �nite number of non zero
entries, we have |〈T x,x〉|= 1 if we consider a minimum natural number n such that xn 6= 0.
Therefore, W (T ) is an open disc of radius < 1.

4.2 EXAMPLES ON ALUTHGE TRANSFORMS.

Remark 4.2.1. Ken Dykema and Hanne Schultz proved that the Aluthge transformation
map T −→ T̃ is continuous on L(H). This has been proved in the following result.

Theorem 4.2.2. The Aluthge transform map T → T̃ is (||.||, ||.||)–continuous on B(H)

Proof. Let T ∈ B(H) and take ε ∈ (0,1]. Let R = ||T ||+1 and let p and q be polynomi-

als for these values of R and ε. Let δ ∈ (0,1] be such that ||T −S||< δ implies that

||p(T ∗T )T q(T ∗T )− p(S∗S)Sq(S∗S)||< ε. Then ||T −S||< δ implies that

||T̃− S̃||< T̃− p(T ∗T )T q(T ∗T )||+ ||S̃− p(S∗S)Sq(S∗S)||+ε < 3ε , where the last inequal-

ity is by choice of p and q. Hence the proof.

Example 4.2.3. Examples of Aluthge transformation ∆:
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(i.) Let T be mapped to T̃ by ∆(T )→ T̃ for T and T̃ as follows:

T =

 3 2

0 3

andT̃ =

 2.7 1.8487

−0.0487 3.3


The map ∆ is given by the matrix.

∆ =

 0.9 0.0162

−0.0162 1.1108


(ii.) Let ∆(A)→ Ã for A and Ã as follows:

A =

 1 2

−4 −8

 , Ã =

 −1.4 −2.8

−2.8 −5.6


The map ∆ is given by the matrix.

∆ =

 −1.4 0

0 0.7


Here the map ∆ is not a unique solution since A has no inverse.

Example 4.2.4. Here we show how to compute Aluthge transform of a 2 by 2 matrix.
Let

T =

 3 2

0 3

 ,T ∗ =

 3 0

2 3


so we have

T ∗T =

 9 6

6 13


From de�nition of Aluthge transform T̃ , |T | = (T ∗T )

1
2 . To obtain |T | we �rst obtain the

eigenvalues of T ∗T . The eigenvalues are: λ1 = 17.3246 and λ2 = 4.6755. Two equations
with two unknowns are obtained α and β .

(λ1)
1
2 = α(λ1)+β = 4.1623 (4)

(λ2)
1
2 = α(λ2)+β = 2.1623 (5)
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α and β are solved from the following equations:

4.1623 = 17.3246α +β (6)

2.1623 = 4.6755α +β (7)

α = 0.1518 and β = 1.4231. So

(T ∗T )
1
2 = αT ∗T +β I =

 2.8460 0.9486

0.9486 3.4784

= |T |

We can �nd U for T =U |T | since we have both T and |T |.

U =

 0.9486 0.3162

−0.3162 0.9486

 .

U is a unitary operator. It can be seen that U∗U =U−1U = I.
It then remains to show the Aluthge transform which is given by T̃ = |T | 12U |T | 12 . Here |T | 12
is solved same way (T ∗T )

1
2 was solved above.

The eigenvalues of |T | are λ1 = 4.1621 and λ2 = 2.1623.

(λ1)
1
2 = α(λ1)+β = 2.0401 (8)

(λ2)
1
2 = α(λ2)+β = 1.4705 (9)

α and β are obtained from the two equations above. α = 0.2848 and β = 0.8546
Now,

|T |
1
2 = α|T |+β I =

 1.6651 0.2702

0.2702 1.8452


Therefore

T̃ = |T |
1
2U |T |

1
2 =

 2.6995 1.8482

−0.0486 3.2990


Example 4.2.5. Let

T =

 1 2

0 2

 ,T ∗ =

 1 0

2 2


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so we have

T ∗T =

 1 2

2 8


It is known that |T |= (T ∗T )

1
2 . To obtain |T | the eigenvalues of T ∗T are �rst obtained. The

eigenvalues are: λ1 = 8.5312 and λ2 = 0.4689. There are two equations with two unknowns
α and β to be solved.

(λ1)
1
2 = α(λ1)+β = 2.9208 (10)

(λ2)
1
2 = α(λ2)+β = 0.6848 (11)

α and β are obtained from the following equations.

2.9208 = 8.5312α +β (12)

0.6848 = 0.4689α +β (13)

α = 0.2773 and β = 0.5548. So

(T ∗T )
1
2 = αT ∗T +β I =

 0.8321 0.5546

0.5546 2.7732

= |T |

U can be solved for T =U |T | since both T and |T | are known.

U =

 0.8321 0.5546

−0.5546 0.8321

 .

U is a unitary operator. It can be seen that U∗U =U−1U = I.
It then remains to show the Aluthge transform which is given by T̃ = |T | 12U |T | 12 . |T | 12 is
solved the same way (T ∗T )

1
2 was solved above.

The eigenvalues of |T | are λ1 = 2.7732 and λ2 = 0.8321.

(λ1)
1
2 = α(λ1)+β = 1.6653 (14)

(λ2)
1
2 = α(λ2)+β = 0.9122 (15)
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α and β are obtained from the two equations above. α = 0.3880 and β = 0.5893
Now

|T |
1
2 = α|T |+β I =

 0.9122 0.2152

0.2152 1.6653


Therefore

T̃ = |T |
1
2U |T |

1
2 =

 0.7309 1.2784

−0.3553 2.3461


Example 4.2.6. A 3 by 3 case can be done as in the case for a 2 by 2 matrix in Example
4.2.4. Let

T =


0 0 5
1
2

√
3

2 0
√

3
2

−1
2 0

 ,T ∗ =


0 1

2

√
3

2

0
√

3
2

−1
2

5 0 0


so we have

T ∗T =


25 0 0

0 1 0

0 0 25


It is known that |T | = (T ∗T )

1
2 . To obtain |T | the eigenvalues of T ∗T are �rst obtained.

The eigenvalues are: λ1 = 8.5312 and λ2 = 0.4689. Three equations are obtained with two
unknowns α and β .

(λ1)
1
2 = α(λ1)+β = 5 (16)

(λ2)
1
2 = α(λ2)+β = 5 (17)

(λ3)
1
2 = α(λ3)+β = 1 (18)

α and β can then be solved for from the following equations.

5 = 25α +β (19)

5 = 25α +β (20)

1 = α +β (21)
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α = 6 and β =−5.
So

(T ∗T )
1
2 = αT ∗T +β I =


145 0 0

0 20 0

0 0 145

= |T |

It can then be solved for U from T =U |T | since both T and |T | are known.

U =


0 0 1
1
2

√
3

2 0
√

3
2

−1
2 0

 .

U is a unitary operator. It can be seen that U∗U =U−1U = I.
It then remains to show the Aluthge transform given by T̃ = |T | 12U |T | 12 . |T | 12 can then be
solved for as it was solved for (T ∗T )

1
2 above.

The eigenvalues of |T | are λ1 = 1, λ2 = 5 and λ3 = 1.

(λ1)
1
2 = α(λ1)+β = 1 (22)

(λ2)
1
2 = α(λ2)+β =

√
5 (23)

(λ3)
1
2 = α(λ3)+β = 1 (24)

α and β are solved for from the two equations above. α = 0.3090 and β = 0.6910
Now

|T |
1
2 = α|T |+β I =


1 0 0

0 1 0

0 0
√

5


Therefore

T̃ = |T |
1
2U |T |

1
2 =


0 0

√
5

1
2

√
3

2 0
√

15
2

−
√

5
2 0



4.3 SOME APPLICATIONS OF ALUTHGE TRANSFORMS AND
LINEAR OPERATORS.

Hilbert spaces are fine, that is every operator in them has a unique adjoint. This makes
them a preference in this project compared to other spaces. Any linear operator T acting
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on an Hilbert space H its Aluthge transform T̃ is another linear operator on H. It is known
that T̃ preserves the spectral properties of T . T̃ has a non trivial closed invariant subspace
if and only if T has. For T normal, the spectral radius of T̃ and T are equal.

4.4 CONCLUSIONS.

In Chapter 1 we have managed to define various classes of operators; for instance: nor-
mal, hyponormal and w-hyponormal operators. See definitions 1.1.36, 1.1.40 and 1.1.72
respectively. We have also captured notations used in the entire write in Chapter 1; see
1.2. In Chapter 1 we have also managed to capture series of inclusions of di�erent classes
of operators notably 1.3.1.

In Chapter 2 we have managed to discuss Aluthge transform of di�erent classes of opera-
tors. Corollary 2.1.2 gives a proof that if an operator T̃ is normal then a w-hyponormal
operator T is also normal. We have also discussed generalized aluthge transform in Chap-
ter 2. In Lemma 2.2.16 we have stated that the approximate spectrum of T is equal to that
of generalized aluthge transform of T (t) = |T |tU |T |1−t of T , that is σa(T ) = σa(T (t)) for
0≤ t < 1. However, this does not hold for t = 1. We have also discussed iterated aluthge
transform in the same chapter. Remark 2.3.2 shows an interesting formula established
by T. Yamazaki [Yam] for the spectral radius limn→∞||T̃ n

λ
|| = r(T ) where T̃ n

λ
is the n-th

iterate of T̃λ . We have also discussed powers of aluthge transform as well in Chapter 3.
We have a result 2.4.3 that says if T is w-hyponormal operator which is invertible, then
T̃ kn and T̃ k

n are also w-hyponormal operators which are invertible and they are equal from
the fact that T is an invertible operator.

In Chapter 3 we have managed to discuss spectral properties of di�erent classes of
operators and numerical ranges of aluthge transforms. Lemma 3.1.4 and theorem 3.1.6
show that the spectral properties of an operator are preserved by the generalized aluthge
transform and aluthge transform respectively.

In this Chapter we have managed to give examples on linear operators and Aluthge
transforms. We have also managed to give some applications of Aluthge transforms
and linear operators in general. Examples 4.2.4 and 4.2.5 show how to compute aluthge
transforms of a 2 by 2 and a 3 by 3 matrix respectively.
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