

# **UNIVERSITY OF NAIROBI**

# BIOGEOCHEMICAL PROXIES OF ENVIRONMENTAL AND CLIMATE CHANGE ON MOUNT KENYA

by

**Christine Atieno Omuombo** 

I80/90241/2013

A Thesis Submitted for Examination in Fulfilment of the Requirements for Award of the Degree of Doctor of Philosophy in Geology of the University of Nairobi.

2020

### **DECLARATION**

- a) I understand what Plagiarism is and I am aware of the University's policy in this regard.
- b) I declare that this Thesis is my original work and has not been submitted elsewhere for examination, award of a degree or publication. Where other people's work, or my own work has been used, this has properly been acknowledged and referenced in accordance with the University of Nairobi's requirements.
- c) I have not sought or used the services of any professional agencies to produce this work.
- d) I have not allowed, and shall not allow anyone to copy my work with the intention of passing it off as his/her own work.
- e) I understand that any false claim in respect of this work shall result in disciplinary action, in accordance with University Plagiarism Policy.

Signature ...... Date .....

Christine Omuombo I80/90241/2013 Department of Geology University of Nairobi

Signature

Date

This thesis is submitted for examination with our approval as research supervisors:

|                                                                                                                                           | Signature | Date |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
| Prof. Daniel Olago,<br>Department of Geology,<br>University of Nairobi,<br>P.O Box 30197 – 00100,<br>Nairobi, Kenya<br>dolago@uonbi.ac.ke |           |      |
|                                                                                                                                           |           |      |
| Prof. David Williamson                                                                                                                    |           |      |
| Représentant de l'IRD en                                                                                                                  |           |      |
| Afrique de l'Est IRD                                                                                                                      |           |      |
| c/o ICRAF United Nations avenue,                                                                                                          |           |      |
| P.O. Box 30677-00100 Nairobi Kenya                                                                                                        |           |      |
| david.williamson@ird.fr                                                                                                                   |           |      |

### ACKNOWLEDGEMENTS

It is with a sigh of relief that I have finally reached the end, navigating through this chapter of my life over the last couple of years has taken a village to see me through, it is therefore only proper to accord them my gratitude. The biggest thank you is to my project supervisors Prof. Daniel Olago (University of Nairobi) and Prof. David Williamson (IRD). I am indebted to you for all the support throughout my research, for the long drives to Mt. Kenya where we discussed anything and everything, the support and guidance provided throughout the field campaigns, for all the meetings we have had and for all the opportunities you have given me. It was a privilege to be your Ph.D. student.

A special thanks must also go to Prof. Bruno Turcq (IRD - Bondy) for the warm welcome to his lab, lovely lunches and Portuguese conversations. The support provided by your team at the ALYSES lab in Bondy made my laboratory work straightforward.

To Dr. Arnaud Huguet (UPMC - METIS) who welcomed and trained me in his laboratory on the techniques of lipid biomarker extraction and analyses, thank you for invaluable help and forcing me to take lunch breaks and early evening breaks from the lab. I think I could have lived in the laboratory were it not for the strict protocols.

To Dr. Pierre-Etienne Mathé (CEREGE), your hospitality during my visits and support provided during the magnetic susceptibility studies at your lab was invaluable. To Dr. Sylvie Derenne and Dr. Anne-Marie Lézine who ensured that I was assigned the support staff necessary for the completion of this work. To Patricia Turcq, Sandrine Caquineau, Magloire Mandeng-Yogo, Hugues Boucher, Florence Le Cornec, Fethiye Cetin and Thierry Pilorge and Mercedes Mendez who provided technical assistance during the lab work at the ALYSES platform facility at the Institut de Recherche pour le Développement (IRD) in Bondy. To Christelle Anquetil and Sarah Coffinet for their assistance during lab work at the METIS lab in UPMC; you made sure that I was not lost in a new lab. To Francois Demory, your training and assistance during the magnetic susceptibility analysis at CEREGE was invaluable.

My field assistants Marcel Hale and Stephen Warui had it not been for your support to carry the field equipment to the various sites, I do not know how all this would have been possible. To fellow Ph.D. students at UPMC/IRD - Nicolas Duprey, Luciane Moreira, Douglas Lessa, Keila Aniceto and Gabriel Martins, you kept me smiling and discussed with enthusiasm our stay in Paris over dinner and drinks, you were my family away from Home. To Dr. Lydia Olaka your constant encouragement, support and advice kept me going. To Brenda and Patricia thank you for taking time to read gibberish and make sense of my thesis through your proofreading.

Much of this work would have not been possible without the financial support received through L'Agence Inter-établissements de Recherche pour le Developpement (AIRD) and Campus France through the French Embassy in Nairobi. A special thank you to Mme. Felicite Metonou, Sandrine Lerosier, Smahane Hadouche, Sarah-Ayito Nguema and Severine Fogel-Verton who handled my docket at these organizations at various times.

To my husband, daughter and nanny your patience and support especially when I had to work late in the night probably not understanding what it is I am actually doing has been invaluable. I am looking forward to the next chapter and what it holds.

### **ABSTRACT**

The three crater lakes from Mount Kenya (Nkunga, Sacred and Rutundu) were studied to infer Late Holocene climate and environmental changes. These crater lakes are small closed lake basins with well-defined catchments that are sensitive to seasonal, inter-annual and long-term fluctuations. Consequently, they are promising archives for high-resolution reconstruction of climate and environmental change in Kenya. Already published sedimentary records on the palaeoclimatic and palaeoenvironmental history of east Africa show that the region exhibits variability at various timescales, but matching them across space and time has been problematic either because the records were of low resolution or because the chronology has been too coarse. Consequently, the aim of this study was to elucidate the Late Holocene history of climate and environmental changes on Mount Kenya using multi-proxy palaeo-indicators in soil and lake sediments. By using a multi-proxy suite of indicators, coupled with a good chronology based on radiocarbon dating, it was possible to capture a diverse array of climatic and environmental changes that may not be apparent from one or a limited number of the traditionally used indicators, such as pollen. The multi-proxy analysis that was carried out on the Mount Kenya soils and lake sediments comprised traditional sedimentological (XRD, XRF and X<sub>lf</sub>) and relatively novel organic geochemical analyses (%C, %N,  $\delta^{13}$ C,  $\delta^{15}$ N, n-alkanes and GDGT). The occurrence and timing of different events were established by AMS <sup>14</sup>C dating of the cores. From these, it was possible to tease out a high-resolution record that reflects both local and regional changes, thus capturing also the spatial heterogeneity that has been observed in the different east African lake records. The results from our crater lakes cover the last 4770 cal yr. BP to present. There are significant changes in lake ecosystems and hydrology that have occurred during the Late Holocene, which are coincident with large sediment and organic matter influx to the lakes. At the millennial scale, a wet early Holocene followed by a drier mid to late Holocene is observed. The Holocene is punctuated by major dry spells separated by abrupt transitions to wet periods. During the Late Holocene two key dry spells at ca. 4200 and 2800 cal yr. BP occur in the shallow lake phases at lakes Rutundu and Sacred. There is also evidence that describes a wet early Little Ice Age (at Lakes Nkunga and Sacred) followed by drier conditions during the late phase of the Little Ice Age (Lake Nkunga). The multiproxy approach has therefore also allowed the identification of local catchment-scale effects on the individual lakes in addition to the observed regional climate effects, reflecting their sensitivity to climate perturbations and related localised environmental responses.

Keywords: Late Holocene, Mount Kenya, Little Ice Age, Paleo-indicators

## **TABLE OF CONTENTS**

| DECLA        | RATION                                                                 | i    |
|--------------|------------------------------------------------------------------------|------|
| ACKNO        | OWLEDGEMENTS                                                           | ii   |
|              | ACT                                                                    |      |
| TABLE        | OF CONTENTS                                                            | vi   |
| LIST O       | F FIGURES                                                              | viii |
|              | F TABLES                                                               |      |
| LIST O       | F ABBREVIATIONS                                                        | xiii |
| 1            | INTRODUCTION                                                           | . 14 |
| 1.1          | INTRODUCTION                                                           |      |
| 1.2          | STATEMENT OF THE PROBLEM AND THESIS RATIONALE                          | . 15 |
| 1.3          | OBJECTIVES                                                             |      |
| 1.4          | JUSTIFICATION AND SIGNIFICANCE OF THE STUDY                            |      |
| 1.5          | LIMITATIONS OF THE STUDY                                               | . 18 |
| 1.6          | LAYOUT OF THE THESIS                                                   |      |
| 2            | STUDY SITE DESCRIPTIONS AND LITERATURE REVIEW                          |      |
| 2.1          | INTRODUCTION                                                           |      |
| 2.2          | GENERAL CONTEXT OF THE STUDY AREA                                      |      |
| 2.2.1        | Geologic Setting of Mount Kenya                                        |      |
| 2.2.2        | Topography and Characteristics of the Study Lakes                      |      |
| 2.2.3        | Modern Day Climate and Vegetation of the Study Area                    |      |
| 2.2.4        | Soils of the Mt. Kenya Area                                            | . 33 |
| 2.3          | THE UTILITY OF MULTIPROXY DATASETS IN PALAEOENVIRONMENTAL              |      |
|              | NSTRUCTION                                                             |      |
| 2.3.1        | Crater Lakes and Lake Sedimentary Records in Mt. Kenya                 |      |
| 2.3.2        | Holocene Multiproxy Datasets from the Crater Lakes of Mt. Kenya        |      |
| 2.3.3        | Overview of the Late Quaternary in East Africa from Multiproxy Records |      |
| 2.4          | HUMAN IMPACT ON ECOSYSTEMS DURING THE LATE HOLOCENE IN EAST AFRICA     |      |
| 3            | METHODOLOGY                                                            |      |
| 3.1          | METHODOLOGY                                                            |      |
| 3.1.1        | Soil Sample Collection (Surface and Subsurface Samples)                |      |
| 3.1.2        | Lake Sediment Sample Collection                                        |      |
| 3.1.3        | Physical Parameters                                                    |      |
| 3.1.4        | Grain Size Analysis of Soil Samples                                    |      |
| 3.1.5        | Radiocarbon Chronology                                                 |      |
| 3.1.6        | Mineral Magnetic Measurements                                          |      |
| 3.1.7        | X-Ray Fluorescence (XRF) Analyses                                      |      |
| 3.1.8        | X-Ray Diffraction (XRD) Analyses                                       |      |
| 3.1.9        | Elemental Carbon and Nitrogen and Stable Isotopes Analysis             |      |
| 3.1.10       | Lipid Biomarker Analyses                                               |      |
| 3.1.11       | Data Processing and Analyses.                                          |      |
| 4            | RESULTS AND DISCUSSION                                                 |      |
| 4.1          | INTRODUCTION                                                           |      |
| 4.2          | THE SOILS IN THE STUDY AREA.                                           |      |
| 4.2.1        | Characteristics of the Soils and Rocks from Nkunga Area                |      |
| 4.2.2        | Characteristics of the Soils from Sacred Lake Area                     |      |
| 4.2.3        | Characteristics of Soils from the Transect                             |      |
| 4.2.4<br>4.3 | Synthesis of the Characteristics of the Surface and Subsurface Soils   |      |
|              | LAKE NKTINGA NEDIMENTS                                                 | 11/  |

| 4.3.1 | Bulk Sediment Parameters                                            | 117 |
|-------|---------------------------------------------------------------------|-----|
| 4.3.2 | Inorganic Geochemistry of Lake Nkunga                               | 125 |
| 4.3.3 | Organic Geochemistry and Stable Isotopes                            | 128 |
| 4.3.4 | Synthesis of Lake Nkunga Proxy data                                 | 135 |
| 4.4   | SACRED LAKE SEDIMENTS                                               | 142 |
| 4.4.1 | Bulk Sediment Parameters                                            | 142 |
| 4.4.2 | Inorganic Geochemistry of Sacred Lake                               | 149 |
| 4.4.3 | Organic Geochemistry                                                | 151 |
| 4.4.4 | Synthesis of Sacred Lake Proxies                                    | 158 |
| 4.5   | LAKE RUTUNDU SEDIMENTS                                              | 165 |
| 4.5.1 | Bulk Sediment Parameters                                            | 165 |
| 4.5.2 | Inorganic Geochemistry of Lake Rutundu                              | 169 |
| 4.5.3 | Organic Geochemistry of Lake Rutundu                                | 172 |
| 4.5.4 | Synthesis of Lake Rutundu Proxies                                   | 178 |
| 4.6   | DISCUSSION                                                          | 182 |
| 4.6.1 | Late Holocene Signal Coherency among the Mt. Kenya lakes            | 182 |
| 4.6.2 | The Period 4470 – 3280 cal yr. BP (LR1, LR2, SLK1, SLK2)            | 184 |
| 4.6.3 | The Period 3280 - 2500 cal yr. BP (LR3, LR4)                        | 185 |
| 4.6.4 | The Period 2500 – 2000 cal yr. BP (LR4)                             | 187 |
|       | The Period 2000 cal yr. BP to Present (LR4, SLK3, SLK4, LNK1, LNK2, |     |
| LNK3, | LNK4)                                                               | 189 |
| 5     | CONCLUSIONS AND RECOMMENDATIONS                                     | 194 |
| 5.1   | CONCLUSIONS                                                         | 194 |
| 5.2   | RECOMMENDATIONS                                                     | 196 |
| 6     | REFERENCES                                                          | 198 |
| 7     | APPENDIX                                                            | 212 |

## **LIST OF FIGURES**

| Figure 1-1: Mechanisms and modes of studying environmental changes over different timescales (redrawn and modified from Roberts 1998). Palaeoenvironmental reconstruction is reliable over the long-term to discern |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| patterns of environmental changes especially where documentary records are not available. The reliability                                                                                                           |
| of the documentary records has improved from Mid to Late Holocene whereas present day environmental                                                                                                                 |
| changes are in most instances observed and/or simulated to provide comprehensive information on the environmental change witnessed. 15                                                                              |
| Figure 2-1: A generalized geological map showing the distribution of the Mount Kenya suite (modified after                                                                                                          |
| Olago et al. 2000).                                                                                                                                                                                                 |
| Figure 2-2: Map displaying the location of the study area in the African continent and in Central Kenya. The lakes                                                                                                  |
| that dot the north eastern slopes of the mountain where the current study was carried out at Lakes Nkunga,                                                                                                          |
| Sacred and Rutundu.                                                                                                                                                                                                 |
| Figure 2-3: Generalized map of the physiographic and drainage features present in the study area. The several                                                                                                       |
| rivers and their tributaries present display a radial pattern from the summit of the mountain to the foothills.                                                                                                     |
|                                                                                                                                                                                                                     |
| Figure 2-4: Profile along the north eastern slopes of Mount Kenya showing the selected sampling transect from                                                                                                       |
| the hill slope at Lake Nkunga to Sacred Lake to Lake Rutundu                                                                                                                                                        |
| Figure 2-5: Overview of Lake Nkunga (a) generalized view of Lake Nkunga showing the crater wall surrounding                                                                                                         |
| the shallow lake at the edge of the montane forest (b) shows the open water area on the lake and (c) presence                                                                                                       |
| of reed swamp and floating mats that restrict access to the centre of the lake                                                                                                                                      |
| Figure 2-6: Overview of Sacred Lake (a) generalized view of Sacred Lake showing the crater wall and the                                                                                                             |
| surrounding montane forest (b) field acquisition of sediment core at Sacred Lake (c) shows the coring                                                                                                               |
| platform and the piston corer used for the acquisition of the sediment core placed on the floating mats                                                                                                             |
| present in the lake                                                                                                                                                                                                 |
| Figure 2-7: (a) An overview of Lake Rutundu occupying one of side vents of Mount Kenya (b) provides a                                                                                                               |
| generalized vegetation representation of the bushed grassland of the ericaceous zone where Lake Rutundu                                                                                                             |
| is found while (c) and (d) are close up pictures of the vegetation encountered in the grasslands. (c) Tussock                                                                                                       |
| grass and scattered off-shoot rosettes of Lobelia telekii (d) Representative dense thickets of the ericaceous                                                                                                       |
| belt comprising of, among other vegetation, Philippa, Anthospermum and Alchemilla spp                                                                                                                               |
| Figure 2-8: Total annual rainfall distribution in the Mount Kenya area. The north eastern region where this study                                                                                                   |
| was carried out. Annual rainfall ranges between 1000-1500 mm (Plotted data obtained from WRI 2007)29 Figure 2-9: The vegetation distribution within the Kenyan highlands (Plotted data obtained from WRI 2007)32    |
| Figure 2-9. The vegetation distribution within the Kenyan inginalitis (Flotted data obtained from w Ki 2007)32<br>Figure 2-10: Generalized soil map of the study area (Data derived from SOFTWIS database           |
| Figure 3-1: Samples collected during fieldwork in 2011 and 2013 on the north-eastern slopes of Mount Kenya                                                                                                          |
| (red dots)                                                                                                                                                                                                          |
| Figure 3-2: Sediment cores from Lake Nkunga comprising two short sediment cores NKG-I-1-2013 an NKG-I-2-                                                                                                            |
| 2013 each approximately 45 cm. One half of the sample was subsampled every 1 cm for sample preparation                                                                                                              |
| and analysis while XRF scanning was carried out on the other half of the core                                                                                                                                       |
| Figure 3-3: Six short cores of different sizes obtained from Sacred Lake that was analysed during this study. Total                                                                                                 |
| length is approximately 65 cm. Similarly, as carried out in the Lake Nkunga core, one half of the sample                                                                                                            |
| was subsampled every 1 cm for sample preparation and analysis while XRF scanning was carried out on                                                                                                                 |
| the other half of the core                                                                                                                                                                                          |
| Figure 3-4: (a) The MFK1-FA Kappabridge multifunctional susceptibility meter used for frequency dependent                                                                                                           |
| magnetic susceptibility and the field dependent magnetic susceptibility measurements (b) The cryogenic                                                                                                              |
| magnetic susceptionity and the relat dependent magnetic susceptionity measurements (b) The eryogenic<br>magnetometer used to measure the remanent magnetisation                                                     |
| Figure 3-5: Structure of iGDGT and brGDGT adapted from (Tierney 2012) as discussed in this work. The iGDGT                                                                                                          |
| (predominantly archaeal origin) nomenclature is derived from the presence of the cyclopentane (zero to                                                                                                              |
| two) moleties present in the basic structure assigned as GDGT-x where x denoted the number of                                                                                                                       |
| cyclopentane moleties present in the alkyl backbone structure. The structure of the brGDGT displays the                                                                                                             |
| presence of the cyclopentane moieties (identified as opposite those of iGDGTs through nuclear magnetic                                                                                                              |
| resonance (NMR) and stereochemistry studies) and a basic structure containing methyl (four to six)                                                                                                                  |
| branches usually a 13,16-dimethyloctacosane typical of a bacterial membrane lipid. IS represents the C <sub>46</sub>                                                                                                |
| synthesized internal standard                                                                                                                                                                                       |
| Figure 3-6: Illustration of dionex cell as prepared for extraction                                                                                                                                                  |
| Figure 3-7: Rotary evaporator set up used for drying extracted lipids at near vacuum conditions                                                                                                                     |
| Figure 3-8: A diagrammatic representation of the processes involved in the extraction, concentration, separation                                                                                                    |
| and analysis of the biomarker fractions from the selected samples                                                                                                                                                   |

| Figure 4-1: (a) the less than 200 μm grain size distribution and (b) and (c) the bulk mineralogy based of percentage of diffracted surface of the soil and rock samples from the Nkunga crater. NB: Feld - denotes plagioclase feldspar while illite/Muscov denotes the total peak area occupied by Illit Muscovite which could not be differentiated in the XRD spectrum of the bulk samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | – plag<br>te and |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Figure 4-2: (a) Particle size distribution of the <200 μm soils from farms at Nkunga School (b) the bulk miner<br>from the percentage of the diffracted surface in samples from Nkunga. NB: Feld-plag denotes plagi-<br>feldspar composition in the samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ralogy<br>oclase |
| Figure 4-3: PCA of the elements from Nkunga area surface soils. Green bars represent the positive correl<br>while red represents negative correlations. The upper and lower panels show PC1 and PC2 respective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lations          |
| Figure 4-4: PCA of geochemical ratios from the soils in Nkunga area. Green bars represent the per-<br>correlations while red represents negative correlations. The upper and lower panels show PC1 and<br>respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d PC2            |
| Figure 4-5: Description of soil profile sampled from Nkunga park gate showing the two identified horizons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| Figure 4-6: (a) Grain size distribution of $<200 \mu m$ fraction and (b) bulk mineralogy of the soil profile at Nk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| NB: Feld-plag denotes plagioclase feldspar composition in the samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| Figure 4-7: The relationship between the high and low frequency bulk magnetic susceptibility for selected sa from soil profile at Nkunga park gate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81               |
| Figure 4-8: Bulk magnetic characteristics % $X_{fd}$ and $X_{lf}$ from the soil samples in the Nkunga area soil profi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| Figure 4-9: NRM profiles of the soils from Nkunga area<br>Figure 4-10: Single element inorganic geochemistry down the Nkunga soil profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| Figure 4-10. Single element morganic geochemistry down the Nkunga soil profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| Figure 4-12: Variations down the soil profile from Lake Nkunga of the % C, % N, C/N, $\delta^{13}$ C and $\delta^{15}$ N iso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | otopes.          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| Figure 4-13: n-alkane distribution in the Lake Nkunga soil profile.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
| Figure 4-14: GDGT distribution in the various soil samples from the soil profile at Lake Nkunga area<br>Figure 4-15: Sacred Lake soil profile showing the identified horizons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
| Figure 4-16: (a) Grain size distribution of the $<200 \ \mu m$ fraction and (b) bulk mineralogy of the soil pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| Sacred Lake. NB: Feld-plag denotes plagioclase feldspar composition in the samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
| Figure 4-17: The relationship between the high and low frequency bulk magnetic susceptibility for se samples from the soil profile at Lake Nkunga park gate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| Figure 4-18: The relationship between the high and low frequency bulk magnetic susceptibility for se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| samples from soil profile at Sacred Lake.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| Figure 4-19: NRM profiles of the Sacred Lake soil profile<br>Figure 4-20: Elemental geochemical profile from Sacred Lake soil profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| Figure 4-20: Elemental geochemical prome from Sacred Lake soil profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| Figure 4-22: Variations down the soil profile from Sacred Lake of %C and %N, C/N, $\delta^{13}$ C and $\delta^{15}$ N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| Figure 4-23: n-alkane distribution on from the Sacred Lake soil profile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| Figure 4-24: GDGT distribution in the various soil samples from the soil profile at Sacred Lake area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| Figure 4-25: Bulk mineralogy of soils along the Nkunga-Sacred Lake- Rutundu transect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| Figure 4-26: The high and low frequency bulk magnetic susceptibility for samples collected along the soil tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 98               |
| Figure 4-27: The susceptibility characteristics dependence ( $^{\%}X_{fd}$ ) and low magnetic susceptibility (X <sub>lf</sub> ). The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| panel (a) shows the altitudinal variation in $%X_{fd}$ , red represents low altitude & medium $%X_{fd}$ , samples represents mid altitude and medium to high $%X_{fd}$ samples and green represents high altitude and medium to high $%X_{fd}$ samples and green represents high altitude and medium to high $%X_{fd}$ samples and green represents high altitude and medium to high $%X_{fd}$ samples and green represents high altitude and medium to high $%X_{fd}$ samples and green represents high altitude and medium to high $%X_{fd}$ samples and green represents high altitude and medium to high $%X_{fd}$ samples and green represents high altitude and medium to high $%X_{fd}$ samples and green represents high altitude and medium to high $%X_{fd}$ samples and green represents high altitude and medium to high $%X_{fd}$ samples and green represents high altitude and medium to high $%X_{fd}$ samples and green represents high altitude and medium to high $%X_{fd}$ samples and green represents high altitude and medium to high $%X_{fd}$ samples are the following the follow |                  |
| $%X_{fd}$ samples. The horizontal line at 10 % $X_{fd}$ marks the border between the mix-SP and coarser n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| grains and the predominantly high SP ferrimagnetic grains. The second panel (b) shows the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| cluster analysis performed on the two variable $X_{lf}$ and $X_{fd}$ where these three clusters are linked corresponding $X_{lf}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | to the           |
| Figure 4-28: Natural Remanent Magnetism of soil samples from the soil transect, Lake Nkunga and Sacrec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d Lake           |
| Figure 4-29: A bi-plot of the PCA of the different magnetic variables of all surface soils (including surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e soils          |
| collected from Nkunga area) and soil profiles from Sacred Lake and Lake Nkunga (One sample)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| Figure 4-30: Variations of % C, % N, $\delta^{13}$ C and $\delta^{15}$ N along the soil transect from Lake Nkunga to Lake Ru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| The red dots mark the outlier samples in the $\delta^{13}$ C and $\delta^{15}$ N dataset<br>Figure 4-31: Stable carbon isotope signature of the soil organic matter along the soil transect from Mt. Keny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| Figure 4-51: Stable carbon isotope signature of the soft organic matter along the soft transect from Mt. Keny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
| Figure 4-32: n-alkane distribution along the Nkunga-Sacred Lake- Rutundu transect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| Figure 4-33: GDGT distribution in percent of the samples from the soil transect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 106              |
| Figure 4-34: Bivariate plots of brGDGT, iGDGT, pH (the linear relationship is defined from the exclusion samples marked in red) and BIT indices along the soils transect in Mt. Kenya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |

| Figure 4-35: The relationship of the brGDGT and iGDGT derived indices with pH from the soil samples 109                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 4-36: brGDGT and iGDGT derived proxies. The upper panel shows the reconstructed MAAT from Weijers                                                               |
| et al. (2007) in red, Peterse et al. (2012) in black, and Worldclim data (in blue) for the soil transect. The                                                          |
| lower panel shows the reconstructed TEX <sub>86</sub> along the soil transect                                                                                          |
| Figure 4-37: PCA of the geochemical properties from Nkunga area soils (blue circle), Nkunga soil profile (green triangle) and Sacred Lake soil profile (yellow square) |
| Figure 4-38: The descriptive stratigraphic section and percentage water content of Lake Nkunga cores NKG-I-1-                                                          |
| 2013 and NKG-I-2-2013.                                                                                                                                                 |
| Figure 4-39: Bayesian age depth model constructed with Bacon age-depth model software Bacon for Lake Nkunga                                                            |
| sediment core. The bottom panel shows the calibrated <sup>14</sup> C dates (transparent blue) and the age-depth model                                                  |
| within 95 % confidence intervals. The darker grey areas on the model represent the more likely sections                                                                |
| where the model is running through whilst the red curve shows the single 'best' model based on the weighted                                                            |
| mean age for each depth. The upper panels show the MCMC iterations: the left represents the stability of                                                               |
| the model while the middle and the right represent the prior (green curve) and posterior (grey histograms                                                              |
| distributions of accumulation mean and memory properties, respectively                                                                                                 |
| Figure 4-40: A ghost plot for the sediment accumulation rate for Lake Nkunga. The darker the grey shaded areas                                                         |
| the more certainty in value obtained while the red line is the weighted mean representation of the                                                                     |
| accumulation between the different depths along the sediment core                                                                                                      |
| Figure 4-41: The average quantitative mineralogy from the Lake Nkunga core based on the percentage of the                                                              |
| diffracted surface of analysed samples                                                                                                                                 |
| Figure 4-42: Down core variation of bulk mass magnetic susceptibility in sediments from Lake Nkunga 123                                                                |
| Figure 4-43: NRM profile from Lake Nkunga sediment core                                                                                                                |
| Figure 4-44: Xlf, Xfd, Anhysteretic and Isothermal Remanent Magnetisation profiles for Lake Nkunga sediments                                                           |
| 125                                                                                                                                                                    |
| Figure 4-45: PCA of the elements from Lake Nkunga. Green bars represent the positive correlations while red                                                            |
| represents negative correlations. The upper and lower panels show PC1 and PC2 respectively                                                                             |
| Figure 4-46: Geochemical proxies for Lake Nkunga. The blue graph displays the normalized values at every one-                                                          |
| millimetre interval while the red graph shows the moving average over one-centimetre interval down the                                                                 |
| sediment core. The grey line marks the boundary between the two core sections for Lake Nkunga 127                                                                      |
| Figure 4-47: Down core variations in the percentage composition of elemental C and N, CN ratios and the $\delta^{13}$ C                                                |
| and $\delta^{15}$ N isotopes composition from Lake Nkunga                                                                                                              |
| Figure 4-48: Provenance of the organic component of the Lake Nkunga sediments                                                                                          |
| Figure 4-49: The relative abundances of the n-alkanes derived from samples collected from Lake Nkunga 131                                                              |
| Figure 4-50: The fractional abundance of the brGDGTs and iGDGTs down core in the Lake Nkunga core. The                                                                 |
| five graphs represent the main (a) the brGDGT and iGDGT abundances while GDGT groups and their                                                                         |
| moieties are illustrated in (b) GDGT-I, Ib and Ic (c) GDGT-II, Ib and IIc, (d)GDGT-III and IIb & (e)                                                                   |
| iGDGTs                                                                                                                                                                 |
| Figure 4-51: Reconstructed MAAT for Lake Nkunga core using MBT/CBT, MbrGDGT and SFS regional                                                                           |
| calibrations                                                                                                                                                           |
| Figure 4-52: A summary of key findings from Lake Nkunga from 1079 cal yr. BP to Present indicating key                                                                 |
| changes in lake sedimentation and lake level variations                                                                                                                |
| Figure 4-53: The stratigraphic section and percentage water content representation sediment cores from Sacred                                                          |
| Lake (SAL 11-1, SAL II-2, SAL II-3, SAL II-4, SAL II-5 and SAL II-6)                                                                                                   |
| Figure 4-54: Bayesian age depth model for Sacred Lake sediment core. The bottom panel displays the calibrated                                                          |
| <sup>14</sup> C dates (transparent blue) and the age-depth model within 95% confidence intervals. The upper panels                                                     |
| show the MCMC iterations: the left represents the stability of the model while the middle and the right                                                                |
| represent the prior (green curve) and posterior (grey histograms) for the distributions of accumulation mean                                                           |
| and memory properties, respectively                                                                                                                                    |
| Figure 4-55: The sediment accumulation rate for Sacred Lake. The grey lines envelope 95 % areas of certainty in                                                        |
| value obtained while the red line is the weighted mean representation of the accumulation between the                                                                  |
| different depths along the sediment                                                                                                                                    |
| Figure 4-57: The average quantitative mineralogy of the Sacred Lake sediment samples                                                                                   |
| Figure 4-58: Bulk magnetic susceptibility parameters from Sacred Lake core                                                                                             |
| Figure 4-59: X <sub>lf</sub> , Anhysteretic and Isothermal Magnetisation parameters for sediments from Sacred Lake 148                                                 |
| Figure 4-60: PCA of the elements from Sacred Lake. Green bars represent the positive correlations while red                                                            |
| represents negative correlations. The upper and lower panels show PC1 and PC2, respectively                                                                            |
| Figure 4-61: Geochemical proxies for Sacred Lake. The blue graph displays the raw and normalized values at                                                             |
| every one-millimetre interval while the red graph shows the moving average over one-centimetre interval                                                                |
| down the sediment core. The grey areas mark the extent of the 6 cores; SAL II -1, SALII- 2, SALII- 3,                                                                  |

| SALII- 4, SAL II – 5 and SAL II – 6 whilst the dotted black and red lines denote the stratigraphic units and        |
|---------------------------------------------------------------------------------------------------------------------|
| hiatus, respectively                                                                                                |
| Figure 4-62: Down core variations in the percentage composition of elemental C and N, C/N ratios and the stable     |
| $\delta^{13}$ C and $\delta^{15}$ N isotopes composition from Sacred Lake                                           |
| Figure 4-63: Provenance of the organic component of the Sacred Lake sediments                                       |
| Figure 4-64: n-alkane distribution from Sacred Lake                                                                 |
| Figure 4-65: The relative abundance of the brGDGTs and iGDGTs down core in the Sacred Lake core. The five           |
| graphs represent the main (a) brGDGT and iGDGT abundances, while GDGT groups and their moieties are                 |
| illustrated in (b) GDGT-I, Ib and Ic (c) GDGT-II, IIb and IIc, (d) GDGT-III and IIb & (e) iGDGTs 156                |
| Figure 4-66: Reconstructed MAAT for Sacred Lake core using MBT/CBT, MbrGDGT and SFS regional                        |
| calibrations                                                                                                        |
| Figure 4-67: A summary of key findings for Sacred Lake from 4425 to 630 cal yr. BP indicating key changes in        |
| lake sedimentation and lake level variations                                                                        |
| Figure 4-68: Descriptive stratigraphic section of sediments and percentage water content in sediment cores from     |
| Lake Rutundu                                                                                                        |
| Figure 4-69: Bayesian age depth model for Lake Rutundu sediment core. The bottom panel displays the calibrated      |
| <sup>14</sup> C dates (transparent blue) and the age-depth model within 95 % confidence intervals. The upper panels |
| show the MCMC iterations: the left panel represents the stability of the model while the middle and the             |
| right panels represent the prior (green curve) and posterior (grey histograms) for the distributions of             |
| accumulation mean and memory properties, respectively                                                               |
| Figure 4-70: Sedimentation rate for Lake Rutundu. The darker the grey shaded areas the higher certainty in value    |
| obtained while the red line is the weighted mean of the sediment accumulation rate between the different            |
| depths along the sediment providing realistic representation in sediment supply                                     |
| Figure 4-71: The bulk mineralogy of sediments from Lake Rutundu represented as a percentage of the diffracted       |
| surface                                                                                                             |
|                                                                                                                     |
| Figure 4-72: Elemental variation from discrete measurements of pellets from Lake Rutundu sediment                   |
| Figure 4-73: Inorganic geochemical composition for Lake Rutundu.                                                    |
| Figure 4-74: Down core variations in the percentage composition of elemental C and N, CN ratios and the Stable      |
| $\delta^{13}$ C and $\delta^{15}$ N isotopes composition from Lake Rutundu                                          |
| Figure 4-75: Provenance of the organic component of the Lake Rutundu sediments                                      |
| Figure 4-76: n-alkane distribution in Lake Rutundu sediments                                                        |
| Figure 4-77: The relative abundance of the brGDGTs and iGDGTs down core in the Lake Rutundu core. The five          |
| graphs represent the main (a) the brGDGT and iGDGT abundances, while GDGT groups and their moieties                 |
| are illustrated in (b) GDGT-I, Ib and Ic (c) GDGT-II, IIb and IIc, (d) GDGT-III and IIb & (e) iGDGTs.               |
|                                                                                                                     |
| Figure 4-78: Reconstructed MAAT for Lake Rutundu core using MBT/CBT, MbrGDGT and SFS regional calibrations          |
| Figure 4-79: A summary of key findings for Lake Rutundu from 4770 cal yr. BP to Present indicating key changes      |
| in lake sedimentation                                                                                               |
| Figure 4-80: Late Holocene palaeoclimatic and environmental reconstruction from the organic matter from Mt.         |
| Kenya. The grey areas mark sections where no information was retrieved from the Mt. Kenya proxies due               |
| to core length (L. Nkunga and Sacred Lake) and presence of hiatus in Sacred Lake                                    |
| Figure 4-81: A generalized chronology of the Late Holocene climatic changes from the three crater lakes 186         |
| Figure 4-82: Late Holocene changes in Lake Nkunga derived from Si/Ti ratio representing aeolian dust, Sacred        |
|                                                                                                                     |
| Lake δDwax (Konecky et al. 2014), L. Victoria shallow water diatoms (Stager et al. 2005, Lake Naivasha              |
| lake levels (Verschuren et al. 2000) and Lake Edward (Russell and Johnson, 2007). The grey shading                  |
| represents the century scale-decadal changes in the multiple records                                                |

# **LIST OF TABLES**

| Table 1: Summary of the geologic succession of the Mt. Kenya suite in the selected study area (after Ba                                                                                                                         | 0.1          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Table 2: A summary of previous palaeoenvironmental studies on Mount Kenya based on a range of proxies.                                                                                                                          | of different |
| Table 3: Induced magnetic field on sediment and soil samples using a pulse magnetizer from ARM measurements.                                                                                                                    |              |
| Table 4: Summary of n-alkane indices from Nkunga area soil profile                                                                                                                                                              |              |
| Table 5: Summary of n-alkane indices from Sacred Lake soil samples                                                                                                                                                              |              |
| Table 6: Summary of n-alkane indices from the soil transect                                                                                                                                                                     | 105          |
| Table 7: brGDGT and iGDGT-derived proxies along Mt. Kenya transect                                                                                                                                                              |              |
| Table 8: Radiocarbon ages from Lake Nkunga sediment core obtained from the AMS (Age <sup>14</sup> C yr. B                                                                                                                       |              |
| calibrated radiocarbon ages (Cal yr. BP and their associated errors). The samples marked in                                                                                                                                     |              |
| identified as probable outliers                                                                                                                                                                                                 |              |
| Table 9: Summary of n-alkane indices from Lake Nkunga                                                                                                                                                                           |              |
| Table 10: The variations in BIT, 1302/1292 ratio, MBT and CBT proxies from the Lake Nkunga sed                                                                                                                                  |              |
|                                                                                                                                                                                                                                 |              |
| Table 11: Proxy indicator summary from Lake Nkunga                                                                                                                                                                              |              |
| Table 12: Radiocarbon ages from Sacred Lake sediment core obtained from the AMS (Age <sup>14</sup> C yr. BF calibrated radiocarbon ages (cal yr. BP) and their associated errors. The samples marked in identified as outliers. | bold were    |
| Table 13: Summary of n-alkane indices from Sacred Lake                                                                                                                                                                          |              |
| Table 14: The variations in BIT, 1302 (GDGT-0)/1292 (crenarchaeol) ratio, MBT and CBT proxie                                                                                                                                    |              |
| Sacred Lake sediment core                                                                                                                                                                                                       |              |
| Table 15: Proxy indicators summary from Sacred Lake                                                                                                                                                                             |              |
| Table 16: Radiocarbon ages from Lake Rutundu sediments from AMS (Age <sup>14</sup> C yr. BP) and calibrated ra                                                                                                                  |              |
| ages (cal yr. BP) and their associated errors.                                                                                                                                                                                  |              |
| Table 17: Summary of n-alkane indices from Lake Rutundu                                                                                                                                                                         |              |
| Table 18: The variations in BIT, 1302/1292 ratio, MBT and CBT proxies from the Lake Rutundu sed                                                                                                                                 |              |
| , , <u>1</u>                                                                                                                                                                                                                    |              |
| Table 19: Proxy indicators summary from Lake Rutundu.                                                                                                                                                                           |              |

### **LIST OF ABBREVIATIONS**

Å – Angstrom ACL - Average Chain Length of n-alkanes ACL<sub>lc</sub> - Average Chain Length of long chain n-alkanes AD -Anno Domino AF - Alternating Field **AMS** - Accelerated Mass Spectrometry **ARM** - Anhysteretic Remanent Magnetisation **BC** - Before Christ BIT - Branched to Isoprenoid Tetraether Index **BP** - Before Present BrGDGTs - Branched Glycerol Dialkyl Glycerol Tetraethers Cal yr. BP – Calendar years before present CBT - Cyclization Index of Branched Glycerol Dialkyl Glycerol Tetraethers **CPI** - Carbon Preferential Index Cps – Counts per Second **DCM** – Dichloromethane ENSO - El Niño - Southern Oscillation GDGTs - Glycerol Dialkyl Glycerol Tetraethers HPLC-MS - High-Performance Liquid Chromatography Mass Spectrometer iGDGTs - Isoprenoid Glycerol Dialkyl Glycerol Tetraethers **IRM** - Isothermal Remanent Magnetisation **ITCZ** - Inter Tropical Convergence Zone LC - liquid chromatography LGM - Last Glacial Maximum LST - Lake Surface Temperature SARM - Saturated Anhysteretic Remanent Magnetisation MAAT - Mean Annual Air Temperature MbrGDGTs - Fractional Abundances of major Branched Glycerol Dialkyl Glycerol Tetraethers MBT - Methylation Index of Branched Glycerol Dialkyl Glycerol Tetraethers MCMC - Markov Chain Monte Carlo MDF - Median Destructive Field MS - Mass Spectrometry **NRM** - Natural Remanent Magnetisation **OM** - Organic Matter PC1 - Principal Component 1 PC2 - Principal Component 2 PCA – Principal Component Analysis  $P_{aq}$  – Aquatic Proxy **SD** – Single Domain SFS - Stepwise Forward Selection SI – The International System of Units SIRM - Saturation Isothermal Remanent Magnetisation SP - Super Paramagnetic **SSTs** - Sea Surface Temperatures TAR - Terrestrial - Aquatic Ratio TEX<sub>86</sub> - Tetraether Index of Tetraethers consisting of 86 carbon atoms  $X_{fd}$  – Frequency Dependence of Magnetic Susceptibility  $X_{hf}$  - High Frequency Magnetic Susceptibility X<sub>lf</sub> - Low Frequency Magnetic Susceptibility **XRD** – X-ray Diffraction **XRF** – X-ray Fluorescence

# **1 INTRODUCTION**

#### 1.1 Introduction

Understanding past climate regimes is crucial for the prediction of future trends due to increasing concern and awareness of global climate change. Significant 'wet' and 'dry', and 'cold' and 'warm' phases have been documented during the Late Quaternary (last *ca.* 100,000 years) in East Africa from the study of various natural proxies such as pollen, charcoal, diatoms, and stable carbon isotopes from a number of sites (Roberts 1998, Verschuren et al. 2000; Olago 2001; Garcin et al. 2006; Kiage & Liu 2009). Within the Quaternary, the climate dynamics of the Holocene (*ca.* 11 700 cal yr. BP to Present) provides an analogue for modern day climate significant to human populations and ecosystems (Mayewski et al. 2004) and to the management and use of natural resources by the human population. Since the late Holocene (5000 years ago to present), environmental changes have been compounded by human encroachment of the natural ecosystems and their exploitation due to increase in population.

Lake sediments are important archives of allochthonous and autochthonous proxies of historical catchment and lake processes, respectively. Physical, chemical and biological records of these sedimentary records constitute one of the most reliable sources of palaeoclimate and palaeoenvironmental changes through time. These indices are reliable indicators of past environments based on the assumption that their ecological, physical and chemical affinities have not changed through time and that they have modern analogues (Roberts 1998; Smol et al. 2001). These sedimentary deposits from the lakes preserve the inherent geological, chemical and ecological properties of the provenance environment (Smol et al. 2001) and are particularly useful where instrumental and documentary records are missing. Further, modern instrumental records operate on shorter timescales that are not adequate to inform on long-term trends (Figure 1-1; Olago and Odada 2004), therefore, palaeoenvironmental reconstruction from the lake sedimentary records of East Africa where erosion and land use changes tend to obliterate the geomorphological evidences of the past environments (Roberts 1998; Smol et al. 2001) are reliable sources of information.

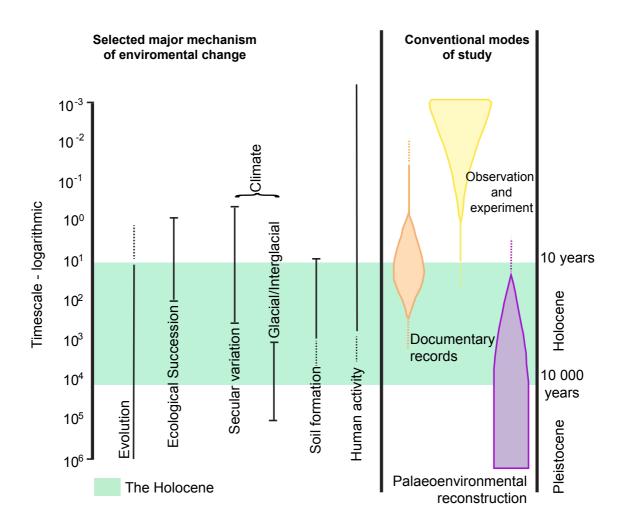



Figure 1-1: Mechanisms and modes of studying environmental changes over different timescales (redrawn and modified from Roberts 1998). Palaeoenvironmental reconstruction is reliable over the long-term to discern patterns of environmental changes especially where documentary records are not available. The reliability of the documentary records has improved from Mid to Late Holocene whereas present day environmental changes are in most instances observed and/or simulated to provide comprehensive information on the environmental change witnessed.

#### **1.2** Statement of the Problem and Thesis Rationale

The chronology of climatic changes in East Africa has been well established with records from several lake sediments (Hamilton 1982; Street-Perrott and Perrott 1993; Olago 1995; Roberts 1998; Verschuren 2003, 2004; Gasse 2005; Verschuren et al. 2009; Kiage and Liu 2009; Rucina et al. 2009; Tierney et al. 2013). However, there are unresolved issues around the spatial resolution, latitudinal gradients and exact timing of the climate change events in relation to the sites on the equator (Gasse 2000) especially in Eastern Africa during the Holocene period.

Generally, the climate of the Holocene is regarded as relatively stable (Dansgaard et al. 1993), but variability is inherent as shown by various researchers (e.g. Coe 1967; Coetzee 1967;

Hamilton 1982; Olago 1995; Verschuren et al. 2000; Alin & Cohen 2003; Cohen et al. 2005; Stager et al. 2005; Russell et al. 2007; Shanahan et al. 2009; Tierney et al. 2013). For example, in contrast to the present-day Sahara Desert, *ca*. 6000 cal yr. BP, the monsoon rains were stronger and spread northward to the Sahara causing a "greening" of the region (deMenocal et al. 2000; deMenocal & Tierney 2012). Severe regional droughts centred at *ca*. 2000, 2750 and 4000 cal yr. BP in Central and East Africa, have been recorded (Coetzee 1967; Gasse 2000, 2005; Verschuren et al. 2000; Russell & Johnson 2005; Garcin et al. 2006; Gasse et al. 2008; Tierney et al. 2013). Other evidences such as that of the relatively wet Little Ice Age (LIA *ca*. 1300 – 1850 AD) display spatial and temporal heterogeneity in East Africa (Verschuren et al. 2000; Tierney et al. 2013).

Precipitation changes over Africa have greater environmental impact than changes in temperature (Olago and Odada 2004). The regional palaeo records especially over the last millennium, show that the easternmost sector of East Africa (closer to the coast) experienced relatively humid conditions as recorded in rising lake levels (Verschuren et al. 2000; Stager et al. 2005; Tierney et al. 2013) whereas, the westernmost sector show wet conditions only at the beginning of the LIA and aridity during its main phase (Alin & Cohen 2003; Cohen et al. 2005; Russell & Johnson 2005; Tierney et al. 2013). This variability in rainfall is closely linked to both El Niño - Southern Oscillation (ENSO) and Sea Surface Temperatures (SSTs) (Nicholson & Kim 1997; Nicholson 2000) and recent present-day model simulations (Tierney et al. 2013) show that wet conditions in coastal east Africa are associated with cool SSTs in eastern Indian Ocean and warm SSTs in western Indian Ocean while the opposite situation causes droughts. This points to the Indian Ocean Circulation as the main driving force behind precipitation changes in East Africa. Unfortunately, the model simulations (Tierney et al. 2013) displaying the west to east gradation of the climatic conditions are based on few lake records and are dominated by records from the westernmost sector of east Africa.

To establish a more comprehensive understanding of the local responses to past climate changes especially during the Late Holocene in east Africa where a climate gradient has been observed from west to east on different sites, the montane ecosystems of Mount Kenya present a unique opportunity to examine responses to climatic and environmental changes during this period. The selected study sites are crater lakes on the north eastern slopes of Mount Kenya. They are located on the eastern most sector of East Africa at different altitudes and are on the windward side. The proxy records obtained from the soils in and around the lake catchment

and sediments of these lakes permit the examination of a large range of palaeoenvironmental indicators thereby providing a better understanding of the Late Holocene pulses in these sites. The questions addressed by this thesis include: Are the crater lakes on Mount Kenya sensitive to Late Holocene climatic and environmental disturbances such as the Medieval Climatic Anomaly (MCA) and LIA? Is there evidence of significant droughts across East Africa during the Holocene? What proxies among those utilized in this study are reliable indicators of precipitation changes and drought during the Late Holocene? Do the results suggest regional heterogeneity or spatial complexity of climatic events across East Africa?

#### 1.3 Objectives

#### **General Objective**

The main objective of the study is to elucidate the Late Holocene climate and environmental variability on Mount Kenya over centennial and millennial timescales using multi-proxy palaeo-indicators in soil and lake sediments.

#### **Specific Objectives**

The specific objectives are:

- I. To establish the Late Holocene sediment chronology of selected Mount Kenya lakes and catchment soils using a multi-proxy analysis of a range of physical, chemical and organic properties in the bulk sediment material;
- II. To determine key Late Holocene environmental and climatic events from the sedimentary proxies of the crater lakes;
- III. To contribute to the debate surrounding the regional complexity of past regional climate and environmental changes in East Africa.

#### 1.4 Justification and Significance of the Study

Early works on Late Quaternary vegetation and lake level variations in East Africa (Coetzee 1967; Hamilton 1982) presented a relatively stable climate over the last few millennia. This conclusion was derived from low sample resolution and chronology where the last few thousand years were presented by few data points (Verschuren 2004). Recent studies show that the East African lakes have responded to large climatic fluctuations during the Quaternary.

These responses have been linked to extreme rainfall variability (Gasse 2000, 2005) that show a long-term trend of temporal variability controlled by large-scale atmospheric circulation dynamics that generate differences in the seasonal rainfall (Nicholson 2000). The coherent responses obtained from the lake sedimentary archives from the same region gives credibility to the use of lake sediments to evaluate the synchronicity of climatic anomalies in the past (Verschuren 2004). Despite the display of synchronicity in the responses of the various lakes, emerging evidence suggests spatial complexity (Verschuren et al. 2000; Stager et al. 2005; Tierney et al. 2013) pointing to regional heterogeneity of the palaeoenvironments, illustrating local responses to climate conditions such as the LIA (Russell et al. 2007).

Inter-decadal climatic variability and abrupt climate events characterize the short existing instrumental records (Nicholson 2000). Whereas previous research has displayed the dynamism of the African climate at all timescales, there are concerted efforts to reconstruct the continent's climate history with a resolution and precision sufficient enough to separate natural and anthropogenic climate and environmental forcing factors (Verschuren 2004). The current focus of Quaternary research is on understanding comparatively short term (one to two millennia), region specific aspects of climate variability (Verschuren 2003). Such records have the potential to set baselines of natural variations on which long term environmental management plans can be constructed (Olago and Odada 2004) especially if there are major future changes in the hydrological cycle (Christensen et al. 2007).

In most of the regional studies discussed above, the methodology has relied on the sediment cores obtained from the centre of the lakes. This thesis is based on records from one core obtained from the centre of Lake Rutundu and nearshore sediment cores from Sacred Lake and Lake Nkunga. The applicability of the nearshore sediment approach assumes that the strongest evidence of lake level changes is preserved in the shoreline sediments where sufficient accumulations can be used to infer lake level changes and environmental changes (Battarbee 2000).

#### **1.5** Limitations of the Study

Initially in the study design, the assumption was that core samples from Sacred Lake and Lake Nkunga would be retrieved from the centre of the lake. Following field visits, the study had to be modified to retrieve nearshore cores due to limited accessibility. The results presented here from the grain size, mineralogy, XRD and magnetic mineralogy were carried out only on a few

select samples due to laboratory and budgetary constraints. Due to budgetary and time constraints, we were unable to carry out <sup>210</sup>Pb and <sup>137</sup>Cs dating on recent soil and sediment samples which would have provided a higher resolution chronology of events during the past 150 years as compared to the carbon 14 dating.

#### 1.6 Layout of the Thesis

The importance of the lake sediments as archives of climatically and human-driven changes in the region, and their contribution to the understanding of ecosystem responses, trends and mechanisms, are discussed in **Chapter 1**, alongside the aims, objectives, justification, scope and limitations of the study. **Chapter 2** reviews the general context of the study area, the utility of multiproxy datasets in the study of lacustrine archives and presents the current state of knowledge on the climate and environment of the Quaternary and Holocene periods, with particular focus on eastern Africa, and the causative factors. **Chapter 3** discusses the basis of the methods used in the analysis of the soil and sediment samples collected and details the array of methods used. In **Chapter 4**, the results are presented and discussed, while **Chapter 5** draws out the major conclusions and recommendations.

# 2 STUDY SITE DESCRIPTIONS AND LITERATURE REVIEW

#### 2.1 Introduction

This chapter consists of three parts. The first part provides a review of the study site from the geologic setting to the topography and characteristics of the study lakes, modern day climate and vegetation and the soils of Mt. Kenya (Section 2.2). The second part presents a review of the utility of multiproxy analyses of lake sediment cores for palaeoenvironmental reconstructions with a focus on the Mt. Kenya lakes and also presents an overview of their use regionally in reconstructions of the Late Quaternary palaeoclimate and palaeoenvironment (Section 2.3). The final part highlights the human impact on ecosystems during the Late Holocene (Section 2.4).

#### 2.2 General Context of the Study Area

#### 2.2.1 Geologic Setting of Mount Kenya

Mt. Kenya is an extinct stratovolcano that was built up by three eruptive events during the Late Pliocene to Quaternary volcanicity (Baker 1967; Olago et al. 2000; Olago 2013). The rocks resulting from the various volcanic eruptions are generally referred to as the Mount Kenya volcanic suite and occupy a circular area of approximately 100km diameter (Table 1). They comprise mainly basalts, phonolites and pyroclastics of similar composition with varying thicknesses. The Thiba basalts (0.8 Ma), basaltic pumice and ashes from parasitic vents are petrologically different and are derived from a different magma chamber (Baker 1967; Coe 1967; Olago 1995; Olago et al. 2000; Veldkamp et al. 2012). Approximately 15 ill-preserved vents and shallow low craters are distributed on the north eastern and northern slopes of the mountain. Some of the cinder cones that appear fresh on the north eastern side can be attributed to the Holocene due to little soil development present (Baker 1967; Olago 1995; Olago et al. 2000). The Mount Kenya volcanics (Figure 2-1) display a general decline in the frequency and intensity of eruption with time during the Quaternary eruptive phase of the satellite vents (Olago et al. 2000).

The main eruptive event from the central plug of the volcano exuded nepheline syenites and porphyritic phonolite, kenytes, trachytes, agglomerates, unexposed basalts and basalts on the

lower slope of the mountain from the parasitic vents deposited during the Late Pliocene *ca*. 3.5 – 3.0 Ma (Baker 1967; Baker et al. 1971) and are distributed in a NW-SE orientation (Baker et al. 1971). Subsequent eruptions are from the parasitic fissures and vents and have resulted in a variety of trachytes (e.g. olivine trachytes, Ithanguni trachytes) and basalts (e.g. Thiba basalts, olivine basalts, mugearites) that are distributed on the mountain slopes on the north eastern and southwestern slopes (Figure 2-1). Late Quaternary volcanicity from the parasitic vents is characterized by Na-K rich alkali pyroclasts with similarity in the geochemical composition and mineralogy of tephras that are rich in Si (60 - 63%; SiO<sub>2</sub>), Fe (2.3 - 9.1%; Fe<sub>2</sub>O<sub>3</sub>) and P (0.4 - 1.8%; P<sub>2</sub>O<sub>5</sub>) probably derived from a single vent of a highly differentiated magma chamber following an olivine basalt-trachyandesite-trachyte-phonolite series. This explains the morphological differences that can be attributed to each eruption episode (Olago 1995; Olago et al. 2000). Despite an understanding of the mineralogy, chemical composition and morphological differences, a model of the Late Quaternary history of volcanicity does not exist (Olago 1995) and a precise dating of the Mt. Kenya suite has not been done.

| Age           | Eruptive episode  | Geology                          |  |
|---------------|-------------------|----------------------------------|--|
| Recent        |                   | Superficial deposits comprising  |  |
|               |                   | of soils, ashes, moraines and    |  |
|               |                   | glacial deposits                 |  |
|               | Parasitic vents   | Basal pumice cones               |  |
|               |                   | Thiba basalts                    |  |
|               |                   | Trachytic plugs                  |  |
| Pleistocene   |                   | Ithanguni trachytes and tuffs    |  |
|               |                   | Mugi agglomerates                |  |
|               | Parasitic fissure | Riebeckite trachyte              |  |
|               |                   | Olivine basalts                  |  |
|               |                   | Mugearites                       |  |
| Late Pliocene | Main eruption     | Phonolites and nepheline         |  |
|               |                   | syenite, porphyritic phonolites, |  |
|               |                   | kenytes and agglomerates         |  |
|               |                   | Tuffs, agglomerates, fissile     |  |
|               |                   | phonolites and alkali trachytes  |  |
|               |                   | Porphyritic phonolites           |  |
|               |                   | Rhomb porphyries                 |  |
|               |                   | Unexposed volcanics              |  |
|               |                   | Lower basalts                    |  |

*Table 1: Summary of the geologic succession of the Mt. Kenya suite in the selected study area (after Baker 1967).* 

These phonolitic lava flows from the main vent and successive eruptions overlie the volcanics of the Aberdares range and Laikipia plateau (Laikipian basalts) on the west and southwestern areas that occupy the eastern shoulder of the East African Rift Valley (Baker 1967; Coe 1967;

Olago 1995). To the north, the Mount Kenya suite overlaps with the Nyambeni hills basalts that erupted from a different volcanic centre around the same time as Mt. Kenya and its active phase continued into the Pleistocene (Olago 2013). The remainder of the Mount Kenya suite rests on the Neo-Proterozoic gneisses and schists (Baker 1967; Coe 1967).

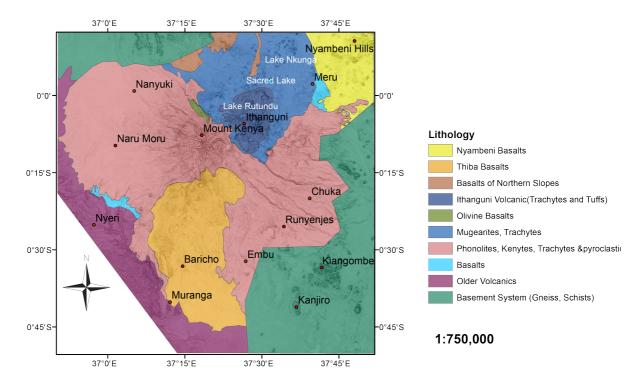



Figure 2-1: A generalized geological map showing the distribution of the Mount Kenya suite (modified after Olago et al. 2000).

#### 2.2.2 Topography and Characteristics of the Study Lakes

Mt. Kenya, located at the equator in East Africa, is an extinct stratovolcano comprising a three peak dome complex; Batian (highest peak 5199 m asl), Nelion (5,188 m asl) and Lenana (4,895 m asl) at the summit (Baker 1967; Figure 2-2). The mountain peak is the plug of an extinct volcano that is accompanied by eroded subsidiary plugs to the north (4676 m) and north east (4669 m) sides of the mountain. It is dissected with deeply cut, radial, youthful valleys that emanate from the mountain peaks (Figure 2-3) that represent at least two periods of intense glacial scouring of the dominantly phonolite rocks. This resulted in the gently eroded slopes and smooth walls of the alpine zone as well as the deeply dissected U-shaped hanging valleys such as Teleki, Burguret, Hausberg, Mackinder, Gorges, Hobley and Hohnel valleys (Baker 1967, Coe 1967).




Figure 2-2: Map displaying the location of the study area in the African continent and in Central Kenya. The lakes that dot the north eastern slopes of the mountain where the current study was carried out at Lakes Nkunga, Sacred and Rutundu.

To the east and north, the mountain gently slopes towards the grasslands while to the south and west, the mountain connects to the eastern Kenya highlands (the Aberdares). The north eastern slopes of the mountain are physiographically distinct with gentle undulating narrow steep V-shaped river valleys and its geology comprises of ashes and agglomerates attributed to 5 trachytic necks identified between 2400 - 3300 m asl (Baker 1967). The Ithanguni hills (3576 m asl) are another distinct physiographic feature comprising pyroclastics from the Ithanguni cone to the east (Baker 1967; Olago 1995; Olago et al. 2000; Veldkamp et al. 2007).

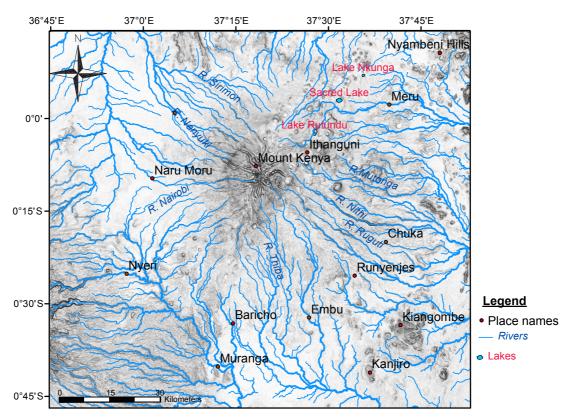
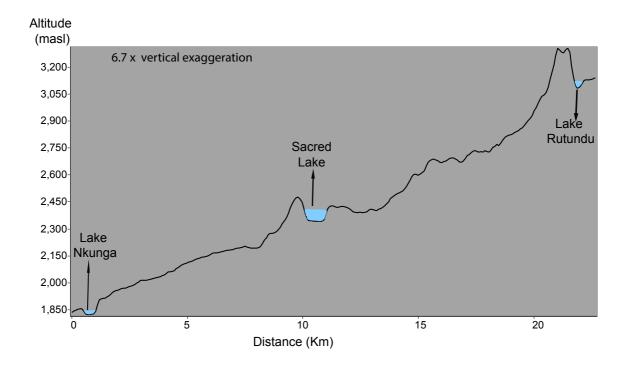




Figure 2-3: Generalized map of the physiographic and drainage features present in the study area. The several rivers and their tributaries present display a radial pattern from the summit of the mountain to the foothills.

Glacial and crater lakes dominate the north eastern slopes of Mount Kenya where a field of parasitic Late Quaternary cones and vents are found (Baker 1967; Olago et al. 2000). Three crater lakes that have been previously studied to provide long term Late Quaternary records for the region (Olago 1995; Ficken et al. 1998; Street-Perrott et al. 2007) were selected for this study on the lower slopes of the north eastern flanks of the mountain along an altitudinal transect (Figure 2-4) as follows: Lake Nkunga (1780 m asl), Sacred Lake (2350 m asl) and Lake Rutundu (3088 m asl). Sacred Lake and Lake Nkunga occupy parasitic craters on the north eastern slopes of Mount Kenya that were likely formed by mid Pleistocene eruptions that extruded small volumes of olivine basalts and pyroclastic rocks younger than the Mount Kenya volcanic suite (Shackleton 1946). The lakes are part of the wider Mt. Kenya forest and therefore the ecosystem around them is a game reserve that serves as a watering point for wildlife such as elephants. The local communities surrounding the forest consider it sacred and therefore little human activity is observed in the vicinity of these lakes.



*Figure 2-4: Profile along the north eastern slopes of Mount Kenya showing the selected sampling transect from the hill slope at Lake Nkunga to Sacred Lake to Lake Rutundu.* 

**Lake Nkunga** is a closed shallow crater lake located at  $0.12^{\circ}$  N and  $37.60^{\circ}$  E at an elevation of 1780 m asl with a maximum water depth of 1.9 m. The lake is directly fed by rainfall and cold springs emanating from fissured lava present on the east and west above the lake level (Olago 1995). The lake waters are near anoxic at the top, are acidic with pH ranges of 5.8 - 6.2 and have low diatom productivity (Olago 1995). The lake lies at the border of the dry montane forest and the disturbed vegetation zone. During this study the pH (7.3 and 6.0), temperature (24 °C and 15 °C) and conductivity (320 µs/cm and 201 µs/cm) of near surface waters were recorded in November 2012 and June 2013, respectively. There is restricted access to the lake water due to the presence of reed swamp, floating mats of water lilies, sedges and ferns (Figure 2-5). The lake serves as a water source for the villages around it and wildlife in the Mt. Kenya forest ecosystem.



Figure 2-5: Overview of Lake Nkunga (a) generalized view of Lake Nkunga showing the crater wall surrounding the shallow lake at the edge of the montane forest (b) shows the open water area on the lake and (c) presence of reed swamp and floating mats that restrict access to the centre of the lake.

**Sacred Lake** is a closed and shallow lake that is located at 0.05°N and 37.53°E at an altitude of 2350 m asl in the humid montane forest zone. It is approximately 1 km across, 5 m deep and receives annual rainfall of about 1780 mm (Olago 1995). Similar to Lake Nkunga, there is restricted access (Figure 2-6) due to the presence of reed swamp and diverse floating mats of sedges, ferns, mosses, and water lilies. During this study, pH (6.3 and 5.0), temperature (27 °C and 18 °C) and conductivity (41.7  $\mu$ s/cm and 128  $\mu$ s/cm) of near surface waters were recorded in November 2012 and June 2013, respectively. Located within the Mt. Kenya forest, the lake is isolated from human activities although harvesting of some trees from the catchment was observed during our field work.



Figure 2-6: Overview of Sacred Lake (a) generalized view of Sacred Lake showing the crater wall and the surrounding montane forest (b) field acquisition of sediment core at Sacred Lake (c) shows the coring platform and the piston corer used for the acquisition of the sediment core placed on the floating mats present in the lake

Lake Rutundu is located at 0.04° S and 37.46° E and occupies a side vent on the north eastern slopes of Mount Kenya at an altitude of 3088m asl in the ericaceous zone. The lake is oligotrophic, approximately 0.4 km<sup>2</sup> with a maximum depth of 11 m. During this study pH (4),

temperature (20 °C) and conductivity (39.2  $\mu$ s/cm) of near surface waters were recorded in June 2013. Lake Rutundu occupies an alkali trachytic neck developed through a phreatic explosion from the contact of ground water with hot thick lava flows (Baker 1967). The adjacent vegetation comprises grassland containing subalpine shrubs of *Artemisia, Cliffortia, Ericaceae* and *Proteaceae* (Figure 2-7). The moorland zone at lake and its catchment is isolated from human population. Adjacent to the lake are log cabins only inhabited by tourists from time to time.



Figure 2-7: (a) An overview of Lake Rutundu occupying one of side vents of Mount Kenya (b) provides a generalized vegetation representation of the bushed grassland of the ericaceous zone where Lake Rutundu is found while (c) and (d) are close up pictures of the vegetation encountered in the grasslands. (c) Tussock grass and scattered off-shoot rosettes of Lobelia telekii (d) Representative dense thickets of the ericaceous belt comprising of, among other vegetation, Philippa, Anthospermum and Alchemilla spp.

#### 2.2.3 Modern Day Climate and Vegetation of the Study Area

Equatorial East Africa is characterized by a bimodal annual rainfall pattern associated with the seasonal interhemispheric change in insolation, and the biannual migration of the Inter Tropical Convergence Zone (ITCZ) across the equator. Three air streams; (i) the humid thermally unstable Congo air, (ii) the dry north east monsoon winds and (iii) the moisture rich south east monsoon winds, are separated by the ITCZ (Nicholson 1996) causing rainfall over East Africa. The seasonal migration of the ITCZ is as a result of pressure differences between the northern and southern hemispheres in response to changes in the location of the solar heating maxima (Nicholson 1996). From October to March (southern hemisphere summer), increasing pressure

over the cold northern hemisphere and low pressure over the warm the southern hemisphere results in the southward migration of the ITCZ. Conversely, from April to September, the low pressure and warm northern hemisphere (especially during the summer) causes the northward migration of the ITCZ (Nicholson 1996). The shifts result in changes in the onset and duration two rainy seasons: the "short rains" from October to December and the "long rains" from March to May rainy. When the ITCZ is in the northernmost position, humid air carried by the southeast monsoon winds rises above East Africa leading to the long rains experienced in the region (Nicholson 1996).

On Mt. Kenya, the topography enhances the effects of the precipitation received during the rainy season (Camberlin et al. 2012). Along the slopes on the windward side (where our study sites are located), the amount of precipitation gradually increases with altitude until about 2000 – 2500 m asl (Figure 2-8) where a decline in rainfall, similar to other East African mountains, is observed (Coe 1967, Camberlin et al. 2009). A further pronounced impact of the topography on the regional microclimate is evidenced on the southern flanks of Mount Kenya which receive approximately 2500 mm rainfall per year and on the northern flank which is much drier receiving approximately 1500 mm rainfall per year (Thompson 1965). There are marked altitudinal variations in the mean annual rainfall values ranging from 1015 mm per year at the foothills to over 2000 mm per year in the montane forest (on the southeast monsoon is indicated by a strong inversion at 3600 m asl (Figure 2-8) during the northern hemisphere summer season and leads to higher rainfall especially at the beginning of May (Oettli and Camberlin 2005; Camberlin et al. 2009).

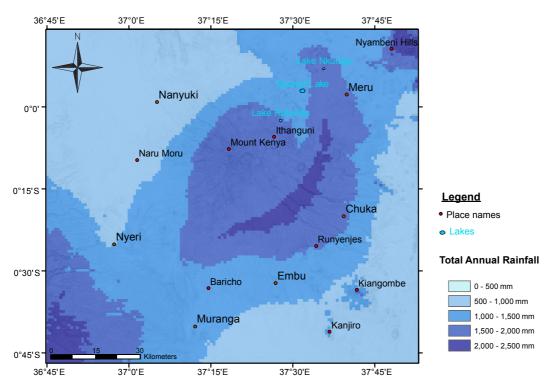



Figure 2-8: Total annual rainfall distribution in the Mount Kenya area. The north eastern region where this study was carried out. Annual rainfall ranges between 1000-1500 mm (Plotted data obtained from WRI 2007)

Most rainfall over the region originates from the Indian Ocean which is considered partly responsible for driving the regional climate variability (Marchant et al. 2006). In such context, one important feature of the intertropical climate, in contrast with climates from mid – and high latitudes, is its strong inter-annual variability linked with sea-surface temperature changes. Both the El Niño Southern Oscillation (ENSO) teleconnections (Nicholson 2001) and the Indian Ocean Dipole (IOD) (Marchant et al. 2006) influence the inter-annual climate variability over East Africa. ENSO oscillations occur at irregular intervals of about 2 – 7 years (Nicholson & Kim 1997; Nicholson 2001); the positive phase of ENSO ("El Niño conditions) tends to be associated with above average precipitation during the short rains (October – December) over Mt. Kenya. Similarly, enhanced precipitation over east Africa occurs during positive IOD events usually associated with cool SSTs in the eastern Indian Ocean and warm SSTs in the western Indian Ocean. This causes alterations in the normal convective atmospheric circulation patterns over the eastern Indian Ocean resulting in heavy rainfall (Nicholson 2001; Marchant et al. 2006; Tierney et al. 2013). Uncertainty still exists on the role of the Indian Ocean in the long-term regional climate dynamics.

In Equatorial Africa, regional temperatures are moderate (around 15 °C – 30 °C) except in areas along the Arid and Semi-Arid regions (ASAL) and the East African coast where a hot and humid climate is witnessed. On Mt. Kenya, the annual-mean maximum temperatures are 26 °C at the foothills decreasing to 2 °C at the nival zone. Diurnal variations in temperature are pronounced with daily temperatures commonly fluctuating between 20 °C at the foothills and 14 °C at the tree line (Camberlin et al. 2012). Generally, the area around Mt. Kenya does not show marked seasonal variations in temperature due to its location at the equator, but does exhibit strong altitudinal gradient (Thompson 1965; Camberlin et al. 2012), up to 1 °C per 100 m (Camberlin et al. 2012).

The present-day vegetation of East Africa covers a wide range of ecological and climatic conditions on the basis of rainfall and altitude. The distribution of the vegetation around Mt. Kenya is influenced by rainfall and temperature regimes. Seven broad ecological zones linked to the annual rainfall timing, altitude, duration and intensity of dry seasons have been identified. These zones are: the alpine zone (alt > 3650 m asl), the highlands (alt 1800 – 3650 m asl; rainfall > 1000 mm), the moist (alt 1100 – 2000 m asl; rainfall > 625 -1000 mm) and dry (alt 760 – 1800 m asl; rainfall 400 – 625 mm) woodland and grassland belts, the dry (alt. < 1060 m asl; rainfall 250 – 400 mm) and arid (alt < 760 m; rainfall < 250 mm) bush lands and the coastal zone (rainfall > 1,000 mm) (Coe 1967; Coetzee 1967; Hamilton 1982; Street-Perrott and Perrott 1993; Olago 2001). Unlike the lowland ecosystems that are extensive and marked by transitional boundaries, mountain ecosystems have different ecozones due to pronounced temperature variations, atmospheric CO<sub>2</sub> concentration, precipitation, soil moisture indices and solar radiation; which are linked to cloud cover, annual rainfall and altitudinal changes (topography and aspect) (Coetzee 1967; Coe 1967; Hamilton 1982; Olago 2001).

A generalized and widely accepted classification of montane ecozones from studies of individual East African mountains identifies three distinct belts: The Montane forest, Ericaceous and Afro alpine belts (in ascending order), however, not all individual zones are necessarily present in each of the East Africa mountains. Broad-leaved hardwood trees and conifers characterize the montane forest, whereas small leaved trees and shrubs are prominent in the ericaceous zone. The Afro-alpine belt is located above the upper limit of the ericaceous belt, and is represented by giant groundsels, shrubs and grasslands (Coe 1967; Coetzee 1967; Hamilton 1982). Although giant groundsels are common in the Afro-alpine belt, they are not

restricted to this zone alone. In some mountains, like the Ruwenzori and Mt. Elgon, they are distributed within the Ericaceous belt as well (Hamilton 1982).

The altitudinal variations in the vegetation assemblages of the Montane ecozones differ considerably on the wet and dry sides of mountains on the basis of moisture availability, presence and extent of vegetation cover, aspect, vegetation disturbance, temperature and human induced or natural competition (Hamilton 1982). Livingstone and Clayton (1980) noted that the grasses present in the high-altitude regions (>2000 m asl) are largely C<sub>3</sub> while those present on the low altitude ranges are C<sub>4</sub> supported by about 10% of C<sub>3</sub> plants, although in exceptional cases C<sub>4</sub> grasses are present up to 3200 m asl and 4000 m asl in select areas of Mt. Kenya (Tieszen et al. 1979; Hamilton 1982; Wooller et al. 2003).

At the foothills, the cultivation/pastoral zone is present between 1000 – 2000 m asl (Figure 2-9). The vegetation of this zone in strongly controlled by land use activities. In its lowest altitude and drier parts, up to ~800 m asl, it consists of *Acacia-commiphora* deciduous bushland and thicket, where the canopy cover is less than 40% (Hamilton 1982). South of the mountain (up to 1400 m asl) evergreen and semi-evergreen bushland dominate the lower altitude while the higher altitudes are dominated by wetter species such as *Juniperus procera*, *Acacia*, *Allophyllus africanus*, *Croton dichogamus*, *Cussiona holstii*, *Euphorbia candelabrum*, *Olea europea*, *Vepris simplicifolia*, *Vernonia brachycalyx* (Coetzee 1967). North of the mountain, *Acacia* wooded grassland (up to ~1800 m asl) is dominant while along the streams trees such as *Syzygium cordatum*, *Podocarpus gracilior* and *Erica arborea* are present (Coetzee 1967).

The montane forest zone lies between 1980 – 3000 m asl and is the dominant vegetation zone on the western, eastern and southern sides of the mountain (protected in the Mt. Kenya National Park). There's a gap on the northern side that is covered by grass, *Ericaceae* and *Protea* scrub and scattered trees (Coetzee 1967). The forest is distinguished into two types; the humid and dry forests (Figure 2-9). The north eastern, eastern and southern slopes comprise *Camphor, Myrica salicifora, Prunus, Macaranga kilimandscharica* and patches of *Podocarpus milanjianus*. The humid forest reaches its maximum development in the southeast sector. The dry montane forest consists of *Cedar, Podocarpus milanjianus, Olea africana,* and *Cassipourea malosana*. The species present at the lower edge of the forest are shorter and less diverse consisting mainly of *Podocarpus milanjianus* and other dry tree species such as *Juniperus procera, Olea hochstetteri* and *Olea chrysophylla* (Baker 1967; Coe 1967; Coetzee 1967; Hamilton 1982).

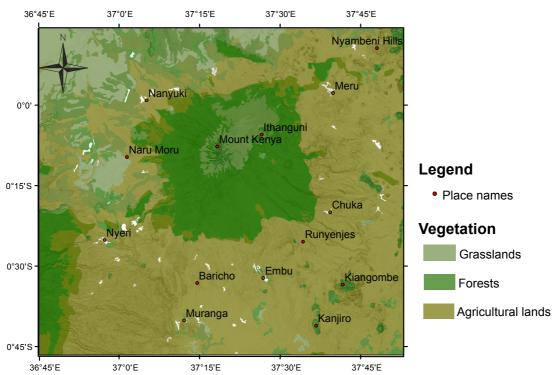



Figure 2-9: The vegetation distribution within the Kenyan highlands (Plotted data obtained from WRI 2007)

At higher altitude, *Arundinaria alpina* (bamboo) is present between 2800 – 3300 m asl on the south eastern slopes while a mosaic of bamboo and *Podocarpus milanjianus* occurs at intermediate intervals. Towards the west and north of the mountain, bamboo becomes less dominant; on the northern slopes there is no bamboo and the montane forest is poorly developed with open gaps. On the western and eastern slopes of the mountain, a well-defined narrow zone of *Hypericum* and *Hagenia abyssinica* is found at 2900 – 3300 m asl (on the east) and 3200 m asl (on the west) of the mountain. Bamboo abundance declines at higher altitude while *Cliffortia nitidula, Afrocrania volkensii, Dombeya goetzenii* and *Agaurea salicifolia* start to emerge (Coetzee 1967).

At 3,000 – 4000 m asl the ericaceous zone is present. The lower part of the zone near the edge of the montane forest comprises *Philippia keniensis*, *Philippia excelsa*, *Philippia johnstonii* and *Stoebe kilimandscharia* as the dominant species (Coe 1967; Coetzee 1967). This progresses to the shrubby moorland vegetation characterized by *Philippia trimera*, *Erica sp.*, *Helichrysum sp.* and giant groundsel (Baker 1967). The upper margin of the ericaceous zone is not well defined although patches of 'heather' persist up to *ca.* 4,100 m (Baker 1967).

Notably, the maximum extension of the zone from northeast to the southeast coincides with the highest rainfall recorded above the montane forest (Coe 1967).

Towards the top of the mountain, the Alpine zone marks the thermal limit of plant growth and vegetation transition that culminates in a narrow nival zone. This zone is characteristically marshy and is marked by the presence of *Dendrosenecio* and *Alchemilla* shrubs, *Helichrysum*, and mosses and lichens on the surface of weathered rocks (Baker 1967; Coe 1967; Coetzee 1967). The Alpine zone is divided into two; the upper and lower Alpine zones. The upper Alpine zone represents an area that has undergone solifluction and frost heaving due to climate extremes that have influenced the present-day vegetation composition (Baker 1967; Coe 1967). This upper zone contains sedges, grasses, thistles and species such as *Arabis alpine, Senecio keniophytum, Lobelia telekii and Helichrysum sp.* that persist up to 4600 m asl in scattered patches and damp ground characterized by *Senecio brassica, Lobelia keniensis* and tussock grass, whereas *Alchemilla* occupies the drier better-drained areas that characterize the lower Alpine zone (Baker 1967; Coe 1967).

The grasses in the area display altitudinal variations linked to their photosynthetic pathways (Tieszen et al. 1979). Generally, nearly all are associated with C<sub>4</sub> photosynthetic pathways and low moisture content at lower altitudes less than 1500 m asl (Tieszen et al. 1979; Ficken et al. 2002; Wooller & Agnew 2002). A decline in C<sub>4</sub> is encountered with increasing altitude in response to both drought stress and altitude related temperature decline. On Mt. Kenya, this is evidenced at the *Hagenia – Hypericum* zone where a mixed C<sub>4</sub> and C<sub>3</sub> habitat is present on the northern slopes. Below this zone, C<sub>4</sub> plants dominate, and above it, the C<sub>3</sub> grasses are present (Tieszen et al. 1979; Livingstone & Clayton 1980; Ficken et al. 2002; Wooller & Agnew 2002).

#### 2.2.4 Soils of the Mt. Kenya Area

The soils on the slopes of Mount Kenya are derived from volcanic rocks. The distribution of the soils varies with altitude as evidenced by the bare rocks with patches of dry sandy loam soils rich in organic matter on the mountain top; humic silty loam and in some instances, poorly decomposed organic matter on the upper slopes; and clay loam and clays on the lower slopes (Figure 2-10). On the foothills of the mountain, red friable clays (Latosolic soils) have influenced the cultural use of the soil for either crop cultivation or cattle rearing (Speck 1982). The deep humic topsoils of this zone are dark reddish-brown with 3 - 7% carbon in the A horizon which overlies blocky friable clay. Red friable clays, dark clays and brown loams

characterize the montane forest zone while the *Hagenia – Hypericum* and ericaceous zones are predominantly composed of dark peaty loams characteristic of lower rainfall (Olago 1995).

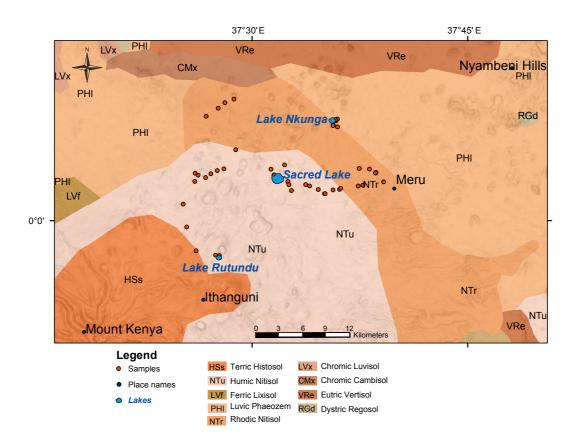



Figure 2-10: Generalized soil map of the study area (Data derived from SOFTWIS database

### 2.3 The Utility of Multiproxy Datasets in Palaeoenvironmental Reconstruction

#### 2.3.1 Crater Lakes and Lake Sedimentary Records in Mt. Kenya

Widespread proxy records for climate change in East Africa have been obtained from lake sediments. Proxy records from East Africa provide an understanding of climate and environmental dynamics especially in a region where instrumental and documentary histories older than 100 years are lacking or are discontinuous in most cases (Nicholson 2001). These archives have proven vital to palaeoenvironmental reconstruction as they provide continuous chronological records that integrate ecosystem changes for both local and regional environmental changes. They are also the only way to establish a robust "natural background reference signal" to further estimate the magnitude of present-day and future climate and land use impacts on the environment. This thesis examines lake sediments from crater lakes on Mt. Kenya. Crater lakes are a category of lakes formed in an explosion crater or volcanic vent and are fed by rainfall and/or by underground water and springs (most crater lakes originate from phreatomagmatic volcanic activity involving underground aquifer). A newly formed volcanic crater is generally steep-sided and may contain a deep lake with little fringing vegetation. These lakes are short-lived water features and as time passes, sediment is washed from the steep crater walls and the lake becomes shallower. This increases colonization by vegetation thus evolving into a swamp. These lakes have small, closed, well-defined catchments (their surface is typically <1 Km<sup>2</sup>) with simple basin morphology, and continuous sedimentation, that act as excellent high-resolution sensors of past climate variability and environmental changes (Battarbee 2000; Lamb et al. 2000). Closed lake basins are hydrologically sensitive to climatic fluctuations. Variations in the lake levels and lake chemistry in response to differences between input (precipitation) and outputs (evaporation and evapotranspiration) during seasonal, interannual or long-term climatic fluctuations are reflected in the lake sediments (Gasse et al. 2000). Further, the hydrogeological setting of crater lakes simplifies the relationship between lake hydrology and climate history (Gasse 2000; Verschuren 2001) making the selected sites for this thesis ideal for high resolution palaeoclimate and palaeoenvironmental reconstruction.

#### 2.3.2 Holocene Multiproxy Datasets from the Crater Lakes of Mt. Kenya

Various proxy records from Mt. Kenya exist from swamps, crater lakes, glacial lakes and valleys (Table 2), and provide a good overview of the Quaternary studies in East Africa; however, the data often does not provide detailed and highly resolved records of variability during the Late Holocene which is the focus of this thesis. Much of the previous work conducted on the swamps, glacial and crater lakes, and valleys (Table 2) on Mt. Kenya has been based on vegetation reconstruction through pollen and stable isotope analysis as indicators of climate induced ecosystem changes (Coe 1967; Coetzee 1967; Perrott 1982; Olago 1995; Rucina et al. 2009; Mustaphi et al. 2017).

The early to mid-Holocene transitions (10,560 to 6,000 <sup>14</sup>C yr. BP) is marked by a transition from arid to humid conditions with ecosystem changes characterized by increasing forest vegetation including invasion by woody and subalpine shrubs at higher altitudes (Street-Perrott et al. 2007). A decline in ericaceous vegetation at mid-altitude (Sacred Lake) and diminishing grassland fires (Coetzee 1967; Olago 2001; Street-Perrott et al 2007) is also noted. These wetter and warmer conditions are also marked by changes in the  $\delta^{18}O_{diatom}$  signal from Simba Tarn and Small Hall Tarn (Barker et al. 2001). Burnt Chloridoid-type (*Acrachne*) grass cuticles in Lake Rutundu (Wooller et al. 2003) point to a very dry episode at 7,980 <sup>14</sup>C yr. BP. The warmer and wetter conditions persisted to *ca*. 6,000 to 5,000 <sup>14</sup>C yr. BP. There is pronounced resurgence of *Hagenia* and decline in *Gramineae* (characteristic of grasslands) at Sacred Lake where the forest vegetation moved up displacing the bamboo zone to a higher altitudinal range on the mountain reaching a maximum *ca*. 4,000 <sup>14</sup>C yr. BP (Coetzee 1967; Street-Perrott & Perrott 1993).

A decline in *Polysica, Ilex, Macaranga, Afrocrania* and *Schefflera,* a rise in *Podocarpus, Hagenia* and *Poaceae,* and large size charcoal classes, mark a transition from the warm and wet conditions to drier conditions from *ca.* 6,500 - 4,000 <sup>14</sup>C yr. BP at Rumuiku swamp (Rucina et al. 2009). On Simba and Small Hall Tarn, diatom records indicate minimum  $\delta^{18}O_{diatom}$  *ca.* 6,700 - 5,600 <sup>14</sup>C yr. BP (Barker et al. 2001) indicative of drying during this period. The expansion of C<sub>4</sub> grasses at Sacred Lake and Lake Rutundu marks the onset of drier conditions *ca.* 4,500 - 4,000 <sup>14</sup>C yr. BP (Coetzee 1967; Perrott 1982; Wooller et al. 2000). Generally, drought conditions *ca.* 4,000 <sup>14</sup>C yr. BP are observed on Mt. Kenya (Coetzee 1967, Street-Perrott and Perrott 1993) as evidenced by the sharp rise in *Podocarpus* at Sacred Lake and Hohnel Valley Mire shortly after 4,000 yr. BP. At Kiluli swamp relatively dry conditions

characterized by the lack of diatoms and  $C_3 - C_4$  mixed vegetation are recorded *ca*. 3,970 <sup>14</sup>C yr. BP (Olago et al. 2003).

| Site                  | Elev.<br>(m asl) | <b>Biogeochemical proxies</b>                                                     | Age range<br>( <sup>14</sup> C yr. BP) | References                              |
|-----------------------|------------------|-----------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|
| Simba Tarn            | 4595             | Diatoms, O isotopes                                                               | 8,500 - Present                        | Barker et al. 2001                      |
| Oblong Tarn           | 4370             | Pollen, LOI                                                                       | 5,300 - Present                        | Mustaphi et al. 2017                    |
| Hausberg<br>Tarn      | 4360             | O isotopes                                                                        | 4,000 - 1000                           | Barker et al. 2001                      |
| Hobley<br>Valley Mire | 4265             | Pollen                                                                            | 5,500 - Present                        | Perrott 1982                            |
| Small Hall<br>Tarn    | 4070             | O isotopes, diatoms, pollen                                                       | 14,000 - Present                       | Barker et al. 2001                      |
|                       |                  | C isotopes, biomarkers                                                            | 14,000 - Present                       | Street-Perrott et al. 2004, 2007        |
| Lake<br>Rutundu       | 3088             | Pollen                                                                            | 38,300 - Present                       | Swain 1999                              |
|                       |                  | Diatoms                                                                           |                                        | Barker et al. 2000                      |
|                       |                  | %C, C isotopes, n-<br>alkanes, pollen                                             | 38,300 - Present                       | Ficken et al. 1998, 2002                |
|                       |                  | Grass cuticles, c isotopes, pollen                                                | 38,300 - Present                       | Wooller et al. 2003                     |
|                       |                  | Biogenic Silica                                                                   | 18,500 - Present                       | Barão et al. 2015                       |
| Sacred Lake           | 2350             | Pollen                                                                            | 33,300 - Present                       | Coetzee 1967                            |
|                       |                  | Diatoms, mineral<br>magnetics, Stable C, %C,<br>U/Th dating, Mineral<br>magnetics | 115,000 - Present                      | Olago 1995; Olago et<br>al. 1999, 2000. |
|                       |                  | Stable C                                                                          | 115,000 - present                      | Street-Perrott et al. 1997, 2004        |
|                       |                  | Organic geochemistry                                                              | 115,000 - present                      | Huang et al. 1999a,<br>1999b            |
|                       |                  | Grass cuticles (~0.93)                                                            | 40,000 - present                       | Wooller et al. 2000                     |
|                       |                  | Leaf waxes                                                                        | 2,000 - present                        | Konecky et al. 2014                     |
|                       |                  | Organic geochemistry                                                              |                                        | Loomis et al. 2012                      |
| Rumuiku<br>Swamp      | 2160             | Pollen, microscopic<br>charcoal                                                   | 27,000 - Present                       | Rucina et al. 2009                      |
| Lake Nkunga           | 1780             | Organic geochemistry,<br>stable C, pollen                                         | 40,000 - Present                       | Ficken et al. 1998                      |
|                       |                  | Mineral magnetics/IRM, pollen, diatoms, Stable C                                  | 130,000 - Present                      | Olago 1995; Olago et al. 1999, 2001     |
| Kiluli<br>Swamp       | 1390             | Mineral magnetics, %C,<br>%N, stable C                                            | 4,000 - Present                        | Olago et al. 2003                       |

 Table 2: A summary of previous palaeoenvironmental studies on Mount Kenya based on a range of different proxies.

Note: Elev – elevation,  ${}^{14}C$  yr. BP  $-{}^{14}$  carbon years before present

Alternating wet and dry intervals on Mt. Kenya mark the Late Holocene (5,000 <sup>14</sup>C yr. BP to present). Very high values of Podocarpus and other montane forest elements (Olea, Macaranga, Pygeum, Neoboutonia, Galiniera and Celtis) indicate the development of montane rain forest at Sacred Lake ca. 3,285 <sup>14</sup>C yr. to present (Coetzee 1967; Olago 1995) while at Kiluli swamp, increase in organic matter (OM) inputs from vegetation encroachment and high diatom productivity marks the progressive development of swamp conditions and vegetation encroachment ca. 2,245 to 470<sup>14</sup>C yr. BP (Olago et al. 2003). These wetter conditions are interrupted by dry conditions as observed in the substantial decline of the  $\delta^{18}O_{diatom}$  at Simba Tarn (3,400, 2,800 and 1,300 <sup>14</sup>C yr. BP), Small Hall Tarn (1,900 and 1,300 <sup>14</sup>C yr. BP) and Hausberg Tarn (2,500 and 2,400 <sup>14</sup>C yr. BP) that imprint pulses of dry periods during the late Holocene (Barker et al. 2001). A decline in montane forest species is observed from 1100 to 415<sup>14</sup>C yr. BP at Oblong Tarn (Mustaphi et al. 2017). The establishment of the true swamp conditions at Kiluli swamp ca. 470<sup>14</sup>C yr. BP coincides with arid conditions at Lake Nkunga marked by the appearance of sedge *ca*. 510 <sup>14</sup>C yr. BP in the pollen data (Olago et al. 2003). Clear evidence of anthropogenic influence on Mt. Kenya is seen in the pollen records from Rumuiku swamp, where the expansion of grasslands, decline in forest taxa and the high accumulation of charcoal marks the conversion of the montane forest to an open forest (Rucina et al. 2009). These changes in the ecosystem assemblage coincide with the onset of agriculture in the region from ca. 500 <sup>14</sup>C yr. BP (Rucina et al. 2009). High incidences of charcoal occurrence linked to anthropogenic fires in the Kiluli swamp are recorded from 470<sup>14</sup>C yr. BP to present and there is also a shift in vegetation composition from C<sub>4</sub> to C<sub>3</sub> due to crop cultivation from 130 <sup>14</sup>C yr. BP reflecting the impact of human activities on the mountain (Olago et al. 2003). The presence of charcoal in sedimentary records are in most instances associated with forest clearance due to increased frequency of fires.

# 2.3.3 Overview of the Late Quaternary in East Africa from Multiproxy Records

# 2.3.3.1 Last Glacial Maximum (LGM) History of East Africa

The palaeovegetation records from high altitude sites in the tropics display synchronous zonal and altitudinal migrations worldwide, implying globally significant impacts of climatic change on these biomes (Taylor 1990; Olago et al. 1999; Olago 2001). The pollen records of the LGM from the East Africa highlands display similar trends to those observed in other high-altitude sites in tropical South America and Australasia. In these areas, significant altitudinal and zonal migrations of vegetation assemblages have been recorded with a maximum depression of

vegetation in the highlands during the last glacial. This trend is concurrent with evidence of tropical glacier advances in high altitude regions linked to changes in atmospheric circulation, surface temperatures and ocean evaporation rates (Taylor 1990; Ficken et al. 1998; Olago et al. 1999; Olago 2001; Ficken et al. 2002; Wooller et al. 2003).

The LGM is an important climate marker as it represents a period when vast ice sheets were present in North America, northern Europe and Asia, reaching their maximum extent before the commencement of deglaciation. The expansion of these ice sheets triggered climatic impacts such as droughts, desertification and a drop in the sea level. These records are well represented in the northern hemisphere where the ice sheets are present. These aridity events are recorded at *ca*. 128,000  $^{14}$ C yr. BP and between 114,000  $^{14}$ C yr. BP and 97,000  $^{14}$ C yr. BP during the Late Quaternary in East Africa (Cohen et al. 2007; Trauth et al. 2007; Gasse et al. 2008; Garcin et al. 2009). The longest palaeovegetation records from the East Africa highlands is from Sacred Lake (Mt. Kenya) and Rukiga highlands (Uganda) that span 115,000 yr. BP and 42,000 yr. BP respectively (Coetzee 1967; Olago 1995; Street-Perrott et al. 1997; Olago et al. 1999). Prior to 42,000 <sup>14</sup>C yrs. BP, the records from Sacred Lake imply an unstable vegetation assemblage comprising of ericaceous and humid forest belt taxa displaying shifts of the vegetation zones (Coetzee 1967; Olago 1995; Olago 2001). A Hagenia and Olea dominated pollen assemblage marks the transition from relatively dry to humid conditions between 42,000 and 34,000 <sup>14</sup>C yr. BP at Sacred Lake (Olago 1995). At the Aberdares range (west of Mt. Kenya), Lake Abiyata (Ethiopia) and the Rukiga highlands (Uganda) dry climatic conditions showing an altitudinal depression of the vegetation between 32,000 and 30,000 <sup>14</sup>C yr. BP evidenced by the expansion of C<sub>4</sub> grasses and a decline in the forest taxa until ca. 22,000 yr. BP mark the beginning of the LGM (Lezine 1982; Perrott 1982; Bonnefille et al. 1990; Olago 2001; Street-Perrott et al. 2008)

Although the LGM aridity is observed across different sites in East Africa, there are intervals of enhanced moisture transport from the Indian Ocean within this period. This trend is unlike in other parts of continental Africa where dry conditions prevailed throughout the LGM (Street-Perrott & Perrott 1993; Gasse 2000; Garcin et al. 2006; Vincens et al. 2007; Gasse et al. 2008; Tierney et al. 2011). Records of the LGM from East African lakes indicate low stands for most lakes (Victoria, Tanganyika, Malawi and Rukwa) attributed to low sea surface temperatures resulting in less moisture transport to the continent due to reduction in the monsoon effect

(Talbot & Livingston 1989; Gasse 2000; Gasse et al. 2002; Stager et al. 2002; Barker et al. 2003; Barker & Gasse 2003; Cohen et al. 2007; Stager & Johnson 2008; Liu et al. 2013).

Studies from south eastern Africa reveal that this area was not particularly dry during the LGM as their records reflect a consistently moist period with sufficient forest cover that may be as a consequence of the influence of the Indian Ocean (Garcin et al. 2006; Mumbi et al. 2017; Tierney et al. 2013). Synchronous expansion of C<sub>4</sub> grasses and fire tolerant plants is recorded across the tropics in East Africa, West Africa and Southern India during the LGM (22,000 -14,000 <sup>14</sup>C yr. BP). This expansion of the grasslands at the expense of lowland forests (in the lowlands) and the expansion of grasslands, depression and fragmentation of high altitude vegetation zones in the highlands during this period suggests progressive aridity at this interval (Aucour et al. 1994; Huang et al. 1999; Olago 2001; Ficken et al. 2002; Rucina et al. 2009). Several sites exemplify these synchronous changes in the East Africa highlands where large altitudinal migrations of vegetation belts are observed: in Rukiga highlands the dry montane shrub persisted; on Mt. Elgon a decline in the extent of the forest is recorded; from the Cherangani hills the establishment of Afro alpine vegetation is recorded; from Sacred Lake a lowering of altitudinal vegetation is recorded; from Lake Nkunga there is expansion of C<sub>4</sub> plants and other dry forest species; and from Lake Rutundu an expansion of grasslands and ecosystems similar to afro alpine vegetation is observed. Records from Sacred Lake, Lake Rutundu and Rukiga highlands indicate slight increase in humidity marked by expansion of montane forest at *ca*. 14,000 <sup>14</sup>C yr. BP during this dry climatic period. The pollen derived temperature estimates from multivariate statistical analysis provides an average temperature depression estimate of 4 °C, 4 °C  $\pm$  2 °C and 4.2 °C  $\pm$  3.6 °C from Sacred Lake, Kashiru swamp and Lake Tanganyika, respectively, during the LGM (Coetzee 1967; Hamilton 1982; Bonnefille et al. 1990; Taylor 1990; Olago 1995; Olago et al. 1999; Huang et al. 1999; Street-Perrott et al. 2004; Olago 2001; Ficken et al. 2002; Rucina et al. 2009).

## 2.3.3.2 The Last Glacial – Interglacial Transition: Period between LGM and Holocene

During the deglaciation period, the East African lakes began to fill up from *ca*. 15,000 <sup>14</sup>C yr. BP (Gasse 2000; Trauth et al. 2007; Edwards 2013) although records from Lake Victoria mark a desiccation event at between 15,900 and 14,200 <sup>14</sup>C yr. BP coinciding with the weakening of the Afro-Asian monsoons, tropical droughts and cooling at higher latitudes (Stager et al. 2002). The LGM-Holocene climatic transition displays stepwise increments in atmospheric CO<sub>2</sub>, moisture and temperature. Stable carbon isotope data from Sacred lake mark a transition to

warmer climate *ca*. 14,000 <sup>14</sup>C yr. BP while the abundance of *Artemisia* and *Cliffortia* in the pollen record after 14,050 <sup>14</sup>C yr. BP imply accentuated dry conditions that reached maximum aridity at 13,500 <sup>14</sup>C yr. BP (Coetzee 1967; Street-Perrott & Perrott 1993; Huang et al. 1999; Olago 2001). Temporal correlations are observed in the pollen records of the Burundi highlands where the stable carbon isotope records at *ca*. 15,000 <sup>14</sup>C yr. BP and 12,000 <sup>14</sup>C yr. BP display shifts from C<sub>4</sub> to C<sub>3</sub> dominated vegetation (Coetzee 1967; Aucour et al. 1994; Olago 1995; Olago et al. 1999; Olago 2001; Huang et al. 1999; Street-Perrott et al. 2004). From *ca*. 12,000 yr. BP – 10,000 <sup>14</sup>C yr. BP a period of climatic transition to warmer and wetter conditions is observed across various sites in East Africa (Coetzee 1967; Hamilton 1982; Vincens 1986; Olago 2001). The abundance of *Hagenia* and the spread of C<sub>3</sub> plants especially the sub alpine shrubs in the pollen records from Lake Rutundu mark increases in moisture while at Sacred Lake a reduction in *Poaceae* and montane forest taxa coincides with an increase in atmospheric temperature (Coetzee 1967; Hamilton 1982; Huang et al. 1999; Olago 2001; Ficken et al. 2002).

### 2.3.3.3 The Holocene Period

The conditions of the early Holocene are characterized by progressive humidity recorded in the expansion and diversification of forest in moisture rich assemblages across the various sites in East Africa (Coetzee 1967; Lezine 1982; Vincens 1986; Hamilton 1982; Huang et al. 1999; Olago 2001). Hydrological changes of large amplitude are observed in Lakes Tanganyika, Victoria and Albert that overflowed and supplied the Congo and Nile rivers, respectively (Gasse 2000). Although a general trend of progressive moisture increase was recorded during this period, there were large climatic fluctuations superimposed on the trend, such as short-lived return to arid conditions in sites like Lake Victoria, where a short decline in forest development and diversity is recorded at 10,000 <sup>14</sup>C yr. BP. In the highlands, the regression of montane forest and afro-alpine vegetation before attaining their position similar to that observed today is noted (Coetzee 1967; Hamilton 1982; Huang et al. 1999; Olago 2001; Ficken et al. 2002; Street-Perrott et al. 2004).

Tropical forests achieve their maximum extension during the early Holocene period. The regional coherency of the early Holocene climate trends accompanied with progressive forest expansion indicates a transition from dry to wet climatic conditions including in the lowland sites such as in Lake Bogoria where a decline in *Gramineae* and *Cyperaceae* accompanied with

increases in arboreal pollen is observed; in Lake Naivasha where the *Olea – Podocarpus* dominant assemblage is recorded at 12,070 <sup>14</sup>C yr. BP and persists until *ca*. 6,500 <sup>14</sup>C yr. BP and in lake Tanganyika where *ca*. 12,000 <sup>14</sup>C yr. BP the establishment of open forests which achieved maximum species diversity at 10,000 <sup>14</sup>C yr. BP is noted (Hamilton 1982; Vincens 1986; Maitima 1991). Records from Sacred Lake indicate that while montane forest pollen becomes dominant from 10,560 <sup>14</sup>C yr. BP to *ca*. 6,000 <sup>14</sup>C yr. BP, this period is marked by decline in the ericaceous taxa and the establishment of the Afro-alpine grasslands in the pollen assemblage (Coetzee 1967; Hamilton 1982; Street-Perrott & Perrott 1993; Olago 2001).

A reconstruction of the climate regime in East Africa using modern analogues reveals that at *ca*. 6,000 <sup>14</sup>C yr. BP the vegetation assemblages north of the 3°S latitude represented a warmer and wetter climate coinciding with the Africa humid Period (Peyron et al. 2017). The Early to Mid-Holocene palaeoclimatic reconstruction paints a wet period with progressive drying events that were not synchronous in the region. Some prominent sites that have yielded transitions to drier conditions include Lake Malawi (10,000 <sup>14</sup>C yr. - 7,000 <sup>14</sup>C yr. BP), Mount Kenya (9,000 - 6,000 <sup>14</sup>C yr. BP) and Lakes Manyara, Magadi, Natron, and Bogoria within the rift valley where low stands are recorded around 6,000 yr. BP (Street-Perrot et al. 1993; Barker et al. 2001; Edwards 2013).

## 2.3.3.4 The Late Holocene in East Africa

The Late Holocene (~5,000 <sup>14</sup>C yr. BP to Present) follows the termination of the Africa humid period. Evidence of synchronous initiation of dry conditions is present in the lowland and highland sites in the East Africa region. The initiation of drier conditions at *ca*. 4,000 <sup>14</sup>C yr. BP across the region is marked by the replacement of wet montane taxa by dry montane taxa in the high-altitude regions, and by the abrupt drop of several lakes (e.g. Langano and Abijata in Ethiopia, Nakuru in Kenya). On Mt. Kenya a sharp rise in *Podocarpus* and other dry montane forest elements; more positive  $\delta^{13}$ C from Sacred lake and the presence of C4 from Kiluli swamp are observed (Coetzee 1967; Hamilton 1982; Street-Perrott & Perrott 1993; Olago 1995; Olago 2001; Ficken et al. 2002). The regional coherence of this trend is also observed at Kashiru swamp, Burundi *ca*. 4,500 <sup>14</sup>C yr. BP where stable isotope record shows increases in C4 plants (Aucour et al. 1994). The hot and dry condition persisted in the lowlands too where trees are replaced by herbaceous elements. This is marked in some sites e.g. a decline in arboreal pollen at Lake Turkana; the development of *Acacia* woodland at Lake Baringo; and the disappearance of lowland forest pollen assemblages at Lake Naivasha (Owen et al. 1982; Vincens 1986; Maitima 1991). This abrupt drying event has been linked to the dramatic weakening of monsoon circulation patterns in the tropics (COHMAP 1988).

The records of lake level changes (from the lowlands) and recent glacial retreats in the East African highlands provide evidence of the significant climatic changes during the past two millennia that is characterized as an arid period interrupted by brief wet episodes with rising lake level (Coe 1967; Hamilton 1982; Verschuren et al. 2000; Verschuren 2003, 2004; Konecky et al. 2014). An example is Lake Edward (Uganda) where century – scale droughts centred at 4,100, 2,000, and 850 <sup>14</sup>C yr. BP and numerous lesser droughts are present in its record (Russell & Johnson 2005). At the beginning of the second millennium (*ca.* 900 -700 <sup>14</sup>C yr. BP), low lake levels are recorded across the lakes in East Africa (Verschuren et al. 2000; Alin & Cohen 2003; Russell & Johnson 2005). Important climatic markers of significance during the Late Holocene are (i) the drier Medieval Climatic Anomaly – MCA (950-680 <sup>14</sup>C yr. BP) and (ii) the wetter Little Ice Age – LIA (680-100 <sup>14</sup>C yr. BP) which are recorded in the East Africa region (Verschuren et al. 2000; Cohen et al. 2006; Kiage & Liu 2009; Russell et al. 2009).

Precipitation anomalies experienced during the Little Ice Age and the Medieval Climatic Anomaly were controlled by Walker Circulation Anomaly localized over the Indian Ocean where wet conditions linked to cool Sea Surface Temperature (SST) in the eastern Indian Ocean and warm SST in the western Indian Ocean coupled with the atmospheric circulation over the eastern most part in East Africa lead to rainfall while the converse leads to droughts (Tierney et al. 2013). The Little Ice Age represents a wet period pulsed by dry events. The first half of the little Ice Age – LIA (700 - 400 <sup>14</sup>C yr. BP) represents the last maximum lake level high stands that are interrupted by an arid interval *ca*. 550 <sup>14</sup>C yr. BP. Although the second half is characterized as wet, lake level regressions associated with persistent droughts are recorded in lakes Turkana, Edward, Challa, Baringo, Victoria, Tanganyika and Naivasha (Nicholson 1998; Verschuren et al. 2009; Lamb et al. 2003; Alin & Cohen 2003; Russell & Johnson 2005; Edwards 2013; Kiage & Liu 2009; Verschuren et al. 2009; Edwards 2013). Other important wet intervals across the East African region are centred on 1450, 450, and 80 <sup>14</sup>C yr. BP which are linked to the Wolf, Spörer and Maunder minima in solar activity (Alin & Cohen 2003; Verschuren 2004; Kiage & Liu 2009).

The past two centuries have been unusually moist based on the entire record of the late Holocene although an extreme arid event between *ca*. 250 and 150  $^{14}$ C yr. BP is observed

(Russell & Johnson 2005). Lake level changes across equatorial east Africa display similarity in trends in the 19<sup>th</sup> and the 20<sup>th</sup> Centuries. Major lake level transgression is recorded during the 1890s followed by marked low stands in the 1940s – 1950s. An accelerated recovery of the lakes in the early 1960s is noted across the region following unusually heavy rainfall in 1961/1962. Currently, lake levels oscillate between continuously low to intermediate levels reflecting ENSO type cyclicities (Verschuren 2004; Russell & Johnson 2005).

# 2.4 Human Impact on Ecosystems during the Late Holocene in East Africa

The Late Holocene (5,000 <sup>14</sup>C yr. BP to Present) is characterized by changes in the natural environment linked to both climatic changes and human settlement expansion. This section looks at the individual records of human impact from various sites in East Africa where records show progressive changes of ecosystems due increasing population, migration and settlement of various communities that occur simultaneously with the expansion of grasslands and the development of open forests (both lowland and highland) (Kiage & Liu 2009; Rucina et al. 2009, 2010; Russell et al. 2009; Stoof-Leichsenring et al. 2011).

The human-environment interactions during this period are critical in understanding the global cultural impacts of societal development linked to land use changes recorded in soils, sediments and water (Roberts 1998). During this period, human populations progressed from being minor players in ecosystem modification to key influencers of the natural environment (Hamilton 1982; Roberts 1998). In East Africa, the expansion and settlement of the various ethnic groups: Bantus, Nilotes and Cushites into the region (around 2350 <sup>14</sup>C yr. BP) played a key role in the modification of the environmental resources at their disposal (Hamilton 1982; Roberts 1998).

Late Holocene records of human settlement and associated impacts on ecosystems in East Africa recorded in pollen, charcoal, spore and sediment geochemistry are linked to major land use changes. However, it is difficult to interpret these palaeoenvironmental records as it is difficult to isolate the climatic from anthropogenic signals in most cases (Lamb et al. 2003; Kiage & Liu 2009; Rucina et al. 2009, 2010), and in most cases the combination of palaeoenvironmental records with archaeological and historical studies is required to assess the impact of land use on ecosystems.

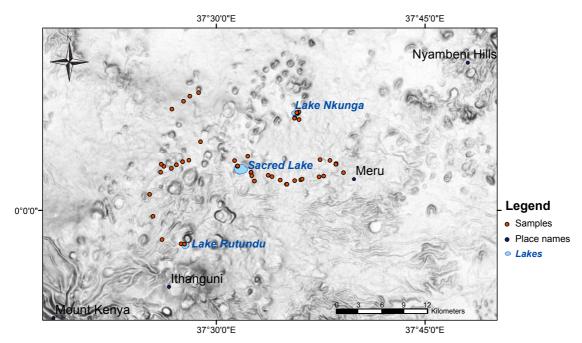
The first large-scale human influence is evidenced around 4000 <sup>14</sup>C yr. BP, associated with the introduction of domesticated livestock and the expansion of pastoral communities (Marchant

et al. 2018). However, as shown from a series of records, the first widespread and intensive forest clearances were synchronous with the arrival of iron-using communities around 2500 <sup>14</sup>C yr. BP, particularly in productive and easily-cleared mid-altitudinal areas (Marchant et al. 2018). In the Amboseli basin (Kenya), pollen records show progressive development of open forests associated with human settlement and the introduction of domesticated crops such as cereal, *Cannabis sativa* and castor oil plant alongside increases in charcoal from 1670 <sup>14</sup>C yr. BP which is recognized as an indicator of landscape modification by human activity (Rucina et al. 2010). In western Uganda, vegetation records from Lake Wakandara indicate a resilient ecosystem from *ca*.  $1250 - 950^{14}$ C yr. BP where the lake catchment is surrounded by C<sub>3</sub> plants despite century scale hydroclimatic changes recorded in the C<sub>4</sub> signature. Archaeological evidence from the surrounding catchment has linked this C<sub>4</sub> grassland expansion to forest clearing by the population ca. 950 <sup>14</sup>C yr. BP which coincides with the establishment of sorghum and millet farming in the arable lands of the catchment (Taylor et al. 1999; Ssemmanda et al. 2005; Russell et al. 2009). The clearing of catchment land cover for settlement and agriculture is recorded in the lake  $\delta^{15}N$  signal showing its enrichment *ca*. 810 – 770 <sup>14</sup>C yr. BP due to siltation derived from the land use changes rather than to climate variability (Taylor et al. 1999; Ssemmanda et al. 2005; Russell et al. 2009). The expansion of trading routes between the interior and the coast, starting around 1300 years ago and intensifying in the eighteenth and nineteenth centuries, played a key process in modifying the land cover in the region, spreading domesticated plants from East Asia such as banana, rice, taro and chicken earlier than ca. 800 <sup>14</sup>C yr. BP, or more recently south and central American crops such as maize, tomato or avocado (Marchant et al. 2018).

Micro-charcoal and fungal spores from a Lake Baringo record at *ca*. 120 <sup>14</sup>C yr. BP are linked to widespread pastoral activities and expansion of agricultural practices by agro-pastoralists (Njemps community) through land practices such burning, slashing or biomass burning to rid livestock of ticks and smoking of bees during honey harvesting is present in the historical records (Anderson 2002; Kiage & Liu 2009). Monitoring of *Glomus* spores (a terrestrial fungi that improves nutrient uptakes and makes crops disease resistant) as an indicator of soil erosion and land degradation implies increased human impact (by mid-19<sup>th</sup> Century) and improvement in land management practices through the soil conservation efforts introduced during the colonial period (Anderson 2002; Kiage & Liu 2009). Other records from the region that mark human modification of the landscape include Stoof-Leichsenring et al. (2011) who noted that increased sediment flow into Lake Naivasha between *ca*.130 – 54 <sup>14</sup>C yr. BP, was largely

influenced by natural climatic events documented in historical records of droughts and rainfall anomaly; however, there may be a minor influence from human activity (Verschuren et al. 2000; Nicholson 2001). A transitional period between *ca*. 54 - 12 <sup>14</sup>C yr. BP marked by eutrophication due to increase in total phosphorus concentrations in Lake Naivasha from 50 yr. BP (Verschuren 2004; Stoof-Leichsenring et al. 2011) is largely anthropogenic. In lake Bogoria, increase in clay content and high charcoal abundance from *ca*. 110 <sup>14</sup>C yr. BP coincide with land use changes in the catchment (De Cort et al. 2013).

# **3** METHODOLOGY


# 3.1 Methodology

This section documents the basis of the materials, techniques and research approaches utilised in this study. It further describes the acquisition of soil and sediment samples, processing of the samples, water content determination, stable isotope analysis, elemental Carbon - Nitrogen analysis, geochemical analysis and mineralogical analysis (carried out at ALYSES facility (IRD-UPMC); magnetic susceptibility analysis (carried out at CEREGE) and lipid biomarker extraction and analysis (carried out at METIS-UPMC). The techniques associated with the establishment of core chronology are also outlined.

# 3.1.1 Soil Sample Collection (Surface and Subsurface Samples)

80 surface and sub-surface soils were collected from the study sites in two field campaigns, one in 2011 and the other in 2013, from the selected lakes and the surroundings soils (Figure 3-1). The surface soil samples were collected using a spade while the sub surface samples were obtained using an auger. Two vertical soil profiles were sampled for analysis in this study. These profiles were obtained from Lake Nkunga viewpoint gate located at 0°6' N, 37°35' E and Sacred Lake area at 0°03'N, 37°31'E. These initial samples were collected in 2011. The Lake Nkunga soil profile and surface soil samples were obtained above the Crater Lake wall in a small clearing of the montane forest and within the crater itself. The soil profile and surface samples for Sacred Lake were obtained from the forest undergrowth north east of the lake, about 20 m from the lakeshore, where an opening to the lake is present.

In 2013 surface soil samples were collected along the Lake Nkunga to Lake Rutundu transect at every 100 m of altitudinal gain. These samples were preserved in resealable plastic bags and initially stored in the cold room at the University of Nairobi and the soil storage facility at ICRAF Soil and Plant laboratories. Later the samples were transported to the IRD laboratory in Bondy, France and stored in the cold room.



*Figure 3-1: Samples collected during fieldwork in 2011 and 2013 on the north-eastern slopes of Mount Kenya (red dots).* 

# 3.1.2 Lake Sediment Sample Collection

Fresh sediment cores were obtained from Lake Nkunga (Figure 3-2) and Sacred Lake (Figure 3-3) using a Wright stable piston corer in June 2013 operated from a rubber boat. The sediment cores collected were approximately 1 m below the water surface. The high compaction-level of the sediment led to the recovery of several short sections (two sections of 45 cm and 44 cm at Lake Nkunga, and six sections raging in length from 8 cm to 12 cm at Sacred Lake) taken successively to recover continuous upper sedimentary sequences. From Lake Nkunga, two core sections spanning a total depth of 89 cm (Figure 3-2) were obtained approximately 20 m from the lake shoreline: NKG-I-1 (45 cm) and NKG-I-2 (44 cm) at a water depth of 1.5 m.



Figure 3-2: Sediment cores from Lake Nkunga comprising two short sediment cores NKG-I-1-2013 an NKG-I-2-2013 each approximately 45 cm. One half of the sample was subsampled every 1 cm for sample preparation and analysis while XRF scanning was carried out on the other half of the core.

In Sacred Lake, the six successive core sections; SAL-I, SAL-II, SAL-III, SAL-IV, SAL-V and SAL-VI recovered constitute 63 cm (Figure 3-3) at a water depth of 1m. The cores were stored in the laboratory at 4° C. Once in the laboratory, core splitting was carried out using a clean thin fishing line. One half of the split core was then sub-sampled at every centimetre for the analyses presented in this thesis.

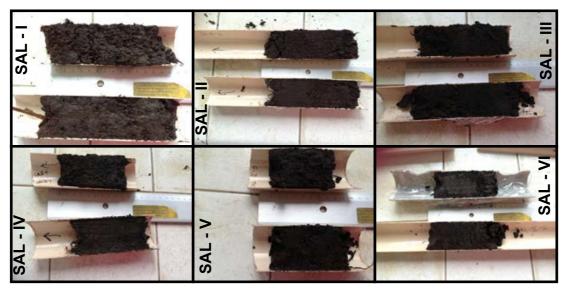



Figure 3-3: Six short cores of different sizes obtained from Sacred Lake that was analysed during this study. Total length is approximately 65 cm. Similarly, as carried out in the Lake Nkunga core, one half of the sample was subsampled every 1 cm for sample preparation and analysis while XRF scanning was carried out on the other half of the core.

A 100 m sediment core RP6 recovered from the centre Lake Rutundu using a gravity corer in 2009 by Prof. Olago (University of Nairobi), Prof. Verschuren (University of Ghent) and their team was also analysed. The core was archived at the University of Nairobi cold storage (4° C) and subsequently sub-sampled at 1 cm interval for the analysis carried out in this study.

## 3.1.3 Physical Parameters

The lithology of each core was described by colour (using Munsell colour chart) and texture. The samples from Lake Nkunga, Sacred Lake and Lake Rutundu were analysed for water content (W<sub>c</sub>), a fundamental parameter linked to the organic matter content. Lacustrine sediments with low water values are usually associated with high inorganic contribution to the bulk sediment. These samples were taken at every 1 cm through the core length, weighed ( $\pm$  0.001g) and oven dried at 35° C – 40° C for 48 hours until a constant weight was obtained, then allowed to cool at room temperature before being weighed again.

The water content was calculated as follows:

$$W_{c} = \left(\frac{M_{wet(g)} - M_{dry(g)}}{M_{wet(g)}}\right) x \ 100 \ \%$$

Where  $W_c$  is the water content,  $M_{wet(g)}$  is the mass of wet sediment in grams and  $M_{dry(g)}$  is the mass of dry sediment in grams.

#### 3.1.4 Grain Size Analysis of Soil Samples

To isolate the terrigenous mineral fraction, organic matter, calcium carbonate and biogenic silica, 100 mg of bulk soil sample was attacked using H<sub>2</sub>O<sub>2</sub> (30% at 50 °C for 3 to 4 days), HCl (10% for 12 hrs) and Na<sub>2</sub>CO<sub>3</sub> (1M at 90 °C for 3 hrs), respectively. Between each chemical treatment, samples were repeatedly rinsed with deionized water and centrifuged at 4000 rpm until neutral pH. The samples were sieved with a 200  $\mu$ m mesh in order to recover coarser particles; in this case <1 mg of total soils was recovered in the >200  $\mu$ m fraction in a few soil samples while in most samples this size fraction was missing. The analysis was carried out using an automated image analysis system (model FPIA3000, Malvern Instruments). The obtained particle sizes from the FPIA method are considered representative following their classification using GRADISTAT version 4.0 (Blott & Pye 2001), a particle size statistics program for laser granulometric data that runs on Microsoft Excel providing the full range of grain sizes in the soils using the Folk and Ward measures that provided a range of frequency and ternary plots of the various class particle sizes.

## 3.1.5 Radiocarbon Chronology

In order to provide age controls that would enable local, regional and global comparisons of the results of this study, down core <sup>14</sup>C measurements were carried out on selected samples from the 3 sediment cores. One gram of 19 bulk sediment samples and one identified charcoal sample were dried in the oven at 40° C for 48 hrs, weighed ( $\pm 0.001$ g) and submitted to "Laboratoire de Mesure du Carbone 14" in Gif sur Yvette (France) for <sup>14</sup>C AMS dating ( $\pm$  30 as indicated in sections 4.3.1.2, 4.4.1.2 and 4.5.1.2). The radiocarbon ages obtained were calibrated using IntCal13 calibration curve for the northern hemisphere (Reimer et al. 2013) using Clam version 2.2 (Blaauw 2010), which incorporates IntCal13 <sup>14</sup>C calibration curves from Reimer et al. (2013). An age-depth model was fitted through the obtained dates using Bacon software (Blaauw & Christen 2011) version 2.3, a Bayesian statistical program used to construct Bayesian accumulation histories for sediment deposits. Bacon divides the sediment core into several vertical sections and through millions of Markov Chain Monte Carlo (MCMC) iterations generates estimates of sedimentation accumulation rates for each section. The memory/coherency in the sediment accumulation rates along the core is based on how strongly the accumulation rate at each interval depends on the previous section and therefore produces stratigraphically ordered estimates. The selected Bayesian model provided realistic estimates of dates through the reduction of error ranges and removal of outliers from the obtained ages.

# 3.1.6 Mineral Magnetic Measurements

#### a) Rationale

One aspect of interest in this study was magnetic susceptibility which is defined as the quantitative measure of the extent to which a material may be magnetized in relation to a given applied field (Oldfield & Robinson 1985). Due to the interaction between subsurface processes and the biogeochemistry of iron and titanium magnetic minerals such as Fe-Ti oxides, sulphides or carbonates, the magnetic susceptibility and other mineral magnetic properties such as artificially imparted remanent magnetisations are applicable in the study of soil formation processes, slope evolution, drainage basin erosion and sedimentation and stratigraphic correlation in both deep sea and lake sediments (Oldfield and Robinson 1985; Olago 1995; Williamson et al. 1999). The main interest of such analytical method is (i) the ultra-high sensitivity of mass specific magnetic parameters (susceptibility and frequency dependence) to the iron content, (ii) the ability to perform non-destructive (and low cost) measurements in most cases, (iii) the short measurement time (a few seconds) enabling to multiply

measurements and to provide high resolution records of soil and sediment changes. The mineral magnetic measurements were carried out at the laboratory facility in CEREGE ("*Centre Europeen de Recherche et d'Enseignement des Geosciences de l'Environnement*") at Aix-en-Provence, France. The frequency-dependent and low field magnetic susceptibility was measured using the MFK1-FA multifunction Kappabridge by AGICO. Natural or artificially imparted remanent magnetisation was measured using a 2G cryogenic magnetometer which has a has a noise level less than 10<sup>-12</sup>Am<sup>2</sup> (Figure 3-4).

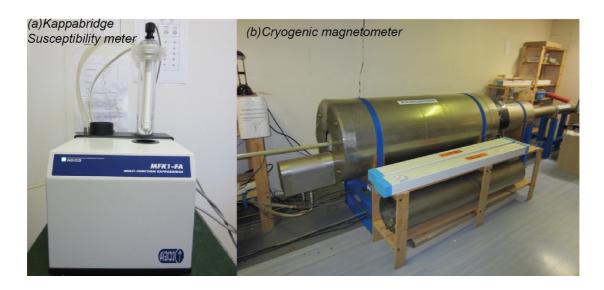



Figure 3-4: (a) The MFK1-FA Kappabridge multifunctional susceptibility meter used for frequency dependent magnetic susceptibility and the field dependent magnetic susceptibility measurements (b) The cryogenic magnetometer used to measure the remanent magnetisation.

The low field magnetic susceptibility is a measure of how easily a material can acquire an induced magnetisation. *Diamagnetic materials* have paired electrons in the electron shell and in the presence of an applied field results in a negative magnetic moment where the electron orbits become aligned anti-parallel to the external field, a common behaviour exhibited in materials rich in quartz, feldspars, calcite and water. *Paramagnetic materials*, unlike diamagnetic substances, are attracted to the applied magnetic field and are dependent on temperature. The magnetisation of these substances is lost when the external magnetic field is removed. Natural-iron bearing minerals such as olivine, pyroxenes, garnets, biotite and manganese exhibit this behaviour. In the case of *ferromagnetic materials*, the unpaired atoms that are present are closely and regularly spaced leading to a strong coupling that produce a permanent magnetisation commonly referred to as spontaneous magnetisation. This occurs

even in the absence of a magnetic field and is lost above a critical temperature known as *Curie temperature* which is specific to individual ferromagnetic material and above which the substances display paramagnetic behaviour.

The  $\% X_{fd}$  strongly depends on the occurrence of ultrafine (around 10 nm size, depending on the type of crystal) superparamagnetic grains and thus provide a "magnetic grain size and origin" indicator where low values of  $\% X_{fd}$  i.e. <2 % represent none or less than 10 % super paramagnetic (SP) grains, median values between 2 - 10 % represent a mixture of SP and coarser non-SP grains whereas high values between 10 - 14 % imply that virtually all the grains are SP ferrimagnets (Dearing 1999). Due to the relatively poor chemical stability of nanometric size minerals in the environment, the frequency dependence therefore strongly depends on specific processes leading to the (bio) precipitation and conservation of iron titanium oxides, such as microbial soil activity and its dependence on temperature, moisture and organic content. When preserved in moderately acidic conditions, it is therefore an excellent early diagenetic climate/paleoclimate proxy in soils and sediments.

The measurement of natural or artificially imparted remanent magnetizations in subsurface materials enables one to identify the occurrence of ferrimagnetic and antiferromagnetic remanence carriers (mostly iron oxides and sulphides) in subsurface materials. The intensity of remanence depends on the concentration of such minerals. Moreover, when combined with low field magnetic susceptibility (which depends on diamagnetic, paramagnetic and ferromagnetic components) and with frequency dependence (which depends on the superparamagnetic content), the natural and artificial remanences are good proxies of the magnetic mineralogy and magnetic grain size.

## b) Method for Magnetic Susceptibility

The measurement was carried out using a Kappabridge MFK1-FA multifunctional magnetic susceptibility meter at room temperature with an accuracy range within  $\pm 0.1\%$ . The sensitivity of this apparatus is such that it is able to correct for the errors that arise from the contribution of the plastic holder and container. For each sample, measurements were made at the initial frequency (F1; an operating frequency of 976 Hz), measuring field strength of 2 – 727 A/m (Pokorny et al. 2011). The initial magnetic susceptibility measurement (*k*) is defined as per unit volume of material and was converted to mass susceptibility (*x*) using the mass of the samples.

Frequency dependent magnetic susceptibility was carried out using 2 frequencies; F1 (operating frequency of 976 Hz, measuring field strength 2 - 700 A/m, measuring range of 0.9 SI units and a sensitivity of 4 x 10<sup>-8</sup> SI) and F3 (operating frequency of 15616 Hz, measuring field strength 2 - 200 A/m, 0.7 SI measuring range and a sensitivity of 12 x 10<sup>-8</sup>) as defined by Pokorny et al. (2011). The frequency dependency was then calculated as a percentage of the low frequency magnetic susceptibility using the formula below (Dearing et al. 1996):

$$x_{fd} = \left(\frac{x_{lf} - x_{fd}}{x_{lf}}\right) x \ 100 \ \%$$

Where  $x_{lf}$  and  $x_{hf}$  are the mass susceptibilities at the lower (F1) and higher (F3) frequencies respectively and  $x_{fd}$  is the percentage frequency dependency of the material. Blank samples were analysed at the beginning and after every five samples to monitor the integrity of the results obtained.

#### c) Method for Magnetic Remanence Measurements

The measurement of the remanent magnetisation was done using the 2G superconducting cryogenic magnetometer on discrete oriented soil and sediment samples. The cryogenic magnetometer is equipped with Superconducting Quantum Interference Device Sensors (SQUIDS) that allows for uniform demagnetisation and measurement of remanent magnetism in the sample through a 3-axis pass on the discrete samples after exposure to the magnetic fields at stepwise increments from 0 to 100 mT (Figure 3-4) with the total magnetic moment noise level less than 10<sup>-12</sup> Am<sup>2</sup>. The parameters that were obtained from this instrument include the Natural Remanent Magnetisation (NRM), Anhysteretic Remanent Magnetisation (ARM) and Isothermal Remanent Magnetisation (IRM) /Saturation Isothermal Remanent Magnetisation (SIRM) at 0 mT, 2.5 mT, 5 mT, 10 mT, 15 mT, 20 mT, 25 mT, 30 mT, 35 mT, 40 mT, 50 mT, 60 mT, 70 mT, 80 mT and 100 mT.

Generally, when a sample becomes magnetized, the magnetisation will remain parallel or very close to the induced fields. In order to determine the *Natural Remanent Magnetisation (NRM)*, oriented samples were introduced into the SQUIDS detector to enable the measurement of the strength of magnetisation of the natural materials. A magnetic pulse charger was then used to generate strong magnetic fields (at 30 mT and 100 mT), which alter

the magnetic intensity of the samples. After exposure to each successive magnetic field, the remanent magnetisation was measured.

The grain size dependent variables ARM<sub>30mT</sub>, SARM (ARM<sub>100mT</sub>) and concentration dependent variables IRM-300mT and SIRM (IRM1T) measurements were carried out on the soil and sediment samples at room temperature. In Anhysteretic Remanent Magnetisation (ARM) measurements, magnetic grains gradually become anhysteretic following the reduction of the alternating field (AF) in the prevailing direction. In this study ARM was achieved by applying alternating fields (30 mT and 100 mT) gradually decreasing amplitude on oriented samples using the magnetic pulse charger stepwise by saturating the samples with the highest intensity at 100 mT, followed by reversal at -30 mT and a final demagnetisation at -100 mT (Table 3). Isothermal Remanent Magnetisation (IRM) was carried out by progressively increasing the intensity of the magnetic fields followed by a reversal of this field. In this case, 300 mT field was applied on the samples followed by saturation at 1T and a reversal at -300 mT at room temperature. The assumption in this case is that the value obtained at IRM<sub>1T</sub> corresponds to a magnetic field strong enough to saturate both "soft" ferrimagnetic spinel in grains such as magnetite and maghemite, and "hard" poorly ferromagnetic, corundum structure magnetic minerals such as hematite or goethite. It is thus referred to as Saturation Isothermal Remanent Magnetisation (IRM). In contrast, the reversed magnetic field of -0.3 T would preferentially re-saturate the magnetization of soft minerals in a new direction. Duplicate samples were analysed at the beginning and after every 5 samples to monitor the integrity of the results obtained.

| Magnetisation | ARM     | IRM     |
|---------------|---------|---------|
| Step 1        | 100 mT  | 300 mT  |
| Step 2        | -30 mT  | 1 T     |
| Step 3        | -100 mT | -300 mT |

 Table 3: Induced magnetic field on sediment and soil samples using a pulse magnetizer from ARM and IRM measurements.

## 3.1.7 X-Ray Fluorescence (XRF) Analyses

#### a) Rationale

The XRF spectroscopy is a fast, non-destructive method that is widely used to provide highresolution geochemical profiles of all elements present within a sample in a very short period of time thus its utility as a powerful tool in palaeolimnology and land use processes. In this method, photoelectric fluorescence of characteristic x-rays (generated by accelerating electrons in a tube) from a sample is stimulated by irradiation of a primary source. The secondary energies generated are characteristic of the elements present in the sample. The method can be used to detect the elemental compositions of soil and sediments, which can be used to understand the interactions and linkages of the various elements to environmental changes.

#### b) Method

In the preparation of 19 discrete soil samples and 12 sediment samples from Lake Rutundu, 500 mg of sediments were homogenized using an agate pestle and mortar and compressed into pellets. On the other hand, whole core scans for the sediment from Sacred Lake and Lake Nkunga, were carried out on the U-channels. The samples were analysed using an ARTAX Brunker AXS x-ray Spectrometer suitable for multi-element analysis which offers a spatial resolution down to 70  $\mu$ m. The pellets were scanned at a high voltage of 50 kV under a current of 704  $\mu$ A at 60 seconds per spectrum while the cores were scanned at 1 mm resolution and 20 seconds exposure time per spectrum at 35 kV and a current of 1142  $\mu$ A. In order to ensure the integrity of the data, two discrete pellets and SAL – V section from the Sacred Lake core were used as duplicates to monitor the whole range of elements (detection limit 6 sigma; results below detection limit = 4 ppm) detected in the samples.

## 3.1.8 X-Ray Diffraction (XRD) Analyses

Bulk mineralogical analyses were carried out on selected 54 soil and 25 sediment samples that were treated with H<sub>2</sub>O<sub>2</sub> (for 3 – 4 days) to eliminate the organic matter content, and with HCl (10 % for 12 h) to eliminate any calcium carbonate present in the samples. The samples were then repeatedly rinsed with deionized water and centrifuged at 4000 rpm until a neutral pH was reached. These samples were then dried at  $35^{\circ} - 40 \,^{\circ}$ C for 24 hrs, sieved at 200 µm and homogenized into fine powder using agate pestle and mortar and 3 mg (± 0.001 mg) mounted in an aluminium holder for analysis.

For clay samples, 17 soil and 10 sediment samples from the inventory were elected for analysis. A drop of sodium metaphosphate was added to each sample to assist in the dispersion of particles; thereafter, the samples were allowed to settle in a 20 cm long tube for 2 hours after which 10 cm of the suspended material was collected. This settling step was repeated several times by adding more deionized water to the samples, which were then agitated, after which the sediments were allowed to settle until there were no suspended particles in the 10 cm section of the tube. The collected material suspended material was dried at  $35^\circ - 40^\circ$  C for 24 – 48 hours. The dry sample was homogenized and mixed with deionized water in 10 mm vials and mounted on a square (1 x 1 cm) slide in triplicate as follows:

- a) Untreated XRD mount i.e. normal oriented sample dried at room temperature overnight. This mount was used for identification of the illite group of clays which are distinguished by peaks at 10 Å, 5 Å and 3.33 Å. Overlaps with the peaks of quartz at 3.34 Å and iron rich clays at 5 Å led to the selection of the 10 Å peak as characteristic of the illite clays present;
- b) Glycolated XRD mount was dried at room temperature and later glycerol was added to the sample before analysis. This mount was used to identify the kaolinite group of clays which are distinguished by peaks at 3.57 Å and 7.2 Å. Whereas it is possible to have both chlorite (3.53 Å and 7 Å) and kaolinite in one sample, the 7 Å was selected for the identification of dehydrated kaolinite unaffected by glycolation; and
- c) Heated XRD mount was oven heated at 500° C for 3 hours. This mount was used to identify the chlorite clays which are distinguished by peaks at 14 Å, 7 Å, 4.72 Å and 3.53 Å due to their diverse properties. During the high heat treatment most of the chlorites collapse and the 14 Å peak was selected to be indicative of this group following the identification of the other groups of clays.

Both bulk and clay mineralogy of soil samples were analysed in 2012 at the IRD laboratory in Bondy using a Siemens D500 diffractometer (with a relative error of 1% corresponding to the counting statistical error) with Ni-filtered Cu K $\alpha$  radiation at 40 kV and 30 mA. Bulk samples as well as the < 2 mm fraction were scanned from 2° to 70° 2 $\theta$ , for 2 seconds every 0.02° in a rotating aluminium sample-holder. For the clay mineralogy, the oriented samples were scanned from 2° to 15° 2 $\theta$  with counting for 2 seconds every 0.02°. Both bulk and clay mineralogy of the sediment samples were analysed in 2014 at the IRD laboratory in Bondy, using a Panalytical X'Pert Powder diffractometer with Ni-filtered Cu K $\alpha$  operating at 40 kV and 40 mA with a relative error of 1% corresponding to the counting statistical error. The clay samples were scanned from 2° to 15° 20 with counting for 2 s every 0.02°. The semi-quantification of the bulk samples was carried out through the determination of the percentage of diffracted surface that can be attributed to individual peak areas of characteristic minerals. For the clay samples, the peak areas, though present, were too small for peak area characterization. In order to ensure the integrity of the data, five laboratory duplicates were mounted to monitor the whole range of mineralogy detected in the bulk and clay samples.

# 3.1.9 Elemental Carbon and Nitrogen and Stable Isotopes Analysis

## a) Rationale

The range of %C in lake sediments can range from <1 to 40% with the higher values reflecting an increase in %C input from OM in the watershed or increase in productivity of a lake (Meyers & Teranes 2001). The changes in %C can also be directly linked to the inorganic matter deposited where a decline in %C can be attributed to an influx of inorganic matter (Meyers and Teranes 2001). Further, microbial processes during sedimentation and burial may alter the amount of carbon present by reducing the %C content. A comparison of the %C to %N or C/N in sediments is a general indicator of OM deposited. Different plants have distinct C/N ratios: vascular land plants have a relatively high C/N ratio (above 20) while algae tend to have lower ratios that are typically below 10 (Meyers & Teranes 2001). By analysing the C/N ratio of lake sediments it is possible to make inferences as to the different OM sources.

 $\delta^{13}$ C is another useful proxy for the differentiation of the type of OM deposited in sediments (Meyers & Teranes 2001). There are two isotopes of carbon,  $\delta^{12}$ C (99% of all carbon) and  $\delta^{13}$ C (1%), whose different atomic masses and their relative abundance in sediments are dependent upon environmental, chemical and biological processes. The  $\delta^{13}$ C/ $\delta^{12}$ C value of plant material is affected by the concentration of  $\delta^{13}$ C in the environment, the photosynthetic pathway (C<sub>3</sub>, C<sub>4</sub> or CAM) used and the stomatal conductance of the plant (O'Leary 1988). In general, algae and C<sub>3</sub> vascular plants tend to have similar  $\delta^{13}$ C values (-30 to -25%) compared to C<sub>4</sub> plants, which have values of about -10% (Meyers & Teranes 2001). Aquatic macrophytes, on the other hand, have a wide range of  $\delta^{13}$ C values from -30 to -10% due to the varied environmental

conditions that lead to their production (Meyers & Teranes 2001). Emergent macrophytes tend to have more negative values closer to land plants while the submerged macrophytes tend to have values that are more positive than that of the algae and land plants (Meyers & Teranes 2001).

Nitrogen isotope is an indicator of past palaeoproductivity and availability of nitrogen to aquatic primary producers (Meyers & Teranes 2001). However, in lacustrine environments, nitrogen is less widely used in comparison to carbon isotopes. The  $\delta^{15}$ N ratio is representative of the isotopic discrimination of inorganic nitrogen in aquatic and terrestrial plants (Meyers & Teranes 2001) and the values represent the utilization of dissolved inorganic nitrogen by aquatic plants and nitrogen fixation by plants.

## b) Method

Sediment and soil samples from the three lakes and along the chosen transect were analysed for elemental C, N and the stable isotopes of C ( $\delta^{13}$ C) and N ( $\delta^{15}$ N). For Lakes Nkunga and Sacred, analysis was done on samples at every 1 cm, whereas for Lake Rutundu, the analysis was carried out every 2 cm. The soil and sediment samples were attacked using HCl to eliminate any carbonates that may have been present. These samples were later dried at 40° C for 24 hrs and ground using an agate pestle and mortar, weighed and encapsulated in tin boxes for the subsequent elemental and stable isotopes analyses. A total of 268 samples were analysed using a fully automated isotope analyser, the Thermoscientific Flash 2000 organic elemental analyser (C/N), coupled with Thermoscientific Delta V advantage isotope ratio mass spectrometry for  $\delta^{13}$ C and  $\delta^{15}$ N measurements. Reference material was used to monitor the accuracy of ranges detected at the beginning, after every 10 samples and at the end of the complete sample analysis.

## 3.1.10 Lipid Biomarker Analyses

## a) Rationale for n-alkanes

*n*-alkanes are hydrocarbon compounds of straight chain alkanes produced by a broad range of organisms and are relatively stable over time. Usually, higher plant leaf waxes contain  $C_{27}$  -  $C_{33}$  while algae and plants are dominated by  $C_{17}$  -  $C_{19}$  (Meyers & Ishiwatari 1993). The sources of sediments, environment of formation and organic matter diagenesis affect the composition of n-alkanes present in a sampled material. This has led to the development of indices such as

the Average Chain Length (ACL) (Maffei 1996) and Carbon Preferential Index (CPI) (Bray & Evans 1961) that are indicators of the source and evolution of organic matter in soils and in the palaeoenvironment (Cranwell 1973; Pancost & Boot 2004). Usually, higher plant leaf waxes contain long chain alkanes  $(C_{25} - C_{31})$  with a strong predominance of odd-over-even carbon number, which is expressed as CPI and reflects a terrestrial origin for organic matter (Collister et al. 1994). The microbial alterations of these shorter alkane compounds rarely preserve the odd-over-even predominance. Bacteria, on the other hand, produce C12 - C28 with no marked odd-over-even preference. The ACL of alkanes are used to differentiate between predominantly higher plants derived organic matter (OM) (ACL >25) and degraded or microorganism derived OM (ACL <25). This is because long chain n-alkanes are derived from terrestrial vascular plants that show predominance of odd-over-even carbon number, whereas degraded materials or the presence of microorganisms in organic matter display a predominance of even homologues. The odd-over-even predominance of n-alkanes is influenced by the maturity and biodegradation of organic matter leading to an increase or decrease of this index. Generally, high CPI values (>10) are typical of fresh higher plants, while values <10 indicate the degradation of organic matter or biomass rot. CPI values around 1 are characteristic of degraded organic matter and/or the presence of large amounts of microorganisms.

In order to supplement the information obtained from the ACL and CPI values, another index, the Terrestrial – Aquatic Ratio (TAR) (Cranwell 1973), is used to determine the extent of terrestrial and algal input of organic matter. This index compares the relative abundance of long chain n-alkanes derived from terrestrial plants ( $nC_{27}$ ,  $nC_{29}$  and  $nC_{31}$ ) and short chain nalkanes ( $nC_{15}$ ,  $nC_{17}$  and  $nC_{19}$ ). The ratio is defined as:

$$TAR = (nC_{27} + nC_{29} + nC_{31}/nC_{15} + nC_{17} + nC_{19})$$

If this ratio >1, the input is considered as terrestrial and values <1 present a predominance of algal input (Cranwell 1973; Fang et al. 2014; de Souza et al. 2011; Wang et al. 2013).

The relative contributions of terrestrially derived biomass are indicated by the presence of  $C_{27}$ ,  $C_{29}$ ,  $C_{31}$  and  $C_{33}$  alkanes. The enrichment of  $C_{27}$  in most cases is an indicator of tree biomass dominance, whereas the enrichment of  $C_{31}$  and  $C_{33}$  are representative of grass biomass enrichment (Eglinton & Hamilton 1967). A standard ratio that defines this relationship is the  $C_{27}/C_{31}$  that provides insights on the terrestrially derived organic matter sources. This is an

indirect indicator of the prevailing environmental conditions during the time of deposition of the n-alkanes in soils and sediments. This ratio has been used to reconstruct the environmental representation of tree ( $C_{27}$ ) versus grass ( $C_{31}$ ) dominance in terrestrially derived material (Cranwell 1973; Ficken et al. 2000; Sojinu et al. 2012; Fang et al. 2014).

Possible relationships between n-alkane chain and climate have been investigated indirectly from sediments, atmospheric dust and stratigraphic sections (Castaneda et al. 2009). According to Dodd & Poveda (2003) in a study carried out in the Pyrenees, the ACL appeared to be related to altitude where greatest values were at extreme elevations i.e. the high and low altitudes. This was attributed to the adaptation of plants, in particular *Juniperus communis* during summer (at low elevation), winter (at high elevation) and droughts at low elevation when water is inaccessible to the plants, creating this similarity in effect. Despite the findings, Dodd and Poveda (2003) did not find a significant relationship between the climate data (rainfall and temperature) and ACL values. A further study by Rommerskirchen et al. (2003) has linked an increase in ACL to an increase in latitude. This, although seemingly useful, has not been widely applied.

## b) Rationale for GDGTs

Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane lipids of both archaeal and bacterial origin containing two long alkyl chains attached to glycerol anchors at both ends and are found in soils and sediments. Isoprenoid GDGTs (iGDGTs) are derived from archaeal communities (*Thaumarchaeota* and *Euryarchaeota*) in marine environment (Figure 3-5) and consist of cyclopentyl moieties 0 - 3 (i.e. iGDGT 1 - 3) as well as creanarcheol, an iGDGT consisting of 4 cyclopentane rings with an additional cyclohexane moiety (Sinninghe Damsté et al. 2012; Schouten et al. 2013; Pearson & Ingalls 2013). Branched GDGTs (BrGDGTs) are lipids consisting of a straight alkyl chain with 28 C atoms and two additional methyl branches at positions 13 and 16 (i.e. 13, 16-dimethyl octacosane; Figure 3-5).

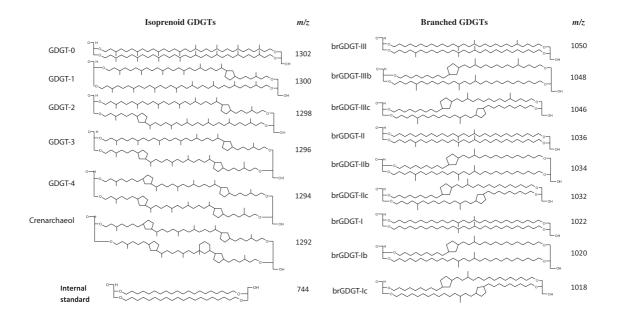



Figure 3-5: Structure of iGDGT and brGDGT adapted from (Tierney 2012) as discussed in this work. The iGDGT (predominantly archaeal origin) nomenclature is derived from the presence of the cyclopentane (zero to two) moieties present in the basic structure assigned as GDGT-x where x denoted the number of cyclopentane moieties present in the alkyl backbone structure. The structure of the brGDGT displays the presence of the cyclopentane moieties (identified as opposite those of iGDGTs through nuclear magnetic resonance (NMR) and stereochemistry studies) and a basic structure containing methyl (four to six) branches usually a 13,16-dimethyloctacosane typical of a bacterial membrane lipid. IS represents the  $C_{46}$  synthesized internal standard.

Advances in analytical techniques have played an essential role in the determination of the GDGT biomarker. The recent employment of liquid chromatography (LC) in combination with mass spectrometry (MS) extended the range of detectable molecules to higher molecular weight and high polarity such as the GDGTs (Hopmans et al. 2000; Sachs et al. 2013). The use of these membrane lipids synthesized by archaea and bacteria is built upon the principle that cell membrane structures adjust their rigidity in response to environmental changes by altering the number of double bonds or branches (Tierney et al. 2010; Sachs et al. 2013).

The most common application of the relative abundance of iGDGTs is in the marine environment for the reconstruction of sea surface temperature using the TEX<sub>86</sub> (Tetraether index of Tetraethers consisting of 86 carbon atoms) proxy (Schouten et al. 2002) that relies on a linear relationship between the number of cyclopentane rings and Sea Surface Temperatures (i.e. the number cyclopentyl rings increases with increase in SST; Schouten et al. 2002). Although this relationship is widely accepted, the dataset by Schouten et al. (2002) recognized the importance of salinity in the relative composition of GDGTs derived from archaea.

The first investigation of iGDGTs in the lacustrine environment and the extended application of the TEX<sub>86</sub> proxy was carried out by Powers et al. (2004; 2005) where the mean annual Lake Surface Temperature (LST) was reflected in TEX<sub>86</sub> variations. Later applications of TEX<sub>86</sub> in large lake systems demonstrated its potential use as a lake surface temperature proxy (Blaga et al. 2009; Bechtel et al. 2010; Tierney et al. 2010b) especially where little terrestrial input exists. However, this proxy is not often applicable to all lacustrine systems where the iGDGTs are frequently low in abundance and the Branched to Isoprenoid Tetraether (BIT) Index is high (Blaga et al. 2009). The BIT index (Hopmans *et al.* 2004) was developed as a proxy of terrestrial input into the marine environment that is dominated by iGDGTs and represents the ratio of brGDGTs to iGDGTs. As a rule of thumb where BIT > 0.3, the use of TEX<sub>86</sub> as a palaeothermometer is impractical as the results obtained are unreliable due to the high proportion of brGDGTs (Hopmans *et al.* 2004; Weijers *et al.* 2006; Blaga *et al.* 2009). Further the production of iGDGT-2 by sedimentary *Euryarchaeota* through anaerobic oxidation renders the application of TEX<sub>86</sub> inappropriate leading to the introduction of GDGT-2/crenarchaeol ratio as a control value (Weijers *et al.* 2007).

Whilst iGDGTs occur mainly in open oceans and lakes, the branched GDGTs (brGDGTs) have been extensively found in soils, peats, hot springs, rivers, seas and lake sediments (Weijers et al. 2006; Liu et al. 2010; Schouten et al. 2002; Wu et al. 2013). The subsequent studies of GDGTs therefore led to their utility in these environments (Powers et al. 2004; Weijers et al. 2006; Peterse et al. 2009; Blaga et al. 2010; Pearson et al. 2011; Loomis et al. 2012). Since the TEX<sub>86</sub> index displayed disparity in the lacustrine environment due to a relatively high proportion of brGDGTs, some researchers applied the Methylation (MBT) and Cyclization (CBT) indices of brGDGTs to reconstruct lake pH and Mean Annual Air Temperature (MAAT) (Sinninghe Damsté et al. 2009; Tierney & Russell 2009; Naeher et al. 2014). The controlling factors that affect the relative abundance of the brGDGTs in soil was first investigated by Weijers et al. (2007) where from a global dataset the differing abundance and structural differences was found to correlate with pH and air temperature. These relationships were expressed as follows: (i) the number of cyclopentyl moieties displays a positive correlation ( $R^2$ = 0.70) to soil pH through the cyclization of brGDGTs (CBT) and (ii) the number of methyl branches positively correlates ( $R^2 = 0.62$ ) to Mean Annual Air Temperature (MAAT) and to a lesser extent is negatively correlated to pH ( $R^2 = 0.37$ ) through methylation of brGDGTs (MBT).

By combining both the MBT and CBT relationships, the MBT/CBT index was developed as a proxy for reconstruction of past MAAT and pH of soil samples. The MBT/CBT proxy developed by Weijers *et al.* (2007) was initially applied in peat bogs and soils (Weijers *et al.* 2007; Peterse *et al.* 2009, 2012; Sinninghe Damsté *et al.* 2000; Huguet *et al.* 2010; Weijers *et al.* 2011) and later applied to the lacustrine environment by Tierney & Russell (2009). However, in the application of this proxy in lake systems, researchers have found that the MBT/CBT proxy underestimates the MAAT and pH values (Zink et al. 2010; Tierney & Russell 2009; Tierney et al. 2010b). This discrepancy has been suggested to be due to simultaneous autochthonous and allochthonous sources of brGDGTs in lakes where the brGDGTs can be derived from soils, river tributaries and within the lake system itself in response to different environmental controls (Tierney & Russell 2009; Peterse et al. 2009).

The suggestion that the brGDGTs are also produced *in-situ* within the water column and in lacustrine sediments (Tierney & Russell 2009; Tierney 2012) meant that implementation of the MBT/CBT proxy as a reliable temperature indicator is dependent upon establishing the source of the brGDGTs. Studies on the *in-situ* lake production of the brGDGTs (Tierney & Russell 2009) evaluated the influence of temperature and pH on their abundances in tropical lake systems. These studies showed that there are complex dramatic changes in the *in-situ* production of GDGTs within one lake system (Tierney & Russell 2009); environmental controls such as temperature, pH and depth have been determined as key influences on the abundance of brGDGT in lakes from east Africa (Tierney et al. 2010). This determination led to the recalibration of the MBT/CBT proxy derived mean air temperature and inferred pH to consider environmental controls (Tierney et al. 2010) for east Africa. The BIT index from the east Africa regions lakes, on the other hand, was found to be an indicator of the production of crenarchaeol which displays a strong correlation with depth rather than the flux of brGDGTs (Tierney et al. 2010).

A new calibration developed using MBT' which is based on the seven most common brGDGTs in soils (Peterse et al. 2012) and their fractional was abundances later developed. This calibration estimates the mean annual air temperature and pH values from distinct localities and environmental settings (Sinninghe Damste et al. 2009; Tierney & Russell 2009; Coffinet et al. 2017) thereby emphasizing the importance of local and regional calibrations. In an aim to improve the accuracy of the MBT/CBT proxy, Peterse *et al.* (2012) added new soil surface samples (126 in number) to the Weijers *et al.* (2007) global dataset, namely, Peterse *et al.* 

(2009a) samples from China, Bendle *et al.* (2010) samples from the Amazon fan and Peterse et al. (2009b) samples from Svalbard creating a total sample size of 278 globally distributed soils. This led to the exclusion of brGDGT-IIIb and brGDGT-IIIc from the MBT relationship as they were frequently below the detection limit and comprised <1% of the total brGDGTs on average. This led to the development of the MBT' index (Peterse *et al.* 2012) that is more directly influenced by the MAAT (since the calibration comprised of surface samples only) and thus the recalibration of the MBT/CBT index using the MBT'. The application of the MBT'/CBT index in both soils and lakes (Yang *et al.* 2013; Woltering *et al.* 2014; Peterse *et al.* 2014) led to the conclusion that the MBT'/CBT over estimated temperatures at high latitudes than the original MBT/CBT proxy (Weijers et al. 2007) and therefore it is more suitable for reconstructions in the tropics.

For east Africa the MBT/CBT and MBT'/CBT calibrations from MAAT have been tested in Sacred Lake (Loomis et al. 2012), Lake Challa (Tierney et al. 2010) and Lake Tanganyika (Tierney & Russell 2009) sediments. Their performance as a palaeothermometer proxy has presented varying ranges of temperature changes from the LGM to the present (Loomis et al. 2012). In order to improve the performance of the palaeotemperature proxy, a new regional lacustrine calibration based on the fractional abundance of brGDGTs and the application of the Stepwise Forward Selection (SFS) method on Tierney et al. (2010) dataset that was expanded by Loomis et al. (2012) from 41 to 111 samples from east African lakes improved the accuracy and reduced the prediction errors across the dataset. This calibration by Loomis et al. (2012) through SFS was able to statistically test the significance between environmental variables and brGDGT data by sequentially adding variables based on the weight of the relationship to the brGDGT data. The application of the SFS calibration on a sediment core from Sacred Lake showed a 6.3° C warming between LGM and mid-Holocene followed by a 1.2°C cooling giving an overall temperature difference of 5.1°C between LGM and present (Loomis et al. 2012). This calibration improved the accuracy of temperature prediction in the regional dataset as well as in the Sacred lake LGM to present (Loomis et al. 2012).

# 3.1.10.1 Lipid Extraction

Two grams of sediments (10 samples from Lake Nkunga and Sacred Lake, 11 samples from Lake Rutundu) and twenty grams of soils (31 soil samples) were oven dried at 40° C for 48 hrs and then introduced in a Dionex extraction cell with cellulose filter and cotton (Figure 3-6). The extraction of the organic lipids was done using the DIONEX Accelerated Solvent Extractor

(ASE 100) using a 9:1 dichloromethane/methanol solvent mixture. Each sample was extracted over three cycles of 15 minutes each at 100° C using nitrogen gas (100 bar pressure) as illustrated in Figure 3-6.

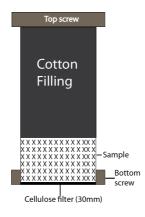



Figure 3-6: Illustration of dionex cell as prepared for extraction

The extracted lipids were dried under near vacuum conditions using a rotary evaporator in a water bath maintained at room temperature (Figure 3-7).



Figure 3-7: Rotary evaporator set up used for drying extracted lipids at near vacuum conditions

## 3.1.10.2 Lipid Separation

The separation of the total lipid extracts into polar and apolar fractions was carried out using an alumina column. The Al<sub>2</sub>O<sub>3</sub> was put in the oven at 150°C for two hours before the separation. The column was conditioned by flushing with *n*-heptane : DCM (9:1, v/v) solvent, which was then packed with the Al<sub>2</sub>O<sub>3</sub>. The elution was performed with two mixtures of solvents:

- *n*-heptane : DCM (9:1, v/v) for the apolar fraction (including *n*-alkanes)
- $\circ$  DCM : MeOH (1:1, v/v) for the polar fraction (including GDGTs)

The separated fractions were dried using the rotary evaporator under near vacuum conditions in a water bath at room temperature. These samples were transferred to four ml vials using DCM, after which they were dried under  $N_2$  gas and dissolved in 1000 µl hexane prior to analysis. This process is summarized in Figure 3-8.

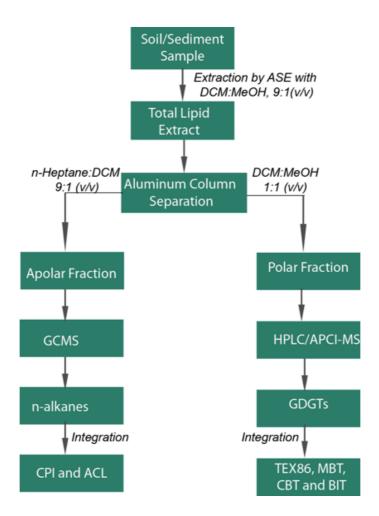



Figure 3-8: A diagrammatic representation of the processes involved in the extraction, concentration, separation and analysis of the biomarker fractions from the selected samples.

#### 3.1.10.3 Analysis and Integration of Polar and Apolar Lipid Fraction

The apolar fraction was analysed using an Agilent 6890N gas chromatograph coupled to an Agilent 5973N mass spectrometer with electron impact at 70 eV. Separation was achieved using a Restek RTX-5 Sil MS silica capillary column (30 m  $\times$  0.25 mm ID, 0.50 µm film thickness) with constant flow of He carrier gas of 1 mL/min. The oven temperature was programmed to run from 50° C to 320° C in 20 minutes at a rate of 4° C/min. Samples were injected in splitless mode and the injector temperature was 280° C. Blank samples were used to monitor the precision of the ranges within the retention time of 0.048 seconds obtained after every ten samples. With measurements this precise, small changes in ambient operating conditions can dramatically affect retention time.

The polar fraction was analysed using a Shimadzu LCMS-2020, a High-Performance Liquid Chromatography Mass Spectrometer (HPLC-MS). Separation was achieved with a Prevail Cyano column (2.1 mm x 150 mm, 3  $\mu$ m; Alltech, Deerfield, IL, USA) thermostat at 30°C, using a mixture of A and B (A= hexane and B= isopropanol) at 0.2 ml/min. Elution began at 99 % A/1 % B for 5 min followed by a linear gradient to 98 % A/2 % B in 45 min. A second linear gradient led to a mixture of 90 % A/10 % B in 10 minutes, maintained for 10 minutes and returned to the initial conditions (99 % A/1 % B) in 14 minutes, then maintained for 10 minutes. The injection volume was 10  $\mu$ l. Single ion monitoring (SIM) of the [M+H]<sup>+</sup> ions were used to detect the GDGTs. Semi-quantification of the GDGTs was performed by comparing the integrated signal of the respective compound with the signal of a C<sub>46</sub> synthesized internal standard, as described by Huguet et al. (2013). Bases on duplicate samples added after 10 samples, the HPLC/MS analysis error for GDGT quantification with the internal standard was ca. 10%.

## 3.1.10.4 Integration of GDGT Results

#### 3.1.10.4.1 Integration of Soil Results

For the soil samples, the MBT and CBT indices were calculated using Weijers et al. (2007)

$$MBT = ([I + Ib + Ic])/([III + IIIb + IIIc] + [II + IIb + IIc] + [I + Ib + Ic])$$

Equation 1

$$CBT = -\log\left([Ib + IIb]\right)/([I + II])$$

Equation 2

The MBT' was calculated as using the calibration developed by Peterse et al. (2012) as follows: MBT' = ([I + Ib + Ic])/([III] + [II + IIb + IIc] + [I + Ib + Ic])

Equation 3

Note I, II and III denote GDGT structures described in Figure 3-5, pg. 62 above.

The MAAT was estimated using the global soil calibration (*Equation 4*) developed by Weijers et al. (2007) and the extended calibration (*Equation 5*) introduced by Peterse et al. (2012) respectively.

$$MAAT = (MBT - 0.122 - 0.187 \times CBT)/0.020$$

Equation 4

 $MAAT = 0.81 - 5.67 \times CBT + 31.0 \times MBT'$ 

#### Equation 5

pH for the soils were calculated using *Equation 6* developed by Weijers et al. (2007) and Peterse et al. (2012, *Equation 7*):

$$pH = (3.33 - CBT)/0.38$$

Equation 6

 $pH = 7.90 - 1.97 \times CBT$ 

Equation 7

The BIT index was calculated as follows (Hopmans et al. 2004):

$$BIT = (I + II + III)/(I + II + III + IV)$$

Equation 8

TEX<sub>86</sub> was calculated as follows:

$$TEX_{86} = (GDGT 2 + GDGT3 + VI)/(GDGT1 + GDGT2 + GDGT3 + VI)Equation 9$$

#### 3.1.10.4.2 Integration of Sediment Results

The MBT and CBT indices were calculated according to Weijers et al. (2007, *Equation 1* and *Equation 2*). The fractional abundances f(i) of each brGDGT i is defined as:

$$f(i) = i/(I + Ib + Ic + II + IIb + IIc + III + IIIb + IIIc)$$

Equation 10

The pH function of the samples was calibrated through the application for the east Africa *Equation 11* regional calibration developed by Tierney et al. (2010):

 $pH = 10.32 - 3.03 \times CBT$ 

## Equation 11

Regional calibrations have the potential to provide more accurate temperature reconstructions in comparison to the existing global calibrations. Here two east Africa calibrations were used to estimate the MAAT. The first estimate was based on the MBT/CBT calibrations developed by Tierney et al. (2010, *Equation 12*) and the second, on the fractional abundance calibration by Loomis et al. (2012, *Equation 13*) and they were calculated as follows:

$$MAAT = 11.84 + 32.54 \times MBT - 9.32 \times CBT$$

Equation 12

$$MAAT = 2.54 + 45.28 \times MBT - 5.02 \times CBT$$

#### Equation 13

For comparison the palaeotemperature calibration based on the fractional abundances of major brGDGTs (MbrGDGTs) developed by Tierney et al. (2010, *Equation 14*) and Loomis et al. (2012, *Equation 15*) were applied as follows:

 $MAAT = 50.47 - 74.18 \times f(III) - 31.60 \times f(II) - 34.69 \times f(I)$ 

Equation 14

$$MAAT = 36.90 - 50.14 \times f(III) - 35.52 \times f(II) - 0.96 \times f(I)$$

#### Equation 15

Finally, the SFS calibration developed by Loomis et al. (2012, *Equation 16*) was used as follows:

$$MAAT = 22.77 - 33.58 \times f(III) - 12.88 \times f(II) - 418.53 \times f(IIc) + 86.43 \times f(Ib)$$

Equation 16

## 3.1.10.5 Integration of n-Alkane Results

A total mass ion chromatograph typical of all series of compounds present was obtained from the analysis carried out. In order to detect the alkanes of interest, the base peak of the alkanes ion chromatograph m/z = 57 was selected for the identification of the alkanes in the  $C_{12} - C_{34}$ range present in the samples. The identification was made based on the mass detected by the relative abundance of the peak area. The following calculations were done:

a) The average length of all n-alkanes (ACL)

$$ACL = \frac{\sum \left[ (n_{14-35})^* (nC_{14-35}) \right]}{\sum (nC_{14-35})}$$
 Equation 17

Where

*n* is the number of carbons in the n-alkane chain.  $nC_n$  is the relative abundance of the n-alkane.

b) The average chain length of long chain n-alkanes (ACL<sub>lc</sub>) i.e.  $C_{25} - C_{33}$ 

$$ACLlc = \frac{\sum \left[ (n_{25-35})^* (n_{25-35}) \right]}{\sum (n_{25-35})}$$
 Equation 18

c) The Carbon Preference Index (CPI) describes the relationship of the number of odd number homologues over the sum of the even number homologues. High CPI values are typical for fresh plant biomass (CPI>10) and lower CPI values (CPI<10) indicate the degradation of biomass or can be related to the root biomass. Calculations were done to determine the overall CPI (Equation 19) and the high alkane chain CPI (Equation 20) as indicated below:

$$OverallCPI = 0.5 \left( \frac{\sum Odds [nC_{15-33}] + \sum Odds [nC_{17-35}]}{\sum Evens [nC_{16-34}]} \right) \qquad Equation \ 21$$

$$CPI = 0.5 \left( \frac{\sum Odds [nC_{25-33}]}{\sum Evens [nC_{24-32}]} + \frac{\sum Odds [nC_{25-33}]}{\sum Evens [nC_{26-34}]} \right)$$
 Equation 22

d) The Terrigenous – Aquatic Ratio (TAR), enables the evaluation of the relative distribution of terrestrial organic matter and that of aquatic algal contribution. This was done using the following equation:

$$TAR = \left(\frac{nC_{27} + nC_{29} + nC_{31}}{nC_{15} + nC_{17} + nC_{19}}\right)$$
 Equation 23

e) The P<sub>aq</sub> proxy (Ficken et al. 2000) was used to differentiate the submerged aquatic macrophyte versus emergent and terrestrial plant input into the lakes based on n-alkane data of mid chain length (C<sub>23</sub>,C<sub>25</sub>) to long-chain length (C<sub>29</sub>, C<sub>31</sub>). This was done using the following equation:

$$P_{aq} = \frac{C_{23} + C_{25}}{C_{23} + C_{25} + C_{29} + C_{31}}$$
 Equation 24

#### 3.1.11 Data Processing and Analyses

All data analysis and statistical tests were performed using in R software (v3.3.2) with Vegan (Oksanen et al. 2013), Rioja (Juggins 2017), Clam (Blaauw 2010) and Bacon (Blaauw & Christen 2011) packages. In order to establish if the results display any significant differences, a student T-test was carried out in R with a confidence interval of 95 % where linear regressions were performed. Figures used in this thesis are either original or redrawn and adapted from literature. Graphs were created in Matlab 2017b student edition and other figures were created using Adobe Illustrator CC 2018. Photographs were taken by the author unless otherwise stated.

# **4 RESULTS AND DISCUSSION**

# 4.1 Introduction

This section focuses on the results obtained from the soil and sediment samples from the study area. Section 4.2 highlights the characteristic of the soil samples, providing context for the present-day conditions on Mount Kenya. Sections 4.3, 4.4 and 4.5 refer to Lakes Nkunga, Sacred and Rutundu sediments, respectively. These results correspond to objective one and provide a multi proxy representation of the Late Holocene. Section 4.6 addresses objectives 2 and 3. In this section, the evidence of key Late Holocene environmental and climatic events based on the analysed proxies are discussed and the research findings are evaluated in the context of the current knowledge of regional changes in eastern Africa's Late Holocene palaeoclimate and palaeoenvironment.

# 4.2 The soils in the study area

The surface soils are well-drained, moderately deep nitisols (Figure 2-10, pg. 34), with colour ranging from dark red to dark brown. The soils are friable to firm with a loamy to clayey texture depending on the sampling location (Figure 2-10, pg. 34). A gradation from nitisols to andosols with altitudinal decline is noted; the lower altitude soils are well drained and moderately deep, often derived from the weathered material from the surrounding catchment, unlike the high-altitude soils that are moderately shallow and well drained. At high altitudes (>3000 m) where the slope is steep, the soils are humic nitisols developed on undifferentiated pyroclastic rocks while the mid altitude soils (2000 - 3000 m) overlie the basalts of Mt. Kenya and Nyambeni hills and at low altitude (1600 - 2000 m) these soils cover the younger volcanics. Samples obtained from the high-altitude areas were from the ericaceous belt whilst those of the mid to low altitude slopes were collected from the montane forest and the cultivated foothills, respectively.

## 4.2.1 Characteristics of the Soils and Rocks from Nkunga Area

## 4.2.1.1 Surface Soils and Rocks

### 4.2.1.1.1 Mineralogy and Grain Size

This section describes the characteristics of soils and rocks from within the Nkunga crater, surface soils from Nkunga school farm and the soil profile from Nkunga area. The soils from within the Nkunga crater comprise 60 - 89 % silts, 7 - 38 % fine sands and 1 - 4 % clays (Figure 4-1). The minerals comprise plagioclase feldspars (46.0 - 90.0 %), haematite (0.5 - 21.0 %), diopside (4.8 - 22.0 %), halloysite (4.0 - 11.8 %), quartz (7.1 - 11.8 %), and small quantities of gibbsite (2.0 - 4.1 %) (Figure 4-1). The rocks (Figure 4-1) collected from the inner rim of the crater contain diopside and plagioclase feldspars and minor contributions from hematite and illite/muscovite. Of the feldspars from the rocks and soils, the predominant plagioclase feldspar is labradorite (3.20 Å) while sanidine (3.24 Å) is the most prominent K-feldspar. In the soil samples, the presence of minerals such as gibbsite, halloysite and hematite reflect weathering processes in the crater soils. Quartz is present in the soil samples but absent in the rock samples.

Seven samples from Nkunga school farm, adjacent to the crater, were selected for grain size analysis. These soils are clayey silts (fine sands: 0 % silts: 86 - 92 %, and clays: 8 - 14 %) with the exception of two samples; NKS 4 and NKS 5. These two samples (NKS 4 and NKS 5) display a coarser texture (sandy clays) with a higher proportion of fine sands (36 % & 41 % respectively), lesser amounts of silts (58 % and 53 % respectively) and clays (6 % and 7 % respectively) (Figure 4-2). The mineralogy comprises both weathering products and parent minerals in the surrounding volcanic area. Halloysite (20 - 33 %), plagioclase feldspars (13 - 28 %), quartz (14 - 24 %), magnetite (15 - 19 %) and hematite (14 - 19 %) are the dominant mineralogy of these soils (Figure 4-2). The three groups of clay mineral corresponding to characteristic peaks; illite (10.0 Å), kaolinite (7.3 Å) and chlorite (14.0 Å) were all identified.

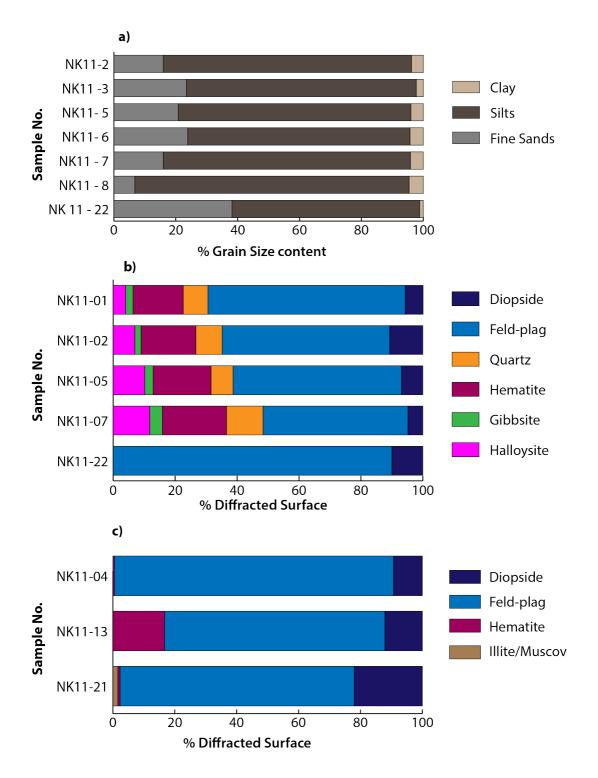



Figure 4-1: (a) the less than 200  $\mu$ m grain size distribution and (b) and (c) the bulk mineralogy based on the percentage of diffracted surface of the soil and rock samples from the Nkunga crater. NB: Feld – plag denotes plagioclase feldspar while illite/Muscov denotes the total peak area occupied by Illite and Muscovite which could not be differentiated in the XRD spectrum of the bulk samples.

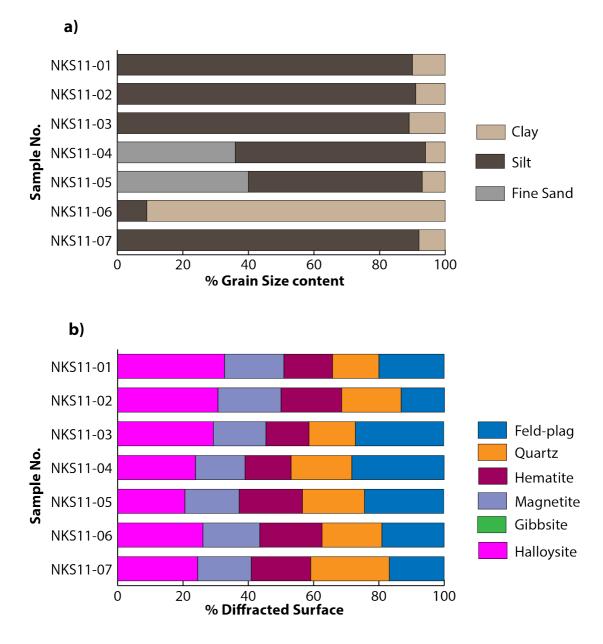
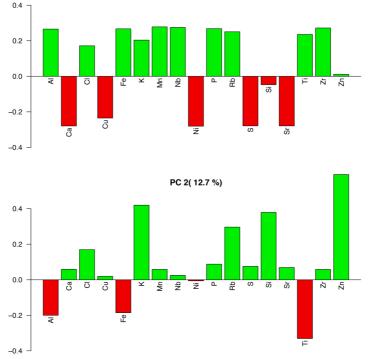




Figure 4-2: (a) Particle size distribution of the  $<200 \ \mu m$  soils from farms at Nkunga School (b) the bulk mineralogy from the percentage of the diffracted surface in samples from Nkunga. NB: Feldplag denotes plagioclase feldspar composition in the samples.

Quartz is dominant in the soil samples but absent in the rock samples. Most likely this can be attributed to the aeolian deposition of fine-grained quartz sands from quartz rich neighbouring areas of exposed basement rocks (Mahaney 1990; Olago and Odada 1996).

#### 4.2.1.1.2 Inorganic Geochemistry

The surface samples from the Nkunga area contain 17 detected elements (Al, Si, Ti, Ca, Cl, Cu, Fe, K, Mn, Nb, Ni, P, Rb, S, Sr, Zn, Zr). A principal component analysis of the variations of these elements in the various samples was carried out. The first principal component (PC1) accounts for 74.3 % of the variability while the second principal component (PC2) accounts for 12.7 % of the variability (Figure 4-3). PC1 positively correlates with Al, Cl, Fe, K, Mn, Nb, P, Rb, Ti, Zr and Zn, in relatively equal contributions of these elements that are preferentially mobilized through physical weathering, erosion, transportation and deposition as detrital materials. PC1 negatively correlates with Ca, Cu, Ni, S, Si and Sr, which reflect more likely the in-situ or locally constrained leaching and remobilisation processes (Figure 4-3). Thus, PC1 would be strongly controlled by the intensity of mechanical erosion/transportation processes. PC2, on the other hand, positively correlates with relatively soluble and poorly soluble elements such as Ca, Cl, Cu, K, Mn, Nb, Ni, P, Rb, S, Si, Sr, Zr and Zn. K, Rb, Si and Zn are the main contributors to this component inferring transported aeolian material alongside in-situ secondary chemical weathering and negatively correlates with Al, Fe and Ti (Figure 4-3). High PC2 values would be preferentially observed in accumulation zones, while PC1 high values would be preferentially observed in strongly weathered and leached materials.



PC 1( 74.3 %)

Figure 4-3: PCA of the elements from Nkunga area surface soils. Green bars represent the positive correlations while red represents negative correlations. The upper and lower panels show PC1 and PC2 respectively.

The surface soil geochemistry is characteristic of the siliciclastic origin of the soils which agrees with the mineralogy described in section 4.2.1.1, pg. 74. On the basis of the principal components analysis, Fe, K, Al, and Nb were selected as proxies of subsurface enhancement while Si was selected as representative of biochemical dissolution, remobilisation and enhancement. The selected elements were normalized against Ti. The PCA performed on the resulting ratios show that the first principal component (PC1) accounts for 62.4 % of the variability (Figure 4-4).

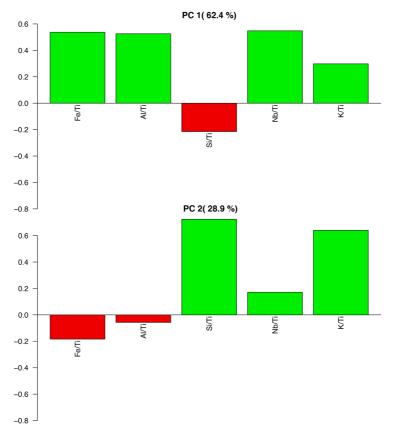



Figure 4-4: PCA of geochemical ratios from the soils in Nkunga area. Green bars represent the positive correlations while red represents negative correlations. The upper and lower panels show PC1 and PC2 respectively

Not surprisingly PC1 positively correlates with Fe/Ti, Al/Ti, Nb/Ti and K/Ti and negatively correlates with Si/Ti (Figure 4-4). These relations describe highly weathered rock, enriched in oxides and clays (K/Ti and Al/Ti). The second principal component (PC2) accounts for 28.9 % of the variability only (Figure 4-4); it positively correlates with Si/Ti, Nb/Ti and K/Ti and negatively correlates with Fe/Ti and Al/Ti (Figure 4-4). PC2 thus illustrates the input of biogeochemical weathering products such as silica, together with the input of strongly refractory aeolian material as suggested by the mineralogy (4.2.1.1, pg. 74).

# 4.2.1.2 Nkunga Area Soil Profile

# 4.2.1.2.1 Stratigraphy, Mineralogy and Grain size

In the Lake Nkunga soil profile, two horizons were identified: horizon A0 (0 - 15 cm) is a yellowish brown porous crumbly soil containing a mix of undecomposed and decomposed organic matter. Horizon B (10 - 125 cm) has a well-drained, deep brown and clayey nitisol containing organic plant roots (Figure 4-5).

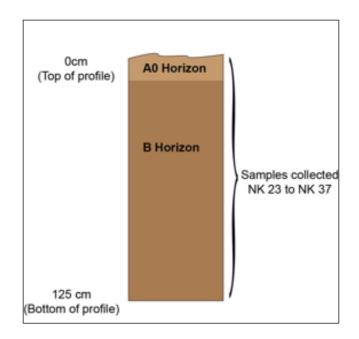



Figure 4-5: Description of soil profile sampled from Nkunga park gate showing the two identified horizons

The <200  $\mu$ m fraction is texturally homogeneous (Figure 4-6), and comprises clayey-sandy silts (fine sands: 3 – 18 %, silt: 78 – 91 %, clay: 3 – 7 %) with higher content of fine sands in two samples: NK11-26 (18 %) and NK11-34 (17 %).

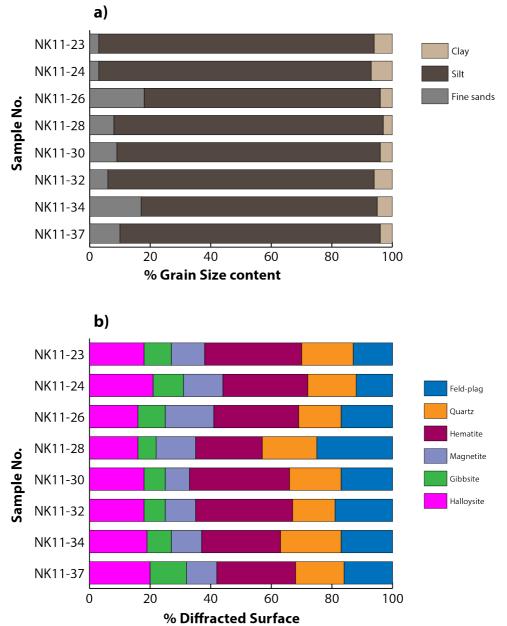



Figure 4-6: (a) Grain size distribution of  $<200 \,\mu m$  fraction and (b) bulk mineralogy of the soil profile at Nkunga. NB: Feld-plag denotes plagioclase feldspar composition in the samples

The mineralogy comprises plagioclase feldspar (12 - 25 %), hematite (22 - 33 %), halloysite (16 - 21 %), magnetite (8 - 16 %) and gibbsite (6 - 12 %). This bulk mineralogical representation is similar throughout the soil profile with no abrupt changes present. Kaolinite clay was detected throughout the soil profile while illite was detected in the topmost sample only.

### 4.2.1.2.2 Mineral Magnetics

The magnetic susceptibility displays a progressive increase down the soil profile. The bulk mass magnetic susceptibility values at low frequency (X<sub>lf</sub>) range from  $2.2 \times 10^{-5}$  m<sup>3</sup>kg<sup>-1</sup> to  $3.5 \times 10^{-5}$  m<sup>3</sup>kg<sup>-1</sup> while at high frequency (X<sub>hf</sub>) it is between  $2.1 \times 10^{-5}$  m<sup>3</sup>kg<sup>-1</sup> and  $3.2 \times 10^{-5}$  m<sup>3</sup>kg<sup>-1</sup> (Figure 4-7). The associated low and high frequency values of the magnetic susceptibility display a high linear correlation with R<sup>2</sup> value of 0.99 (*p* < 0.001).

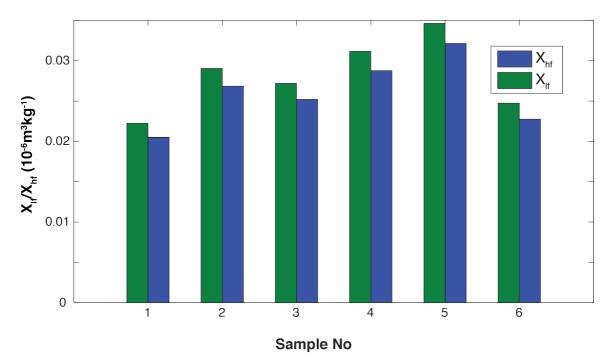



Figure 4-7: The relationship between the high and low frequency bulk magnetic susceptibility for selected samples from soil profile at Nkunga park gate.

The  $\% X_{fd}$  shows a relatively high, and more or less constant value of 7 – 8 % along the soil profile. This indicates a remarkable enhancement in superparamagnetic grains, likely maghemite given the colour of the soil (consistent deep brown colour of the B - Horizon). No clear relationship can be observed between the  $X_{lf}$  and  $\% X_{fd}$  (Figure 4-8), and the poor change of magnetic susceptibility and frequency dependence with depth strongly suggest a remobilisation of iron in the Nkunga forest soil, likely linked with the activity of iron-reducing and iron-oxidizing bacteria, which are the main mediators of organic carbon oxidation in tropical forest soils (Dubinsky et al. 2010).

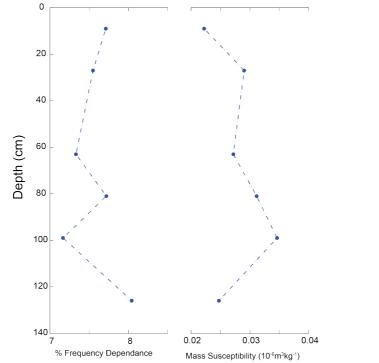



Figure 4-8: Bulk magnetic characteristics %  $X_{fd}$  and  $X_{lf}$  from the soil samples in the Nkunga area soil profile.

A total of four samples (two each from the surface and the soil profile) were selected for the NRM analysis. The demagnetization curves are generally scattered, suggesting the presence of highly viscous and soft components, as already illustrated by the high frequency dependence of magnetic susceptibility. Still, for the surface samples (NK 7 and NK 10) the MDF values were 22.1 mT and 14.8 mT, respectively, whereas from the soil profile (NK20 – 0 cm and NK37 – 125 cm) an MDF value of 2.5 mT was recorded. This possibly account for a relative enhancement of the surface in titanomaghemite of different grain sizes, seen as a "refractory" fraction compared to smaller unstable grains which would easily translocate into the soil profile. The NRM intensity of the surface sample NK 7 demagnetizes at 30.0 mT whereas the rest of the NRM intensities do not display clear demagnetisation curves (Figure 4-9).

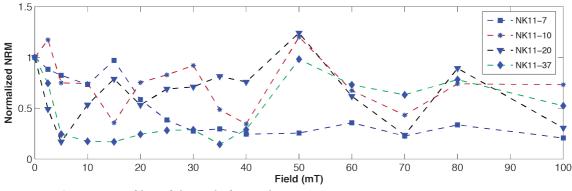



Figure 4-9: NRM profiles of the soils from Nkunga area.

#### 4.2.1.2.3 Inorganic Geochemistry

The five samples selected for inorganic geochemistry, one from the A0 horizon and four from the B-horizon, display minimal variation in the single element abundance profile. The soils of the Nkunga soil profile contain 17 detected elements (Al, Si, Ti, Ca, Cl, Cu, Fe, K, Mn, Nb, Ni, P, Rb, S, Sr, Zn, Zr) and display no vertical variation with the exception of the upper 45 cm where a decline or increase is observed towards the top of the profile. Si, Al, Mn, Ca, K, Fe and Ti were selected as geochemically stable elements present in conservative geochemical environments (Boës et al. 2011). The variations of these elements (Figure 4-10) within the soil profile do not reveal any major change in the weathering regime or detrital inputs.

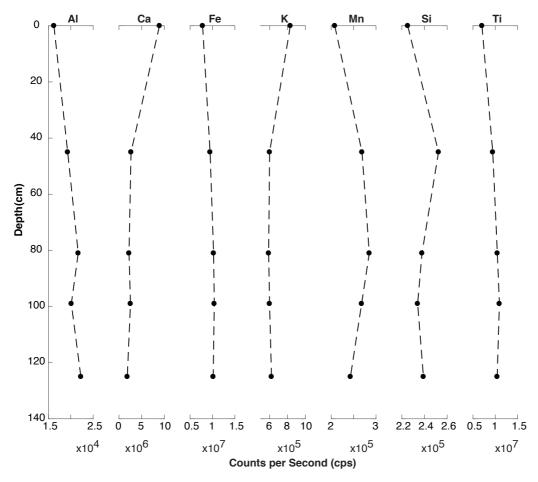



Figure 4-10: Single element inorganic geochemistry down the Nkunga soil profile.

Ca, Fe and K were normalized against Ti as proxies of changes in erosion, *in-situ* weathering and possible burning of vegetation, respectively (Figure 4-11). The Ca/Ti, Fe/Ti and K/Ti profiles display muted changes at the bottom of the soil profile and a relative increase in the upper 45 cm. The Fe/Mn shows a decline from the bottom of the profile to 80 cm where the

ratio stabilizes. In the upper 45 cm, the Fe/Mn ratio rises to the top of the profile (Figure 4-11). Based on the inorganic geochemical data (Figure 4-10 and Figure 4-11), the soil horizons were revised from the stratigraphic description above (Section 4.2.1.2.1, pg. 79). The B-horizon made of accumulated clay from the upper soil layer was designated 125 to 80 cm. This is due to the relative increase in Al in the profile and the decline in the lithogenic ratios (Fe/Ti and K/Ti). A relative increase in Mn and decline in the Fe/Mn ratio in the 45 -80 cm depth likely illustrates the fixation of Mn in a lower pH, organic rich and reducing soil environment. Indeed, this interval is a zone of eluviation and leaching (a possible E horizon) where hardly any change is observed in the all the proxies, while the upper section of the core from 45 to 0 cm represents the A and O horizons characterized by an increase in Fe/Mn (oxidizing environment) and in the geochemical elements of lithogenic origin.

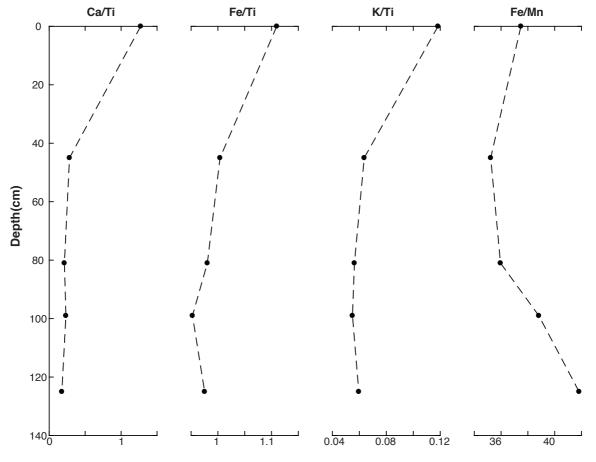



Figure 4-11: Ti-normalized elemental variations down the Nkunga soil profile.

#### 4.2.1.2.4 Organic Geochemistry

### 4.2.1.2.4.1 Carbon, Nitrogen and their Isotopes

The range of carbon (%C) is from 3.2 % to 4.8 % with an average of 4.2 % and declines steadily down the soil profile from Nkunga area. The %N ranges from 0.2 to 0.4% with an average of 0.35 % (Figure 4-12). The %C and %N, display a strong correlation ( $R^2 = 0.97$ , p < 0.001). The C/N ratio displays a decreasing trend from the bottom of the profile from 15 to 11 at the top with an average value of 12. For the stable isotopes the  $\delta^{13}$ C ranges from -19.3‰ to -15.7‰ with an average of -18.2 ‰ showing a decline to more negative values at the top of the soil profile. The range of  $\delta^{13}$ C values of the organic matter in the Lake Nkunga profile is characteristic of C<sub>4</sub> – type and C<sub>3</sub> – C<sub>4</sub> type vegetation. The  $\delta^{15}$ N ranges from 7.6‰ to 9.8‰ with an average of 8.4‰. The  $\delta^{15}$ N displays an overall decreasing trend towards the top of the soil profile.

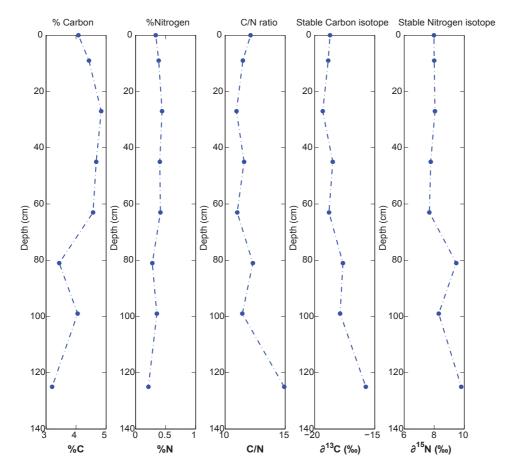



Figure 4-12: Variations down the soil profile from Lake Nkunga of the % C, % N, C/N,  $\delta^{I_3}C$  and  $\delta^{I_5}N$  isotopes.

#### 4.2.1.2.4.2 n-alkanes

The *n*-alkane chain range is  $C_{14-35}$  with the most abundant n-alkanes in the samples occurring as either  $C_{29}$  or  $C_{31}$  along with significant presence of short and mid chain *n*-alkanes  $C_{15-24}$ . The distribution of the *n*-alkanes is unimodal, displaying dominance of the long odd chain homologues ( $C_{25+}$ ) associated with higher plant biomass as the main source of organic matter. The short chain n-alkanes are more abundant in the samples at the bottom of the soil profile and this abundance progressively declines towards the top of the soil profile. The sample at 9 cm displays a bimodal distribution maximising the  $C_{17}$  n-alkane.

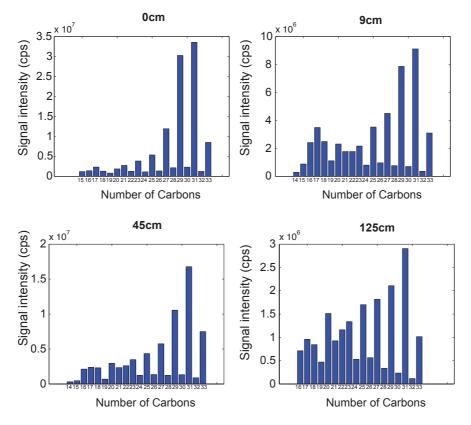



Figure 4-13: n-alkane distribution in the Lake Nkunga soil profile.

The ACL (27.8 – 29.8) and CPI (8.9 – 11.9) values are indicative of terrestrially derived nalkanes with an odd over even predominance (Table 4). The TAR values range from 2.6 to 17.6 with the highest value at the surface and an intermediate value at 45 cm. The other two samples at 125 cm and 9 cm have low TAR values indicative of microbial/algal activity. These samples show the relatively high abundance of the short to mid-chain *n*-alkanes (Figure 4-13). The terrestrially derived  $C_{31} > C_{29} > C_{27}$  and the  $C_{27}/C_{31}$  ratio record the highest  $C_{27}/C_{31}$  value at the bottom of the soil profile (2.1) while lower values are recorded in the upper section (0 - 45 cm) of the soil profile where the values range from 0.3 to 0.5.

| <u></u>    |                      |                    |      |      |                 |      |  |  |  |
|------------|----------------------|--------------------|------|------|-----------------|------|--|--|--|
| Depth (cm) | C <sub>n</sub> range | C <sub>n</sub> max | ACL  | CPI  | $C_{27}/C_{31}$ | TAR  |  |  |  |
| 0          | 15-33                | 31                 | 29.6 | 11.9 | 0.4             | 17.6 |  |  |  |
| 9          | 14-33                | 31                 | 29.3 | 9.0  | 0.5             | 3.9  |  |  |  |
| 45         | 14-33                | 31                 | 29.8 | 8.4  | 0.3             | 9.4  |  |  |  |
| 125        | 14-31                | 29                 | 27.8 | 8.9  | 2.1             | 2.6  |  |  |  |

Table 4: Summary of n-alkane indices from Nkunga area soil profile.

 $C_n$ -number of carbon atoms present in the n-alkane chain: ACL-ACL of long chain n-alkanes; CPI-Carbon Preference Index of long chain alkanes;  $C_{27}/C_{31}$  ratio; TAR-Terrigenous-Aquatic Ratio.

## 4.2.1.2.4.3 GDGTs

All the soil samples contain amounts of brGDGTs and iGDGTs ranging from 177 to 1640  $\mu$ g/g and 32 to 336  $\mu$ g/g, respectively. The brGDGTs and iGDGTs are most abundant on the surface sample NK11-03. The brGDGT-I is more abundant whereas brGDGT – III is the least abundant. Among the iGDGTs, crenarchaeol is most abundance in all the samples except for the surface sample where GDGT-4 is the most abundant (Figure 4-14). Some iGDGTs (GDGT-0 and GDGT-1) are below detection limits in samples collected at 9 cm and 125 cm.

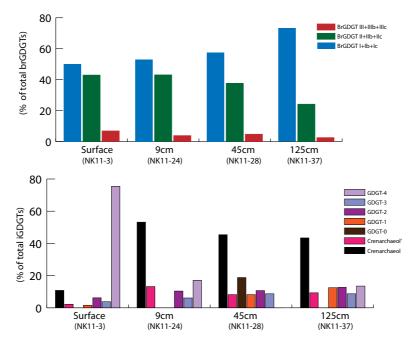



Figure 4-14: GDGT distribution in the various soil samples from the soil profile at Lake Nkunga area.

# 4.2.2 Characteristics of the Soils from Sacred Lake Area

### 4.2.2.1 Stratigraphy, Mineralogy and Grain size

Four soil horizons were identified on the basis of colour and textural changes. The A horizon (0 - 80 cm) is a well-developed topsoil comprising of organic litter and coarse fragments of mixed minerals (Figure 4-15). Below this horizon, three B horizons were identified based on the subtle colour and textural changes. B1 horizon (81-144 cm) is deep red at the top and yellowish brown towards the bottom, poor in humus, has a clayey texture, and is rich in mineral and rock fragments. B2 (145 – 184 cm) is poor in humus, rich in volcanic fragments and is persistently yellowish brown in colour. B3 (185 – 224 cm) is reddish brown and poor in humus with gravel sized scoria clasts.

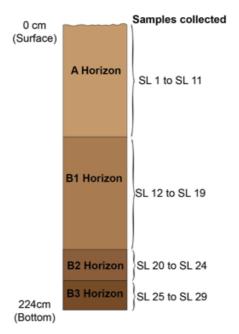



Figure 4-15: Sacred Lake soil profile showing the identified horizons.

Sacred Lake soil profile contains two slightly texturally distinct sections at the top and bottom. At the top of the profile, the soils are clayey-sandy-silts (fine sand: 44.1 - 49.1 %, silt: 55.5 - 50.8 % clay: 0.0 - 0.6 %) whilst at the bottom; the soils are clayey-silty-sands (fine sands are 50.6 - 55.5 %) (Figure 4-16). Plagioclase feldspars and quartz are the dominant peaks detected (70 - 80 %) and reflect parent rock mineralogy with notable contributions of gibbsite (2 - 10 %), halloysite (1 - 4 %) and illite (1 - 8 %) that suggest weathering of K-feldspars from catchment rocks. Illite and kaolinite were the identified clay minerals down the soil profile,

with contributions of hematite and magnetite at the bottom (Figure 4-16). The large contribution of quartz (and to a lesser extent, the occurrence of illite) does suggest a significant contribution of remote aeolian dust in the soil as previously observed in Lake Nkunga (see 4.2.1.1.1).

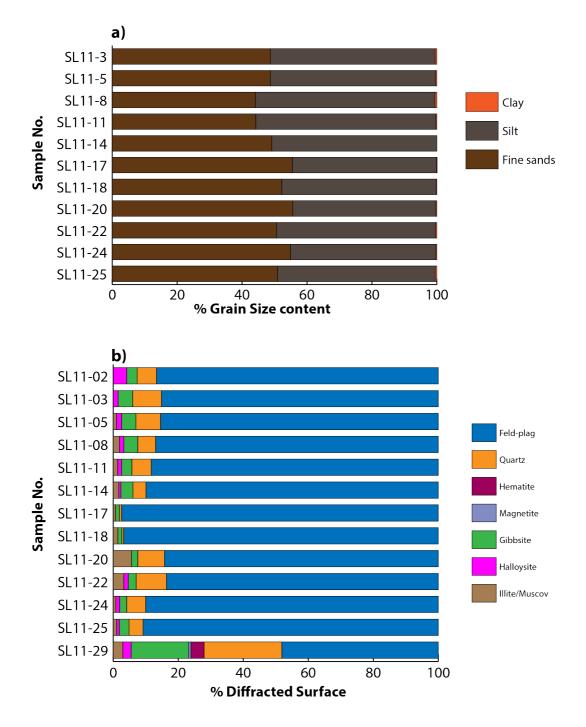
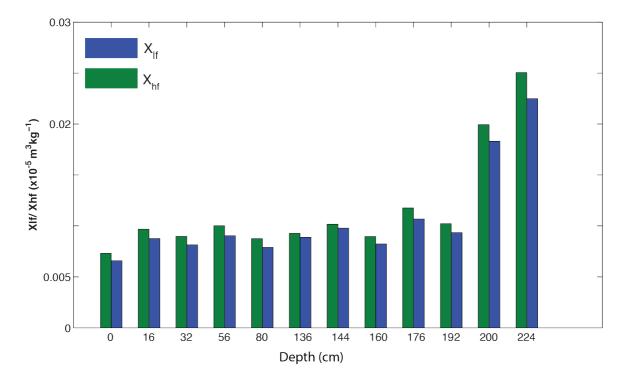
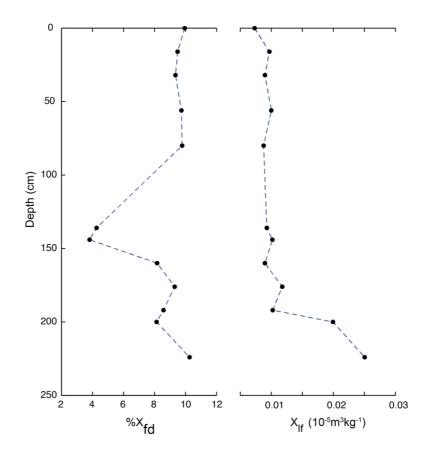




Figure 4-16: (a) Grain size distribution of the  $<200 \ \mu m$  fraction and (b) bulk mineralogy of the soil profile at Sacred Lake. NB: Feld-plag denotes plagioclase feldspar composition in the samples.

#### 4.2.2.2 Mineral Magnetics


The bulk magnetic susceptibility values at low frequency (X<sub>lf</sub>) range from  $0.25 \times 10^{-6} \text{ m}^3\text{kg}^{-1}$  to  $7.3 \times 10^{-6} \text{ m}^3\text{kg}^{-1}$  while high frequency (X<sub>hf</sub>) oscillates between  $0.22 \times 10^{-6} \text{ m}^3\text{kg}^{-1}$  and 6.6  $\times 10^{-6} \text{ m}^3\text{kg}^{-1}$ . Not surprisingly, the low and high frequency magnetic susceptibility values are strongly correlated (Figure 4-17). The associated low and high frequency values display a good linear correlation with R<sup>2</sup> = 0.99 (*p* < 0.001). A marked increment in the magnetic susceptibility values is encountered at 200 cm, likely indicating a polygenic soil profile (Figure 4-17).



*Figure 4-17: The relationship between the high and low frequency bulk magnetic susceptibility for selected samples from the soil profile at Lake Nkunga park gate.* 

The  $\% X_{fd}$  values ranges from 4 to 10 %, the latter value indicating a strong contribution of ultrafine superparamagnetic grains in the magnetic susceptibility signal. However, there is no clear relationship between the X<sub>If</sub> and  $\% X_{fd}$  (Figure 4-18), suggesting the probable contributions of paramagnetic clays as well as ferrimagnetic Fe-Ti oxides. From the bottom of the soil profile, a decline in X<sub>If</sub> and corresponding decline in  $\% X_{fd}$  until 150 cm. After 10 cm, the  $\% X_{fd}$  increases towards the top of the profile while the X<sub>If</sub> is relatively stable. The X<sub>fd</sub> values level off after 80 cm. The decline in the X<sub>fd</sub> values from the bottom of the profile corresponds to an increase in coarse grain fragments observed noted by the decline in clay/silt

fragments incorporating non – SP ferrimagnetic grains as the corresponding  $X_{lf}$  value is not markedly different.



*Figure 4-18: The relationship between the high and low frequency bulk magnetic susceptibility for selected samples from soil profile at Sacred Lake.* 

Six samples selected from the Sacred Lake soil profile display low MDF values between 4.8 – 6.8 mT with the exception of one sample at 136 cm where an MDF value of 24.1 mT is observed. The NRM intensities are almost completely demagnetized at about 10 mT for all the samples (Figure 4-19). Such relatively low MDF values are consistent with highly viscous and soft mineral magnetic assemblages, primarily dominated by soft multi-domain titanomagnetite grains and/or by thermally unstable, easily demagnetized ultrafine oxides lying near the superparamagnetic state similar to the observations at Lake Nkunga.

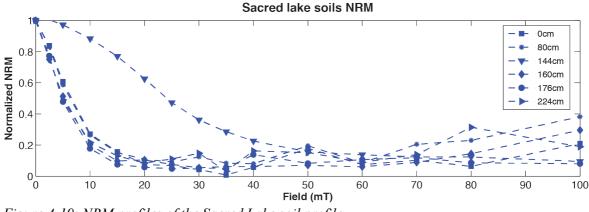



Figure 4-19: NRM profiles of the Sacred Lake soil profile.

# 4.2.2.3 Inorganic Geochemistry

The Sacred Lake area soils contain 17 detected elements (Al, Si, Ti, Ca, Cl, Cu, Fe, K, Mn, Nb, Ni, P, Rb, S, Sr, Zn, Zr), showing only little variation along the soil profile (Figure 4-20). Si, Al, Mn, Ca, K, Fe and Ti were selected as geochemical elements representative of the conservative indicators of environmental processes (Boës et al. 2011). The variations of these elements within the soil profile were used to define detrital and *in-situ* changes due to weathering processes within the profile (Figure 4-21).

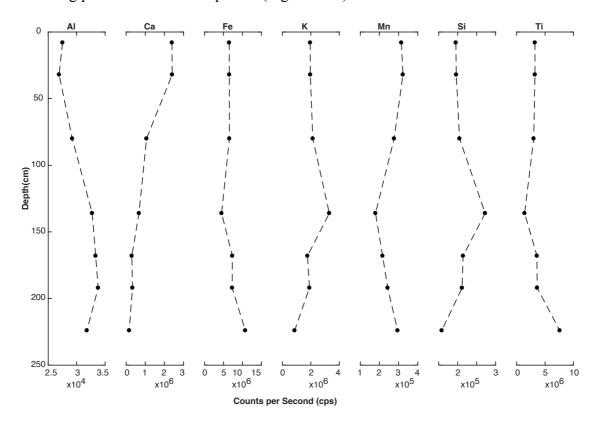



Figure 4-20: Elemental geochemical profile from Sacred Lake soil profile.

The Ca/Ti, Fe/Ti and K/Ti (Figure 4-21) profiles, potentially illustrate the respective signature of combined deposition process and soil weathering as well as biomass input. The three parameters show a rise in these ratios up to 150 cm. Above 150 cm, the proxies exhibit continuous declines that stabilise at the top of the soil profile. In contrast, the Fe/Mn ratio declines from the bottom of the profile and stabilises at about 150 cm to the top of the soil profile, likely indicating a fixed higher value of Mn concentration in the upper layers of the profile with limited variation (Figure 4-20) and thus the observed changes correspond to changes in Fe. This is verified by the similarity of the Fe/Mn (Figure 4-21) and Fe (Figure 4-20) graphs from 150 cm to 0 cm depth. The soil profile was revised from the stratigraphic section in 4.2.2.1 (pg. 88) to horizons based on the geochemical proxies where the B horizon (224 to 160 cm) is dominated by the weathering of aluminosilicates (evidenced by the high Al in this section), smaller grain sizes (increase in Fe/Ti) and higher Fe/Mn.

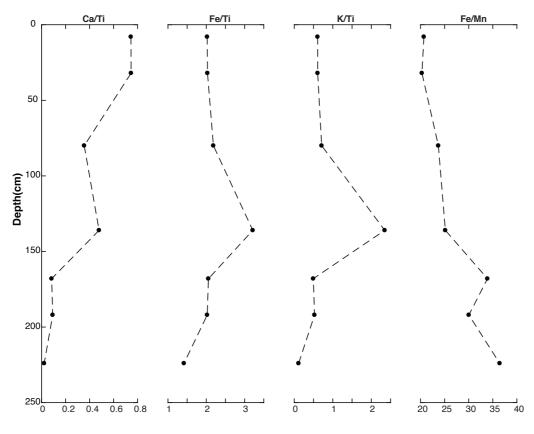



Figure 4-21: Normalized elemental variations down the Sacred Lake soil profile.

A major change occurs between 160 and 140 cm where predominantly lithogenic indicators such as Fe/Ti show a rapid increase while the Fe/Mn value show a major decrease. This suggests a zone of Mn accumulation, possibly linked with temporarily water logging at the limit between the weathering E horizon and the accumulation B horizon. The E horizon (140

– 80 cm) is characterized by increasing titanium content at the expense of other mobile or soluble components. The content in aluminosilicates is lower, but the minimum Fe/Mn values near the top of the profile illustrate the accumulation of Mn in relatively oxidising and organic rich conditions. Similarly, the upward increase of Ca/Ti likely illustrates the uptake of soil Ca by vegetation and its further deposition and burial in litter biomass. The A horizon is observed between 80 and 40 cm while O horizon is above it.

## 4.2.2.4 Organic Geochemistry

## 4.2.2.4.1 Carbon, Nitrogen and their Isotopes

The % C ranges from 0.6 % to 8.3 % with an average of 3.3 %. %C displays a steady decline down the soil profile. On the other hand, %N ranges from 0.05 to 0.80 % with an average of 0.30 %. The %N values are relatively constant with minimal to no change down the soil profile (Figure 4-22). The %C and %N display a strong correlation,  $R^2 = 0.99$  (p < 0.001). The C/N ratio displays a decrease from the bottom of the profile (8.7- 11.5) with an average value of 10.3.

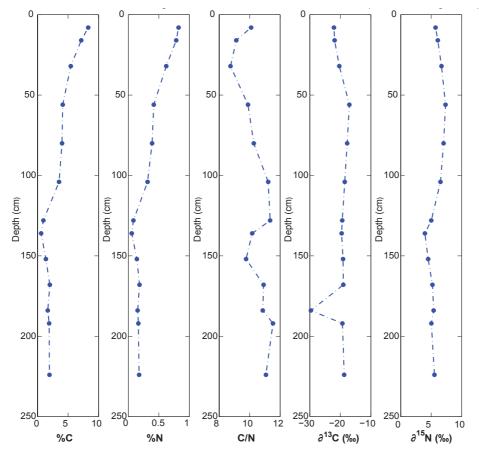



Figure 4-22: Variations down the soil profile from Sacred Lake of %C and %N, C/N,  $\delta^{13}C$  and  $\delta^{15}N$ .

The  $\delta^{13}$ C ranges from -29.7‰ to -17.0‰ with an average of -20.2‰ whilst the  $\delta^{15}$ N ranges from 4.0 ‰ to 7.4‰ with an average of 5.7‰. The  $\delta^{13}$ C displays a sharp excursion to the most negative value at 184 cm while at 150 cm a slight increase in  $\delta^{15}$ N towards the top of the profile occurs; the  $\delta^{13}$ C and  $\delta^{15}$ N are relatively constant. The ranges of OM  $\delta^{13}$ C values from the Sacred Lake profile are characteristic of C<sub>3</sub> - C<sub>4</sub> type vegetation.

# 4.2.2.4.2 n-alkanes

The *n*-alkane chain range is  $C_{14-35}$  with the most abundant n-alkanes in the samples occurring at  $C_{29}$  and  $C_{31}$  along with significant presence of short and mid chain *n*-alkanes  $C_{15-24}$  (Figure 4-23). The distribution of the *n*-alkanes is unimodal, displaying dominance of the long odd chain homologues ( $C_{25+}$ ) associated with higher plant biomass as the main source of organic matter. The short chain n-alkanes are more abundant in the sample at the bottom of the soil profile and this abundance progressively declines towards the top of the soil profile. The sample at the bottom of the profile (224 cm) displays bimodal distribution with the  $C_{18}$  *n*-alkane as the most predominant.

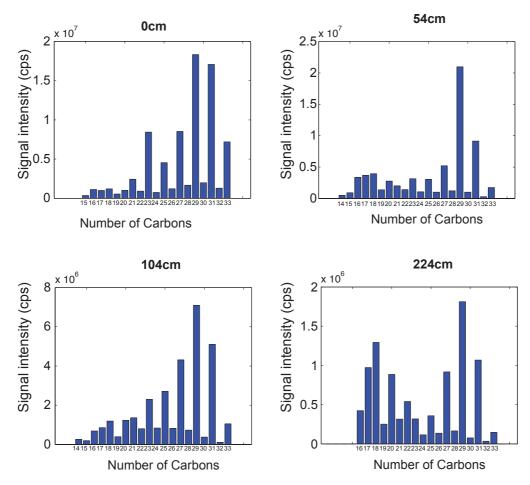



Figure 4-23: n-alkane distribution on from the Sacred Lake soil profile.

These samples show the relatively high abundance of the short to mid-chain *n*-alkanes (Figure 4-23). Among the long chains n-alkanes, the higher plants terrestrial n-alkanes  $C_{29}$  is the most abundant, followed by  $C_{31}$  and lastly  $C_{27}$ . The  $C_{27}/C_{31}$  ratio (0.5 – 0.9) has the highest value at the bottom (0.9) and declines towards the top (0.5) of the profile.

The ACL (28.7 - 29.5) and CPI (8.5 - 10.1) are indicative of terrestrially derived *n*-alkanes with an odd over even predominance (Table 5). The TAR values (3.1 - 22.9) display higher values in the surface and at 104 cm while two other samples at 54 cm and 224 cm display low TAR values indicative of microbial/algal activity.

| Tuble 5. Summar | у ој п-акап          | e maices           | from Sacrea Lake soli samples |      |                 |      |  |
|-----------------|----------------------|--------------------|-------------------------------|------|-----------------|------|--|
| Depth (cm)      | C <sub>n</sub> range | C <sub>n</sub> max | ACL                           | CPI  | $C_{27}/C_{31}$ | TAR  |  |
| 0               | 15-33                | 29                 | 29.5                          | 8.6  | 0.5             | 22.9 |  |
| 54              | 14-33                | 29                 | 29.1                          | 10.1 | 0.6             | 5.9  |  |
| 104             | 14-33                | 29                 | 28.7                          | 8.5  | 0.8             | 11.5 |  |
| 224             | 14-33                | 29                 | 28.9                          | 9.3  | 0.9             | 3.1  |  |

Table 5: Summary of n-alkane indices from Sacred Lake soil samples

# 4.2.2.4.3 GDGTs

BrGDGT-I is the most abundant in the samples from the subsurface while GDGT-II is the most abundant in the sample from the surface. Among the iGDGTs, there are some changes in the profile where crenarchaeol is more abundant on the surface and at 54 cm whereas GDGT-0 is more abundant at 104 cm and GDGT-2 is the most abundant of the iGDGTs at 224 cm (Figure 4-24).

 $C_n$ -number of carbon atoms present in the n-alkane chain: ACL-ACL of long chain n-alkanes; CPI-Carbon Preference Index of long chain alkanes;  $C_{27}/C_{31}$  ratio; TAR-Terrigenous-Aquatic Ratio

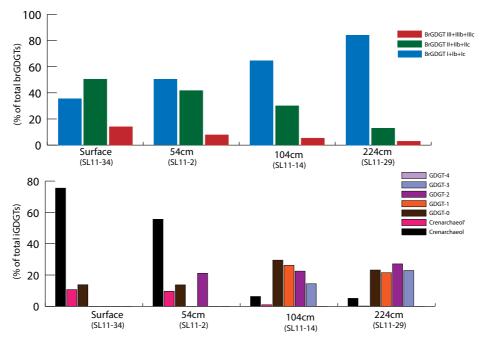



Figure 4-24: GDGT distribution in the various soil samples from the soil profile at Sacred Lake area.

There are several iGDGTs that are below detection limits in the samples e.g. GDGT-1 to GDGT-4 were not detected on the surface sample, GDGT-1, GDGT-3 and GDGT-4 were below detection in the sample at 54 cm, GDGT-4 was not detected in the sample at 104 cm and at 224 cm the crenarchaeol regio isomer and GDGT-4 were below detection limits (Figure 4-24).

# 4.2.3 Characteristics of Soils from the Transect

## 4.2.3.1 Mineralogy

The mineralogy of the transect soils is dominated by feldspars (70 - 95 %) and secondly by quartz (2 - 15 %) (Figure 4-25). At the lower altitudes between 1800 - 2100 m asl, the soils are dominated by halloysite, hematite and magnetite which are weathering products. Above 2500 m asl, chlorite is detected in small quantities (Figure 4-25) whereas diopside that was present in the lower altitudes is absent. Quartz, gibbsite and plagioclase feldspars appear in all samples along this transect. The plagioclase feldspars are more abundant above 2000 m asl while the abundance of quartz declines from the lower to higher altitudes. Among the clay minerals, kaolinite, illite and chlorite are present. Not surprisingly, the lower altitude, warmer and wetter surface soils from show significant enhancement in silicate and iron weathering products, together with a probable input from atmospheric dust.

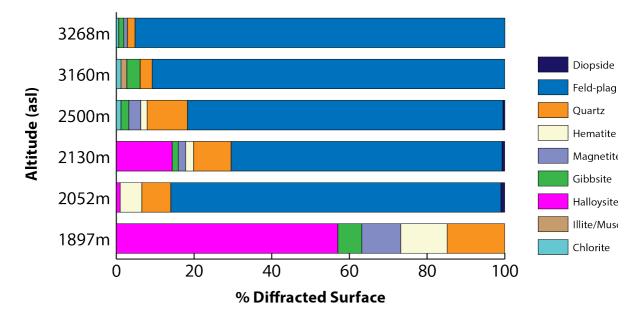
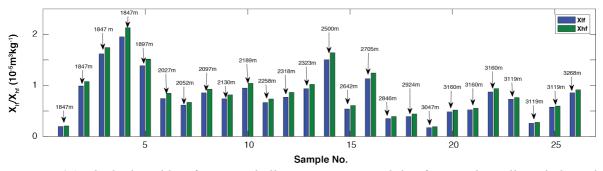




Figure 4-25: Bulk mineralogy of soils along the Nkunga-Sacred Lake- Rutundu transect.

# 4.2.3.2 Magnetic Susceptibility

The mass specific magnetic susceptibility values at low frequency (Xlf) ranges from  $0.2 \times 10^{-6}$  m<sup>3</sup>kg<sup>-1</sup> to  $1.9 \times 10^{-6}$  m<sup>3</sup>kg<sup>-1</sup> while at high frequency (X<sub>hf</sub>) it ranges from  $0.2 \times 10^{-6}$  m<sup>3</sup>kg<sup>-1</sup> to  $1.7 \times 10^{-6}$  m<sup>3</sup>kg<sup>-1</sup> (Figure 4-26). The associated low and high frequency values display a good linear correlation (R<sup>2</sup> = 0.99, *p* < 0.001). Three susceptibility clusters can be identified along the transect; (i) soils with the highest magnetic susceptibility values (1800 – 2000 m) are mainly from the Nkunga crater and its surroundings; (ii) soils with intermediate susceptibility values (2300 – 2700 m) are found around Sacred Lake, and; (iii) soils with generally low susceptibility values occur above 3000 m and have large fluctuations in the low frequency magnetic susceptibility values (Figure 4-27).



*Figure 4-26: The high and low frequency bulk magnetic susceptibility for samples collected along the soil transect.* 

The frequency dependency (%X<sub>fd</sub>) varies from 3 to 12 %, implying that the samples collected along the soil transect represent a mixture of SP and coarser non-SP ferrimagnetic grains (Figure 4-27). Three clusters are observed in %X<sub>fd</sub> trends: the low altitude (1500 – 2000 m asl) medium %X<sub>fd</sub> (5 – 6 %) values; the mid altitude (2500 – 3000 m asl) with medium to high %X<sub>fd</sub> (7 – 12 %) values and the high altitude (> 3000 m asl) with medium %X<sub>fd</sub> (3 – 7 %) values. Interestingly, the maximum %X<sub>fd</sub> values are observed in soils from the Afromontane forest, in the higher rainfall zone.

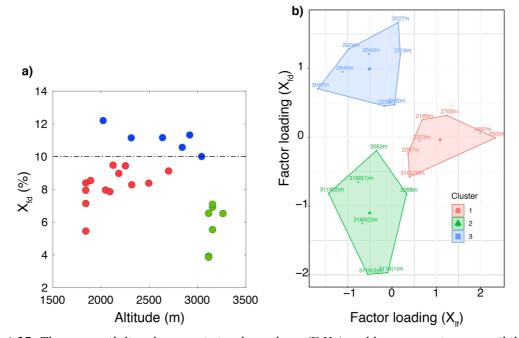
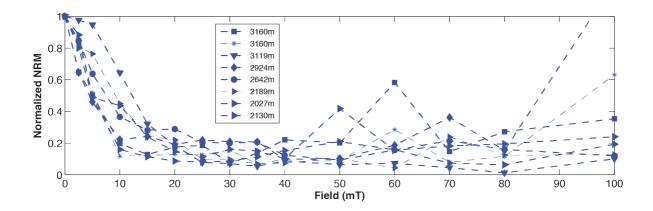




Figure 4-27: The susceptibility characteristics dependence ( $\% X_{fd}$ ) and low magnetic susceptibility ( $X_{lf}$ ). The first panel (a) shows the altitudinal variation in  $\% X_{fd}$ , red represents low altitude & medium  $\% X_{fd}$ , samples, blue represents mid altitude and medium to high  $\% X_{fd}$  samples and green represents high altitude and medium  $\% X_{fd}$  samples. The horizontal line at 10  $\% X_{fd}$  marks the border between the mix-SP and coarser non-SP grains and the predominantly high SP ferrimagnetic grains. The second panel (b) shows the results of a cluster analysis performed on the two variable  $X_{lf}$  and  $X_{fd}$  where these three clusters are linked to the corresponding  $X_{lf}$ .

The Median Destructive Field (MDF) was calculated from the normalized Natural Remanence Magnetism (NRM) intensities. The soils displayed low MDF values (4.5 - 12.2 mT) and the demagnetisation of the samples was achieved at about 10 mT (Figure 4-28). These results imply that the bulk of the magnetic signal of the samples is carried by coarse-grained fraction. The similarities in the shape of the demagnetisation curves of the soil samples point to a single source origin of the magnetic minerals along the altitudinal transect. The NRM intensities for the high-altitude soils (>3000 m asl) display magnetisation after 40 mT. Generally, the soils

along the transect are derived from the same parent material with the exception of the highaltitude soils that are probably palaeosols.



*Figure 4-28: Natural Remanent Magnetism of soil samples from the soil transect, Lake Nkunga and Sacred Lake* 

Using the NRM results, the average MDF of 30 mT was selected for the Anhysteretic Remanence Magnetism (ARM) and Isothermal Remanence Magnetisation (IRM) measurements on the assumption that at 300 mT the saturation of the fine-grained ferrimagnetic minerals will have occurred.  $X_{If}$ , ARM<sub>30mT</sub>, SARM, IRM<sub>300mT</sub> and SIRM have low correlation coefficients (R<sup>2</sup> ranges from 0.2 – 0.6) and do not display any clear trends in the soils (Figure 4-29).

IRM<sub>300mT</sub> ranges from  $0.3 \times 10^{-5}$  to  $2.8 \times 10^{-5}$  Am<sup>2</sup>kg<sup>-1</sup> whilst the SIRM values range from  $0.35 \times 10^{-5}$  to  $2.9 \times 10^{-5}$  Am<sup>2</sup>kg<sup>-1</sup>. The S-ratio of these samples fluctuates between 0.6 and 1 with an average of 0.8. The samples generally display low coercivity suggesting the dominance of ferrimagnetic minerals (e.g. magnetite); however, the detection of S-ratio below 0.8 implies co-existence of anti-ferromagnetic minerals (e.g. goethite and hematite) in these soils possibly due to redox processes.

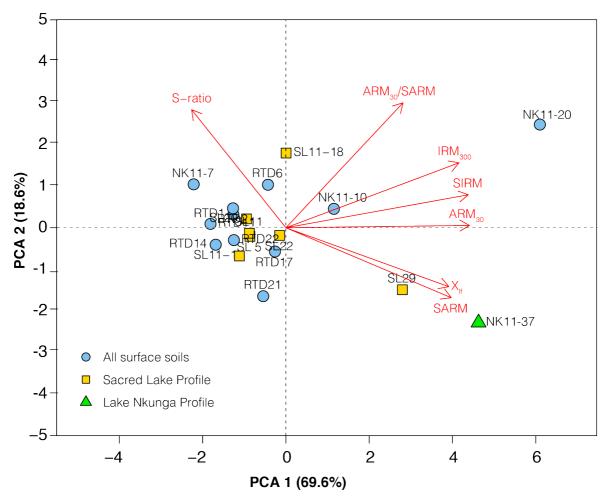



Figure 4-29: A bi-plot of the PCA of the different magnetic variables of all surface soils (including surface soils collected from Nkunga area) and soil profiles from Sacred Lake and Lake Nkunga (One sample).

The intensity of the ARM<sub>30mT</sub> ranges from  $0.31 \times 10^{-4}$  to  $2.1 \times 10^{-4}$  Am<sup>2</sup>kg<sup>-1</sup> whilst those of the SARM (ARM<sub>100mT</sub>) range from  $0.8 \times 10^{-4}$  to  $7.8 \times 10^{-4}$  Am<sup>2</sup>kg<sup>-1</sup>. The ARM<sub>30mT</sub>/SARM ratio ranges between 0.1 and 0.45. This low value generally characterizes the dominant state of the remanence-carrying component of the soil samples as soft multi-domain viscous grains. However, the values of the %X<sub>fd</sub> previously discussed (up to 10 %) shows that there is probably a considerable influence of ultrafine SP ferrimagnetic grains from the catchment soils. Consequently, the magnetic grain assemblages of the catchment contain two dominant sources of particles: one SP component likely of pedogenic origin, and soft and coarse detrital titanomagnetite component inherited from the volcanic bedrock.

#### 4.2.3.3 Organic Geochemistry

#### 4.2.3.3.1 Carbon, Nitrogen and their Isotopes

The %C, %N,  $\delta^{13}$ C and  $\delta^{15}$ N were measured along the transect and do not display any unique trends with elevation. %C has a wide range from 1.0 % to 29.9 % with an average of 7.8 %, whilst the %N ranges from 0.0 to 2.3 % with an average of 0.7 % (Figure 4-30). The R<sup>2</sup> value of %N and %C is 0.91 (p < 0.001) displaying a good a linear relationship between these two variables. The C/N ratio ranges from 7.3 to 20.1 with an average value of 12.3 while the  $\delta^{13}$ C ranges from -60.7 ‰ to -14 ‰ although most of the values oscillate around the average concentration of -23.6 ‰ and  $\delta^{15}$ N range from -1.3 ‰ to 12.8 ‰ with an average of 7.2 ‰. Three outliers are observed in the  $\delta^{13}$ C values of the surface samples NK11-4, NK11-2 and NKS11-3. Although during sampling, effort was made to ensure that fresh roots from the vegetation was not collected, the high values from these samples point to fresh terrestrial samples. The linear relationship between  $\delta^{13}$ C and  $\delta^{15}$ N is defined by R<sup>2</sup> = 0.20 (p < 0.002) with the exclusion of the three outlier samples.

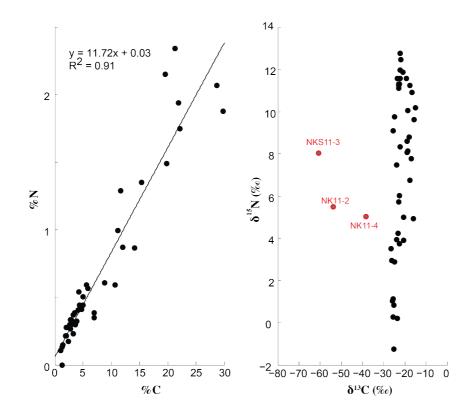
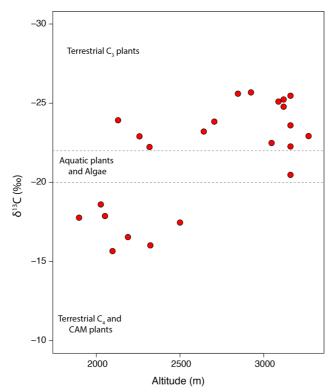




Figure 4-30: Variations of % C, % N,  $\delta^{13}C$  and  $\delta^{15}N$  along the soil transect from Lake Nkunga to Lake Rutundu. The red dots mark the outlier samples in the  $\delta^{13}C$  and  $\delta^{15}N$  dataset

Based on the C/N and the  $\delta^{13}$ C, the OM of the soils along the transect reflect C<sub>3</sub> and C<sub>4</sub> type vegetation . This is not surprising as the soil samples are collected from the montane forest and cultivated slopes of the mountain. From 1800 to 2500 m asl, a mix of C<sub>3</sub> and C<sub>4</sub> type vegetation are the main sources of OM while from 2500 to 3500 m asl, the OM is predominantly derived from C<sub>3</sub>-type vegetation (Figure 4-31).



*Figure 4-31: Stable carbon isotope signature of the soil organic matter along the soil transect from Mt. Kenya area* 

## 4.2.3.3.2 *n-alkanes*

The distribution of n-alkanes from the surface soils of the Nkunga-Sacred Lake-Rutundu transect is unimodal in samples above 2500 m asl and bimodal in samples below this altitude. The samples below 2500 m display bimodal distribution of mid and long *n*-alkane chains indicating a mix of terrestrial and microbial input into the soils. Above 2500 m the unimodal distribution reflects the abundance of the long chain odd homologues  $C_{25+}$  associated with higher plant biomass which indicates that terrestrial plant materials are the main source of organic matter (Figure 4-32). The n-alkane chain range is  $C_{14-35}$  with the most abundant n-alkanes in the samples being either  $C_{29}$  or  $C_{31}$  and with a substantial presence of short chain n-alkanes  $C_{15-24}$ . The  $C_{27}/C_{31}$  ratio (0.1 – 2.0) generally implies a grassland-dominated ecosystem.

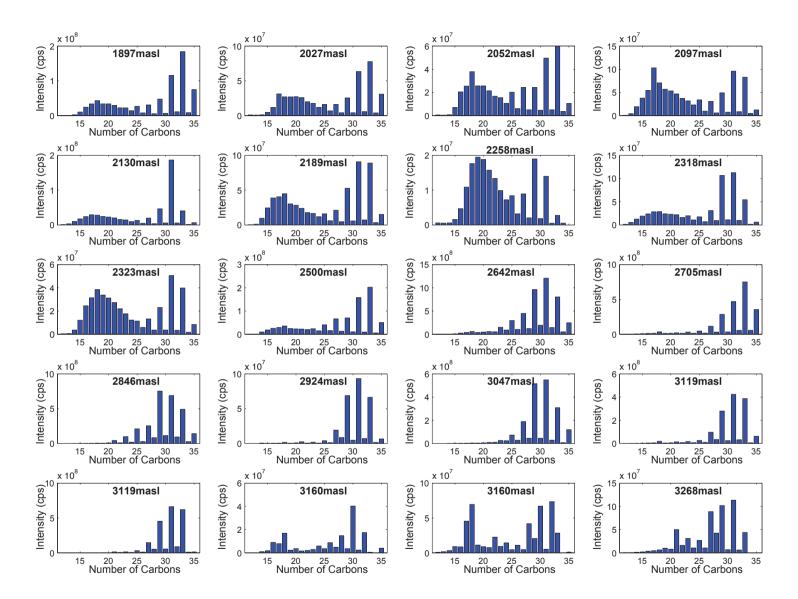



Figure 4-32: n-alkane distribution along the Nkunga-Sacred Lake- Rutundu transect

The ACL varies from 27.8 - 29.8 along the transect (Table 6) indicative of predominantly higher plant terrestrial OM sources. The CPI (6.9 - 11.9) values affirm the terrestrial source origin of the soil organic matter.

| Altitude (m) | C <sub>n</sub> range | C <sub>n</sub> max | ACL  | СРІ  | C <sub>27</sub> /C <sub>31</sub> | TAR   |
|--------------|----------------------|--------------------|------|------|----------------------------------|-------|
| 1897         | 12-35                | 33                 | 31.0 | 9.3  | 0.3                              | 2.5   |
| 2027         | 12-35                | 33                 | 30.7 | 6.9  | 0.3                              | 1.7   |
| 2052         | 12-35                | 33                 | 30.2 | 6.4  | 0.5                              | 1.7   |
| 2097         | 12-35                | 17                 | 30.1 | 6.6  | 0.3                              | 0.9   |
| 2130         | 12-35                | 31                 | 30.4 | 12.2 | 0.1                              | 3.6   |
| 2189         | 12-35                | 31                 | 30.6 | 8.7  | 0.2                              | 1.7   |
| 2258         | 12-34                | 29                 | 28.8 | 5.0  | 0.6                              | 1.3   |
| 2318         | 12-35                | 31                 | 30.0 | 7.4  | 0.3                              | 3.5   |
| 2323         | 12-35                | 31                 | 30.4 | 6.1  | 0.3                              | 1.1   |
| 2500         | 14-35                | 33                 | 30.5 | 9.0  | 0.4                              | 4.1   |
| 2642         | 15-35                | 31                 | 30.0 | 5.8  | 0.4                              | 29.4  |
| 2705         | 14-35                | 33                 | 31.1 | 9.7  | 0.2                              | 23.8  |
| 2846         | 14-35                | 29                 | 29.8 | 6.9  | 0.4                              | 168.1 |
| 2924         | 14-35                | 31                 | 30.6 | 10.8 | 0.2                              | 118.5 |
| 3047         | 14-35                | 31                 | 30.0 | 9.9  | 0.3                              | 141.0 |
| 3119         | 14-35                | 31                 | 30.7 | 10.9 | 0.2                              | 62.9  |
| 3119         | 14-35                | 31                 | 30.6 | 8.0  | 0.3                              | 99.1  |
| 3119         | 14-35                | 31                 | 30.8 | 8.9  | 0.2                              | 274.5 |
| 3160         | 14-35                | 30                 | 27.9 | 0.2  | 2.0                              | 0.9   |
| 3160         | 12-35                | 32                 | 30.5 | 0.3  | 0.9                              | 0.5   |
| 3268         | 12-33                | 31                 | 29.3 | 5.3  | 0.8                              | 18.6  |

 Table 6: Summary of n-alkane indices from the soil transect

## 4.2.3.3.1 GDGTs

## 4.2.3.3.1.1 GDGT Distribution and Concentration

All the soil samples contain abundant amounts of brGDGTs and iGDGTs ranging from 93 to 3157  $\mu$ g/g (57.0 - 99.7 %) and 2 to 156  $\mu$ g/g (0.3 – 43.0 %), respectively. On average the iGDGT constitutes 12 % of the total GDGTs, which agrees with values obtained by Weijers et al. (2006) where the average relative abundances are 10 %. The samples are dominated by brGDGT-I and its moieties while brGDGT-III is the least abundant from 1800 – 2500 m asl.

 $C_n$ -number of Carbon present in n-alkane chain: ACL- total Average alkane Chain Length; CPI-Carbon Preference Index of long chain alkanes; TAR-Terrigenous-Aquatic Ratio.

Between 2500 m asl and 3000 m asl brGDGT-II becomes the most abundant among the samples (Figure 4-33). Among the iGDGTs, a similar trend is observed where relatively higher crenarchaeol is observed below 2500 m asl and GDGT – 0 is more abundant above 2500 m asl.

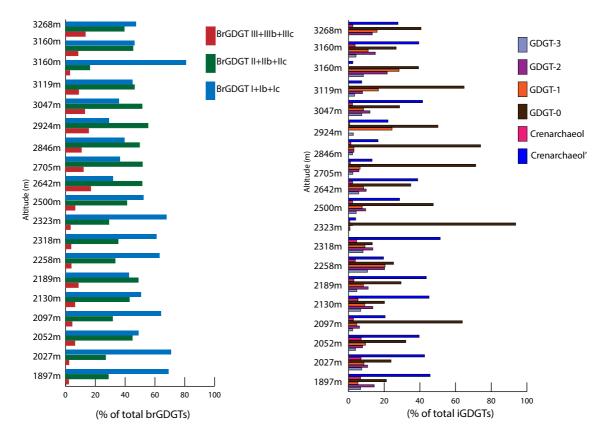



Figure 4-33: GDGT distribution in percent of the samples from the soil transect

The BIT values <1 (see *Equation 8*, pg. 69 for BIT calculations) imply that the methanogenic archaea are only a minor component of the microbial community in these soils. Above 3119 m asl the BIT index less than 0.5 due to significant contributions of iGDGTs and a decline in the relative abundance of brGDGT (Figure 4-34). In the samples below 3119m asl, a relative decline in the total GDGTs is observed alongside the relative abundance of brGDGT-II and GDGT-0 (Figure 4-33). The BIT index demonstrates a strong linear relationship with altitude where R<sup>2</sup>=0.70 (p < 0.001). Although this value displays a good linear relationship, the index is dependent on other factors such as pH where an increase in soil pH favours the concentration of iGDGT that leads to a decline in the BIT values (Weijers et al. 2007).

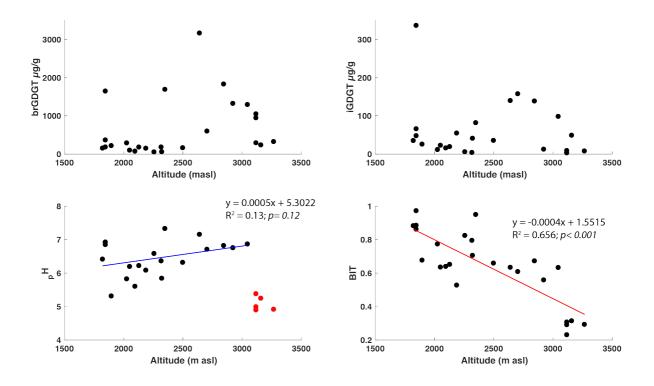



Figure 4-34: Bivariate plots of brGDGT, iGDGT, pH (the linear relationship is defined from the exclusion of the samples marked in red) and BIT indices along the soils transect in Mt. Kenya

## 4.2.3.3.1.2 brGDGT – derived proxies

pH, MBT, MBT' and CBT were calculated for all the soil samples from the altitudinal transect (Table 7). The reconstructed pH along the soil transect derived from calibrations by Peterse et al. (2012) and Weijers et al. (2007) display similarity in distribution with a weak correlation ( $R^2 = 0.15$ , p = 0.05, not shown in the figure). This relationship is weakened by the effect of the sample cluster above 3000 m asl where the pH values (4.5 - 5.0 pH units) are lower (Figure 4-34). The exclusion of these values provides a relationship defined by  $R^2 = 0.130$ ; p = 0.12.

|     | Altitude |      |      |      |      | pН      | рН      | Т       | Т       |           |       |
|-----|----------|------|------|------|------|---------|---------|---------|---------|-----------|-------|
| No. | (m asl)  | BIT  | MBT  | MBT' | CBT  | Weijers | Peterse | Peterse | Weijers | 1302/1292 | TEX86 |
| 1   | 1823     | 0.88 | 0.62 | 0.62 | 0.76 | 6.77    | 6.41    | 15.64   | 17.66   | 0.44      | 0.77  |
| 2   | 1847     | 0.97 | 0.50 | 0.50 | 0.50 | 7.45    | 6.92    | 13.58   | 14.29   | 7.00      | n.d   |
| 3   | 1847     | 0.88 | 0.53 | 0.53 | 0.50 | 7.44    | 6.91    | 14.41   | 15.73   | 0.32      | 0.79  |
| 4   | 1847     | 0.86 | 0.58 | 0.58 | 0.54 | 7.35    | 6.84    | 15.60   | 17.64   | 0.41      | 0.77  |
| 5   | 1897     | 0.68 | 0.69 | 0.69 | 1.32 | 5.30    | 5.31    | 14.76   | 16.14   | 0.46      | 0.84  |
| 6   | 2027     | 0.77 | 0.71 | 0.71 | 1.06 | 5.98    | 5.82    | 16.76   | 19.42   | 0.56      | 0.74  |
| 7   | 2052     | 0.63 | 0.49 | 0.49 | 0.87 | 6.48    | 6.19    | 11.04   | 10.22   | 0.81      | 0.67  |
| 8   | 2097     | 0.64 | 0.64 | 0.64 | 1.17 | 5.69    | 5.60    | 14.15   | 14.97   | 3.11      | n.d   |
| 9   | 2130     | 0.65 | 0.51 | 0.51 | 0.86 | 6.51    | 6.22    | 11.72   | 11.27   | 0.45      | 0.74  |
| 10  | 2189     | 0.53 | 0.43 | 0.43 | 0.93 | 6.33    | 6.08    | 8.75    | 6.52    | 0.68      | 0.69  |
| 11  | 2258     | 0.82 | 0.63 | 0.63 | 0.67 | 7.00    | 6.58    | 16.57   | 19.06   | 1.29      | 0.63  |
| 12  | 2318     | 0.79 | 0.61 | 0.61 | 0.78 | 6.70    | 6.36    | 15.33   | 17.09   | 0.26      | 0.74  |
| 13  | 2323     | 0.70 | 0.68 | 0.68 | 1.05 | 6.01    | 5.84    | 15.84   | 17.93   | 23.20     | n.d   |
| 14  | 2350     | 0.95 | 0.36 | 0.36 | 0.29 | 7.99    | 7.32    | 10.39   | 8.98    | 0.18      | 1.00  |
| 15  | 2500     | 0.66 | 0.52 | 0.52 | 0.81 | 6.64    | 6.31    | 12.49   | 12.57   | 1.66      | 0.68  |
| 16  | 2642     | 0.63 | 0.32 | 0.32 | 0.38 | 7.76    | 7.15    | 8.66    | 6.16    | 0.90      | 0.68  |
| 17  | 2705     | 0.61 | 0.36 | 0.37 | 0.61 | 7.16    | 6.70    | 8.72    | 6.42    | 5.42      | n.d   |
| 18  | 2846     | 0.67 | 0.40 | 0.40 | 0.55 | 7.31    | 6.81    | 10.09   | 8.57    | 4.47      | n.d   |
| 19  | 2924     | 0.56 | 0.29 | 0.30 | 0.58 | 7.22    | 6.75    | 6.64    | 3.02    | 2.26      | n.d   |
| 20  | 3047     | 0.63 | 0.36 | 0.36 | 0.53 | 7.37    | 6.86    | 9.02    | 6.82    | 0.69      | 0.72  |
| 21  | 3119     | 0.29 | 0.49 | 0.49 | 1.48 | 4.87    | 4.98    | 7.52    | 4.43    | 3.54      | n.d   |
| 22  | 3119     | 0.31 | 0.40 | 0.40 | 1.28 | 5.39    | 5.37    | 6.04    | 2.08    | 1.49      | 0.65  |
| 23  | 3119     | 0.23 | 0.45 | 0.45 | 1.53 | 4.74    | 4.89    | 6.06    | 2.06    | 8.80      | n.d   |
| 24  | 3160     | 0.31 | 0.46 | 0.46 | 1.35 | 5.21    | 5.24    | 7.49    | 4.40    | 0.68      | 0.68  |
| 25  | 3268     | 0.29 | 0.47 | 0.48 | 1.52 | 4.77    | 4.91    | 7.20    | 3.31    | 1.46      | 0.50  |

Table 7: brGDGT and iGDGT-derived proxies along Mt. Kenya transect

The CBT values range from 0.38 to 1.58 and are strongly correlated with reconstructed pH values ( $R^2 = 1, p < 0.001$ ). On the other hand, the CBT values (Table 7, Figure 4-35) display a weaker relationship with altitude ( $R^2=0.14, p = 0.12$ ).

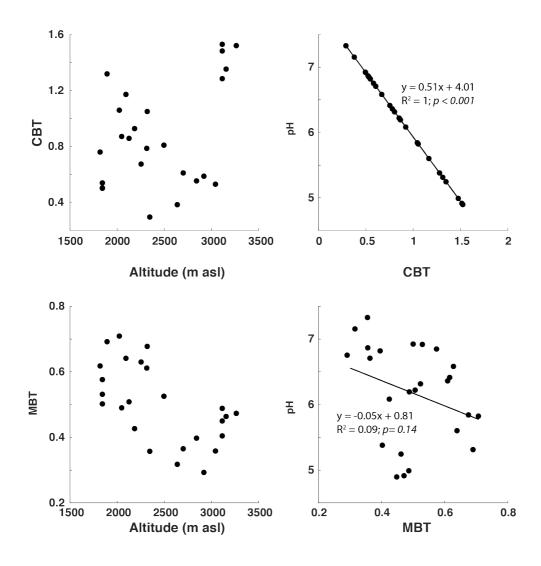



Figure 4-35: The relationship of the brGDGT and iGDGT derived indices with pH from the soil samples.

The samples above 3000 m asl deviate from the linear regression. Globally, CBT is negatively controlled by pH of the soils and this cluster of high altitude (>3000 m asl) acidic soils (pH 4.9 - 5.4) shows this coherency. Weijers et al. (2007) proposed that a decrease in the number of cyclopentyl moieties is associated with the permeability of bacterial cell membranes that regulate internal pH conditions within acidic soils. From our dataset, it is evident that the pH controls the cyclization of the brGDGTs as suggested by Weijers et al. (2007).

The MBT and MBT' values are identical in most cases with the exception of three samples (Table 7, pg. 108). A weak linear trend is observed between MBT and altitude ( $R^2 = 0.37$ , p > 0.001) as displayed by the large scatter of the dataset. MBT does not display a significant trend with pH ( $R^2 = 0.09$ , p = 0.14, Figure 4-35). This relationship is weakened by the pH of the samples above 3000 m asl; the exclusion of these samples improves the relationship between pH and MBT ( $R^2 = 0.5$ , p = 0.0005). In this case the acidity of the soils from Mt. Kenya increases the scatter in the pH – MBT relationship.

MAAT was reconstructed from the MBT, MBT' and CBT indices (Table 7, Figure 4-35) using calibrations defined by *Equation 4* and *Equation 5* (see pg. 69). The MBT/CBT derived MAAT ranges from 4° C to 16° C using the Weijers et al. (2007) calibration and 7° C to 14° C using the Peterse et al. (2012) calibration. The difference in temperature estimates from the two calibrations display a wide range from  $0.82^{\circ}$  C to  $4.00^{\circ}$  C along the altitudinal transect.

The MAAT and altitude along the transect in both cases display a strong linear relationship (Figure 4-36). The lapse rate of the reconstructed MAAT is  $0.90^{\circ}$  C / 100 m and  $0.50^{\circ}$  C / 100 m based on the Weijers et al. (2007) and Peterse et al. (2012) calibrations, respectively. Estimates from Worldclim data (Fick and Hijman 2017) provide a lapse rate of  $0.55^{\circ}$  C / 100 m (Figure 4-36). The temperature estimates from Peterse et al. (2012) are more consistent with temperature estimates from the Worldclim data than those based on the Weijers et al. 2007 calibrations. The application of the Peterse et al. (2012) calibration on Mt. Kenya presents realistic values and therefore this brGDGT-derived temperature proxy is applicable on this mountain.




Figure 4-36: brGDGT and iGDGT derived proxies. The upper panel shows the reconstructed MAAT from Weijers et al. (2007) in red, Peterse et al. (2012) in black, and Worldclim data (in blue) for the soil transect. The lower panel shows the reconstructed  $TEX_{86}$  along the soil transect.

#### 4.2.3.3.1.3 *iGDGT – derived proxies*

The TEX<sub>86</sub> was calculated for 19 of the 28 samples, as more than one of the iGDGTs necessary for this calculation were below detection limits (i.e. GDGT-3, GDGT-2 and GDGT1 were missing in various samples from the transect). A proper application of TEX<sub>86</sub> requires that all the iGDGTs derived from *Thaumarchaeota* be present in the samples (Schouten et al. 2013).

This is not the case in these samples and therefore care must be taken in the interpretation of the results. The calculation of the caldarchaeol (GDGT-I) ratio to crenarchaeol ratio where this value is >2 are considered as an indicator of the dominance of the *Euryarchaeota* among the archaeal community (Blaga et al. 2009). This was not the case for some of the soil samples derived from the surface as the ratio was much lower than 2, ranging from 0.4 to 1.6 with the exception of 8 samples out of the 25 analysed in the transect (Table 7, pg. 108). From this ratio, 17 samples derived from *Thaumarchaeota* and therefore it is meaningful to calculate the TEX<sub>86</sub> proxy for the samples. The TEX<sub>86</sub> values (Figure 4-36) display a weak relationship with altitude ( $R^2 = 0.28$ , p = 0.03). In spite of the fact that the calculated TEX<sub>86</sub> was reasonable, its applicability as a palaeoelevation calibration for the soil samples on Mt. Kenya is questionable due to the low  $R^2$  value obtained that is lower than 0.50.

## 4.2.4 Synthesis of the Characteristics of the Surface and Subsurface Soils

The samples from the Nkunga area are predominantly weathered soils with the characteristic minerals being halloysite, gibbsite, magnetite and haematite. The presence of these weathered products has been associated with the weathering of older Quaternary palaeosols on Mt. Kenya through leaching of volcanic glass (Mahaney & Vortisch 1989) and therefore, is indicative of hot and humid conditions on the lower slopes of the mountain. The coexistence of gibbsite and halloysite in the surface soils reflects possible interaction with water (Parfitt et al. 1983; Parfitt & Wilson 1985; Mahaney & Vortisch 1989) from both precipitation and the lake itself during high stands. This is because, during chemical weathering of the volcanic tuff ring surrounding the lake, silica may be released in the pore solution and therefore, due to lower permeability and higher clay content there is the transformation of gibbsite to halloysite (Mahaney & Vortisch 1989).

From the Nkunga soil profile, the grain size and mineralogy provide a context of the physical characteristics and origin of the soils. The inorganic geochemistry (Fe and Mn) links potential redox and low pH zones within the soil profile. These zones are aligned with the magnetic mineralogy and %C composition as follows: (i) declining %C and increasing %C (ii) Slight localized enhancements in the magnetic susceptibility (at 100 cm) within the soil profile correspond to decline in  $\%X_{fd}$  indicating the iron re-deposition (or the inclusion) of less weathered granules the soil profile within this section (Maher 1986). Multiple sources of the magnetic component are implied by the NRM from Nkunga area and the soil profile is representative of erosion, deposition and the *in-situ* changes in the soil profile.

The Sacred Lake soil profile displays an abundance of plagioclase feldspars with halloysite and gibbsite. Gibbsite and halloysite coexist in this soil profile, which is not surprising as the site is in a relatively moist and humid area where leaching processes can easily occur. This reflects weathering of aluminosilicates as observed in the Al profile where high Al values are detected at the bottom of the soil profile. Haematite and magnetite are observed at the bottom of the soil profile only and correspond to relatively higher magnetic susceptibility, as well as a decline in %X<sub>fd</sub>. This could be attributed to the incorporation of the non-SP grains in the soils as the corresponding X<sub>lf</sub> is markedly low (Maher 1986). The relatively low X<sub>lf</sub> values from Sacred Lake profile correspond to measurable %X<sub>fd</sub> probably due to the presence of superparamagnetic inclusions in a mostly clayey and paramagnetic matrix. The Sacred Lake soils display a uniform trend in the NRM that can be linked to a single source of the magnetic minerals. The %X<sub>fd</sub> of all the samples points to the mix of SP and coarser soft grains, probably coarse-grained titanomaghemite. On the other hand, the low values centred at 144 cm point to the presence of haematite, which is observed in these samples. The reducing environment at the bottom of the profile is further supported by the low %C and a bimodal n-alkane distribution. A progressive increase in %C is observed towards the top of the profile when oxidizing conditions are observed with accompanying unimodal n-alkane distribution of terrestrial vegetation.

Along the soil profile, the mineralogy comprises plagioclase feldspars, magnetite, gibbsite and diopside. Subtle changes are observed with altitude where the lowest altitude sample (1897 m asl) lacks plagioclase feldspars while in the samples above 2500 m asl, the presence of chlorite is observed. At mid to high altitudes sanidine and labradorite (not shown in the graphs) are present, reflecting the parent rock mineralogy. The bulk susceptibility of soils generally declines with increase in altitude. Localized peaks that could be linked to detrital matter inputs derived from catchment erosion punctuate this general trend. The greatest scatter of the magnetic susceptibility is observed in the samples above 3000 m asl. The coercivity S-ratio is the main controlling factor of the magnetic component. In all the soil samples, the S-ratio is very high showing the resistance of the initial forward magnetisation. This is characterized as canted antiferromagnetic behaviour that is present where there are significant quantities of hematite especially below 2500 m asl. Quartz is dominant in all the soils samples but absent in the rock samples. This is likely due to aeolian enrichment of fine-grained quartz sands from quartz rich areas transported by NE and SE monsoon winds that blow over regions dominated

by units derived from basement rocks (Mahaney 1990; Olago and Odada 1996). A mix of  $C_3 - C_4$  type vegetation is encountered along the transect. The  $C_3$  type is found above 2500 m asl while  $C_3 - C_4$  mix is present between 1800 and 2500 m asl. Below 2000 m asl, the n-alkanes distribution is bimodal while it is unimodal in the upper reaches of the mountain.

PCA was used to assess the dominant geochemical signal of the different indicators in order to elucidate the relationships between the soil from Nkunga area and Sacred Lake. The analysis was carried out on the geochemical elements normalized against Ti: Fe/Ti, Al/Ti, Cl/Ti, Si/Ti, S/Ti, Nb/Ti and K/Ti. The first PC axis (PC1) accounts for 80.0 % of the total variance and is positively correlated to all ratios except Cl/Ti (Figure 4-37). The correlation of Al/Ti and Fe/Ti suggests that the positive values on this axis represents varying inputs from the sources and the axis reflects the influence of weathering and erosional processes on the soil samples from the catchment. On the other hand, PC2 explains 14.5 % of the total variance and positively correlate to Al/Ti, Si/Ti and K/Ti (in-situ erosional process) while negatively correlates to the rest of the ratios (concentration of the lithogenic residue following chemical erosional processes). Significant correlation is seen in the S/Ti and Cl/Ti ratios and reflects aeolian transport and deposition that plays a key role. The samples from the upper sections of the soil profile from Sacred Lake (SL-02, SL-05) and surface samples from Nkunga crater (NK11-02 and NK11-07) are most affected by the aeolian deposition (Figure 4-37).

The craters on the north eastern slopes of Mt. Kenya are composed of ash or ash and lava (Mason 1953; Baker 1967) from the Nyambeni volcanics which have not been well investigated. From the field observations, the exposures from the Nkunga crater wall are made up of tuffs and alkali trachyte. Since the samples were largely collected within the crater, these samples present the signature of the Nyambeni parasitic eruptions (Mason, 1953). The Sacred Lake crater wall, on the other hand, is not well exposed and could not be sampled during the field studies. The samples analysed were collected outside the crater and it is therefore possible that the source of the magnetic carrying component in Sacred Lake is associated with titaniferous olivine basalts from the upper Mt. Kenya basalts based on the geology of the lake catchment (Mason, 1953). The differences in the inorganic geochemistry point to the different geology of the parasitic eruptions from Nyambeni volcanics and the main volcanic event from the eruption of Mt. Kenya.

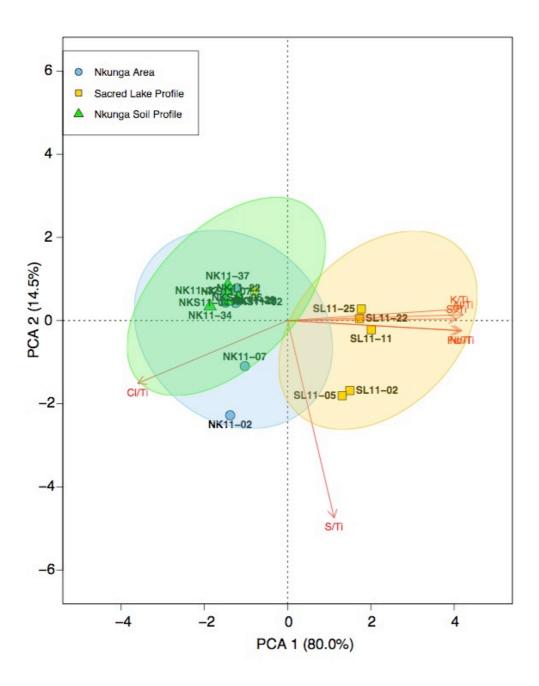
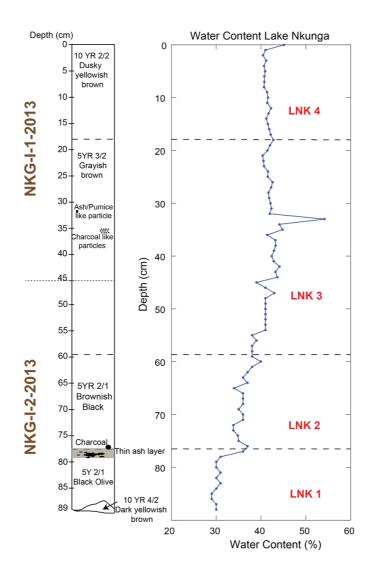



Figure 4-37: PCA of the geochemical properties from Nkunga area soils (blue circle), Nkunga soil profile (green triangle) and Sacred Lake soil profile (yellow square).

In addition, field observations indicate that the morphology of Lake Nkunga crater rim is better preserved than the Sacred Lake crater rim, consistent with a more recent age for the Lake Nkunga crater. Still, contrasted erosion and weathering state of the two craters are evidenced. This is further strongly supported by Figure 4-37, where the PCA axis 2 formerly interpreted as a "chemical weathering index" shows positive and higher values in Sacred Lake soils.

Generally, in the soil profiles, increased inputs of minerogenic inputs, as observed in the geochemistry and magnetic susceptibility in the catchment are accompanied by decreased %C values. The predominant source of OM in the soils is from terrestrial origin as seen in the abundance of brGDGTs and from the supporting n-alkane data. The reconstructed brGDGT derived proxies for MAAT show a decline with altitude consistent with previous observations (Peterse et al. 2009, Weijers et al. 2006, Sinnighe Damsté et al. 2008) and thus is coherent with the use of brGDGTs as indirect indicators of changes in temperature with altitude. The samples from the higher altitudes above 3000 m asl, deviate from the brGDGT derived proxies, perhaps pointing to their palaeosol nature as they were collected in a dry patch of the ericaceous forest zone. The weak linear trend observed between MBT and altitude ( $R^2 = 0.37$ ) is weaker than those obtained from Mt. Xiangpi, China where the  $R^2 = 0.69$  (Liu et al. 2013) and closer to values from Mt. Rungwe, Tanzania where  $R^2 = 0.39$  (Coffinet et al. 2014). These differences could be partly linked to the pH differences in the soils,  $7.0 \pm 0.2$  and  $6.0 \pm 0.5$  for Mt. Xiangpi and Mt. Rungwe, respectively.

The iGDGT derived temperature proxy TEX<sub>86</sub> is linked to the distribution of *Thaumarchaeota* in the soils (Schouten et al. 2007, Kim et al. 2010, Sinnighe Damsté et al. 2012). In this study, there is no clear trend in the TEX<sub>86</sub> ( $R^2 = 0.28$ ). This is unlike the values obtained from a much shorter transect (Coffinet et al. 2014) from 500 – 2500 m on Mt. Rungwe, Tanzania and a higher altitude transect (Liu et al. 2013) from 3250 – 4100 m on Mt. Xiangpi, China where a stronger linear correlation ( $R^2 > 0.5$ ) was obtained. The application of the TEX<sub>86</sub> along our altitudinal transect as a temperature variable is not reliable and therefore it is not suitable as a palaeoelevation proxy. The poor correlation of the TEX<sub>86</sub> with altitude implies a possible contribution of iGDGTs derived from Thaumarchaeota as the predominant source of variability. This is comparable to observations in other locations such as Mt. Rungwe (Coffinet et al. 2014), Mt. Xiangpi (Liu et al. 2013) and the global soils database described by Weijers et al. (2006) where such organisms are present. This further explains the inability to calculate the TEX<sub>86</sub> proxy for some of the samples as the Thaumarchaeoa in soils have been observed to synthesize crenarchaeoa and its regio isomer (Sinninghe Damsté et al. 2012).


# 4.3 Lake Nkunga Sediments

## 4.3.1 Bulk Sediment Parameters

### 4.3.1.1 Stratigraphic Description

Two core sections (top section NKG-I-1-2013; 45 cm and bottom section NKG-I-2-2013; 44 cm) were recovered from Lake Nkunga, spanning a combined total depth of 89 cm at a water depth of 1 m (Figure 4-38) approximately 20 m from the lakeshore. Generally, the cores obtained were in good condition with no visible deformation from the extraction process. At the base of the core, olive black (Munsell colour - 5Y 2/1) sediments comprising a mix of coarse detrital material such as sand and pebbles, with fragments of macroscopic plant remains, were identified from 89 to 77 cm (Figure 4-38). At 79 cm, this unit ends abruptly with the introduction of reworked volcaniclastic material contained in an ill-preserved ash horizon, thus cannot be used as a stratigraphic marker. From 77 to 58 cm brownish black sediments (Munsell colour - 5YR 2/1) comprising clayey silts with a few pebble clasts are present while between 58 - 17 cm (Munsell colour - 5YR 3/2) clayey silts are observed.

A section of reworked ash/pumice and charcoal like particles (ranging in size from 0.5 to 2.0 cm) are present between 32 and 37 cm. The uppermost layer comprises a homogeneous dusky yellowish brown (Munsell colour – 10YR 2/2) silty clay at 17- 0 cm (Figure 4-38). The water content (W<sub>c</sub>) values range from 29 % – 54 % throughout the core with an average of 39 % for the 89 samples collected at 1 cm intervals. Generally, W<sub>c</sub> increases from the bottom to the top of the core with a sharp positive excursion at 35 cm.



*Figure 4-38: The descriptive stratigraphic section and percentage water content of Lake Nkunga cores NKG-I-1-2013 and NKG-I-2-2013.* 

Although different lithologies are present in this core, they do not define distinct stratigraphic or sedimentological indicators (such as banding). A stratigraphically constrained hierarchical cluster analysis was therefore carried out using the Rioja (Juggins 2017), a statistical package in R for the analysis of Quaternary data. The hierarchical clustering was carried out on the combined compositional variation of the OM based on %C, %N,  $\delta^{13}$ C and  $\delta^{15}$ N and led to the identification of four significant stratigraphic zones: low OM in LNK1 (89 – 77 cm), increasing OM in LNK2 (77-58 cm), oscillating changes in OM within LNK3 (58-13 cm) and insignificant OM changes in LNK4 (13-0 cm).

# 4.3.1.2 Radiocarbon Chronology

Ten radiocarbon dates were obtained from bulk sediment samples with the exception of one sample, which was a charcoal sample, retrieved at 78 cm depth (Table 8). The calibration of the individual ages (cal yr. BP) obtained using the intCal13 (Reimer et al. 2013) are presented in Table 8 below.

| Lab No     | Sample         | Depth (cm) | Age <sup>14</sup> C yr. BP | cal yr. BP |
|------------|----------------|------------|----------------------------|------------|
| SacA34944* | NKG- 8-2013    | 8          | $465\pm30$                 | 495±88     |
| SacA34945* | NKG-18-2013    | 18         | $430\pm30$                 | 483±79     |
| SacA34946  | NKG-28-2013    | 28         | $380 \pm 30$               | 466±61     |
| SacA34947  | NKG- 38-2013   | 38         | $445\pm30$                 | 488±85     |
| SacA34948  | NKG- 45-2013   | 45         | $455\pm30$                 | 492±89     |
| SacA34949  | NKGII-5-2013   | 50         | $525\pm30$                 | 533±45     |
| SacA34950  | NKGII-15-2013  | 60         | $635\pm30$                 | 609±82     |
| SacA34951  | NKGII-25-2013  | 70         | $775 \pm 30$               | 723±86     |
| SacA34952* | NKGII-Charcoal | 78         | $470\pm30$                 | 498±86     |
| SacA34953  | NKGII-43-2013  | 88         | $1230\pm30$                | 1069±82    |

Table 8: Radiocarbon ages from Lake Nkunga sediment core obtained from the AMS (Age  ${}^{14}C$  yr. BP) and the calibrated radiocarbon ages (Cal yr. BP and their associated errors). The samples marked in bold were identified as probable outliers

The obtained radiocarbon ages displayed strong age reversal in the top 30 cm. These reversals in the selected samples are thought to be probable artefacts of mechanical sediment mixing by bioturbation (SacA34944 and SacA34945). Previous studies (Olago 1995) have shown that there is a feasible contamination of the water and sediments in this lake by old carbon. Bacon v2.3 (Blaauw & Christen 2011) was used to generate a robust age-depth model to provide chronological coherency against the outlying ages shown in Table 8 (Figure 4-39).

This age-depth modelling technique estimates the calibrated radiocarbon ages of the sections of the core that were not dated (see section 3.1.5) and generates values that are chronologically ordered at 1 cm interval for the entire sediment core (Figure 4-39). The dated charcoal sample SacA34952 yielded an age close to the general bulk dates that point to a distinct sedimentation event around 500 - 400 cal yr. BP (Figure 4-40).

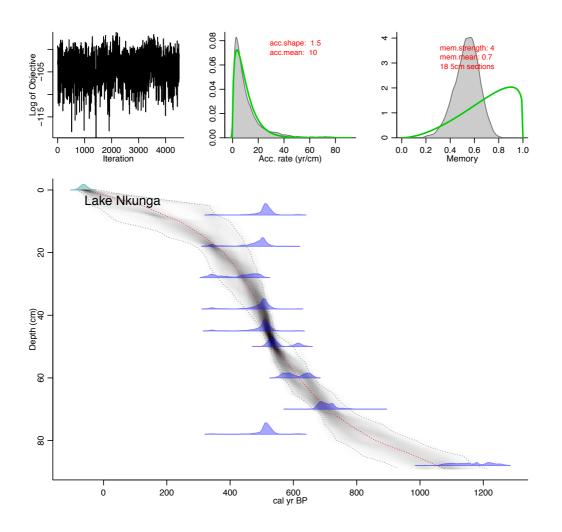



Figure 4-39: Bayesian age depth model constructed with Bacon age-depth model software Bacon for Lake Nkunga sediment core. The bottom panel shows the calibrated <sup>14</sup>C dates (transparent blue) and the age-depth model within 95 % confidence intervals. The darker grey areas on the model represent the more likely sections where the model is running through whilst the red curve shows the single 'best' model based on the weighted mean age for each depth. The upper panels show the MCMC iterations: the left represents the stability of the model while the middle and the right represent the prior (green curve) and posterior (grey histograms) distributions of accumulation mean and memory properties, respectively.

The top of the sediment core was fixed to the year the core was collected (2013) as previous test runs of the age-depth model produced large uncertainties in the upper section. The age-depth model generated shows that the sediments for Lake Nkunga cover  $1079 \pm 140$  cal yr. BP to Present. The sedimentation rate ranges from 0.03 to 0.6 cm/yr. (Figure 4-40). The sedimentation rate increases from the bottom of the core to about 40 cm (Figure 4-40). After 40 cm, a rapid decline in sedimentation is observed to the top of the sediment core.

Since the sediment core obtained is near shore, the rate of change in the sedimentation implies periods of shallow and deep lake intervals where there are periods of increased sedimentation in the lower section (deep lake phase) and a decline in sedimentation in the upper section (shallow lake phase) of the core. Due to the chronological ordering from the age model (Figure 4-39) and the accompanying sedimentation rate (Figure 4-40), the charcoal sample dated at 78 cm (SacA34952) was treated as a "dropstone" from the layer between 43 - 37 cm on account of density differences between it and loose sediment matrix at the time of deposition.

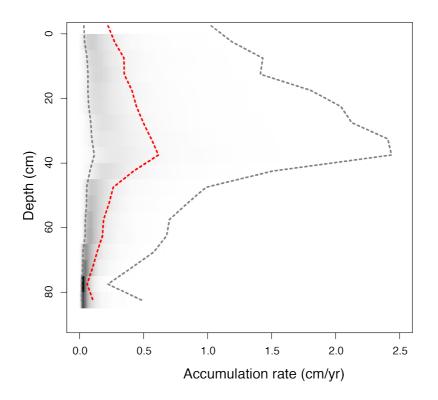
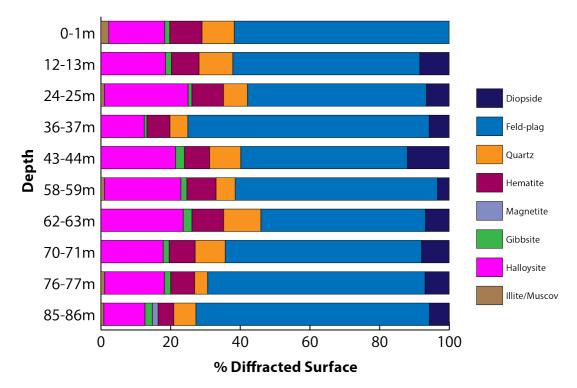
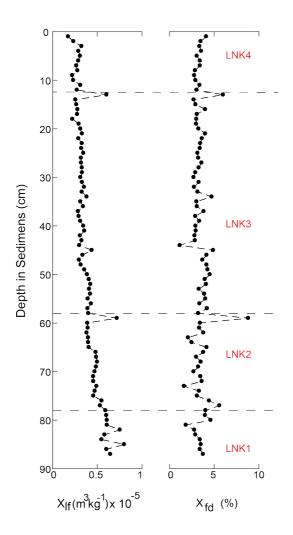




Figure 4-40: A ghost plot for the sediment accumulation rate for Lake Nkunga. The darker the grey shaded areas the more certainty in value obtained while the red line is the weighted mean representation of the accumulation between the different depths along the sediment core.

#### 4.3.1.3 Bulk Mineralogy and Mineral Magnetics


Plagioclase and potash feldspar (60 - 70 %), quartz (10 %), haematite (10 %), gibbsite (1 %), halloysite (10 - 20 %), diopside (10 %) and illite (1 %) are the major mineral peaks detected in the sediment core samples (Figure 4-41). Feldspars are abundant, comprising labradorite and sanidine, with minor contributions from the other plagioclase feldspars and quartz throughout the sediment core. The presence of illite, intermittently alongside quartz (samples collected at 86 cm, 77 cm, 58 cm, 24 cm and 1 cm) could be attributed to aeolian deposition. Illite is the

dominant clay present in the samples but kaolinite was also identified. This not surprising as illite and kaolinite are derived from feldspar rich volcanic rocks (felsic silicates), which constitute the rocks of Mt. Kenya.



*Figure 4-41: The average quantitative mineralogy from the Lake Nkunga core based on the percentage of the diffracted surface of analysed samples* 

Low X<sub>lf</sub> values displaying progressive decline up core ranging from  $1.7 \times 10^{-6} \text{ m}^3 \text{kg}^{-1}$  to  $8.0 \times 10^{-6} \text{ m}^3 \text{kg}^{-1}$  characterize the magnetic mineralogy of these sediments. Relatively higher peaks at 59 cm, 45 cm, 11 cm and the last 5 cm of the sediment core interrupt the trend and represent localized increases in ferrimagnetic concentration. During the initial lake rejuvenation and deep lake phases, higher X<sub>lf</sub> values are recorded (LNK1 and LNK2). The shallowing phase of the lake is characterized by lower X<sub>lf</sub> values. Despite the low X<sub>lf</sub> values, the presence of paramagnetic grains, based on measurable %X<sub>fd</sub>, is noted (Figure 4-42). The %X<sub>fd</sub> range of all the samples points to a source with a mix of SP and coarser non-SP grains. The %X<sub>fd</sub> values display two distinct patterns in the lower and upper sections of the core characterizing the deep and shallow lake phases.



*Figure 4-42: Down core variation of bulk mass magnetic susceptibility in sediments from Lake Nkunga.* 

The results of Alternating Field (AF) demagnetisation of the sediment samples give MDF values between 17 and 38 mT with the exception of samples at 9 cm (52.3 mT), 11 cm (55.9 mT) and 13 cm (95.6 mT), which have distinctly different values (Figure 4-43). These samples are from the upper section of the core, linked to the shallowing of the lake and perhaps characterising episodes of increased terrestrial input. The unique curves of the NRM point to a single source of magnetic minerals for the samples. The NRM intensities are almost completely demagnetized at about 50 mT although a few samples display subsequent magnetisation above this AF value (Figure 4-43).

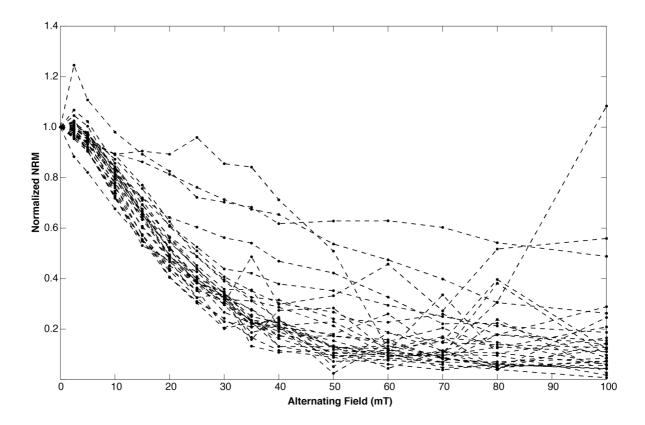



Figure 4-43: NRM profile from Lake Nkunga sediment core

The results indicate a mix of fine and coarse-grained magnetite or titanomagnetite with the exception of samples with higher MDF that implies the presence of haematite/goethite. Progressive decline of ARM<sub>30mT</sub> and IRM<sub>-300mT</sub> is observed from the bottom to the top of the sediment core (Figure 4-44). The S-ratio points to high coercivity ranging from 0.98 to 1.2 with higher values during the rejuvenation and deep lake phases and lower values during the shallow lake phase. ARM<sub>30mT</sub>, IRM<sub>-300mT</sub>, SIRM and SARM display similar trends where the lake rejuvenation and deep lake phase display minimal variations while the upper section of the core shows a decline in these values. The range of ARM<sub>30mT</sub> varies from 0.5 x10<sup>-4</sup> Am<sup>2</sup>kg<sup>-1</sup> to 2.2 x 10<sup>-4</sup> Am<sup>2</sup>kg<sup>-1</sup> with correspondingly low SARM values whereas that of IRM<sub>-300mT</sub> varies from 0.014 – 0.05 Am<sup>2</sup>kg<sup>-1</sup>. The ARM<sub>30mT</sub>/SARM varies from 0.1 – 0.3 where 0.1 represents a prominent dip in the ratio. At the IRM<sub>-300mT</sub> backfield nearly 98 % – 102 % of the initial forward magnetisation is present and is thus characterized as canted antiferromagnetic behaviour representing significant quantities of haematite/goethite. On the other hand, the low ARM<sub>30mT</sub>/SARM ratio characterizes the dominant state of the remanence carrying component of the sediments as soft multi-domain viscous grains.

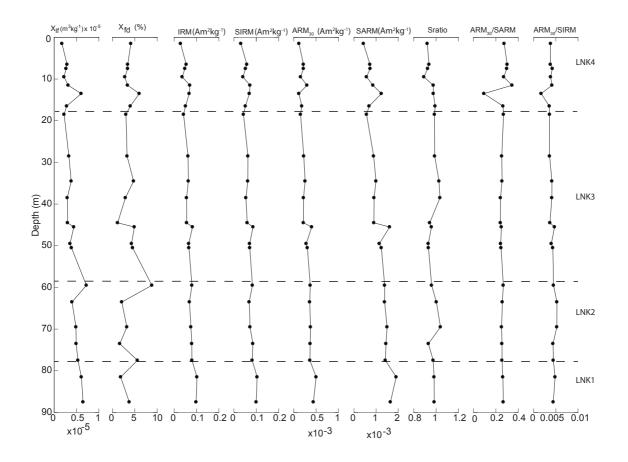



Figure 4-44:  $X_{lf}$ ,  $X_{fd}$ , Anhysteretic and Isothermal Remanent Magnetisation profiles for Lake Nkunga sediments

#### 4.3.2 Inorganic Geochemistry of Lake Nkunga

Lake Nkunga contains 18 detected elements (Al, Si, Ti, Ca, Cl, Cu, Fe, K, Mn, Nb, Ni, P, Rb, S, Sr, V, Zn, Zr). The peak area (cps) for Al signal after data correction displays a dramatic jump in values between the upper and lower sections of the retrieved core. This inconsistency in the Al spectrum between the two sections of the core meant that the dataset from this particular element is not a reliable indicator of the sediment source changes and is therefore excluded in our results interpretation. Of importance to lakes are the weathering and erosion indicators such as Si, K, Ti, Fe, Rb and Zr that are known to be geochemically stable and conservative in most geochemical environments (Boës et al. 2011). Caution is exercised in our interpretation of Si as in some cases Si is linked to authigenic production.

The second group of elements of importance are Fe and Mn usually linked to in-lake redox processes (Boyle 2001). These selected elements were subjected to principal component

analysis. The first principal component (PC1) accounts for 42.4 % of the variability while the second principal component (PC2) accounts for 24.9 % of the variability (Figure 4-45). PC1 positively correlates with Fe, Mn, Fe/Ti and Fe/Mn that are representative of redox processes in the lake and negatively correlates with K, Rb, Si, Sr, Ti, Zr, Si/Ti, K/Ti and Rb/Zr that are representative of a clastic phase derived from the catchment weathering and erosion processes. PC2 positively correlates with Mn, Rb, Zr and Rb/Zr representing in-lake redox conditions as well as grain size variation within the sediment core and negatively correlates with Fe, K, Si, Sr, Ti, Si/Ti, Fe/Ti, Fe/Mn and K/Ti representing enrichment in the clastic phase once more mobile elements are removed. From the PCA, it is evident that the weathering, erosion and deposition processes of geochemically stable elements are as important as the *in-situ* lake processes.

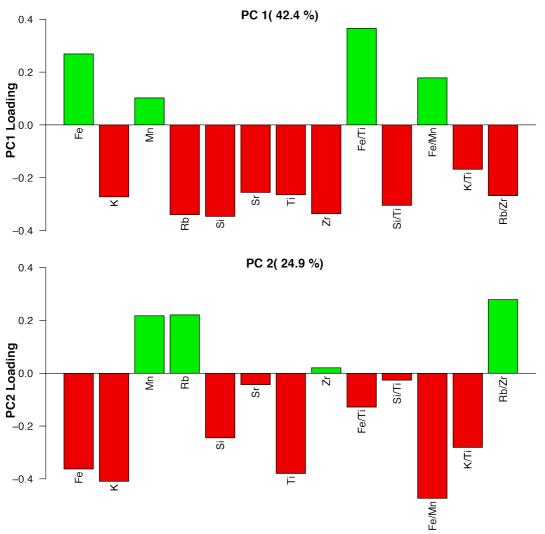



Figure 4-45: PCA of the elements from Lake Nkunga. Green bars represent the positive correlations while red represents negative correlations. The upper and lower panels show PC1 and PC2 respectively.

In order to examine the variations along the core further, Fe, Mn, Ti, Si/Ti and Fe/Ti were selected as proxies of sediment characterization and in-lake processes. Most of the variations along the sediment core are observed within LNK1 where Fe, Mn, Ti, Si/Ti and Fe/Ti profiles (Figure 4-46) display fluctuations. The Si/Ti displays an increasing trend within LNK2 followed by indistinct oscillations within LNK3 while in the upper section of LNK4 a decrease is observed. From the PCA, the Si/Ti ratio is linked to the clastic component, these changes can be attributed to the aeolian transportation of quartz rich fragments from the basement rocks as the catchment rocks from the Mt. Kenya suite are derived from sodic potash rich magma (Shackleton 1946, Baker 1967).

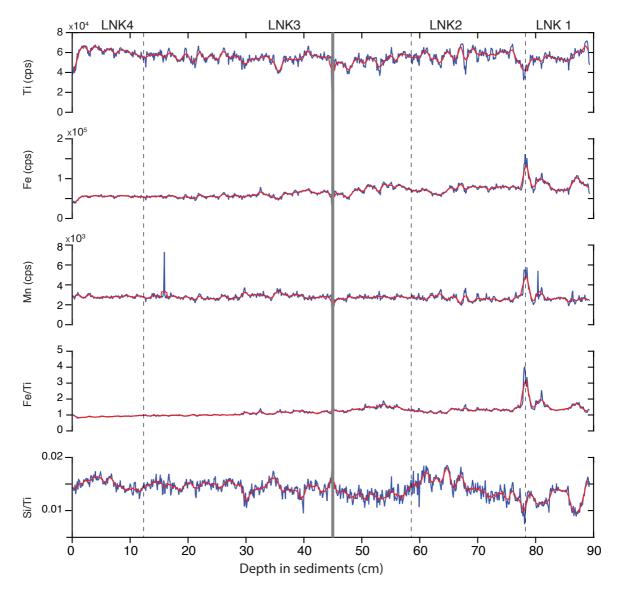



Figure 4-46: Geochemical proxies for Lake Nkunga. The blue graph displays the normalized values at every one-millimetre interval while the red graph shows the moving average over one-centimetre interval down the sediment core. The grey line marks the boundary between the two core sections for Lake Nkunga.

Initially, indistinct oscillations in the Fe/Ti profile are observed from the bottom of the core to 30 cm after which, the profile does not display any changes. Fe/Ti is often used as an indicator of grain size (Marshall et al. 2012) where increases in the ratio are representative of smaller/finer grains incorporation in the sediment. This is evident from the various ash-like horizons observed in section 4.3.1.1, pg. 117. The Fe and Mn profiles show similar patterns along the sediment core and are therefore used to interpret the redox conditions within the core. The Fe and Mn oscillate at the bottom of the core (within LNK1), detailing changes in the oxic and anaerobic conditions. Within LNK2 and LNK3 these shifts are not as pronounced as the profiles begin to stabilize. In LNK4, the profiles are stable with low Mn and Fe values pointing to a relatively oxygenated environment.

## 4.3.3 Organic Geochemistry and Stable Isotopes

### 4.3.3.1 Total Carbon, Total Nitrogen and C/N Ratios of Organic Matter

The total carbon content in the sediments is generally low to moderate with increase from the bottom to the top of the core ranging from 1.28 % to 7.85 % (mean 4.44 %) (Figure 4-47). The %C minimum is between 89 - 80 cm (mean; 1.50 %) and corresponds to LNK1 whose upper boundary is marked by the presence of an ash layer. It is most likely that this low %C is the result of a dilution effect caused by the incorporation of inorganic ash material and detrital input rather than a genuine drop in the organic matter flux. The %C begins to gradually rise at 76 cm and this increase continues until its peak of 7.80 % at *ca*. 34 - 36 cm. The %C remains relatively high through LNK4 with a mean %C content of 5.00 %.

The %N values range from 0.11 to 0.61 % (mean 0.4%; Figure 4-47). As seen in the %C variation, the minimum %N value is recorded between 89 and 80 cm (0.11 to 0.13 %), which correspond to LNK1. The %N gradually rises from 76 cm until its highest peak of 0.61 % between 34 and 36 cm. The C/N ratios span 11.6 to 14.3 and are centred at 12.2. The C/N values between 89 - 77 cm are generally higher than in the rest of the core. The maximum peak (14.3) corresponds to the ash horizon corresponding to higher values at the bottom of the sediment core. This is indicative of increased terrestrial organic matter and detrital influx. The C/N value does not change significantly in the remaining section of the core.

# 4.3.3.1 Bulk $\delta^{13}C$ and $\delta^{15}N$

The  $\delta^{13}$ C ranges from -24.28 ‰ to -17.69 ‰ with a mean concentration of -19.10 ‰. This value steadily rises up core between *ca*. -20 ‰ and -18 ‰ with a pronounced depletion (-21 ‰) at 78-80 cm (located above the ash layer at the interface between LNK1 and LNK2). Above this, the  $\delta^{13}$ C values are between – 24.90 and -17.70 ‰ with pronounced fluctuation at 51 cm (-21.70‰) and 14 cm (-24.30‰). Within LNK3 at the interval between 35 and 36 cm, a small shift to less negative values (*ca*. -17‰) is observed (Figure 4-47).

The  $\delta^{15}$ N values observed in Lake Nkunga vary from 4.80 to 8.01 ‰ over the whole record. In the oldest part of the record (LNK 1) there is a slight depletion with the values ranging from 6.00 - 7.50 ‰ (Figure 4-47). Above LNK 2, a notable enrichment of 1.50 ‰ occurs producing  $\delta^{15}$ N values in the range of 6.20 to 8.01 ‰. In LNK3 and LNK4 the  $\delta^{15}$ N values generally fluctuate between 5.00 and 6.50 ‰ with the top most sample representing the minimum  $\delta^{15}$ N value of 4.77 ‰ (Figure 4-47).

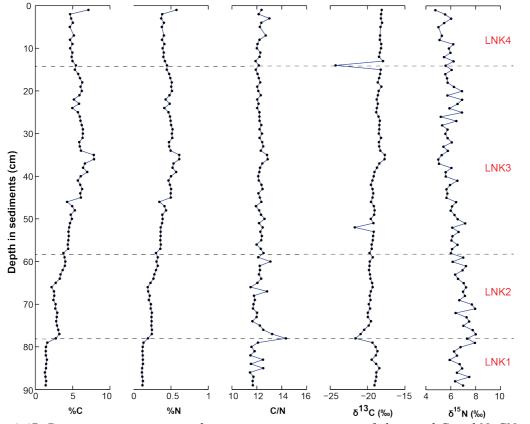



Figure 4-47: Down core variations in the percentage composition of elemental C and N, CN ratios and the  $\delta^{13}$ C and  $\delta^{15}$ N isotopes composition from Lake Nkunga

# 4.3.3.1 Provenance of OM based on $\delta^{13}C$ and C/N

The  $\delta^{13}$ C values and C/N ratio coupling of the Lake Nkunga results imply C<sub>4</sub>-type plants (Figure 4-48) are the major contributors to the OM component of the sediments although a few samples in this sediment core are linked to possible terrestrial input of C<sub>3</sub>-type and aquatic plants (Figure 4-48).

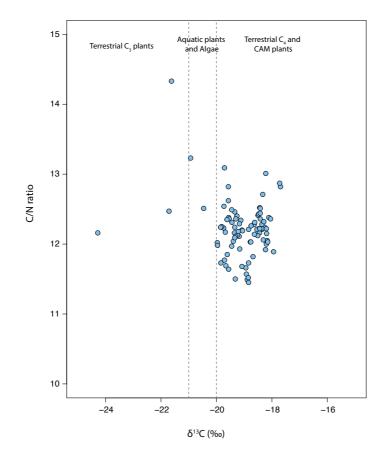



Figure 4-48: Provenance of the organic component of the Lake Nkunga sediments

#### 4.3.3.2 Distribution of n-Alkane Lipids

The *n*-alkanes from Lake Nkunga sediments range from  $C_{12}$  to  $C_{35}$  (Figure 4-49), peaking at  $C_{18}$  and  $C_{31}$  with the exception of the sample at 75 cm depth, which displays a unimodal distribution of short chain n-alkanes ( $C_{14}$  to  $C_{23}$ ; Figure 4-49). The terrestrially derived odd long chain *n*-alkanes  $C_{29}$ ,  $C_{31}$  and  $C_{33}$  are abundant throughout the core (with the exception of the sample at 75 cm). Among these *n*-alkanes,  $C_{31}$  is the most abundant followed by  $C_{33} > C_{29} > C_{27}$  (Figure 4-49). The short chain *n*-alkanes do not display a strong odd-over-even carbon number preference and are dominated by  $C_{18}$ .

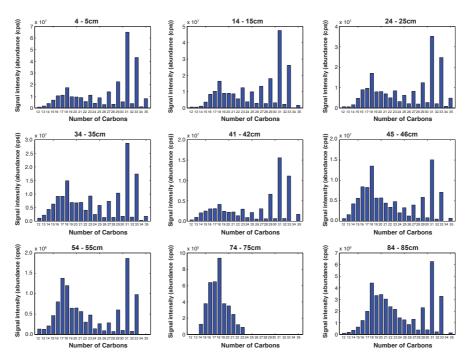



Figure 4-49: The relative abundances of the n-alkanes derived from samples collected from Lake Nkunga.

A distinct odd-over-even predominance is observed throughout the sediment core (CPI 6.0 – 13.4) except for the sample at 75 cm where long chain n-alkanes  $C_{23}$  -  $C_{33}$  are absent. The ACL values range from 30.1 - 30.6 (Table 9). The  $C_{27}/C_{31}$  ranges from 0.2 to 0.3 while the  $C_{15-21}/C_{22}$ -<sup>33</sup> ranges from 0.4 to 17.0 where the sample at 75 cm recorded the highest value due to missing long *n*-alkane chains. For the majority of the samples this value ranges from 0.4 to 1.2 (Table 9). The range of the TAR varies from 1.1 to 3.7 whereas the P<sub>aq</sub> values display slight variations from 0.18 to 0.27.

Table 9: Summary of n-alkane indices from Lake Nkunga

| Depth | Cn    | C <sub>n</sub> max | ACL  | ACL <sub>lc</sub> | CPI  | Overall | C <sub>27</sub> /C | TAR | Paq  |
|-------|-------|--------------------|------|-------------------|------|---------|--------------------|-----|------|
| (cm)  | range |                    |      |                   |      | СРІ     | 31                 |     | _    |
| 4-5   | 12-35 | 31                 | 26.5 | 30.6              | 8.7  | 3.2     | 0.2                | 3.7 | 0.18 |
| 14-15 | 12-35 | 31                 | 25.7 | 30.2              | 9.0  | 2.9     | 0.3                | 3.4 | 0.25 |
| 24-25 | 12-35 | 31                 | 25.4 | 30.5              | 8.1  | 2.4     | 0.2                | 2.5 | 0.23 |
| 34-35 | 12-35 | 31                 | 24.4 | 30.3              | 9.3  | 2.4     | 0.3                | 2.1 | 0.27 |
| 41-42 | 12-35 | 31                 | 25.9 | 30.6              | 13.4 | 3.6     | 0.2                | 3.1 | 0.18 |
| 45-46 | 12-35 | 31                 | 22.7 | 30.1              | 8.3  | 1.6     | 0.3                | 1.3 | 0.28 |
| 54-55 | 12-33 | 31                 | 23.1 | 30.5              | 10   | 2.1     | 0.2                | 1.1 | 0.23 |
| 74-75 | 14-23 | 18                 | 17.8 | n.d               | n.d  | 0.8     | n.d                | n.d | n.d  |
| 84-85 | 12-35 | 31                 | 23.8 | 30.3              | 6    | 1.7     | 0.2                | 1.7 | 0.20 |

 $C_n$ -number of Carbon present in n-alkane chain: ACL – total Average alkane Chain Length;  $ACL_{lc}$  – ACL of long chain n-alkanes; CPI – Carbon Preference Index of long chain alkanes; Overall CPI – CPI for all alkane chains; TAR – Terrigenous-Aquatic Ratio;  $P_{aq}$  – Aquatic macrophyte input proxy.

### 4.3.3.3 Distribution of Glycerol Dialkyl Glycerol Tetraethers

Ten samples were selected for GDGT analysis. All the sediment samples contain abundant amounts of brGDGTs and iGDGTs. The brGDGTs range from 713 to 5901µg/g, comprising 80.9 - 87.9 % of total GDGTs, whilst the iGDGTs are less abundant and range from 167 to 955 µg/g, which makes 12.1 - 19.1 % of total GDGTs (Figure 4-50). Among the iGDGTs the GDGT-0 is the most abundant (35 - 66 % of the total iGDGTs) while the crenarchaeol (10 - 37 % of the total GDGTs) is the second most abundant. The relative abundance of the iGDGTs decreases up core in samples collected at 56 cm (least abundance of iGDGT), 46 cm and 42 cm. All the other iGDGTs display little variation in their relative abundance up core while iGDGT-4 is missing from the samples. The brGDGTs without cyclopentyl moieties, i.e. GDGT-I (30 - 48 % of the total brGDGTs) and brGDGT-II (30.0 to 36.9 % of the total brGDGTs), are more abundant than the pentyl rings. GDGT-IIIc is absent throughout the core (was below the detection limit; Figure 4-50). Of all the brGDGTs) followed by GDGT-II and its moieties.

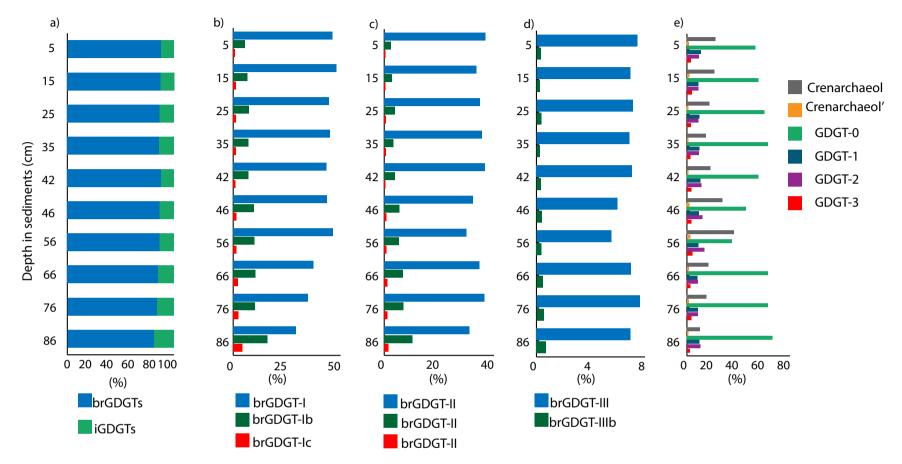



Figure 4-50: The fractional abundance of the brGDGTs and iGDGTs down core in the Lake Nkunga core. The five graphs represent the main (a) the brGDGT and iGDGT abundances while GDGT groups and their moieties are illustrated in (b) GDGT-I, Ib and Ic (c) GDGT-II, IIb and IIc, (d)GDGT-III and IIb & (e) iGDGTs

The reconstructed pH (Equation 10) values range from 7.2 to 9.2 pH units thereby displaying a decreasing trend from the bottom to the top of the core (Table 10). The Branched vs. Isoprenoid Tetraether (BIT) index is high (0.94 - 0.97) throughout the core indicating the dominance of the terrestrially derived brGDGTs in the lake sediments (Table 10). The calculated MBT and CBT values range from 0.47 - 0.58 and 0.36 - 1.01, respectively. The MBT displays little coherency with depth while the CBT displays an increasing trend from the bottom of the core to the top.

| Depth (cm) | BIT  | 1302/1292 | MBT  | СВТ  | pН  |
|------------|------|-----------|------|------|-----|
| 5          | 0.97 | 2.39      | 0.52 | 1.01 | 7.2 |
| 15         | 0.97 | 2.63      | 0.56 | 0.94 | 7.5 |
| 25         | 0.97 | 3.49      | 0.53 | 0.85 | 7.8 |
| 35         | 0.97 | 4.30      | 0.53 | 0.89 | 7.6 |
| 42         | 0.97 | 3.05      | 0.52 | 0.87 | 7.7 |
| 46         | 0.95 | 1.67      | 0.55 | 0.70 | 8.2 |
| 56         | 0.94 | 0.95      | 0.58 | 0.70 | 8.2 |
| 66         | 0.96 | 3.76      | 0.50 | 0.62 | 8.4 |
| 76         | 0.96 | 4.13      | 0.47 | 0.62 | 8.4 |
| 86         | 0.97 | 6.51      | 0.49 | 0.36 | 9.2 |

Table 10: The variations in BIT, 1302/1292 ratio, MBT and CBT proxies from the Lake Nkunga sediment core

The high BIT index coupled with the GDGT-0/crenarchaeol (1302/1292) ratio >2 eliminated the potential application of the TEX<sub>86</sub> proxy as a meaningful proxy for palaeotemperature (Weijers et al. 2007). The application of GDGT as a palaeotemperature proxy was carried out using equations 12, 13, 14, 15 and 16 (Section 3.1.10.5, pg. 70 and pg. 71) as described above. The reconstructed palaeotemperature (Figure 4-51) from the various calibrations represents progressive cooling from the bottom of the core. The resulting temperature reconstructions are generally highest using the MBT/CBT calibrations from both Tierney et al. (2010) and Loomis et al. (2012) with the values ranging from 19.5 - 24.5° C and 20.8 - 25.3° C, respectively (Figure 4-51). The MbrGDGT calibrations range from 17.3 - 25.3° C (Tierney et al. 2010) and 19.6 - 23.0° C (Loomis et al. 2012) while the SFS calibration ranges from 18.6 - 23.6° C (Loomis et al. 2012). The MbrGDGT ranges represent the maximum (8.0° C; Tierney et al. 2010) and minimum (3.4° C; Loomis et al. 2012) temperature variations in the core (Figure 4-51). There is a slight increase in the reconstructed temperatures between 66 and 42 cm with the graphs

displaying a peak at *ca*. 56 cm, however, this peak is not present in the MbrGDGT calibration by Tierney et al. (2010).

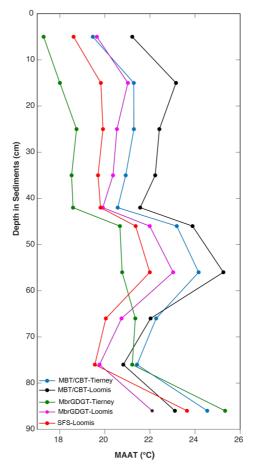
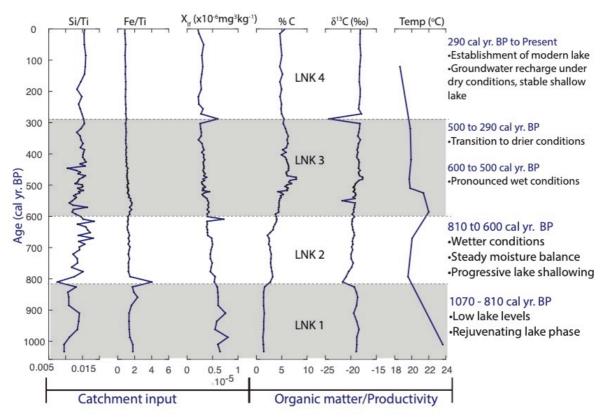



Figure 4-51: Reconstructed MAAT for Lake Nkunga core using MBT/CBT, MbrGDGT and SFS regional calibrations

## 4.3.4 Synthesis of Lake Nkunga Proxy data

The 89 cm of the sediments from Lake Nkunga cover approximately 1079 cal yr. BP to present (Table 11). The sedimentation rate is lowest within LNK1 (89 - 77 cm), above which the rate slowly rises until its peak at 40 cm. Some of the samples dated represent a rapid sedimentation event between 529 and 380 cal yr. BP as seven out of the ten dated samples yield ages within this range. The age-depth model and sedimentation rates show deep and shallow lake phases that are also reflected by the X<sub>lf</sub> values, where higher values at the bottom of the core correspond to a deeper lake phase with catchment in-wash of sediments and the lower values at the top of the core correspond to a shallower lake phase where the trends stabilize. The lake has therefore gotten shallower over the last 1000 cal yr. BP with a notable increase in sediment influx from about 500 cal yr. BP.

Table 11: Proxy indicator summary from Lake Nkunga


|                                          | or summary from Lake Nkunga Provy information                                                                                                                                             |  |  |  |  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Stratigraphic Unit                       | <b>Proxy information</b>                                                                                                                                                                  |  |  |  |  |
| LNK 1: 89 – 77 cm                        | • %C and %N are low reflecting minerogenic inputs of detrital material as seen in the strationarchy and the associated minerals as                                                        |  |  |  |  |
| 1079 - 810 cal yr. BP                    | in the stratigraphy and the associated mineralogy.                                                                                                                                        |  |  |  |  |
| (879 – 1152 AD)                          | <ul> <li>Changes present in the mineralogy denoted by the co-existence of magnetite</li> </ul>                                                                                            |  |  |  |  |
|                                          | and hematite in this section are attributed to redox conditions linked to possible                                                                                                        |  |  |  |  |
|                                          | changes in the lake level.                                                                                                                                                                |  |  |  |  |
|                                          | • The average C/N value (12.0) points to plankton/algae and aquatic plants as                                                                                                             |  |  |  |  |
|                                          | the main source of the OM of the sediments. The $\delta^{13}$ C values within this unit                                                                                                   |  |  |  |  |
|                                          | (average -19.16 ‰) also imply that the dominant influence on the $\delta^{13}$ C                                                                                                          |  |  |  |  |
|                                          | signature is plankton/algae with secondary inputs from aquatic macrophytes                                                                                                                |  |  |  |  |
|                                          | and terrestrial plants derived from $C_3$ -type vegetation.                                                                                                                               |  |  |  |  |
|                                          | • The slight positive trend in the $\delta^{13}$ C values observed in this unit probably                                                                                                  |  |  |  |  |
|                                          | reflects increased aquatic macrophyte contributions and a concomitant                                                                                                                     |  |  |  |  |
|                                          | increase in C <sub>4</sub> -type plants ( <i>Cyperaceae</i> and grasses) within the catchment.                                                                                            |  |  |  |  |
|                                          | • The $C_{27}/C_{31}$ (0.2) of the sole sample analysed from this unit imply significant                                                                                                  |  |  |  |  |
|                                          | contributions of grass- over tree-derived organic matter from the catchment.                                                                                                              |  |  |  |  |
|                                          | The CPI value (6) is indicative of the dominance of long chain <i>n</i> -alkanes with                                                                                                     |  |  |  |  |
|                                          | odd over even predominance implying a modern terrestrial plant source of                                                                                                                  |  |  |  |  |
|                                          | organic matter (Cranwell, 1982; Cranwell et al. 1987).                                                                                                                                    |  |  |  |  |
|                                          | • The other <i>n</i> -alkane parameters, ACL (23.8), $P_{aq}$ (0.29) and TAR (1.7) point                                                                                                  |  |  |  |  |
|                                          | towards a mix of aquatic macrophytes and terrestrial input of OM into the lake                                                                                                            |  |  |  |  |
|                                          | from the catchment (Eglinton et al. 1962; Kolattukudy et al. 1976; Cranwell                                                                                                               |  |  |  |  |
|                                          | 1982; Cranwell et al. 1987; Meyers 1997).                                                                                                                                                 |  |  |  |  |
| LNK 2: 77 – 58 cm                        | • A slight increase in the average %C (3.04 %) and %N (0.25 %) reflects a                                                                                                                 |  |  |  |  |
| 810 – 600 cal yr. BP                     | probable increase in aquatic macrophyte productivity since the average C/N                                                                                                                |  |  |  |  |
| (1152 – 1341 AD)                         | value (12.17) does not change significantly (Tyson 1995; Meyers & Teranes                                                                                                                 |  |  |  |  |
|                                          | 2001).                                                                                                                                                                                    |  |  |  |  |
|                                          | The minerogenic composition does not change significantly.                                                                                                                                |  |  |  |  |
|                                          | • Limited variations in the $C_{27}/C_{31}$ (0.2), ACL (23.1), $P_{aq}$ (0.23) and TAR (1.1)                                                                                              |  |  |  |  |
|                                          | values from sediment samples in the upper section of this unit implies a                                                                                                                  |  |  |  |  |
|                                          | mixture of OM source from aquatic macrophytes and terrestrial input (Eglinton                                                                                                             |  |  |  |  |
|                                          | et al. 1962; Kolattukudy et al. 1976; Cranwell 1982; Cranwell et al. 1987;                                                                                                                |  |  |  |  |
|                                          | Meyers 1997).                                                                                                                                                                             |  |  |  |  |
|                                          | • The absence of long chain <i>n</i> -alkane at 75 cm depth did not allow for the                                                                                                         |  |  |  |  |
|                                          | calculation of ACL, CPI and $P_{aq}$ parameters although the dominance of the                                                                                                             |  |  |  |  |
|                                          | long chain <i>n</i> -alkane could imply the predominance of degraded/microbially                                                                                                          |  |  |  |  |
| INK 2, 50 12                             | derived OM.<br>The average %C (5.62 %) and %N (0.46 %) are higher than in the underlying                                                                                                  |  |  |  |  |
| LNK 3: 58 – 13 cm                        | • The average %C (5.62 %) and %N (0.46 %) are higher than in the underlying units. There is a glight increase in the concentration of %C and %N in this                                   |  |  |  |  |
| 600 - 290 cal yr. BP<br>(1341 - 1688 AD) | units. There is a slight increase in the concentration of %C and %N in this                                                                                                               |  |  |  |  |
| (1341 – 1688 AD)                         | <ul> <li>section alongside the presence of reworked ash and sediments.</li> <li>Evidence of the commencement of leaching can be derived from the</li> </ul>                               |  |  |  |  |
|                                          | Evidence of the commencement of federing can be derived from the                                                                                                                          |  |  |  |  |
|                                          | <ul> <li>coexistence of halloysite and gibbsite.</li> <li>The X<sub>lf</sub> values are fairly invariant in this section of the core.</li> </ul>                                          |  |  |  |  |
|                                          | <ul> <li>The Xlf values are fairly invariant in this section of the core.</li> <li>A progressive replacement of the C<sub>3</sub>-type vegetation by C<sub>4</sub>-type plants</li> </ul> |  |  |  |  |
|                                          | • A progressive replacement of the $C_3$ -type vegetation by $C_4$ -type plants<br>especially grasses and <i>Cyperaceae</i> is implied by the dominance of the $C_{31}$ over              |  |  |  |  |
|                                          | $C_{27}$ <i>n</i> -alkane homologues.                                                                                                                                                     |  |  |  |  |
|                                          | <ul> <li>This period reflects a stable catchment and water table level with little</li> </ul>                                                                                             |  |  |  |  |
|                                          | • This period reflects a stable catchinent and water table level with fittle terrestrial-derived material inputs to the lake.                                                             |  |  |  |  |
|                                          | <ul> <li>The inorganic geochemistry points to increased aeolian deposition of sand</li> </ul>                                                                                             |  |  |  |  |
|                                          | grains derived from the basement rocks which do not occur within this                                                                                                                     |  |  |  |  |
|                                          | catchment.                                                                                                                                                                                |  |  |  |  |
| LNK 4: 13 – 0 cm                         | <ul> <li>The mean %C (5.18 %) and %N (0.42 %) are similar to those of the underlying</li> </ul>                                                                                           |  |  |  |  |
| 290 - (-86) cal yr. BP                   | unit and do not show any significant increase or decrease with the exception                                                                                                              |  |  |  |  |
| (1688 AD to present)                     | of the top-most sample that has a relatively higher %C (7.11 %) and %N (0.57)                                                                                                             |  |  |  |  |
| (1000 mb to probeint)                    | %) content.                                                                                                                                                                               |  |  |  |  |
|                                          | <ul> <li>Oscillations in the geochemistry (%C, %N and their stable isotopes) imply a</li> </ul>                                                                                           |  |  |  |  |
|                                          | period lake development leading to periods of oxic and anoxic conditions                                                                                                                  |  |  |  |  |
|                                          | where the lake shore is covered by well mixed waters and other periods where                                                                                                              |  |  |  |  |
|                                          | anoxic conditions occur.                                                                                                                                                                  |  |  |  |  |
|                                          | unoxic conditions occur.                                                                                                                                                                  |  |  |  |  |

The sediments from Lake Nkunga are mainly of terrigenous origin as seen in the sediment chemistry (siliciclastic material represented by the presence of Si, Ti, Fe and K) as well as the organic geochemistry of the n-alkanes (presence of long chain alkane and high TAR ratios, representing terrestrial origin of OM). These terrigenous sediments are largely derived from a small catchment and do not show any major stratigraphic changes (although there are subtle colour changes observed down the sediment profile). The magnetic mineralogy, sedimentation rate and the geochemical ratios constrain the sediment source to detrital material derived from the preferential weathering of the volcanic crater walls plus *in-situ* formation of Fe-Mn oxyhydroxides. In the core descriptions (Section 4.3.1.1), two sediment influx events marked by the presence of pebbles, volcanic ash and charcoal particles are prominent. The upper limit of LNK1 is marked by a detrital influx of finer grained clastic material derived from the exposed Precambrian basement and demonstrates the importance of the dry NE monsoon winds in erosion, transportation and deposition processes within the catchment especially during the period 801 - 600 cal yr. BP where an increase in the Si/Ti ratio is observed.

The samples dated provide the lower age limit of the sediments *ca.* 1079 cal yr. BP. LNK 1 represents a lake rejuvenation phase (Figure 4-52) where redox processes dominate (co-existence of magnetite and hematite), a decline in Fe/Ti (implying increase in detrital input), and increase in Si/Ti (authigenic input). There is an ash layer in the sediment matrix mixed together with lake muds probably during the settling of clastic and aeolian (high Si/Ti) material.

LNK2 represents a period of increased sediment supply from the lake catchment marked by increased minerogenic input (predominantly quartz and plagioclase feldspar), increase in Si/Ti ratio and relatively higher sedimentation rates. This core section represents a deeper lake phase as can be seen in the oscillating changes in  $X_{lf}$  which are centred at 0.5 m<sup>3</sup>kg<sup>-1</sup> x 10<sup>-5</sup> except for the top most sample in this unit where the highest value of  $X_{lf}$  is recorded (Figure 4-52).

In LNK3 the Si/Ti ratios display positive and negative excursions, perhaps pointing to seasonal aeolian input into the lake, while the Fe/Ti ratio displays an initial increase that levels off in the upper section of this period. The presence of pumice-like clasts, charcoal particles as well as plant materials and declining  $X_{\rm lf}$  values imply that the source of the ash and charcoal are related to erosional changes from the restricted catchment.



*Figure 4-52: A summary of key findings from Lake Nkunga from 1079 cal yr. BP to Present indicating key changes in lake sedimentation and lake level variations* 

The presence of SP minerals with the accompanying presence of hematite and magnetite supports the terrestrial origin of the sediment from the soils within the lake's catchment (Thompson and Oldfield, 1986). There are no significant changes in the sedimentation, mineral magnetics and geochemical proxies in the upper section (LNK4), pointing to a stable shallow lake (Figure 4-52). There are slight increases in the Si/Ti to present day, suggesting that aeolian deposition is a minor but significant sediment source for this lake.

The observed values for %N and %C, although generally low, display similar variations throughout the sediment core that are linked to changes in catchment supply processes and display significant correlation where  $R^2 = 0.99$ , p < 0.001. The extrapolated intercept of the %C and %N relationship reveals a slightly positive intercept on the %N axis (0.006 %). This suggests that inorganically bound nitrogen is negligible and has little influence on C/N ratios thus deducing an organic origin of the lake sediments. This is to be expected in lacustrine sediments where the large majority of total N is derived from organic matter sources (Talbot & Brendeland 2001).

The C/N values vary from 11.6 to 14.3 pointing to OM contribution from primary production (aquatic macrophytes). Although there are subtle changes in this record they are not significant enough to imply a shift in the OM sources for this lake. The coupling of  $\delta^{13}$ C values and the C/N ratio imply a mix  $C_3/C_4$ -type vegetation from the catchment. Within LNK1 and LNK2, the influx of material from the catchment is represented by the oscillating C/N and  $\delta^{13}$ C values. LNK 3 and LNK 4, on the other hand, display a stable trend indicative of mixed OM sources from within the catchment although dominated by C<sub>4</sub>. The bulk  $\delta^{15}$ N gives two contrasting zones; LNK1 and values above LNK1 (i.e. LNK 2, 3 & 4 combined). As discussed earlier, LNK1 represents a lake rejuvenation phase with relatively low  $\delta^{15}$ N ranging from 6.0 to 7.5 ‰. Above LNK1 a deeper lake phase, followed by progressive lake shallowing, is implied by the slight enrichment of  $\delta^{15}N$  (6.20 to 8.01 ‰) that covers periods of intense aquatic productivity (deep lake phase) and shallow lake phase as well. Although an attempt has been made to interpret the  $\delta^{15}$ N values, there is no discernible relationship between  $\delta^{15}$ N and C/N or  $\delta^{15}$ N and  $\delta^{13}$ C suggesting that the isotopic variability is largely independent of the OM source contributions of aquatic and terrestrial origin. From the inorganic chemistry above, it is evident that there are redox zones within the sediment core. Although the effect of diagenesis on the  $\delta^{15}$ N of OM in lacustrine systems is inconclusive, minor alterations are observed due to preferential degradation of OM. Denitrification of OM is a significant factor in  $\delta^{15}N$ composition (Talbot & Brendeland 2001). Under anoxic conditions denitrifying bacteria causes the reduction of NO<sup>-3</sup> to gaseous N<sub>2</sub> in the water column (Talbot & Brendeland 2001). It is therefore safe to assume that the changes in redox conditions cause slight variations in  $\delta^{15}N$  in the sediment core.

The *n*-alkane record displays a bimodal distribution (short and long homologues) representative of mixed origin of the *n*-alkanes (terrestrial and algal input). Generally, the number of carbon atoms present in the *n*-alkane chains range from  $C_{12-35}$ . The range of total ACL ranges from 30.1 - 30.6. These values represent a dominance of long chain alkanes in the samples. The distribution of n-alkane homologues shows a strong odd-over-even preference that is a characteristic of higher plants, as reflected by the high CPI values (6.0-13.4) in the samples (Cranwell 1982; Cranwell et al. 1987). The odd long chain n-alkanes  $C_{29}$ ,  $C_{31}$  and  $C_{33}$ , characteristic of higher plant sources is abundant in the samples. Presently, Lake Nkunga contains emergent, floating and submerged macrophytes. Ficken et al. (1998), found that the present-day submerged plants in Lake Nkunga show dominance of  $C_{23}$  or  $C_{25}$  alkanes whereas  $C_{29}$  or  $C_{31}$  alkanes are more abundant in the emergent macrophytes and terrestrial plants. The

emergent/terrestrial macrophytes are a dominant *n*-alkane source in our sediments. Both CPI and ACL are indicative of higher plants and the  $C_{31}$  alkane (characteristic of grasses and herbaceous plants) is more abundant than the  $C_{27}$  (representative of forest vegetation) leading to a low  $C_{27}/C_{31}$  ratio (0.2 – 0.3). This suggests an open vegetation watershed such as an open forest. The  $C_{15-21}/C_{22-33}$  value ranges, with the exception of the sample at 75 cm, are indicative of contributions from higher plants. The sample at 75 cm, on the other hand, displays the dominance of microorganisms such as bacteria and algae.

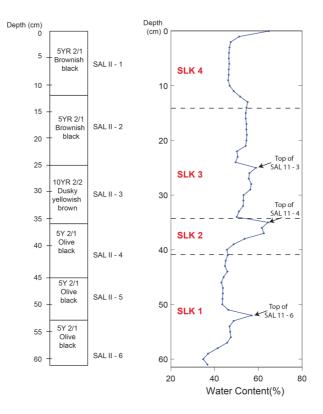
The use of TAR to evaluate the relative inputs of OM types provided two contrasting zones with lower values at the bottom (1.1 - 1.7) and relatively high values (2.1 - 3.7) in the upper sections of the sediment core. This points to a change in the OM sources for this core that was initially characterized by increased *in-situ* aquatic production during the development of the deep lake phase followed by significant terrigenous OM inputs during the shallow lake phase. The TAR values in the upper section generally represent a relatively stable environment that affirms the existence of a shallow lake from around 500 cal yr. BP. The low  $P_{aq}$  (0.18 – 0.27) values reveal the influence of higher plant/emergent macrophyte waxes as the main OM source throughout the late Holocene. The various n-alkane proxies from this lake are consistent with a mixed origin of OM from both terrestrial and aquatic sources and are indicative of a transition from a transient shallow lake to deep lake to a shallow lake phase.

All samples from Lake Nkunga display a distinct pattern in the variation of the short chain nalkane where  $C_{18}$  is most abundant in the samples. The  $C_{18}$  abundance has been linked to the combustion of non-woody biomass from agricultural lands (Eckmeier & Wiesenberg 2009). The evidence of charcoal and charcoal-like particles in the sediment stratigraphy indicate that fires were important in the lake catchment. Since the lake is within a crater surrounded by montane forest, the presence of burnt non-woody biomass affirms aeolian transport as a contributing source to the lake sediments, perhaps from biomass burning activities within the wider Mt. Kenya catchment over the past 1000 cal yr. BP.

The most abundant iGDGTs in the Lake Nkunga samples are GDGT-0 and crenarchaeol. The crenarchaeol is a highly specific biomarker of ammonia oxidizing *Thaurmarchaeota* (Sinninghe Damsté et al. 2012, Pearson and Ingalls 2013). Even with the relative abundance of the GDGT-0, the elevated 1302/1292 ratio (>2) implies the dominance of methanogenic *Euryarchaea* under anoxic OM rich conditions in the lacustrine deposits (Blaga et al. 2009). The fractional abundances of the iGDGTs display a small contribution from GDGT-1, 2, 3 and

in some places the GDGT-VI regio isomer (crenarchaeol'). This has implications on the high BIT index throughout the core as the value most likely reflects the covariance of GDGT-0 and the crenarchaeol thereby yielding similar BIT values.

The brGDGTs are dominant in all the sediment samples in comparison to the iGDGTs affirming catchment erosion processes as the main source of sediments. Among the brGDGTs, those without cyclopentyl moieties are more abundant than those with one or two cyclopentyl moieties while the brGDGT-IIIc was not detected in all the samples. Generally, the presence of brGDGTs indicates anoxic conditions as these lipids are likely synthesized by anaerobic heterotrophic acidobacteria (Hopmans et al. 2004, Weijers et al. 2006). There is an observed increase of brGDGTs up core that correlates with the general trend of increasing %C and a decline in the reconstructed pH values that can be attributed to the deepening of the lake. This relationship affirms the linkage of anoxic conditions to the production and preservability of the brGDGTs (Weijers et al. 2006).


The palaeotemperature calibrations (Tierney et al. 2010 and Loomis et al. 2012) display coherency in the changes experienced during the Late Holocene. Small disparities between the palaeotemperature calibrations result in different magnitudes of change during this Late Holocene period. The SFS and MbrGDGT (Tierney et al. 2010) temperature calibrations result in cooler temperatures (Figure 4-51) than the MBT/CBT temperature calibrations. A general cooling trend is observed from the bottom of the core to the top. The records show a cooling trend from 1070 cal yr. BP to 800 cal yr. BP when a temperature rise of  $1.5 \pm 0.5^{\circ}$  C is observed in all the calibrations. This warming persists until *ca*. 600 cal yr. BP when the temperatures drop to values close to present day temperatures. The coherency of the warming *ca*. 800 – 600 cal yr. BP (Konecky et al. 2014).

# 4.4 Sacred Lake Sediments

## 4.4.1 Bulk Sediment Parameters

## 4.4.1.1 Stratigraphic Description

A total of six successive core sections spanning a total depth of 63 cm were recovered from Sacred Lake, approximately 20 m at a water depth of 1m. The core sections acquired; SAL II -1, SAL II – 2, SAL II – 3, SAL II – 4, SAL II – 5 and SAL II – 6 are of varying lengths ranging from 8 cm - 12 cm. Macroscopic plant rootlet remains are present in all six of the acquired core sections and there are no identifiable tephra layers. The sediment colour ranges from brownish black to olive black, indicative of high organic matter content. Generally, the cores were in good condition with no visible deformation from the extraction process. The water content (W<sub>c</sub>) determined from the sediment is displayed in Figure 4-53 and ranges from 35 % to 65 % with an average of 50 % for the 63 samples analysed. The higher peaks that are seen along the profile correspond to the top of some of the cores retrieved i.e. SAL II -3, SAL II -4 and SAL II - 6. These peaks could be linked to slight compression of the upper section of these cores during extraction. The subtle lithological changes and lack of distinct stratigraphic markers led to the use of the compositional variation of %C, %N and the stable isotopes of C and N to identify significant stratigraphic zones using constrained hierarchical clustering in Rioja (Juggins 2015): low OM in SLK1 (63 – 41 cm), rapid increase in OM in SLK2 (41 – 35 cm), stable OM supply within SLK3 (35 - 14 cm) and declining OM in SLK4 (14 - 0 cm).



*Figure 4-53: The stratigraphic section and percentage water content representation sediment cores from Sacred Lake (SAL 11-1, SAL II-2, SAL II-3, SAL II-4, SAL II-5 and SAL II-6).* 

## 4.4.1.2 Radiocarbon Chronology

The six radiocarbon ages obtained were calibrated using Reimer et al. (2013) calibration curve (Table 12). The lab sample (SacA34954) collected from 6 cm most likely reflects the mixing of recent and possible contamination by older carbon, a phenomenon postulated to occur in this lake (Olago 1995).

| Lab No     | Sample Depth (cm) Age <sup>14</sup> C yr. BP |    | Cal yr. BP    |          |
|------------|----------------------------------------------|----|---------------|----------|
| SacA34954* | SAL -I-6                                     | 6  | $1060\pm30$   | 990±84   |
| SacA34955  | SAL-II-7                                     | 19 | $1020\pm30$   | 953±58   |
| SacA34956  | SAL-III-5                                    | 30 | $1510 \pm 30$ | 1369±55  |
| SacA34957  | SAL-IV-6                                     | 42 | $3500 \pm 30$ | 3784±99  |
| SacA34958  | SAL-V-4                                      | 49 | $3775\pm30$   | 4176±116 |
| SacA34959* | SAL-VI-5                                     | 58 | $3730\pm30$   | 4075±107 |

Table 12: Radiocarbon ages from Sacred Lake sediment core obtained from the AMS (Age  ${}^{14}C$  yr. BP) and their calibrated radiocarbon ages (cal yr. BP) and their associated errors. The samples marked in bold were identified as outliers

The AMS <sup>14</sup>C ages were used to generate an age-depth model for Sacred Lake as described in sections 3.1.5 and 4.3.1.2, using Bacon v2.3 (Blaauw & Christen 2011). The values generated are chronologically ordered at 1 cm interval for the entire sediment core (Figure 4-54). Several test runs within the software produced large uncertainties when the top most age of the sediment core was fixed to the year the core was acquired thus for this core, therefore the age uppermost age was not fixed hence the upper age corresponding to the Bayesian model (630 cal yr. BP) was considered reliable.

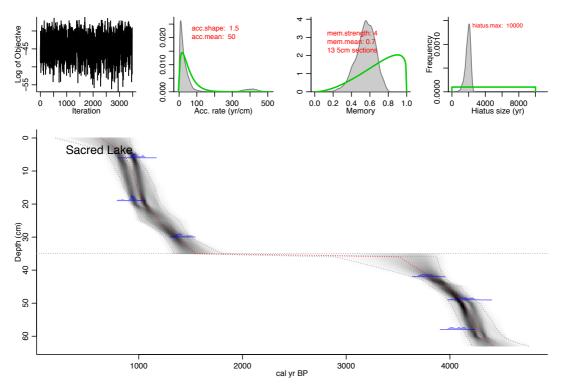



Figure 4-54: Bayesian age depth model for Sacred Lake sediment core. The bottom panel displays the calibrated  $^{14}C$  dates (transparent blue) and the age-depth model within 95% confidence intervals. The upper panels show the MCMC iterations: the left represents the stability of the model while the middle and the right represent the prior (green curve) and posterior (grey histograms) for the distributions of accumulation mean and memory properties, respectively

Previous visits to Sacred lake before the coring revealed that the lake dried out and therefore the top section of this core could have been disturbed by wildlife (such as elephants) hence the mixing of the dates since the cores were collected close to the shoreline. A possible hiatus was identified at 35 cm for this age-depth relationship. From the age-depth model generated, the sediments for Sacred Lake covers 4425 to 630 cal yr. BP. The sediments are characterized in two sections (i) 4425 - 3515 and (ii) 1542 - 630 cal yr. BP corresponding to before and after the hiatus, respectively. The hiatus covers the period 3515 to 1524 cal yr. BP. The sedimentation rate for Sacred Lake is low, ranging from 0.0 to 0.2 cm/yr. (Figure 4-55). The

sedimentation characteristics of this core can be divided into 2 where before the hiatus a decrease in sedimentation (4425 - 3515 cal yr. BP) is observed and above this (1542 - 639 cal yr. BP) there is a steady rise in the sedimentation rate (Figure 4-55). Since this core was obtained in a nearshore zone of the lake, the sedimentation rate and age-depth model imply periods of deeper and shallow lake episodes. Initially, the high sedimentation rate points to a deeper lake interval, followed by a shallow lake interval before the hiatus, soon after the hiatus, there is a relative increase in sedimentation alluding to a deeper lake while the uppermost section of the lake points to a shallow lake interval.

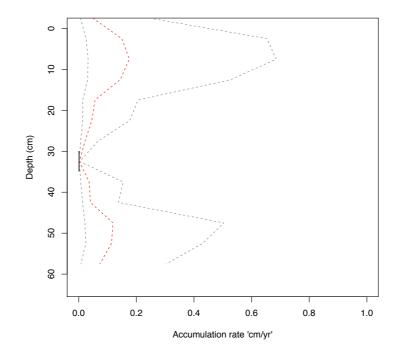



Figure 4-55: The sediment accumulation rate for Sacred Lake. The grey lines envelope 95 % areas of certainty in value obtained while the red line is the weighted mean representation of the accumulation between the different depths along the sediment

#### 4.4.1.3 Mineralogy and Mineral Magnetics for Sacred Lake

The mineralogy is closely linked to the parent geology of the area, comprising plagioclase and potash feldspars (65 - 70 %), quartz (18 - 20 %), halloysite (10 %) and gibbsite (2 %). Weathering products such as chlorite, halloysite and gibbsite are present throughout the core (Figure 4-56) Kaolinite and illite clays were also identified.

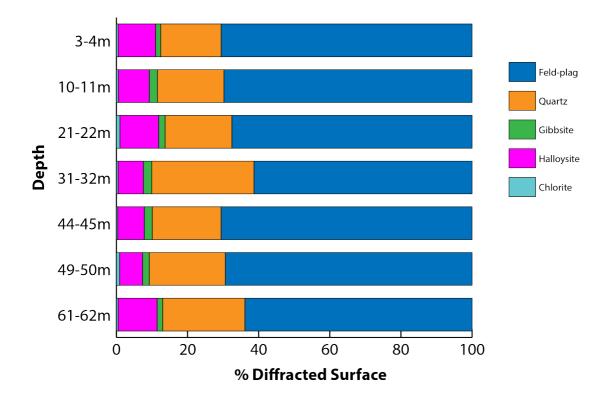



Figure 4-56: The average quantitative mineralogy of the Sacred Lake sediment samples

The X<sub>lf</sub> values are very low ranging from 7.5 x 10<sup>-9</sup> to 5.3 x10<sup>-8</sup> m<sup>3</sup>kg<sup>-1</sup>, reflecting the general dissolution ("cut off") of ferrimagnetic minerals under peat-bog and acidic conditions. Still, the steady decline in X<sub>lf</sub> shows the hiatus is followed by a relatively low value (in SLK3) that steadily rises in the upper section of the core (SLK4) (Figure 4-57). The negative %X<sub>fd</sub> values of the sediments are likely due to instrumental noise involving the response of diamagnetic material to the high frequency inducing field. Due to the low detected susceptibility values, the NRM, a measure of magnetisation retained in material after deposition was not carried out. Instead anhysteretic and isothermal remanence measurements were performed to characterize the magnetic carrying particles in the sample.

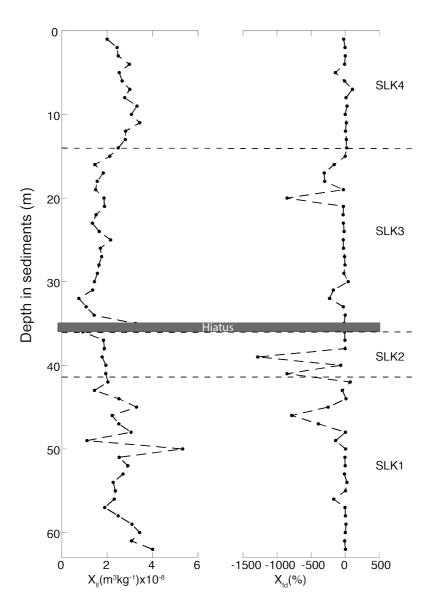



Figure 4-57: Bulk magnetic susceptibility parameters from Sacred Lake core.

The values of ARM<sub>30mT</sub>, IRM<sub>-300mT</sub>, S-ratio and ARM<sub>30mT</sub>/SARM are relatively constant throughout the sediment core (Figure 4-58). Most of the ARM<sub>30mT</sub> values are centred at 4.1 x  $10^{-6}$  Am<sup>2</sup>kg<sup>-1</sup> with the highest deviation at 20 cm (in SLK3) providing a maximum value of 1.1 x  $10^{-5}$  Am<sup>2</sup>kg<sup>-1</sup> that corresponds to a deep lake phase. A similar trend is observed in the ARM<sub>30mT</sub>/SARM ratio where the values lie between 3.0 x  $10^{-1}$  Am<sup>2</sup>kg<sup>-1</sup> and 7.4 x  $10^{-1}$  Am<sup>2</sup>kg<sup>-1</sup>. Before the hiatus, high coercivity is noted from the S-ratio that ranges from 0.9 - 1.2 while above the hiatus, low coercivity is reflected by the steady decline in the S-ratio from 1.0 to 0.5 at the top of the sediment core.

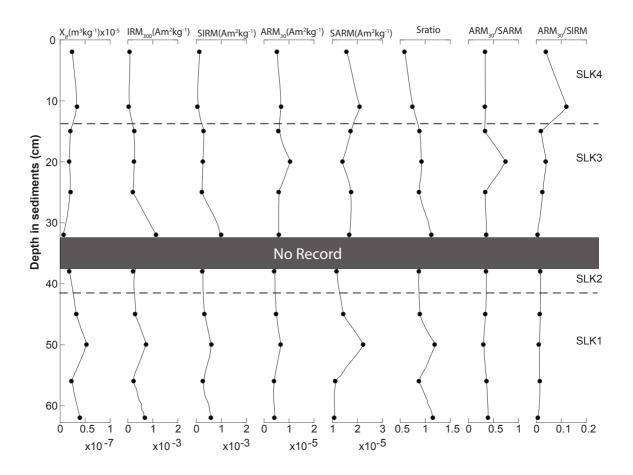



Figure 4-58:  $X_{lf}$ , Anhysteretic and Isothermal Magnetisation parameters for sediments from Sacred Lake

The SARM displays a similar trend to the S-ratio. The IRM-<sub>300mT</sub> values are low ranging from 4.3 x 10<sup>-5</sup> to 1.1 x 10<sup>-3</sup> Am<sup>2</sup>kg<sup>-1</sup>. The IRM-<sub>300mT</sub> and SIRM are relatively constant with the exception of the period immediately after the hiatus where peaks in the values are recorded. The ARM<sub>30</sub>/SARM and ARM<sub>30</sub>/SIRM are not diagnostic of any changes in the sediment profile. As shown from the low S-ratio values the preserved magnetization carriers show a dominant "hard" canted antiferromagnetic component, suggesting contributions of hematite/goethite. From the S-ratio and ARM<sub>30</sub>/SARM profiles, the relatively hard remanence contributions show a slight upward increase, consistent with better preservation near the top of the sequence. Superimposed on this signal, the maximum ARM<sub>30</sub>/SARM value observed in SLK3 at 20 cm downcore likely indicates a layer enriched in SD-like maghemite.

### 4.4.2 Inorganic Geochemistry of Sacred Lake

Sacred Lake contains 15 detected elements (Al, Si, Ti, Ca, Cl, Cu, Fe, K, Nb, Ni, Rb, S, Sr, Zn, Zr). Unlike Lake Nkunga, Mn, P and V were not detected in these samples. Geochemically stable elements and those representative of redox processes were selected for PCA (See section 0, pg. 124). The first principal component (PC1) accounts for 54.40 % of the variability while the second principal component (PC2) accounts for 16.26 % of the variability (Figure 4-59). PC1 positively correlates with indicators of detrital input into the lake and negatively correlates with Fe/Ti and Rb/Zr representative of grain size variation. PC2 positively correlates with K, Si, Si/Ti, K/Ti and Rb/Zr indicating these elements are more tightly held within the structure of aluminosilicates pointing to the enrichment of the clastic phase once the mobile elements are removed and negatively correlates with Fe, Rb, Sr, Ti, Zr and Fe/Ti reflecting changes in the grain size of the clastic phase.

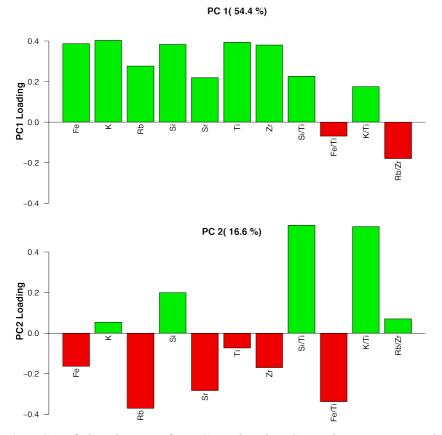



Figure 4-59: PCA of the elements from Sacred Lake. Green bars represent the positive correlations while red represents negative correlations. The upper and lower panels show PC1 and PC2, respectively.

Variations in Fe/Ti, Si/Ti, Ti and Fe were used to observe any significant changes in the sediment core. The Fe and Ti profiles represent subtle variations without any clear trends. On the other hand, for the Fe/Ti ratio, changes are observed in the upper 5 cm within SLK4 where an increase in this ratio is observed (Figure 4-60), indicating an increase in smaller grain size material at the top of the core.

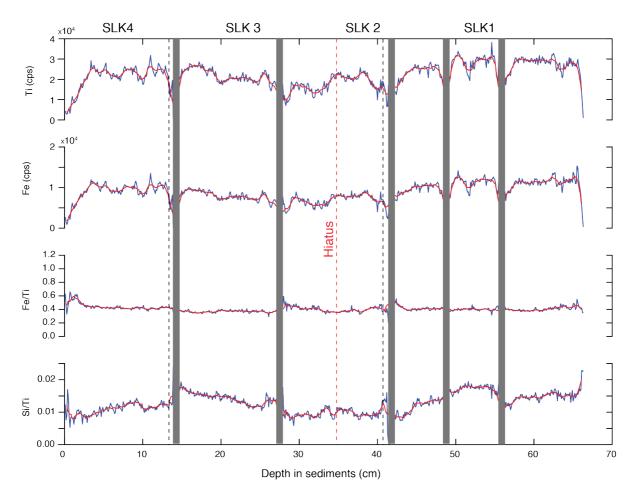



Figure 4-60: Geochemical proxies for Sacred Lake. The blue graph displays the raw and normalized values at every one-millimetre interval while the red graph shows the moving average over one-centimetre interval down the sediment core. The grey areas mark the extent of the 6 cores; SAL II -1, SALII- 2, SALII- 3, SALII- 4, SAL II – 5 and SAL II – 6 whilst the dotted black and red lines denote the stratigraphic units and hiatus, respectively.

The Si/Ti ratios show a general decline until the hiatus. After the hiatus, the Si/Ti does not show any significant changes until 27 cm where a relative rise is observed followed by a decline in the upper section of the core in SLK4. Since the Si/Ti in our PCA is linked to lithogenic input, the source is likely aeolian and therefore the changes recorded represent different states of the lake from shallow to deep lake phases (Figure 4-60)

### 4.4.3 Organic Geochemistry

#### 4.4.3.1 Total Carbon, Total Nitrogen and C/N Ratios of Organic Matter

The total carbon content of the Sacred Lake sediments at the basal unit of the core (SLK1) is the lowest in the whole core, ranging from 6.4 % to 10.0 %. There is a pronounced peak at 54 cm (15.4 %). SLK2 is characterized by increase in %C from 12.0 % to 17.0 %, with a notable peak at 37 cm (19.6 %) just before the hiatus. Above the hiatus, in SLK 3, the values are fairly constant between 16.0 % and 17 % (Figure 4-61) while within the upper unit SLK4, 4.0 % in %C is observed followed by a notable increase in the uppermost section of the core where the highest value of 26.0 % is observed. The %N values range from 0.36 to 2.10 % (mean 1.06 %; Figure 4-61) and mirrors %C variations along the core. The %N minimum is observed before the hiatus at the bottom of the sediment core in SLK1 while a notable rise in the values is observed in SLK2. The %N remains relatively constant in SLK3 (centred at 1.00  $\pm$  0.50 %) above the hiatus while in SLK4, an initial decline followed by a rise in %N to its maximum value is observed.

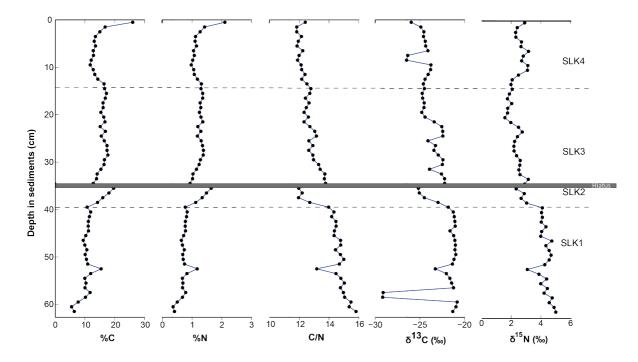



Figure 4-61: Down core variations in the percentage composition of elemental C and N, C/N ratios and the stable  $\delta^{13}$ C and  $\delta^{15}$ N isotopes composition from Sacred Lake

The C/N ranges from 11.82 to 15.82 with the highest ratio at the bottom of the core in SLK 1 (Figure 4-61). A large decline is present at 54 cm (13.10) within SLK 1 that corresponds to an increase in both %C and %N. Just before the hiatus within SLK2 there is a synchronous rise in %C and %N, and a decline in C/N. Above the hiatus, the C/N values display a relative decline to the top of the sediment core.

## 4.4.3.1 Bulk $\delta^{13}C$ and $\delta^{15}N$

The  $\delta^{13}$ C ranges from -29.16 ‰ to -20.81 ‰ with notable peaks at 57-58 cm (-29 ‰) and 54 cm (-23 ‰) within SLK1. The second negative excursion at 54 cm corresponds to an increase in %C and %N (Figure 4-61). Within SLK2, a general decline in  $\delta^{13}$ C is observed before the hiatus. After the hiatus in SLK3, shifts in the bulk  $\delta^{13}$ C superimposed on a decreasing (more negative) trend are observed. In SLK 4, a pronounced depletion in bulk  $\delta^{13}$ C is present at 8 – 9 cm.

The observed  $\delta^{15}N$  values vary from 1.58 to 5.00 ‰. In the oldest part of the record (SLK1) the highest  $\delta^{15}N$  values ranging from 3.04 – 5.00 ‰ display multiple fluctuations (Figure 4-61). In SLK2 the bulk  $\delta^{15}N$  displays a dramatic decline that is synchronous with a decrease in  $\delta^{13}C$  and C/N and an increase in %C and %N perhaps due to the shallowing of the lake before the hiatus. Above the hiatus in SLK3, the bulk  $\delta^{15}N$  is centred at 2.00 ± 0.50 ‰ while slight indistinct increases in the  $\delta^{15}N$  values are observed in SLK4.

# 4.4.3.2 Provenance of OM based on $\delta^{13}C$ and C/N

The  $\delta^{13}$ C values and C/N ratio coupling in Sacred Lake imply that C<sub>3</sub>-type plants (Figure 4-62) are the major contributors to the OM component of the sediments throughout the core, with bulk  $\delta^{13}$ C range of -25.2 to -22.0 ‰.

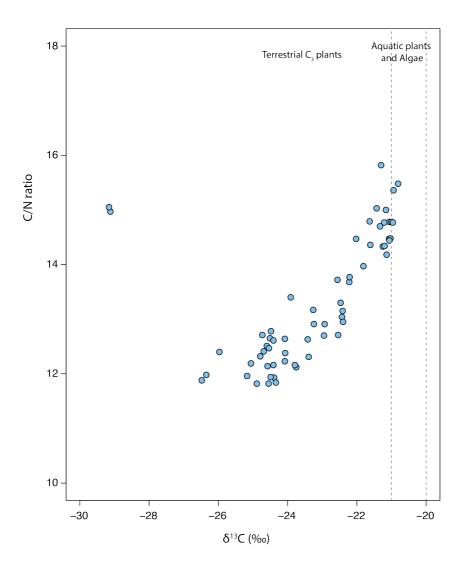



Figure 4-62: Provenance of the organic component of the Sacred Lake sediments

### 4.4.3.1 Distribution of n-Alkanes

The distribution of n-alkane from Sacred Lake is bimodal in the mid to bottom sections of the core (before the hiatus) and unimodal at the top (above the hiatus). The number of carbon atoms present in the n-alkane chains range from  $C_{12-35}$  (Figure 4-63). The samples from the bottom of the core display enrichment in the short to mid-chain n-alkanes while those collected above show a decline in the abundance of these short to mid-chain length *n*-alkanes with the exception of the uppermost sample.

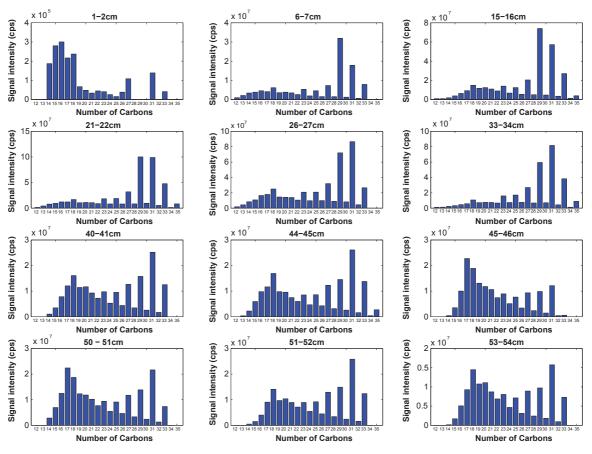



Figure 4-63: n-alkane distribution from Sacred Lake

The terrestrially derived odd long chain *n*-alkanes C<sub>29</sub>, C<sub>31</sub> and C<sub>33</sub> are abundant in most of the samples from the core. There are slight variations in the relative abundance of these *n*-alkanes along the core. Before the hiatus,  $C_{31} > C_{29}$  while C<sub>33</sub> and C<sub>27</sub> are equally abundant. Above the hiatus,  $C_{31} > C_{29}$  while an increase in the relative abundance of C<sub>33</sub> is accompanied by a decline in C<sub>27</sub> abundance and vice versa. In the uppermost unit SLK 4,  $C_{29} > C_{31} > C_{33} > C_{27}$  while in the sample at the top interval,  $C_{31} > C_{27} > C_{33}$  and  $C_{29}$  is missing. The short chain *n*-alkanes do not display a strong odd-over-even number preference and are dominated by C<sub>18</sub> or C<sub>17</sub>.

The terrestrial indicators ACL (28.4 – 29.8), CPI (4.1 – 11.8), TAR (0.4 – 10.4) and  $P_{aq}$  (0.17 – 0.43) (Table 13) show odd-over-even predominance. The ACL, TAR and CPI values from samples before the hiatus are lower than those observed after the hiatus. The  $P_{aq}$  values are high before the hiatus and decline after the hiatus. These changes before and after the hiatus are indicative of changes in terrestrial OM sources of the lake sediment. The  $C_{31}$  alkane is more abundant than the  $C_{27}$  leading to lower  $C_{27}/C_{31}$  ratios with values <1, ranging from 0.3 – 0.8,

while the  $C_{15-21}/C_{22-33}$  range is from 0.23 to 2.60, with the values generally higher before the hiatus and lower after the hiatus with the exception of the uppermost sample.

| Depth | $C_n$ range          | Cn  | ACL  | CPI  | $C_{27}/C_{31}$ | TAR  | Paq  |
|-------|----------------------|-----|------|------|-----------------|------|------|
| -     | C <sub>n</sub> range |     | ACL  | CII  | $C_{2}//C_{31}$ | IAK  | 1 aq |
| (cm)  |                      | max |      |      |                 |      |      |
| 1-2   | 14-33                | 16  | 29.5 | 6.3  | 0.8             | 0.4  | 0.29 |
| 6-7   | 12-33                | 29  | 29.5 | 11.8 | 0.4             | 5.0  | 0.17 |
| 15-16 | 12-35                | 29  | 29.7 | 8.4  | 0.4             | 6.1  | 0.17 |
| 21-22 | 12-35                | 29  | 29.8 | 8.2  | 0.3             | 7.2  | 0.16 |
| 26-27 | 12-33                | 31  | 29.6 | 6.6  | 0.4             | 4.4  | 0.21 |
| 33-34 | 12-35                | 31  | 29.9 | 7.4  | 0.3             | 10.4 | 0.19 |
| 40-41 | 14-33                | 31  | 29.5 | 5.3  | 0.5             | 2.0  | 0.32 |
| 44-45 | 13-35                | 31  | 29.6 | 5.4  | 0.5             | 2.0  | 0.30 |
| 45-46 | 14-33                | 17  | 28.4 | 4.1  | 0.8             | 0.8  | 0.43 |
| 50-51 | 14-33                | 17  | 29.2 | 4.6  | 0.5             | 1.1  | 0.34 |
| 51-52 | 14-33                | 31  | 29.5 | 5.3  | 0.5             | 2.7  | 0.31 |
| 53-54 | 14-33                | 31  | 29.3 | 4.8  | 0.6             | 1.6  | 0.37 |

Table 13: Summary of n-alkane indices from Sacred Lake

 $C_n$ -number of Carbon atoms present in n-alkane chain: ACL – total Average alkane Chain Length; CPI – Carbon Preference Index of long chain alkanes; TAR – Terrigenous-Aquatic Ratio;  $P_{aq}$  – Aquatic macrophyte input proxy

#### 4.4.3.2 Distribution of Glycerol Dialkyl Glycerol Tetraethers (GDGTs)

The brGDGTs range from 4000 to 12648  $\mu$ g/g, constituting 77.5 – 90.9 % of the total GDGTs, and are more abundant than the iGDGTs (857 to 1248  $\mu$ g/g) which amount to 9.1 – 22.5 % of total GDGTs (Figure 4-64). Among the iGDGTs, GDGT-0 is the most abundant (67.0 – 50.0 %) while the crenarchaeol is the second most abundant (5.6 – 27.0 %). For the iGDGTs the relative abundance of GDGT-0 decreases while the crenarchaeol increases up core while GDGT-4 is missing throughout the core. The total brGDGTs increase up core, peaking *ca*. 27 cm. GDGT-I (68 – 61 % of total brGDGTs) is the most abundant while GDGT-II (31 – 20 % of total brGDGTs) is the second most abundant (*Figure 4-46*). Two brGDGTs with cyclopentyl moieties GDGT-IIIb and GDGT-IIIc are recorded in the lower section of the core until *ca*. 40 cm when these two disappear. The Branched vs. Isoprenoid Tetraether (BIT) index is high (0.97 – 0.98) throughout the core (Table 14), affirming the dominance of the terrestrially derived brGDGTs in the lake sediments (Figure 4-64). The calculated MBT and CBT values range from 0.63 – 0.72 and 1.51 – 1.71, respectively (Table 14). The MBT displays a decreasing trend up core while the CBT does not display any.

| Depth (cm) | BIT  | 1302/1292 | MBT  | СВТ  | рН  |
|------------|------|-----------|------|------|-----|
| 2          | 0.97 | 1.9       | 0.63 | 1.71 | 5.1 |
| 7          | 0.98 | 2.3       | 0.66 | 1.61 | 5.4 |
| 16         | 0.97 | 2.4       | 0.68 | 1.68 | 5.2 |
| 22         | 0.97 | 2.8       | 0.70 | 1.71 | 5.1 |
| 27         | 0.98 | 5.1       | 0.70 | 1.68 | 5.2 |
| 34         | 0.98 | 6.9       | 0.70 | 1.65 | 5.3 |
| 41         | 0.98 | 10.4      | 0.72 | 1.51 | 5.7 |
| 45         | 0.98 | 9.8       | 0.71 | 1.47 | 5.9 |
| 50         | 0.98 | 10.9      | 0.72 | 1.42 | 6.0 |
| 54         | 0.98 | 11.5      | 0.73 | 1.43 | 6.0 |

Table 14: The variations in BIT, 1302 (GDGT-0)/1292 (crenarchaeol) ratio, MBT and CBT proxies from the Sacred Lake sediment core

The reconstructed pH (*Equation 11*, pg. 70) values range from 5.1 to 6.0 pH units (Figure 4-64). The high BIT index coupled with the GDGT-0/crenarchaeol (1302/1292) ratio > 2 eliminated the potential application of the TEX<sub>86</sub> proxy as a meaningful proxy for palaeotemperature. This ratio is higher in the lower section of the core where the value is < 5 and declines in the upper section with values centred at 2.

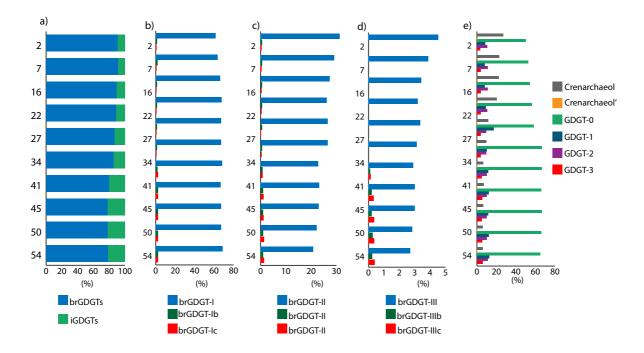



Figure 4-64: The relative abundance of the brGDGTs and iGDGTs down core in the Sacred Lake core. The five graphs represent the main (a) brGDGT and iGDGT abundances, while GDGT groups and their moieties are illustrated in (b) GDGT-I, Ib and Ic (c) GDGT-II, IIb and IIc, (d) GDGT-III and IIb & (e) iGDGTs

The reconstructed MAAT from the various calibrations (Figure 4-65) represents progressive cooling from the bottom of the core. The resulting temperature reconstructions are generally highest using the MBT/CBT calibrations from both Tierney et al. (2010) and Loomis et al. (2012) with the values ranging from  $16.5 - 22.4^{\circ}$  C and  $22.5 - 28.6^{\circ}$  C, respectively (Figure 4-65). The values from the two calibrations show a *ca*. 6.0° C shift but absolute values are distinctly different due to the fact that the Loomis et al. (2012) calibration uses the statistical significance of the brGDGT data in the prediction of the temperature.

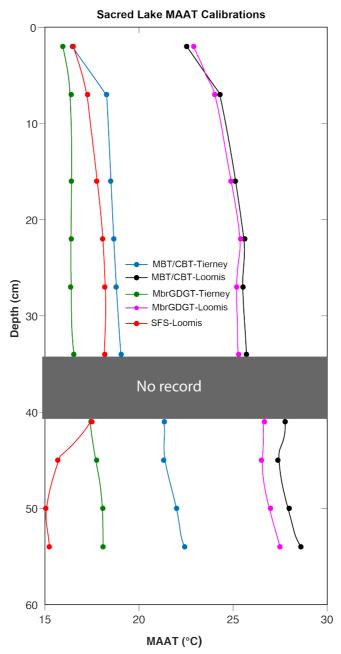



Figure 4-65: Reconstructed MAAT for Sacred Lake core using MBT/CBT, MbrGDGT and SFS regional calibrations

The MbrGDGT calibrations range from  $15.95 - 18.10^{\circ}$  C (Tierney et al. 2010) and  $22.9 - 27.5^{\circ}$  C (Loomis et al. 2012) while the SFS calibration ranges from  $15.0 - 18.18^{\circ}$  C (Loomis et al. 2012). The ranges of MBT/CBT and MbrGDGT derived MAAT by Tierney et al. (2010) represent the maximum ( $5.9^{\circ}$  C) and minimum ( $2.1^{\circ}$  C) temperature variations in the reconstructions from this core (Figure 4-65). The reconstructed MBT/CBT and MbrGDGT (Loomis et al. 2012) are higher with minimum variation ( $0.3 - 1.1^{\circ}$  C) down core while the reconstructed MBT/CBT and MbrGDGT (Tierney et al. 2010) produce lower values with a large variation ( $0.50 - 4.34^{\circ}$  C). Generally, both MBT/CBT and MbrGDGT variations are large with a gap of  $6.0 - 7.0^{\circ}$  C and  $7.0 - 9.4^{\circ}$  C, respectively. The reconstructed temperature using the SFS calibration displays an opposite trend to the MBT/CBT and MbrGDGT calibrations in the lower section of the core with a slight increase in temperature until the hiatus where the values become relatively constant with very minimal variations less than  $1.0^{\circ}$  C (Figure 4-65).

### 4.4.4 Synthesis of Sacred Lake Proxies

The 63 cm of sediments from Sacred Lake covers approximately 4425 – 639 cal yr. BP. The upper limit of the age of the sediments (639 cal yr. BP) is acceptable as the samples dated in the upper sections of the core collectively show an age that is not close to present day. Fixing the upper section of this core to zero skews the age-model and therefore this was not done for Sacred Lake. A notable hiatus at 36 cm points to missing sediment history during the interval 3515 to 1542 cal yr. BP according to the age model. This hiatus could be attributed to the fact that the sediment core was not obtained at the centre of the lake. The lake levels were relatively low during this period exposing the area where the core was acquired to erosion processes hence the missing sedimentation record. The apparent sedimentation rate (ASR) in this lake is unusually low for a permanent lake environment. The ASR values ranging from 0.008 - 0.240cm/yr. likely indicate a constant, high frequency and non-detected alteration of deposition /erosion processes near the shore unlike the linear sedimentation rates obtained by Olago (1995) from the centre of this lake. A relative decline in sedimentation rate is observed before the hiatus while an increase in the sedimentation rate is modelled for the period after the hiatus. The magnetic signal supports the alteration of open water and marsh/peat bog environments, the latter being favourable to the dilution and dissolution of iron oxides. The preserved magnetic minerals present are mostly as canted antiferromagnetic and correlate with significant quantities of hematite/goethite that are associated with minor softer spinel (likely titanomaghemite) grains.

A summary of the results from the Sacred Lake proxies is presented in Table 15. The sediments in Sacred Lake are largely derived from a restricted crater catchment, which in the present-day is surrounded by forest vegetation. Limited variations are observed in the stratigraphy, sediment chemistry, mineralogy and mineral magnetics affirming a small-restricted catchment as the main source of materials.

| Stratigraphic Unit     | Proxy information                                                                                                                                     |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| SLK1                   | <ul> <li>Total %C ranging from 6.4 % to 10.0 %.</li> </ul>                                                                                            |
| 63–41 cm               | • The mean $\delta^{13}$ C (-22.27‰) points to a predominantly C <sub>3</sub> type vegetation                                                         |
| 4425 - 3660 cal yr. BP | source of OM that could be linked to the montane forest surrounding the                                                                               |
|                        | catchment                                                                                                                                             |
|                        | • High X <sub>lf</sub> values recorded in the sediment core are found, indicating a well-                                                             |
|                        | preserved fraction of terrigenous iron minerals                                                                                                       |
|                        | • The Ca/Ti, K/Ti and Fe/Ti ratios peak at the bottom of the sediment core                                                                            |
|                        | before they appear relatively constant throughout the rest of the core.                                                                               |
|                        | • This C <sub>3</sub> type ecosystem supported by C <sub>4</sub> grasses could be attributed to the                                                   |
|                        | <1 value of the $C_{27}/C_{31}$ that denotes the expansion of grasslands in an                                                                        |
|                        | ecosystem that suggests an <i>n</i> -alkane origin from grass biomass.                                                                                |
|                        | • The reconstructed MAAT points to a 3°C warming during this period which                                                                             |
|                        | could potentially support the expansion of these grasslands.                                                                                          |
|                        |                                                                                                                                                       |
| SLK2                   | • Total %C ranging from 12 % to 17 %.                                                                                                                 |
| 41 - 35  cm            | <ul> <li>Fluctuating X<sub>lf</sub> and geochemical parameters (Ca/Ti, Fe/Ti and K/Ti) peaks</li> </ul>                                               |
| 3660 - 3515 cal yr. BP | could support postulated input from the catchment.                                                                                                    |
|                        | • The bulk $\delta^{13}$ C (-22 to – 25.2‰; mean: -23.70‰) values are within the range                                                                |
|                        | of C <sub>3</sub> - type vegetation where bulk $\delta^{13}$ C ranges from -20 to -40% which is                                                       |
|                        | the range of values for most trees, shrubs and herbs                                                                                                  |
|                        | • The $C_{27}/C_{31}$ (<1) of the samples from this unit indicates significant                                                                        |
|                        | contributions of grass over tree.                                                                                                                     |
| SLK3                   | • Total %C ranging from 16 % to 17 %.                                                                                                                 |
| 35 - 14  cm            | • The $C_{27}/C_{31}$ (<1) of the samples from this unit indicates significant                                                                        |
| 1542 - 980 cal yr. BP  | <ul> <li>contributions of grass over tree.</li> <li>Eluctuating X<sub>W</sub> and geochemical parameters (Ca/Ti Ee/Ti and K/Ti) peaks</li> </ul>      |
|                        | The the the first and geochemical parameters (ea, 11, 10, 11 and 11, 11) peaks                                                                        |
| SLK 4<br>14 – 0 cm     | <ul> <li>Total %C ranging from 4 % to 26 %.</li> <li>The synchronous rise of X<sub>1</sub> Ca/Ti K/Ti and A1/Ti during this period points.</li> </ul> |
|                        | The synemonous rise of Mi, Cu Ti, K Ti and Mi Ti during this period points                                                                            |
| 980 - 639 cal yr. BP   | to partly anthropogenic input of detrital material from the catchment to the lake.                                                                    |
|                        | The $C_{27}/C_{31}$ (<1) values in this unit could be linked to grasslands usually C <sub>4</sub>                                                     |
|                        | + The $C_{27}/C_{31}$ (<1) values in this unit could be initied to grassiands usually $C_4$ type grasses present in the Mt. Kenya area.               |
|                        | The CPI (>5), ACL (19.2 - 26.5), $P_{aq}$ (0.17 - 0.29) and TAR (0.4 - 6.1)                                                                           |
|                        | values display a mix of terrestrial and aquatic OM source                                                                                             |
|                        | values display a mix of terrestrial and aquatic Owi source                                                                                            |

 Table 15: Proxy indicators summary from Sacred Lake

 Structurenoise Unit

The general linear upward trends in most biogeochemical proxies of the sedimentary environment point to linear evolution of the lake environment across time, likely linked with the filling process by aquatic vegetation under shallow environments. Superimposed on this trend, the Si/Ti ratio seems to be the main diagnostic proxy that displays synchronicity in trends with the sedimentation rate. The relative changes of the Si/Ti values before and after the hiatus seems to be the most significant in this lake (Figure 4-66). The Si/Ti in this lake is an indicator

of aeolian dust transport from the basement (metamorphic rock terrain areas to the east of the mountain) into the lakes. Before the hiatus there is a general decline in the Si/Ti ratio perhaps points to decreasing aeolian input and soon after the hiatus, the rise of the Si/Ti ratio denoting increase in aeolian input and possible biogenic input although it is not possible to discriminate the aeolian and biogenic signal from our results (Figure 4-66).

The coexistence of halloysite and gibbsite imply chemical weathering is a significant process while the presence of feldspars and quartz alongside these weathering products affirm an extracatchment aeolian influence on the lake. In Sacred Lake, C/N ratios throughout the core (11.0 – 15.9) reflect OM contribution from primary production with a substantial contribution from vascular plants surrounding the catchment (Meyers & Teranes, 2001). The low %C content in SLK1 reflects little or no productivity within the lake. The mean  $\delta^{13}$ C (-22.27‰) points to a predominantly C<sub>3</sub>-type vegetation source of OM from the catchment (Meyers & Teranes 2001). This period terminated at the hiatus. In SLK 2, higher %C (15 – 19 %) and %N (1.1 – 1.6 %) values are recorded reflecting lake recovery with an influx of OM corresponding to the relative increase in sediment supply. SLK3, on the other hand, has lower values of %C (16 – 17 %) and %N (1.2 %) which are similar to values within SLK4 with mean %C (15 %) and %N (1.2 %), although not significant enough to be linked to a different OM source (Figure 4-66).

There is a strong correlation between %C and %N ( $R^2 = 0.97$ ) with a positive intercept on the %N axis (2 %) suggesting that the total nitrogen is of purely organic origin. This is to be expected in lacustrine sediments where the large majority of total N is derived from organic matter sources. The  $\delta^{13}$ C and  $\delta^{15}$ N have a strong correlation with C/N ( $R^2 = 0.8$  and  $R^2 = 0.7$ , respectively) perhaps pointing to significant influence of cyanobacteria and probable diagenetic processes in this sediment core (Meyers & Teranes 2001). This is validated by the correlation between %N and  $\delta^{15}$ N ( $R^2 = 0.7$ ). The persistence of the very low %N has been used to classify the lake as oligotrophic (Street-Perrott et al. 2007).

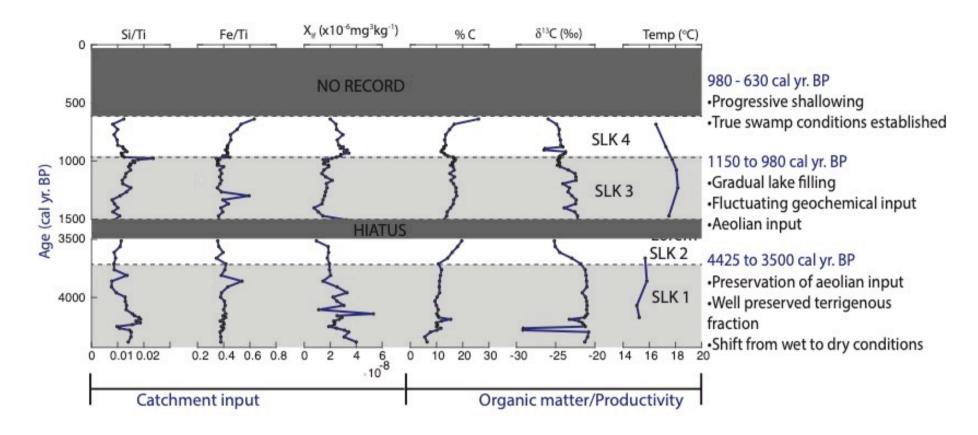



Figure 4-66: A summary of key findings for Sacred Lake from 4425 to 630 cal yr. BP indicating key changes in lake sedimentation and lake level variations

The distribution of n-alkane is unimodal for the samples at the top of the core and bimodal for samples located in the mid to bottom sections of the core. These variations within the core can be attributed to algal, terrestrial and mixed input of OM into the lake sediments with the algal input predominant in the upper sections of the core after the hiatus. The number of carbon atoms present in the n-alkane chains range from  $C_{12-35}$ . The odd long chain n-alkanes  $C_{29}$ ,  $C_{31}$  and  $C_{33}$  are abundant, indicative of terrestrial input, whereas the most abundant short chain n-alkane is  $C_{18}$ .

Throughout the entire core, the  $C_{31}$  alkane is more abundant than the  $C_{27}$  leading to  $C_{27}/C_{31}$ (<1) of the samples throughout the core, pointing to significant contributions of grass over tree possibly due to the expansion of grasslands (Maffei 1996, Schwark et al. 2002). Despite this general trend there are subtle changes in this ratio before and after the hiatus. Before the hiatus, the  $C_{27}/C_{31}$  ranges between 0.5 and 0.8 while the values after the hiatus are between 0.3 and 0.4 with the exception of the uppermost sample (0.8). These subtle changes imply changes in dominant catchment vegetation with the lower sections of the core suggesting an open-forest watershed before the hiatus and a grass/herb dominated ecosystem after the hiatus, associated with the establishment of emergent macrophytes in the lake as reflected in the Paq values. Further it is evident that the C<sub>31</sub> alkane is abundant before the hiatus, while the C<sub>29</sub> alkane is abundant after the hiatus; this supports changes in ecosystem composition of the emergent/terrestrial plants providing the OM in this lake. The C<sub>15-21</sub>/C<sub>22-33</sub> before the hiatus is higher implying increase in microbial contributions while after the hiatus, there is an increase in terrestrial input into the lake. The uppermost sample records the highest  $C_{15-21}/C_{22-33}$  ratio, which reflects the current status of the lake, dominated by emergent plants. Before the hiatus, the short chain n-alkane C<sub>18</sub> is more abundant. This is attributed to the combustion of nonwoody biomass in the catchment (Eckmeier & Wiesenberg 2009). The Late Holocene at Sacred Lake has been characterized by fire incidences marked by the coexistence of panicoid and pooid type grasses (Wooller & Agnew 2002). In the uppermost sample, the short chain nalkanes  $(C_{14-18})$  are dominant with a maximum at  $C_{16}$  alkane. The dominance of these even numbered n-alkanes points to possible partial diagenesis of the odd chained shorter alkanes (Ficken at al. 1998) coupled with thermal degradation of OM due to temperature increase (Eckmeier & Wiesenberg 2009).

The CPI, ACL and TAR values also display differences before and after the hiatus. The lower CPI (4.1 - 5.3), ACL (21.7 - 24.2) and TAR (0.8 - 2.7) values are recorded before the hiatus.

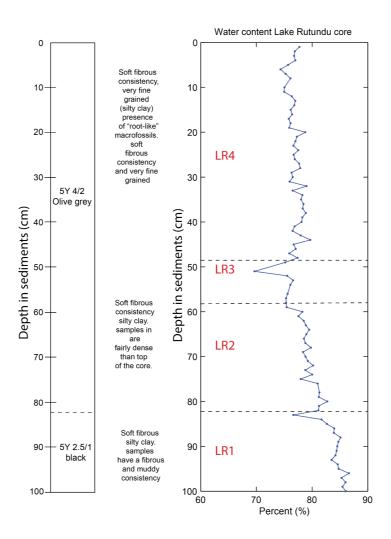
This contrast implies that terrestrial input, although important in Sacred Lake before the hiatus, becomes a significant source for n-alkanes after the hiatus. Since both ACL and CPI values are derived from n-alkane signatures of higher plants, it is expected that these two values would display a high correlation. This is not the case for Sacred Lake where  $R^2 = 0.01$ ; implying different n-alkane sources for the higher plants. This pattern is mirrored in the TAR ratio. The n-alkane proxies for this lake point towards a mix of aquatic macrophytes and terrestrial input of OM into the lake from a moist forest regime with larger plant diversity in the catchment (Eglinton et al. 1962, Kolattukudy et al. 1976, Cranwell 1982, Cranwell et al. 1987, Meyers 1997). Before the hiatus, mixed input from aquatic and terrestrial OM sources play an equal role in their OM contribution whereas after the hiatus, terrestrial input is the predominant OM source. These differences in OM could as well be linked to diagenetic processes implied by the strong correlation of  $\delta^{13}$ C and  $\delta^{15}$ N with C/N observed in the sediment core as well as the presence of microbial activity as seen in the *n*-alkane data.

The most abundant iGDGT in the Sacred Lake samples is the GDGT-0. The crenarchaeol is relatively abundant in the sediments in the upper sections of the core and is most abundant in the topmost sample. In the lower sections of the core, the GDGT-1 and GDGT-2 are relatively more abundant than the crenarchaeol. The variability in abundance of these two iGDGTs (GDGT-0 and crenarchaeol) has led to elevated (GDGT-0/Crenarchaeol) ratios where the values in the lower sections of the core before the hiatus are higher than values above the hiatus. These values imply methanogenic conditions in the lower sections of the core under anoxic lacustrine conditions (Blaga et al. 2009). The BIT index yields high and similar values (0.97-0.98), which is not surprising as the values probably reflect the variability in the GDGT-0 content.

The terrestrial origin of the brGDGTs in the lake sediment profile is supported by the high BIT ratio. The discrepancy in the relative abundance of the brGDGTs in the sediment up core is the relative abundance of the cyclic compounds of the penta-methylated brGDGTs (GDGT Ib, Ic, IIb, and IIc). In the brGDGT-III group, the cyclopentyl moieties are only present in the samples from the lower sections of the core. This has implications on the CBT index and the complementary pH proxy that has yielded very little variability in its values, which range from 5.1 - 6.0.

A comparison of the brGDGTs and the sediment chemistry (Fe/Ti) does not show any covariation implying *in-situ* production of the brGDGTs. The evidence of diagenetic processes

as seen in section 4.4.3 can therefore be attributed to this stipulated *in-situ* production of the brGDGTs. The CBT/MBT palaeothermometer reconstructions yield MAAT estimates biased towards cooler mid to late Holocene conditions and therefore are considered reliable for this site. The MbrGDGTs and SFS calibrations, on the other hand, display similar trends with the exception of the lower section of the core (before the hiatus) where cyclopentyl moieties of brGDGT III are present. In this section of the core, eutrophication, anoxic conditions, and a strong methane cycle in the lake could influence the brGDGT producing organisms leading to changes in their distribution thus leading to some disparities in the accuracy of the reconstructed temperatures. Previous applications of the SFS calibrations by Loomis et al. (2012) on a sediment core from Sacred Lake yielded a 1.2° C cooling from Mid Holocene to Present (Loomis et al. 2012). Using the SFS calibration on our data, we derive a 2.6° C warming from 4425 to 3515 cal yr. BP followed by a 3.1°C cooling from 1542 – 639 Cal yr. BP. The cooling from 1542 – 639 postulated in our record coincides with a period of widespread drought at Sacred Lake from ca. 900 to 500 cal yr. BP (Konecky et al. 2014). The applications of all the calibrations are biased towards the cooling during this period. Further, our record yields an average temperature change of 0.5° C cooling from mid-Holocene to Present, a value lower than estimates by Loomis et al. (2012) and Loomis et al. (2017) by 0.6° C and 1.0° C, respectively.


# 4.5 Lake Rutundu Sediments

# 4.5.1 Bulk Sediment Parameters

# 4.5.1.1 Stratigraphic Description

The sediments from Lake Rutundu are homogenous and have a soft fine-grained consistency throughout (Figure 4-67). The sediment colour ranges from black (5Y 2.5/1) in the bottom to olive grey (5Y 4/2) in upper sections of the core. The bottom section, from 100 - 82 cm, comprises black silty clays with a muddy and fibrous consistency and is overlain by homogeneous olive grey sediments with a soft fibrous (due to the presence of 'root like' fibres) consistency. There are no visible tephra layers or characteristic stratigraphic markers that can be used to distinguish the different sediment units. The core has high W<sub>c</sub> ranging from 70- 87 % with an average of 79 %. The W<sub>c</sub> progressively declines from a comparatively saturated bottom to the top of the sediment core.

The lithological changes are subtle and lack distinct stratigraphic markers. The compositional variation of %C, %N and their stable isotopes were analysed using constrained hierarchical clustering in Rioja (Juggins 2015) to identify significant stratigraphic zones. Four significant stratigraphic zones were identified as follows: declining OM concentration in LR1 (100 - 84 cm), increase in OM in LR2 (84 - 58 cm), stable OM concentration in LR3 (58 - 48 cm) and a decline in OM within LR4 (48 - 0 cm).



*Figure 4-67: Descriptive stratigraphic section of sediments and percentage water content in sediment cores from Lake Rutundu.* 

### 4.5.1.2 Radiocarbon Chronology

The radiocarbon ages from four samples and their calibrated equivalents (cal yr. BP) obtained using the intCal13 (Reimer et al. 2013) are presented in Table 16 below.

| associated errors. |          |            |                            |            |  |  |
|--------------------|----------|------------|----------------------------|------------|--|--|
| Lab No             | Sample   | Depth (cm) | Age <sup>14</sup> C yr. BP | Cal yr. BP |  |  |
| SacA34960          | RC/22/10 | 22         | $1650 \pm 30$              | 1566±57    |  |  |
| SacA34961          | RC/49/10 | 49         | $2825\pm30$                | 2928±77    |  |  |
| SacA34962          | RC/78/10 | 78         | $3530\pm30$                | 3804±88    |  |  |
| SacA34963          | RC/99/10 | 99         | $4170\pm30$                | 4689±78    |  |  |

Table 16:Radiocarbon ages from Lake Rutundu sediments from AMS (Age  $^{14}C$  yr. BP) and calibrated radiocarbon ages (cal yr. BP) and their associated errors

The AMS <sup>14</sup>C ages were used to generate an age-depth model for Lake Rutundu using Bacon V2.3 (Blaauw & Christen 2011). The year the sediment core was collected was added as the most recent age at the top sediments with an error of  $\pm 10$  years. The resulting age-model (Figure 4-68) is internally consistent and is therefore considered representative for Lake Rutundu. The sediments from Lake Rutundu therefore cover 4770 cal yr. BP to Present.

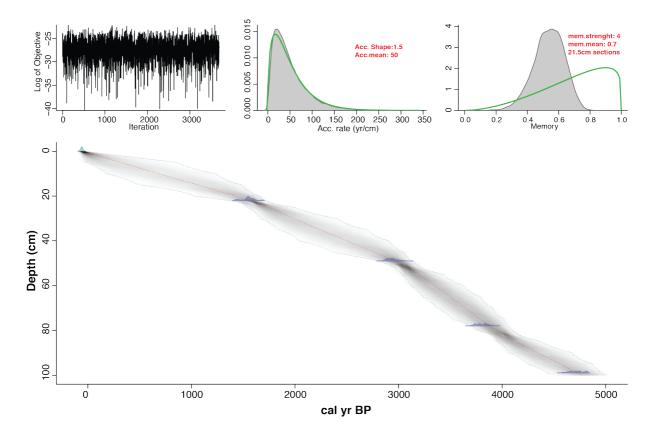



Figure 4-68: Bayesian age depth model for Lake Rutundu sediment core. The bottom panel displays the calibrated <sup>14</sup>C dates (transparent blue) and the age-depth model within 95 % confidence intervals. The upper panels show the MCMC iterations: the left panel represents the stability of the model while the middle and the right panels represent the prior (green curve) and posterior (grey histograms) for the distributions of accumulation mean and memory properties, respectively.

The sedimentation rate (Figure 4-69) is low; between 0.03 - 0.07 cm/yr. comparable with values obtain in Lake Nkunga. Generally, the sedimentation rate declines from the bottom to the top of the core but with a notable increase between 80 and 44 cm that slowly declines towards the top of the sediment core.

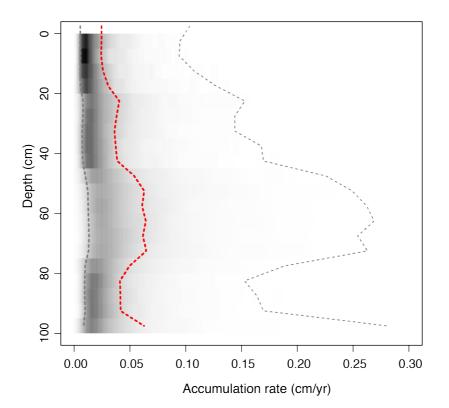



Figure 4-69: Sedimentation rate for Lake Rutundu. The darker the grey shaded areas the higher certainty in value obtained while the red line is the weighted mean of the sediment accumulation rate between the different depths along the sediment providing realistic representation in sediment supply.

### 4.5.1.3 Mineralogy

The mineralogy of this lake comprises plagioclase and potash feldspars (95 %) dominated by sanidine with small amounts of labradorite, quartz (3 - 5 %) and gibbsite (1 - 2 %). Gibbsite is below detection in two samples from the bottom section of the core (Figure 4-70).

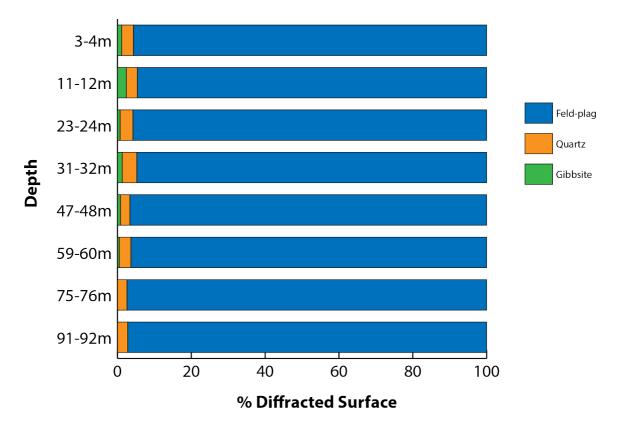
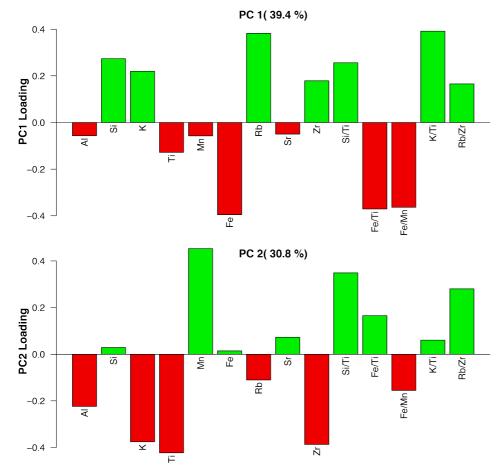




Figure 4-70: The bulk mineralogy of sediments from Lake Rutundu represented as a percentage of the diffracted surface.

### 4.5.2 Inorganic Geochemistry of Lake Rutundu

Sixteen elements (Al, Si, Ti, Ca, Mn, Cu, Fe, P, K, Nb, Ni, Rb, S, Sr, Zn, Zr) were detected in discrete pellet samples collected at about 8 cm. Geochemically stable elements and those representative of redox processes were selected for PCA.

The first principal component (PC1) accounts for 39.4 % of the variability while the second principal component (PC2) accounts for 30.8 % of the variability (Figure 4-71). The relatively poor and similar scores of PC1 and PC2 do not indicate any dominant processes explaining the biogeochemical signature of the lake environmental change: the whole set of proxies depend on strongly interacting processes which control the general response of the coupled climate-lacustrine environment system.



*Figure 4-71: Elemental variation from discrete measurements of pellets from Lake Rutundu sediment.* 

PC1 has positive loading for Si, K, Rb, Zr, Si/Ti, K/Ti and Rb/Zr. It is indicative of autochthonous and allochthonous inputs such as biogenic silica production (Si/Ti), chemical weathering (K/Ti) and terrigenous sources (Rb, Zr, and Rb/Zr are proxies of grain sizes). It has negative loading for Al, Ti, Sr, Fe/Ti and Fe/Mn which is indicative of local clayey inputs. PC2 positively correlates with Si, Mn, Fe, Sr, Si/Ti, Fe/Ti, K/Ti and Rb/Zr, illustrating that the most likely local changes in lake biogeochemistry are associated with biogenic silica production and the dissolution of soluble elements (such as Zr, Fe, K). It negatively correlates with Al, K, Ti, Rb, Zr, and Fe/Mn, which are linked to the clastic phase once more mobile elements are removed under redox conditions, similar to the process in Lake Nkunga.

Despite some differences, PC1 and PC2 likely depend on similar environmental end-members, where the general sediment composition would be either controlled by (i) the primary biogenic production, eutrophication, oxygen deficiency and turnover of lake nutrients, or (ii) runoff and terrigenous inputs and water column mixing. At first glance, such end members would strongly

depend on seasonality and the associated changes in temperature and rainfall distribution and intensity, as well as changes in lake water depth.

Al, Fe, S, Si and Nb were normalized against Ti (Figure 4-72). Of the normalized values, the Fe/Ti ratios are the highest while the Al/Ti values are the lowest with intermediate values of proxies Si/Ti, S/Ti and Nb/Ti (Figure 4-72). Al/Ti is strongly sensitive to the relative clay terrigenous input and would increase in low deposition energy environments. It displays a decline from the bottom of the core to LR3 after which it rises briefly then stabilizes in the upper section of the core. The Si/Ti profile shows a decline in lower sections of the core (LR1, LR2 and LR3). LR4 marks a recovery stage displaying an increase in biogenic silica. Minimal changes are observed in the Fe/Ti profile in the lower sections (LR1, LR2 and LR3).

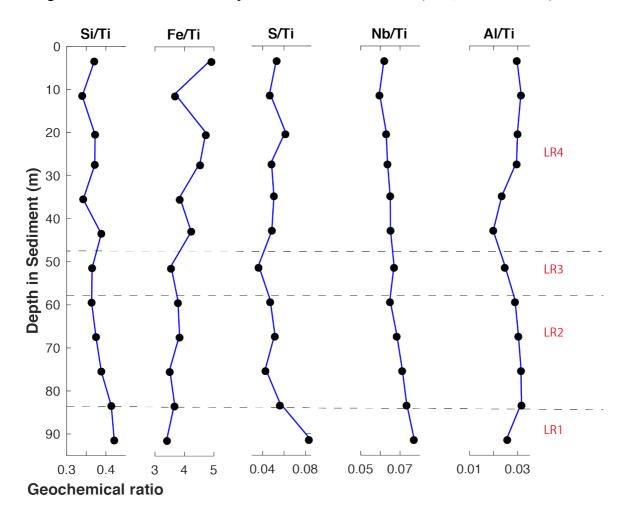



Figure 4-72: Inorganic geochemical composition for Lake Rutundu.

### 4.5.3 Organic Geochemistry of Lake Rutundu

#### 4.5.3.1 Total Carbon, Total Nitrogen and C/N of Organic Matter

The total %C from the Lake Rutundu sediments is moderate to high, ranging from 12.96 % to 20.96 %, with the highest values recorded at the base of the core in LR1 (Figure 4-73). Above this, the %C displays a steady decrease up core from 20 % to ca.15 % at the boundary between LR2 and LR3 (58 cm). LR3 is characterized by minimal variation with the %C values centred at  $15 \pm 0.4$  %. In LR4, the %C slightly increases and stabilizes in the upper sections of the sediment core. The uppermost sample at 4 cm represents a significant increase of the values in this top section (Figure 4-73).

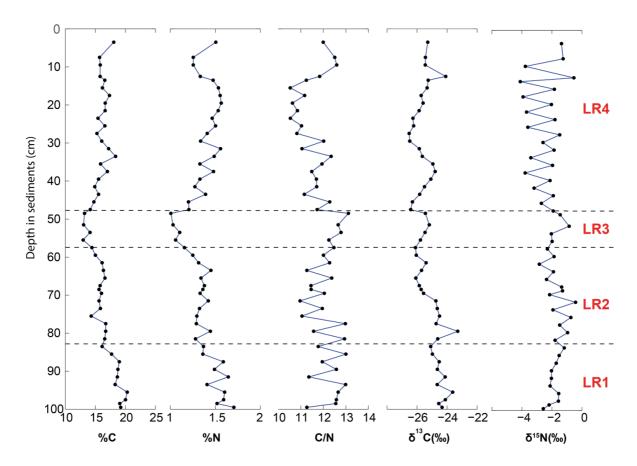



Figure 4-73: Down core variations in the percentage composition of elemental C and N, CN ratios and the Stable  $\delta^{13}C$  and  $\delta^{15}N$  isotopes composition from Lake Rutundu

The %N trends mirror that of %C with significant correlation between these two parameters ( $R^2 = 0.71$ ). The line of best fit exhibits a slightly positive intercept on the %N axis (0.09 %) suggesting an organic origin of the nitrogen present in the sediments. The %N values range

from 1.01 to 1.71 % (mean of 1.38 %). A notable steady increase followed by a decline in the %N values is present between 30 - 10 cm, a departure from the relatively stable %C dataset.

The C/N values, on the other hand, range from 10.53 to 13.11 and display oscillations throughout the entire core. There are no clear trends in the lower section of the core. This only becomes apparent in LR3 where C/N displays an increasing trend. Above this, the C/N values decline between 47 and 15 cm. The last 15 cm is characterised by an increase in the C/N ratio and a decline in the %N probably due to post-depositional decomposition of nitrogen bearing OM.

# 4.5.3.1 Bulk $\delta^{13}C$ and $\delta^{15}N$

The  $\delta^{13}$ C values range from -26.52 ‰ to -23.29 ‰, displaying a general decline up core. In the lower sections of the core within LR1 and LR2, the  $\delta^{13}$ C displays a general decline to more negative values from -24.5 ‰ to -26.1 ‰, with a few excursions, such as a negative excursion at 80 cm ( $\delta^{13}$ C -23.3 ‰). Within LR3, there are fewer negative values that persist to the lower section of LR4. The bulk  $\delta^{13}$ C within LR4 shows only slight variations (-25 ‰ ± 0.4 ‰) with the exception of one sample at 12 cm depth (-24 ‰).

The observed  $\delta^{15}N$  ranges from -0.43‰ to -4.10 ‰, displaying a general. The only clear trend seen in LR1 is where an increase in the bulk isotopic composition from the bottom of the core is recorded. There is an increase in bulk  $\delta^{15}N$  in LR3 although no distinct trend can be seen in the remaining sections of the core.

# 4.5.3.1 Provenance of OM based on $\delta^{13}C$ and C/N

The  $\delta^{13}$ C displays a trend towards more negative values with a mean value of -24.97 ‰ that points to the predominance of C<sub>3</sub> – type vegetation (Figure 4-74). Slight changes in the average %C (16.38 %) and %N (1.36 %) in the upper section of the core are noted with a corresponding mean isotopic  $\delta^{13}$ C signature (-25.11 ‰) that points to C<sub>3</sub> type plant (the OM source similar to the underlying units).

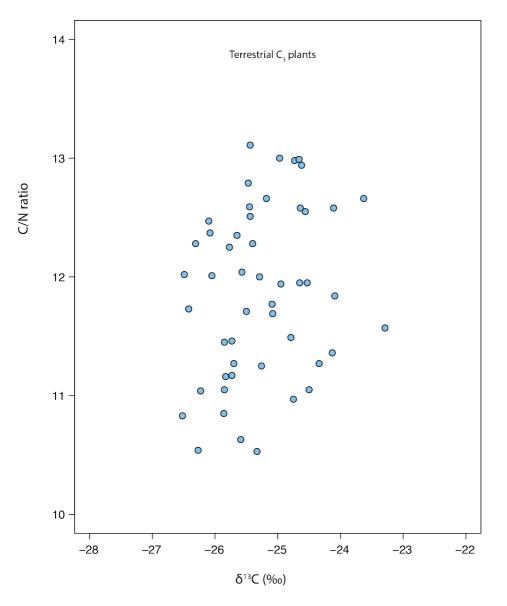



Figure 4-74: Provenance of the organic component of the Lake Rutundu sediments

### 4.5.3.1 Distribution of n-Alkanes

The distribution of n-alkanes in Lake Rutundu sediments is unimodal with the predominance of long chain odd homologues (>  $C_{25}$ ). The terrestrially derived odd long chain n-alkanes  $C_{29}$ ,  $C_{31}$  and  $C_{33}$  are abundant in all of the samples from the core. The  $C_{27}$  and  $C_{29}$  n-alkanes are roughly as or more abundant than the  $C_{31}$  homologue in all samples (Figure 4-75). The  $C_{27}/C_{31}$  ratio values are between 0.9 and 2.2 while the  $C_{15-21}/C_{22-33}$  values range from 0.08 to 0.38. The short chain *n*-alkanes do not display a strong odd-over-even carbon number preference and are dominated by  $C_{18}$ .

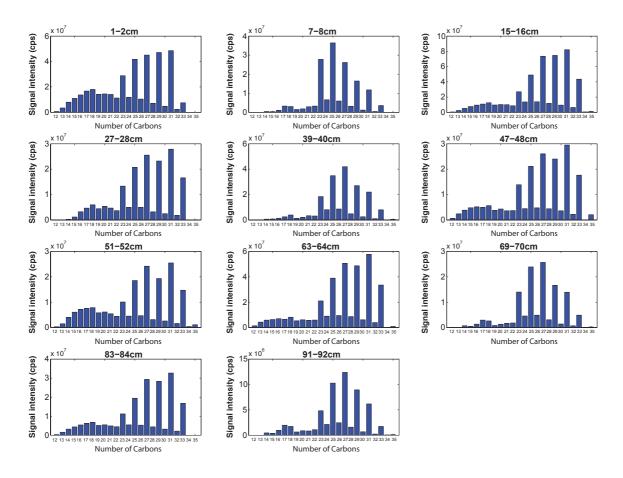



Figure 4-75: n-alkane distribution in Lake Rutundu sediments

The range of the ACL values (27.3 - 29.0), CPI (6.0 - 7.9) and TAR (>1) affirm the odd over even predominance with material derived from higher plants from the lake's watershed (Table 17). Higher values of TAR are observed in three samples (7-8 cm, 39-40 cm and 71-72 cm) where correspondingly very low abundance of short to mid-chain n-alkanes is observed. P<sub>aq</sub> values (0.33 – 0.69), on the other hand, point to a mixed OM source for Lake Rutundu.

| Depth | Cn    | $C_n \max$ | ACL  | ACL <sub>lc</sub> | CPI | Overall | C <sub>27</sub> / | TAR  | Paq  |
|-------|-------|------------|------|-------------------|-----|---------|-------------------|------|------|
| (cm)  | range | Ci mur     | TICE | TICER             | 011 | CPI     | C <sub>31</sub>   | mit  | ⊥ aq |
| 1-2   | 12-33 | 31         | 24.5 | 28.3              | 6.4 | 2.9     | 0.9               | 3.4  | 0.42 |
| 7-8   | 14-33 | 25         | 25.5 | 27.3              | 7.1 | 4.9     | 2.2               | 10.5 | 0.69 |
| 15-16 | 12-35 | 31         | 26.7 | 29.0              | 6.8 | 4.0     | 0.9               | 8.2  | 0.33 |
| 27-28 | 14-33 | 31         | 26.4 | 29.0              | 7.9 | 4.0     | 0.9               | 7.5  | 0.40 |
| 39-40 | 14-35 | 27         | 26.4 | 27.9              | 6.6 | 4.5     | 1.9               | 20.7 | 0.52 |
| 47-48 | 12-35 | 31         | 26.1 | 28.9              | 7.0 | 3.9     | 0.9               | 5.9  | 0.40 |
| 51-52 | 12-35 | 31         | 25.2 | 28.9              | 7.2 | 3.2     | 1.0               | 3.5  | 0.39 |
| 63-64 | 12-35 | 31         | 26.6 | 29.0              | 7.1 | 4.2     | 0.9               | 8.6  | 0.36 |
| 71-72 | 14-35 | 27         | 26.1 | 27.8              | 7.1 | 4.8     | 1.8               | 13.1 | 0.55 |
| 83-84 | 12-33 | 31         | 26.0 | 29.0              | 7.3 | 3.7     | 0.9               | 5.7  | 0.33 |
| 91-92 | 14-35 | 27         | 25.8 | 27.8              | 6.7 | 4.1     | 2.0               | 9.1  | 0.50 |

Table 17: Summary of n-alkane indices from Lake Rutundu

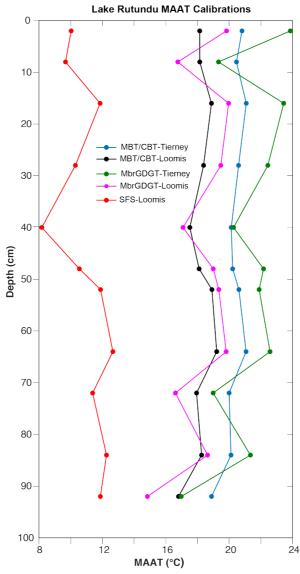
### 4.5.3.2 Distribution of Glycerol Dialkyl Glycerol Tetraethers

All the sediment samples contain abundant amounts of brGDGTs and iGDGTs from 20359 to 39535  $\mu$ g/g (85.3 – 90.0 % of total GDGTs) and from 2432 to 5388  $\mu$ g/g (9.7 – 15.0 % of total GDGTs), respectively (

Figure 4-76). Among the iGDGTs, the GDGT-0 is the most abundant (70 – 88 % of the total iGDGTs) while the GDGT-1 is the second most abundant in the samples from this core. The crenarchaeol (0.24 % - 0.63 % in 7 out of 11 samples) and it's regio isomer (0.32 % in only one sample) are the least abundant of the iGDGTs and in some instances were below the detection limits in the samples from this site. GDGT 4 is present in only 3 out of 11 samples. The brGDGTs without cyclopentyl moieties GDGT-1 (22 - 29 % of the total brGDGTs), GDGT-II (30 - 53 % of the total brGDGTs), and GDGT-III (9 - 19 % of the total brGDGTs) are the most abundant (

Figure 4-76). Among the brGDGTs, GDGT-IIIc is absent in 4 out of 11 samples where the crenarchaeol was recorded as below detection limit.





Figure 4-76: The relative abundance of the brGDGTs and iGDGTs down core in the Lake Rutundu core. The five graphs represent the main (a) the brGDGT and iGDGT abundances, while GDGT groups and their moieties are illustrated in (b) GDGT-I, Ib and Ic (c) GDGT-II, IIb and IIc, (d) GDGT-III and IIb & (e) iGDGTs.

The Branched vs. Isoprenoid Tetraether (BIT) index is high (0.96 - 1.00) throughout the core, further affirming insignificant concentration of the crenarchaeol in this lake (Table 18). The calculated MBT and CBT values range from 0.38 - 0.42 and 0.39 - 0.56, respectively. These values display minimal biases with depth while the reconstructed pH values range from 8.62 to 9.13 pH units and display an increasing trend towards the top of the core (Table 18).

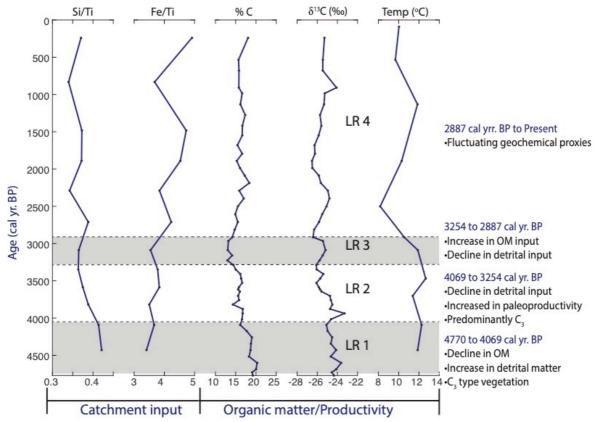
| Depth (cm) | BIT  | 1302/1292 | MBT  | СВТ  | рН   |
|------------|------|-----------|------|------|------|
| 2          | 0.96 | 195.37    | 0.39 | 0.39 | 9.13 |
| 8          | 1.00 | n.d       | 0.39 | 0.45 | 8.94 |
| 16         | 0.98 | 359.29    | 0.41 | 0.44 | 8.99 |
| 28         | 0.98 | 291.71    | 0.40 | 0.46 | 8.92 |
| 40         | 1.00 | n.d       | 0.38 | 0.43 | 9.01 |
| 48         | 0.99 | 334.36    | 0.40 | 0.49 | 8.83 |
| 52         | 0.97 | 123.33    | 0.42 | 0.52 | 8.73 |
| 64         | 0.98 | 265.38    | 0.42 | 0.48 | 8.86 |
| 72         | 1.00 | n.d       | 0.40 | 0.51 | 8.78 |
| 84         | 0.98 | 262.84    | 0.41 | 0.53 | 8.72 |
| 92         | 1.00 | n.d       | 0.38 | 0.56 | 8.62 |

Table 18: The variations in BIT, 1302/1292 ratio, MBT and CBT proxies from the Lake Rutundu sediment core

The high BIT index coupled with the very high GDGT-0/crenarchaeol (1302/1292) ratios that are over a hundred times higher (123 – 359) in these sediments in comparison to Sacred Lake and Lake Nkunga affirm the dominance of the GDGT-0. The resulting temperature reconstructions using the MBT/CBT calibrations from both Tierney et al. (2010) and Loomis et al. (2012) display similarity in trends resulting in 18.8 – 21.0° C and 16.8 – 19.2° C, respectively, with a general gap of approximately 2.0° C throughout the core (Figure 4-77). The MbrGDGT calibrations also display similar trends with values ranging from 16.9 – 23.8° C (Tierney et al. 2010) and 14.8 – 19.9° C (Loomis et al. 2012). Noteworthy of the MbrGDGT calibrations are prominent dips at depths 8 cm, 40 cm, 72 cm, and 92 cm, which correspond to core sections where crenarchaeol is absent in the sediment samples. The SFS calibrations provide the lowest temperature values of 8.1 – 12.7°C (Figure 4-77). The minimum values from this calibration correspond to a depth of 40cm where crenarchaeol is below detection limit whilst in the other depths where this GDGT is below detection limit a similar decline is not observed.



*Figure 4-77: Reconstructed MAAT for Lake Rutundu core using MBT/CBT, MbrGDGT and SFS regional calibrations.* 


### 4.5.4 Synthesis of Lake Rutundu Proxies

The 100 cm of the sediments of Lake Rutundu cover approximately 4770 cal yr. BP to present. The upper age limit of the sediments is generally acceptable as constrained in the age model developed. The accompanying sedimentation rate is low, ranging from 0.03 - 0.07 cm/yr. The bulk inorganic proxies (geochemical ratios, mineralogy and sedimentation), indicate subtle changes in the detrital sediment supply from the catchment (Table 19).

Table 19: Proxy indicators summary from Lake Rutundu

| Stratigraphic Unit         | Proxy Information                                                                                          |
|----------------------------|------------------------------------------------------------------------------------------------------------|
| LR1                        | • The %C displays a steady decrease up core from 20 % to 15 %.                                             |
| 100 – 84 cm                | • Synchronous decline in Ca/Ti, Fe/Ti and Fe/Mn with an increase in K/Ti                                   |
| 4770 – 4069 cal yr. BP     | reflect the decrease in inputs from the lake catchment.                                                    |
|                            | • The range of the C <sub>27</sub> /C <sub>31</sub> ratio point to the contribution from terrestrial trees |
|                            | over grasslands in the OM biomass.                                                                         |
| LR2                        | • The %C further decline from 15 % to 13 %.                                                                |
| 58 – 84 cm                 | • $\delta^{15}$ N is maximum in reflecting increased denitrification in the soils.                         |
| 3254 - 4069 cal yr. BP     | • $\delta^{13}$ C shows higher C <sub>3</sub> values and there is more clay from the Al/Ti and less        |
|                            | biogenic silica deducing a relatively warm climate                                                         |
|                            | • Synchronous decline in Ca/Ti, Fe/Ti and Fe/Mn with an increase in K/Ti                                   |
|                            | reflect the decrease in inputs from the lake catchment.                                                    |
|                            | • The range of the $C_{27}/C_{31}$ ratio point to contribution from terrestrial trees                      |
|                            | over grasslands in the OM biomass.                                                                         |
| LR3                        | • Minimal variation with the %C values centred at $15 \pm 0.4$ %.                                          |
| 48 – 58 cm                 | • Synchronous decline in Ca/Ti, Fe/Ti and Fe/Mn with an increase in K/Ti                                   |
| 2887 - 3254 cal yr. BP     | reflect the decrease in inputs from the lake catchment.                                                    |
|                            | • The range of the $C_{27}/C_{31}$ ratio point to contribution from terrestrial trees                      |
|                            | over grasslands in the OM biomass.                                                                         |
| LR4                        | • The %C slightly increases to 18 % and stabilizes in the upper sections.                                  |
| 0 - 48  cm                 | • The geochemical proxies (Ca/Ti, Fe/Ti, K/Ti and Fe/Mn) and X <sub>lf</sub> generally                     |
| 2887 cal yr. BP to Present | fluctuate during this period.                                                                              |
|                            | • The range of ACL, CPI, P <sub>aq</sub> and TAR values point to a mixed input from                        |
|                            | terrestrial and aquatic OM sources into the lake sediments.                                                |

At the bottom of the core within LR1 and LR2, a slight increase in the sedimentation rate is observed alongside a synchronous rise in Fe/Ti and decline in Si/Ti ratios (Figure 4-78). The presence of trace amount of quartz and gibbsite (in the lower section) as sedimentation rate increases could be indicative of aeolian input. In the higher altitudes of Mount Kenya, Mahaney (1991) noted that the silica in the volcanic glass from the catchment undergoes aggressive leaching leading to the production of abundant gibbsite in the soils of the upper catchment. From 50-0 cm, a decrease in sedimentation rate to near constant values is noted. The relative decrease in Si/Ti and increase in Fe/Ti throughout suggests that these sediments are more affected by chemical weathering than physical transportation processes (Figure 4-78).



*Figure 4-78: A summary of key findings for Lake Rutundu from 4770 cal yr. BP to Present indicating key changes in lake sedimentation* 

The C/N ratio points to a mix of aquatic (primary production) and terrestrial plants from the lake catchment (Meyers & Teranes 2001). Within this core, there are slight variations in the mean %C and %N with a notable initial decline of these values from the basal section to 50 cm that is followed by an increase in the upper section of the core. The deposition of the organic matter in this core is independent of the sedimentation rate since a decline in the sedimentation rate accompanies an increase in the %C and %N content and *vice versa*, pointing to a change in OM source instead. Nevertheless, the values from the lower section of the core (100 – 50 cm) reflect OM contributions from both vascular plants and primary productivity. The organic proxies point to three contrasting periods: (i) a period described by increase in sedimentation rate and prominent decline in %C and %N (ii) a period of nearly constant %C and %N and (iii) a period of decrease in sedimentation rate accompanied by increase in %C and %N. The synchronicity in the trends of %C and %N and limited degree of variation of  $\delta^{15}$ N and  $\delta^{13}$ C imply a relatively small catchment influencing the OM production.

The distribution of n-alkanes in the samples from Lake Rutundu is unimodal with some variations from the mid to short chain n-alkanes. The OM reflects a mix of primary production/aquatic sources and terrestrial higher plants in the catchment of the lake ecosystem. The CPI indicates a predominance of the long chain *n*-alkane odd homologues, which is seen in the ACL values that have been generated for this lake. The number of carbon atoms present in the n-alkane chains range from C<sub>12-35</sub>. The odd mid to long chain n-alkanes C<sub>25</sub>, C<sub>27</sub>, C<sub>29</sub>, and C<sub>31</sub> are abundant in the samples. These *n*-alkanes abundances differ in the various samples thereby pointing to different relative contributions from emergent macrophytes, terrestrial plants and submerged macrophytes. Among the short chain alkanes, the C<sub>18</sub> is relatively abundant and may relate to fire incidences (Wooller et al. 2000) at varied times in the lake's catchment. An open forest ecosystem is inferred from the  $C_{27}/C_{31}$  ratio (0.9 – 2.0) (Eglinton et al. 1962, Kolattukudy et al. 1976, Cranwell 1982, Cranwell et al. 1987, Maffei 1996, Meyers 1997, Schwark et al. 2002). The TAR is generally >1 with three samples (7-8 cm, 39-40 cm) and 69 -70 cm) displaying extremely high TAR values (>10). These values have correspondingly high Paq values affirming the relative importance of the submerged/floating macrophytes and terrestrial leaf waxes as OM sources. Terrestrial higher plants as well as the submerged/floating macrophytes play an important role in the OM contributions to the lake.

The most abundant iGDGT in Lake Rutundu is the GDGT-0. The crenarchaeol is below detection limit in some samples and where present was the least abundant. This variability in the abundance has led to elevated values of the 1302/1292 ratio implying methanogenic conditions in the core under anoxic lacustrine conditions (Blaga et al. 2009). The BIT index yields high values (0.97 - 0.98), which is not surprising as the values probably reflect the variability in the GDGT-0 content relative to the crenarchaeol. Notably, the brGDGT- IIIc is below detection limit in the Lake Rutundu samples; nevertheless, the brGDGT-III seems to display the most amount of variability down core. The CBT/MBT and MbrGDGTs calibrations display similar trends in palaeotemperature reconstructions, with the CBT/MBT reconstructed MAAT yielding estimates biased towards warmer mid to late Holocene conditions than the SFS calibration. The MbrGDGT calibrations display significant dips in temperatures that correspond to sections in the core with high TAR and  $P_{aq}$  ratios. On the other hand, the SFS calibrations presents the lowest temperature estimates for Lake Rutundu. From the bottom of the core the temperature is fairly constant centred at 12° C followed by a 4° C decline to 8° C at 40 cm, followed by an increase to 12° C and finally stabilising at 10° C. The 2° C decline

from the mid-Holocene to Present in samples from this site is close to the estimate of 1.5° C suggested by Loomis et al. (2017) for Lake Rutundu.

# 4.6 Discussion

The results presented in sections 4.3, 4.4 and 4.5 above are hereby discussed and synthesised with the aim to evaluate research findings from this study in the context of the regional palaeochanges during the Late Holocene. The proxy records are evaluated in the context of other published palaeoclimatic and palaeoenvironmental records from eastern Africa. The three lakes analysed in this study are located on the north eastern slopes of Mt. Kenya within close proximity of each other. These lakes are located in a region of similar geology (section 2.2.1) and climate (Section 2.2.3) and thus broad trends in climate and environmental changes would be expected to manifest in similar ways in the environmental records, with the lake ecosystems responding similarly to the drivers. The difference in altitudes may play a role in the variations observed: for example, the lakes are surrounded by different types of vegetation and receive different quantities of rainfall (Section 2.2.3).

# 4.6.1 Late Holocene Signal Coherency among the Mt. Kenya lakes

The combined sediment history from the three lakes defines four distinct periods of development of the Crater Lake basins over the last 4770 cal yr. BP to present (Figure 4-79), covering the periods (i) 4470 to 3280 cal yr. BP, (ii) 3280 to 2500 cal yr. BP, (iii) 2500 to 2000 cal yr. BP and (iv) 2000 cal yr. BP to Present. The palaeoclimatic interpretations related to Figure 4-79 are discussed in the subsequent sub-sections.

| Age<br>cal yr. BP | Lake Nkunga                                                                                                                                                                                                                                                                                                                                                                | Sacred Lake                                                                                                                                                                                                 | Lake Rutundu                                                                                                                                                                                                                                             |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1000         | <ul> <li>-Influx of sediments from the lake catchment ca. 600 - 400 cal yr. BP</li> <li>-Mixed OM sources; C<sub>3</sub> - C<sub>4</sub> type plants</li> <li>-General cooling, Temperature relatively constant since ca. 500 Cal yr BP</li> <li>- Aeolian influx ca. 810 - 600 cal yr. BP</li> <li>-Lake rejuvenation phase</li> <li>ca. 1079 - 810 cal yr. BP</li> </ul> | <b>1542- 630 cal yr. BP</b><br>-Increased sedimentation<br>-Increased lake organic productivity<br>-C <sub>3</sub> type vegetation, terrestrial leaf waxes are<br>important OM sources<br>-Generally cooler | <b>2915 cal yr. BP - present</b><br>- Decline in sedimentation rate<br>-Increase in lake biogenic silica production<br>-Generally cooler<br>-C <sub>3</sub> type vegetation                                                                              |
| 2000              |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                          |
| 3000              |                                                                                                                                                                                                                                                                                                                                                                            | HIATUS                                                                                                                                                                                                      | <b>3290 - 2915 cal yr. BP</b><br>- Constant sedimentation rate and lake organic<br>productivity<br>-C <sub>3</sub> type vegetation<br>-Shift to cooler temperatures                                                                                      |
| 4000              |                                                                                                                                                                                                                                                                                                                                                                            | <b>4425- 3515 cal yr. BP</b><br>- Declining sedimentation rate<br>before hiatus<br>- Increase and decline in aeolian input<br>-C <sub>3</sub> type vegetation and a mix of submerged                        | <ul> <li>4770 - 3290 cal yr. BP</li> <li>Increase in sedimenation rate</li> <li>Decrease in lake organic productivity</li> <li>-Vascular plants and primary production OM</li> <li>-C<sub>3</sub> type vegetation</li> <li>- Generally warmer</li> </ul> |
| 5000              |                                                                                                                                                                                                                                                                                                                                                                            | - Generally warmer                                                                                                                                                                                          |                                                                                                                                                                                                                                                          |

Figure 4-79: Late Holocene palaeoclimatic and environmental reconstruction from the organic matter from Mt. Kenya. The grey areas mark sections where no information was retrieved from the Mt. Kenya proxies due to core length (L. Nkunga and Sacred Lake) and presence of hiatus in Sacred Lake.

## 4.6.2 The Period 4470 – 3280 cal yr. BP (LR1, LR2, SLK1, SLK2)

During this period, the biogeochemical proxies indicate a shift towards dry conditions. The  $\delta^{13}$ C record shows that both lake catchments were occupied by C<sub>3</sub>-type woody vegetation with  $C_3$  grasses as seen in the  $C_{27}/C_{31}$  ratio that suggests an open forest ecosystem around Sacred Lake and a transition to grasslands for Lake Rutundu where shrub dominated by C<sub>3</sub> pooid grasses occur in the pollen record associated with decline in moisture during the Holocene (Ficken et al. 2002). The C/N ratios which range from 11-14 and display a slight decline in values from the onset of the period are coeval with a decline in Si/Ti and dominance of long odd chain n-alkanes, and therefore generally point to the catchment as an important source of terrestrial OM. Despite the dominance of odd over even long chain n-alkanes, the C<sub>18</sub> alkane is relatively abundant in both lakes and is sometimes used as an indicator thermal alteration of the vegetation in catchments by natural fires. There is no known history of human occupation on Mount Kenya during this time period; although, this biomass burning could be due to natural fires on the sub alpine zone (Hagenia-Podocarpus zone) on Mount Kilimanjaro and Mt. Kenya (Wooller et al. 2000, Hemp 2005, Rucina et al. 2009). Multiproxy evidence from Sacred Lake and Lake Rutundu indicates that fires influenced the vegetation at these sites during the Late Holocene through the persistence of fire tolerant species such as *Stoebe* and *Hagenia* that are present at all times during this period despite the loss and invasion of other montane and ericaceous vegetation (Wooller et al. 2000).

During this time period, the sedimentary records from several sites in the east Africa region show evidence of lake desiccation, decline in lake levels, oxidation of pollen as well as a decline in pollen diversity (Marchant et al. 2018 and the references therein). The lake records in this study are consistent with the wider east African record that shows an abrupt transition to arid conditions during the 4200 cal yr. BP event. However, the extent to which the drying event affected the hydrological balance of our crater lakes seem minor although the proxies from the lakes suggest a progressive lake shallowing and decline in OM influx into the two lakes discussed here.

Previous studies from Mount Kenya have marked this drought event *ca*. 4500 - 3500 cal yr. BP by a sharp rise in *Podocarpus* and low abundance of Panicoid grass cuticles at Sacred Lake, an increase in C<sub>3</sub> grasses in Lake Rutundu and the presence of C<sub>4</sub> vegetation at Kiluli swamp (Coetzee 1967; Olago 1995; Wooller et al. 2000; 2003; Ficken et al. 2002). However, in terms of local water availability, C<sub>3</sub> grasses and *Podocarpus* forest do not point to major local

hydrological stress as recorded at lower altitudes. Other regional records from the region that display pronounced aridity include for example; a visible 30 mm dust layer coupled with less vegetation on the Mt. Kilimanjaro (Thompson et al. 2002); a sharp rise in *Podocarpus* on Lake Kimilili, Mt. Elgon Kenya (Hamilton 1982); declining lake levels and disappearance of lowland forest pollen taxa in Lake Naivasha, Kenya (Butzer et al. 1972; Street & Grove 1976; Maitima 1991), and; a decline in high altitude pollen taxa from Lake Bogoria, Kenya, accompanied by a relative increase in drought tolerant taxa such as *Podocarpus, Juniperus, Acacia* and *Dodonaea* (Kiage & Liu 2006). Evidence of the hot and dry conditions have also been observed in Lakes Turkana and Baringo where a decline in arboreal pollen and the development of *Acacia* forest, respectively, are observed (Owen et al. 1982, Vincens 1986). Further afield, a reduction in the baseflow of the White Nile (Talbot & Brendeland 2001) and a Sr signature reflecting flows originating from Lake Edward during this dry period implies that Lake Victoria may have been isolated from Lake Albert that provides a critical link between flows from Lake Victoria and the White Nile (Talbot & Brendeland 2001).

The regional environmental history describes a period of climatic shift towards drier conditions characterized by reduced rainfall (deMenocal et al. 2000) where the migration of the ITCZ southwards (Gasse 2000; Marchant and Hooghiemstra, 2004; Mayewski et al. 2004) and the suppression of the monsoon circulation in the tropics (COHMAP 1988) have been hypothesized as the cause of the severe droughts centred at *ca*. 4200 cal yr. BP during the Late Holocene.

#### 4.6.3 The Period 3280 - 2500 cal yr. BP (LR3, LR4)

At the onset of this period, there is a hiatus in our Sacred Lake record (see section 4.4.1.1) that is suggestive of a dry period. This hiatus seems to be caused by the lowering of the lake water level perhaps controlled by climate because the closed crater lake has a simple hydrology where input relies on rainfall and the output is through evaporation. The lake, therefore, is able to amplify the climate signal and is an excellent indicator of the lake water budget during a drier period that covers the hiatus. The Lake Rutundu record is therefore the only representative palaeo-record for this period. Initially dry conditions are exemplified by a low sedimentation rate and a correspondingly low OM supply (derived mainly from C<sub>3</sub> type vegetation but reflecting a mix of aquatic and terrestrial OM sources as indicated by the C/N values and the n-alkane composition) from 3287 to 2915 cal yr. BP. However, the biogeochemical markers suggest that the dry phase may have started a bit earlier as observed in the rapid decline of OM

from ca. 4000 cal yr. BP (see Figure 4-73). Its termination is generally coeval with the drought event recorded at ca. 2800 cal yr. BP in Lake Edward by Russell & Johnson (2005), a desiccation in the Mt. Satima mire (Kenya) peat record (Street-Perrott and Perrott, 1990), the interruption of the outflow from Lake Kivu to Lake Tanganyika (Haberyan & Hecky 1987), and the expansion of grasslands at Lake Albert (Ssemmanda & Vincens, 1993). After 2915 cal yr. BP, the rise in OM content, biogenic silica productivity and predominant  $C_3$ -type catchment vegetation in the Lake Rutundu record reflect the termination of this dry phase. The initial dry phase transitions from a warm and dry period at the end of the period between 4470 – 3280 cal yr. BP to a warm and relatively moist period that is seen in the relative increase in sedimentation in Lake Rutundu by 2500 cal yr. BP (Figure 4-80).

| Lake Rutundu 3080 m asl                                                | Sacred Lake 2350 m asl                                    | Lake Nkunga 1780 m asl                                               |
|------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|
|                                                                        |                                                           | <ul><li> 290 cal yr BP to Present</li><li> Cool and dry</li></ul>    |
|                                                                        |                                                           | <ul> <li>500 to 290 cal yr BP</li> <li>Cool (?) and moist</li> </ul> |
|                                                                        |                                                           | <ul> <li>600 – 500 cal yr BP</li> <li>Warm and moist</li> </ul>      |
|                                                                        | • 980 – 630 cal yr BP                                     | • 810 to 600 cal yr BP<br>• Cool (?) and moist                       |
| <ul> <li>1000 to 0 cal yr BP</li> <li>Cool (?) and dry</li> </ul>      | Dry and warm     I550 to 980 cal yr BP     Warm and moist | • 1070 – 810 cal yr BP<br>• Dry and warm                             |
| <ul> <li>2500 to 1000 cal yr BP</li> <li>Dry and warm</li> </ul>       | Hiatus                                                    | I                                                                    |
| <ul> <li>2915 to 2500 cal yr BP</li> <li>Cool (?) and moist</li> </ul> |                                                           |                                                                      |
| <ul> <li>3280 to 2915 cal yr BP</li> <li>Warm and moist</li> </ul>     | • 4425 to 3500 cal yr BP                                  |                                                                      |
| <ul><li>4770 to 3280 cal yr BP</li><li>Dry and Warm</li></ul>          | • Warm and moist                                          |                                                                      |

*Figure 4-80: A generalized chronology of the Late Holocene climatic changes from the three crater lakes.* 

The MAAT from Lake Rutundu suggests stepwise cooling from 12° C at 3280 cal yr. BP to 10° C at 2915 cal yr. BP where relatively dry but initially warm and then progressively cooler (8° C by 2500 cal yr. BP) conditions are recorded by the MAAT proxy, and the lake levels were likely sustained by glacial meltwater due to the glacial advances on Mt. Kenya (Karlén et al. 1999). This temperature decline further corresponds to the wetter conditions inferred by the rejuvenation of sediment input and increasing organic matter input into the lake. The decline in estimated temperatures from Lake Rutundu is synchronous with regional records of a "cold Holocene" estimated at 3300 cal yr. BP to 2500 cal yr. BP (Wanner et al. 2011) in Lakes Malawi (Powers et al. 2005), Tanganyika (Tierney et al. 2008), Victoria (Berke et al. 2012), Turkana (Berke et al. 2012b) and Challa (Sinninghe Damsté et al. 2012), indicating that this cooling event affected the entire eastern Africa region.

This cooling also correlates with the advancement of glaciers on Mt. Kenya between 3500 to 3300 and 3200 to 2300 cal yr. BP (Karlén et al. 1999). Whereas the East African records show that after 3000 cal yr. BP there is coherency in low temperatures, the records are too temporally short to be forced by orbital parameters. The forcing mechanism for this cooling is not well understood, as emerging evidence shows low solar forcing, weak monsoons and reduced precipitation for this period (Wanner et al. 2011; Russell and Johnson 2005).

## 4.6.4 The Period 2500 – 2000 cal yr. BP (LR4)

The sediment influx record for Lake Rutundu (from 2500 to 2000 cal yr. BP) describes a lake rejuvenation phase at the beginning of this time period characterized by an influx of sediments and terrestrial OM and detrital material. Although our nearshore core site on Sacred Lake has a hiatus during the beginning of this period corresponding to a low lake water level in the closed lake basin. A transition to slightly wetter conditions was documented at Sacred Lake in a core recovered from a deeper part of the lake (Konecky et al. 2014), as well as in Lake Naivasha (Verschuren 2001), Lake Edward (Russell and Johnson 2005) and Lake Tanganyika (Stager et al. 2009) (Figure 4-81). The hiatus at our coring site suggests that the lake level rise (cf. Konecky et al. 2014) was not substantially significant during this period and perhaps the increase in precipitation caused erosion of the nearshore sediments to the centre of the lake. The relative importance of submerged macrophytes and planktonic algae, restricted clastic input (low magnetic susceptibility) coupled with a general decline in C/N especially in Lake Rutundu indicates improved preservation of organic matter during this time.

Following this, widespread regional droughts *ca*. 2000 cal yr. BP (Verschuren & Charman 2008) have been recorded from Sacred Lake (Konecky et al. 2014), Lake Edward (Russell & Johnson 2005), Lake Tanganyika (Alin & Cohen 2003), Lake Wakandara (Russell et al. 2007) and Lake Naivasha (Verschuren 2004). The biomarkers from Lake Rutundu record a relatively smooth transition to a dry phase.

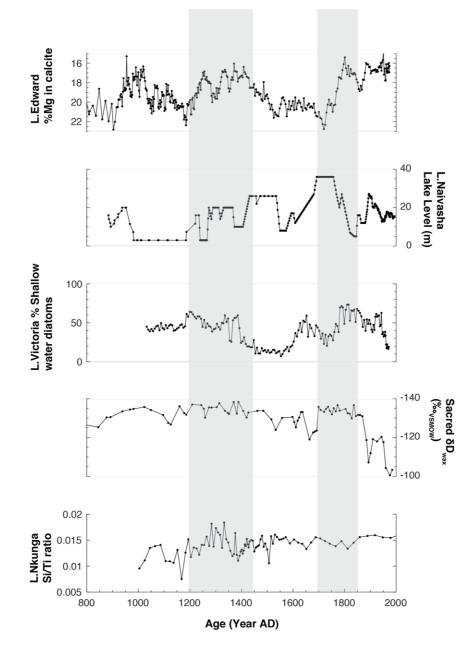



Figure 4-81: Late Holocene changes in Lake Nkunga derived from Si/Ti ratio representing aeolian dust, Sacred Lake  $\delta D_{wax}$  (Konecky et al. 2014), L. Victoria shallow water diatoms (Stager et al. 2005, Lake Naivasha lake levels (Verschuren et al. 2000) and Lake Edward (Russell and Johnson, 2007). The grey shading represents the century scale-decadal changes in the multiple records.

The MAAT from Lake Rutundu suggests a warming from 8°C at 2500 cal yr. BP to *ca.* 10°C by 2000 cal yr. BP. This is reminiscent of the globally warm Late Holocene where the atmospheric humidity is considered more stable and the regional palaeohydrological records indicate a drier late Holocene (Otto-Bliesner et al. 2014).

# 4.6.4 The Period 2000 cal yr. BP to Present (LR4, SLK3, SLK4, LNK1, LNK2, LNK3, LNK4)

## 4.6.4.1 2000 cal yr. BP to 950 cal yr. BP (50 BC to 1000AD)

The Lake Rutundu record displays a transition to a wetter period from 2000 - 1000 cal yr. BP (50 BC to 950 AD) that stabilizes by 600 cal yr. BP (1350 AD). Gradual filling by lake sediments *ca*. 1550 – 980 cal yr. BP (400 – 970 AD) in Sacred Lake marks the return to humid conditions with the lake ecosystem comprising terrestrial/emergent macrophytes. Increase in the sedimentation rate associated with relative increases in OM and Si/Ti characterize this time period. The sediments are slightly more acidic than before the hiatus and the dominance of the odd numbered long chain *n*-alkanes become eminent indicating predominantly catchment-derived inputs. Olago (1995) showed that the stratigraphy of Lake Nkunga engulfs a long-lived hiatus from 30,935 to 1430 cal yr. BP when sedimentation resumes. The oldest part of our record from lake Nkunga does not captures this lake rejuvenation phase. The MAAT from Lake Rutundu indicates warming from 10° C at 2000 cal yr. BP to 12° C by 1000 cal yr. BP.

At 2000 cal yr. BP regional records show possibly the driest period of the Late Holocene. The lowest lake levels were recorded at Lake Edward (Russell & Johnson 2005) and Lake Tanganyika (Alin & Cohen 2003), and a complete desiccation is recorded in Crescent Island Crater, Lake Naivasha (Verschuren 2001). These records indicate regional widespread aridity at the beginning of this period. During the period 2000 to 1000 cal yr. BP (50 BC to 950 AD), the biogeochemical proxies present a muddled picture of alternating dryer and wetter phases. From Lake Tanganyika, sediment lamina thickness indicates a pronounced wet period from 1750 to 1450 cal yr. BP (200 to 500 AD) and its ostracod record shows a rising lake from 1800 to 1000 cal yr. BP (150 to 950 AD) supported by stromatolites which indicate a high-stand centred at 1500 cal yr. BP (450 AD; Alin & Cohen 2003). This record corroborates the records from Crescent Island Crater, Lake Naivasha where a lake rejuvenation phase is recorded from 1840 cal yr. BP (110 AD) followed by a relatively high-stand that lasted until 1350 cal yr. BP (600 AD; Verschuren 2001). On the other hand, Lakes Turkana (Ricketts and Johnson 1996)

and the Bogoria record (De Cort et al. 2013) show a negative water balance *ca*. 450 AD while the carbonate flux from Lake Turkana shows higher lake levels during the same period when the Omo river inflows are recorded as high (Halfman et al. 1994). The contradiction in the lake Turkana record is attributable to the morphology and sediment sources of the lake basin itself. The stable  $\delta^{18}$ O isotopic measurements by Ricketts and Johnson (1996) was done on authigenic calcites south of Lake while the Halfman et al. (1994) carbonate flux data is from the entire lake. These features of the palaeoclimate record are probably not sufficient enough to accept definite broad and synchronised regional changes.

At Sacred Lake the plant leaf wax record indicates increased aridity before 1650 cal yr. BP (300 AD) that was followed by gradual recovery to reach a maximum wet phase at 1000 cal yr. BP (950 AD; Konecky et al. 2014). This perhaps explains the hiatus captured by our record and the subsequent recovery of the lake observed from 1550 cal yr. BP (400 AD) after the hiatus. The lake rejuvenation phase in Lake Nkunga in the oldest part of the record capture this warm and moist phase.

#### 4.6.4.2 The Medieval Climate Anomaly: 950 to 700 cal yr. BP (1000 – 1250 AD)

From 980 - 630 cal yr. BP (970 - 1320 AD) a decline in sedimentation rate and OM supply point to the establishment of swamp conditions comprising emergent and submergent macrophytes at Sacred Lake. This result is consistent with the findings of Konecky et al. (2014) from the same lake using leaf waxes, which indicates a drought period from *ca*. 900 – 550 cal yr. BP (1050 to 1400 AD; Konecky et al. 2014) that is coincident with the Medieval Climate Anomaly (MCA).

Relatively low but increasing %C, initial increase in X<sub>If</sub> followed by a decline, oscillating C/N, Si/Ti and increasing Fe/Ti ratio record a lake filling phase in Lake Nkunga *ca*. 1070 – 620 cal yr. BP (880 – 1340 AD). The sediments are alkaline (pH 8 – 9) and predominantly comprise terrestrial and emergent macrophytes punctuated with a few mid chain n-alkanes marking an increase in detrital input during this lake phase. The relative abundance of C<sub>18</sub> among the short and mid chain *n*-alkanes in some samples is perhaps indicative of persistent biomass burning. It is not clear whether at this elevation the fires would be climate induced or anthropogenic although C<sub>18</sub> abundance is connected with the combustion of non-woody biomass from agricultural lands (Eckmeier & Wiesenberg 2009), perhaps indicative of early forest clearing for cultivation.

The MAAT from Lake Rutundu declines from  $12^{\circ}$  C to  $10^{\circ}$  C at 500 cal yr. BP (1450 AD). On the other hand, there are no significant changes in the MAAT record from Sacred Lake which remains constant at *ca*.  $16^{\circ}$  C perhaps due to the development of open forest with delayed feedback of the archaeal community to the temperature changes. Although, it is not clear which of the MAAT calibrations are valid for Lake Nkunga (due to similarity in trends as observed in Figure 4-51, pg. 135), the general trend of MAAT indicates an initial cooling phase by 0.5 –  $1.5^{\circ}$ C (depending on the selected calibration) from 1070 to 800 cal yr. BP followed by warming that persists to 600 cal yr. BP (1350 AD).

The regional records from equatorial East Africa show broad coherency during the MCA. Pronounced droughts have been recorded in Lake Turkana (900 – 1200 AD; Halfman et al. 1994), Lake Naivasha (1000 – 1250 AD; Verschuren 2001), Lake Edward (at 1050 AD and 1150 Ad and 1200 AD; Russell & Johnson 2005), Lake Tanganyika (1150AD; Alin &Cohen 2003) and Lake Challa (1150 AD and 1200 – 1300AD; Buckles et al. 2016).

#### 4.6.4.3 The Little Ice Age 700 – 100 cal yr. BP (1250 – 1850 AD)

The leaf wax record from Sacred Lake suggests a relatively wet and stable water body at 550 cal yr. BP (1400 AD; Konecky et al. 2014) probably coinciding with a pluvial period in our Lake Nkunga record (Figure 4-81). This provides evidence for a wet early Little Ice Age (LIA). The absence of younger sediments in Sacred Lake points to subsequent removal of exposed lake sediments from its nearshore responsible for this hiatus and suggests that the lake might have never recovered fully after several drought events. The current swamp conditions and extent of Sacred Lake were probably established *ca*. 600 cal yr. BP (1350 AD).

The biogeochemical markers from Lake Rutundu and Lake Nkunga show a gradual transition to wetter conditions *ca*. 500 cal yr. BP (1450 AD) and 620 - 410 cal yr. BP (1330 - 1540 AD) respectively. Notably, all the bulk ages obtained from the Lake Nkunga samples including the sampled charcoal particles, yielded dates within this time period. Detrital input from the catchment is implied by the presence of pumice fragments, charcoal and ash-like sediment. The inferred humid conditions coincide with wet conditions in Lake Naivasha (Verschuren et al. 2000), Lake Tanganyika (Alin & Cohen 2003), Lake Edward (Russell et al. 2007) and Sacred Lake (Konecky et al. 2014) and have been related to the northward displacement of the ITCZ (Huang et al. 2001) during the first half of the LIA. Increased detrital input in Lake Nkunga during this time coincides with a period of increased anthropogenic activities in the

neighbouring Kiluli swamp (Olago 1995), and may suggest that the increased influx is in part related to anthropogenic activities, such as vegetation clearance for cultivation, in the Lake Nkunga catchment. At Lake Rutundu, the reconstructed MAAT displays a 0.2 °C rise in temperature. The easternmost parts of East Africa experienced wetter conditions during the Late LIA (Tierney et al. 2013, Russell et al. 2007). The timing of a wetter phase in Sacred Lake *ca*. 200 cal yr. BP (1750 AD; Konecky et al. 2014), the overflow at Lake Naivasha 280 – 180 cal yr. BP (1670 – 1770 AD; Verschuren et al. 2000) and the rising lake levels at Lake Victoria *ca*. 250 cal yr. BP (1700 AD; Stager et al. 2005) indicate coherency in the events of the LIA. The record from Lake Nkunga fail to mark this second phase of the LIA and instead show a decline in detrital input and OM sediment supply as well as the X<sub>lf</sub>. This interval *ca*. 250 – 100 cal yr. BP (1700 – 1850AD) represents a wetter period evidenced by the leaf wax time series from Sacred Lake where rising lake levels are present *ca*. 1700 and 1870 AD (Konecky et al. 2014).

The first documented population expansion around Mount Kenya is *ca*. 200 cal yr. BP (1750 AD) when a group known as the proto-Meru settled at the foothills of the mountain (Ndichu 2009), although the extent of their invasion into the montane forest region is not well known. From 200 to 65 cal yr. BP (1750 to 1885 AD), several severe droughts led to conflicts over natural resources and civil wars among the communities neighbouring the mountain (the Meru, Embu, Kikuyu, Chuka and Maasai) leading to their displacement and further intrusion into the montane region (Ndichu 2009). Tales exist of the extent of the regional droughts such as the Lapanarat *ca*. 190 – 158 cal yr. BP (1760 to 1792 AD) and Nvalaganu ca. 140 – 135 cal yr. BP (1810 – 1815 AD) among communities such as the Chuka who also recall the Kiverio famine *ca*. 104 cal yr. BP (1846 AD; Ndichu 2009). These early droughts coincide with the Lapanarat – Mahlatule drought that coincides with a low stand at Lake Naivasha from 1760 – 1840 AD (Verschuren 2000).

Assuming that drying trend commenced regionally around 1750 AD this may have forced the occupation of population in areas around the mountain. There is a broad agreement with data from other sites that display a drier late phase of the LIA, which ended in aridity. Such records from Lake Victoria (Stager et al. 2005), Lake Baringo (Kiage & Liu 2009) and Lake Challa (Buckles et al. 2016) show that these lakes were shallower or more saline (as seen in Lake Naivasha) at the end of the LIA (Verschuren et al. 2000)

#### 4.6.4.4 The Modern era: 100 cal yr. BP to Present (1850 AD to Present)

Although Lakes Nkunga and Rutundu cover this time period, the palaeo-record from Lake Nkunga provides a higher resolution of the changes in the modern era. From 1850 AD to Present the L. Nkunga record shows a constant %C, Si/Ti and a decrease in the X<sub>lf</sub> values pointing to dropping lake levels. The evidence of this decline has become apparent over the past two decades where the lakeshores seem to retreat towards the centre of the lake while the lake catchment has remained largely unaltered (Olago 2013, personal communication). Several aridification events have been recorded on Mount Kenya from *ca*. 80 – 55 cal yr. BP (1870 – 1895 AD) and from 1950 to present (Konecky et al. 2014). Most notably, Sacred Lake has seen lake levels drop to a point of desiccation in recent times (Konecky et al. 2014). The "drought of the necklaces" at 66 cal yr. BP (1884 AD) witnessed by the Mahaguya age set of the Embu, also known as the *Kibatau* famine by the Meru and the "battle of famine" known as *Ngoko* by the Chuka at 65 cal yr. BP (1885 AD; Ndichu 2009), and drought events observed in the leaf wax record from Sacred Lake (Konecky et al. 2014), are some of the main climatic events that forced populations to move up Mount Kenya in search of resources.

Although it has been suggested that east Africa became wetter around 1840 AD (Nicholson et al. 2012), with near average rainfall in 1850s and 1860s, historical and lake records point towards multiple severe drought events. For example, Lake Naivasha was at a very low water level and was saline between 1870 and 1890 AD (Verschuren 2000, Verschuren 2001) while lakes Nakuru and Elementaita were completely dry during this period (De Cort et al. 2013).

In the most recent times from 1950 to present, there has been region wide anomalies in rainfall relative to the determined long-term averages (Nicholson 2001). Notably, from 1950 above average rainfall was observed in equatorial east Africa marked by extremely high precipitation, peak river discharge and peak lake levels between 1963 – 1964 (Nicholson 2001).

# **5** CONCLUSIONS AND RECOMMENDATIONS

## 5.1 CONCLUSIONS

One of the key issues from literature is how can the interpretation of climate and environmental conditions over East Africa during the Late Holocene be improved? The biogeochemistry of lake sediments provides a wealth of information about landscape changes from which climate and environmental conditions can be inferred. However, the interpretations of climate from the regionally fragmented records displays some contradictions as observed in the east-west regional hydroclimatic gradient (Verschuren et al. 2000; Stager et al. 2005; Tierney et al. 2013). But still the question remains, do these biogeochemical records reflect regional climate signals or a very local signal?

What is really driving the disparity in the climate interpretations form the multiple proxies? Do these proxies account for all the possible factors? Changes in sedimentation in lake basis area all too often interprets as direct and indirect changes in lake level as a consequence of changing precipitation or temperature but perhaps this is too simplistic. This thesis has presented a multiproxy approach from mineral magnetics, geochemistry, and biogeochemistry evidence of past climate and environmental changes on Mt. Kenya over the last 4700 cal yr. BP to Present.

This study has sought to advance the application of geochemical techniques in soils and sediments from the north eastern slopes of Mt. Kenya with the intention to resolve the regional Late Holocene palaeoclimate and palaeoenvironment. Combinations of traditional sedimentological (XRD, XRF and X<sub>1f</sub>) and organic geochemical analyses (%C, %N,  $\delta^{13}$ C,  $\delta^{15}$ N, n-alkanes and GDGT) were carried out to provide high-resolution records of the Late Holocene. The combined information from these three crater lakes has allowed us to define climate-driven changes on the north eastern slopes of Mount Kenya. The AMS <sup>14</sup>C ages provided a chronological framework to contextualize our results. All of the lakes demonstrate individual responses to late Holocene climatic events. However, despite the individual variations, there is a regional coherency within our sediment archives with the lakes responding to the same drivers through time and at similar times within the limits of our dating technique. As a result, the sedimentary record from this study is a reliable indicator of regional changes in climate and environment.

The comparison of this work with previous palaeolimnological work across East Africa suggests that indeed the crater lakes on Mt. Kenya are sensitive to climate perturbations such as the regional droughts at ca. 4200 cal yr. BP and 2500 cal yr. BP, the MCA and the LIA though the latter is also characterized by fluctuating lake levels. The trends from the individual lakes support the hypothesis of a regionally complex relationship during the Late Holocene. There are minor discrepancies in our records that can be attributed to (i) chronological issues where a higher resolution chronology could be gotten for the  $19^{th} - 20^{th}$  century through the use of other dating methods such as <sup>210</sup>Pb and <sup>137</sup>Cs, but this method was not applied due to cost constraints (ii) the regional complexity of the climatic perturbations in East Africa (especially in the records of the last millennia) and (iii) the individual buffering of a lake's response. For example, the record from Sacred Lake captures two key erosional periods at 3500 cal yr. BP to 1150 cal yr. BP and 630 cal yr. BP to Present implying shifts in low and high lake levels and the progressive shallowing of the lake establishing the current swamp conditions from ca. 630 cal yr. BP. The sedimentary record from Sacred Lakes shows almost immediate and abrupt responses to climatic drivers while the records from Lake Rutundu suggest a timelag in responses.

Coherency in our record with regional lakes shows a prolonged region-wide Medieval Climate Anomaly and century-scale LIA droughts. Our record, therefore, captures the hydrological variability although sensitivities to decadal-scale changes is not well recorded. Other regional reconstructions from the east African lakes (Gasse 2000, Verschuren et al. 2000, Kiage & Liu 2006; 2009, Russell & Johnson 2005; Russell et al. 2007; Vincens et al. 2007; Tierney et al. 2010) have shown subtle decadal and/or centennial scale changes in their sedimentary and hydrological records (Tierney et al. 2013) capturing heterogeneities especially during the early and late phases of the LIA. Lastly, whereas it is also possible to infer anthropogenic influence on the catchment from the Lake Nkunga record, the proxy signal of the human impact over a climate record is not clear. In the East African region, climate fluctuations are the principal drivers of observed limnological changes and, therefore, the overprint of human activity on the sediment-climate record is not fully understood.

Our record succeeds to provide valuable insights on climate proxies and relevant interpretations from each of the selected lakes that are considered to be "climatically sensitive". These lakes have simple hydrology that reflects a straightforward lake history – climate relationship. This therefore means that any changes in the sedimentation system is largely linked to changes in

climate parameters, status of the catchment processes, activities and potentially, their altitudinal location on the mountain slopes. Whereas the human imprint is not clear in our study, these lakes are located in the Mt. Kenya ecosystem and outside the national park. Over the recent years with the decentralization in the management of natural resources, local tourism to such sites is becoming increasingly popular. This, therefore, demands the monitoring and perhaps management of the lakes to understand the sediment loading from their wider catchments. Even in the absence of climatic factors, increasing population trends and the reliance on forest resources for tourism developments, agricultural expansion and timber; monitoring of these lakes is crucial to allow a better understanding of how the lakes function.

The successful analysis of near shore sediment records has provided a beneficial record to the climatic events during the late Holocene (Sacred Lake and Lake Nkunga) that could have not been captured in a continuous sediment core from the centre of the lake (Lake Rutundu) that are considered ideal sites for sedimentation studies. It would be beneficial to apply this methodology to some other lakes in the region to assess the performance of the sedimentary records during the Late Holocene especially in closed lake basins.

# 5.2 **RECOMMENDATIONS**

The following are the recommendations that derive from this research:

- a) Although this biogeochemical evidence has been used to support the conclusions with respect to precipitation and temperature there is need to integrate vegetation changes (from mainly pollen studies) and seasonal climatic drivers to provide a comprehensive outlook.
- b) The human question is still not resolved on the Late Quaternary landscapes. Did humans really impact the environment and change the landscape? This remains an open question in the montane regions in East Africa. Further research is needed as it may be crucial to understanding our palaeoenvironmental records.
- c) To carry out analysis of the of the  $\delta D_{\text{leafwax}}$ , compound specific  $\delta^{13}$ C of n-alkanes and  $\delta^{18}$ O that are sensitive to precipitation changes in order to provide a more comprehensive dataset on the environmental controls for the biomarker distribution.
- d) To carry out <sup>210</sup>Pb and <sup>137</sup>Cs dating in the upper sediments from the crater lakes enable chronological constraints for the identification of century and decadal scale changes in the climate and environment.

- e) To synthesize and reanalyse the existing late Holocene dataset from both the proxies and models in order to present a better picture of the Late Holocene spatial coherency and heterogeneity.
- f) Even though the existing regional calibration for the GDGTs were applied in our dataset, there is need to further evaluate the utility of this proxy. An understanding of the environmental controls and seasonality, could resolve the applicability of these calibrations in the occurrence and distribution of the GDGTs.

# **6 REFERENCES**

- Alin, S.R., Cohen, A.S. (2003). Lake-level history of Lake Tanganyika, East Africa, for the past 2500 years based on ostracod-inferred water-depth reconstruction. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*. **199** (1-2). pp. 31–4.
- Anderson, D. (2002). Eroding the commons: the politics of ecology in Baringo, Kenya 1890 1963, *E.A.E.P publishers*, Nairobi, 336pp.
- Aucour, A., Hillaire-Marcel, C., Bonnefille, R. (1994). Late Quaternary biomass changes from <sup>13</sup>C measurements in a highland peatbog from equatorial Africa (Burundi). *Quaternary Research*, 41, 225-233.
- Baker, B.H., (1967). Geology of the Mount Kenya Area. *Geological Survey of Kenya*, Rep. 79, Nairobi.
- Baker, B.H., Williams, L.A.J., Miller, J.A., Fitch, F.J. (1971). Sequence and geochronology of the Kenya rift volcanics. *Tectonophysics*, **11**, 191–215.
- Barker, P., Street-Perrott, F.A., Leng, M.J., Greenwood, P.B., Swain, D.L., Perrott, R.A., Telford, R.J., Ficken, K.J. (2001). A 14,000-Year Oxygen Isotope Record from Diatom Silica in Two Alpine Lakes on Mt. Kenya. *Science*, **292**, 2307-2310.
- Barker, P., Williamson, D., Gasse, F., Gibert, E. (2003). Climatic and volcanic forcing revealed in a 50,000-year diatom record from Lake Massoko, Tanzania. *Quaternary Research*, **60**, 368-376.
- Barker, P., Gasse, F. (2003). New evidence for a reduced water balance in East Africa during the Last Glacial Maximum: implication for model-data comparison. *Quaternary Science Reviews*, 22, 823-837.
- Battarbee, R.W. (2000). Palaeolimnological approaches to climate change, with special regard to the biological record. *Quaternary Science Reviews*, **19**, 107-204.
- Bechtel, A., Smittenberg, R. H., Bernasconi, S. M., Schubert, C.J. (2010). Distribution of branched and isoprenoid tetraether lipids in an oligotrophic and a eutrophic Swiss lake: Insights into sources and GDGT-based proxies. *Organic Geochemistry*, **41** (8), 822 – 832, DOI:10.1016/j.orggeochem.2010.04.022.
- Bendle, J. A., Weijers, J. W. H., Maslin, M. A., Sinninghe Damsté, J. S., Schouten, S., Hopmans, E. C., Boot, C. S., Pancost, R. D. (2010). Major changes in glacial and Holocene terrestrial temperatures and sources of organic carbon recorded in the Amazon fan by tetraether lipids. *Geochemistry, Geophysics, Geosystems*, **11** (12) DOI:10.1029/2010GC003308.
- Berke, M.A., Johnson, T.C., Werne, J.P., Grice, K., Schouten, S., Sinninghe Damasté J.S. (2012). Molecular records of climate variability and vegetation response since the Late Pleistocene in Lake Victoria basin, East Africa. *Quaternary Science Reviews*, 55, 59-74.
- Berke, M.A., Johnson, T.C., Werne, J.P., Schouten, S., Sinninghe Damsté J.S. (2012b). A mid Holocene thermal maximum at the end of the African Humid Period. *Earth and Planetary Science Letters*, **351 352**, 95 104.
- Blaauw, M. (2010). Methods and code for 'classical' age-modelling of radiocarbon sequences. *Quaternary Geochronology*, **5**(5), 512-518, <u>https://doi.org/10.1016/j.quageo.2010.01.002.</u>
- Blaauw, M., Christen, J.A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. *Bayesian Analysis.* **6**, 457-474.
- Blaga, C. I., Reichart, G. J., Heiri, O., Sinninghe Damsté, J. S. (2009). Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect. *Journal of Palaeolimnology*. **41** (3) 523–540. DOI:10.1007/s10933-008-9242-2.

- Blaga, C.I., Reichart, G.-J., Schouten, S., Lotter, A.F., Werne, J.P., Kosten, S., Mazzeo, N., Lacerot, G., Damsté, J.S.S. (2010). Branched glycerol dialkyl glycerol tetraethers in lake sediments: Can they be used as temperature and pH proxies? *Organic Geochemistry*. **41** (11), 1225–1234.
- Blott, S.J., Pye, K. (2001) Gradistat: A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments. *Earth Surface Processes and Landforms*, **26**, 1237-1248. <u>http://dx.doi.org/10.1002/esp.261.</u>
- Boës, X., Rydberg, J., Martinez-Cortizas, A., Bindler, R., Renberg, I., (2011). Evaluation of conservative\_lithogenic elements (Ti, Zr, Al, and Rb) to study anthropogenic element enrichments in lake\_sediments. *Journal of Palaeolimnology*, **46**, 75 87.
- Bonnefille, R., Hamilton, A.C., Linder, H.P., Riollet, G. (1990). 30, 000-Year-Old Fossil Restionaceae Pollen from Central Equatorial Africa and Its Biogeographical Significance. *Journal of Biogeography*, **17** (3), 307 314.
- Boyle, J. (2001). Redox remobilization and the heavy metal record in lake sediments: a modelling approach. *Journal of Palaeolimnology*, **26**, 423–431. https://doi.org/10.1023/A:1012785525239
- Bray, E.E., Evans, E.D. (1961). Distribution of *n*-paraffins as a clue to the recognition of source beds. *Geochimica et Cosmochimica Acta*, **22**, 2-15.
- Buckles, L.K., Weijers, J.W.H., Verschuren, D., Cocquyt, C., Sinninghe Damste, J.S. (2016). Shortterm variability in the sedimentary BIT index of Lake Challa, East Africa over the past 2200 years: validating the precipitation proxy. *Climate of the Past*, **12**, 1243 – 1262.
- Butzer, K.W., Isaac, G.L., Richardson, J.L., Washburn-Kamau, C. (1972). Radio- carbon Dating of East African Lake Levels. *Science*, **175**, 1069 1076.
- Camberlin, P., Moron, V., Okoola, R., Philippon, N., Gitau, W. (2009). Components of rainy seasons' variability in Equatorial East Africa: onset, cessation, rainfall frequency and intensity. *Theoretical and Applied Climatology*, **98**, 237-249.
- Camberlin, P., Boyard-Micheau, J., Philippon, N., Baron, C., Leclerc, C., Mwongera, C., (2012). Climatic gradients along the windward slopes of Mount Kenya and their implication for crop risks. Part 1: climate variability. *International Journal of Climatology*, DOI: 10.1002/joc.3427.
- Castañeda, I.S., Mulitza, S., Schefuß, E., dos Santos, R.A.L., Sinninghe Damsté, J.S., Schouten, S. (2009). Wet phases in the Sahara/Sahel region and human migration patterns in North Africa. *PNAS*, **106** (48), 20159-20163, https://doi.org/10.1073/pnas.0905771106.
- Christensen J.H., Hewitson B., Bulsuioc A., Chen A., Gao X., Held I., Jones R., Kolli R.K., Laprise R., Magaña Ruenda R., Mearns L., Menéndez C.G., Rinke A., Sarr A., Whetton P. (2007). Regional climate projections in: climate change 2007: The Physical Science Basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change [Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., and Miller H.L. (eds)] Cambridge University Press Cambridge, United Kingdom and New York, NY, USA, 989 pp.
- Coe, M.J. (1967). The ecology of the Alpine zone of Mount Kenya. *The Hague, Dr. W. Junk,* 136 pp.
- Coetzee, J.A. (1967). Pollen analytical studies in East and Southern Africa. *Palaeoecology of Africa*, **3**, 1-146.
- Coffinet, S., Huguet, A., Williamson, D., Fosse, C., Derenne, S. (2014). Potential of GDGTs as a temperature proxy along an altitudinal transect at Mount Rungwe (Tanzania). *Organic Geochemistry*, **68**, 82 89.
- Coffinet, S., Huguet, A., Pedentchouk, N., Bergonzini, L., Omuombo, C., Williamson, D., Anquetil, C., Jones, M., Majule, A., Wagner, T., Derenne, S. (2017). Evaluation of branched GDGTs and leaf wax n-alkane δ<sup>2</sup>H as (paleo) environmental proxies in East Africa. *Geochimica et Cosmochimica Acta*, **198**, 182–193. DOI: 10.1016/j.gca.2016.11.020.

- Collister, J., Rieley, G., Stern, B., Elington, G., Fry, B. (1994). Compound-specific  $\delta^{13}$ C of leaf lipids from plants with differing carbon dioxide metabolisms. *Organic Geochemistry*, **21** (6/7), 619 627.
- Cohen, A.S., Palacios-Fest, M.R., Msaky, E.S., Alin, S.R., McKee, B., O'Reilly, C.M., Dettman, D.L., Nkotagu, H., Lezzar, K.E. (2005). Paleolimnological investigations of anthropogenic environmental change in Lake Tanganyika: IX. Summary of paleorecords of environmental change and catchment deforestation at Lake Tanganyika and impacts on the Lake Tanganyika ecosystem. *Journal of Palaeolimnology*, 34,125–145.
- Cohen, A.S., Stone, J.R., Beuning, R.M., Park, L.E., Reinthal, P.N., Dettman, D., Scholz, C., Johnson, T.C., King, J.W., Talbot, M.R., Brown, E.T., Ivory, S.J. (2007). Ecological consequences of early Late Pleistocene megadroughts in tropical Africa. *PNAS*. **104** (42), 16422–16427.
- Cohen, A.S., Lezzar, K.E., Cole, J., Dettman, D., Ellis, G.S., Gonneea, M.E., Plisnier, P.-D., Langenberg, V., Blaauw, M., Zilifi, D. (2006). Late Holocene linkages between decade– century scale climate variability and productivity at Lake Tanganyika, Africa. *Journal of Palaeolimnology*, **36** (2), 189–209.
- COHMAP (1988). Climatic Changes of the Last 18,000 years: Observations and Model Simulations. *Science*, **241** (4869), 1043 1052.
- Cranwell, P.A. (1973). Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. *Freshwater Biology*, **3**, 259–265.
- Cranwell, P.A., (1982). Lipids of aquatic sediments and sedimenting particulates. *Progress in Lipid Research*, **21**, 271 308.
- Cranwell, P.A., Eglinton, G., and Robinson, N. (1987). Lipids of aquatic organisms as potential contributors to lacustrine sediments II. *Organic Geochemistry*, **6**, 513 527.
- Dansgaard W., Johnsen S.J., Clausen H.B., Dahl-Jensen D., Gundestrup N.S., Hammer C.U., Hvidberg C.S., Steffensen J.P., Sveinbjornsdottir A.E., Jouzel J., Bond G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record, *Nature*, **364** (6434), 218– 220, doi:10.1038/364218a0.
- De Cort, G., Bessems, I., Keppens, E., Mees, F., Cumming, B., Verschuren, D. (2013). Late-Holocene and recent hydroclimatic variability in the central Kenya Rift Valley: the sediment record of hypersaline lakes Bogoria, Nakuru and Elementeita. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, **388**, 69 - 80.
- De Souza, D.B., Machado, K.S., Froehner, S., Scapulatempo, C.F., Bleninger, T. (2011). Distribution of n-alkanes in lacustrine sediments from subtropical lake in Brazil. *Chemie der Erde Geochemistry*, **71** (2), 171–176.
- Dearing J.A., Dann R.J.L., Hay K., Lees J.A., Loveland P.J., Maher B.A, O'Grady K. (1996). Frequency Dependent Susceptibility Measurements of Environmental Materials. *Geophysical Journal International*, **124**, 228 – 240.
- Dearing, J.A. (1999). Holocene environmental change from magnetic proxies in lake sediments. In: Maher, B.A., Thompson, R. (Eds.), Quaternary Climates, Environments and Magnetism, pp. 231–278.
- deMenocal P., Ortiz J, Guilderson T., Adkins, J., Sarnthein, M., Baker, L., Yarusinsky, M. (2000). Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. *Quaternary Science Reviews*, **19**, 347-361.
- deMenocal P.B., Tierney, J.E. (2012). Green Sahara: Africa Humid Periods Paced by Earth's Orbital Changes. *Nature Education Knowledge*, **3** (10), 12.
- Dodd, R., Poveda, M. (2003). Environmental gradients and population divergence contribute to variation in cuticular wax composition in *Juniperus communis*. *Biochemical Systematics and Ecology*, **31**, 1257-1270.

- Dubinsky, E.A., Whendee, L.S., Firestone, M.K. (2010). Tropical forest soil microbial communities couple iron and carbon biogeochemistry. *Ecology*, **91** (9), 2604-2612.
- Eckmeier, E., Wiesenberg, G.L. (2009). Short-chain *n*-alkanes (C<sub>16-20</sub>) in ancient soil are useful molecular markers for prehistoric biomass burning. *Journal of Archaeological Sciences*, **36**(7), 1590-1596.
- Edwards, M.E. (2013). Africa during the Late Quaternary. 2<sup>nd</sup> Ed., Elsevier B.V.
- Eglinton, G., Gonzalez, A.G., Hamilton, R.J., Raphael, R.A. (1962). Hydrocarbon constituents of the wax coatings of plant leaves: a taxonomic survey. *Phytochemistry*, **1**, 89–102.
- Eglinton, G., Hamilton, R.J. (1967). Leaf epicuticular waxes. Science, 156, 1322-1335.
- Fang, J., Wu, F., Xiong, Y., Li, F., Du, X., An, D., Wang, L. (2014). Source characterization of sedimentary organic matter using molecular and stable carbon isotopic composition of nalkanes and fatty acids in sediment core from Lake Dianchi, China. *Science of the Total Environment*, 473–474, 410–421, <u>https://doi.org/10.1016/j.scitotenv.2013.10.066</u>.
- Fick, S.E., Hijman, R.J. (2017). Worldclim 2: New 1-km spatial resolution climate. http://worldclim.org/version2.
- Ficken, K.J., Street-Perrott, F.A., Perrott, R.A., Swain, D., Eglinton, G. (1998). Glacial/interglacial variations in carbon cycling revealed by molecular and isotopic stratigraphy of Lake Nkunga, Mt. Kenya. Organic Geochemistry, 29, 1701–1719.
- Ficken, K.J., Li, B., Swain, D.L., Eglinton, G. (2000). An *n*-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. *Organic Geochemistry*, **31**, 745-749.
- Ficken, K.J., Wooller, M.J., Swain, D.L., Street-Perrott, F.A., Eglinton, G. (2002). Reconstruction of a subalpine grass-dominated ecosystem, Lake Rutundu, Mount Kenya: a novel multi-proxy approach. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **177**, 137–149.
- Gasse, F. (2000). Hydrological changes in the African tropics since the Last Glacial Maximum. *Quaternary Science Reviews*, **19** (1-5), 189–211.
- Gasse, F., Barker, P., Johnson, T.C. (2002). A 24,000 yr. diatom record from the northern basin of Lake Malawi. In: Odada, E.O., Olago, D.O. (Eds). *East African Great Lakes: Limnology, Palaeolimnology and Biodiversity. Advances in Global Change Research*, Kluwer Academic, Dordrecht.
- Gasse, F. (2005). Continental palaeohydrology and palaeoclimate during the Holocene. *Comptes Rendus Geoscience*, **337** (1-2), 79–86.
- Gasse, F., Chalié, F., Vincens, A., Williams, M.A.J., Williamson, D. (2008). Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. *Quaternary Science Reviews*, **27** (25-26), 2316–2340.
- Garcin, Y., Williamson, D., Taieb, M., Vincens, A., Mathé, P.-E., Majule, A. (2006). Centennial to millennial changes in maar-lake deposition during the last 45,000 years in tropical Southern Africa (Lake Masoko, Tanzania). *Palaeogeography, Palaeoclimatology, Palaeoecology*. 239 (3-4), 334–354.
- Garcin, Y., Junginger, A., Melnick, D., Olago, D.O., Strecker, M.R., Trauth, M.H. (2009). Late Pleistocene Holocene rise and collapse of Lake Suguta, northern Kenya Rift. *Quaternary Science Reviews*, **28**, 911-925.
- Hamilton, A.C. (1982). Environmental History of East Africa: A Study of the Quaternary. *Academic Press, London,* 328pp.
- Haberyan, K.A., Hecky, R.E. (1987). The Late Pleistocene and Holocene stratigraphy and palaeolimnology of Lakes Kivu and Tanganyika. *Palaeogeography, Palaeoclimatolology, Palaeoecology*, **61**, 169–197.
- Halfman, J.D., Johnson, T.C., Finney, B.P. (1994). New AMS dates, stratigraphic correlations and decadal climatic cycles for the past 4 ka at Lake Turkana, Kenya. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **111**, 83 98.

- Hemp. A. (2005). Climate change-driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro. *Global Change Biology*, **11**(7), 1013-1023.
- Hopmans, E. C., Schouten, S., Pancost, R. D., Van der Meer, M. T., Sinninghe Damsté, J. S. (2000). Analysis of intact tetraether lipids in Archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. *Rapid* communications in mass spectrometry, 14 (7) 585–589.
- Hopmans, E.C., Weijers, J.W., Schefuß, E., Herfort, L., Sinninghe Damsté, J.S., Schouten, S. (2004). A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. *Earth and Planetary Science Letters*, **224**, 107–116.
- Huang, Y., Street-Perrott, F.A., Perrott, R.A., Metzger, P., Eglinton, G. (1999). Glacial-interglacial environmental changes inferred from molecular and compound-specific ∂13C analyses of sediments from Sacred Lake, Mt. Kenya. *Geochimica et Cosmochimica Acta*, **63** (9), 1383–1404.
- Haug, G., Hughen, K., Sigman, D., Peterson, L., Rohl, U. (2001). Southward migration of the intertropical convergence zone through the Holocene. *Science*, **293**, 1304-1308.
- Huguet, A., Fosse, C., Laggoun-Défarge, F., Toussaint, M. L., Derenne, S. (2010). Occurrence and distribution of glycerol dialkyl glycerol tetraethers in a French peat bog. *Organic Geochemistry*, **41** (6), 559–572. DOI:10.1016/j.orggeochem.2010.02.015.
- Huguet, A., Fosse, C., Laggoun-Défarge, F., Delarue, F., Derenne, S., 2013. Effects of a short-term experimental microclimate warming on the abundance and distribution of branched GDGTs in a French peatland. *Geochimica et Cosmochimica Acta*, **105**, 294–315.
- Juggins, S. (2017). Rioja: Analysis of Quaternary Science Data, R package version (0.9-15.1). http://cran.r-project.org/package=rioja.
- Karlén, W., Fastook, J.L., Holmgre, K., Malmström, M., Matthews, J.A., Odada, E., Risberg, J., Rosqvist, G., Sandgren, P., Shemesh, A., Westerberg, L. (1999). Glacier fluctuations on Mount Kenya since 6000 Cal. Years BP: Implication for Holocene Climatic Change in Africa. *Ambio*, 28 (5), 409 418.
- Kiage, L. M., Liu, K. B. (2006). Late Quaternary paleoenvironmental changes in East Africa: a review of multiproxy evidence from palynology, lake sediments, and associated records. *Progress in Physical Geography*, 30 (5), 633–658, <u>http://doi.org/10.1177/0309133306071146</u>.
- Kiage, L.M., Liu, K.-B. (2009). Palynological evidence of climate change and land degradation in the Lake Baringo area, Kenya, East Africa since AD 1650. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **279** (1-2), 60–72.
- Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koç, N., Hopmans, E.C., Sinninghe Damsté, J.S. (2010). New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. *Geochimica et Cosmochimica Acta*, 74, 4639–4654.
- Kolattukudy, P.E., Croteau, R., Buckner, J.S., (1976). Biochemistry of plant waxes. In: Kollatukudy, P.E. (Ed.), Chemistry and Biochemistry of Natural Waxes. Elsevier, Amsterdam, pp. 290–347.
- Konecky, B., Russell, J., Huang, Y., Vuille, M., Cohen, L., Street-Perrott, F.A. (2014). Impact of monsoons, temperature, and CO<sub>2</sub> on the rainfall and ecosystems of Mt. Kenya during the Common Era. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **396** (C), 17–25.
- Lamb, A. L., Leng, M.J., Lamb, H.F., Mohammed, M.U. (2000). A 9000-year oxygen and carbon isotope record of hydrological change in a small Ethiopian crater lake. *The Holocene*, **10**, 167-177.
- Lamb, H., Darbyshire, I., Verschuren, D. (2003). Vegetation response to rainfall variation and human impact in central Kenya during the past 1100 years. *Holocene*, **13** (2), 285-292.
- Lézine, A.M. (1982) Etude palynologique des sediments Quaternaires du Lac Abiyata (Ethiopie). *Palaeoecology of Africa*, 14, 93–98.

- Liu, X.-L., Leider, A., Gillespie, A., Gröger, J., Versteegh, G.J.M., Hinrichs, K.-U. (2010). Identification of polar lipid precursors of the ubiquitous branched GDGT orphan lipids in a peat bog in Northern Germany. *Organic Geochemistry*, **41**, 653–660.
- Liu, W., Wang, H., Zhang, C.L., Liu, Z., He, Y. (2013). Distribution of glycerol dialkyl glycerol tetraether lipids along an altitudinal transect on Mt. Xiangpi, NE Qinghai-Tibetan Plateau, China. *Organic Geochemistry*, **57** (C), 76–83.
- Livingstone, D.A., Clayton, W.D. (1980). An altitudinal cline in tropical African grass floras and its paleoecological significance. *Quaternary Research*, **13** (3), 392-402, DOI: <u>10.1016/0033-5894(80)90065-4</u>.
- Loomis, S. E., Russell, J., Bethany, L., Street-Perrott, F. A., Damsté, J. S. (2012). Calibration and application of the branched GDGT temperature proxy on East African lake sediments. *Earth and Planetary Science Letters*, **357-358**, 277–88.
- Loomis, S. E., Russell, J., Verschuren, D., Morrill, C., De Cort, G., Sinninghe Damsté, J. S., Olago, D., Eggermont, H., Street-Perrott, F.A., Kelly, M. (2017). The tropical lapse rate steepened during the Last Glacial Maximum. *Science Advances*, 3(1), <u>https://doi.org/10.1126/sciadv.1600815</u>.
- Maffei, M. (1996). Chemotaxonomic significance of leaf wax n-alkanes in the Gramineae. *Biochemical Systematics and Ecology*, **24**, 53-64.
- Mahaney, W.C., Vortisch, W. (1989). Scanning electron microscopy of feldspar and volcanic glass weathering and neoformation of clay minerals in Quaternary paleosol sequence, Mount Kenya, East Africa. *Journal of African Earth Sciences*, **9** (3/4), 729 737.
- Mahaney, W.C. (1990). Ice on the Equator. Ellison Bay, Wisconsin, USA: Wm Caxton press, 386 pp.
- Mahaney, W.C., (1991). Distribution of halloysite-metahalloysite and gibbsite in tropical mountain paleosols: relationship to Quaternary paleoclimate. *Palaeogeography Palaeoclimatology Paleoecology*, **88** (3-4), 219 230.
- Maher, B.A. (1986). Characterisation of soils by mineral magnetic measurements. *Physics of the Earth and Planetary Interiors*, **42** (1-2), 76–92.
- Maitima, J.M. (1991). Vegetation response to climatic change in Central Rift Valley, Kenya. *Quaternary Research*, **35**, 234–245.
- Marchant, R., Hooghiemstra, H. (2004). Rapid environmental change in Africa and South America tropics around 4000 years before present: a review. *Earth-Science Reviews*, **66** (3-4), 217 260.
- Marchant, R., Mumbi, C., Behera, S., Yamagata, T. (2006). The Indian Ocean dipole the unsung driver of climatic variability in East Africa. *African Journal of Ecology*, **45**, 4-16.
- Marchant, R., Richer, S., Boles, O., Capitani, C., Courtney-Mustaphi, C., Lane, P., Prendergast, M., Stump, D., De Cort, G., Kaplan, J.O., Phelps, L., Kay, A., Olago, D., Petek, N., Platts, P.J., Punwong, P., Widgren, M., Wynne-Jones, S., et al. (2018). Drivers and trajectories of land cover change in East Africa: Human and environmental interactions from 6000 years ago to present. *Earth-Science Reviews*, **178**, 322–378.
- Marshall, M., Schlolaut, G., Nakagawa, T., Lamb, H., Brauer, A., Staff, R., Ramsey, C., Tarasov, P., Gotanda, K., Haraguchi, T., Yokoyama, Y., Yonenobu, H., Tada, R., (2012). A novel approach to varve counting using μXRF and X-radiography in combination with thin-section microscopy, applied to the Late Glacial chronology from Lake Suigetsu, Japan. *Quaternary Geochronology*, **13**, 70 80. doi:889 10.1016/j.quageo.2012.06.002.
- Mason, P. (1953). Geology of the Meru Isiolo Area. *Geological Survey of Kenya*, Rep. 31, Nairobi.
- Mayewski, P.A., Rohling, E.E., Curt Stager, J., Karlen, W., Maasch, K.A., David Meeker, L., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack,

F., Staubwasser, M., Schneider, R.R., Steig, E.J. (2004). Holocene climate variability. *Quaternary Research*, **62**, 243-255. <u>https://doi.org/10.1016/j.yqres.2004.07.001</u>.

- Meyers P.A., Ishlwatari R. (1993). The early diagenesis of organic matter in lacustrine sediments. In Organic Geochemistry (Edited by Engel M. and Macko S. A.), pp 185-209, Plenum, New York.
- Meyers, P.A. (1997). Organic geochemical proxies for paleooceanographic, paleolimnologic and paleoclimatic processes. *Organic Geochemistry* 27: 213-250.
- Meyers P.A., Terranes J.L. (2001). Sediment Organic Matter. In: Tracking environmental Change using Lake Sediments (Last, W.M. and Smol J.P, Eds), 2, 239 269, Dordrecht.
- Mumbi, C.T., Marchant, R., Hooghiemstra, H., Wooller, M.J. (2017). Late Quaternary vegetation reconstruction from the Eastern Arc Mountains, Tanzania. *Quaternary Research*, 69 (02), 326– 341.
- Mustaphi, C.J.C., Gajewski, K., Marchant, R., Rosqvist, G. (2017). A Late Holocene pollen record from proglacial Oblong Tarn, Mount Kenya. PLoS ONE, **12** (9): e0184925. https://doi.org/10.1371/journal.pone.0184925.
- Naeher, S., Peterse, F., Smittenberg, R. H., Niemann, H., Zigah, P. K. and Schubert, C. J. (2014).
   Sources of glycerol dialkyl glycerol tetraethers (GDGTs) in catchment soils, water column and sediments of Lake Rotsee (Switzerland) Implications for the application of GDGT-based proxies for lakes. *Organic Geochemistry*, 66, 164–173. DOI:10.1016/j.orggeochem.2013.10.017.
- Ndichu, R. W. (2009). The most devastating Famines in East Africa in the last 1700 years, Sanctified Publishers, Nairobi, 340pp.
- Nicholson, S. E. (1996). A review of climate dynamics and climate variability in eastern Africa. In T. C. Johnson, & E. Odada (Eds.), *The limnology, climatology and paleoclimatology of the East African lakes*, pp. 25-56, Amsterdam: Gordon and Breach.
- Nicholson, S.E., Kim, J. (1997). The relationship of the El Niño-Southern Oscillation to African rainfall. *International Journal of Climatology*, **17**, 117-135.
- Nicholson, S. E., (1998). Inter-annual and inter-decadal variability of rainfall over the African continent during the last two centuries, in *Water Resources Variability in Africa During the XX<sup>th</sup> Century*. edited by M. Servat, E and Hughes, D and Fritsch, JM and Hulme, pp. 107–116.
- Nicholson, S.E. (2000). The nature of rainfall variability over Africa on time scales of decades to millennia. *Global and Planetary Change*, **26**, 137-158.
- Nicholson, S.E. (2001). Rainfall Conditions in Equatorial East Africa during the Nineteenth Century as Inferred from the Record of Lake Victoria. *Climatic Change*, **48**, 387-398.
- Nicholson, S.E., Dezfuli, A.K., Klotter, D. (2012). A two-century precipitation dataset for the continent of Africa. *American Meteorological Society*, **93**(8), 1219-1231.
- Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H. (2013). Package 'vegan' Community ecology package, version2.2-1, 2 (9), 1-295.
- O'Leary, M. H. (1988). Carbon isotopes in photosynthesis. Bioscience, 38, 328-336.
- Oettli, P., Camberlin, P. (2005). Influence of topography on monthly rainfall distribution over East Africa. *Climate Research*, **28**, 199-212.
- Olago, D.O. (1995). Late Quaternary lake sediments of Mount Kenya, Kenya. DPhil thesis, University of Oxford.
- Olago, D.O., Street-Perrott, F.A., Perrott, R.A., Ivanovich, M., Harkness, D.D. (1999). Late Quaternary glacial-interglacial cycle of climatic and environmental change on Mount Kenya, Kenya. *Journal of African Earth Sciences*, **29** (2),1–26.
- Olago, D.O., Street-Perrott, F. A., Perrott, R. A., Ivanovich, M., & Harkness, D.D. (2000). Late Quaternary primary tephras in Sacred Lake sediments, northeast Mount Kenya, Kenya. *Journal* of African Earth Sciences, 30 (4), 957–969.

- Olago, D. O. (2001). Vegetation changes over palaeo-time scales in Africa. *Climate Research*, **17**, 105–121.
- Olago, D.O., Street-Perrott, F.A., Perrott, R.A., Odada, E.O. (2003). Late Holocene sedimentology and palaeoenvironment of Kiluli Swamp, Mount Kenya. *African Journal of Science and Technology*, **4**, 12-23.
- Olago, D.O., Odada, E.O. (2004). Palaeo-research in Africa: relevance to sustainable environmental management and significance for the future. In: R. Battarbee, F. Gasse and C. Stickley (Eds.) *Past Climate Variability through Europe and Africa*. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 551-565.
- Olago, D.O., Odada, E.O. (1996). Some aspects of the physical and chemical dynamics of a large rift lake: the Lake Turkana North Basin, northwest Kenya. In: T.C Johnson and E.O Odada (Eds.) *The Limnology, Climatology and Paleoclimatology of the East African Lakes*. Gordon and Breach Science Publishers, South Africa, pp. 413-430.
- Olago, D.O., (2013). Quaternary Evolution. In P. Paron, D.O. Olago and C.T Omuto (Eds.) *Kenya: A Natural Outlook Geo-Environmental Resources and Hazards*. Development in earth Science processes 16. Elsevier B.V, pp 31 37.
- Oldfield, F., Robinson, S.G. (1985). Geomagnetism and paleoclimate. In *The Climatic Scene*, M.J. Tooley and G. Sheil (eds). London. George Allen & Unwin.
- Otto-Bliesner, B.L, Russell, J.M., Clark, P.U., Liu, Z., Overpeck, J.T., Konecky, B., deMenocal, P., Nicholson, S.E., He, F., Lu, Z. (2014). Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation. *Science*, **346**, 1223–1227.
- Owen, R.B., Barthelme, J.W., Renaut, R.W., Vincens, A. (1982). Palaeolimnology and archaeology of Holocene deposits north-east of Lake Turkana, Kenya. *Nature*, 298:523–529.
- Parfitt, R.L., Wilson, A.D. (1985). Estimation of allophane and halloysite in three sequences of volcanic soils, New Zealand. In: E. Fernandez Caldas and D.H. Yaalon (Editors), Volcanic Soils. *Catena Suppl.*, 7, 1-8.
- Parfitt, R.L., Russell, M., Orbell, G.E., 1983. Weathering sequence of soils from volcanic ash involving allophane and halloysite. *Geoderma*, **29**, 41-57.
- Pancost, R.D., Boot, C.S. (2004). The palaeoclimatic utility of terrestrial biomarkers in marine sediments. *Marine Chemistry*, **92** (1-4), 239 261, <u>https://doi.org/10.1016/j.marchem.2004.06.029</u>.
- Pearson, E. J., Juggins, S., Talbot, H. M., Weckstrom, J., Rosen, P., Ryves, D. B., Roberts, S. J., Schmidt, R. (2011). A lacustrine GDGT-temperature calibration from the Scandinavian Arctic to Antarctic: Renewed potential for the application of GDGT- paleothermometry in lakes. *Geochimica et Cosmochimica Acta*, **75** (20) 6225–6238, DOI:10.1016/j.gca.2011.07.042.
- Pearson, A., Ingalls, A.E. (2013). Assessing the Use of Archaeal Lipids as Marine Environmental Proxies. *Annual Review of Earth and Planetary Sciences*, **41**, 359 384.
- Perrott, R.A., (1982). A high altitude pollen diagram from Mount Kenya: its implications for the history of glaciation. *Palaeoecology of Africa*, **14**, 77–83.
- Peterse, F., Schouten, S., van der Meer, J., van der Meer, M.T.J., Sinninghe Damsté, J.S. (2009). Distribution of branched tetraether lipids in geothermally heated soils: Implications for the MBT/CBT temperature proxy. Organic Geochemistry, 40 (2) 201 – 205, DOI:10.1016/j.orggeochem.2008.10.010.
- Peterse, F., van der Meer, J., Schouten, S., Jia, G., Ossebaar, J., Blokker, J., Sinninghe Damsté, J. S. (2009a). Assessment of soil n-alkane δD and branched tetraether membrane lipid distributions as tools for paleoelevation reconstruction. *Biogeosciences Discuss*, 6, 8609–8631.
- Peterse, F., Kim, J-H., Schouten, S., Kristensen, D. K., Koç, N., Sinninghe Damsté, J. S. (2009b). Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway). Organic Geochemistry, 40 (6), 692–699. DOI:10.1016/j.orggeochem.2009.03.004.

- Peterse, F., van der Meer, J., Schouten, S., Weijers, J. W. H., Fierer, N., Jackson, R. B., Kim, J-H. Sinninghe Damsté, J. S. (2012). Revised calibration of the MBT–CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. *Geochimica et Cosmochimica Acta*, 96, 215 – 229, DOI: 10.1016/j.gca.2012.08.011.
- Peterse, F., Vonk, J., Holmes, M., Giosan, L., Zimov, N., Eglinton, T.I. (2014). Branched glycerol dialkyl glycerol tetraethers in Arctic lake sediments: Sources and implications for paleothermometry at high latitudes. *Journal of Geophysical Research: Biogeosciences*, **119**, 1738 1754, DOI:10.1002/2014JG002639.
- Peyron, O., Jolly, D., Bonnefille, R., Vincens, A., Guiot, J. (2017). Climate of East Africa 6000 14C Yr. B.P. as Inferred from Pollen Data. *Quaternary Research*, **54** (01), 90 101.
- Pokorny, J., Pokorny, P., Suza P., Hrouda, F. (2011). A Multi-Function Kappabridge for High Precision Measurement of the AMS and the Variations of Magnetic Susceptibility with Field, Temperature and Frequency. In E. Petrovsky, D. Ivers, T. Harinarayana, E. Herrero-Bervera (eds), *Earth's Magnetic Interior*. IAGA Special Sopron Book Series 1. pp 293 - 301. DOI 10.1007/978-94-007-0323-0 20.
- Powers, L.A., Werne, J.P., Johnson, T.C., Hopmans, E.C., Damsté, J.S.S., Schouten, S. (2004). Crenarchaeotal membrane lipids in lake sediments: A new paleotemperature proxy for continental paleoclimate reconstruction? *Geology*, **32** (7), 613–616, DOI:10.1130/G20434.1.
- Powers, L.A., Johnson, T.C., Werne, J.P., Castañeda, I.S. (2005). Large temperature variability in the southern African tropics since the Last Glacial Maximum. *Geophysical Research Letters*, **32** (L08706). DOI:10.1029/2004GL022014.
- Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M., van der Plicht, J. (2013). IntCal13 and Marine13 radiocarbon age calibration curves, 0-50,000 years cal BP. *Radiocarbon*, **55**, 1869 – 1887.
- Ricketts, R.D., Johnson, T.C. (1996). Climate change in the Turkana basin as deduced from a 4000 year long d18O record. *Earth and Planetary Science Letters*, **142**, 7–17.
- Roberts N. (1998). The Holocene: An Environmental History. 2<sup>nd</sup> Edition, Blackwell publishing, 316 pp.
- Rommerskirchen, F., Eglinton, G., Dupont, L., Gunter, U., Wenzel, C., Rullkötter, J. (2003). A north to south transect of Holocene southeast Atlantic continental margin sediments: relationships between aerosol transport and compound-specific  $\delta^{13}$ C land plant biomarker and pollen records. *Geochemistry Geophysics Geosystems*, **4**, 1 29.
- Rucina, S.M., Muiruri, V.M., Kinyanjui, R.N., McGuiness, K., Marchant, R. (2009). Late Quaternary vegetation and fire dynamics on Mount Kenya. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, **283** (1-2), 1–14.
- Rucina, S.M., Muiruri, V.M., Downton, L., Marchant, R. (2010). Late-Holocene savanna dynamics in the Amboseli Basin, Kenya. *The Holocene*, **20** (5), 667 677.
- Russell, J.M., Johnson, T.C. (2005). A high-resolution geochemical record from Lake Edward, Uganda Congo and the timing and causes of tropical African drought during the late Holocene. *Quaternary Science Reviews*, **24** (12-13), 1375 1389.
- Russell, J.M., Verschuren, D., Eggermont, H. (2007). Spatial complexity of 'Little Ice Age' climate in East Africa: sedimentary records from two crater lake basins in western Uganda. *Holocene*, **17**, 183 – 193, https://doi.org/10.1177/ 0959683607075832.
- Russell, J.M., McCoy, S.J., Verschuren, D., Bessems, I., Huang, Y. (2009). Human impacts, climate change, and aquatic ecosystem response during the past 2000 yr. at Lake Wandakara, Uganda. *Quaternary Research*, **72** (3), 315–324.

- Sachs, J.P., Pahnke, K., Smittenberg, R., Zhang, Z. (2013). Biomarker indicators of past climate. In: *Elias, S.A. (Ed.), The Encyclopaedia of Quaternary Science*. Elsevier, Amsterdam, pp. 775-782.
- Schouten, S., Hopmans, E.C., Schefuß, E., Sinninghe Damste, J.S. (2002). Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? *Earth and Planetary Science Letters* 204, 265 274.
- Schouten, S., Forster, A., Panoto, F.E., Sinninghe Damsté, J.S. (2007). Palaeothermometer for tropical sea surface temperatures in ancient greenhouse worlds. *Organic Geochemistry*, 38, 1537 – 1546.
- Schouten, S., Hopmans, E.C., Sinninghe Damsté, J.S. (2013). The organic geochemistry of glycerol dialkyl glycerol tetraethers: a review. *Organic Geochemistry*, **54**, 19-61.
- Schwark, L., Zink, K., Lechterbeck, J. (2002). Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments. *Geology* 30:463–466.
- Shackleton (1946). Geology of the country between Nanyuki and Maralal. *Geological Survey of Kenya*, Rep. 11, Nairobi.
- Shanahan, T.M., Overpeck, J.T., Anchukaitis, K.J., Beck, J.W., Cole, J.E., Dettman, D.L., Peck, J.A., Scholz, C.A., King, J.W. (2009). Atlantic forcing of persistent drought in West Africa. *Science*, **324**, 377–380.
- Sinninghe Damsté, J. S., Hopmans, E. C., Pancost, R. D., Schouten, S., Geenevasen, J. A. J. (2000). Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments. *Chemical Communications*, **17**, 1683 – 1684. DOI:10.1039/B004517I.
- Sinninghe Damsté, J.S., Ossebaar, J., Schouten, S., Verschuren, D. (2008). Altitudinal shifts in the branched tetraether lipid distribution in soil from Mt. Kilimanjaro (Tanzania): Implications for the MBT/CBT continental palaeothermometer. *Organic Geochemistry*, **39**, 1072-1076.
- Sinninghe Damsté, J. S., Ossebaar, J., Abbas, B., Schouten, S., Verschuren, D. (2009). Fluxes and distribution of tetraether lipids in an equatorial African lake: Constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings. *Geochimica et Cosmochimica Acta*, **73** (14), 4232 4249, DOI:10.1016/j.gca.2009.04.022.
- Sinninghe Damste, J.S., Ossebaar, J., Schouten, S., Verschuren, D. (2012). Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX<sub>86</sub> and MBT/CBT palaeotemperatures from an equatorial African lake. *Quaternary Science Reviews*, **50**, 43-54. https://doi.org/10.1016/j.quascirev.2012.07.001.
- Smol, J.P., Birks, H.J.B., Last, W.M., (eds.) (2001). Using biology to study long-term environmental change. In: *Tracking Environmental Change Using Lake Sediments, Volume 3: Terrestrial, Algal, and Siliceous Indicators, 1-3,* Kluwer Academic Publishers, Dordrecht, The Netherlands.
- Sojinu, O.S., Sonibare, O.O., Ekundayo, O.O., Zeng, E.Y. (2012). Assessment of organochlorine pesticides residues in higher plants from oil exploration areas of Niger Delta, Nigeria. *Science of the Total Environment*, **433**, 169 177, <u>https://doi.org/10.1016/j.scitotenv.2012.06.043</u>.
- Speck, H., (1982). Soils of the Mount Kenya area, their formation ecological, and agricultural significance. *Mountain Research and Development*, **2** (2), 201 221.
- Ssemmanda, I., Vincens, A. (1993). Végétation et climate dans le Bassin du lac Albert (Ouganda, Zaïre) depuis 13,000 ans BP. Apport de la Palynologie. C. R., Acad. Sci. Paris, **316** (2), 561 – 567.
- Ssemmanda I., Ryves D.B., Bennike O., Appleby P.G. (2005). Vegetation history in west Uganda during the last 1200 years: a sediment-based reconstruction from two crater lakes. *The Holocene*, **15**, 119 132.

- Stager, J.C., Mayewski, P.A., Meeker, L.D. (2002). Cooling cycles, Heinrich event 1, and the desiccation of Lake Victoria. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **183**, 169 - 178.
- Stager, J. C., Ryves, D., Cumming, B.F., Meeker, L.D., Beer, J. (2005). Solar variability and the levels of Lake Victoria, East Africa, during the last millennium. *Journal of Palaeolimnology*, 33, 243 - 251.
- Stager, J.C., Johnson, T.C. (2008). The Late Pleistocene desiccation of Lake Victoria and the origin of its endemic fauna. *Hydrobiologia*, **596**, 5 16.
- Stager, J., Cocquyt, C., Bonnefille, R., Weyhenmeyer, C., Bowerman, N. (2009). A late Holocene paleoclimatic history of Lake Tanganyika, East Africa. *Quaternary Research*, 72(1), 47-56. doi:10.1016/j.yqres.2009.04.003.
- Street, F.A. and Grove, A.T. (1976). Environmental and climatic implications of late Quaternary lake-level fluctuations in Africa. *Nature*, **261**, 385 390.
- Street-Perrott F.A., Perrott R.A. (1990). Abrupt climate fluctuations in the tropics: the influence of Atlantic Ocean Circulation. *Nature*, **343** (6259), 607 612.
- Street-Perrott F.A., Perrott R.A. (1993). Holocene vegetation, lake levels and climate of Africa. In: Wright HE, Kutzbach JE, Webb T III, Ruddiman WF, Street-Perrott FA, Bartlein PJ (eds) Global climates since the last glacial maximum. University of Minnesota Press, Minneapolis, 318 – 356.
- Street-Perrott, F.A., Huang, Y., Perrott, R.A., Eglinton, G., Barker, P., Khelifa, L.B., Harkness, D.D., Ivanovich, M., Olago, D.O. (1997). Impact of lower atmospheric CO<sub>2</sub> on tropical mountain ecosystems: carbon-isotope evidence. *Science*, **278**, 1422 1426.
- Street-Perrott, F.A., Ficken, K.J., Huang, Y., Eglinton, G. (2004). Late Quaternary changes in carbon cycling on Mt. Kenya, East Africa: an overview of the δ13C record in lacustrine organic matter. *Quaternary Science Reviews*, 23 (7-8), 861 – 879.
- Street-Perrott, F.A., Barker, P.A., Swain, D.L., Ficken, K.J., Wooller, M.J., Olago, D.O., Huang, Y. (2007). Late Quaternary changes in ecosystems and carbon cycling on Mt. Kenya, East Africa: a landscape-ecological perspective based on multi-proxy lake-sediment influxes. *Quaternary Science Reviews*, 26 (13-14), 1838 – 1860.
- Street-Perrott, F.A., Barker, P.A., Leng, M.J., Sloane, H.J., Wooller, M.J., Ficken, K.J. Swain, D.L. (2008). Towards an understanding of late Quaternary variations in the continental biogeochemical cycle of silicon: multi-isotope and sediment-flux data for Lake Rutundu, Mt Kenya, East Africa, since 38 ka BP. *Journal of Quaternary Science*, 23 (4), 375–380.
- Stoof-Leichsenring, K.R., Junginger, A., Olaka, L.A., Tiedemann, R., Trauth, M.H. (2011). Environmental variability in Lake Naivasha, Kenya, over the last two centuries. *Journal of Paleolimnology*, 45 (3), 353 – 367.
- Talbot, M.R., Livingston, D.A. (1989). Hydrogen index and carbon isotopes of lacustrine organic matter as lake-level indicators. *Palaeogeography, Palaeoclimatology, Palaeoecology,* **70**, 121–137.
- Talbot, M.R., Brendeland, K.I. (2001). Strontium isotopes as palaeohydrological tracers in the White Nile headwater lakes, East Africa. In: *AGU Fall Meeting Abstracts*, **1**, 05.
- Taylor, D. (1990). Late Quaternary pollen diagrams from two Ugandan mires: evidence for environmental change in the Rukiga Highlands of southwest Uganda. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, **80**, 283 - 300.
- Taylor, D., Marchant, R., Robertshaw, P. (1999). Late Glacial-Holocene history of lowland rain forest in central Africa: a record from Kabata Swamp, Ndale volcanic field, Uganda. *Journal* of Ecology, 87, 303 - 315.

Thompson, B.W. (1965). The climate of Africa. Oxford University Press, Nairobi, 132 pp.

Thompson, R., Oldfield, F. (1986). Environmental Magnetism. Springer, Dordrecht, 277 pp.

- Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Henderson, K.A., Brecher, H.H., Zagorodnov, V.S., Mashiotta, T.A., Lin, P-N., Mikhalenko, V.N., Hardy, D., Beer, J. (2002). Kilimanjaro Ice Core Records: Evidence of Holocene Climate Change in Tropical Africa. *Science*, **298** (5593), 589 – 593.
- Tierney, J. E., Russell, J. M. and Huang, Y., Sinninghe Damsté, J. S., Hopmans, E. C., Cohen, A.S. (2008). Northern Hemisphere controls on tropical southeast African Climate during the past 60,000 years. Science, 322, 252 – 255.
- Tierney, J.E., Russell, J.M. (2009). Distributions of branched GDGTs in a tropical lake system: Implications for lacustrine application of the MBT/CBT paleoproxy. *Organic Geochemistry*, 40 (9), 1032–1036.
- Tierney, J. E., Russell, J. M., Eggermont, H., Hopmans, E. C., Verschuren, D., Damsté, J. S. S. (2010). Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments, *Geochimica et Cosmochimica Acta*, **74** (17), 4902–18, DOI: 10.1016/j.gca.2010.06.002.
- Tierney, J. E., Russell, J. M., Huang, Y. (2010b). A molecular perspective on Late Quaternary climate and vegetation change in the Lake Tanganyika basin, East Africa. *Quaternary Science Reviews*, **29** (5–6), 787 800, DOI:10.1016/j.quascirev.2009.11.030.
- Tierney, J.E., Russell, J.M., Damsté, J.S.S., Huang, Y., Verschuren, D. (2011). Late Quaternary behaviour of the East African monsoon and the importance of the Congo Air Boundary. *Quaternary Science Reviews*, **30** (7-8), 798 807.
- Tierney, J. E. (2012). GDGT Thermometry: Lipid tools for reconstructing paleotemperatures. *In: Reconstructing Earth's Deep Time Climate. The Paleontological Society Papers.* **18**, 115 131.
- Tierney, J.E., Smerdon, J.E., Anchukaitis, K.J., Seager, R. (2013). Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. *Nature*, **493** (7432), 389 392.
- Tieszen, L.L., Senyimba, M.M., Imbamba, S.K., Troughton J.H., (1979). The distribution of C<sub>3</sub> and C<sub>4</sub> grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. *Oecologia*, **37** (3), 337 350.
- Trauth, M.H., Maslin, M.A., Deino, A.L., Strecker, M.R., Bergner, A.G.N., Dühnforth, M. (2007). High- and low-latitude forcing of Plio-Pleistocene East African climate and human evolution. *Journal of Human Evolution*, **53** (5), 475 – 486.
- Tyson, R.V., 1995. Sedimentary Organic Matter: Organic Facies and Palynofacies. Chapman & Hall, London.
- Veldkamp, A., Buis, E., Wijbrans, J.R., Olago, D.O., Boshoven, E.H., Marée, M., van den Berg van Saparoea, R.M. (2007). Late Cenozoic fluvial dynamics of the River Tana, Kenya, an uplift dominated record. *Quaternary Science Reviews*, 26, 2897 – 2912.
- Veldkamp, A., Schoorl, J.M., Wijbrans, J.R., Claessens, L., (2012). Mount Kenya volcanic activity and the Late Cenozoic landscape reorganisation in the upper Tana fluvial system. *Geomorphology*, 145-146, 19 – 31, doi:10.1016/j.geomorph.2011.10.026
- Verschuren, D. (2003). Lake-based climate reconstruction in Africa: progress and challenges. In Aquatic Biodiversity. 500 (1-3), 315 – 330. <u>http://doi.org/10.1007/978-94-007-1084-9\_22</u>.
- Verschuren, D. (2004). Decadal and century-scale climate variability in tropical Africa during the past 2000 years. In *Past Climate Variability through Europe and Africa*. 6, 139 – 158, <u>http://doi.org/10.1007/978-1-4020-2121-3\_8</u>.
- Verschuren, D. (2001). Reconstructing fluctuations of a shallow East African lake during the past 1800yrs from sediment stratigraphy in a submerged crater basin. *Journal of Paleolimnology*. 25, 297-311.
- Verschuren, D., Laird, K. R., Cumming, B. F. (2000). Rainfall and drought in equatorial east Africa during the past 1,100 years. *Nature*, **403** (6768), 410 414.

- Verschuren, D., Charman, D.J. (2008). Latitudinal Linkages in Late Holocene Moisture-Balance Variation. In: R.W. Battarbee & H.A. Binney (Eds.) Natural Climate Variability and Global Warming: A Holocene Perspective. Blackwell Publishing, pp 189-231.
- Verschuren, D., Damsté, J.S.S., Moernaut, J., Kristen, I., Blaauw, M., Fagot, M., Haug, G.H.,
- Members, C.P. (2009). Half-precessional dynamics of monsoon rainfall near the East African Equator. *Nature*, **462** (7273), 637 641.
- Vincens, A., Garcin, Y., Buchet, G. (2007). Influence of rainfall seasonality on African lowland vegetation during the Late Quaternary: pollen evidence from Lake Masoko, Tanzania. *Journal of Biogeography*, **34** (7), 1274 1288.
- Vincens, A. (1986). Diagramme pollinique d'un sondage Pleistocene superieur-Holocene du Lac Bogoria (Kenya). *Review of Paleobotany and Palynology*, **47** (1–2), (169–179 and 183–192).
- Wang Y-H, Yang H, Chen X, Zhang J-X, Ou J, Xie B, Huang C-C (2013). Molecular biomarkers for sources of organic matter in lacustrine sediments in a subtropical lake in China. *Journal of Environmental Pollution*, **176**, 284–291.
- Wanner, H., Solomina, O., Grosjean, M., Ritz, S.P., Jetel, M. (2011). Structure and origin of Holocene cold events. *Quaternary Science Reviews*, **30**, 3109–3123.
- Weijers, J.W.H., Schouten, S., Spaargaren, O.C. and Sinninghe Damsté, J.S. (2006). Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index. Organic Geochemistry, 37 (12) 1680 – 1693, DOI:10.1016/j.orggeochem.2006.07.018.
- Weijers, J.W.H., Schouten, S., Van den Donker, J.C., Hopmans, E.C., Sinninghe Damsté, J.S. (2007). Environmental controls on bacterial tetraether membrane lipid distribution in soils. *Geochimica et Cosmochimica Acta*, **71** (3) 703 713, DOI:10.1016/j.gca.2006.10.003.
- Weijers, J. W. H., Steinmann, P., Hopmans, E. C., Schouten, S., Sinninghe Damsté, J.S. (2011). Bacterial tetraether membrane lipids in peat and coal: Testing the MBT-CBT temperature proxy for climate reconstruction. *Organic Geochemistry*, **42** (5) 477 – 486, DOI:10.1016/j.orggeochem.2011.03.013.
- Williamson, D., Jackson, M.J., Banerjee, S.K., Marvin, J., Merdaci, O., Thouveny, N., Decobert, M., Gibert-Massault, E., Massault, M., Mazaudier, D., Taieb, M. (1999). Magnetic signatures of hydrological change in a tropical Maar-lake (Lake Massoko, Tanzania): preliminary results. *Physics and Chemistry of the Earth Part a—Solid Earth and Geodesy*, 24, 799 803.
- Woltering, M., Atahan, P., Grice, K., Heijnis, H., Taffs, K., Dodson, J. 2014. Glacial and Holocene terrestrial temperature variability in subtropical east Australia as inferred from branched GDGT distributions in a sediment core from Lake McKenzie. *Quaternary Research*, 82 (1), 132 – 145, DOI:10.1016/j.yqres.2014.02.005.
- Wooller, M., Street-Perrott, F.A., Agnew, A.D.Q. (2000). Late Quaternary fires and grassland paleoecology of Mount Kenya, East Africa: evidence from charred grass cuticles in Lake sediments. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **164**, 207 230.
- Wooller, M.J., Agnew, A.D.Q. (2002). Changes in graminoid stomatal morphology over the last glacial/interglacial transition: evidence from Mount Kenya, East Africa. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **177**, 123 136.
- Wooller, M.J., Swain, D.L., Ficken, K.J., Agnew, A.D.Q., Street-Perrott, F.A., Eglinton, G. (2003). Late Quaternary vegetation changes around Lake Rutundu, Mount Kenya, East Africa: evidence from grass cuticles, pollen and stable carbon isotopes. *Journal of Quaternary Science*, 18 (1), 3 – 15.
- WRI (2007). World Resource Institute; Department of Resource and Remote Sensing, Ministry of Environment and Natural Resources Kenya; Central Bureau of Statistics, Ministry of Planning and National Development Kenya; and International Livestock Research Institute. Nature's Benefits in Kenya, An Atlas of Ecosystems and Human Well-Being. Washington DC and Nairobi, 148pp.

- Wu, X., Dong, H., Zhang, C. L., Liu, X., Hou, W., Zhang, J., Jiang, H. (2013). Evaluation of glycerol dialkyl glycerol tetraether proxies for reconstruction of the paleo- environment on the Qinghai-Tibetan Plateau. Organic Geochemistry, 61, 45 56, DOI:10.1016/j.orggeochem.2013.06.002.
- Yang, G., Zhang, C. L., Xie, S., Chen, Z., Gao, M., Ge. Z., Yang, Z. (2013). Microbial glycerol dialkyl glycerol tetraethers from river water and soil near the Three Gorges Dam on the Yangtze River. Organic Geochemistry, 56, 40 – 50. DOI:10.1016/j.orggeochem.2012.11.014
- Zink, K. G., Vandergoes, M. J., Mangelsdorf, K., Dieffenbacher-Krall, A. C., Schwark, L. (2010). Application of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) to develop modern and past temperature estimates from New Zealand lakes. *Organic Geochemistry*, **41** (9), 1060– 1066, DOI:10.1016/j.orggeochem.2010.03.004.

# 7 APPENDIX

# A. APPENDIX

# A.1 Soil samples dataset

#### A.1.1 Nkunga area surface soils samples

| Table A-1: Percentage of detected | d minerals from XRD measurements (%) |
|-----------------------------------|--------------------------------------|
|-----------------------------------|--------------------------------------|

| Sample  | Illite/Muscov | Halloysite | Gibbsite | Hematite | Quartz | Feld-plag | Diopside |
|---------|---------------|------------|----------|----------|--------|-----------|----------|
| NK11-01 | 0             | 4          | 2        | 16       | 8      | 64        | 6        |
| NK11-02 | 0             | 7          | 2        | 18       | 8      | 54        | 11       |
| NK11-04 | 0             | 0          | 0        | 0        | 0      | 90        | 9        |
| NK11-05 | 0             | 10         | 3        | 19       | 7      | 54        | 7        |
| NK11-07 | 0             | 12         | 4        | 21       | 12     | 47        | 5        |
| NK11-13 | 0             | 0          | 0        | 17       | 0      | 71        | 12       |
| NK11-21 | 2             | 0          | 0        | 1        | 0      | 76        | 22       |
| NK11-22 | 0             | 0          | 0        | 0        | 0      | 90        | 10       |

Table A-2: Magnetic Susceptibility measurements from Nkunga area (SI)

| Sample  | Weight (g) | F1       | F3       |
|---------|------------|----------|----------|
| NK11-7  | 6.0639     | 1.25E-03 | 1.19E-03 |
| NK11-10 | 6.1628     | 6.62E-03 | 6.10E-03 |
| NK11-14 | 5.9336     | 1.03E-02 | 9.61E-03 |
| NK11-20 | 6.7948     | 1.45E-02 | 1.33E-02 |

Table A-3: Carbon and Nitrogen values from surface samples Nkunga area

| Sample  | %N   | %C    | δ <sup>15</sup> N (‰) | δ <sup>13</sup> C (‰) |
|---------|------|-------|-----------------------|-----------------------|
| NK11-1  | 0.56 | 5.84  | 6.01                  | -22.49                |
| NK11-7  | 1.29 | 11.70 | 5.00                  | -20.51                |
| NK11-22 | 0.23 | 3.23  | 2.95                  | -26.19                |
| NKS11-1 | 0.44 | 4.99  | 7.78                  | -17.10                |
| NKS11-2 | 0.30 | 3.63  | 8.08                  | -18.77                |
| NKS11-5 | 0.32 | 3.84  | 8.60                  | -18.99                |
| NKS11-6 | 0.17 | 2.37  | 10.17                 | -14.94                |
| NKS11-7 | 0.30 | 3.63  | 8.13                  | -18.73                |

#### A.1.2 Nkunga area soil profile samples

Table A-4: Mineralogy from Nkunga area soil profile from XRD measurements (%)

| Sample  | Illite/Muscov | Halloysite | Gibbsite | Magnetite | Hematite | Quartz | Feld-plag | diopside |
|---------|---------------|------------|----------|-----------|----------|--------|-----------|----------|
| NK11-23 | 0             | 18         | 9        | 11        | 31       | 17     | 13        | 0        |
| NK11-24 | 0             | 21         | 10       | 13        | 28       | 16     | 12        | 0        |
| NK11-26 | 0             | 16         | 9        | 16        | 28       | 14     | 17        | 0        |
| NK11-28 | 0             | 16         | 6        | 13        | 22       | 18     | 25        | 0        |
| NK11-30 | 0             | 18         | 7        | 8         | 33       | 17     | 17        | 0        |
| NK11-32 | 0             | 18         | 7        | 10        | 32       | 14     | 19        | 0        |
| NK11-34 | 0             | 19         | 8        | 10        | 26       | 21     | 17        | 0        |
| NK11-37 | 0             | 20         | 12       | 10        | 26       | 15     | 16        | 0        |

Table A-5: Low (F1) and High (F3) frequency Magnetic Susceptibility (SI); Carbon, Nitrogen and their respective isotopes

|            |            | Magnetic Susc | eptibility (SI) |       |             | Organic Chemistry |      |                       |                       |
|------------|------------|---------------|-----------------|-------|-------------|-------------------|------|-----------------------|-----------------------|
| Depth (cm) | weight (g) | F1            | F3              | Depth | Weight (mg) | %N                | %C   | δ <sup>15</sup> N (‰) | δ <sup>13</sup> C (‰) |
|            |            |               |                 | (cm)  |             |                   |      |                       |                       |
| 9          | 7.35       | 1.63E-02      | 1.51E-02        | 0     | 15.05       | 0.34              | 4.08 | 7.98                  | -18.71                |
| 27         | 5.88       | 1.71E-02      | 1.58E-02        | 9     | 16.60       | 0.39              | 4.43 | 8.00                  | -18.87                |
| 63         | 6.27       | 1.71E-02      | 1.58E-02        | 27    | 17.14       | 0.44              | 4.84 | 8.05                  | -19.32                |
| 81         | 5.86       | 1.83E-02      | 1.69E-02        | 45    | 15.05       | 0.40              | 4.67 | 7.77                  | -18.49                |
| 99         | 5.32       | 1.84E-02      | 1.71E-02        | 63    | 20.31       | 0.41              | 4.57 | 7.68                  | -18.80                |
| 126        | 6.58       | 1.63E-02      | 1.50E-02        | 81    | 15.79       | 0.28              | 3.44 | 9.47                  | -17.64                |
|            |            |               |                 | 99    | 18.36       | 0.35              | 4.05 | 8.30                  | -17.87                |
|            |            |               |                 | 125   | 19.55       | 0.21              | 3.21 | 9.80                  | -15.74                |

Table A-6: Inorganic geochemistry (XRF) from Nkunga soil profile (cps)

|          | -       |         |           |          |          |
|----------|---------|---------|-----------|----------|----------|
|          |         |         | Depth (cm | )        |          |
| Elements | 0       | 45      | 81        | 99       | 125      |
| Al       | 16232   | 19302   | 21662     | 20120    | 22253    |
| Ca       | 8934562 | 2662113 | 2212068   | 2536605  | 1832975  |
| Cl       | 2826    | 4325    | 4326      | 6293     | 4316     |
| Cu       | 14135   | 11552   | 11251     | 11607    | 10073    |
| Fe       | 7792233 | 9466555 | 10248762  | 10398578 | 10159762 |
| К        | 831083  | 599981  | 589201    | 599304   | 620788   |
| Mn       | 207901  | 268722  | 285035    | 267897   | 242951   |
| Nb       | 7756    | 21897   | 23127     | 23861    | 24363    |
| Ni       | 17783   | 10397   | 11896     | 10878    | 11617    |
| Р        | 7543    | 13935   | 14246     | 14231    | 12836    |
| Rb       | 9374    | 17855   | 17659     | 17223    | 17752    |
| S        | 3296    | 4196    | 2798      | 3441     | 1009     |
| Si       | 225245  | 252413  | 237839    | 233972   | 239097   |
| Sr       | 219199  | 64774   | 57679     | 60954    | 51270    |
| Ti       | 7021436 | 9428723 | 10453845  | 10915615 | 10417182 |
| Zr       | 50954   | 103298  | 109092    | 106170   | 108987   |
| Zn       | 14755   | 26903   | 23398     | 25118    | 22480    |

Table A-7: n-alkane measurements from Nkunga area soil profile (signal intensity cps)

| No. of  |          | Deptl   | n (cm)   |         |
|---------|----------|---------|----------|---------|
| Carbons | 0        | 9       | 45       | 125     |
| 12      | 0        | 0       | 0        | 0       |
| 13      | 0        | 0       | 0        | 0       |
| 14      | 0        | 292300  | 298681   | 708928  |
| 15      | 1185376  | 876927  | 456044   | 955891  |
| 16      | 1397094  | 2415467 | 2128582  | 842684  |
| 17      | 2313689  | 3491274 | 2358471  | 469811  |
| 18      | 1296332  | 2487073 | 2286616  | 1512158 |
| 19      | 806998   | 1105109 | 690128   | 922361  |
| 20      | 1864269  | 2313156 | 2937162  | 1162436 |
| 21      | 2721333  | 1772079 | 2332023  | 1337141 |
| 22      | 1274271  | 1771851 | 2600332  | 530137  |
| 23      | 3832953  | 2166312 | 3475779  | 1701244 |
| 24      | 1110692  | 800727  | 1216438  | 563630  |
| 25      | 5356088  | 3529253 | 4345325  | 1814984 |
| 26      | 1351624  | 965164  | 1350202  | 336663  |
| 27      | 11892770 | 4505438 | 5732075  | 2108223 |
| 28      | 2127752  | 761433  | 1219042  | 234692  |
| 29      | 30267175 | 7866816 | 10565830 | 2905277 |
| 30      | 2305644  | 701645  | 1324856  | 115031  |
| 31      | 33565312 | 9113444 | 16775922 | 1014338 |
| 32      | 1227779  | 358958  | 882247   | 0       |
| 33      | 8495875  | 3098104 | 7493611  | 0       |
| 34      | 0        | 0       | 0        | 0       |
| 35      | 0        | 0       | 0        | 0       |

|                   | Depth (cm) |        |       |        |  |  |  |
|-------------------|------------|--------|-------|--------|--|--|--|
| GDGT type         | 0          | 9      | 45    | 125    |  |  |  |
| brGDGT-Ic         | 51.00      | 13.49  | 7.01  | 13.13  |  |  |  |
| brGDGT-Ib         | 238.89     | 50.03  | 24.78 | 42.84  |  |  |  |
| brGDGT-I          | 531.49     | 127.86 | 70.12 | 193.16 |  |  |  |
| brGDGT-IIc        | 9.14       | 4.45   | 2.03  | 1.02   |  |  |  |
| brGDGT-Iib        | 114.29     | 28.86  | 11.15 | 7.74   |  |  |  |
| brGDGT-II         | 581.42     | 122.30 | 53.57 | 73.38  |  |  |  |
| brGDGT - IIIc     | 0.00       | 0.00   | 0.00  | 0.00   |  |  |  |
| brGDGT - IIIb     | 6.59       | 0.00   | 0.00  | 0.00   |  |  |  |
| brGDGT - III      | 106.80     | 13.95  | 8.51  | 8.77   |  |  |  |
| Crenoarchaeol VI  | 36.21      | 34.72  | 21.39 | 13.68  |  |  |  |
| Crenoarchaeol VI' | 7.33       | 8.59   | 3.89  | 2.93   |  |  |  |
| GDGT-4            | 0.00       | 0.00   | 0.00  | 0.00   |  |  |  |
| GDGT-3            | 5.37       | 0.00   | 4.10  | 3.95   |  |  |  |
| GDGT-2            | 20.73      | 6.82   | 5.04  | 4.01   |  |  |  |
| GDGT-1            | 12.64      | 4.00   | 3.87  | 2.73   |  |  |  |
| GDGT-0            | 253.42     | 11.17  | 8.86  | 4.24   |  |  |  |

# A.1.3 Sacred Lake soil profile samples

Table A-9: Mineralogy from Sacred Lake soil profile from XRD measurements (%)

|         |               |            |          | Minerals  | 6        |        |           |          |
|---------|---------------|------------|----------|-----------|----------|--------|-----------|----------|
| Sample  | Illite/Muscov | Halloysite | Gibbsite | Magnetite | Hematite | Quartz | Feld-plag | Diopside |
| SL11-02 | 0             | 4          | 3        | 0         | 0        | 6      | 87        | 0        |
| SL11-03 | 0             | 1          | 4        | 0         | 0        | 9      | 85        | 0        |
| SL11-05 | 1             | 2          | 4        | 0         | 0        | 8      | 85        | 0        |
| SL11-08 | 2             | 1          | 4        | 0         | 0        | 5      | 87        | 0        |
| SL11-11 | 1             | 1          | 3        | 0         | 0        | 6      | 88        | 0        |
| SL11-14 | 2             | 1          | 4        | 0         | 0        | 4      | 90        | 0        |
| SL11-17 | 1             | 0          | 1        | 0         | 0        | 1      | 97        | 0        |
| SL11-18 | 1             | 0          | 1        | 0         | 0        | 1      | 97        | 0        |
| SL11-20 | 6             | 0          | 2        | 0         | 0        | 8      | 84        | 0        |
| SL11-22 | 3             | 1          | 2        | 0         | 0        | 9      | 84        | 0        |
| SL11-24 | 1             | 1          | 2        | 0         | 0        | 6      | 90        | 0        |
| SL11-25 | 1             | 1          | 3        | 0         | 0        | 4      | 91        | 0        |
| SL11-29 | 3             | 3          | 18       | 1         | 4        | 24     | 48        | 0        |
| SL11-34 | 1             | 2          | 3        | 0         | 0        | 30     | 64        | 0        |

Table A-10: Inorganic geochemistry (XRF) from Sacred Lake soil profile (cps)

|          |         |         |         | D (1)     | ``      |         |          |
|----------|---------|---------|---------|-----------|---------|---------|----------|
|          |         |         |         | Depth (ci | n)      |         |          |
| Elements | 8       | 32      | 80      | 136       | 168     | 192     | 224      |
| Al       | 27517   | 26913   | 29226   | 32724     | 33333   | 33778   | 31794    |
| Ca       | 2396996 | 2407760 | 1066624 | 672566    | 297217  | 332848  | 161071   |
| Cl       | 1234    | 1474    | 899     | 1         | 735     | 601     | 3100     |
| Cu       | 6621    | 6819    | 4589    | 2738      | 4555    | 4391    | 6142     |
| Fe       | 6507488 | 6549229 | 6557148 | 4507567   | 7336953 | 7296637 | 10749736 |
| K        | 1951397 | 1960266 | 2134799 | 3294896   | 1762321 | 1900783 | 859372   |
| Mn       | 314438  | 322801  | 276669  | 179223    | 216423  | 242975  | 294974   |
| Nb       | 63244   | 63645   | 69326   | 65399     | 68485   | 66538   | 52700    |
| Ni       | 4225    | 4017    | 3766    | 149       | 4500    | 4280    | 9568     |
| Р        | 9062    | 8492    | 7191    | 1407      | 3118    | 3483    | 4138     |
| Rb       | 26773   | 26675   | 26775   | 19948     | 23675   | 21541   | 17756    |
| S        | 9870    | 9801    | 4631    | 1198      | 5153    | 4603    | 1702     |
| Si       | 195187  | 196135  | 204862  | 272364    | 214239  | 211617  | 158114   |
| Sr       | 70874   | 72071   | 43393   | 53023     | 23470   | 18176   | 10922    |
| Ti       | 3216024 | 3223741 | 2999999 | 1402808   | 3567712 | 3603857 | 7578433  |
| Zr       | 283883  | 283688  | 317338  | 320871    | 299067  | 310410  | 228252   |
| Zn       | 39248   | 39769   | 31820   | 38803     | 31386   | 25205   | 19667    |

Table A-11: Low (F1) and High (F3) frequency Magnetic Susceptibility (SI); Carbon, Nitrogen and their respective isotopes

|       |        | Mag<br>susceptib | netic<br>oility (SI) |       | Organic Chemistry |        |                       |                       |
|-------|--------|------------------|----------------------|-------|-------------------|--------|-----------------------|-----------------------|
| Depth | Weight | F1               | F3                   | Depth | %N                | %C     | δ <sup>15</sup> N (%) | δ <sup>13</sup> C (‰) |
| (cm)  | (g)    |                  |                      | (cm)  |                   |        |                       |                       |
| 0     | 4.29   | 3.14E-03         | 2.83E-03             | 8     | 5.72              | -22.12 | 0.82                  | 8.31                  |
| 16    | 6.04   | 5.85E-03         | 5.30E-03             | 16    | 6.09              | -21.90 | 0.79                  | 7.17                  |
| 32    | 7.15   | 6.42E-03         | 5.82E-03             | 32    | 6.70              | -20.34 | 0.62                  | 5.44                  |
| 56    | 6.85   | 6.86E-03         | 6.19E-03             | 56    | 7.36              | -17.05 | 0.42                  | 4.13                  |
| 80    | 7.56   | 6.62E-03         | 5.97E-03             | 80    | 7.04              | -17.78 | 0.39                  | 4.00                  |
| 136   | 7.46   | 6.92E-03         | 6.63E-03             | 104   | 6.54              | -18.56 | 0.31                  | 3.53                  |
| 144   | 7.83   | 7.98E-03         | 7.67E-03             | 128   | 5.02              | -19.38 | 0.08                  | 0.95                  |
| 160   | 8.06   | 7.23E-03         | 6.64E-03             | 136   | 3.97              | -19.61 | 0.06                  | 0.58                  |
| 176   | 7.82   | 9.20E-03         | 8.34E-03             | 152   | 4.51              | -19.12 | 0.14                  | 1.36                  |
| 192   | 7.75   | 7.92E-03         | 7.24E-03             | 168   | 5.21              | -19.02 | 0.18                  | 2.01                  |
| 200   | 3.73   | 7.44E-03         | 6.84E-03             | 184   | 5.41              | -29.66 | 0.15                  | 1.66                  |
| 224   | 5.68   | 1.42E-02         | 1.28E-02             | 192   | 5.03              | -19.34 | 0.16                  | 1.90                  |
|       |        |                  |                      | 224   | 5.53              | -18.73 | 0.18                  | 1.95                  |

Table A-12: n-alkane measurements from Sacred Lake profile (signal intensity cps)

| No. of  | Depth (cm) |         |         |          |  |  |  |  |
|---------|------------|---------|---------|----------|--|--|--|--|
| carbons | 8          | 104     | 224     | 0        |  |  |  |  |
| 12      | 0          | 0       | 0       | 0        |  |  |  |  |
| 13      | 0          | 0       | 0       | 0        |  |  |  |  |
| 14      | 504085     | 261600  | 0       | 0        |  |  |  |  |
| 15      | 909446     | 193899  | 0       | 365898   |  |  |  |  |
| 16      | 3359904    | 684844  | 423190  | 1125273  |  |  |  |  |
| 17      | 3698789    | 855161  | 972841  | 1005778  |  |  |  |  |
| 18      | 3952082    | 1193108 | 1294058 | 1207937  |  |  |  |  |
| 19      | 1385082    | 391867  | 251503  | 551074   |  |  |  |  |
| 20      | 2768238    | 1229621 | 885599  | 1010614  |  |  |  |  |
| 21      | 2007620    | 1361912 | 316100  | 2435840  |  |  |  |  |
| 22      | 1403377    | 799534  | 540426  | 914531   |  |  |  |  |
| 23      | 3141239    | 2298898 | 317819  | 8444753  |  |  |  |  |
| 24      | 1045406    | 837248  | 115363  | 753681   |  |  |  |  |
| 25      | 3044438    | 2708968 | 357488  | 4540114  |  |  |  |  |
| 26      | 1004545    | 812944  | 136045  | 1212641  |  |  |  |  |
| 27      | 5212695    | 4310212 | 917724  | 8530503  |  |  |  |  |
| 28      | 1207437    | 731250  | 165184  | 1675549  |  |  |  |  |
| 29      | 20984670   | 7089868 | 1812641 | 18334037 |  |  |  |  |
| 30      | 1011938    | 377275  | 76417   | 1976071  |  |  |  |  |
| 31      | 9144525    | 5099612 | 1067713 | 17078263 |  |  |  |  |
| 32      | 290983     | 108841  | 34231   | 1293177  |  |  |  |  |
| 33      | 1737469    | 1046328 | 146908  | 7201764  |  |  |  |  |
| 34      | 0          | 0       | 0       | 0        |  |  |  |  |
| 35      | 0          | 0       | 0       | 0        |  |  |  |  |

Table A-13: GDGT measurements from Sacred Lake soil profile (µg)

|                   |        | Depth (cm) |        |        |  |  |  |  |  |  |
|-------------------|--------|------------|--------|--------|--|--|--|--|--|--|
| GDGT type         | 8      | 104        | 224    | 0      |  |  |  |  |  |  |
| brGDGT-Ic         | 61.43  | 23.93      | 8.52   | 38.77  |  |  |  |  |  |  |
| brGDGT-Ib         | 222.89 | 56.62      | 17.91  | 249.32 |  |  |  |  |  |  |
| brGDGT-I          | 344.57 | 201.28     | 150.11 | 311.98 |  |  |  |  |  |  |
| brGDGT-IIc        | 9.48   | 5.33       | 3.36   | 17.11  |  |  |  |  |  |  |
| brGDGT-IIb        | 109.97 | 22.55      | 1.99   | 220.95 |  |  |  |  |  |  |
| brGDGT-II         | 400.73 | 102.65     | 21.64  | 610.90 |  |  |  |  |  |  |
| brGDGT - IIIc     | 0.00   | 1.86       | 0.00   | 0.00   |  |  |  |  |  |  |
| brGDGT - IIIb     | 0.00   | 1.77       | 0.00   | 29.10  |  |  |  |  |  |  |
| brGDGT - III      | 97.70  | 19.43      | 6.10   | 206.24 |  |  |  |  |  |  |
| Crenoarchaeol VI  | 35.57  | 7.16       | 1.98   | 61.35  |  |  |  |  |  |  |
| Crenoarchaeol VI' | 6.14   | 1.19       | 0.08   | 8.68   |  |  |  |  |  |  |
| GDGT-4            | 0.00   | 0.00       | 0.00   | 0.00   |  |  |  |  |  |  |
| GDGT-3            | 0.00   | 16.40      | 8.81   | 0.00   |  |  |  |  |  |  |
| GDGT-2            | 13.51  | 25.68      | 10.44  | 0.00   |  |  |  |  |  |  |

| GDGT-1 | 0.00 | 29.88 | 8.29 | 0.00  |
|--------|------|-------|------|-------|
| GDGT-0 | 8.78 | 33.68 | 8.94 | 11.23 |

## A.2 Sediment dataset

#### A.2.1 Lake Nkunga sediment measurements

Table A-14: Mineralogy XRD measurements (%)

| Depth<br>(cm) | Chlorite | Illite/Muscov | Halloysite | Gibbsite | Magnetite | Hematite | Quartz | Feld-<br>plag | diopside |
|---------------|----------|---------------|------------|----------|-----------|----------|--------|---------------|----------|
| 1             | 0        | 2             | 16         | 1        | 0         | 9        | 9      | 62            | 0        |
| 13            | 0        | 0             | 18         | 2        | 0         | 8        | 10     | 54            | 8        |
| 25            | 0        | 1             | 24         | 1        | 0         | 9        | 7      | 51            | 7        |
| 37            | 0        | 0             | 12         | 1        | 0         | 7        | 5      | 69            | 6        |
| 44            | 0        | 0             | 21         | 3        | 0         | 7        | 9      | 48            | 12       |
| 59            | 0        | 1             | 22         | 2        | 0         | 8        | 5      | 58            | 3        |
| 63            | 0        | 0             | 24         | 2        | 0         | 9        | 11     | 47            | 7        |
| 71            | 0        | 0             | 18         | 2        | 0         | 7        | 9      | 56            | 8        |
| 77            | 0        | 1             | 17         | 2        | 0         | 7        | 4      | 62            | 7        |
| 86            | 0        | 1             | 12         | 2        | 2         | 4        | 6      | 67            | 6        |

Table A-15: Low (F1) and High (F3) frequency Magnetic Susceptibility (SI); Carbon, Nitrogen and their respective isotopes

|       | Magnetic Susceptibility (SI) |          |          |       |                       | rganic Chemis         | try Parameter |      |
|-------|------------------------------|----------|----------|-------|-----------------------|-----------------------|---------------|------|
| Depth | wt sample                    | F1       | F3       | Depth | δ <sup>15</sup> N (‰) | δ <sup>13</sup> C (‰) | %N            | %C   |
| (cm)  | (g)                          |          |          | (cm)  | × ´                   |                       |               |      |
| 1     | 0.4284                       | 7.47E-05 | 7.16E-05 | 1     | 4.77                  | -18.11                | 0.57          | 7.11 |
| 2     | 0.4897                       | 1.15E-04 | 1.11E-04 | 2     | 5.55                  | -18.19                | 0.38          | 4.65 |
| 3     | 0.5043                       | 1.64E-04 | 1.58E-04 | 3     | 6.03                  | -18.22                | 0.37          | 4.8  |
| 4     | 0.4377                       | 1.27E-04 | 1.22E-04 | 4     | 5.47                  | -18.05                | 0.41          | 5.02 |
| 5     | 0.5727                       | 1.77E-04 | 1.71E-04 | 5     | 5.01                  | -18.26                | 0.38          | 4.62 |
| 6     | 0.4676                       | 1.35E-04 | 1.30E-04 | 6     | 5.66                  | -18.24                | 0.6           | 4.57 |
| 7     | 0.4292                       | 1.14E-04 | 1.11E-04 | 7     | 5.29                  | -18.33                | 0.41          | 5.16 |
| 8     | 0.5757                       | 1.61E-04 | 1.56E-04 | 8     | 5.1                   | -18.36                | 0.38          | 4.64 |
| 9     | 0.5225                       | 1.15E-04 | 1.12E-04 | 9     | 6.2                   | -18.17                | 0.41          | 4.97 |
| 10    | 0.504                        | 1.17E-04 | 1.13E-04 | 10    | 5.85                  | -18.2                 | 0.39          | 4.66 |
| 11    | 0.5213                       | 1.63E-04 | 1.57E-04 | 11    | 5.98                  | -18.36                | 0.4           | 4.96 |
| 12    | 0.5201                       | 1.42E-04 | 1.37E-04 | 12    | 5.46                  | -18.47                | 0.4           | 4.86 |
| 13    | 0.4689                       | 2.84E-04 | 2.67E-04 | 13    | 6.22                  | -17.94                | 0.42          | 4.98 |
| 14    | 0.6348                       | 1.62E-04 | 1.58E-04 | 14    | 5.59                  | -24.28                | 0.45          | 5.43 |
| 15    | 0.6163                       | 1.64E-04 | 1.60E-04 | 15    | 6.07                  | -18.23                | 0.44          | 5.3  |
| 16    | 0.5183                       | 1.45E-04 | 1.39E-04 | 16    | 5.56                  | -18.31                | 0.48          | 5.74 |
| 17    | 0.5654                       | 1.56E-04 | 1.51E-04 | 17    | 5.71                  | -18.45                | 0.49          | 5.97 |
| 18    | 0.4781                       | 1.06E-04 | 1.03E-04 | 18    | 5.75                  | -18.64                | 0.51          | 6.28 |
| 19    | 0.5351                       | 1.57E-04 | 1.52E-04 | 19    | 6.26                  | -18.15                | 0.5           | 6.06 |
| 20    | 0.5513                       | 1.72E-04 | 1.67E-04 | 20    | 6.9                   | -18.51                | 0.51          | 6.22 |
| 21    | 0.4544                       | 1.50E-04 | 1.44E-04 | 21    | 5.73                  | -18.62                | 0.48          | 5.91 |
| 22    | 0.5028                       | 1.46E-04 | 1.41E-04 | 22    | 6.92                  | -18.78                | 0.43          | 5.17 |
| 23    | 0.6633                       | 2.18E-04 | 2.10E-04 | 23    | 6.55                  | -18.63                | 0.48          | 5.85 |
| 24    | 0.5201                       | 1.68E-04 | 1.62E-04 | 24    | 5.9                   | -18.76                | 0.41          | 4.95 |
| 25    | 0.6738                       | 2.33E-04 | 2.25E-04 | 25    | 6.9                   | -18.84                | 0.47          | 5.71 |
| 26    | 0.5049                       | 1.61E-04 | 1.56E-04 | 26    | 5.2                   | -18.54                | 0.49          | 5.95 |
| 27    | 0.4349                       | 1.39E-04 | 1.34E-04 | 27    | 6.45                  | -18.36                | 0.49          | 6.05 |
| 28    | 0.5382                       | 1.77E-04 | 1.71E-04 | 28    | 5.31                  | -18.42                | 0.5           | 6.21 |
| 29    | 0.5109                       | 1.69E-04 | 1.64E-04 | 29    | 5.74                  | -18.44                | 0.52          | 6.37 |
| 30    | 0.5681                       | 1.78E-04 | 1.73E-04 | 30    | 5.57                  | -18.5                 | 0.51          | 6.36 |
| 31    | 0.5451                       | 1.80E-04 | 1.74E-04 | 31    | 5.75                  | -18.2                 | 0.52          | 6.33 |
| 32    | 0.5968                       | 2.11E-04 | 2.05E-04 | 32    | 6.08                  | -18.48                | 0.47          | 5.89 |
| 33    | 0.5422                       | 1.78E-04 | 1.72E-04 | 33    | 5.41                  | -18.44                | 0.48          | 5.95 |
| 34    | 0.587                        | 2.24E-04 | 2.14E-04 | 34    | 5.76                  | -18.29                | 0.5           | 6.11 |
| 35    | 0.4872                       | 1.52E-04 | 1.47E-04 | 35    | 5.27                  | -17.69                | 0.61          | 7.83 |
| 36    | 0.4375                       | 1.50E-04 | 1.45E-04 | 36    | 5                     | -17.72                | 0.61          | 7.86 |
| 37    | 0.5298                       | 1.51E-04 | 1.46E-04 | 37    | 5.06                  | -18.42                | 0.53          | 6.65 |
| 38    | 0.5524                       | 1.62E-04 | 1.57E-04 | 38    | 6.06                  | -18.75                | 0.52          | 6.39 |
| 39    | 0.5109                       | 1.59E-04 | 1.53E-04 | 39    | 5.58                  | -19.08                | 0.57          | 6.95 |
| 40    | 0.5058                       | 1.75E-04 | 1.70E-04 | 40    | 5.6                   | -19.18                | 0.5           | 6.07 |
| 41    | 0.5801                       | 2.07E-04 | 2.01E-04 | 41    | 6.53                  | -19.35                | 0.47          | 5.69 |
| 42    | 0.6577                       | 2.02E-04 | 1.97E-04 | 42    | 5.94                  | -19.56                | 0.49          | 6.01 |

| 43 | 0.5052 | 1.64E-04             | 1.60E-04             | 43 | 5.66 | -19.34 | 0.5  | 6.26 |
|----|--------|----------------------|----------------------|----|------|--------|------|------|
| 44 | 0.4644 | 1.39E-04             | 1.37E-04             | 44 | 5.73 | -19.24 | 0.5  | 6.02 |
| 45 | 0.433  | 1.90E-04             | 1.81E-04             | 45 | 5.66 | -19.34 | 0.5  | 6.1  |
| 46 | 0.5302 | 1.78E-04             | 1.71E-04             | 46 | 6.43 | -19.54 | 0.34 | 4.25 |
| 47 | 0.5035 | 1.49E-04             | 1.44E-04             | 47 | 6.11 | -19.16 | 0.41 | 4.94 |
| 48 | 0.4873 | 1.54E-04             | 1.44E-04             | 48 | 6    | -19.06 | 0.41 | 5.3  |
|    |        |                      |                      | -  |      |        |      |      |
| 49 | 0.4941 | 1.76E-04             | 1.68E-04             | 49 | 6.3  | -19.12 | 0.38 | 4.74 |
| 50 | 0.5041 | 1.95E-04             | 1.86E-04             | 50 | 6.55 | -19.57 | 0.39 | 4.89 |
| 51 | 0.4788 | 1.95E-04             | 1.87E-04             | 51 | 7.16 | -19.21 | 0.38 | 4.65 |
| 52 | 0.4369 | 1.85E-04             | 1.78E-04             | 52 | 6.13 | -21.71 | 0.36 | 4.53 |
| 53 | 0.6012 | 2.46E-04             | 2.38E-04             | 53 | 6.63 | -19.17 | 0.36 | 4.45 |
| 54 | 0.6158 | 2.60E-04             | 2.49E-04             | 54 | 6.13 | -19.26 | 0.36 | 4.48 |
| 55 | 0.4735 | 1.87E-04             | 1.79E-04             | 55 | 6.06 | -19.3  | 0.36 | 4.42 |
| 56 | 0.6215 | 2.68E-04             | 2.59E-04             | 56 | 6.54 | -19.45 | 0.36 | 4.35 |
| 57 | 0.4958 | 1.95E-04             | 1.87E-04             | 57 | 6.11 | -19.44 | 0.36 | 4.4  |
| 58 | 0.5347 | 2.14E-04             | 2.07E-04             | 58 | 6.01 | -19.73 | 0.3  | 3.75 |
| 59 | 0.3347 | 2.14E-04<br>3.17E-04 | 2.07E-04<br>2.89E-04 | 59 |      | -19.73 | 0.32 | 3.91 |
|    |        |                      |                      |    |      |        |      |      |
| 60 | 0.4794 | 1.87E-04             | 1.81E-04             | 60 | 6.16 | -19.71 | 0.31 | 4.02 |
| 61 | 0.5015 | 1.98E-04             | 1.91E-04             | 61 | 7.22 | -19.74 | 0.32 | 3.95 |
| 62 | 0.5388 | 2.06E-04             | 1.98E-04             | 62 | 6.94 | -19.81 | 0.3  | 3.67 |
| 63 | 0.53   | 2.11E-04             | 2.07E-04             | 63 | 6.35 | -19.68 | 0.28 | 3.38 |
| 64 | 0.5342 | 2.13E-04             | 2.08E-04             | 64 | 6.58 | -19.62 | 0.27 | 3.28 |
| 65 | 0.5271 | 2.14E-04             | 2.05E-04             | 65 | 7.04 | -19.39 | 0.23 | 2.72 |
| 66 | 0.4923 | 2.38E-04             | 2.29E-04             | 66 | 7.23 | -19.32 | 0.19 | 2.17 |
| 67 | 0.4981 | 2.44E-04             | 2.36E-04             | 67 | 6.98 | -19.57 | 0.2  | 2.5  |
| 68 | 0.6458 | 3.22E-04             | 3.11E-04             | 68 | 7.14 | -19.71 | 0.22 | 2.54 |
| 69 | 0.6045 | 2.95E-04             | 2.85E-04             | 69 | 6.69 | -19.61 | 0.2  | 2.42 |
| 70 | 0.3141 | 1.48E-04             | 1.44E-04             | 70 | 7.69 | -19.84 | 0.23 | 2.42 |
| 70 | 0.6128 | 2.79E-04             | 2.70E-04             | 70 | 7.96 | -19.66 | 0.23 | 2.72 |
|    |        |                      |                      |    |      |        |      |      |
| 72 | 0.4545 | 2.07E-04             | 2.00E-04             | 72 | 6.39 | -19.97 | 0.24 | 2.93 |
| 73 | 0.5224 | 2.57E-04             | 2.53E-04             | 73 | 7.27 | -19.96 | 0.24 | 2.87 |
| 74 | 0.5486 | 2.60E-04             | 2.51E-04             | 74 | 7.48 | -19.56 | 0.24 | 2.8  |
| 75 | 0.5115 | 2.34E-04             | 2.27E-04             | 75 | 7.01 | -19.85 | 0.24 | 2.91 |
| 76 | 0.5087 | 2.80E-04             | 2.67E-04             | 76 | 7.77 | -20.46 | 0.25 | 3.07 |
| 77 | 0.4678 | 2.49E-04             | 2.35E-04             | 77 | 8.01 | -20.93 | 0.24 | 3.22 |
| 78 | 0.4728 | 2.80E-04             | 2.69E-04             | 78 | 7.31 | -21.62 | 0.19 | 2.74 |
| 79 | 0.4663 | 2.81E-04             | 2.70E-04             | 79 | 7.94 | -19.34 | 0.13 | 1.61 |
| 80 | 0.4484 | 2.73E-04             | 2.60E-04             | 80 | 6.79 | -18.92 | 0.12 | 1.42 |
| 81 | 0.439  | 2.67E-04             | 2.62E-04             | 81 | 6.26 | -18.68 | 0.12 | 1.4  |
| 82 | 0.3535 | 2.66E-04             | 2.59E-04             | 82 | 6.51 | -18.89 | 0.12 | 1.41 |
| 83 | 0.3335 | 2.00E-04<br>2.48E-04 | 2.39E-04<br>2.41E-04 | 83 | 5.91 | -19.45 | 0.12 | 1.55 |
| 84 | 0.4200 | 2.48E-04<br>2.43E-04 | 2.41E-04<br>2.35E-04 | 84 | 6.72 | -19.43 | 0.12 | 1.33 |
| -  |        |                      |                      | -  |      |        |      |      |
| 85 | 0.533  | 4.27E-04             | 4.12E-04             | 85 | 6.91 | -18.42 | 0.11 | 1.43 |
| 86 | 0.4918 | 2.97E-04             | 2.87E-04             | 86 | 6.5  | -18.84 | 0.11 | 1.28 |
| 87 | 0.371  | 2.40E-04             | 2.31E-04             | 87 | 7.49 | -18.84 | 0.12 | 1.36 |
| 88 | -      | -                    | -                    | 88 | 6.36 | -18.94 | 0.12 | 1.45 |
| 89 | -      | -                    | -                    | 89 | 6.99 | -19.08 | 0.12 | 1.39 |
|    |        |                      |                      |    |      |        |      |      |

Table A-16: n – alkane measurements (signal intensity cps)

|                  |          |          |          | De       | pth (cm) |          |         |        |         |
|------------------|----------|----------|----------|----------|----------|----------|---------|--------|---------|
| No. of<br>Carbon | 5        | 15       | 25       | 35       | 42       | 46       | 55      | 75     | 85      |
| 12               | 804589   | 605751   | 646160   | 1124345  | 342257   | 649513   | 133248  | 0      | 116028  |
| 13               | 1723336  | 576710   | 554881   | 2231806  | 946582   | 1612594  | 126788  | 0      | 191253  |
| 14               | 3917126  | 1149170  | 1585877  | 4378293  | 2057883  | 4270490  | 210316  | 126290 | 359071  |
| 15               | 6765456  | 3656264  | 4722412  | 6321260  | 2507938  | 5642613  | 464703  | 378264 | 640014  |
| 16               | 10387050 | 8376053  | 8969875  | 9172830  | 3032560  | 8449744  | 801037  | 637169 | 1203547 |
| 17               | 11007812 | 10258916 | 9703319  | 9177068  | 3091814  | 8281232  | 1378640 | 647545 | 1986678 |
| 18               | 17468519 | 16439954 | 16997175 | 14885060 | 4130018  | 13534883 | 1199335 | 936083 | 4418144 |
| 19               | 9691793  | 9010377  | 7903461  | 6906260  | 2450745  | 5679798  | 645680  | 378412 | 3343952 |
| 20               | 9472439  | 8953555  | 8093546  | 6760638  | 2209041  | 5722562  | 649752  | 350559 | 3430864 |
| 21               | 9007143  | 8665872  | 6890303  | 6938915  | 2273927  | 4442212  | 563583  | 245993 | 3038963 |
| 22               | 5590255  | 5627818  | 4971314  | 4054269  | 1343583  | 3424756  | 303507  | 120505 | 2382696 |
| 23               | 11035854 | 12439767 | 8397560  | 9288523  | 2973289  | 4812367  | 477805  | 87980  | 2157743 |
| 24               | 4027420  | 3813600  | 3152993  | 2503236  | 904913   | 2073163  | 140079  | 0      | 1432048 |
| 25               | 8780436  | 9859183  | 6147286  | 5835805  | 2151549  | 3308338  | 264476  | 0      | 1257330 |
| 26               | 2955604  | 2845843  | 2116604  | 1395627  | 542373   | 1288410  | 91288   | 0      | 857833  |
| 27               | 13783679 | 13357939 | 8212792  | 7328755  | 3061149  | 3975146  | 285529  | 0      | 1301423 |
| 28               | 3149792  | 2761239  | 1956830  | 1417663  | 600225   | 761777   | 73238   | 0      | 388218  |
| 29               | 22484698 | 18075531 | 12418537 | 10351522 | 6628132  | 5863825  | 602243  | 0      | 2303532 |
| 30               | 5250332  | 3222728  | 2689755  | 1830163  | 663579   | 857928   | 100036  | 0      | 397874  |

| 31 | 65051935 | 47510948 | 35082917 | 28692243 | 15570741 | 15050814 | 1865633 | 0 | 6262428 |
|----|----------|----------|----------|----------|----------|----------|---------|---|---------|
| 32 | 3822414  | 2240205  | 2085598  | 1526343  | 684846   | 527962   | 77545   | 0 | 227451  |
| 33 | 43347157 | 26120413 | 24754311 | 17373225 | 11091069 | 7101726  | 978980  | 0 | 3278274 |
| 34 | 1113620  | 200122   | 813771   | 361481   | 0        | 0        | 0       | 0 | 0       |
| 35 | 8042362  | 1560495  | 4845781  | 1841034  | 1700152  | 743084   | 0       | 0 | 131121  |

Table A-17: GDGT measurements from Lake Nkunga sediments (µg)

|                   |         |         |         |         | Depth ( | cm)     |         |        |        |        |
|-------------------|---------|---------|---------|---------|---------|---------|---------|--------|--------|--------|
| GDGT type         | 5       | 15      | 25      | 35      | 42      | 46      | 56      | 66     | 76     | 86     |
| brGDGT-Ic         | 25.46   | 50.79   | 69.19   | 73.80   | 66.54   | 47.26   | 56.77   | 41.14  | 56.40  | 30.36  |
| brGDGT-Ib         | 181.76  | 286.61  | 389.99  | 415.26  | 418.60  | 302.10  | 367.55  | 198.79 | 238.70 | 113.26 |
| brGDGT-I          | 1527.74 | 2084.18 | 2333.16 | 2624.48 | 2560.57 | 1358.51 | 1722.62 | 720.63 | 820.00 | 209.07 |
| brGDGT-IIc        | 13.18   | 20.85   | 30.20   | 32.46   | 28.14   | 26.94   | 32.16   | 22.33  | 26.45  | 11.11  |
| brGDGT-IIb        | 83.80   | 119.52  | 201.76  | 195.51  | 226.16  | 171.46  | 196.23  | 130.35 | 163.60 | 73.11  |
| brGDGT-II         | 1217.47 | 1456.09 | 1825.20 | 2084.15 | 2166.94 | 1007.53 | 1111.31 | 666.24 | 862.24 | 221.75 |
| brGDGT - IIIc     | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   |
| brGDGT - IIIb     | 10.25   | 10.67   | 18.08   | 13.68   | 18.65   | 11.94   | 13.87   | 9.20   | 12.42  | 5.03   |
| brGDGT - III      | 245.59  | 299.02  | 372.40  | 399.04  | 415.69  | 185.41  | 204.56  | 133.83 | 179.85 | 49.41  |
| Crenoarchaeol VI  | 104.04  | 133.00  | 140.74  | 139.18  | 147.43  | 136.08  | 210.35  | 55.94  | 69.10  | 17.11  |
| Crenoarchaeol VI' | 7.73    | 11.09   | 9.62    | 10.53   | 9.28    | 10.00   | 14.72   | 4.60   | 6.44   | 1.72   |
| GDGT-4            | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00   | 0.00   | 0.00   |
| GDGT-3            | 15.04   | 23.01   | 24.57   | 26.86   | 26.59   | 17.69   | 23.27   | 9.13   | 15.39  | 3.88   |
| GDGT-2            | 43.70   | 56.21   | 72.81   | 89.20   | 91.73   | 59.05   | 77.04   | 28.65  | 38.97  | 17.43  |
| GDGT-1            | 50.06   | 56.11   | 78.16   | 90.71   | 84.97   | 45.04   | 49.93   | 27.34  | 38.37  | 16.36  |
| GDGT-0            | 248.35  | 349.21  | 491.35  | 598.18  | 449.84  | 227.08  | 200.62  | 210.13 | 285.59 | 111.42 |

## A.2.2 Sacred Lake sediment measurements

Table A-18: Mineralogy XRD measurements (%)

| Depth<br>(cm) | Chlorite | Illite/Muscov | Halloysite | Gibbsite | Magnetite | Hematite | Quartz | Feld-plag | diopside |
|---------------|----------|---------------|------------|----------|-----------|----------|--------|-----------|----------|
| 4             | 1        | 0             | 11         | 1        | 0         | 0        | 17     | 71        | 0        |
| 11            | 1        | 0             | 9          | 2        | 0         | 0        | 19     | 70        | 0        |
| 22            | 1        | 0             | 11         | 2        | 0         | 0        | 19     | 68        | 0        |
| 32            | 0        | 0             | 7          | 2        | 0         | 0        | 29     | 61        | 0        |
| 45            | 0        | 0             | 7          | 2        | 0         | 0        | 19     | 71        | 0        |
| 50            | 1        | 0             | 6          | 2        | 0         | 0        | 21     | 69        | 0        |
| 62            | 0        | 0             | 11         | 2        | 0         | 0        | 23     | 64        | 0        |

Table A-19: Low (F1) and High (F3) frequency Magnetic Susceptibility (SI); Carbon, Nitrogen and their respective isotopes

|            | Magnetic Su | sceptibility (SI) |       | (                     | Organic chemist       | ry   |       |
|------------|-------------|-------------------|-------|-----------------------|-----------------------|------|-------|
| Depth (cm) | F1          | F3                | Depth | δ <sup>15</sup> N (%) | δ <sup>13</sup> C (‰) | %N   | %С    |
|            |             |                   | (cm)  |                       |                       |      |       |
| 1          | 8.22E-07    | 1.01E-06          | 2     | 2.41                  | -24.89                | 1.42 | 16.77 |
| 2          | 1.34E-06    | 1.38E-06          | 3     | 2.3                   | -24.55                | 1.27 | 15    |
| 3          | 9.00E-07    | 8.93E-07          | 4     | 2.32                  | -24.58                | 1.11 | 13.52 |
| 4          | 1.52E-06    | 1.67E-06          | 5     | 2.69                  | -24.39                | 1.1  | 13.11 |
| 5          | 1.05E-06    | 2.58E-06          | 6     | 2.66                  | -24.34                | 1.14 | 13.56 |
| 6          | 6.31E-07    | 6.96E-07          | 7     | 3.17                  | -24.08                | 1.05 | 12.8  |
| 7          | 1.39E-06    | -8.00E-08         | 8     | 2.81                  | -26.35                | 1.07 | 12.85 |
| 8          | 1.28E-06    | 1.13E-06          | 9     | 2.71                  | -26.48                | 1.02 | 12.1  |
| 9          | 1.56E-06    | 1.14E-06          | 10    | 3.12                  | -23.75                | 0.97 | 11.76 |
| 10         | 1.29E-06    | 1.30E-06          | 11    | 3.1                   | -23.79                | 1.05 | 12.79 |
| 11         | 1.77E-06    | 1.48E-06          | 12    | 2.49                  | -24.07                | 1.07 | 13.28 |
| 12         | 1.14E-06    | 1.10E-06          | 13    | 2.07                  | -24.41                | 1.18 | 14.31 |
| 13         | 1.27E-06    | 1.06E-06          | 14    | 1.98                  | -24.6                 | 1.31 | 16.4  |
| 14         | 1.25E-06    | 9.91E-07          | 15    | 2.07                  | -24.48                | 1.3  | 16.59 |
| 15         | 7.20E-07    | 7.24E-07          | 16    | 1.88                  | -24.73                | 1.36 | 17.24 |
| 16         | 5.63E-07    | 1.48E-06          | 17    | 1.75                  | -24.69                | 1.36 | 16.83 |
| 17         | 8.04E-07    | 3.29E-06          | 18    | 2.04                  | -24.51                | 1.27 | 16.07 |
| 18         | 6.55E-07    | 2.63E-06          | 19    | 1.76                  | -24.54                | 1.29 | 16.11 |
| 19         | 5.68E-07    | 7.24E-07          | 20    | 1.76                  | -24.79                | 1.24 | 15.34 |
| 20         | 8.89E-07    | 8.48E-06          | 21    | 1.58                  | -24.41                | 1.29 | 16.33 |
| 21         | 9.84E-07    | 1.25E-06          | 22    | 1.97                  | -23.39                | 1.36 | 16.73 |

| 22 | 6.66E-07 | 8.74E-07 | 23 | 2.49 | -22.54 | 1.19 | 15.12 |
|----|----------|----------|----|------|--------|------|-------|
| 23 | 6.61E-07 | 8.44E-07 | 24 | 2.74 | -22.43 | 1.29 | 16.85 |
| 24 | 8.67E-07 | 1.01E-06 | 25 | 2.42 | -22.41 | 1.18 | 15.48 |
| 25 | 1.06E-06 | 1.37E-06 | 26 | 2.23 | -24.08 | 1.3  | 16.49 |
| 26 | 6.24E-07 | 7.85E-07 | 28 | 2.18 | -23.24 | 1.35 | 17.42 |
| 27 | 5.56E-07 | 6.14E-07 | 29 | 2.19 | -23.42 | 1.38 | 17.43 |
| 28 | 5.80E-07 | 6.02E-07 | 30 | 2.36 | -22.93 | 1.37 | 17.72 |
| 29 | 4.93E-07 | 5.93E-07 | 31 | 2.61 | -22.4  | 1.28 | 16.56 |
| 30 | 5.12E-07 | 2.89E-07 | 32 | 2.58 | -22.47 | 1.23 | 16.42 |
| 31 | 5.37E-07 | 1.47E-06 | 33 | 2.52 | -23.91 | 1.15 | 15.36 |
| 32 | 1.97E-07 | 6.52E-07 | 34 | 2.59 | -22.56 | 1.03 | 14.08 |
| 33 | 3.62E-07 | 4.67E-07 | 35 | 3.16 | -22.22 | 1.01 | 13.89 |
| 34 | 5.07E-07 | 5.12E-07 | 36 | 2.9  | -22.21 | 0.93 | 12.79 |
| 35 | 1.12E-06 | 1.29E-06 | 37 | 2.34 | -25.17 | 1.64 | 19.65 |
| 36 | 5.41E-07 | 5.97E-07 | 38 | 2.88 | -25.06 | 1.48 | 18.06 |
| 37 | 8.93E-07 | 9.29E-07 | 39 | 2.67 | -24.49 | 1.34 | 15.98 |
| 38 | 9.02E-07 | 9.19E-07 | 40 | 3.04 | -22.95 | 1.12 | 14.23 |
| 39 | 5.14E-07 | 7.12E-06 | 41 | 4.1  | -21.81 | 0.77 | 10.71 |
| 40 | 5.36E-07 | 8.94E-07 | 42 | 4.04 | -21.25 | 0.83 | 11.92 |
| 41 | 4.51E-07 | 4.31E-06 | 43 | 4.1  | -21.14 | 0.81 | 11.49 |
| 42 | 9.93E-07 | 2.69E-07 | 44 | 4.02 | -21.07 | 0.77 | 11.14 |
| 43 | 6.88E-07 | 9.85E-07 | 45 | 4.34 | -21.03 | 0.76 | 11.07 |
| 44 | 1.32E-06 | 1.17E-06 | 46 | 4.05 | -21.61 | 0.78 | 11.17 |
| 45 | 1.59E-06 | 5.57E-06 | 47 | 3.99 | -21.2  | 0.71 | 10.24 |
| 46 | 1.13E-06 | 9.99E-06 | 48 | 4.73 | -21.06 | 0.64 | 9.41  |
| 47 | 1.27E-06 | 6.28E-06 | 49 | 4.33 | -21    | 0.67 | 9.96  |
| 48 | 1.53E-06 | 1.48E-06 | 50 | 4.56 | -21.06 | 0.74 | 10.64 |
| 49 | 4.35E-07 | 1.05E-06 | 51 | 4.69 | -20.96 | 0.68 | 10.07 |
| 50 | 2.20E-06 | 2.09E-06 | 52 | 4.56 | -21.16 | 0.7  | 10.51 |
| 51 | 1.21E-06 | 1.27E-06 | 53 | 4.26 | -21.33 | 0.74 | 10.91 |
| 52 | 1.52E-06 | 1.54E-06 | 54 | 3.09 | -23.26 | 1.17 | 15.43 |
| 53 | 1.23E-06 | 1.37E-06 | 55 | 3.87 | -22.02 | 0.82 | 11.92 |
| 54 | 9.28E-07 | 6.94E-07 | 56 | 4.39 | -21.63 | 0.67 | 9.94  |
| 55 | 9.22E-07 | 8.92E-07 | 57 | 3.99 | -21.43 | 0.69 | 10.33 |
| 56 | 1.37E-06 | 3.71E-06 | 58 | 4.44 | -21.21 | 0.68 | 10    |
| 57 | 8.95E-07 | 9.29E-07 | 59 | 4.21 | -29.12 | 0.78 | 11.72 |
| 58 | 1.13E-06 | 1.10E-06 | 60 | 4.76 | -29.16 | 0.68 | 10.16 |
| 59 | 1.69E-06 | 1.52E-06 | 61 | 4.56 | -20.81 | 0.5  | 7.71  |
| 60 | 2.11E-06 | 2.09E-06 | 62 | 4.89 | -20.94 | 0.36 | 5.49  |
| 61 | 1.84E-06 | 2.02E-06 | 63 | 5    | -21.3  | 0.41 | 6.41  |
| 62 | 2.53E-06 | 2.45E-06 |    |      |        |      |       |

*Table A-20: n – alkane measurements (signal intensity cps)* 

| No. of |        |          |          |           |          | Dept     | h (cm)   |          |          |          |          |          |
|--------|--------|----------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Carbon | 2      | 7        | 16       | 22        | 27       | 34       | 41       | 45       | 46       | 50       | 52       | 54       |
| 12     | 0      | 996119   | 1021242  | 1534688   | 1816142  | 1088473  | 0        | 0        | 0        | 0        | 0        | 0        |
| 13     | 0      | 2147066  | 1043623  | 4310619   | 4379697  | 1336268  | 0        | 363210   | 0        | 0        | 0        | 0        |
| 14     | 187422 | 3448263  | 1807376  | 7983490   | 8324515  | 2320084  | 1040513  | 2226378  | 428272   | 2842633  | 485071   | 146509   |
| 15     | 280223 | 3883620  | 3865110  | 9423525   | 10771525 | 3245354  | 3477293  | 5935690  | 3501447  | 6950506  | 1470056  | 1698749  |
| 16     | 300478 | 4593799  | 6463836  | 12222112  | 16483501 | 4605578  | 7834833  | 9789077  | 10017581 | 12458569 | 3997718  | 5056222  |
| 17     | 216929 | 4157849  | 9307309  | 12181001  | 17838472 | 5756166  | 12077056 | 11682728 | 22766047 | 22413225 | 9062194  | 9287335  |
| 18     | 237339 | 6181048  | 14850901 | 16839397  | 25008824 | 10711504 | 16080118 | 16922279 | 18906022 | 18709390 | 14080266 | 14496369 |
| 19     | 67131  | 3596219  | 11799107 | 10526484  | 14546555 | 7200204  | 11443806 | 9791939  | 13117700 | 12302621 | 9678409  | 10759100 |
| 20     | 48374  | 3874214  | 12517497 | 11218020  | 14144087 | 7626674  | 11704744 | 9594782  | 11801918 | 11840479 | 10352143 | 11100496 |
| 21     | 34141  | 3498486  | 11057864 | 10770864  | 13897026 | 7475641  | 9283461  | 7480616  | 10632314 | 10180988 | 8920699  | 8705735  |
| 22     | 45360  | 2628422  | 9034266  | 8822254   | 10502179 | 6682239  | 7250975  | 5997219  | 7463106  | 7692851  | 7126273  | 6867492  |
| 23     | 41088  | 5367659  | 14047135 | 18406691  | 20823596 | 15920431 | 9774915  | 8511559  | 8937467  | 9398245  | 8904707  | 8045006  |
| 24     | 26220  | 1933887  | 6813971  | 8285855   | 9702384  | 7347635  | 5295950  | 4676988  | 5116466  | 5438980  | 5436995  | 4661839  |
| 25     | 15887  | 4578271  | 12525914 | 18916978  | 20856030 | 17081729 | 9549080  | 8593886  | 7689056  | 9088375  | 9173366  | 7128668  |
| 26     | 38672  | 1553578  | 5464441  | 8109730   | 9863680  | 7609542  | 4391333  | 4282643  | 3426032  | 4635032  | 4451704  | 3110629  |
| 27     | 108139 | 7330417  | 20455315 | 31958209  | 31939192 | 26889306 | 12678085 | 12289797 | 9348510  | 11741764 | 12923595 | 8930130  |
| 28     | 0      | 1541713  | 5121912  | 8356640   | 8922643  | 6774086  | 3462216  | 3165284  | 2375592  | 3306410  | 3385586  | 2422680  |
| 29     | 0      | 31885171 | 74046004 | 100109906 | 71971555 | 59468938 | 15786062 | 14553600 | 9857595  | 13843978 | 14902017 | 9730976  |
| 30     | 0      | 1290111  | 4766267  | 9664992   | 8231281  | 7100517  | 2587452  | 2591749  | 1459365  | 2382938  | 2397423  | 1836801  |
| 31     | 139060 | 17873897 | 57260115 | 99027086  | 86580399 | 81685899 | 25214987 | 26106956 | 12130825 | 21644013 | 25839134 | 15762517 |
| 32     | 0      | 673756   | 3536717  | 5446258   | 4430606  | 4346558  | 1694033  | 1598655  | 433603   | 1275214  | 1583135  | 949018   |
| 33     | 41674  | 7907915  | 27097909 | 47823790  | 26518999 | 38256025 | 12527345 | 13775909 | 580633   | 7346864  | 12396988 | 7286404  |
| 34     | 0      | 0        | 1309009  | 1426747   | 0        | 1283695  | 0        | 411584   | 0        | 0        | 0        | 0        |
| 35     | 0      | 0        | 3936169  | 8356484   | 0        | 8944045  | 0        | 2733922  | 0        | 0        | 0        | 0        |

| Table A-21:GDGT | measurements | from | Sacred | Lake | $(\mu g)$ |
|-----------------|--------------|------|--------|------|-----------|
|                 |              |      |        |      |           |

|              |         |         |         |         | Depth    | (cm)    |         |         |         |         |
|--------------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|
| GDGT type    | 2       | 7       | 16      | 22      | 27       | 34      | 41      | 45      | 50      | 54      |
| GDGT-Ic      | 80.83   | 76.81   | 96.15   | 108.82  | 142.33   | 99.01   | 133.18  | 100.12  | 97.47   | 113.63  |
| GDGT-Ib      | 148.10  | 134.83  | 149.26  | 154.98  | 227.72   | 155.00  | 120.82  | 95.09   | 92.46   | 105.67  |
| GDGT-I       | 7748.58 | 5443.02 | 6861.20 | 7912.91 | 10872.63 | 7035.05 | 4006.10 | 2980.21 | 2689.75 | 3144.08 |
| GDGT-IIc     | 51.97   | 37.31   | 39.88   | 39.76   | 49.28    | 35.35   | 43.90   | 52.57   | 56.67   | 65.05   |
| GDGT-IIb     | 82.01   | 59.34   | 55.04   | 59.21   | 91.74    | 63.61   | 44.81   | 41.90   | 42.80   | 48.20   |
| GDGT-II      | 3962.83 | 2493.70 | 2825.84 | 3047.07 | 4285.04  | 2775.73 | 1343.99 | 1036.16 | 884.51  | 954.03  |
| GDGT-IIIc    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 9.31    | 14.59   | 15.20   | 18.84   |
| GDGT-IIIb    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 7.09    | 9.80    | 10.64   | 10.64   |
| GDGT-III     | 574.16  | 331.79  | 355.84  | 373.34  | 544.39   | 327.40  | 171.70  | 134.50  | 113.28  | 124.84  |
| Crenarcheol  | 356.06  | 197.68  | 273.63  | 301.89  | 283.28   | 174.48  | 95.74   | 85.78   | 70.19   | 70.46   |
| Crenarcheol' | 9.69    | 7.62    | 9.21    | 9.24    | 11.64    | 8.45    | 7.19    | 5.91    | 5.35    | 5.12    |
| GDGT-4       | 0.00    | 0.00    | 0.00    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    |
| GDGT-3       | 46.53   | 34.75   | 47.91   | 58.42   | 97.65    | 72.70   | 75.40   | 66.33   | 62.11   | 70.51   |
| GDGT-2       | 139.49  | 95.71   | 133.95  | 154.78  | 233.11   | 173.10  | 153.09  | 126.91  | 118.73  | 135.44  |
| GDGT-1       | 113.87  | 69.79   | 96.23   | 137.18  | 425.23   | 183.53  | 170.44  | 151.12  | 142.29  | 157.29  |
| GDGT-0       | 661.56  | 452.36  | 664.96  | 840.56  | 1452.24  | 1207.38 | 998.85  | 843.68  | 761.80  | 809.71  |

## A.2.3 Lake Rutundu sediment measurements

Table A-22: Mineralogy XRD measurements (%)

| Depth (cm) | Illite/Muscov | Halloysite | Gibbsite | Magnetite | Hematite | Quartz | Feld-<br>plag | diopside |
|------------|---------------|------------|----------|-----------|----------|--------|---------------|----------|
| 4          | 0             | 0          | 1        | 0         | 0        | 3      | 96            | 0        |
| 12         | 0             | 0          | 2        | 0         | 0        | 3      | 95            | 0        |
| 24         | 0             | 0          | 1        | 0         | 0        | 3      | 96            | 0        |
| 32         | 0             | 0          | 1        | 0         | 0        | 4      | 95            | 0        |
| 48         | 0             | 0          | 1        | 0         | 0        | 3      | 97            | 0        |
| 60         | 0             | 0          | 0        | 0         | 0        | 3      | 96            | 0        |
| 76         | 0             | 0          | 0        | 0         | 0        | 3      | 97            | 0        |
| 92         | 0             | 0          | 0        | 0         | 0        | 3      | 97            | 0        |

Table A-23: Carbon and Nitrogen measures

| Samples  | Depth (cm) | δ <sup>15</sup> N (‰) | δ <sup>13</sup> C (‰) | %N   | %C    |
|----------|------------|-----------------------|-----------------------|------|-------|
| RC/4/10  | 4          | -1.36                 | -25.29                | 1.50 | 18.05 |
| RC-8-10  | 8          | -1.25                 | -25.44                | 1.26 | 15.70 |
| RC/10/10 | 10         | -3.77                 | -25.45                | 1.26 | 15.81 |
| RC-12-10 | 12         | -0.54                 | -24.09                | 1.33 | 15.78 |
| RC/14/10 | 14         | -4.10                 | -25.26                | 1.47 | 16.58 |
| RC-16-10 | 16         | -1.84                 | -25.33                | 1.53 | 16.16 |
| RC/18/10 | 18         | -3.92                 | -25.73                | 1.55 | 17.35 |
| RC-20-10 | 20         | -2.03                 | -25.59                | 1.57 | 16.64 |
| RC/22/10 | 22         | -3.69                 | -25.86                | 1.53 | 16.62 |
| RC-24-10 | 24         | -1.79                 | -26.27                | 1.47 | 15.44 |
| RC/26/10 | 26         | -3.60                 | -26.23                | 1.50 | 16.59 |
| RC/28/10 | 28         | -1.48                 | -26.52                | 1.41 | 15.26 |
| RC/30/10 | 30         | -2.60                 | -26.49                | 1.34 | 16.06 |
| RC-32-10 | 32         | -1.86                 | -25.85                | 1.56 | 17.21 |
| RC/34/10 | 34         | -3.40                 | -25.65                | 1.49 | 18.36 |
| RC-36-10 | 36         | -1.96                 | -24.95                | 1.33 | 15.87 |
| RC/38/10 | 38         | -3.78                 | -24.79                | 1.48 | 16.99 |
| RC-40-10 | 40         | -2.12                 | -25.08                | 1.33 | 15.53 |
| RC/42/10 | 42         | -3.19                 | -25.50                | 1.27 | 14.90 |
| RC-44-10 | 44         | -1.91                 | -25.83                | 1.39 | 15.53 |
| RC/46/10 | 46         | -2.70                 | -26.31                | 1.20 | 14.76 |
| RC/48/10 | 48         | -1.92                 | -26.42                | 1.21 | 14.15 |
| RC/49/10 | 49         | -1.45                 | -25.44                | 1.01 | 13.20 |
| RC-52-10 | 52         | -0.85                 | -25.18                | 1.03 | 13.04 |
| RC/54/10 | 54         | -2.04                 | -25.47                | 1.10 | 14.11 |
| RC-56-10 | 56         | -1.99                 | -25.77                | 1.06 | 12.96 |
| RC/58/10 | 58         | -2.30                 | -26.10                | 1.16 | 14.42 |
| RC-60-10 | 60         | -1.85                 | -26.05                | 1.25 | 15.00 |
| RC/62/10 | 62         | -2.84                 | -25.40                | 1.31 | 16.13 |

| RC-64-10         64         -1.90         -25.70         1.45         16.35           RC/66/10         66         -2.36         -26.08         1.34         16.59           RC-68-10         68         -1.35         -25.85         1.38         15.79           Rc/69/10         69         -1.29         -25.73         1.36         15.60           RC/70/10         70         -2.15         -25.57         1.33         16.02           RC-72-10         72         -0.43         -24.75         1.42         15.60           RC/74/10         74         -1.93         -24.65         1.32         15.84           RC-76-10         76         -0.74         -24.50         1.29         14.30           RC/78/10         78         -1.48         -24.73         1.29         16.73           RC-80-10         80         -0.95         -23.29         1.44         16.72           RC/82/10         82         -1.79         -24.62         1.28         16.56           RC/84/10         84         -1.18         -25.09         1.37         16.12           RC/86/10         86         -1.51         -24.97         1.36         17.69 |           |     |       |        |      |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|-------|--------|------|-------|
| RC-68-10         68         -1.35         -25.85         1.38         15.79           Rc/69/10         69         -1.29         -25.73         1.36         15.60           RC/70/10         70         -2.15         -25.57         1.33         16.02           RC-72-10         72         -0.43         -24.75         1.42         15.60           RC/74/10         74         -1.93         -24.65         1.32         15.84           RC-76-10         76         -0.74         -24.50         1.29         14.30           RC/78/10         78         -1.48         -24.73         1.29         16.73           RC-80-10         80         -0.95         -23.29         1.44         16.72           RC/82/10         82         -1.79         -24.62         1.28         16.56           RC/82/10         84         -1.18         -25.09         1.37         16.12           RC/86/10         86         -1.51         -24.97         1.36         17.69           RC/88/10         88         -1.71         -24.53         1.59         18.98           RC/90/10         90         -2.02         -24.64         1.49         18.76 | RC-64-10  | 64  | -1.90 | -25.70 | 1.45 | 16.35 |
| Rc/69/10         69         -1.29         -25.73         1.36         15.60           RC/70/10         70         -2.15         -25.57         1.33         16.02           RC-72-10         72         -0.43         -24.75         1.42         15.60           RC/74/10         74         -1.93         -24.65         1.32         15.84           RC-76-10         76         -0.74         -24.50         1.29         14.30           RC/78/10         78         -1.48         -24.73         1.29         16.73           RC-80-10         80         -0.95         -23.29         1.44         16.72           RC/82/10         82         -1.79         -24.62         1.28         16.56           RC/82/10         82         -1.79         -24.62         1.28         16.56           RC/82/10         84         -1.18         -25.09         1.37         16.12           RC/86/10         86         -1.51         -24.97         1.36         17.69           RC/88/10         88         -1.71         -24.53         1.59         18.98           RC/90/10         90         -2.02         -24.64         1.49         18.76 | RC/66/10  | 66  | -2.36 | -26.08 | 1.34 | 16.59 |
| RC/70/10         70         -2.15         -25.57         1.33         16.02           RC-72-10         72         -0.43         -24.75         1.42         15.60           RC/74/10         74         -1.93         -24.65         1.32         15.84           RC-76-10         76         -0.74         -24.50         1.29         14.30           RC/78/10         78         -1.48         -24.73         1.29         16.73           RC-80-10         80         -0.95         -23.29         1.44         16.72           RC/82/10         82         -1.79         -24.62         1.28         16.56           RC/84/10         84         -1.18         -25.09         1.37         16.12           RC/86/10         86         -1.51         -24.97         1.36         17.69           RC/86/10         86         -1.51         -24.97         1.36         17.69           RC/88/10         88         -1.71         -24.53         1.59         18.98           RC/90/10         90         -2.02         -24.64         1.49         18.76           RC-92-10         92         -2.03         -24.13         1.64         18.66 | RC-68-10  | 68  | -1.35 | -25.85 | 1.38 | 15.79 |
| RC-72-10         72         -0.43         -24.75         1.42         15.60           RC/74/10         74         -1.93         -24.65         1.32         15.84           RC-76-10         76         -0.74         -24.50         1.29         14.30           RC/78/10         78         -1.48         -24.73         1.29         16.73           RC-80-10         80         -0.95         -23.29         1.44         16.72           RC/82/10         82         -1.79         -24.62         1.28         16.56           RC/84/10         84         -1.18         -25.09         1.37         16.12           RC/86/10         86         -1.51         -24.97         1.36         17.69           RC/88/10         88         -1.71         -24.53         1.59         18.98           RC/90/10         90         -2.02         -24.64         1.49         18.76           RC-92-10         92         -2.03         -24.13         1.64         18.66           RC/96/10         94         -2.12         -24.66         1.41         18.29           RC/96/10         96         -1.55         -23.63         1.60         20.29 | Rc/69/10  | 69  | -1.29 | -25.73 | 1.36 | 15.60 |
| RC/74/10         74         -1.93         -24.65         1.32         15.84           RC-76-10         76         -0.74         -24.50         1.29         14.30           RC/78/10         78         -1.48         -24.73         1.29         16.73           RC-80-10         80         -0.95         -23.29         1.44         16.72           RC/82/10         82         -1.79         -24.62         1.28         16.56           RC/84/10         84         -1.18         -25.09         1.37         16.12           RC/86/10         86         -1.51         -24.97         1.36         17.69           RC/88/10         88         -1.71         -24.53         1.59         18.98           RC/90/10         90         -2.02         -24.64         1.49         18.76           RC-92-10         92         -2.03         -24.13         1.64         18.69           RC/96/10         94         -2.12         -24.66         1.41         18.29           RC/96/10         96         -1.55         -23.63         1.60         20.29           RC/98/10         98         -1.57         -24.11         1.59         20.02 | RC/70/10  | 70  | -2.15 | -25.57 | 1.33 | 16.02 |
| RC-76-10         76         -0.74         -24.50         1.29         14.30           RC/78/10         78         -1.48         -24.73         1.29         16.73           RC-80-10         80         -0.95         -23.29         1.44         16.72           RC/82/10         82         -1.79         -24.62         1.28         16.56           RC/84/10         84         -1.18         -25.09         1.37         16.12           RC/86/10         86         -1.51         -24.97         1.36         17.69           RC/88/10         88         -1.71         -24.53         1.59         18.98           RC/90/10         90         -2.02         -24.64         1.49         18.76           RC-92-10         92         -2.03         -24.13         1.64         18.66           RC/94/10         94         -2.12         -24.66         1.41         18.29           RC/96/10         96         -1.55         -23.63         1.60         20.29           RC/96/10         98         -1.57         -24.11         1.59         20.02           RC/98/10         98         -1.57         -24.11         1.59         20.02 | RC-72-10  | 72  | -0.43 | -24.75 | 1.42 | 15.60 |
| RC/78/10         78         -1.48         -24.73         1.29         16.73           RC-80-10         80         -0.95         -23.29         1.44         16.72           RC/82/10         82         -1.79         -24.62         1.28         16.56           RC/84/10         84         -1.18         -25.09         1.37         16.12           RC/86/10         86         -1.51         -24.97         1.36         17.69           RC/88/10         88         -1.71         -24.53         1.59         18.98           RC/90/10         90         -2.02         -24.64         1.49         18.76           RC-92-10         92         -2.03         -24.13         1.64         18.66           RC/94/10         94         -2.12         -24.66         1.41         18.29           RC/96/10         96         -1.55         -23.63         1.60         20.29           RC/98/10         98         -1.57         -24.11         1.59         20.02           RC/99/10         99         -2.18         -24.56         1.52         19.07                                                                                       | RC/74/10  | 74  | -1.93 | -24.65 | 1.32 | 15.84 |
| RC-80-10         80         -0.95         -23.29         1.44         16.72           RC/82/10         82         -1.79         -24.62         1.28         16.56           RC/84/10         84         -1.18         -25.09         1.37         16.12           RC/86/10         86         -1.51         -24.97         1.36         17.69           RC/88/10         88         -1.71         -24.53         1.59         18.98           RC/90/10         90         -2.02         -24.64         1.49         18.76           RC-92-10         92         -2.03         -24.13         1.64         18.66           RC/94/10         94         -2.12         -24.66         1.41         18.29           RC/96/10         96         -1.55         -23.63         1.60         20.29           RC/98/10         98         -1.57         -24.11         1.59         20.02           RC/99/10         99         -2.18         -24.56         1.52         19.07                                                                                                                                                                             | RC-76-10  | 76  | -0.74 | -24.50 | 1.29 | 14.30 |
| RC/82/10         82         -1.79         -24.62         1.28         16.56           RC/84/10         84         -1.18         -25.09         1.37         16.12           RC/86/10         86         -1.51         -24.97         1.36         17.69           RC/88/10         88         -1.71         -24.53         1.59         18.98           RC/90/10         90         -2.02         -24.64         1.49         18.76           RC-92-10         92         -2.03         -24.13         1.64         18.66           RC/94/10         94         -2.12         -24.66         1.41         18.29           RC/96/10         96         -1.55         -23.63         1.60         20.29           RC/98/10         98         -1.57         -24.11         1.59         20.02           RC/99/10         99         -2.18         -24.56         1.52         19.07                                                                                                                                                                                                                                                                   | RC/78/10  | 78  | -1.48 | -24.73 | 1.29 | 16.73 |
| RC/84/10         84         -1.18         -25.09         1.37         16.12           RC/86/10         86         -1.51         -24.97         1.36         17.69           RC/88/10         88         -1.71         -24.53         1.59         18.98           RC/90/10         90         -2.02         -24.64         1.49         18.76           RC-92-10         92         -2.03         -24.13         1.64         18.66           RC/94/10         94         -2.12         -24.66         1.41         18.29           RC/96/10         96         -1.55         -23.63         1.60         20.29           RC/98/10         98         -1.57         -24.11         1.59         20.02           RC/99/10         99         -2.18         -24.56         1.52         19.07                                                                                                                                                                                                                                                                                                                                                         | RC-80-10  | 80  | -0.95 | -23.29 | 1.44 | 16.72 |
| RC/86/10         86         -1.51         -24.97         1.36         17.69           RC/88/10         88         -1.71         -24.53         1.59         18.98           RC/90/10         90         -2.02         -24.64         1.49         18.76           RC-92-10         92         -2.03         -24.13         1.64         18.66           RC/94/10         94         -2.12         -24.66         1.41         18.29           RC/96/10         96         -1.55         -23.63         1.60         20.29           RC/98/10         98         -1.57         -24.11         1.59         20.02           RC/99/10         99         -2.18         -24.56         1.52         19.07                                                                                                                                                                                                                                                                                                                                                                                                                                               | RC/82/10  | 82  | -1.79 | -24.62 | 1.28 | 16.56 |
| RC/88/10         88         -1.71         -24.53         1.59         18.98           RC/90/10         90         -2.02         -24.64         1.49         18.76           RC-92-10         92         -2.03         -24.13         1.64         18.66           RC/94/10         94         -2.12         -24.66         1.41         18.29           RC/96/10         96         -1.55         -23.63         1.60         20.29           RC/98/10         98         -1.57         -24.11         1.59         20.02           RC/99/10         99         -2.18         -24.56         1.52         19.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RC/84/10  | 84  | -1.18 | -25.09 | 1.37 | 16.12 |
| RC/90/10         90         -2.02         -24.64         1.49         18.76           RC-92-10         92         -2.03         -24.13         1.64         18.66           RC/94/10         94         -2.12         -24.66         1.41         18.29           RC/96/10         96         -1.55         -23.63         1.60         20.29           RC/98/10         98         -1.57         -24.11         1.59         20.02           RC/99/10         99         -2.18         -24.56         1.52         19.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RC/86/10  | 86  | -1.51 | -24.97 | 1.36 | 17.69 |
| RC-92-10         92         -2.03         -24.13         1.64         18.66           RC/94/10         94         -2.12         -24.66         1.41         18.29           RC/96/10         96         -1.55         -23.63         1.60         20.29           RC/98/10         98         -1.57         -24.11         1.59         20.02           RC/99/10         99         -2.18         -24.56         1.52         19.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RC/88/10  | 88  | -1.71 | -24.53 | 1.59 | 18.98 |
| RC/94/10         94         -2.12         -24.66         1.41         18.29           RC/96/10         96         -1.55         -23.63         1.60         20.29           RC/98/10         98         -1.57         -24.11         1.59         20.02           RC/99/10         99         -2.18         -24.56         1.52         19.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RC/90/10  | 90  | -2.02 | -24.64 | 1.49 | 18.76 |
| RC/96/10         96         -1.55         -23.63         1.60         20.29           RC/98/10         98         -1.57         -24.11         1.59         20.02           RC/99/10         99         -2.18         -24.56         1.52         19.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RC-92-10  | 92  | -2.03 | -24.13 | 1.64 | 18.66 |
| RC/98/10         98         -1.57         -24.11         1.59         20.02           RC/99/10         99         -2.18         -24.56         1.52         19.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RC/94/10  | 94  | -2.12 | -24.66 | 1.41 | 18.29 |
| RC/99/10 99 -2.18 -24.56 1.52 19.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RC/96/10  | 96  | -1.55 | -23.63 | 1.60 | 20.29 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RC/98/10  | 98  | -1.57 | -24.11 | 1.59 | 20.02 |
| <b>RC/100/10</b> 100 -2.57 -24.34 1.71 19.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RC/99/10  | 99  | -2.18 | -24.56 | 1.52 | 19.07 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RC/100/10 | 100 | -2.57 | -24.34 | 1.71 | 19.22 |

Table A-24: n – alkane measurements (signal intensity cps)

| No. of |          |          |          |          |          | Depth (cm) |          |          |          |          |          |
|--------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|
| Carbon | 2        | 8        | 16       | 28       | 40       | 48         | 52       | 64       | 70       | 84       | 92       |
| 12     | 680860   |          | 503937   | 0        | 0        | 614353     | 324848   | 1378475  | 0        | 364246   | 0        |
| 13     | 3434903  |          | 2450136  | 0        |          | 2351498    | 1481952  | 4339814  | 0        | 1591005  | 0        |
| 14     | 7979269  | 444195   | 5179624  | 253696   | 622810   | 3865213    | 4031947  | 5928350  | 723694   | 3242757  | 454776   |
| 15     | 11019569 | 371919   | 7626746  | 1176805  | 771072   | 4777650    | 6083778  | 6370757  | 489282   | 4382627  | 390711   |
| 16     | 13697583 | 1044450  | 9423218  | 3242788  | 1369545  | 5129156    | 7174642  | 7037837  | 1357227  | 5409426  | 980877   |
| 17     | 16753706 | 3300984  | 10823554 | 4664988  | 2404374  | 4950904    | 7567047  | 6586416  | 2945018  | 6289518  | 1973241  |
| 18     | 18026150 | 3031464  | 12523336 | 5921318  | 3918070  | 5631391    | 7863027  | 8199149  | 2639177  | 6811567  | 1729918  |
| 19     | 14207502 | 1505944  | 9586091  | 4436011  | 1219394  | 3753309    | 5813622  | 5300420  | 856025   | 5157200  | 647027   |
| 20     | 14495958 | 1819230  | 10234297 | 5322337  | 2011634  | 4315449    | 6155027  | 6077632  | 1328708  | 5446595  | 880259   |
| 21     | 14098681 | 2914542  | 9988994  | 4698941  | 3317024  | 3594410    | 5434883  | 5731405  | 1677377  | 4914159  | 841179   |
| 22     | 11294425 | 3294054  | 8587886  | 3680458  | 3108148  | 3703929    | 4442527  | 5970270  | 1824576  | 4472542  | 1096300  |
| 23     | 28846834 | 27827842 | 27001311 | 13337723 | 18439225 | 13856021   | 10094440 | 21019313 | 14025198 | 11212858 | 4825532  |
| 24     | 11890787 | 6584731  | 13666449 | 4972886  | 8078526  | 4455312    | 4540224  | 9029954  | 4579712  | 5463860  | 2123292  |
| 25     | 41772529 | 36458342 | 48962068 | 20752471 | 34844272 | 21085573   | 18552752 | 38990681 | 23911376 | 19443731 | 10273936 |
| 26     | 10445267 | 5958538  | 13836904 | 4966027  | 8655915  | 4726752    | 4701490  | 9546101  | 4896195  | 5314518  | 2465149  |
| 27     | 45113711 | 26181076 | 73647700 | 25543707 | 41973269 | 26006783   | 24210051 | 50684057 | 25706288 | 29359318 | 12391761 |
| 28     | 7140423  | 3206806  | 11791479 | 3162694  | 4781825  | 4387356    | 3158434  | 8704804  | 3067966  | 4403285  | 1588521  |
| 29     | 47153969 | 16450826 | 74740353 | 23231341 | 27057767 | 24000828   | 19342790 | 48649791 | 16666356 | 28376446 | 8941488  |
| 30     | 4814683  | 1187694  | 9478124  | 2470899  | 2472166  | 3578024    | 2619039  | 6131861  | 1434316  | 3235437  | 676316   |
| 31     | 48571528 | 11798004 | 82189967 | 27873599 | 21966971 | 29504919   | 25500975 | 57794063 | 13934784 | 32678520 | 6176882  |
| 32     | 2403817  | 455555   | 6338202  | 1823724  | 1040323  | 2239308    | 1646019  | 3986303  | 702848   | 2172371  | 234719   |
| 33     | 7476794  | 3561786  | 43530331 | 16558812 | 7895722  | 17633223   | 14742023 | 33562988 | 4910121  | 16812036 | 1727443  |
| 34     | 0        | 0        | 586048   | 0        | 156037   | 0          | 418063   | 0        | 96286    | 0        | 63520    |
| 35     | 0        | 0        | 1207326  | 0        | 412545   | 2084006    | 1125265  | 906951   | 247711   | 0        | 116244   |

Table A-25: GDGT measurements from Lake Rutundu (µg)

| GDGT      |         |         |          |         |         | Depth (cm) |         |          |          |         |          |
|-----------|---------|---------|----------|---------|---------|------------|---------|----------|----------|---------|----------|
| type      | 2       | 8       | 16       | 28      | 40      | 48         | 52      | 64       | 72       | 84      | 92       |
| GDGT-Ic   | 986.36  | 1390.91 | 1691.27  | 1252.19 | 1469.04 | 1345.20    | 884.09  | 1470.94  | 1486.89  | 959.14  | 1899.08  |
| GDGT-Ib   | 2115.72 | 2295.92 | 3413.03  | 2605.69 | 2740.56 | 2827.99    | 1724.77 | 3184.47  | 3166.05  | 2388.25 | 3594.68  |
| GDGT-I    | 5505.03 | 5235.67 | 9668.56  | 8298.54 | 6221.81 | 8938.21    | 5933.55 | 9985.87  | 7959.99  | 7780.00 | 9416.26  |
| 1GDGT-Iic | 705.27  | 640.04  | 994.55   | 867.71  | 890.06  | 911.92     | 502.43  | 862.82   | 770.36   | 642.54  | 738.20   |
| GDGT-Iib  | 3071.13 | 1956.31 | 4465.79  | 3702.44 | 2777.59 | 3722.23    | 2116.86 | 3899.77  | 2525.15  | 2749.79 | 2663.40  |
| GDGT-II   | 7302.76 | 6863.46 | 11955.72 | 9929.87 | 8725.30 | 11343.58   | 6888.51 | 11534.30 | 10425.47 | 9598.74 | 13338.76 |
| GDGT-IIIc | 30.58   | 0.00    | 45.50    | 56.86   | 0.00    | 36.90      | 28.14   | 39.57    | 0.00     | 42.88   | 0.00     |
| GDGT-IIIb | 191.68  | 96.57   | 309.29   | 257.08  | 133.32  | 253.16     | 146.72  | 268.43   | 135.87   | 215.98  | 118.70   |
| GDGT-III  | 2269.51 | 4112.00 | 3528.91  | 3342.45 | 4584.14 | 3550.17    | 2134.16 | 3469.21  | 5332.49  | 3037.28 | 7765.87  |
| GDGT-VI   | 13.66   | 0.00    | 10.13    | 9.40    | 0.00    | 9.79       | 20.61   | 15.28    | 0.00     | 14.76   | 0.00     |
| GDGT-VI'  | 9.64    | 0.00    | 0.00     | 0.00    | 0.00    | 0.00       | 0.00    | 0.00     | 0.00     | 0.00    | 0.00     |
| GDGT-4    | 0.00    | 38.62   | 0.00     | 0.00    | 97.22   | 0.00       | 0.00    | 0.00     | 0.00     | 0.00    | 85.22    |
| GDGT-3    | 25.80   | 82.14   | 56.88    | 33.19   | 92.49   | 42.59      | 62.58   | 41.80    | 110.47   | 59.46   | 119.39   |
| GDGT-2    | 108.38  | 207.73  | 200.39   | 167.33  | 353.71  | 243.32     | 269.71  | 259.77   | 383.91   | 318.96  | 552.77   |
| GDGT-1    | 207.13  | 311.59  | 316.35   | 302.08  | 567.82  | 405.28     | 372.21  | 369.67   | 603.69   | 467.91  | 752.85   |
| GDGT-0    | 2669.45 | 1791.79 | 3637.88  | 2740.79 | 2678.00 | 3274.94    | 2542.09 | 4055.01  | 3381.23  | 3879.54 | 3877.28  |

## A.3 XRF core scan datasets

## Table A-26: Lake Nkunga XRF scan

|            |     |       |        |      |      |      | Che   | mical Eleme | ents (cps) | )   |    |     |    |     |      |     |     |
|------------|-----|-------|--------|------|------|------|-------|-------------|------------|-----|----|-----|----|-----|------|-----|-----|
| Depth (cm) | Al  | Са    | Fe     | K    | Mn   | Si   | Ti    | Cl          | Nb         | Ni  | Р  | Rb  | S  | Sr  | V    | Zn  | Zr  |
| 0.1        | -18 | -5545 | -17099 | -397 | 225  | -72  | -5859 | -291        | 79         | 83  | 12 | 139 | 39 | 472 | 2261 | 153 | 497 |
| 0.2        | -27 | -5205 | -17202 | -244 | 8    | -48  | -3304 | -272        | 77         | 85  | 19 | 162 | 43 | 484 | 2245 | 163 | 553 |
| 0.3        | -14 | -3495 | -13414 | 89   | 31   | 7    | 1866  | 55          | 96         | 97  | 12 | 161 | 46 | 529 | 2409 | 207 | 591 |
| 0.4        | -10 | -5203 | -18862 | -297 | -197 | -61  | -4075 | 686         | 74         | 83  | 15 | 154 | 39 | 494 | 2140 | 162 | 541 |
| 0.5        | -5  | -4048 | -17616 | -38  | -56  | 15   | -867  | 2039        | 57         | 80  | 15 | 156 | 53 | 483 | 2292 | 168 | 548 |
| 0.6        | -27 | -3671 | -18475 | -111 | 150  | -68  | -1699 | 1735        | 89         | 90  | 10 | 154 | 53 | 507 | 2347 | 178 | 594 |
| 0.7        | -10 | -2700 | -14707 | 290  | 241  | 40   | 4029  | 766         | 59         | 83  | 16 | 169 | 55 | 548 | 2550 | 184 | 596 |
| 0.8        | 11  | -809  | -12238 | -650 | 255  | -181 | -8127 | -41         | 117        | 80  | 14 | 167 | 50 | 609 | 2708 | 189 | 690 |
| 0.9        | 7   | 2136  | -10501 | -239 | 280  | -80  | -2936 | -16         | 83         | 119 | 21 | 175 | 54 | 662 | 2864 | 222 | 671 |
| 1          | -17 | 1603  | -11813 | -584 | 481  | -225 | -7294 | -20         | 109        | 92  | 19 | 180 | 57 | 672 | 2856 | 220 | 652 |
| 1.1        | -3  | 2276  | -7459  | -28  | 275  | -26  | -1484 | -10         | 118        | 104 | 13 | 195 | 47 | 705 | 2950 | 213 | 693 |
| 1.2        | 10  | 2911  | -5182  | -37  | 231  | -8   | 839   | -36         | 75         | 92  | 14 | 165 | 49 | 715 | 3080 | 220 | 682 |
| 1.3        | -10 | 1303  | -5729  | -41  | 129  | -31  | -380  | -18         | 106        | 102 | 22 | 158 | 42 | 750 | 2990 | 231 | 670 |
| 1.4        | -2  | 1753  | -4462  | 8    | 39   | -74  | 1461  | -5          | 85         | 99  | 13 | 181 | 30 | 745 | 3061 | 225 | 649 |
| 1.5        | -6  | 1595  | -3072  | -6   | 128  | -74  | 1902  | 1           | 107        | 116 | 15 | 168 | 42 | 725 | 3009 | 224 | 690 |
| 1.6        | -17 | 2120  | -1540  | 157  | -19  | -27  | 3573  | -2          | 94         | 111 | 16 | 185 | 37 | 762 | 3116 | 227 | 711 |
| 1.7        | -1  | 1831  | -1565  | 302  | -44  | 15   | 4428  | 1           | 52         | 116 | 17 | 175 | 42 | 750 | 3099 | 231 | 704 |
| 1.8        | 2   | 895   | -389   | 348  | -21  | -16  | 4600  | 0           | 133        | 94  | 17 | 196 | 29 | 778 | 3083 | 222 | 722 |
| 1.9        | 0   | 857   | -3009  | 176  | -130 | -25  | 2164  | 8           | 119        | 110 | 18 | 181 | 36 | 747 | 3083 | 231 | 709 |
| 2          | 10  | 2114  | -1041  | 442  | -71  | 68   | 5032  | 15          | 113        | 90  | 27 | 174 | 29 | 752 | 3157 | 230 | 699 |
| 2.1        | 10  | 2613  | -393   | 365  | -57  | 41   | 4810  | 2           | 93         | 122 | 22 | 195 | 36 | 780 | 3060 | 240 | 679 |
| 2.2        | -1  | 2487  | -1197  | 201  | -2   | 55   | 4453  | 13          | 138        | 109 | 19 | 191 | 34 | 809 | 3082 | 234 | 711 |
| 2.3        | -2  | 2882  | -155   | 415  | -76  | 72   | 4798  | 0           | 115        | 117 | 17 | 173 | 40 | 795 | 3134 | 232 | 709 |
| 2.4        | 14  | 2257  | -395   | 196  | 33   | 67   | 4207  | 7           | 87         | 92  | 27 | 176 | 52 | 773 | 3107 | 220 | 661 |
| 2.5        | 22  | 2872  | 79     | 332  | 201  | 72   | 4135  | -12         | 117        | 96  | 24 | 175 | 46 | 827 | 3071 | 224 | 703 |
| 2.6        | 3   | 2018  | -763   | 61   | 96   | -13  | 1762  | -4          | 111        | 107 | 21 | 159 | 43 | 800 | 3038 | 230 | 685 |
| 2.7        | 7   | -511  | -4852  | -231 | 329  | -43  | -2803 | -3          | 99         | 111 | 20 | 166 | 45 | 710 | 2974 | 217 | 670 |
| 2.8        | -6  | -408  | -1209  | -160 | 356  | -75  | -952  | -22         | 99         | 101 | 16 | 162 | 35 | 740 | 3065 | 217 | 705 |
| 2.9        | -11 | -960  | -5162  | -459 | 350  | -118 | -4900 | -15         | 107        | 111 | 17 | 176 | 28 | 750 | 2997 | 225 | 661 |
| 3          | 15  | -171  | -2651  | -299 | 268  | -130 | -2578 | -35         | 110        | 113 | 17 | 197 | 36 | 746 | 3034 | 232 | 704 |
| 3.1        | -11 | -1038 | -5020  | -445 | 407  | -118 | -5827 | -11         | 103        | 95  | 10 | 178 | 29 | 707 | 2903 | 205 | 652 |
| 3.2        | 5   | 1810  | -858   | 175  | 42   | 70   | 2163  | -7          | 120        | 102 | 11 | 168 | 34 | 784 | 3043 | 228 | 701 |
| 3.3        | -4  | 1135  | -1640  | 85   | 161  | 45   | 488   | -19         | 94         | 94  | 12 | 209 | 39 | 782 | 3012 | 218 | 749 |
| 3.4        | -4  | 1596  | -483   | 185  | 40   | 65   | 2981  | -10         | 98         | 103 | 14 | 177 | 50 | 774 | 3065 | 216 | 697 |
| 3.5        | -1  | 828   | -1716  | 75   | 140  | -18  | 1174  | 1           | 111        | 101 | 19 | 152 | 39 | 764 | 3072 | 207 | 702 |
| 3.6        | -3  | 1018  | -621   | 107  | 29   | 3    | 2084  | -2          | 107        | 99  | 23 | 169 | 30 | 759 | 3095 | 220 | 699 |
| 3.7        | 1   | 1968  | 732    | 292  | -99  | 120  | 4487  | 14          | 91         | 103 | 26 | 188 | 32 | 786 | 3102 | 217 | 703 |
| 3.8        | -21 | 2088  | 78     | 318  | 25   | 93   | 4067  | 10          | 124        | 98  | 22 | 198 | 42 | 821 | 3056 | 225 | 690 |
| 3.9        | 17  | 3683  | 609    | 446  | -80  | 119  | 5103  | 18          | 94         | 114 | 22 | 151 | 49 | 790 | 3109 | 200 | 704 |

| 4          | 9        | 2200         | 767            | 507          | ()         | 102          | 5(51           | 22       | 97              | 105        | 21       | 192        | 50       | 772        | 3030         | 214        | 710        |
|------------|----------|--------------|----------------|--------------|------------|--------------|----------------|----------|-----------------|------------|----------|------------|----------|------------|--------------|------------|------------|
| 4.1        | -6       | 2899<br>2455 | -433           | 527<br>272   | -62<br>-53 | 183<br>53    | 5651<br>3425   | 32<br>15 | 109             | 105        | 31<br>16 | 192        | 50<br>29 | 773        | 3030         | 214        | 719<br>693 |
| 4.1        | -0       | 2433         | 768            | 272          | -125       | 44           | 3738           | 13       | 92              | 96         | 16       | 171        | 34       | 756        | 3094         | 243        | 713        |
| 4.2        | 3        | 1702         | -685           | 204          | -123       | 75           | 2947           | 35       | 133             | 123        | 23       | 193        | 38       | 736        | 3094         | 237        | 713        |
| 4.3        | -1       | 1585         | -389           | 287          | -114       | 32           | 2899           | 12       | 117             | 123        | 23       | 193        | 31       | 781        | 3042         | 224        | 706        |
| 4.4        | -1       | 777          | -2323          | 66           | -103       | 2            | 1124           | 12       | 117             | 91         | 17       | 192        | 36       | 730        | 2997         | 223        | 670        |
| 4.6        | 9        | 1365         | -2323          | 251          | -103       | 69           | 4786           | 17       | 125             | 100        | 17       | 189        | 46       | 758        | 3105         | 203        | 701        |
| 4.0        | -6       | 433          | -2110          | -23          | -133       | 49           | 289            | 13       | 107             | 100        | 13       | 189        | 39       | 731        | 2927         | 213        | 664        |
| 4.8        | 16       | 1561         | -85            | 324          | -136       | 89           | 2684           | 18       | 97              | 108        | 22       | 169        | 36       | 751        | 2991         | 217        | 698        |
| 4.9        | 13       | 1373         | -156           | 163          | -105       | 83           | -10            | 8        | 109             | 137        | 26       | 174        | 33       | 749        | 2840         | 217        | 713        |
| 5          | 9        | 1893         | 3044           | 303          | 48         | 65           | 2152           | 2        | 120             | 154        | 17       | 199        | 47       | 789        | 2966         | 221        | 718        |
| 5.1        | -8       | 638          | -316           | -99          | -73        | -16          | -340           | -23      | 115             | 110        | 23       | 174        | 39       | 756        | 2936         | 208        | 682        |
| 5.2        | -4       | -104         | -3422          | -325         | -167       | -58          | -3649          | -17      | 95              | 106        | 15       | 180        | 33       | 744        | 2824         | 212        | 697        |
| 5.3        | 5        | 309          | -2325          | -185         | 88         | -85          | -1658          | -6       | 113             | 108        | 17       | 181        | 37       | 749        | 2893         | 200        | 702        |
| 5.4        | 3        | 699          | -2497          | -312         | 8          | -89          | -2572          | -7       | 104             | 105        | 26       | 193        | 43       | 749        | 2950         | 204        | 682        |
| 5.5        | 7        | 163          | -3773          | -298         | 54         | -115         | -3730          | 0        | 118             | 102        | 18       | 126        | 44       | 710        | 2873         | 207        | 680        |
| 5.6        | -3       | 918          | -487           | 27           | 17         | -14          | 1218           | 20       | 82              | 101        | 12       | 178        | 40       | 808        | 2958         | 221        | 704        |
| 5.7        | -3       | 561          | -1931          | -114         | -36        | -62          | -100           | 25       | 119             | 96         | 20       | 169        | 40       | 705        | 2997         | 213        | 680        |
| 5.8        | 7        | 470          | -2542          | -188         | -60        | -93          | -1292          | 21       | 133             | 93         | 13       | 193        | 33       | 720        | 2885         | 216        | 703        |
| 5.9        | 10       | 1884         | -1872          | 73           | 128        | -1           | 837            | 35       | 94              | 105        | 12       | 184        | 38       | 823        | 2913         | 204        | 667        |
| 6          | 2        | 2210         | -621           | 277          | 84         | 45           | 2352           | 38       | 82              | 108        | 15       | 177        | 42       | 743        | 3026         | 230        | 712        |
| 6.1        | -7       | 1790         | -2091          | 147          | -15        | -33          | 1299           | 34       | 97              | 102        | 23       | 166        | 36       | 785        | 3015         | 220        | 667        |
| 6.2        | 3        | 1386         | -1255          | 106          | -8         | 30           | 1649           | 32       | 118             | 117        | 27       | 168        | 44       | 783        | 3067         | 225        | 683        |
| 6.3        | 0        | 1611         | -1115          | 109          | 25         | 40           | 1693           | 33       | 92              | 108        | 9        | 163        | 40       | 723        | 2997         | 236        | 690        |
| 6.4        | 0        | 928          | -927           | -14          | -67        | 33           | 236            | 27       | 85              | 98         | 25       | 166        | 40       | 670        | 2995         | 210        | 678        |
| 6.5        | 3        | 590          | 1008           | 173          | -100       | 58           | 2048           | 45       | 95              | 90         | 18       | 158        | 36       | 700        | 2992         | 201        | 658        |
| 6.6        | -8       | 327          | -1273          | -69          | -119       | 24           | 869            | 35       | 100             | 108        | 16       | 175        | 52       | 728        | 2940         | 216        | 676        |
| 6.7        | -2       | 2020         | 503            | 326          | 97         | 79           | 2510           | 48       | 115             | 109        | 23       | 201        | 37       | 782        | 3050         | 239        | 703        |
| 6.8        | 4        | 2639         | 830            | 394          | 118        | 99           | 2464           | 22       | 113             | 122        | 16       | 174        | 40       | 729        | 3005         | 232        | 717        |
| 6.9        | -3       | 1428         | -2280          | 182          | -83        | 7            | 626            | 16       | 94              | 109        | 12       | 177        | 41       | 762        | 2980         | 212        | 664        |
| 7          | 12       | 1132         | -2046          | 48           | -151       | -24          | 25             | 10       | 99              | 103        | 21       | 167        | 63       | 777        | 2898         | 216        | 656        |
| 7.1        | 6        | 2429         | -32            | 67           | 57         | 2            | 1696           | 0        | 119             | 121        | 30       | 175        | 32       | 786        | 2986         | 234        | 698        |
| 7.2        | 8        | -800         | -6416          | -362         | 70         | -196         | -7178          | -2       | 111             | 96         | 25       | 172        | 43       | 704        | 2672         | 216        | 654        |
| 7.3        | 3        | 253          | -6970          | -516         | 82         | -165         | -7119          | 2        | 98              | 124        | 15       | 168        | 48       | 699        | 2649         | 196        | 695        |
| 7.4        | -5       | 619          | -3541          | -194         | 74         | -80          | -2540          | 13       | 109             | 109        | 18       | 173        | 39       | 744        | 2938         | 213        | 702        |
| 7.5        | 3        | 358          | -3899<br>-4720 | -303         | 122        | -127<br>-232 | -4264          | 13       | 117<br>84       | 102        | 18<br>20 | 181        | 33       | 766        | 2894<br>2839 | 216<br>202 | 688        |
| 7.6<br>7.7 | -3<br>-8 | -10/9        | -4720          | -472<br>-221 | 81<br>141  | -232<br>-144 | -5725<br>-2035 | 36       | <u>84</u><br>49 | 107<br>121 | 20<br>16 | 174<br>146 | 39<br>47 | 716<br>794 | 2839         | 202        | 646<br>649 |
| 7.8        | -8       | 1105         | -2036          | -221         | 141        | -144         | -2035          | 30       | 84              | 94         | 18       | 146        | 32       | 804        | 2938         | 216        | 607        |
| 7.9        | -5       | 425          | 481            | -208         | 46         | -83          | -1772          | 37       |                 | 105        | 26       | 108        | 47       | 776        | 3048         | 203        | 702        |
| 8          | 4        | 930          | -36            | -197         | 137        | -127         | -1275          | 36       | 104             | 93         | 20       | 147        | 39       | 755        | 2988         | 209        | 696        |
| 8.1        | -3       | -1607        | -1830          | -264         | -26        | -139         | -1273          | 42       | 118             | 104        | 27       | 186        | 39       | 733        | 2988         | 212        | 693        |
| 8.2        | 11       | 428          | -1830          | 217          | -149       | -38          | 2214           | 55       | 105             | 104        | 20       | 174        | 50       | 708        | 2903         | 212        | 710        |
| 8.3        | 14       | 1019         | 1315           | 264          | -110       | 20           | 2757           | 53       | 112             | 110        | 16       | 182        | 33       | 703        | 2978         | 223        | 674        |
| 8.4        | 11       | 1100         | -69            | 81           | 62         | -49          | 2853           | 111      | 91              | 108        | 24       | 182        | 44       | 698        | 3017         | 236        | 660        |
| 8.5        | 8        | 345          | 298            | 133          | 60         | -85          | 1240           | 44       | 102             | 96         | 15       | 161        | 32       | 731        | 2984         | 225        | 677        |
| 8.6        | -4       | 550          | 447            | -48          | 239        | -114         | 68             | 50       | 102             | 101        | 20       | 185        | 28       | 744        | 2983         | 217        | 701        |
| 0.0        | -        | 550          | 177            | -10          | 257        | 11-7         | 00             | 50       | 102             | 101        | 20       | 105        | 20       | /          | 2705         | 21/        | /01        |

|                  | 16       | 010           | 205            | 1.50         | 2.6      | (0)          | 1.400          |                 | 100      | 100       | 24       | 100        | 22       |     | 2005         | 015        | (0.5       |
|------------------|----------|---------------|----------------|--------------|----------|--------------|----------------|-----------------|----------|-----------|----------|------------|----------|-----|--------------|------------|------------|
| 8.7              | 16       | 919           | 385            | 153          | -36      | -63          | 1489           | 80              | 102      | 102       | 24       | 189        | 32       | 759 | 2995         | 217        | 687        |
| 8.8              | 3        | -498          | -437           | -88          | 52       | -108         | 611            | 52              | 115      | 109       | 15       | 183        | 37       | 703 | 3013         | 223        | 694        |
| 8.9              | -6       | 150           | -539           | -96          | 84       | -84          | -73            | 53              | 79       | 112       | 19       | 203        | 61       | 697 | 3032         | 223        | 701        |
| 9                | -10      | -1183         | -93            | -122         | 77       | -129         | -20            | 63              | 146      | 104       | 18       | 160        | 38       | 704 | 3048         | 238        | 704        |
| 9.1              | -13      | -669          | -820           | -245         | 137      | -191         | -2135          | 55              | 100      | 104       | 24       | 177        | 39       | 735 | 2965         | 234        | 673        |
| 9.2              | -16      | -842          | -638           | -292         | 223      | -182         | -2113          | 46              | 125      | 116       | 24       | 187        | 38       | 773 | 3017         | 217        | 717        |
| 9.3              | 5        | 162           | 324            | -74          | 207      | -112         | 522            | 52              | 100      | 105       | 25       | 186        | 36       | 765 | 3055         | 228        | 672        |
| 9.4              | 9        | 218           | -1412          | -296         | 281      | -173         | -2067          | 38              | 109      | 102       | 24       | 142        | 22       | 710 | 2916         | 207        | 669        |
| 9.5              | 16       | -479          | -161           | -140         | 252      | -128         | 408            | 62              | 123      | 96        | 19       | 179        | 27       | 761 | 3002         | 228        | 686        |
| 9.6              | 12       | -434          | 317            | -134         | 6        | -116         | -149           | 52              | 103      | 104       | 20       | 152        | 41       | 731 | 3009         | 205        | 709        |
| 9.7              | -12      | -982          | 22             | -237         | 109      | -161         | -1914          | 41              | 92       | 104       | 24       | 185        | 39       | 712 | 2969         | 224        | 694        |
| 9.8              | 0        | -94           | -399           | -63          | 122      | -140         | -693           | 47              | 97       | 102       | 24       | 174        | 44       | 708 | 3047         | 218        | 676        |
| <u>9.9</u><br>10 | 5        | -892<br>-466  | -1836<br>-2516 | -231<br>-187 | 103      | -121<br>-91  | -1854<br>-2073 | <u>39</u><br>38 | 97<br>99 | 100       | 15<br>13 | 162<br>184 | 37       | 706 | 2857         | 222        | 668<br>686 |
| 10               | 0        |               | -2516          |              | 53       | -130         |                | 38              | 88       | 101<br>98 | 13       | 184        | 32       | 724 | 2894<br>2874 | 235        |            |
| 10.1             |          | -825<br>-1332 | -4299          | -338         |          | -130         | -3854          | 30              | 105      |           |          | 173        | 36       | 705 |              | 217<br>223 | 692        |
| 10.2             | -1<br>-9 |               |                | -442<br>-497 | 37       |              | -4271<br>-5180 |                 | 105      | 105<br>94 | 18<br>21 | 1/3        | 48       | 701 | 2823         | 223        | 654        |
| 10.3             | -12      | -1893<br>74   | -4894<br>-640  | -497         | 88<br>75 | -220<br>-199 | -1224          | 50<br>47        | 101      | 103       | 19       | 169        | 45<br>47 | 726 | 2859<br>3047 | 242        | 700<br>668 |
| 10.4             | -12      | -1677         | -640           | -229         | -115     | -199         | -1224          | 47              | 95       | 103       | 19       | 180        | 59       | 720 | 2756         | 242        | 635        |
| 10.5             | -5       | -10//         | -4/19          | -399         | -113     | -274         | -2329          | 51              | 111      | 115       | 10       | 190        | 59       | 756 | 2730         | 203        | 676        |
| 10.0             | -1       | 812           | -1740          | -222         | -12      | -195         | -2329          | 57              | 88       | 115       | 25       | 190        | 35       | 730 | 2843         | 222        | 638        |
| 10.7             | -1       | 1714          | 1569           | 41           | -131     | -47          | 452            | 68              | 94       | 198       | 23       | 158        | 60       | 732 | 2980         | 231        | 705        |
| 10.8             | 30       | 300           | -1822          | -208         | -121     | -47          | -3396          | 48              | 113      | 131       | 16       | 158        | 34       | 742 | 2980         | 209        | 629        |
| 11               | 4        | -158          | -2385          | -303         | 138      | -209         | -4276          | 52              | 95       | 98        | 26       | 183        | 28       | 729 | 2965         | 196        | 660        |
| 11.1             | -10      | 691           | -2585          | -505         | 212      | -183         | -3624          | 60              | 93       | 90        | 20       | 163        | 34       | 736 | 2905         | 223        | 690        |
| 11.1             | 2        | -416          | -829           | -108         | 313      | -214         | -3519          | 58              | 109      | 109       | 18       | 201        | 50       | 745 | 2940         | 223        | 682        |
| 11.2             | -3       | -1376         | -2991          | -587         | 202      | -214         | -5576          | 41              | 89       | 103       | 19       | 156        | 47       | 714 | 2903         | 225        | 666        |
| 11.3             | -13      | -573          | -4385          | -513         | 84       | -206         | -6364          | 47              | 112      | 109       | 10       | 168        | 30       | 727 | 2818         | 210        | 634        |
| 11.5             | 5        | -632          | -1654          | -459         | 137      | -200         | -4787          | 31              | 105      | 101       | 36       | 185        | 36       | 688 | 2859         | 210        | 693        |
| 11.6             | -8       | -1918         | -2649          | -658         | 121      | -312         | -6536          | 33              | 111      | 94        | 17       | 160        | 37       | 732 | 2859         | 210        | 679        |
| 11.7             | -13      | -1789         | -2525          | -652         | 102      | -278         | -6524          | 30              | 97       | 107       | 11       | 183        | 33       | 678 | 2841         | 206        | 675        |
| 11.8             | 0        | -2857         | -5830          | -789         | -15      | -263         | -8402          | 30              | 83       | 96        | 22       | 189        | 29       | 702 | 2696         | 201        | 659        |
| 11.9             | -8       | -775          | 781            | -118         | 123      | -133         | -1410          | 40              | 129      | 102       | 30       | 200        | 50       | 690 | 2911         | 228        | 705        |
| 12               | -3       | -1351         | -2984          | -491         | 111      | -207         | -4829          | 28              | 115      | 102       | 14       | 191        | 30       | 725 | 2837         | 219        | 668        |
| 12.1             | -8       | -1108         | -2087          | -487         | 24       | -181         | -5499          | 42              | 101      | 116       | 24       | 169        | 43       | 668 | 2701         | 214        | 669        |
| 12.2             | -1       | -1993         | -2520          | -550         | 32       | -192         | -7060          | 20              | 78       | 106       | 21       | 165        | 47       | 658 | 2766         | 214        | 655        |
| 12.3             | 2        | -1872         | -4370          | -667         | 41       | -224         | -9540          | 14              | 86       | 117       | 17       | 177        | 30       | 696 | 2588         | 207        | 647        |
| 12.4             | -1       | -1464         | -2420          | -405         | 41       | -130         | -5480          | 21              | 96       | 107       | 30       | 168        | 38       | 666 | 2750         | 207        | 656        |
| 12.5             | 4        | -2386         | -4585          | -558         | 1        | -219         | -7568          | 11              | 95       | 119       | 18       | 194        | 34       | 674 | 2794         | 202        | 648        |
| 12.6             | -14      | -2668         | -3538          | -601         | -87      | -219         | -7907          | -2              | 75       | 125       | 18       | 184        | 31       | 720 | 2719         | 208        | 614        |
| 12.7             | -11      | -4663         | -10693         | -1232        | -460     | -366         | -16530         | 14              | 72       | 137       | 19       | 137        | 31       | 665 | 2276         | 177        | 547        |
| 12.8             | -19      | -25           | -4821          | -384         | -95      | -173         | -7231          | 55              | 99       | 91        | 22       | 139        | 38       | 813 | 2751         | 192        | 585        |
| 12.9             | 5        | 1148          | 901            | -84          | -80      | -86          | -991           | 45              | 95       | 106       | 22       | 176        | 35       | 894 | 2921         | 218        | 653        |
| 13               | 6        | -1130         | -2929          | -268         | -101     | -105         | -4154          | 53              | 100      | 97        | 9        | 146        | 41       | 694 | 2743         | 220        | 671        |
| 13.1             | -2       | -1112         | -2419          | -236         | -131     | -127         | -3767          | 45              | 94       | 97        | 27       | 201        | 44       | 654 | 2787         | 213        | 650        |
| 13.2             | 7        | -848          | -2634          | -220         | -50      | -128         | -3717          | 56              | 89       | 112       | 15       | 148        | 40       | 672 | 2842         | 213        | 655        |
| 13.3             | 11       | -959          | -1255          | -82          | -89      | -99          | -2496          | 40              | 83       | 106       | 16       | 160        | 32       | 674 | 2865         | 205        | 652        |
|                  |          |               |                |              |          |              |                |                 |          |           |          |            |          |     |              |            |            |

| 12.4     | 1   | 22(0           | 4725           | 40.0         | 50          | 1(0          | 5(0)           | <b>C1</b> | 07        | 00              | 24       | 1(0        | 24       | (())       | 2774         | 202        | (10               |
|----------|-----|----------------|----------------|--------------|-------------|--------------|----------------|-----------|-----------|-----------------|----------|------------|----------|------------|--------------|------------|-------------------|
| <u> </u> | 1 4 | -2369<br>-1935 | -4735<br>-4693 | -406<br>-396 | -58<br>-167 | -169<br>-196 | -5606<br>-5648 | 51<br>51  | 97<br>103 | <u>99</u><br>87 | 24<br>17 | 169<br>194 | 34<br>33 | 660<br>749 | 2774<br>2828 | 202<br>206 | <u>618</u><br>647 |
|          |     |                |                |              |             |              |                | -         |           |                 |          | -          |          |            |              |            |                   |
| 13.6     | -6  | -225<br>0      | -2452          | -213         | -106<br>84  | -132<br>-60  | -1943          | 68<br>66  | 93<br>95  | 88<br>87        | 29<br>27 | 141<br>154 | 42       | 691<br>718 | 2880         | 194<br>198 | 632               |
| 13.7     | -5  | -1155          | -1040          | -138         | -           |              | -3107          | 55        |           |                 |          | -          | -        |            | 2861         |            | 667               |
| 13.8     | 3   |                | -376           | -341         | 360         | -105         | -3458          |           | 105<br>92 | 102             | 25       | 160        | 44       | 669        | 2970         | 215        | 680               |
| 13.9     | 2   | -2722<br>-534  | -2306          | -565<br>-126 | 324         | -187<br>-48  | -6462<br>-2546 | 75        | 104       | 89<br>96        | 18<br>28 | 182<br>184 | 38<br>37 | 687<br>665 | 2847<br>2904 | 193<br>211 | 661<br>662        |
| 14.1     | -3  | -1079          | -1032          | -120         | 387         | -48          | -2340          | 65        | 92        | 131             | 28       | 173        | 32       | 662        | 2904         | 203        | 628               |
| 14.1     | -3  | -1670          | -1945          | -400         | 312         | -147         | -7389          | 73        | 86        | 113             | 20       | 158        | 38       | 780        | 2761         | 199        | 620               |
| 14.2     | 14  | 591            | 333            | -400         | 53          | -147         | -2524          | 68        | 88        | 94              | 15       | 138        | 39       | 761        | 2933         | 216        | 614               |
| 14.4     | 2   | -58            | -2090          | -282         | 92          | -73          | -3820          | 64        | 81        | 103             | 29       | 167        | 48       | 733        | 2933         | 191        | 645               |
| 14.5     | 23  | 602            | -3928          | -104         | -146        | -73          | -3040          | 61        | 111       | 98              | 29       | 172        | 37       | 787        | 2929         | 191        | 589               |
| 14.6     | 23  | 456            | -1402          | -437         | 134         | -117         | -3039          | 62        | 64        | 88              | 20       | 136        | 31       | 733        | 2975         | 216        | 622               |
| 14.0     | 1   | -1305          | -678           | -592         | 281         | -203         | -5413          | 69        | 65        | 99              | 37       | 147        | 37       | 731        | 2955         | 206        | 653               |
| 14.8     | -11 | -480           | -1378          | -433         | 153         | -121         | -5573          | 75        | 97        | 103             | 19       | 174        | 38       | 743        | 2783         | 216        | 637               |
| 14.9     | -1  | 502            | -594           | -219         | -43         | -56          | -1664          | 81        | 77        | 99              | 24       | 168        | 51       | 743        | 2887         | 232        | 649               |
| 14.5     | -10 | -922           | -2047          | -385         | 164         | -130         | -4434          | 63        | 91        | 90              | 25       | 191        | 44       | 697        | 2845         | 208        | 645               |
| 15.1     | 8   | -1301          | -2935          | -366         | -101        | -79          | -3367          | 69        | 90        | 95              | 26       | 181        | 38       | 724        | 2831         | 197        | 641               |
| 15.2     | 5   | 955            | 1147           | 3            | -28         | 56           | 726            | 67        | 87        | 107             | 20       | 139        | 46       | 746        | 2985         | 215        | 663               |
| 15.3     | 1   | -1662          | -2509          | -416         | 31          | -114         | -4672          | 74        | 124       | 103             | 25       | 187        | 39       | 698        | 2883         | 207        | 663               |
| 15.4     | 15  | -111           | 1319           | 58           | -14         | -5           | -350           | 67        | 98        | 101             | 21       | 200        | 39       | 705        | 2929         | 226        | 674               |
| 15.5     | 3   | -1415          | -350           | -444         | 80          | -117         | -4894          | 50        | 92        | 103             | 29       | 200        | 40       | 724        | 2870         | 206        | 632               |
| 15.6     | 3   | -2058          | -3479          | -737         | 22          | -277         | -7136          | 59        | 132       | 92              | 21       | 170        | 39       | 718        | 2757         | 205        | 664               |
| 15.7     | -3  | -2976          | -6770          | -948         | 210         | -329         | -11662         | 60        | 122       | 95              | 18       | 147        | 39       | 722        | 2649         | 190        | 621               |
| 15.8     | -8  | -1770          | -6235          | -578         | 558         | -151         | -8167          | 66        | 133       | 93              | 15       | 168        | 43       | 715        | 2678         | 196        | 645               |
| 15.9     | 8   | 386            | -2247          | -152         | 4501        | -115         | -4450          | 65        | 133       | 118             | 11       | 166        | 38       | 773        | 2837         | 192        | 675               |
| 16       | -7  | -1882          | -2591          | -691         | 183         | -265         | -7064          | 65        | 93        | 94              | 21       | 152        | 37       | 710        | 2831         | 184        | 668               |
| 16.1     | -12 | -1021          | -1960          | -435         | -45         | -165         | -5251          | 53        | 81        | 97              | 18       | 189        | 39       | 692        | 2791         | 200        | 662               |
| 16.2     | -10 | -1063          | -6895          | -727         | -79         | -207         | -9771          | 57        | 93        | 99              | 21       | 161        | 50       | 670        | 2649         | 197        | 646               |
| 16.3     | 7   | -1978          | -4136          | -582         | 200         | -196         | -7025          | 75        | 80        | 110             | 20       | 169        | 36       | 749        | 2767         | 194        | 617               |
| 16.4     | 5   | -2265          | -3535          | -593         | -93         | -199         | -5990          | 70        | 109       | 91              | 13       | 172        | 43       | 744        | 2765         | 196        | 662               |
| 16.5     | -1  | -254           | -233           | -149         | 31          | -82          | -1703          | 62        | 83        | 87              | 31       | 173        | 48       | 696        | 2854         | 201        | 662               |
| 16.6     | 16  | 830            | 1542           | 113          | -153        | 36           | 1008           | 76        | 110       | 99              | 19       | 130        | 44       | 716        | 2908         | 191        | 667               |
| 16.7     | 12  | 2348           | 1682           | 201          | -185        | 97           | 2533           | 66        | 118       | 84              | 24       | 188        | 51       | 685        | 2966         | 212        | 659               |
| 16.8     | 8   | 2263           | 1765           | 44           | 26          | -14          | 195            | 70        | 101       | 116             | 26       | 159        | 55       | 721        | 2912         | 199        | 656               |
| 16.9     | 8   | 2097           | 231            | -150         | -59         | -48          | -1186          | 62        | 80        | 112             | 25       | 172        | 47       | 770        | 2901         | 199        | 615               |
| 17       | -1  | 883            | -1932          | -575         | 433         | -270         | -6100          | 63        | 84        | 110             | 18       | 151        | 37       | 713        | 2814         | 194        | 615               |
| 17.1     | -9  | 228            | -1151          | -558         | 309         | -241         | -5677          | 76        | 119       | 104             | -97      | 162        | 42       | 655        | 2856         | 182        | 632               |
| 17.2     | 3   | 868            | 818            | -332         | 114         | -150         | -2886          | 76        | 98        | 101             | 29       | 181        | 44       | 705        | 2919         | 185        | 676               |
| 17.3     | -2  | 2730           | 445            | -243         | 71          | -86          | -2327          | 74        | 100       | 123             | 20       | 172        | 45       | 658        | 2862         | 210        | 638               |
| 17.4     | 10  | 1182           | -369           | -369         | 53          | -171         | -3807          | 58        | 110       | 98              | 20       | 156        | 40       | 662        | 2878         | 188        | 651               |
| 17.5     | -13 | 436            | -195           | -461         | 188         | -158         | -5176          | 65        | -72       | 93              | 20       | 140        | 34       | 676        | 2919         | 213        | 661               |
| 17.6     | 4   | 101            | -3413          | -583         | 114         | -145         | -6457          | 66        | 92        | 93              | 19       | 168        | 38       | 635        | 2817         | 201        | 650               |
| 17.7     | 1   | 1714           | -1251          | -384         | 95          | -163         | -4820          | 75        | 91        | 107             | 16       | 197        | 41       | 687        | 2828         | 197        | 667               |
| 17.8     | -3  | 2265           | -2215          | -470         | 67          | -166         | -5880          | 76        | 73        | 100             | 25       | 160        | 49       | 680        | 2746         | 200        | 641               |
| 17.9     | -12 | 712            | -1562          | -526         | 101         | -201         | -5446          | 74        | 107       | 114             | 24       | 195        | 52       | 658        | 2838         | 216        | 714               |
| 18       | -2  | -275           | -4354          | -767         | -60         | -238         | -9430          | 74        | 108       | 102             | 25       | 188        | 50       | 675        | 2609         | 219        | 658               |

| 18.1         | -12 | -334  | -6711  | -763  | -83        | -245 | -9860       | 51       | 97  | 114             | 29 | 153 | 45       | 612  | 2612         | 206        | 655 |
|--------------|-----|-------|--------|-------|------------|------|-------------|----------|-----|-----------------|----|-----|----------|------|--------------|------------|-----|
| 18.2         | 0   | -1433 | -7068  | -795  | -130       | -268 | -11292      | 57       | 86  | 101             | 26 | 173 | 43       | 601  | 2512         | 201        | 672 |
| 18.3         | 2   | -955  | -8406  | -794  | -80        | -274 | -10393      | 53       | 94  | 108             | 14 | 185 | 50       | 606  | 2624         | 210        | 665 |
| 18.4         | -11 | -1324 | -5325  | -833  | 73         | -306 | -9341       | 62       | 87  | 111             | 24 | 210 | 45       | 591  | 2739         | 219        | 644 |
| 18.5         | -4  | -1213 | -4135  | -838  | -69        | -286 | -10509      | 51       | 116 | 131             | 22 | 169 | 41       | 566  | 2640         | 206        | 693 |
| 18.6         | -6  | -1664 | -7265  | -887  | -104       | -266 | -10860      | 75       | 114 | 120             | 29 | 151 | 55       | 554  | 2599         | 208        | 672 |
| 18.7         | -9  | -1788 | -6201  | -814  | -209       | -281 | -9976       | 51       | 86  | 104             | 21 | 164 | 44       | 591  | 2590         | 221        | 668 |
| 18.8         | -7  | -728  | -5064  | -905  | -36        | -272 | -8561       | 62       | 76  | 93              | 19 | 164 | 43       | 572  | 2729         | 223        | 662 |
| 18.9         | 0   | -1357 | -5578  | -689  | -58        | -232 | -7490       | 46       | 112 | 97              | 25 | 161 | 40       | 587  | 2753         | 215        | 643 |
| 19           | -4  | -868  | -5132  | -766  | -103       | -274 | -9352       | 46       | 110 | 107             | 25 | 177 | 36       | 618  | 2707         | 205        | 658 |
| 19.1         | -3  | 495   | -4109  | -496  | -213       | -174 | -5802       | 53       | 110 | 93              | 18 | 182 | 51       | 630  | 2770         | 198        | 632 |
| 19.2         | -6  | -1792 | -9491  | -907  | -217       | -273 | -10995      | 48       | 100 | 94              | 21 | 173 | 39       | 565  | 2614         | 193        | 614 |
| 19.3         | -3  | -1200 | -8260  | -722  | 14         | -208 | -8785       | 49       | 89  | 78              | 19 | 190 | 45       | 585  | 2681         | 194        | 641 |
| 19.4         | -6  | 779   | -445   | -255  | 69         | -85  | -484        | 66       | 93  | 95              | 30 | 189 | 46       | 603  | 2978         | 221        | 715 |
| 19.5         | -4  | 2076  | 2815   | -53   | 131        | -2   | 2546        | 49       | 83  | 119             | 18 | 139 | 42       | 664  | 3032         | 236        | 663 |
| 19.6         | 5   | 2443  | 2267   | 310   | 142        | -40  | 2322        | 42       | 115 | 92              | 13 | 184 | 44       | 692  | 3122         | 228        | 718 |
| 19.7         | 6   | 2478  | 2253   | 68    | 142        | 14   | 1263        | 54       | 115 | 121             | 25 | 167 | 44       | 671  | 2982         | 225        | 693 |
| 19.8         | 2   | -397  | -4733  | -596  | 27         | -154 | -7239       | 51       | 80  | 106             | 32 | 168 | 40       | 643  | 2695         | 210        | 645 |
| 19.9         | -4  | 1039  | -4389  | -377  | 2          | -173 | -4475       | 60       | 100 | 110             | 27 | 176 | 44       | 648  | 2808         | 213        | 658 |
| 20           | -12 | 1215  | -3729  | -360  | -6         | -138 | -5439       | 58       | 106 | 123             | 31 | 187 | 48       | 649  | 2704         | 213        | 658 |
| 20.1         | 2   | 2555  | -3020  | -434  | -3         | -136 | -5570       | 55       | 117 | 123             | 19 | 209 | 51       | 635  | 2742         | 199        | 708 |
| 20.2         | 7   | 1334  | -4062  | -391  | -51        | -171 | -7437       | 53       | 101 | 108             | 23 | 241 | 43       | 627  | 2683         | 189        | 681 |
| 20.2         | -12 | 454   | -7206  | -644  | -149       | -199 | -9141       | 64       | 117 | 103             | 23 | 170 | 63       | 636  | 2561         | 194        | 689 |
| 20.3         | 1   | -184  | -5579  | -664  | -287       | -158 | -9464       | 64       | 127 | 113             | 24 | 165 | 58       | 632  | 2475         | 213        | 644 |
| 20.4         | -7  | -867  | -7959  | -849  | -212       | -219 | -12393      | 56       | 109 | 97              | 24 | 176 | 50       | 617  | 2501         | 210        | 652 |
| 20.5         | -4  | 1272  | -936   | -364  | -212       | -108 | -5334       | 47       | 109 | 115             | 26 | 160 | 43       | 691  | 2776         | 210        | 678 |
| 20.0         | -4  | -651  | -7046  | -854  | -53        | -266 | -12779      | 54       | 91  | 99              | 26 | 179 | 60       | 604  | 2482         | 210        | 637 |
| 20.7         |     | -1160 | -7352  | -832  | -69        | -246 | -14038      | 68       | 116 | 103             | 19 | 158 | 46       | 677  | 2393         | 210        | 649 |
| 20.3         | -2  | -1133 | -6390  | -876  | -326       | -240 | -12501      | 61       | 104 | 94              | 25 | 192 | 38       | 650  | 2393         | 210        | 647 |
| 20.9         | -1  | 171   | -2653  | -494  | -177       | -213 | -7532       | 68       | 75  | 108             | 25 | 185 | 51       | 688  | 2455         | 229        | 661 |
| 21.1         | -1  | -915  | -2033  | -494  | -177       | -213 | -11618      | 57       | 107 | 92              | 15 | 176 | 39       | 609  | 2533         | 229        | 641 |
| 21.1         | -14 | -2992 | -11823 | -1302 | -565       | -356 | -17313      | 43       | 73  | 84              | 13 | 150 | 39       | 578  | 2333         | 186        | 580 |
| 21.2         | -14 | -2992 | -11823 | -1194 | -422       | -392 | -14756      | 50       | 85  | 84              | 25 | 160 | 40       | 720  | 2395         | 180        | 578 |
| 21.3         | -17 | -1463 | -8945  | -935  | -422       | -366 | -11627      | 53       | 111 | 89              | 23 | 148 | 35       | 735  | 2559         | 193        | 607 |
| 21.4         | -17 | 733   | -7953  | -393  | -241       | -300 | -11027      | 25       | 96  | 90              | 21 | 140 | 46       | 996  | 2633         | 202        | 589 |
| 21.5         | -14 | 4347  | -477   | 509   | -2/1       | -179 | -8271       | -3       | 90  | 87              | 38 | 142 | 46       | 1248 | 2033         | 202        | 641 |
| 21.0         | 9   | 3584  | 1621   | 50    | -88        | -33  | -299<br>618 | -3       | 131 | <u>87</u><br>99 | 29 | 142 | 59       | 842  | 3025         | 205        | 751 |
|              | 7   | 3622  | 5914   | 219   |            | -/3  | 4549        |          | 106 | 103             | 29 | 161 |          | 635  |              |            |     |
| 21.8<br>21.9 | 11  |       | 4978   |       | 151<br>322 | -155 |             | -16<br>7 | 100 |                 | 34 | 161 | 65<br>62 |      | 3178<br>3042 | 243<br>221 | 755 |
|              |     | 2100  |        | -131  |            |      | -489        |          |     | 117             |    |     |          | 614  |              |            | 715 |
| 22           | -6  | 433   | 3120   | -347  | 343        | -154 | -2386       | 31       | 93  | 105             | 38 | 188 | 56       | 593  | 2977         | 203        | 714 |
| 22.1         | 13  | 1438  | 1638   | -127  | 231        | -37  | -848        | 21       | 128 | 107             | 35 | 158 | 49       | 589  | 2943         | 212        | 730 |
| 22.2         | -5  | 462   | 3374   | -239  | 238        | -126 | -2509       | 41       | 79  | 109             | 19 | 175 | 57       | 561  | 2923         | 209        | 708 |
| 22.3         | 4   | -1112 | -385   | -442  | -117       | -145 | -5265       | 56       | 91  | 94              | 23 | 174 | 41       | 589  | 2764         | 211        | 711 |
| 22.4         | 13  | -1324 | -2970  | -536  | -127       | -182 | -6477       | 57       | 113 | 95              | 16 | 159 | 46       | 596  | 2710         | 192        | 658 |
| 22.5         | 11  | -191  | 518    | -209  | -111       | -73  | -3233       | 55       | 118 | 110             | 30 | 183 | 48       | 605  | 2763         | 230        | 693 |
| 22.6         | 13  | -622  | -687   | -320  | -145       | -123 | -5048       | 79       | 94  | 107             | 18 | 191 | 43       | 637  | 2708         | 210        | 674 |
| 22.7         | 6   | -2011 | -1268  | -487  | -278       | -152 | -7192       | 60       | 108 | 103             | 25 | 182 | 36       | 590  | 2581         | 194        | 663 |

| 22.0     | 0        | 1940          | 4527           | (71          | 104          | 177          | 10220           | 52              | 124        | 07               | 10       | 1(0        | 27       | (01        | 2515         | 201        | (74               |
|----------|----------|---------------|----------------|--------------|--------------|--------------|-----------------|-----------------|------------|------------------|----------|------------|----------|------------|--------------|------------|-------------------|
| 22.8     | 0        | -1849<br>-989 | -4537<br>-2115 | -671<br>-509 | -194<br>-271 | -177<br>-137 | -10229<br>-7914 | <u>53</u><br>60 | 134<br>126 | <u>97</u><br>107 | 18<br>35 | 169<br>165 | 27<br>45 | 601<br>616 | 2515<br>2584 | 201<br>186 | <u>674</u><br>696 |
| 22.9     | -8       |               | -6292          |              |              |              |                 |                 | 126        |                  |          | 172        | -        |            |              |            |                   |
| 23.1     | -0       | -2598<br>-756 | -0292          | -865<br>-551 | -281<br>-214 | -255<br>-147 | -11842<br>-6888 | 47              | 110        | <u> </u>         | 21<br>22 | 172        | 28<br>39 | 554<br>761 | 2473<br>2718 | 187<br>193 | 680<br>659        |
| 23.2     | 3        | -475          | -2028          | -768         | -145         | -147         | -11286          | 46              | 99         | 98               | 17       | 172        | 42       | 650        | 2718         | 195        | 642               |
| 23.2     | 0        | -473          | -2261          | -579         | -143         | -223         | -8083           | 40              | 64         | 111              | 20       | 130        | 42<br>52 | 632        | 2369         | 200        | 694               |
| 23.3     | -4       | 944           | -1861          | -480         | -18          | -187         | -7782           | 57              | 116        | 99               | 20       | 157        | 45       | 675        | 2013         | 194        | 669               |
| 23.4     | -4       | 1229          | -1876          | -480         | -125         | -1/0         | -7782           | 59              | 143        | 101              | 32       | 185        | 45       | 655        | 2669         | 194        | 701               |
| 23.6     | 13       | -182          | -2960          | -400         | -125         | -104         | -5671           | 44              | 95         | 101              | 26       | 164        | 40       | 618        | 2624         | 211        | 671               |
| 23.7     | 6        | 93            | -1700          | -400         | -137         | -147         | -5082           | 56              | 130        | 112              | 25       | 155        | 49       | 602        | 2024         | 200        | 695               |
| 23.8     | -11      | -172          | -1631          | -408         | -203         | -133         | -4567           | 56              | 111        | 91               | 23       | 120        | 42       | 598        | 2794         | 215        | 696               |
| 23.9     | 5        | 97            | 302            | -202         | -58          | -135         | -3415           | 48              | 87         | 103              | 26       | 166        | 49       | 607        | 2830         | 205        | 668               |
| 24       | -4       | -72           | -2157          | -447         | -116         | -209         | -5724           | 39              | 129        | 86               | 21       | 161        | 37       | 587        | 2799         | 192        | 675               |
| 24.1     | 9        | 2065          | -997           | -240         | -165         | -105         | -3503           | 38              | 96         | 113              | 20       | 160        | 55       | 589        | 2812         | 225        | 710               |
| 24.2     | -4       | 374           | 634            | -136         | -136         | -95          | -2384           | 27              | 89         | 111              | 28       | 167        | 33       | 636        | 2898         | 213        | 709               |
| 24.3     | -6       | -1128         | -3300          | -654         | -193         | -215         | -8047           | 35              | 122        | 95               | 22       | 168        | 36       | 623        | 2686         | 201        | 671               |
| 24.4     | -2       | -21           | 1344           | -343         | -87          | -173         | -4926           | 38              | 129        | 115              | 28       | 185        | 46       | 625        | 2743         | 241        | 715               |
| 24.5     | -3       | 896           | 2663           | -143         | -85          | -65          | -4301           | 51              | 127        | 109              | 25       | 189        | 38       | 650        | 2799         | 212        | 711               |
| 24.6     | -14      | -309          | -2793          | -514         | -229         | -154         | -9405           | 51              | 120        | 95               | 19       | 160        | 42       | 675        | 2554         | 202        | 709               |
| 24.7     | -6       | -1316         | -2196          | -493         | -307         | -116         | -8709           | 43              | 103        | 89               | 24       | 194        | 34       | 586        | 2542         | 205        | 698               |
| 24.8     | 8        | -1650         | -5288          | -712         | -355         | -212         | -9807           | 68              | 59         | 99               | 24       | 166        | 33       | 568        | 2492         | 188        | 631               |
| 24.9     | -9       | -425          | -2558          | -526         | -124         | -226         | -7394           | 70              | 120        | 109              | 28       | 161        | 51       | 611        | 2635         | 210        | 641               |
| 25       | 3        | 478           | -4495          | -749         | -262         | -248         | -9596           | 70              | 93         | 103              | 29       | 125        | 38       | 688        | 2545         | 184        | 639               |
| 25.1     | 1        | -471          | -2314          | -528         | -106         | -187         | -8770           | 61              | 86         | 108              | 22       | 155        | 42       | 639        | 2643         | 217        | 644               |
| 25.2     | -16      | -2522         | -8888          | -1049        | -326         | -330         | -13507          | 52              | 89         | 89               | 13       | 139        | 33       | 558        | 2468         | 186        | 600               |
| 25.3     | -2       | -1522         | -8186          | -972         | -304         | -276         | -12379          | 50              | 101        | 97               | 28       | 164        | 51       | 548        | 2485         | 183        | 609               |
| 25.4     | -10      | 89            | -3220          | -605         | -193         | -206         | -6876           | 36              | 116        | 93               | 28       | 177        | 43       | 572        | 2701         | 189        | 668               |
| 25.5     | -9       | 27            | -1773          | -361         | -136         | -194         | -6339           | 48              | 113        | 103              | 26       | 164        | 51       | 597        | 2732         | 192        | 660               |
| 25.6     | 8        | 1238          | -757           | -248         | -59          | -144         | -3330           | 10              | 104        | 92               | 26       | 187        | 52       | 639        | 2824         | 191        | 676               |
| 25.7     | -4       | 1041          | 417            | -270         | 44           | -188         | -3853           | 14              | 113        | 94               | 29       | 157        | 45       | 832        | 2868         | 194        | 675               |
| 25.8     | -1       | 551           | 2805           | -203         | 295          | -201         | -3637           | 9               | 92         | 101              | 28       | 205        | 41       | 887        | 2880         | 187        | 692               |
| 25.9     | 1        | 1135          | 3966           | -206         | 209          | -121         | -1460           | 1               | 107        | 103              | 34       | 182        | 66       | 574        | 3017         | 181        | 682               |
| <u> </u> | -1<br>-1 | 2144<br>2952  | 5353<br>7505   | -165<br>137  | 186<br>104   | -112<br>15   | -1162<br>2495   | -7<br>-2        | 92<br>86   | 95<br>97         | 44<br>35 | 165<br>198 | 71<br>65 | 555<br>551 | 2980<br>3101 | 188<br>205 | 712               |
| 26.2     | -1       |               |                | 355          | 88           | 29           |                 | -2              | 124        |                  |          | 198        | 57       | 583        | 3058         |            | 703               |
| 26.2     | 14       | 3336<br>2155  | 7995 7120      | <u> </u>     | 197          | -8           | 2708<br>1840    | -3              | 124        | 109<br>98        | 28<br>32 | 184        | 57       | 583        | 3058         | 203<br>206 | 703               |
| 26.3     | 9        | 1682          | 3368           | -173         | 239          | -8           | -1261           | 31              | 78         | 106              | 35       | 155        | 44       | 617        | 2943         | 208        | 681               |
| 26.5     | -2       | 3267          | 2002           | -173         | 39           | -127         | -2529           | 50              | 104        | 110              | 21       | 195        | 53       | 674        | 2945         | 205        | 635               |
| 26.6     | -2       | 1044          | -1412          | -408         | 85           | -93          | -5608           | 43              | 104        | 110              | 27       | 193        | 39       | 707        | 2730         | 203        | 681               |
| 26.7     | -1       | 309           | -1910          | -310         | -137         | -121         | -5950           | 46              | 100        | 89               | 16       | 169        | 47       | 597        | 2697         | 184        | 656               |
| 26.8     | -5       | 1151          | -1487          | -323         | 95           | -163         | -5119           | 47              | 111        | 111              | 18       | 188        | 47       | 693        | 2856         | 214        | 686               |
| 26.9     | 11       | 1955          | 2340           | -17          | 148          | -50          | -2549           | 57              | 125        | 112              | 18       | 162        | 50       | 663        | 2854         | 217        | 680               |
| 27       | -4       | -1343         | -9161          | -956         | -354         | -229         | -13817          | 57              | 107        | 86               | 27       | 171        | 47       | 656        | 2388         | 164        | 634               |
| 27.1     | 15       | 686           | -1170          | -229         | -99          | -90          | -5859           | 76              | 88         | 105              | 27       | 161        | 49       | 620        | 2688         | 200        | 672               |
| 27.2     | 1        | 425           | -1638          | -499         | -230         | -140         | -7137           | 65              | 106        | 118              | 29       | 187        | 50       | 662        | 2614         | 185        | 703               |
| 27.3     | 4        | 316           | -2749          | -445         | -178         | -120         | -7685           | 54              | 119        | 107              | 23       | 179        | 46       | 579        | 2604         | 191        | 641               |
| 27.4     | 2        | 51            | -3163          | -461         | -244         | -160         | -8776           | 55              | 76         | 114              | 30       | 154        | 52       | 565        | 2555         | 175        | 646               |
|          |          |               |                |              |              |              |                 |                 |            |                  |          |            |          |            |              |            |                   |

| 27.5 | 8   | -93            | -1198 | -196  | -117 | -146 | -5596  | 64 | 106 | 104 | 27 | 153 | 39 | 606 | 2693 | 185 | 688 |
|------|-----|----------------|-------|-------|------|------|--------|----|-----|-----|----|-----|----|-----|------|-----|-----|
| 27.6 | 11  | 1046           | -84   | -230  | -144 | -101 | -5371  | 66 | 110 | 112 | 17 | 191 | 57 | 611 | 2699 | 213 | 648 |
| 27.7 | -5  | -1130          | -5752 | -627  | -209 | -178 | -10813 | 61 | 116 | 97  | 33 | 166 | 56 | 584 | 2525 | 182 | 634 |
| 27.8 | 9   | 1315           | 1473  | -46   | -4   | -85  | -2755  | 65 | 107 | 125 | 27 | 150 | 56 | 598 | 2768 | 183 | 627 |
| 27.9 | -9  | -570           | -3321 | -370  | -288 | -184 | -7704  | 58 | 90  | 81  | 22 | 154 | 48 | 581 | 2713 | 183 | 635 |
| 28   | 15  | 1155           | 5568  | 89    | -49  | -55  | -369   | 51 | 90  | 98  | 35 | 165 | 50 | 639 | 3008 | 186 | 699 |
| 28.1 | 5   | 424            | 4436  | -329  | 52   | -169 | -4635  | 69 | 138 | 98  | 32 | 206 | 45 | 667 | 2877 | 194 | 685 |
| 28.2 | -3  | 389            | 2557  | -416  | 275  | -187 | -5033  | 68 | 121 | 105 | 24 | 142 | 39 | 641 | 2869 | 182 | 665 |
| 28.3 | -2  | -70            | -919  | -553  | -23  | -222 | -7616  | 64 | 119 | 96  | 24 | 159 | 49 | 648 | 2745 | 193 | 665 |
| 28.4 | -3  | 1813           | 1577  | -266  | 104  | -144 | -3420  | 62 | 98  | 99  | 25 | 179 | 43 | 644 | 2814 | 209 | 661 |
| 28.5 | -1  | 801            | -1275 | -304  | -135 | -176 | -6480  | 57 | 119 | 94  | 26 | 184 | 41 | 641 | 2649 | 208 | 649 |
| 28.6 | 6   | 1527           | 748   | -165  | -328 | -139 | -6125  | 56 | 109 | 98  | 28 | 185 | 42 | 656 | 2648 | 222 | 636 |
| 28.7 | 8   | 1225           | 823   | -275  | -151 | -108 | -5097  | 69 | 81  | 105 | 25 | 170 | 48 | 613 | 2734 | 215 | 656 |
| 28.8 | -1  | -717           | -4677 | -642  | -265 | -206 | -9264  | 52 | 89  | 101 | 20 | 157 | 48 | 595 | 2523 | 209 | 600 |
| 28.9 | -7  | -280           | -4843 | -708  | -130 | -229 | -9660  | 68 | 95  | 96  | 27 | 172 | 43 | 637 | 2628 | 191 | 629 |
| 29   | -19 | 1495           | -13   | -294  | -22  | -129 | -5069  | 69 | 123 | 104 | 29 | 158 | 45 | 678 | 2766 | 200 | 635 |
| 29.1 | 4   | 1343           | 492   | -365  | -12  | -100 | -5504  | 74 | 120 | 100 | 27 | 159 | 63 | 646 | 2769 | 200 | 669 |
| 29.2 | 2   | -1012          | -1395 | -847  | 313  | -226 | -10420 | 68 | 113 | 98  | 29 | 150 | 40 | 632 | 2675 | 187 | 625 |
| 29.3 | -12 | -3418          | -9410 | -1431 | 359  | -220 | -18878 | 49 | 81  | 84  | 17 | 130 | 36 | 635 | 2493 | 199 | 603 |
| 29.3 | -12 | -1132          | -6488 | -878  | 13   | -263 | -12277 | 56 | 79  | 81  | 20 | 156 | 48 | 635 | 2615 | 188 | 599 |
| 29.5 | -9  | 46             | -1727 | -703  | 226  | -205 | -7409  | 70 | 111 | 76  | 26 | 177 | 57 | 633 | 2812 | 201 | 682 |
| 29.6 | -1  | -1474          | -1/2/ | -1010 | 638  | -305 | -10450 | 64 | 67  | 81  | 18 | 164 | 53 | 627 | 2812 | 213 | 654 |
| 29.0 | -19 | -14/4<br>-3808 | -3330 | -1627 | 904  | -503 | -10430 | 58 | 91  | 77  | 20 | 171 | 29 | 632 | 2892 | 215 | 646 |
| 29.7 | -19 |                | -5340 | -1627 | 904  | -512 | -17656 | 61 | 116 | 76  | 15 | 155 | 37 | 632 | 2708 | 192 | 640 |
| 29.8 | -7  | -3688<br>-2249 | -3340 | -1498 | 417  | -307 | -17030 | 70 | 84  | 68  | 26 | 206 | 37 | 632 | 2721 | 207 | 696 |
| 30   | -9  | -2729          | -2302 |       |      | -    |        | 70 | 96  | 93  | 14 |     | 39 |     | 2766 | 194 | 623 |
|      | -   |                |       | -1290 | 440  | -428 | -14669 |    |     |     |    | 160 | -  | 628 |      |     |     |
| 30.1 | -9  | -3059          | -909  | -1252 | 388  | -492 | -14722 | 68 | 100 | 90  | 18 | 167 | 49 | 617 | 2700 | 175 | 607 |
| 30.2 | -4  | -1116          | -340  | -969  | 400  | -418 | -12366 | 69 | 87  | 79  | 32 | 166 | 41 | 635 | 2783 | 170 | 622 |
| 30.3 | -13 | 1338           | 2697  | -765  | 238  | -325 | -8432  | 62 | 87  | 107 | 21 | 167 | 50 | 672 | 2877 | 179 | 603 |
| 30.4 | -13 | -1375          | -540  | -1133 | 205  | -402 | -11956 | 60 | 104 | 95  | 20 | 164 | 41 | 694 | 2992 | 169 | 663 |
| 30.5 | 0   | -99            | 1213  | -863  | 160  | -354 | -9530  | 59 | 99  | 95  | 24 | 162 | 33 | 643 | 2843 | 171 | 637 |
| 30.6 | -13 | 1571           | 2833  | -425  | 191  | -210 | -4452  | 72 | 85  | 94  | 23 | 167 | 52 | 689 | 2925 | 186 | 625 |
| 30.7 | -16 | 61             | -2444 | -859  | -8   | -306 | -9466  | 59 | 109 | 80  | 26 | 173 | 37 | 621 | 2735 | 165 | 626 |
| 30.8 | 1   | 28             | -3645 | -783  | -25  | -267 | -10088 | 57 | 81  | 99  | 16 | 126 | 52 | 640 | 2656 | 185 | 616 |
| 30.9 | 0   | -609           | -2980 | -977  | 208  | -324 | -11487 | 61 | 72  | 91  | 29 | 148 | 44 | 652 | 2674 | 170 | 563 |
| 31   | -3  | 1307           | -1130 | -644  | 276  | -174 | -7691  | 56 | 105 | 85  | 21 | 156 | 50 | 642 | 2725 | 186 | 605 |
| 31.1 | -6  | 125            | 3461  | -722  | 378  | -274 | -7667  | 65 | 97  | 104 | 30 | 154 | 45 | 602 | 2855 | 200 | 636 |
| 31.2 | -16 | -1126          | 3723  | -766  | 225  | -314 | -8725  | 74 | 92  | 87  | 28 | 162 | 60 | 628 | 2805 | 184 | 679 |
| 31.3 | 2   | -775           | 1199  | -763  | 94   | -256 | -9172  | 63 | 87  | 86  | 20 | 163 | 52 | 537 | 2782 | 189 | 644 |
| 31.4 | -14 | -1711          | 849   | -873  | 284  | -353 | -10421 | 53 | 110 | 101 | 17 | 152 | 48 | 561 | 2792 | 176 | 630 |
| 31.5 | -16 | -1207          | 3193  | -665  | 291  | -226 | -7876  | 63 | 84  | 115 | 28 | 149 | 67 | 566 | 2856 | 196 | 676 |
| 31.6 | 0   | -229           | 150   | -600  | 256  | -193 | -8138  | 60 | 104 | 96  | 25 | 147 | 52 | 572 | 2772 | 181 | 678 |
| 31.7 | 9   | 283            | 2491  | -428  | 244  | -158 | -4805  | 56 | -94 | 109 | 25 | 168 | 49 | 575 | 2876 | 206 | 664 |
| 31.8 | -4  | -240           | -3045 | -621  | -38  | -208 | -8296  | 65 | 88  | 87  | 24 | 154 | 52 | 625 | 2722 | 173 | 636 |
| 31.9 | 3   | 100            | 1700  | -536  | 208  | -229 | -7448  | 60 | 75  | 91  | 25 | 153 | 45 | 591 | 2857 | 191 | 640 |
| 32   | 2   | -944           | 843   | -851  | 406  | -262 | -9603  | 62 | 123 | 90  | 30 | 177 | 55 | 635 | 2814 | 186 | 671 |
| 32.1 | 0   | -922           | 3910  | -760  | 288  | -224 | -8584  | 57 | 116 | 84  | 20 | 161 | 47 | 621 | 2786 | 200 | 654 |
|      |     |                |       |       |      |      |        |    |     |     | 1  |     |    |     |      |     |     |

| 22.2 | 0          | 1901           | 1796           | 0.50           | 124               | 272          | 10507            | ()              | 72       | 01               | 20       | 105        | 40       | 500        | 2(91         | 100        | (2)               |
|------|------------|----------------|----------------|----------------|-------------------|--------------|------------------|-----------------|----------|------------------|----------|------------|----------|------------|--------------|------------|-------------------|
| 32.2 | 0          | -1891<br>-1438 | 1786<br>9814   | -852<br>-799   | <u>124</u><br>336 | -272<br>-311 | -10507<br>-9455  | <u>62</u><br>52 | 73<br>79 | <u>91</u><br>93  | 20<br>31 | 195<br>189 | 48<br>42 | 522<br>580 | 2681<br>2721 | 198<br>196 | <u>626</u><br>605 |
|      | -          |                |                |                |                   | -            |                  |                 |          |                  | -        |            |          |            |              |            |                   |
| 32.4 | -5<br>-2   | -740           | 11623          | -769<br>-548   | <u>69</u><br>382  | -276<br>-182 | -8797            | <u>45</u><br>54 | 79<br>90 | 96<br>92         | 52<br>62 | 142<br>145 | 48<br>51 | 505<br>492 | 2684<br>2788 | 167<br>189 | 582<br>580        |
|      | -2         | 509<br>717     | 21272<br>16425 |                |                   |              | -5850            | -               | 107      | -                | -        | 145        | -        | -          |              |            |                   |
| 32.6 | -9         | 343            | 8356           | -485<br>-244   | 281               | -202<br>-124 | -5888<br>-3408   | 47 50           | 107      | <u>92</u><br>100 | 35<br>32 | 168        | 56<br>44 | 563        | 2844<br>2918 | 180        | 602<br>679        |
| 32.7 | -7         | 1139           | 7642           | -244           | 146               | -124         | -3408            | 51              | 99       | 95               | 27       | 166        | 54       | 605<br>614 | 2918         | 180<br>191 | 647               |
| 32.9 | 0          | 28             | 5527           | -223           | 122               | -206         | -5818            | 54              | 72       | 93               | 27       | 160        | 48       | 612        | 2903         | 185        | 602               |
| 33   | -18        | -1917          | 3471           | -976           | 592               | -290         | -9907            | 61              | 83       | 95               | 24       | 144        | 57       | 603        | 2845         | 202        | 647               |
| 33.1 | -17        | -184           | 2292           | -636           | 300               | -257         | -8489            | 54              | 113      | 102              | 24       | 137        | 33       | 563        | 2876         | 202        | 625               |
| 33.2 | 7          | 192            | 4017           | -495           | 124               | -188         | -6145            | 72              | 75       | 93               | 31       | 180        | 61       | 593        | 2833         | 164        | 632               |
| 33.3 | 0          | 579            | 3908           | -338           | 136               | -167         | -4614            | 70              | 83       | 84               | 26       | 203        | 53       | 640        | 2821         | 195        | 627               |
| 33.4 | 16         | 235            | 1817           | -397           | -98               | -146         | -5579            | 60              | 111      | 80               | 35       | 183        | 50       | 593        | 2833         | 194        | 639               |
| 33.5 | 0          | 594            | 3920           | -284           | -20               | -124         | -2683            | 61              | 122      | 98               | 24       | 160        | 44       | 632        | 2915         | 192        | 673               |
| 33.6 | -9         | -69            | 2732           | -540           | 93                | -185         | -5091            | 61              | 77       | 110              | 39       | 173        | 52       | 610        | 2906         | 195        | 644               |
| 33.7 | -7         | 418            | 1494           | -397           | 157               | -130         | -5868            | 59              | 92       | 97               | 28       | 132        | 58       | 617        | 2823         | 201        | 630               |
| 33.8 | 7          | -77            | -371           | -527           | -36               | -151         | -6724            | 64              | 84       | 91               | 27       | 144        | 49       | 604        | 2759         | 192        | 639               |
| 33.9 | 1          | 55             | 722            | -360           | 58                | -132         | -5546            | 57              | 90       | 101              | 30       | 144        | 50       | 607        | 2853         | 201        | 644               |
| 34   | 5          | 647            | 5324           | -254           | 9                 | -49          | -4879            | 59              | 91       | 118              | 33       | 175        | 37       | 629        | 2832         | 206        | 666               |
| 34.1 | 4          | -1283          | -3116          | -751           | -69               | -197         | -11881           | 46              | 99       | 89               | 20       | 174        | 49       | 580        | 2554         | 179        | 610               |
| 34.2 | -13        | 2              | 244            | -657           | -165              | -159         | -8699            | 22              | 67       | 103              | -4       | 179        | 45       | 600        | 2583         | 193        | 607               |
| 34.3 | -10        | -1957          | -5186          | -1065          | -348              | -282         | -13910           | -3              | 73       | 80               | 23       | 127        | 43       | 575        | 2452         | 173        | 562               |
| 34.4 | 1          | -1087          | -4401          | -904           | -322              | -232         | -12383           | 27              | 67       | 93               | 22       | 157        | 47       | 671        | 2543         | 169        | 555               |
| 34.5 | 6          | -1001          | -5232          | -828           | -132              | -185         | -11836           | 33              | 52       | 95               | 20       | 109        | 62       | 598        | 2517         | 175        | 572               |
| 34.6 | 5          | 28             | -825           | -481           | -21               | -83          | -7691            | 60              | 109      | 91               | 27       | 178        | 62       | 544        | 2748         | 208        | 630               |
| 34.7 | 18         | 1167           | 1926           | -272           | 53                | 11           | -4533            | 52              | 101      | 111              | 21       | 188        | 54       | 568        | 2754         | 220        | 667               |
| 34.8 | 10         | 999            | 3468           | -291           | 352               | 1            | -4396            | 43              | 85       | 106              | 23       | 156        | 56       | 557        | 2831         | 224        | 669               |
| 34.9 | -9         | -997           | -3808          | -971           | 315               | -203         | -13608           | 53              | 96       | 104              | 23       | 208        | 67       | 559        | 2591         | 214        | 629               |
| 35   | -12<br>-19 | -1309          | -7118          | -1008          | 427               | -222         | -14916           | 37              | 71<br>92 | 104              | 16       | 158<br>152 | 85<br>71 | 561        | 2594         | 204        | 629               |
| 35.1 | -19        | -1998<br>-2721 | -7765<br>-9176 | -1207<br>-1384 | 418 400           | -313<br>-360 | -17258<br>-18775 | <u>31</u><br>52 | 92       | 111              | 20<br>25 | 152        | 71       | 527<br>537 | 2522<br>2511 | 170<br>205 | 636<br>607        |
| 35.2 | -10        | -2721          | -7395          | -1384          | 400               | -301         | -18772           | 32              | 91       | 115<br>97        | 25       | 170        | 75       | 547        | 2311         | 195        | 655               |
| 35.4 | 14         | -542           | -5499          | -1402          | 875               | -318         | -20335           | 44              | 92       | 111              | 23       | 213        | 98       | 539        | 2508         | 193        | 630               |
| 35.5 | -11        | -1264          | -8959          | -1569          | 746               | -364         | -22713           | 24              | 92       | 84               | 15       | 129        | 79       | 473        | 2389         | 158        | 595               |
| 35.6 | 1          | -2510          | -11145         | -1660          | 355               | -396         | -22867           | 39              | 78       | 83               | 19       | 159        | 77       | 482        | 2378         | 164        | 613               |
| 35.7 | 3          | -1650          | -7000          | -1375          | 726               | -378         | -20311           | 42              | 53       | 92               | 21       | 167        | 76       | 489        | 2515         | 177        | 576               |
| 35.8 | -18        | -2761          | -8498          | -1532          | 559               | -422         | -21773           | 29              | 86       | 101              | 13       | 179        | 63       | 515        | 2357         | 162        | 602               |
| 35.9 | -17        | -828           | -2412          | -1575          | 846               | -407         | -21417           | 41              | 72       | 102              | 20       | 160        | 96       | 525        | 2442         | 183        | 589               |
| 36   | -3         | -1495          | -4250          | -1346          | 620               | -360         | -19433           | 23              | 72       | 93               | 19       | 177        | 85       | 541        | 2451         | 157        | 567               |
| 36.1 | -13        | -3136          | -9066          | -1356          | 145               | -391         | -19167           | 36              | 81       | 85               | 18       | 148        | 65       | 516        | 2363         | 165        | 577               |
| 36.2 | -3         | -1996          | -4552          | -1155          | 316               | -390         | -15788           | 46              | 111      | 80               | 21       | 129        | 66       | 510        | 2524         | 196        | 627               |
| 36.3 | -12        | -1954          | 2191           | -985           | 332               | -389         | -12515           | 50              | 73       | 87               | 23       | 166        | 56       | 561        | 2779         | 184        | 599               |
| 36.4 | -8         | -1542          | 3288           | -869           | 269               | -289         | -10743           | 65              | 91       | 75               | 19       | 152        | 53       | 558        | 2713         | 179        | 618               |
| 36.5 | -13        | -633           | 6820           | -498           | 226               | -248         | -6596            | 62              | 111      | 81               | 27       | 161        | 61       | 598        | 2874         | 180        | 676               |
| 36.6 | -8         | -1259          | 8164           | -371           | 275               | -214         | -5661            | 54              | 93       | 82               | 41       | 146        | 50       | 559        | 2865         | 167        | 664               |
| 36.7 | 8          | -1101          | 9100           | -316           | 207               | -180         | -5556            | 60              | 106      | 99               | 28       | 175        | 54       | 560        | 2801         | 169        | 668               |
| 36.8 | 4          | -2600          | 6148           | -942           | 463               | -376         | -11857           | 56              | 108      | 105              | 31       | 156        | 55       | 544        | 2686         | 158        | 658               |

| 36.9     | -1        | -1190          | 8041           | -440         | 221          | -173         | -5826          | 50              | 109       | 90              | 33       | 148        | 72       | 545        | 2850         | 179        | 666               |
|----------|-----------|----------------|----------------|--------------|--------------|--------------|----------------|-----------------|-----------|-----------------|----------|------------|----------|------------|--------------|------------|-------------------|
| 37       | -1        | -1622          | 6050           | -628         | 147          | -219         | -8589          | 39              | 91        | 90              | 22       | 148        | 53       | 541        | 2740         | 168        | 689               |
| 37.1     | 0         | -1649          | 4221           | -680         | 337          | -273         | -9963          | 30              | 96        | 89              | 29       | 149        | 54       | 525        | 2808         | 180        | 654               |
| 37.2     | -7        | -1968          | 2518           | -704         | 255          | -232         | -10941         | 21              | 75        | 105             | 26       | 149        | 50       | 513        | 2648         | 167        | 609               |
| 37.3     | -11       | -2738          | 4473           | -705         | 30           | -259         | -10034         | 17              | 94        | 94              | 46       | 145        | 45       | 557        | 2660         | 161        | 672               |
| 37.4     | -11       | -2333          | 4969           | -539         | 12           | -246         | -8042          | 35              | 110       | 101             | 39       | 136        | 46       | 571        | 2725         | 191        | 639               |
| 37.5     | -9        | -2104          | 4206           | -433         | -85          | -231         | -7245          | 50              | 90        | 93              | 37       | 142        | 60       | 605        | 2767         | 179        | 622               |
| 37.6     | -11       | -1235          | 5605           | -437         | 24           | -235         | -5808          | 48              | 98        | 93              | 37       | 154        | 45       | 587        | 2835         | 191        | 635               |
| 37.7     | 0         | -1665          | 4104           | -563         | 68           | -214         | -6640          | 28              | 90        | 74              | 35       | 166        | 53       | 562        | 2747         | 191        | 640               |
| 37.8     | -5        | -1772          | 3756           | -696         | 187          | -259         | -8675          | 48              | 119       | 95              | 36       | 171        | 55       | 549        | 2778         | 186        | 696               |
| 37.9     | -15       | -1676          | 2538           | -700         | 29           | -238         | -9556          | 26              | 104       | 101             | 25       | 180        | 55       | 557        | 2737         | 190        | 651               |
| 38       | -15       | -2444          | -927           | -963         | 181          | -341         | -12080         | 33              | 83        | 77              | 31       | 152        | 64       | 510        | 2714         | 170        | 628               |
| 38.1     | -8        | -2655          | 4709           | -684         | 321          | -279         | -9570          | 45              | 93        | 71              | 31       | 148        | 64       | 571        | 2809         | 169        | 631               |
| 38.2     | -20       | -2453          | 6233           | -1119        | 420          | -357         | -13721         | 53              | 89        | 95              | 16       | 147        | 71       | 493        | 2712         | 159        | 647               |
| 38.3     | -12       | -2229          | 11670          | -767         | 264          | -273         | -8403          | 62              | 115       | 87              | 35       | 122        | 68       | 533        | 2883         | 172        | 640               |
| <u> </u> | -13<br>-4 | -1996<br>-153  | 11694<br>14337 | -575<br>-364 | 99<br>286    | -218<br>-176 | -7744<br>-5083 | 56<br>43        | 113<br>94 | 99<br>81        | 53<br>46 | 163<br>168 | 54<br>66 | 536<br>566 | 2840<br>2865 | 161<br>181 | <u>659</u><br>679 |
| 38.6     | -4        | -1159          | 11933          | -436         | 280          | -202         | -6373          | 27              | 114       | 86              | 51       | 153        | 37       | 566        | 2803         | 177        | 708               |
| 38.7     | -12       | -725           | 11955          | -430         | 333          | -202         | -0373          | 14              | 105       | 85              | 67       | 174        | 70       | 535        | 2828         | 156        | 670               |
| 38.8     | -12       | -1400          | 7332           | -777         | 591          | -262         | -10597         | 0               | 111       | 96              | 64       | 152        | 82       | 503        | 2714         | 171        | 658               |
| 38.9     | -16       | -1428          | 8422           | -700         | 110          | -228         | -8875          | 5               | 82        | 80              | 62       | 145        | 71       | 507        | 2765         | 163        | 630               |
| 39       | -18       | -4174          | 563            | -1205        | -40          | -428         | -16029         | 28              | 115       | 71              | 33       | 147        | 59       | 487        | 2491         | 138        | 636               |
| 39.1     | -14       | -2529          | 8715           | -923         | 267          | -324         | -9984          | 42              | 82        | 78              | 59       | 164        | 74       | 476        | 2830         | 140        | 670               |
| 39.2     | -5        | -3264          | 9014           | -847         | 143          | -355         | -9054          | 45              | 76        | 81              | 48       | 167        | 55       | 570        | 2830         | 177        | 631               |
| 39.3     | 1         | -1884          | 10960          | -345         | 56           | -162         | -3140          | 45              | 114       | 83              | 34       | 171        | 68       | 547        | 2899         | 184        | 647               |
| 39.4     | -5        | -3680          | 11132          | -647         | 179          | -303         | -5640          | 45              | 121       | 94              | 40       | 123        | 57       | 532        | 2908         | 189        | 674               |
| 39.5     | -18       | -4089          | 10677          | -922         | 237          | -343         | -8264          | 34              | 98        | 80              | 30       | 155        | 47       | 504        | 2857         | 173        | 657               |
| 39.6     | -12       | -4706          | 8851           | -969         | 258          | -347         | -10763         | 29              | 103       | 84              | 49       | 163        | 51       | 487        | 2779         | 161        | 653               |
| 39.7     | -13       | -4691          | 11544          | -948         | 299          | -356         | -9628          | 37              | 110       | 75              | 32       | 163        | 53       | 494        | 2798         | 161        | 673               |
| 39.8     | 7         | -4734          | 13522          | -883         | 135          | -393         | -7723          | 40              | 131       | 92              | 34       | 172        | 53       | 576        | 2882         | 167        | 655               |
| 39.9     | -13       | -4532          | 12797          | -962         | 246          | -468         | -7217          | 35              | 115       | 95              | 33       | 176        | 40       | 539        | 2959         | 186        | 659               |
| 40 40.1  | -6<br>5   | -3255<br>-2023 | 11445<br>12473 | -449<br>-36  | -106<br>-270 | -236<br>-69  | -3965<br>-98   | <u>39</u><br>47 | 83<br>82  | <u>96</u><br>90 | 36<br>52 | 131<br>148 | 51<br>62 | 503<br>552 | 2919<br>2940 | 180<br>189 | <u>687</u><br>646 |
| 40.1     | -13       | -1981          | 13216          | -154         | -270         | -102         | -1592          | 51              | 108       | 65              | 49       | 148        | 52       | 572        | 2940         | 179        | 656               |
| 40.2     | 1         | -3510          | 11320          | -408         | -43          | -102         | -4106          | 41              | 125       | 87              | 59       | 170        | 46       | 533        | 2857         | 175        | 673               |
| 40.4     | -20       | -2747          | 12586          | -439         | -144         | -182         | -4897          | 45              | 123       | 79              | 62       | 177        | 62       | 460        | 2825         | 170        | 650               |
| 40.5     | 1         | -2271          | 15587          | -267         | -69          | -137         | -1601          | 53              | 105       | 63              | 59       | 162        | 57       | 515        | 2916         | 166        | 648               |
| 40.6     | 7         | -1179          | 14016          | 21           | -257         | -53          | 668            | 51              | 127       | 97              | 39       | 154        | 55       | 575        | 2906         | 179        | 650               |
| 40.7     | -9        | -613           | 14594          | 237          | -231         | 50           | 3426           | 64              | 95        | 92              | 39       | 159        | 67       | 584        | 3071         | 180        | 649               |
| 40.8     | 16        | -889           | 17988          | 271          | -248         | 39           | 4537           | 56              | 93        | 71              | 58       | 188        | 66       | 564        | 3029         | 168        | 707               |
| 40.9     | -1        | -2244          | 16480          | -150         | 154          | -135         | -1059          | 42              | 115       | 78              | 54       | 156        | 49       | 561        | 3043         | 179        | 692               |
| 41       | 5         | -2591          | 15375          | -261         | 123          | -159         | -2339          | 42              | 101       | 89              | 56       | 165        | 49       | 554        | 3024         | 179        | 702               |
| 41.1     | -4        | -2345          | 8992           | -237         | -91          | -126         | -4618          | 32              | 106       | 88              | 61       | 168        | 59       | 553        | 2756         | 183        | 698               |
| 41.2     | 5         | -1232          | 11863          | 80           | -229         | -31          | -419           | 18              | 95        | 114             | 60       | 144        | 68       | 560        | 2882         | 188        | 647               |
| 41.3     | 8         | -2514          | 5588           | -330         | -332         | -137         | -6220          | 25              | 64        | 80              | 63       | 137        | 37       | 562        | 2652         | 183        | 656               |
| 41.4     | -6        | -2643          | 7581           | -548         | 30           | -208         | -7193          | 11              | 82        | 71              | 56       | 170        | 63       | 523        | 2759         | 176        | 683               |
| 41.5     | -16       | -3239          | 7904           | -575         | -117         | -243         | -7652          | 19              | 94        | 74              | 68       | 151        | 42       | 512        | 2721         | 174        | 682               |

| 41.6     | -6       | 35             | 9143        | -399          | 150   | -212         | -5200  | 22               | 131       | 94              | 67       | 166        | 45       | 570     | 2919         | 177        | 712        |
|----------|----------|----------------|-------------|---------------|-------|--------------|--------|------------------|-----------|-----------------|----------|------------|----------|---------|--------------|------------|------------|
| 41.7     | 12       | -1481          | 6694        | -443          | -9    | -212         | -5562  | 10               | 112       | 88              | 25       | 159        | 45       | 587     | 2770         | 202        | 724        |
| 41.8     | -3       | -1429          | 8871        | -241          | 32    | -184         | -3585  | -7               | 89        | 80              | 54       | 171        | 56       | 551     | 2867         | 202        | 679        |
| 41.9     | -8       | -1513          | 7412        | -247          | -188  | -140         | -3968  | -10              | 92        | 97              | 64       | 189        | 41       | 549     | 2783         | 193        | 668        |
| 42       | 5        | -1465          | 5584        | -284          | -129  | -97          | -5314  | -15              | 97        | 90              | 44       | 147        | 59       | 530     | 2740         | 192        | 695        |
| 42.1     | -8       | -1266          | 6932        | -236          | -28   | -138         | -4089  | -15              | 79        | 89              | 46       | 166        | 64       | 564     | 2875         | 176        | 703        |
| 42.2     | 1        | -836           | 5867        | -214          | -31   | -89          | -3885  | -22              | 99        | 74              | 41       | 181        | 54       | 566     | 2832         | 180        | 681        |
| 42.3     | 4        | -1903          | 958         | -441          | -4    | -166         | -7366  | -20              | 110       | 73              | 28       | 173        | 46       | 538     | 2642         | 184        | 708        |
| 42.4     | 20       | -2466          | 4852        | -380          | -74   | -148         | -5705  | 14               | 74        | 86              | 30       | 168        | 71       | 521     | 2796         | 178        | 646        |
| 42.5     | 5        | -2128          | 7219        | -372          | 23    | -197         | -5469  | 2                | 88        | 91              | 51       | 146        | 50       | 541     | 2871         | 182        | 668        |
| 42.6     | -2       | -2049          | 5077        | -407          | -103  | -181         | -5588  | -7               | 81        | 82              | 28       | 178        | 55       | 563     | 2779         | 182        | 688        |
| 42.7     | -17      | -2795          | 4406        | -486          | -35   | -223         | -7020  | -1               | 105       | 87              | 42       | 166        | 59       | 549     | 2700         | 172        | 653        |
| 42.8     | -3       | -2945          | 5351        | -586          | 155   | -289         | -7434  | -1               | 78        | 63              | 37       | 161        | 53       | 530     | 2819         | 173        | 658        |
| 42.9     | -6       | -1302          | 9424        | -255          | 84    | -184         | -2980  | -10              | 91        | 94              | 58       | 169        | 63       | 542     | 2919         | 211        | 657        |
| 43       | -8       | -2432          | 7105        | -649          | -56   | -270         | -7990  | -18              | 111       | 94              | 62       | 172        | 59       | 527     | 2703         | 193        | 649        |
| 43.1     | -5       | -2427          | 10226       | -459          | 32    | -243         | -6953  | -5               | 111       | 94              | 79       | 193        | 68       | 557     | 2752         | 192        | 643        |
| 43.2     | -8       | -3323          | 7624        | -787          | 159   | -336         | -9319  | -12              | 79        | 83              | 70       | 164        | 66       | 538     | 2817         | 176        | 637        |
| 43.3     | -6       | -2817          | 8530        | -641          | 291   | -292         | -7736  | -2               | 89        | 91              | 60       | 166        | 66       | 521     | 2883         | 181        | 643        |
| 43.4     | -1       | -1325          | 12626       | -508          | 111   | -217         | -5457  | -19              | 113       | 101             | 54       | 131        | 67       | 550     | 2854         | 197        | 657        |
| 43.5     | -6       | -841           | 14303       | -78           | -10   | -105         | -1325  | -27              | 99        | 97              | 58       | 147        | 82       | 534     | 2891         | 194        | 672        |
| 43.6     | -8       | -1587          | 12772       | -322          | -101  | -160         | -6496  | -23              | 80        | 80              | 49       | 184        | 71       | 543     | 2716         | 182        | 663        |
| 43.7     | -10      | -1622          | 10750       | -325          | -127  | -187         | -7130  | -37              | 100       | 90              | 78       | 186        | 62       | 534     | 2723         | 177        | 657        |
| 43.8     | -2       | -2302          | 8150        | -543          | -222  | -249         | -7931  | -31              | 88        | 94              | 60       | 151        | 62       | 509     | 2629         | 182        | 633        |
| 43.9     | -17      | -2436          | 8570        | -704          | 56    | -314         | -9986  | -31              | 94        | 101             | 58       | 144        | 54       | 502     | 2646         | 193        | 624        |
| 44       | -17      | -1327          | 10048       | -769          | 189   | -370         | -9684  | -17              | 119       | 99              | 63       | 158        | 55       | 637     | 2794         | 185        | 647        |
| 44.1     | -2       | -292           | 13325       | -308          | 326   | -177         | -4748  | -30              | 96        | 105             | 65       | 173        | 57       | 590     | 2885         | 200        | 676        |
| 44.2     | 8        | 54             | 8463        | -296          | -51   | -144         | -5509  | -84              | 105       | 100             | 64       | 155        | 66       | 599     | 2761         | 202        | 703        |
| 44.3     | -9       | 304            | 6954        | 123           | 2     | -120         | -4855  | -114             | 101       | 99              | 45       | 148        | 52       | 615     | 2779         | 200        | 710        |
| 44.4     | 7        | -347           | 5091        | -399          | 34    | -200         | -6541  | -116             | 97        | 109             | 45       | 171        | 48       | 583     | 2840         | 200        | 679        |
| 44.5     | -3       | -94            | 3594        | -528          | 147   | -161         | -7387  | -124             | 104       | 105             | 25       | 183        | 70       | 595     | 2753         | 194        | 703        |
| 44.6     | -1       | 223            | 3280        | -396          | 103   | -90          | -6070  | -194             | 76        | 112             | 25       | 178        | 52       | 574     | 2797         | 195        | 662        |
| 44.7     | 5        | 91             | 2034        | -562          | 228   | -156         | -7073  | -261             | 84        | 112             | 27       | 156        | 51       | 550     | 2808         | 201        | 680        |
| 44.8     | -5       | -10279         | -24857      | -2796         | -1050 | -573         | -38046 | 28613            | 61        | 46              | 26       | 50         | 177      | 249     | 1356         | 142        | 272        |
| 44.9     | -11      | -11909         | -33602      | -3212         | -1424 | -685         | -45077 | 31692            | 50        | 38              | 24       | 36         | 169      | 180     | 966          | 140        | 240        |
| 45       | -6       | -6911          | -9658       | -1897         | -677  | -376         | -25878 | 32549            | 67        | 56              | 43       | 82         | 216      | 378     | 1873         | 186        | 448        |
| 45.1     | -9       | -5118          | -2724       | -1259         | -736  | -336         | -19058 | 411              | 101       | 73              | 58       | 101        | 37       | 436     | 2097         | 152        | 500        |
| 45.2     | 1        | -5100          | -2630       | -1284         | -869  | -348         | -19877 | 162              | 78        | 56              | 61       | 105        | 32       | 412     | 2037         | 138        | 517        |
| 45.3     | -10      | -1775          | 11905       | -740          | -256  | -262         | -10436 | 165              | 97<br>102 | 91              | 76       | 106<br>123 | 48       | 459     | 2556         | 171        | 649        |
| 45.4     | 7        | -909           | 9108        | -716          | -300  | -243         | -9656  | 297              |           | 101             | 75       |            | 46       | 502     | 2635         | 168        | 588        |
| 45.5     | 0        | -1178          | 11195       | -581          | -280  | -200         | -8362  | 232              | 117       | 89              | 74       | 122        | 51       | 495     | 2626         | 179        | 615        |
| <u> </u> | -2<br>2  | -3244          | 7232        | -1002<br>-999 | -354  | -339         | -13034 | <u>11</u><br>347 | 103<br>91 | <u>81</u><br>92 | 71<br>43 | 134<br>90  | 44       | 461 499 | 2519         | 152        | 643<br>600 |
| 45.7     | -1       | -3340<br>-4679 | 5037<br>639 | -1221         | -150  | -332<br>-386 | -12836 | 524              | 102       | 87              | 37       | 105        | 42<br>47 | 499     | 2585<br>2582 | 175<br>167 | 596        |
| 45.8     | -1<br>11 | -4679<br>-4540 | 4331        | -1221         | -149  | -380         | -14/80 | 1051             | 98        | 87              | 65       | 105        | 65       | 465     | 2582         | 167        | <u> </u>   |
| 45.9     | -3       | -4340          | 6285        | -1085         | -202  | -347         | -12263 | 1648             | 100       | 80              | 48       | 110        | 60       | 487     | 2584         | 181        | 606        |
| 40       | -5       | -4096          | 3955        | -936          | -32   | -313         | -11534 | 461              | 96        | 72              | 48<br>55 | 119        | 55       | 482     | 2692         | 168        | 605        |
| 46.2     | -9       | -4334          | 2521        | -963          | -255  | -290         | -12326 | 224              | 115       | 75              | 39       | 109        | 55       | 438     | 2553         | 181        | 589        |
| 40.2     | -7       | -44/4          | 2321        | -950          | -107  | -234         | -12320 | 224              | 115       | 15              | 39       | 109        |          | 445     | 2355         | 101        | 507        |

|      | -   | 1215  | 10.65  | 10.54 | 1.12 | 205  | 10/71  | 100  | 0.0 | - 4 | 10 | 100 | 50  | 474 | 2260 | 1.50 |     |
|------|-----|-------|--------|-------|------|------|--------|------|-----|-----|----|-----|-----|-----|------|------|-----|
| 46.3 | -7  | -4317 | 4065   | -1056 | -143 | -387 | -12674 | 400  | 92  | 74  | 42 | 120 | 53  | 471 | 2569 | 173  | 561 |
| 46.4 | -6  | -3785 | 6722   | -891  | -93  | -331 | -11362 | -9   | 95  | 85  | 56 | 110 | 62  | 485 | 2657 | 160  | 590 |
| 46.5 | 5   | -3821 | 5750   | -857  | -241 | -292 | -11131 | -9   | 96  | 76  | 60 | 115 | 56  | 456 | 2614 | 178  | 587 |
| 46.6 | -9  | -3617 | 6393   | -842  | -227 | -270 | -11204 | 68   | 90  | 85  | 65 | 113 | 42  | 454 | 2539 | 172  | 565 |
| 46.7 | 1   | -3798 | 7228   | -855  | -112 | -297 | -12102 | 123  | 101 | 78  | 83 | 137 | 48  | 492 | 2556 | 172  | 632 |
| 46.8 | -4  | -4808 | 62     | -1361 | -86  | -432 | -16846 | 1557 | 87  | 79  | 47 | 114 | 49  | 486 | 2450 | 177  | 589 |
| 46.9 | -7  | -4614 | -4352  | -1173 | -364 | -335 | -15233 | 1890 | 88  | 87  | 40 | 120 | 50  | 467 | 2390 | 182  | 600 |
| 47   | 10  | -4439 | -722   | -1020 | -220 | -322 | -13763 | 214  | 81  | 78  | 42 | 130 | 46  | 486 | 2529 | 181  | 606 |
| 47.1 | 0   | -3847 | 157    | -876  | -153 | -289 | -12446 | 52   | 118 | 81  | 39 | 132 | 43  | 498 | 2544 | 177  | 616 |
| 47.2 | -4  | -3852 | -1236  | -1121 | -310 | -356 | -14620 | 71   | 91  | 91  | 38 | 122 | 45  | 492 | 2370 | 175  | 586 |
| 47.3 | -1  | -4680 | -4057  | -1215 | -484 | -326 | -16045 | 81   | 85  | 76  | 22 | 128 | 41  | 598 | 2362 | 168  | 587 |
| 47.4 | -3  | -5814 | -7648  | -1434 | -293 | -418 | -19325 | 86   | 90  | 79  | 31 | 119 | 43  | 461 | 2261 | 165  | 638 |
| 47.5 | -16 | -5554 | -7764  | -1783 | 48   | -546 | -23377 | 283  | 95  | 75  | 24 | 97  | 45  | 486 | 2300 | 182  | 669 |
| 47.6 | -1  | -4346 | -4082  | -1620 | 260  | -486 | -20721 | 983  | 94  | 87  | 19 | 116 | 55  | 534 | 2477 | 174  | 599 |
| 47.7 | 3   | -5553 | -5070  | -1583 | -21  | -452 | -20375 | 1937 | 109 | 83  | 35 | 96  | 59  | 455 | 2364 | 185  | 583 |
| 47.8 | -6  | -5562 | -9431  | -1635 | 78   | -499 | -23147 | 820  | 80  | 80  | 17 | 99  | 55  | 425 | 2204 | 160  | 553 |
| 47.9 | -4  | -4696 | -1356  | -1462 | 355  | -463 | -18998 | 1698 | 121 | 85  | 27 | 117 | 49  | 510 | 2443 | 182  | 607 |
| 48   | -10 | -3872 | 1651   | -1201 | 77   | -337 | -15224 | 1937 | 82  | 76  | 30 | 142 | 57  | 516 | 2524 | 164  | 610 |
| 48.1 | -1  | -4693 | 1629   | -1260 | -5   | -394 | -16051 | 1991 | 96  | 64  | 40 | 113 | 39  | 467 | 2456 | 157  | 607 |
| 48.2 | -7  | -5017 | 3004   | -1199 | 7    | -375 | -16026 | 596  | 93  | 65  | 40 | 120 | 41  | 482 | 2451 | 149  | 578 |
| 48.3 | -5  | -5204 | 5873   | -1364 | -114 | -442 | -16589 | 997  | 79  | 62  | 40 | 111 | 43  | 473 | 2474 | 150  | 578 |
| 48.4 | -6  | -4441 | -7772  | -1124 | -19  | -450 | -13296 | 1165 | 87  | 81  | 50 | 111 | 47  | 502 | 2621 | 160  | 557 |
| 48.5 | -15 | -2533 | -7690  | -982  | -24  | -428 | -12546 | 837  | 112 | 70  | 42 | 111 | 36  | 455 | 2638 | 155  | 615 |
| 48.6 | -1  | -3823 | -5999  | -872  | -120 | -344 | -10191 | 1525 | 103 | 72  | 41 | 136 | 56  | 515 | 2699 | 164  | 609 |
| 48.7 | -1  | -2891 | -4505  | -643  | -119 | -290 | -8718  | 2391 | 87  | 74  | 32 | 129 | 50  | 530 | 2699 | 158  | 602 |
| 48.8 | 8   | -2463 | -120   | -449  | -36  | -252 | -6623  | 366  | 93  | 91  | 54 | 131 | 44  | 534 | 2779 | 162  | 628 |
| 48.9 | 10  | -3531 | -4901  | -770  | -149 | -344 | -9597  | 323  | 123 | 76  | 41 | 129 | 46  | 521 | 2646 | 166  | 608 |
| 49   | 3   | -2744 | -1238  | -517  | -193 | -315 | -6766  | 359  | 109 | 90  | 42 | 112 | 42  | 500 | 2750 | 157  | 594 |
| 49.1 | -10 | -2717 | -1873  | -633  | -13  | -321 | -7973  | 353  | 106 | 78  | 63 | 131 | 40  | 550 | 2707 | 161  | 626 |
| 49.2 | -7  | -3976 | -5904  | -903  | 78   | -383 | -12277 | 347  | 112 | 83  | 49 | 111 | 37  | 549 | 2637 | 179  | 644 |
| 49.3 | -2  | -2577 | -1579  | -639  | -92  | -279 | -8036  | 360  | 112 | 111 | 56 | 112 | 41  | 576 | 2702 | 146  | 609 |
| 49.4 | -10 | -2191 | 2572   | -433  | 16   | -203 | -5640  | 367  | 106 | 73  | 62 | 131 | 36  | 520 | 2770 | 152  | 610 |
| 49.5 | -8  | -788  | 1634   | -170  | -96  | -112 | -2447  | 377  | 82  | 91  | 55 | 96  | 41  | 558 | 2869 | 175  | 630 |
| 49.6 | 5   | -3955 | -5364  | -955  | 223  | -360 | -12710 | 359  | 107 | 78  | 53 | 104 | 47  | 544 | 2652 | 166  | 660 |
| 49.7 | 1   | -3022 | -2025  | -747  | 190  | -331 | -9414  | 376  | 113 | 84  | 65 | 124 | 41  | 533 | 2740 | 173  | 660 |
| 49.8 | 3   | -2816 | -7131  | -734  | 135  | -269 | -10690 | 346  | 123 | 80  | 52 | 103 | 38  | 541 | 2650 | 160  | 643 |
| 49.9 | 6   | -2795 | -4559  | -670  | -46  | -243 | -8110  | 347  | 87  | 93  | 54 | 132 | 38  | 566 | 2738 | 176  | 627 |
| 50   | -5  | -3647 | -9679  | -934  | 100  | -387 | -12109 | 345  | 96  | 102 | 32 | 103 | 47  | 533 | 2651 | 191  | 628 |
| 50.1 | -10 | -3504 | -11225 | -869  | -45  | -331 | -11940 | 321  | 89  | 75  | 19 | 109 | 37  | 513 | 2588 | 166  | 622 |
| 50.2 | 0   | -3402 | -5592  | -852  | 34   | -307 | -9185  | 308  | 90  | 87  | 36 | 117 | 44  | 500 | 2663 | 169  | 632 |
| 50.3 | -7  | -5148 | -11376 | -1320 | -205 | -454 | -16136 | 279  | 76  | 79  | 40 | 113 | 36  | 460 | 2403 | 140  | 615 |
| 50.4 | -1  | -4664 | -12174 | -1171 | -122 | -435 | -15196 | 325  | 121 | 85  | 34 | 101 | 41  | 509 | 2479 | 150  | 599 |
| 50.5 | 7   | -4759 | -2494  | -1324 | 259  | -502 | -15812 | 355  | 81  | 76  | 47 | 114 | 34  | 510 | 2612 | 146  | 597 |
| 50.6 | -12 | -4141 | 770    | -1222 | 296  | -459 | -16980 | 363  | 85  | 91  | 38 | 111 | 36  | 484 | 2532 | 141  | 596 |
| 50.7 | -15 | -3386 | 306    | -930  | -113 | -389 | -13055 | 382  | 101 | 65  | 69 | 105 | 39  | 487 | 2626 | 139  | 575 |
| 50.8 | 6   | -2790 | 6654   | -503  | -78  | -271 | -6235  | 405  | 83  | 76  | 66 | 119 | 42  | 555 | 2745 | 141  | 602 |
| 50.9 | 1   | -3636 | 5447   | -656  | -5   | -362 | -9022  | 419  | 113 | 75  | 62 | 111 | 45  | 511 | 2788 | 136  | 617 |
|      | 1   | 5050  | 5777   | 050   | -5   | 502  | 1022   | 717  | 115 | 15  | 02 |     | т.) | 211 | 2700 | 150  | 017 |

| <b>71</b>           | 1        | 1724           | 02(5            | 200           | 10.4        | 102          | 2051             | 12(               | 01         | ((        | (2)      | 110        | <b>C 1</b> | 400        | 2017         | 1.40       | (00               |
|---------------------|----------|----------------|-----------------|---------------|-------------|--------------|------------------|-------------------|------------|-----------|----------|------------|------------|------------|--------------|------------|-------------------|
| 51                  | -1<br>-3 | -1724<br>-2711 | 9365<br>10541   | -280<br>-298  | -104<br>157 | -183<br>-264 | -3951<br>-5253   | 426               | 81<br>76   | 66<br>92  | 63<br>83 | 118<br>130 | 51<br>49   | 488<br>583 | 2817<br>2797 | 142<br>144 | <u>608</u><br>573 |
| 51.1                | -        |                |                 |               |             | -            |                  |                   |            |           |          |            |            |            |              |            |                   |
| 51.2                | -3       | -3621          | 9429            | -567          | 8           | -381         | -7565            | 396               | 86         | 82        | 70       | 106        | 28         | 564        | 2791         | 154        | 595               |
| 51.3                | 4        | -3535          | 4145            | -731          | -126        | -278         | -9747            | 397               | 121        | 70        | 63       | 110        | 43         | 531        | 2659         | 137        | 595               |
| 51.4                | -9       | -2074          | 4957            | -324          | -48         | -239         | -5744            | 421               | 123        | 86        | 45       | 107        | 40         | 516        | 2708         | 142        | 597               |
| 51.5                | 15       | -2815          | 9138            | -437          | -86         | -242         | -5966            | 420               | 112        | 86        | 74       | 110        | 52         | 504        | 2777         | 157        | 622               |
| 51.6                | 3        | -3212          | 7496            | -502          | -4          | -249         | -6945            | 419               | 85         | 74        | 70       | 117        | 38         | 527        | 2719         | 137        | 585               |
| 51.7                | 3        | -2798          | 5670            | -406          | -181        | -216         | -7389            | 393               | 78         | 99        | 74       | 128        | 35         | 509        | 2660         | 140        | 591               |
| 51.8                | -6       | -3427          | 4451            | -743          | -103        | -307         | -9146            | 403               | 110        | 64        | 67       | 117        | 40         | 512        | 2670         | 140        | 618               |
| 51.9                | -10      | -3457          | -1984           | -763          | -133        | -311         | -10946           | 415               | 79         | 79        | 53       | 99         | 35         | 507        | 2617         | 139        | 568               |
| 52                  | 1        | -3010          | 5883            | -610          | 34          | -293         | -7565            | 452               | 110        | 89        | 46       | 137        | 27         | 533        | 2810         | 155        | 627               |
| 52.1                | -3       | -3204          | 5422            | -753          | 107         | -349         | -8577            | 451               | 88         | 92        | 50       | 85         | 42         | 502        | 2693         | 145        | 592               |
| <u>52.2</u><br>52.3 | -4<br>5  | -3401<br>-3107 | 7618<br>-43     | -601<br>-579  | 94          | -304         | -7165            | 433 383           | 124<br>126 | 100<br>83 | 57<br>58 | 136<br>116 | 40         | 550<br>530 | 2807<br>2627 | 164<br>143 | 668<br>649        |
| 52.3                | -12      | -2971          | 1715            | -683          | -130        | -231         | -7721<br>-6869   | 385               | 126        | 83        | 78       | 123        | 52         | 493        | 2627         | 143        | 649               |
|                     |          |                |                 |               | 14          |              |                  |                   |            |           |          |            |            |            |              |            |                   |
| <u>52.5</u><br>52.6 | -11      | -3262          | -453<br>-6391   | -581<br>-1629 | -3<br>187   | -237         | -6984<br>-19724  | <u>352</u><br>310 | 111<br>120 | 100       | 55       | 136<br>126 | 41         | 532<br>491 | 2780<br>2432 | 160<br>156 | 653               |
| 52.0                | -11      | -6907          |                 | -1029         | -196        | -343         |                  | 310               | 97         | 89        | 46       | 120        | 40         | -          | 2432         | 136        | 618               |
| 52.7                | -9       | -4389<br>-5944 | -6251<br>-6343  | -1004         | -196        | -468         | -13138<br>-16523 | 281               | 107        | 76        | 55<br>43 | 112        | 37         | 511<br>496 | 2517         | 145        | 610<br>608        |
| 52.8                | -7       |                |                 | -1447         |             | -408         | -10323           | 281               | 107        | 70        | 43<br>50 | 112        | 27         | 490        | 2343         | 141        | 575               |
| 52.9                | -7       | -6535<br>-6386 | -11118<br>-7659 | -1646         | 281<br>595  | -497         | -20017           | 284               | 83         | 77        | 65       | 119        | 27         | 491        | 2478         | 165        | 633               |
| 53.1                | -0       | -0380          | -13572          | -1378         | 203         | -484         | -20024           | 278               | 86         | 66        | 47       | 105        | 39         | 473        | 2303         | 138        | 597               |
| 53.2                | -10      | -6438          | -15599          | -1884         | -318        | -382         | -23049           | 326               | 81         | 63        | 47       | 98         | 34         | 488        | 2208         | 136        | 506               |
| 53.3                | -10      | -0438          | 1793            | -1480         | -518        | -401         | -21204           | 320               | 84         | 76        | 43       | 120        | 50         | 546        | 2234         | 150        | 556               |
| 53.4                | -5       | -3673          | 4545            | -978          | -138        | -369         | -11255           | 375               | 111        | 70        | 73       | 120        | 40         | 539        | 2613         | 158        | 561               |
| 53.5                | -3       | -3073          | 6678            | -563          | -142        | -309         | -9022            | 375               | 108        | 62        | 108      | 120        | 40         | 501        | 2013         | 152        | 575               |
| 53.6                | -2       | -3122          | 12147           | -696          | -142        | -315         | -9022            | 397               | 77         | 67        | 103      | 98         | 33         | 463        | 2681         | 154        | 570               |
| 53.7                | -6       | -4081          | 13666           | -1152         | 208         | -419         | -14768           | 400               | 88         | 66        | 107      | 97         | 15         | 403        | 2524         | 128        | 534               |
| 53.8                | -13      | -3551          | 16913           | -942          | 158         | -400         | -12137           | 400               | 74         | 72        | 108      | 118        | 23         | 511        | 2655         | 128        | 560               |
| 53.9                | -15      | -4208          | 12636           | -922          | 67          | -447         | -11834           | 412               | 91         | 60        | 98       | 113        | 27         | 509        | 2000         | 137        | 576               |
| 54                  | -4       | -3387          | 13108           | -691          | 213         | -386         | -9717            | 409               | 89         | 85        | 116      | 97         | 42         | 483        | 2704         | 137        | 630               |
| 54.1                | 3        | -3856          | 8840            | -847          | 44          | -362         | -10326           | 400               | 96         | 73        | 82       | 106        | 26         | 479        | 2688         | 137        | 596               |
| 54.2                | 3        | -1927          | 11429           | -277          | -73         | -184         | -3383            | 414               | 95         | 75        | 103      | 116        | 43         | 509        | 2803         | 152        | 614               |
| 54.3                | 0        | -3663          | 4937            | -843          | 29          | -323         | -9901            | 409               | 97         | 77        | 87       | 130        | 31         | 539        | 2681         | 161        | 638               |
| 54.4                | -2       | -3868          | 2127            | -866          | 74          | -339         | -10041           | 422               | 87         | 81        | 73       | 115        | 36         | 522        | 2679         | 145        | 605               |
| 54.5                | -4       | -2628          | 4550            | -521          | -52         | -219         | -5709            | 419               | 97         | 78        | 78       | 126        | 39         | 555        | 2816         | 159        | 629               |
| 54.6                | -6       | -3142          | 2277            | -662          | -57         | -322         | -8919            | 435               | 80         | 82        | 59       | 104        | 29         | 485        | 2638         | 139        | 561               |
| 54.7                | 6        | -2155          | 8922            | -332          | -30         | -192         | -4975            | 454               | 124        | 87        | 71       | 139        | 33         | 523        | 2795         | 162        | 604               |
| 54.8                | -3       | -2863          | 11220           | -576          | -13         | -324         | -7617            | 466               | 85         | 79        | 66       | 122        | 28         | 490        | 2756         | 148        | 550               |
| 54.9                | -10      | -2098          | 11574           | -369          | -189        | -242         | -5383            | 449               | 97         | 78        | 65       | 115        | 15         | 532        | 2786         | 150        | 581               |
| 55                  | 2        | -1756          | 12830           | -165          | -153        | -217         | -4037            | 473               | 101        | 80        | 80       | 105        | 17         | 591        | 2831         | 142        | 578               |
| 55.1                | 8        | 55             | 16078           | 623           | -228        | 77           | 3209             | 468               | 101        | 91        | 86       | 114        | 28         | 625        | 2974         | 148        | 628               |
| 55.2                | -10      | -1771          | 9485            | 025           | 13          | -192         | -2246            | 400               | 94         | 87        | 63       | 116        | 29         | 569        | 2863         | 144        | 613               |
| 55.3                | 9        | -956           | 6968            | -205          | -73         | -167         | -3770            | 377               | 101        | 78        | 71       | 140        | 45         | 572        | 2835         | 156        | 577               |
| 55.4                | -15      | -3313          | -2933           | -854          | -86         | -310         | -12383           | 322               | 101        | 77        | 75       | 110        | 35         | 547        | 2540         | 139        | 561               |
| 55.5                | 10       | -2626          | -2190           | -521          | -292        | -215         | -7835            | 340               | 87         | 73        | 48       | 101        | 43         | 522        | 2732         | 138        | 591               |
| 55.6                | -1       | -4372          | 2924            | -920          | 96          | -407         | -12774           | 336               | 85         | 79        | 64       | 118        | 30         | 588        | 2636         | 139        | 563               |
| 0010                | -        |                | _/_1            | /20           | ,,,         |              | ,,,              | 550               | 00         | .,        | · · ·    |            |            | 000        | 2000         |            | 000               |

|                     | 7       | 1665           | 400            | 200          | 240        | 2(2          | 10750           | 220        | 00        | 0.2      | 00       | 0.4        | 42       | 502        | 2610         | 147        | 500        |
|---------------------|---------|----------------|----------------|--------------|------------|--------------|-----------------|------------|-----------|----------|----------|------------|----------|------------|--------------|------------|------------|
| <u>55.7</u><br>55.8 | -7<br>3 | -4665<br>-3429 | -498<br>204    | -890<br>-686 | -249       | -362<br>-359 | -12753          | 338<br>401 | 99<br>80  | 83<br>78 | 82<br>54 | 94<br>113  | 42       | 503<br>648 | 2518<br>2555 | 147<br>142 | 580<br>562 |
| 55.9                | 0       | -3429          | 5367           | -686         | -120       | -339         | -10627<br>-9498 | 401        | 80        | 78       | 55       | 115        | 32       | 701        | 2555         | 142        | 554        |
| 55.9                | -10     | -2104          | 8212           | -625         | 296        | -344         | -9498           | 458        | 96        | 102      | 53       | 121        |          |            |              |            | 582        |
| 56.1                | -10     | -2998          | 7133           | -834         | 346        | -393         |                 | 501        | 86        | 102      | 62       | 118        | 38<br>57 | 658<br>622 | 2623<br>2819 | 141<br>135 | 610        |
| 56.2                | -12     | -1704          | 6817           | -438         | 190        | -367         | -11359<br>-7733 | 510        | 110       | 82       | 62       | 126        | 47       | 567        | 2819         | 135        | 616        |
| 56.3                | -9      | -1180          | 11052          | -438         | 96         | -182         | -3093           | 503        | 70        | 78       | 74       | 123        | 35       | 525        | 2/8/<br>2911 | 143        | 600        |
| 56.4                | 4       | -2089          | 8089           | -427         | 116        | -269         | -5617           | 497        | 111       | 81       | 51       | 119        | 43       | 573        | 2911         | 157        | 616        |
| 56.5                | -2      | -2089          | 10570          | -427         | 110        | -209         | -4425           | 535        | 129       | 96       | 74       | 115        | 29       | 529        | 2899         | 130        | 655        |
| 56.6                | -2      | -2243          | 9822           | -429         | -37        | -251         | -3214           | 483        | 117       | 85       | 82       | 158        | 23       | 545        | 2909         | 171        | 657        |
| 56.7                | -11     | -3037          | 7454           | -442         | 30         | -308         | -4531           | 485        | 120       | 102      | 71       | 113        | 23       | 526        | 2830         | 154        | 653        |
| 56.8                | -11     | -1824          | 7434           | -254         | 241        | -226         | -2662           | 495        | 97        | 88       | 62       | 116        | 31       | 534        | 2910         | 166        | 668        |
| 56.9                | 3       | -2092          | 3035           | -255         | 39         | -220         | -3559           | 450        | 114       | 93       | 58       | 107        | 39       | 575        | 2981         | 170        | 671        |
| 57                  | 15      | -2523          | 3326           | -517         | 132        | -350         | -5515           | 451        | 120       | 85       | 55       | 115        | 39       | 588        | 2899         | 187        | 651        |
| 57.1                | 0       | -1989          | 6043           | -200         | 3          | -285         | -2846           | 446        | 89        | 93       | 47       | 126        | 38       | 525        | 2924         | 164        | 627        |
| 57.2                | -2      | -1233          | 5330           | -54          | -39        | -231         | -721            | 419        | 108       | 72       | 48       | 96         | 39       | 529        | 2962         | 172        | 699        |
| 57.3                | 8       | -1449          | 4290           | -220         | -9         | -198         | -2017           | 388        | 119       | 84       | 59       | 118        | 36       | 566        | 2954         | 165        | 646        |
| 57.4                | 12      | -1624          | 3376           | -105         | -43        | -95          | -858            | 339        | 109       | 99       | 54       | 142        | 25       | 581        | 2861         | 177        | 632        |
| 57.5                | 0       | -1694          | 2282           | -112         | -53        | -105         | -1847           | 318        | 115       | 90       | 75       | 137        | 37       | 567        | 2849         | 167        | 658        |
| 57.6                | -4      | -3282          | -3030          | -571         | 17         | -292         | -8007           | 270        | 115       | 76       | 44       | 128        | 29       | 527        | 2755         | 168        | 627        |
| 57.7                | -1      | -3202          | -3218          | -586         | -31        | -294         | -7287           | 274        | 116       | 84       | 49       | 143        | 35       | 534        | 2757         | 178        | 719        |
| 57.8                | 0       | -3134          | -4131          | -562         | -70        | -250         | -6852           | 267        | 111       | 76       | 51       | 126        | 35       | 536        | 2761         | 172        | 661        |
| 57.9                | -6      | -1724          | -1707          | -141         | -208       | -131         | -3816           | 276        | 85        | 82       | 52       | 100        | 35       | 521        | 2801         | 168        | 629        |
| 58                  | 2       | -2583          | 3              | -313         | -137       | -168         | -5054           | 238        | 76        | 78       | 51       | 114        | 28       | 499        | 2732         | 146        | 637        |
| 58.1                | -16     | -2264          | 2288           | -547         | -55        | -276         | -6858           | 217        | 101       | 74       | 67       | 117        | 25       | 519        | 2673         | 166        | 591        |
| 58.2                | 1       | -1439          | 152            | -216         | -74        | -136         | -3114           | 247        | 91        | 66       | 56       | 113        | 43       | 523        | 2765         | 166        | 610        |
| 58.3                | -3      | -2074          | -126           | -314         | -90        | -203         | -4087           | 244        | 93        | 85       | 68       | 103        | 42       | 520        | 2835         | 185        | 607        |
| 58.4                | 11      | -2876          | -3040          | -162         | -122       | -137         | -5141           | 198        | 121       | 91       | 62       | 153        | 39       | 518        | 2768         | 145        | 641        |
| 58.5                | 14      | -2709          | -4358          | -263         | -21        | -85          | -4235           | 169        | 106       | 84       | 52       | 124        | 35       | 491        | 2795         | 164        | 643        |
| 58.6                | 4       | -4614          | -8013          | -794         | 233        | -232         | -10371          | 159        | 116       | 93       | 65       | 144        | 32       | 520        | 2731         | 172        | 635        |
| 58.7                | 0       | -5213          | -8861          | -1047        | 201        | -355         | -13254          | 157        | 118       | 73       | 53       | 129        | 29       | 513        | 2614         | 174        | 676        |
| 58.8                | 11      | -3792          | -7214          | -680         | -116       | -182         | -9796           | 137        | 131       | 74       | 61       | 133        | 36       | 474        | 2678         | 155        | 651        |
| 58.9                | 8       | -2218          | -4099          | -274         | -120       | 2            | -4959           | 152        | 111       | 73       | 83       | 127        | 40       | 484        | 2772         | 165        | 637        |
| 59                  | -4      | -4199          | -4566          | -795         | 178        | -290         | -9047           | 115        | 113       | 85       | 59       | 134        | 33       | 523        | 2757         | 172        | 641        |
| 59.1                | 0       | -2418          | -5924          | -259         | -163       | -144         | -3788           | 107        | 123       | 81       | 59       | 119        | 45       | 516        | 2834         | 176        | 681        |
| 59.2                | 8       | -2780          | -5176          | -371         | -131       | -152         | -4939           | 122        | 91        | 71       | 80       | 130        | 35       | 528        | 2833         | 172        | 655        |
| 59.3                | 16      | -2383          | -3830          | -206         | -155       | -88          | -4156           | 150        | 147       | 73       | 65       | 115        | 42       | 498        | 2857         | 172        | 655        |
| 59.4                | 2       | -2329          | -2784          | -120         | -178       | -93          | -2801           | 152        | 134       | 95       | 77       | 118        | 31       | 536        | 2752         | 177        | 684        |
| 59.5                | -6      | -2857          | -9233          | -391         | -283       | -142         | -6985           | 149        | 86        | 85       | 37       | 149        | 36       | 501        | 2645         | 169        | 627        |
| <u> </u>            | -11     | -4120          | -10390         | -936         | 32         | -327         | -10845<br>-4998 | 162<br>172 | 96<br>129 | 68<br>76 | 35<br>47 | 133<br>153 | 29       | 549        | 2673         | 168        | 655        |
| 59.7                | 5       | -1853<br>-4704 | -7346<br>-5297 | -192<br>-914 | -90<br>385 | -24<br>-244  | -4998           | 1/2        | 129       | 92       | 73       | 101        | 41 31    | 548<br>485 | 2719<br>2700 | 190<br>167 | 663<br>665 |
| 59.8                | -8      | -4704          | -9036          | -1360        | 158        | -244         | -12331          | 148        | 91        | 92<br>71 | 33       | 118        | 31       | 519        | 2700         | 174        | 623        |
| <u> </u>            | -8      | -2154          | -9036          | -1360        | -239       | -486         | -14911          | 124        | 133       | 85       | 45       | 118        | 30       | 507        | 2677         | 1/4        | 608        |
| 60.1                | -3      | -2134          | -7307          | -278         | -239       | -110         | -6778           | 147        | 80        | 83       | 43       | 112        | 35       | 556        | 2689         | 155        | 625        |
| 60.2                | 11      | 617            | -7208          | -258         | -141       | -152         | -5720           | 172        | 93        | 86       | 70       | 101        | 42       | 645        | 2736         | 165        | 576        |
| 60.3                | -1      | -1463          | -2903          | -238         | -241       | -131         | -2548           | 192        | 107       | 68       | 70       | 98         | 42       | 656        | 2730         | 131        | 597        |
| 00.5                | -1      | -1403          | -2903          | 31           | -107       | -21          | -2340           | 172        | 107       | 00       | /1       | 70         | 45       | 050        | 2113         | 131        | 571        |

| 60.4              | 3        | -826           | 1387             | 205          | -131         | 96           | 110    | 200        | 119        | 89              | 86       | 147        | 42       | 537        | 2862         | 162        | 638        |
|-------------------|----------|----------------|------------------|--------------|--------------|--------------|--------|------------|------------|-----------------|----------|------------|----------|------------|--------------|------------|------------|
| 60.5              | -2       | -1882          | 105              | 19           | 149          | 6            | -2317  | 198        | 102        | 78              | 68       | 133        | 32       | 525        | 2832         | 169        | 647        |
| 60.6              | 5        | -515           | -1688            | 221          | -334         | 88           | 928    | 213        | 92         | 88              | 59       | 104        | 41       | 549        | 2877         | 162        | 630        |
| 60.7              | 3        | 430            | -2318            | 492          | -305         | 207          | 3243   | 179        | 92         | 85              | 56       | 133        | 53       | 520        | 2879         | 172        | 676        |
| 60.8              | -1       | -2046          | -5502            | -285         | -40          | -98          | -3623  | 169        | 126        | 82              | 47       | 135        | 32       | 497        | 2803         | 167        | 655        |
| 60.9              | 8        | -2231          | -5157            | -85          | -186         | -37          | -2710  | 156        | 120        | 97              | 65       | 123        | 51       | 514        | 2783         | 161        | 637        |
| 61                | 28       | -1018          | -4576            | -50          | -208         | 28           | -2589  | 157        | 104        | 85              | 76       | 145        | 39       | 523        | 2769         | 160        | 639        |
| 61.1              | 20       | -618           | -560             | 328          | -392         | 185          | 1910   | 167        | 106        | 90              | 73       | 114        | 37       | 552        | 2827         | 166        | 643        |
| 61.2              | 4        | -130           | -2722            | 348          | -338         | 129          | 2491   | 122        | 86         | 96              | 58       | 119        | 41       | 571        | 2873         | 192        | 669        |
| 61.3              | 10       | -105           | -3526            | 392          | -361         | 179          | 2727   | 109        | 101        | 94              | 49       | 139        | 36       | 501        | 2904         | 178        | 658        |
| 61.4              | 12       | -1752          | -6050            | -154         | -53          | 56           | -3091  | 80         | 99         | 84              | 40       | 140        | 32       | 528        | 2793         | 176        | 654        |
| 61.5              | 17       | -1416          | -7783            | -73          | -121         | 30           | -2831  | 46         | 91         | 100             | 54       | 128        | 34       | 531        | 2829         | 185        | 642        |
| 61.6              | -7       | -2429          | -8403            | -368         | 52           | -120         | -4820  | 22         | 144        | 96              | 43       | 112        | 46       | 538        | 2828         | 170        | 686        |
| 61.7              | 10       | -1862          | -6145            | -163         | -52          | -23          | -3606  | 8          | 140        | 97              | 51       | 140        | 42       | 579        | 2855         | 187        | 722        |
| 61.8              | -3       | -3493          | -9210            | -676         | 273          | -117         | -10043 | 1          | 102        | 77              | 84       | 143        | 44       | 552        | 2734         | 163        | 635        |
| 61.9              | -4       | -4092          | -10103           | -851         | 362          | -220         | -10405 | -55        | 104        | 81              | 77       | 119        | 36       | 513        | 2755         | 183        | 657        |
| 62                | 2        | -3295          | -8573            | -798         | 280          | -242         | -8765  | -69        | 77         | 86              | 72       | 149        | 46       | 554        | 2827         | 171        | 694        |
| 62.1              | 2        | -5096          | -15187           | -1126        | 391          | -322         | -12533 | -74        | 98         | 83              | 37       | 126        | 36       | 507        | 2735         | 181        | 691        |
| 62.2              | 5        | -4681          | -19104           | -1125        | 384          | -258<br>-197 | -14169 | -106       | 97<br>101  | 110<br>90       | 42<br>49 | 133        | 51<br>52 | 433<br>527 | 2631<br>2799 | 161        | 678        |
| 62.3<br>62.4      | -3       | -3629<br>-2728 | -14835<br>-13369 | -751<br>-468 | 163<br>-27   | -197         | -8243  | -77<br>-73 | 101        | 90              | 49       | 123<br>121 | 42       | 496        | 2799         | 175<br>176 | 685<br>688 |
| 62.5              | -3       | -2728          | -13309           | -408         | -27          | -82          | -3912  | -60        | 124        | 94              | 32       | 121        | 39       | 511        | 2832         | 176        | 693        |
| 62.6              | 3        | -2391          | -12203           | -419         | -161         | -40          | -5497  | -64        | 112        | 100             | 50       | 134        | 49       | 500        | 2832         | 168        | 659        |
| 62.7              | -7       | -3179          | -13408           | -652         | 190          | -141         | -8610  | -04        | 131        | 112             | 45       | 117        | 35       | 447        | 2707         | 181        | 681        |
| 62.8              | 5        | -2437          | -11368           | -229         | -44          | -16          | -3736  | -78        | 78         | 100             | 49       | 129        | 55       | 533        | 2820         | 192        | 664        |
| 62.9              | 7        | -2828          | -14338           | -388         | -31          | -71          | -5630  | -70        | 122        | 88              | 40       | 153        | 48       | 579        | 2788         | 180        | 692        |
| 63                | 6        | -4066          | -17194           | -600         | 213          | -168         | -10779 | -58        | 107        | 89              | 28       | 150        | 35       | 511        | 2721         | 172        | 670        |
| 63.1              | 10       | -3586          | -15178           | -491         | 8            | -134         | -8499  | -52        | 91         | 79              | 44       | 105        | 35       | 519        | 2771         | 169        | 676        |
| 63.2              | 2        | -3207          | -16735           | -849         | 334          | -207         | -13600 | -60        | 93         | 102             | 57       | 131        | 33       | 476        | 2646         | 155        | 625        |
| 63.3              | 6        | -3540          | -13872           | -842         | 309          | -216         | -11718 | -58        | 112        | 73              | 39       | 120        | 41       | 497        | 2707         | 161        | 653        |
| 63.4              | 2        | -4975          | -17791           | -974         | 563          | -228         | -14399 | -50        | 102        | 79              | 73       | 120        | 38       | 440        | 2644         | 168        | 661        |
| 63.5              | -2       | -5100          | -15855           | -1134        | 552          | -281         | -14797 | -40        | 78         | 85              | 71       | 128        | 38       | 468        | 2608         | 175        | 622        |
| 63.6              | -5       | -5701          | -18076           | -1272        | 782          | -341         | -17193 | -44        | 98         | 86              | 51       | 108        | 41       | 490        | 2629         | 161        | 614        |
| 63.7              | 6        | -6046          | -20259           | -1377        | 683          | -366         | -17017 | -48        | 94         | 71              | 44       | 96         | 32       | 470        | 2615         | 167        | 615        |
| 63.8              | -4       | -2669          | -13385           | -345         | -231         | -97          | -5071  | -17        | 98         | 92              | 48       | 157        | 42       | 490        | 2789         | 172        | 646        |
| 63.9              | 16       | -2670          | -10991           | -425         | -35          | -98          | -5117  | 7          | 109        | 90              | 40       | 135        | 45       | 508        | 2839         | 169        | 654        |
| 64                | -9       | -3899          | -13934           | -757         | 102          | -193         | -8521  | 12         | 140        | 89              | 46       | 141        | 41       | 505        | 2713         | 164        | 671        |
| 64.1              | 15       | -2491          | -8971            | -344         | -122         | -44          | -4568  | 13         | 99         | 78              | 60       | 147        | 33       | 521        | 2845         | 177        | 646        |
| 64.2              | 0        | -2797          | -11942           | -360         | 0            | -35          | -6088  | 25         | 102        | 82              | 38       | 124        | 45       | 511        | 2731         | 168        | 664        |
| 64.3              | 23       | -1125          | -9914            | 74           | -268         | 90           | -1708  | 56         | 98         | 90              | 53       | 132        | 58       | 492        | 2732         | 160        | 655        |
| 64.4              | 6        | -1659          | -9514            | -15          | -153         | 98           | -1941  | 40         | 124        | 89              | 44       | 138        | 43       | 541        | 2764         | 169        | 662        |
| 64.5              | 7        | -2197          | -8942            | -133         | -128         | 59           | -3264  | 49         | 103        | 85              | 47       | 112        | 54       | 539        | 2790         | 163        | 667        |
| 64.6              | 26       | -1479          | -8425            | 331          | -342<br>-392 | 130          | -624   | 51         | 145        | <u>85</u><br>89 | 40       | 138        | 42       | 543        | 2818         | 155        | 669        |
| 64.7              | 8        | -244           | -4988            | 419<br>194   |              | 180          | 1247   | 60         | 101<br>129 | 89              | 52       | 130<br>120 | 41<br>49 | 525        | 2868<br>2809 | 164        | 645        |
| 64.8              | -        | -1317          | -3922            | -            | -344         | 136          | -713   | 77         | -          |                 | 59       | -          | -        | 528        |              | 181        | 653        |
| <u>64.9</u><br>65 | -1<br>12 | -1527          | -1135            | 148          | -208         | 109          | -1304  | 42         | 110<br>113 | 100<br>86       | 69<br>70 | 118<br>124 | 41       | 575<br>540 | 2843         | 170<br>158 | 634        |
| 05                | 12       | -1975          | -1253            | 132          | -47          | 83           | -1848  | 32         | 113        | 80              | /0       | 124        | - 39     | 540        | 2806         | 138        | 622        |

|      |          |                |              |       |                   |      | 1              |            |     |     |          |     |          |            |      |            |            |
|------|----------|----------------|--------------|-------|-------------------|------|----------------|------------|-----|-----|----------|-----|----------|------------|------|------------|------------|
| 65.1 | 5        | -2451          | 94           | -95   | -134              | 24   | -3390          | 9          | 104 | 88  | 70       | 110 | 30       | 501        | 2802 | 160        | 593        |
| 65.2 | -6       | 102            | 7693         | 330   | -375              | 117  | 1998           | 10         | 106 | 98  | 93       | 129 | 38       | 598        | 2920 | 158        | 617        |
| 65.3 | -6       | -2576          | 2944         | -316  | -41               | -127 | -4248          | -14        | 135 | 85  | 76       | 111 | 35       | 564        | 2874 | 158        | 641        |
| 65.4 | 7        | -3432          | 2908         | -452  | 50                | -110 | -6278          | -32        | 99  | 112 | 80       | 147 | 34       | 484        | 2777 | 174        | 614        |
| 65.5 | 3        | -2910          | 6050         | -405  | -26               | -132 | -5103          | -48        | 100 | 91  | 101      | 124 | 37       | 493        | 2780 | 169        | 606        |
| 65.6 | 6        | -3907          | 2240         | -562  | -32               | -203 | -6245          | -58        | 127 | 87  | 75       | 122 | 20       | 584        | 2882 | 175        | 617        |
| 65.7 | -8       | -4429          | 3634         | -630  | -170              | -256 | -5344          | -67        | 90  | 103 | 81       | 107 | 38       | 535        | 2906 | 159        | 672        |
| 65.8 | 0        | -6423          | -5555        | -1156 | 255               | -371 | -12432         | -59        | 100 | 86  | 65       | 111 | 30       | 578        | 2759 | 150        | 621        |
| 65.9 | 0        | -5852          | -10067       | -1158 | 320               | -299 | -15029         | -65        | 103 | 70  | 59       | 105 | 42       | 654        | 2642 | 140        | 628        |
| 66   | 0        | -3350          | 14           | -318  | -51               | -93  | -4665          | -56        | 117 | 96  | 62       | 131 | 34       | 538        | 2793 | 162        | 636        |
| 66.1 | 3        | -4762          | -2604        | -840  | 60                | -266 | -9352          | -43        | 117 | 84  | 69       | 115 | 33       | 626        | 2770 | 166        | 623        |
| 66.2 | 6        | -5636          | -6031        | -1124 | 137               | -317 | -12727         | -34        | 99  | 66  | 69       | 119 | 28       | 638        | 2650 | 151        | 635        |
| 66.3 | 8        | -5993          | -7478        | -1191 | 281               | -305 | -13317         | -35        | 87  | 63  | 69       | 106 | 26       | 469        | 2637 | 158        | 609        |
| 66.4 | 6        | -3161          | -591         | -263  | -204              | -80  | -5076          | -4         | 99  | 71  | 68       | 101 | 25       | 511        | 2778 | 160        | 654        |
| 66.5 | -2       | -2688          | -4340        | -381  | -259              | -147 | -7853          | 24         | 94  | 62  | 97       | 118 | 25       | 525        | 2639 | 124        | 553        |
| 66.6 | 25       | -1105          | 4765         | 219   | -538              | 11   | -1121          | 78         | 88  | 70  | 97       | 97  | 35       | 547        | 2829 | 148        | 551        |
| 66.7 | 36       | 521            | 13817        | 21)   | -476              | 55   | 804            | 139        | 94  | 83  | 109      | 115 | 35       | 627        | 2818 | 140        | 537        |
| 66.8 | 0        | 158            | 12645        | 371   | -535              | 20   | 2633           | 154        | 113 | 83  | 98       | 120 | 25       | 709        | 2836 | 166        | 588        |
| 66.9 | 14       | -294           | 8968         | 275   | -613              | 10   | 1972           | 165        | 103 | 85  | 86       | 109 | 40       | 610        | 2886 | 164        | 589        |
| 67   | 21       | 334            | 11002        | 639   | -727              | 147  | 4293           | 182        | 86  | 92  | 90       | 118 | 34       | 572        | 2913 | 160        | 585        |
| 67.1 | 21       | 1288           | 10771        | 905   | -664              | 253  | 6446           | 196        | 119 | 92  | 81       | 94  | 36       | 691        | 2897 | 168        | 602        |
| 67.2 | 11       | 377            | 13652        | 812   | -827              | 160  | 6414           | 190        | 95  | 88  | 68       | 111 | 40       | 622        | 2910 | 157        | 599        |
| 67.3 | -4       | 238            | 12785        | 745   | -827              | 165  | 6521           | 161        | 89  | 129 | 78       | 127 | 40       | 630        | 2910 | 172        | 642        |
| 67.4 | 16       | 417            | 12/83        | 876   | -617              | 103  | 6925           | 139        | 108 | 129 | 89       | 107 | 30       | 603        | 2936 | 172        | 623        |
| 67.5 | 17       | -557           | 8691         | 535   | -468              | 67   | 5067           | 113        | 108 | 79  | 78       | 107 | 42       | 532        | 2930 | 168        | 639        |
| 67.6 | -9       | -4166          | 211          | -534  | 226               | -200 | -8173          | 49         | 99  | 68  | 60       | 142 | 31       | 532        | 2920 | 166        | 632        |
| 67.7 | -3       | -6819          | -7587        | -1278 | 695               | -200 | -18363         | 10         | 111 | 76  | 60       | 142 | 30       |            | 2535 | 157        | 622        |
| 67.8 | -5       | -6091          | -2588        | -1278 |                   | -373 | -18363         | 10         | 93  | 70  | 88       | 119 | 25       | 555        | 2555 |            | 607        |
| 67.9 | -0       | -8451          | -11601       | -1065 | <u>469</u><br>901 | -280 | -13390         | -14        | 93  | 78  | 51       | 110 | 19       | 506<br>502 | 2515 | 146<br>156 | 634        |
| 68   | -/       |                | -10396       |       |                   |      |                | -14        | 105 |     | -        | 110 | -        |            |      |            |            |
| 68.1 |          | -7050          |              | -1381 | 400               | -379 | -17085         | -24<br>-27 | 88  | 70  | 58       |     | 20       | 483        | 2600 | 136        | 601        |
| 68.2 | -1<br>-2 | -4952<br>-4732 | -302<br>-327 | -649  | -46               | -231 | -7266<br>-6897 | -27        | 120 | 72  | 80<br>80 | 122 | 17<br>25 | 566<br>538 | 2858 | 159        | 622<br>626 |
|      |          |                |              | -557  | -108              | -287 |                |            | -   | -   |          |     |          |            | 2809 | 155        |            |
| 68.3 | 21       | -2388          | 4847         | 67    | -387              | -60  | 1579           | -14        | 116 | 90  | 95       | 114 | 48       | 524        | 2990 | 161        | 609        |
| 68.4 | -3       | -3292          | 4567         | -87   | -416              | -150 | -1543          | 11         | 100 | 116 | 81       | 97  | 33       | 502        | 2847 | 157        | 604        |
| 68.5 | 6        | -1824          | 1590         | 79    | -483              | -109 | 34             | 20         | 97  | 80  | 85       | 116 | 37       | 524        | 2884 | 157        | 598        |
| 68.6 | -11      | -2480          | 3347         | -61   | -365              | -170 | -543           | 39         | 98  | 80  | 90       | 106 | 40       | 530        | 2862 | 160        | 607        |
| 68.7 | -13      | -2188          | 3295         | 17    | -464              | -171 | -554           | 59         | 108 | 82  | 79       | 105 | 34       | 540        | 2864 | 159        | 602        |
| 68.8 | -9       | -295           | 3710         | -177  | -507              | -212 | -2326          | 60         | 99  | 77  | 95       | 113 | 33       | 675        | 2773 | 145        | 622        |
| 68.9 | 1        | -2347          | 2947         | -19   | -429              | -144 | -1942          | 90         | 90  | 84  | 70       | 112 | 35       | 547        | 2907 | 152        | 577        |
| 69   | 8        | -1163          | 5403         | 183   | -531              | -63  | 1104           | 103        | 95  | 108 | 65       | 112 | 34       | 536        | 2884 | 136        | 588        |
| 69.1 | 4        | -1616          | 7065         | 543   | -625              | 51   | 4386           | 103        | 111 | 85  | 73       | 125 | 37       | 474        | 2884 | 167        | 641        |
| 69.2 | 5        | -569           | 8546         | 704   | -534              | 34   | 5478           | 80         | 89  | 74  | 88       | 128 | 47       | 546        | 2951 | 165        | 620        |
| 69.3 | 4        | -1721          | 7116         | 254   | -399              | -133 | 2370           | 64         | 113 | 88  | 87       | 136 | 30       | 520        | 2997 | 171        | 677        |
| 69.4 | -6       | -1851          | 3694         | 24    | -345              | -151 | 602            | 46         | 104 | 103 | 62       | 132 | 26       | 545        | 2926 | 168        | 633        |
| 69.5 | -7       | -2127          | 6019         | 154   | -484              | -114 | 2214           | 14         | 89  | 86  | 85       | 127 | 32       | 533        | 2966 | 174        | 627        |
| 69.6 | 11       | -1938          | 6344         | 383   | -366              | 2    | 3866           | -9         | 113 | 92  | 85       | 126 | 27       | 580        | 2907 | 169        | 641        |
| 69.7 | -7       | -2762          | 3131         | -108  | -286              | -139 | 15             | -23        | 104 | 80  | 67       | 116 | 23       | 513        | 2906 | 158        | 647        |
|      |          |                |              |       |                   |      |                |            |     |     |          |     |          |            |      |            |            |

| 69.8         1         -3345         2119         -316         -322         -188         -2904         -44         97         86         67         112         23         483         2898         100           69.9         -9         -5545         -117         -1004         350         -311         -1132         67         67         62         125         29         496         2773         153           70.1         5         -5162         -122         -795         327         -272         -10855         -79         102         76         71         124         35         516         2778         160           70.3         9         -2784         6287         -71         -287         -102         -34         -71         189         73         111         113         44         518         2921         157           70.4         -12         -2964         6080         -1         -414         -60         765         -77         115         78         96         144         37         542         295         107           70.6         -4         -4376         384         -548         -540         -64                                    | 647<br>666<br>698<br>688<br>625<br>660<br>616<br>669<br>662<br>658<br>645<br>664<br>655 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 698<br>688<br>625<br>660<br>616<br>669<br>662<br>658<br>645<br>664                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 688<br>625<br>660<br>616<br>669<br>662<br>658<br>645<br>664                             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 625<br>660<br>616<br>669<br>662<br>658<br>645<br>664                                    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 660<br>616<br>669<br>662<br>658<br>645<br>664                                           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 616<br>669<br>662<br>658<br>645<br>664                                                  |
| 70.5         -8         -3267         6573         -120         -379         -169         -348         -71         124         75         91         140         25         523         2971         169           70.6         -4         -4376         3084         -548         -184         -295         -5009         -73         96         73         77         112         39         468         2915         168           70.7         9         -3967         1774         469         -145         -245         -5049         -64         116         76         81         134         40         480         2957         149           70.8         -3         -2722         3980         35         -293         -95         -541         -77         108         88         101         115         39         480         2961         137           70.9         -2         -3450         3554         -202         -298         -175         -1561         -67         82         85         89         134         28         517         2191         50           71.1         6         -2503         5181         -202         -217                                 | 669<br>662<br>658<br>645<br>664                                                         |
| 70.6         4         -4376         3084         -548         -184         -295         -5009         -73         96         73         77         112         39         468         2915         168           70.7         -9         -3967         1748         -469         -145         -245         -5049         -64         116         76         81         134         40         480         2957         149           70.8         -3         -2722         3980         35         -293         -95         -541         -77         108         88         101         15         39         498         2961         137           70.9         -2         -3450         3554         -202         -298         -175         -1561         -67         82         88         101         115         39         448         2863         150           71.1         6         -2503         5181         -202         -216         -153         -2657         -55         90         85         87         129         35         499         2915         165           71.2         5303         5400         0         269         -1718                                 | 662<br>658<br>645<br>664                                                                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 658<br>645<br>664                                                                       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 645<br>664                                                                              |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 664                                                                                     |
| 71         5         -4297         3488         -439         -114         -276         -5279         -62         97         73         77         124         39         483         2863         150           71.1         6         -2503         5181         -202         -216         -153         -2657         -55         90         85         87         129         35         499         2915         165           71.3         7         -2101         5520         313         -300         17         2557         -66         117         77         73         139         43         526         2999         173           71.4         -1         -2178         6012         -49         -129         -172         470         -104         111         113         77         130         34         602         3088         179           71.5         -2         -5086         3521         -795         376         -355         -6397         -148         121         103         41         134         28         565         3051         174           71.6         -3         -4807         -3781         -615         -180                                 |                                                                                         |
| 71.1       6       -2503       5181       -202       -216       -153       -2657       -55       90       85       87       129       35       499       2915       165         71.2       5       -3053       5400       10       -269       -152       -1718       -51       111       81       108       109       31       515       2918       150         71.3       7       -2101       5520       313       -300       17       2557       -66       117       77       73       139       43       526       2999       173         71.4       -1       -2178       6012       -49       -129       -172       470       -104       111       113       77       130       34       602       3088       179         71.5       -2       -5086       3521       -795       376       -355       -6397       -148       121       103       41       134       28       556       3051       174         71.6       -3       -4807       -3781       -615       -180       -269       -6740       -226       87       70       61       122       40       527                                                                                                                         | 033                                                                                     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 655                                                                                     |
| 71.3         7         -2101         5520         313         -300         17         2557         -66         117         77         73         139         43         526         2999         173           71.4         -1         -2178         6012         -49         -129         -172         470         -104         111         113         77         130         34         602         3088         179           71.5         -2         -5086         3521         -795         376         -355         -6397         -148         121         103         41         134         28         565         3051         174           71.6         -3         -4083         4201         -256         -113         -247         -2897         -217         90         88         85         129         34         539         2935         165           71.7         -3         -4807         -3781         -615         -180         -269         -6740         -226         87         70         61         122         40         527         2806         164           71.8         -9         -5482         -8786         -881         -219 <th>660</th>             | 660                                                                                     |
| 71.4         -1         -2178         6012         -49         -129         -172         470         -104         111         113         77         130         34         602         3088         179           71.5         -2         -5086         3521         -795         376         -355         -6397         -148         121         103         41         134         28         565         3051         174           71.6         -3         -4083         4201         -256         -113         -247         -2897         -217         90         88         85         129         34         539         2935         165           71.7         -3         -4807         -3781         -615         -180         -269         -6740         -226         87         70         61         122         40         527         2806         164           71.8         -9         -5482         -8786         -881         -219         -304         -10500         -207         92         70         48         95         32         574         2658         155           71.9         9         -3985         -9087         -29         -39                       | 676                                                                                     |
| 71.5         -2         -5086         3521         -795         376         -355         -6397         -148         121         103         41         134         28         565         3051         174           71.6         -3         -4083         4201         -256         -113         -247         -2897         -217         90         88         85         129         34         539         2935         165           71.7         -3         -4807         -3781         -615         -180         -269         -6740         -226         87         70         61         122         40         527         2806         164           71.8         -9         -5482         -8786         -881         -219         -304         -10500         -207         92         70         48         95         32         574         2658         155           71.9         9         -3985         -9087         -897         -64         -358         -10073         -174         122         72         39         115         31         546         2764         152           72.0         -4643         -4869         -937         29 <th< th=""><th>643</th></th<> | 643                                                                                     |
| 71.6         -3         -4083         4201         -256         -113         -247         -2897         -217         90         88         85         129         34         539         2935         165           71.7         -3         -4807         -3781         -615         -180         -269         -6740         -226         87         70         61         122         40         527         2806         164           71.8         -9         -5482         -8786         -881         -219         -304         -10500         -207         92         70         48         95         32         574         2658         155           71.9         9         -3985         -9087         -897         -64         -358         -10073         -174         122         72         39         115         31         546         2764         152           71.9         9         -3985         -9087         -897         -64         -358         -10073         -174         122         72         39         115         31         546         2764         152           72.0         -4643         -4869         -937         29 <th< th=""><th>696</th></th<> | 696                                                                                     |
| 71.7       -3       -4807       -3781       -615       -180       -269       -6740       -226       87       70       61       122       40       527       2806       164         71.8       -9       -5482       -8786       -881       -219       -304       -10500       -207       92       70       48       95       32       574       2658       155         71.9       9       -3985       -9087       -897       -64       -358       -10073       -174       122       72       39       115       31       546       2764       152         72       0       -4643       -4869       -937       29       -391       -8894       -158       117       75       68       126       26       528       2821       166         72.1       8       -3597       -3130       -397       -223       -288       -4306       -136       114       75       49       134       30       532       2861       164         72.2       8       -3572       -2003       -261       -369       -301       -3831       -104       125       80       48       112       30       53                                                                                                                | 654                                                                                     |
| 71.8-9-5482-8786-881-219-304-10500-2079270489532574265815571.99-3985-9087-897-64-358-10073-1741227239115315462764152720-4643-4869-93729-391-8894-158117756812626528282116672.18-3597-3130-397-223-288-4306-136114754913430532286116472.28-3572-2003-261-369-301-3831-104125804811230542293016372.3-3-27323285137-347-1172482-93109836813040481299817272.4-8-27004175111-516-1171958-65131798311231543300316572.53-24703907113-405-1241762-71109877311539579298916672.6-2-38983274-368-147-241-2166-71134945410331518289116772.75-5413-3245-8297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 647                                                                                     |
| 71.99-3985-9087-897-64-358-10073-1741227239115315462764152720-4643-4869-93729-391-8894-158117756812626528282116672.18-3597-3130-397-223-288-4306-136114754913430532286116472.28-3572-2003-261-369-301-3831-104125804811230542293016372.3-3-27323285137-347-1172482-93109836813040481299817272.4-8-27004175111-516-1171958-65131798311231543300316572.53-24703907113-405-1241762-71109877311539579298916672.6-2-38983274-368-147-241-2166-71134945410331518289116772.75-5413-3245-82975-321-8587-751059258113294772830155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 642                                                                                     |
| 720-4643-4869-93729-391-8894-158117756812626528282116672.18-3597-3130-397-223-288-4306-136114754913430532286116472.28-3572-2003-261-369-301-3831-104125804811230542293016372.3-3-27323285137-347-1172482-93109836813040481299817272.4-8-27004175111-516-1171958-65131798311231543300316572.53-24703907113-405-1241762-71109877311539579298916672.6-2-38983274-368-147-241-2166-71134945410331518289116772.75-5413-3245-82975-321-8587-751059258113294772830155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 644                                                                                     |
| 72.1       8       -3597       -3130       -397       -223       -288       -4306       -136       114       75       49       134       30       532       2861       164         72.2       8       -3572       -2003       -261       -369       -301       -3831       -104       125       80       48       112       30       542       2930       163         72.3       -3       -2732       3285       137       -347       -117       2482       -93       109       83       68       130       40       481       2998       172         72.4       -8       -2700       4175       111       -516       -117       1958       -65       131       79       83       112       31       543       3003       165         72.5       3       -2470       3907       113       -405       -124       1762       -71       109       87       73       115       39       579       2989       166         72.6       -2       -3898       3274       -368       -147       -2416       -716       -71       109       87       73       115       39       579                                                                                                                      | 647                                                                                     |
| 72.2         8         -3572         -2003         -261         -369         -301         -3831         -104         125         80         48         112         30         542         2930         163           72.3         -3         -2732         3285         137         -347         -117         2482         -93         109         83         68         130         40         481         2998         172           72.4         -8         -2700         4175         111         -516         -117         1958         -65         131         79         83         112         31         543         3003         165           72.5         3         -2470         3907         113         -405         -124         1762         -71         109         87         73         115         39         579         2989         166           72.6         -2         -3898         3274         -368         -147         -241         -2166         -71         134         94         54         103         31         518         2891         167           72.7         5         -5413         -3245         -829         75                               | 642                                                                                     |
| 72.3-3-27323285137-347-1172482-93109836813040481299817272.4-8-27004175111-516-1171958-65131798311231543300316572.53-24703907113-405-1241762-71109877311539579298916672.6-2-38983274-368-147-241-2166-71134945410331518289116772.75-5413-3245-82975-321-8587-751059258113294772830155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 648                                                                                     |
| 72.4-8-27004175111-516-1171958-65131798311231543300316572.53-24703907113-405-1241762-71109877311539579298916672.6-2-38983274-368-147-241-2166-71134945410331518289116772.75-5413-3245-82975-321-8587-751059258113294772830155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 698                                                                                     |
| 72.5         3         -2470         3907         113         -405         -124         1762         -71         109         87         73         115         39         579         2989         166           72.6         -2         -3898         3274         -368         -147         -241         -2166         -71         134         94         54         103         31         518         2891         167           72.7         5         -5413         -3245         -829         75         -321         -8587         -75         105         92         58         113         29         477         2830         155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 642                                                                                     |
| 72.6         -2         -3898         3274         -368         -147         -241         -2166         -71         134         94         54         103         31         518         2891         167           72.7         5         -5413         -3245         -829         75         -321         -8587         -75         105         92         58         113         29         477         2830         155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 651                                                                                     |
| <b>72.7</b> 5 -5413 -3245 -829 75 -321 -8587 -75 105 92 58 113 29 477 2830 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 659                                                                                     |
| <b>72.8</b> -7 -5077 1120 -561 82 -352 -7053 -81 103 67 59 121 31 500 2901 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 622                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 685                                                                                     |
| <b>72.9</b> -8 -5263 437 -858 35 -344 -8577 -79 107 68 71 115 32 513 2841 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 648                                                                                     |
| <b>73</b> 5 -4742 -1113 -519 -49 -261 -7522 -78 -28 67 81 127 30 551 2786 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 627                                                                                     |
| <b>73.1</b> -3 -3862 -275 -443 -382 -262 -7684 -62 69 72 91 89 26 480 2703 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 599                                                                                     |
| <b>73.2</b> -2 -2774 11705 94 -313 -147 539 -51 94 82 101 116 21 502 2906 161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 598                                                                                     |
| <b>73.3</b> -1 -3776 8849 -114 -262 -239 -1737 -61 115 72 72 125 38 555 2982 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 624                                                                                     |
| <b>73.4</b> -12 -3530 4250 -371 -313 -290 -3550 -57 109 85 61 135 33 548 2937 158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 646                                                                                     |
| <b>73.5</b> 10 -3396 1360 -292 -347 -195 -2810 -59 109 84 48 115 30 550 2844 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 602                                                                                     |
| <b>73.6</b> -4 -3255 3475 -364 -335 -240 -3551 -59 86 90 58 118 27 636 2879 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 576                                                                                     |
| <b>73.7</b> 5 -2487 3951 -330 -444 -278 -2488 -56 58 83 44 117 30 805 2887 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 526                                                                                     |
| <b>73.8</b> 0 -2534 4026 -3 -430 -159 -564 -62 118 88 69 124 39 643 2924 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 632                                                                                     |
| <b>73.9</b> 7 -2190 5600 210 -363 -39 2171 -80 117 89 86 106 34 498 2937 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 692                                                                                     |
| 74         -10         -3205         -806         -78         -458         -136         -1359         -93         96         107         63         133         35         532         2848         172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 695                                                                                     |
| <b>74.1</b> 1 -2328 1972 -55 -302 -160 -785 -62 138 88 57 115 30 544 2960 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 642                                                                                     |
| 74.2         2         -2806         3569         -68         -371         -165         -1583         -80         109         96         96         118         33         593         2886         173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 619                                                                                     |
| <b>74.3</b> -2 -2607 8612 -9 -311 -189 1125 -65 122 84 92 119 32 547 2949 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 674<br>635                                                                              |
| 74.4         3         -2844         7810         -308         -188         -279         -1818         -63         100         81         87         115         29         510         3002         164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         |

| 74.5      | 0         | -3087        | 1453           | -299           | -170       | -285         | -2493            | 176          | 108      | 79       | 64              | 126      | 29       | 691        | 2964         | 166        | 611        |
|-----------|-----------|--------------|----------------|----------------|------------|--------------|------------------|--------------|----------|----------|-----------------|----------|----------|------------|--------------|------------|------------|
| 74.6      | 13        | -2096        | 3716           | 143            | -263       | -49          | 1105             | 4            | 115      | 94       | 52              | 126      | 35       | 570        | 3010         | 170        | 660        |
| 74.7      | 10        | -3090        | 6141           | -139           | -74        | -130         | -1556            | -65          | 100      | 93       | 75              | 133      | 31       | 729        | 2970         | 167        | 646        |
| 74.8      | -4        | -2539        | 5638           | 11             | -286       | -173         | 380              | -93          | 107      | 90       | 88              | 123      | 32       | 579        | 2959         | 174        | 679        |
| 74.9      | 0         | -3465        | 5860           | -240           | -163       | -289         | -1781            | -84          | 86       | 76       | 87              | 110      | 38       | 507        | 2972         | 162        | 639        |
| 75        | -2        | -3178        | 4249           | -380           | -158       | -374         | -3598            | -90          | 123      | 90       | 58              | 130      | 19       | 594        | 2996         | 174        | 627        |
| 75.1      | -1        | -3004        | 3182           | -267           | -214       | -272         | -821             | -78          | 104      | 105      | 67              | 114      | 35       | 586        | 3036         | 167        | 672        |
| 75.2      | -9        | -3205        | 3638           | -255           | -280       | -275         | -1733            | -79          | 89       | 77       | 86              | 114      | 36       | 580        | 2971         | 168        | 646        |
| 75.3      | 0         | -4188        | 420            | -610           | -20        | -354         | -5432            | -75          | 98       | 74       | 52              | 108      | 27       | 514        | 2931         | 165        | 630        |
| 75.4      | -8        | -4779        | -3690          | -782           | 7          | -386         | -7856            | -77          | 96       | 82       | 46              | 110      | 25       | 602        | 2842         | 161        | 637        |
| 75.5      | -8        | -3661        | -3020          | -523           | -180       | -318         | -4221            | -65          | 79       | 97       | 54              | 123      | 28       | 559        | 2897         | 159        | 603        |
| 75.6      | -6        | -1306        | -255           | 98             | -460       | -137         | 27               | -38          | 118      | 76       | 51              | 128      | 30       | 696        | 2918         | 158        | 585        |
| 75.7      | 10        | -355         | 3633           | 354            | -476       | -66          | 3597             | -37          | 101      | 85       | 59              | 113      | 29       | 712        | 3017         | 160        | 591        |
| 75.8      | 6         | -1369        | 4118           | 345            | -427       | -108         | 3951             | -22          | 92       | 86       | 64              | 119      | 37       | 751        | 2992         | 177        | 623        |
| 75.9      | 10        | -859         | 5205           | 308            | -413       | -22          | 4475             | -18          | 99       | 92       | 63              | 117      | 38       | 731        | 2953         | 158        | 612        |
| 76        | 23        | -1002        | 6516           | 529            | -525       | 58           | 6589             | -33          | 122      | 83       | 61              | 138      | 29       | 603        | 3023         | 167        | 680        |
| 76.1      | 0         | -1734        | 7155           | 321            | -427       | 0            | 3341             | -47          | 102      | 106      | 71              | 129      | 24       | 578        | 2972         | 186        | 615        |
| 76.2      | -8        | -3435        | 6754           | -272           | -192       | -193         | -1703            | -67          | 102      | 80       | 82              | 125      | 26       | 585        | 2896         | 166        | 620        |
| 76.3      | -6        | -3630        | 5082           | -377           | -187       | -239         | -3221            | -82          | 97       | 79       | 93              | 113      | 37       | 568        | 2863         | 161        | 622        |
| 76.4      | -3        | -4920        | 4812           | -662           | -81        | -285         | -6069            | -74          | 96       | 70       | 106             | 125      | 31       | 508        | 2854         | 154        | 627        |
| 76.5      | -3        | -3635        | 1392           | -755           | 291        | -360         | -8779            | -73          | 90       | 76       | 81              | 125      | 26       | 480        | 2789         | 150        | 600        |
| 76.6      | 0         | -5163        | -3114          | -1084          | 485        | -407         | -13116           | -62          | 81       | 75       | 89              | 88       | 39       | 448        | 2666         | 154        | 577        |
| 76.7      | 6         | -4406        | 242            | -701           | 78         | -352         | -8147            | -75          | 104      | 82       | 79              | 117      | 39       | 506        | 2753         | 164        | 626        |
| 76.8      | -4        | -5261        | 1424           | -943           | -79        | -362         | -11041           | -57          | 92       | 88       | 100             | 131      | 27       | 503        | 2586         | 166        | 588        |
| 76.9      | -10       | -4353        | 2851           | -790           | -79        | -381         | -10124           | -43          | 85       | 75       | 116             | 92       | 28       | 539        | 2741         | 153        | 604        |
| 77        | -5        | -4118        | 5144           | -1036          | -93        | -391         | -12465           | -54          | 85       | 92       | 154             | 118      | 23       | 526        | 2664         | 142        | 567        |
| 77.1      | 0         | -4056        | 472            | -814           | 56         | -335         | -9934            | -62          | 93       | 64       | 88              | 103      | 23       | 550        | 2677         | 139        | 564        |
| 77.2      | 1         | -5036        | -880           | -1041          | 187        | -380         | -12793           | -48          | 73       | 65       | 75              | 98       | 31       | 462        | 2651         | 129        | 530        |
| 77.3      | -2        | -1105        | -180           | -528           | 156        | -249         | -9652            | -48          | 57       | 73       | 82              | 103      | 36       | 484        | 2678         | 155        | 545        |
| 77.4      | -4        | -3382        | -3795          | -882           | 138        | -379         | -13405           | -53          | 91       | 66       | 64              | 113      | 30       | 540        | 2553         | 132        | 571        |
| 77.5      | -11       | -4976        | -3451          | -1264          | 265        | -510         | -16911           | -38          | 72       | 82       | 69              | 104      | 30       | 446        | 2505         | 146        | 572        |
| 77.6      | -4        | -5047        | -544           | -1264          | 306        | -549         | -15889           | -16          | 110      | 64       | 74              | 120      | 30       | 464        | 2596         | 139        | 569        |
| 77.7      | -9        | -3103        | 5297           | -1045          | 168        | -512         | -13401           | 2            | 111      | 77       | 77<br>92        | 108      | 23       | 495        | 2632         | 125        | 599        |
| 77.8      | 0         | -4487        | 12933          | -1303          | 321        | -570         | -15180           | 21           | 77       | 72       |                 | 119      | 19       | 570        | 2659         | 142        | 510        |
| 77.9      | -5        | -4845        | 31007          | -2004          | -409       | -623         | -29534           | 12           | 53       | 47       | 143             | 87       | 36       | 448        | 2136         | 72         | 401        |
|           | -4        | -33          | 60365          | -1937          | 622<br>592 | -670<br>-731 | -27154           | -34          | 54<br>47 | 44       | 121             | 95       | 27<br>19 | 430<br>369 | 2243         | 93         | 358        |
| 78.1 78.2 | -10<br>-4 | 63<br>4976   | 63359<br>85241 | -2017<br>-1356 | 592        | -731         | -27440<br>-19076 | -18<br>-40   | 50       | 54       | 69<br>102       | 79<br>63 | 28       | 418        | 2196<br>2408 | 81<br>88   | 354<br>378 |
| 78.2      | -4        |              | 64066          | -1336          | -80        | -505         | -19078           | -40          | 92       | 63       | 42              | 77       | 28       | 418        | 2408         | 111        |            |
|           |           | 5527         |                |                |            | -442         |                  |              |          | 67       |                 | 77       |          |            |              |            | 430        |
| 78.4      | -2<br>-5  | 5076         | 57460          | -868           | 181        |              | -14322           | -68          | 66       | 69       | 40              | 96       | 37<br>25 | 450        | 2460         | 103        | 404        |
| 78.5      | -5        | 8083         | 75597          | -1014<br>-1298 | -235       | -426         | -17051           | -110<br>-187 | 86<br>53 | 50       | 68<br>69        | 72       | 37       | 445<br>398 | 2294         | 105<br>100 | 395        |
| 78.0      | 2         | 3769<br>2506 | 50533<br>39692 | -1298          | -235       | -429<br>-388 | -20395<br>-17362 | -187         | 64       | 50       | <u>69</u>       | 72       | 37       | 440        | 2214<br>2316 | 100        | 413 434    |
| 78.7      | 6         | 2506         | 16252          | -1146          | 1010       | -388         | -1/362           | -212         | 89       | 84       | 67              | 99       | 32       | 440        | 2316         | 132        | 434        |
| 78.9      | -3        | 1234         | 20959          | -1067          | 1010       | -337         | -13/45           | -244         | 77       | 84<br>70 | 59              | 81       | 32       | 496        | 2305         | 132        | 480        |
| 78.9      | -10       | 239          | 12321          | -818           | 635        | -343         | -12540           | -260         | 91       | 75       | 49              | 109      | 26       | 462        | 2434         | 113        | 542        |
| 79        | -10       | 239          | 12321          | -855           | 643        | -380         | -12540           | -249         | 84       | 75       | <u>49</u><br>58 | 83       | 20       | 464<br>509 | 2525         | 111        | 569        |
| /9.1      | -2        | 2234         | 14/94          | -3/3           | 043        | -233         | -4403            | -120         | 84       | /1       | 38              | 83       | 21       | 309        | 2130         | 143        | 309        |

| 79.2              | -3       | -356           | 1327             | -484         | 132              | -228         | -6172          | 2149                | 86        | 77       | 54       | 101        | 43       | 562        | 2752         | 141        | 599               |
|-------------------|----------|----------------|------------------|--------------|------------------|--------------|----------------|---------------------|-----------|----------|----------|------------|----------|------------|--------------|------------|-------------------|
| 79.3              | -5       | -1990          | -7910            | -484         | -162             | -228         | -7834          | 1715                | 87        | 81       | 44       | 101        | 43       | 523        | 2635         | 141        | 576               |
| 79.4              | -5       | -1613          | -4928            | -565         | -197             | -258         | -5668          | 2191                | 98        | 81       | 42       | 107        | 47       | 587        | 2035         | 142        | 615               |
| 79.5              | 2        | -1998          | -6203            | -437         | -248             | -269         | -4912          | 2695                | 90        | 79       | 47       | 92         | 37       | 536        | 2784         | 145        | 577               |
| 79.6              | -3       | -3462          | -19691           | -1120        | -528             | -395         | -14634         | 1001                | 68        | 70       | 48       | 73         | 27       | 644        | 2368         | 124        | 525               |
| 79.7              | 1        | 284            | -11878           | -774         | -446             | -369         | -9371          | -143                | 73        | 78       | 33       | 90         | 27       | 807        | 2585         | 134        | 487               |
| 79.8              | 6        | -39            | -12927           | -584         | -351             | -323         | -7779          | -166                | 76        | 77       | 57       | 102        | 28       | 718        | 2646         | 148        | 538               |
| 79.9              | 3        | -629           | -9785            | -848         | -273             | -374         | -11621         | -102                | 85        | 85       | 52       | 86         | 20       | 569        | 2534         | 110        | 507               |
| 80                | -10      | 1093           | 12462            | -755         | 399              | -375         | -9565          | -78                 | 89        | 77       | 53       | 87         | 18       | 550        | 2570         | 129        | 496               |
| 80.1              | -7       | 1102           | 18733            | -578         | 570              | -413         | -7707          | -63                 | 75        | 73       | 57       | 97         | 15       | 626        | 2697         | 142        | 486               |
| 80.2              | -4       | 1293           | 10905            | -484         | 352              | -403         | -5937          | -92                 | 86        | 92       | 41       | 84         | 19       | 661        | 2867         | 168        | 542               |
| 80.3              | -3       | -819           | 13109            | -636         | 300              | -416         | -9527          | -112                | 71        | 81       | 54       | 108        | 27       | 579        | 2720         | 135        | 516               |
| 80.4              | -9       | -637           | 9562             | -699         | 2832             | -394         | -8348          | -154                | 92        | 86       | 51       | 92         | 31       | 577        | 2662         | 133        | 585               |
| 80.5              | 0        | -107           | 8935             | -545         | 30               | -410         | -7675          | -163                | 70        | 90       | 55       | 90         | 17       | 587        | 2778         | 127        | 522               |
| 80.6              | -5       | 1222           | 14431            | -428         | 486              | -343         | -6091          | -186                | 90        | 68       | 93       | 89         | 34       | 561        | 2751         | 132        | 507               |
| 80.7              | 3        | 219            | 12982            | -622         | 308              | -387         | -8335          | -187                | 74        | 85       | 64       | 100        | 23       | 564        | 2679         | 130        | 491               |
| 80.8              | -5       | -465           | 12185            | -859         | 414              | -400         | -10315         | -154                | 83        | 68       | 81       | 88         | 22       | 531        | 2673         | 135        | 524               |
| 80.9              | -7       | 691            | 15753            | -949         | 717              | -412         | -11767         | 1173                | 94        | 78       | 68       | 71         | 28       | 499        | 2605         | 140        | 487               |
| 81                | -6       | 1801           | 27360            | -1440        | 1184             | -479         | -17977         | 1599                | 66        | 77       | 82       | 97         | 29       | 427        | 2370         | 119        | 472               |
| 81.1              | 1        | 1726           | 29376            | -1092        | 1066             | -459         | -13359         | 2059                | 86        | 73       | 75       | 99         | 38       | 607        | 2619         | 127        | 553               |
| 81.2              | 6        | -860           | 11561            | -965         | 481              | -405         | -11868         | 3215                | 70        | 85       | 86       | 105        | 39       | 586        | 2602         | 132        | 521               |
| 81.3              | -3       | -1556          | 6756             | -1115        | 466              | -449         | -11967         | 2467                | 90        | 68       | 56       | 92         | 31       | 559        | 2709         | 145        | 562               |
| 81.4              | -6       | -619           | 8109             | -757         | 304              | -388         | -7075          | 1520                | 87        | 78       | 51       | 124        | 32       | 631        | 2878         | 156        | 635               |
| 81.5              | -7       | -185           | 2980             | -122         | -61              | -354         | -4896          | -149                | 114       | 90       | 64       | 112        | 23       | 608        | 2847         | 144        | 603               |
| 81.6              | 4        | 1731           | 5126             | 141          | -103             | -282         | -2549          | -178                | 80        | 82       | 66       | 129        | 23       | 595        | 2912         | 145        | 597               |
| 81.7              | 1        | 1104           | 9224             | 71           | 33               | -300         | -1997          | -172                | 65        | 94       | 66       | 100        | 19       | 647        | 2974         | 148        | 580               |
| 81.8              | -2       | -314           | 6209             | 38           | -14              | -264         | -3250          | -178                | 87        | 91       | 90       | 108        | 35       | 610        | 2820         | 144        | 588               |
| 81.9              | -9       | -827           | 2972             | -244         | -123             | -351         | -8075          | -175                | 96        | 81       | 90       | 99         | 23       | 613        | 2667         | 133        | 554               |
| 82                | 0        | 1802           | 4293             | -370         | -95              | -369         | -7797          | -136                | 77        | 92       | 58       | 101        | 21       | 553        | 2663         | 147        | 536               |
| 82.1              | -5       | 2705           | 6985             | -135         | 229              | -371         | -5460          | -134                | 90        | 116      | 53       | 109        | 30       | 546        | 2780         | 170        | 576               |
| 82.2              | -2       | -304           | 3436             | -105         | -69              | -378         | -4635          | -126                | 105       | 108      | 52       | 90         | 26       | 602        | 2886         | 153        | 580               |
| 82.3              | -8       | -684           | 1545             | -424         | 22               | -442         | -5269          | -132                | 110       | 112      | 47       | 135        | 18       | 694        | 2858         | 149        | 606               |
| 82.4              | -1       | 886            | 3629             | 260          | 88               | -220         | -996           | -228                | 116       | 101      | 47       | 122        | 34       | 753        | 2988         | 167        | 648               |
| 82.5              | -6       | 87             | -7293            | -31          | -36              | -209         | -4740          | -290                | 91        | 97       | 51       | 127        | 27       | 713        | 2784         | 159        | 649               |
| 82.6              | -5       | -1053          | -10631           | 97           | -177             | -210         | -6967          | -319                | 94        | 107      | 40       | 116        | 33       | 578        | 2674         | 146        | 640               |
| 82.7              | 5        | -1875          | -13251           | -420         | -144             | -258         | -8096          | -319                | 107       | 87       | 57       | 111        | 25       | 540        | 2643         | 155        | 635               |
| 82.8              | -5       | -1374          | -10351           | -324         | 35               | -255         | -7579          | -325                | 92        | 101      | 62       | 106        | 32       | 571        | 2733         | 161        | 645               |
| <u>82.9</u><br>83 | -3       | -565           | -7900            | 96           | 63               | -157         | -5534          | -309<br>794         | 104       | 116      | 70       | 126<br>117 | 33       | 609        | 2715         | 161        | 634               |
|                   | 1        | -2211          | -10382           | -167         | 19               | -217         | -6742          |                     | 105       | 82       | 71       |            | 38       | 566        | 2734         | 161        | 626               |
| 83.1              | 0        | -1558          | -12242           | -353         | 43               | -231         | -8024          | <u>1362</u><br>-445 | 99<br>100 | 75       | 66       | 117<br>107 | 40       | 557        | 2685         | 161        | 631               |
| <u> </u>          | -1<br>-2 | -2165<br>-2569 | -10898<br>-13008 | -268<br>-328 | <u>122</u><br>41 | -236<br>-258 | -6333<br>-7218 | -445<br>-428        | 91        | 82<br>80 | 60<br>66 | 107        | 33<br>34 | 540<br>558 | 2767<br>2732 | 156<br>157 | <u>609</u><br>595 |
| 83.3              | -2       | -2569          | -13008           | -328         | 51               | -258         | -6858          | -428                | 113       | 79       | 59       | 131        | 31       | 573        | 2732         | 157        | 638               |
| 83.4              | -2       | -1900          | -131/3           | -200         | 12               | -256         | -0858          | -415                | 115       | 82       | 59<br>54 | 200        | 29       | 573        | 2800         | 157        | 710               |
| 83.6              | -2       | -2047          | -21035           | 2249         | 12               | -237         | -12353         | -373                | 214       | 78       | 54       | 355        | 31       | 446        | 2634         | 184        | 871               |
| 83.7              | 5<br>-5  | -2382          | -18083           | 921          | 85               | -244         | -12335         | -302                | 199       | 84       | 56       | 311        | 29       | 433        | 2653         | 173        | 830               |
| 83.8              | -5       | -2382          | -18085           | 131          | 140              | -281         | -6323          | -372                | 163       | 94       | 58       | 234        | 29       | 513        | 2655         | 173        | 752               |
| 03.0              | 1        | -1204          | -11//8           | 151          | 140              | -214         | -0323          | -412                | 105       | 94       | 50       | 234        | 29       | 515        | 2013         | 1/0        | 152               |

| 83.9              | 0        | -2117          | -11411           | 227        | 143          | -184         | -5987           | -435         | 120      | 85              | 65       | 164        | 38       | 551        | 2786         | 172        | 658               |
|-------------------|----------|----------------|------------------|------------|--------------|--------------|-----------------|--------------|----------|-----------------|----------|------------|----------|------------|--------------|------------|-------------------|
| 84                | 2        | -2496          | -10302           | -285       | 239          | -224         | -6502           | -453         | 102      | 82              | 69       | 109        | 32       | 546        | 2786         | 160        | 614               |
| 84.1              | 1        | -3444          | -14574           | -495       | 116          | -263         | -9482           | -453         | 100      | 80              | 63       | 114        | 36       | 525        | 2640         | 156        | 595               |
| 84.2              | 1        | -3687          | -16435           | -591       | -22          | -286         | -10845          | -440         | 100      | 74              | 68       | 112        | 32       | 505        | 2568         | 151        | 597               |
| 84.3              | 1        | -3076          | -12772           | -401       | 219          | -247         | -8466           | -442         | 95       | 83              | 63       | 111        | 33       | 532        | 2719         | 164        | 592               |
| 84.4              | 3        | -2687          | -10875           | -315       | 172          | -236         | -6879           | -453         | 101      | 83              | 72       | 114        | 37       | 555        | 2758         | 162        | 620               |
| 84.5              | 4        | -2731          | -11392           | -319       | 172          | -246         | -7274           | -452         | 105      | 80              | 68       | 117        | 33       | 547        | 2757         | 159        | 629               |
| 84.6              | 3        | -3137          | -12556           | -412       | 120          | -263         | -8284           | -441         | 98       | 83              | 73       | 111        | 36       | 531        | 2707         | 153        | 636               |
| 84.7              | 2        | -3051          | -11846           | -438       | 82           | -262         | -9306           | -433         | 96       | 83              | 62       | 101        | 34       | 509        | 2654         | 157        | 625               |
| 84.8              | 0        | -3887          | -18385           | -631       | 40           | -310         | -12053          | -425         | 87       | 64              | 59       | 106        | 36       | 488        | 2537         | 144        | 576               |
| 84.9              | 1        | -2878          | -13737<br>-9522  | -357       | 179          | -256         | -8407           | -435         | 94<br>93 | 78              | 58       | 125        | 32       | 515        | 2700         | 155        | 605               |
| <u>85</u><br>85.1 | 3        | -2480          |                  | -306       | 122<br>154   | -243<br>-297 | -7532<br>-10540 | -432<br>-425 | 93       | 82<br>71        | 74<br>64 | 136<br>105 | 38<br>33 | 556<br>519 | 2713<br>2641 | 166<br>151 | <u>624</u><br>597 |
| 85.2              | -1       | -3427<br>-2658 | -14603<br>-12936 | -484       | 134          | -297         | -10982          | -423         | 94       | 79              | 54       | 116        | 32       | 524        | 2593         | 145        | 607               |
| 85.3              | -3       | -2038          | -13100           | -484       | -103         | -284         | -10382          | -415         | 92       | 79              | 54       | 110        | 31       | 498        | 2622         | 145        | 609               |
| 85.4              | -4       | -1943          | -9870            | -302       | -10          | -272         | -9256           | -368         | 101      | 74              | 55       | 99         | 30       | 518        | 2645         | 140        | 591               |
| 85.5              | 0        | -780           | -7320            | -215       | -152         | -208         | -7224           | -339         | 98       | 67              | 54       | 90         | 35       | 579        | 2664         | 143        | 633               |
| 85.6              | -5       | -1794          | -15757           | -343       | -392         | -230         | -9955           | -317         | 87       | 77              | 47       | 99         | 35       | 524        | 2512         | 130        | 582               |
| 85.7              | -8       | -5215          | -23804           | -1006      | -651         | -423         | -19459          | -215         | 87       | 67              | 45       | 77         | 20       | 469        | 2143         | 119        | 508               |
| 85.8              | 2        | -2691          | -11615           | -658       | -521         | -443         | -12380          | -100         | 110      | 95              | 43       | 88         | 26       | 628        | 2518         | 138        | 548               |
| 85.9              | -2       | -3036          | -10053           | -701       | -343         | -417         | -10006          | -49          | 91       | 90              | 55       | 104        | 21       | 713        | 2577         | 130        | 557               |
| 86                | -5       | -915           | -6465            | -78        | -266         | -359         | -7083           | -10          | 117      | 74              | 55       | 107        | 14       | 872        | 2749         | 134        | 604               |
| 86.1              | -6       | 1948           | 233              | 115        | 88           | -334         | -2932           | 30           | 94       | 96              | 49       | 122        | 18       | 898        | 2855         | 143        | 596               |
| 86.2              | 0        | 477            | 6452             | 143        | -234         | -399         | -2651           | 45           | 93       | 119             | 67       | 95         | 18       | 660        | 2844         | 148        | 550               |
| 86.3              | -8       | -142           | 11337            | -224       | 631          | -446         | -5258           | 28           | 189      | 101             | 82       | 87         | 15       | 650        | 2845         | 135        | 491               |
| 86.4              | -12      | -1338          | 5699             | -433       | 823          | -464         | -8130           | 24           | 94       | 101             | 60       | 86         | 16       | 618        | 2700         | 120        | 515               |
| 86.5              | -5       | 992            | 8454             | -327       | -211         | -393         | -6760           | 25           | 74       | 82              | 59       | 95         | 19       | 732        | 2754         | 110        | 498               |
| <u> </u>          | -12<br>1 | -1039<br>1500  | 8587<br>8520     | -248       | -85          | -497<br>-420 | -7244<br>-4036  | 48           | 74<br>69 | <u>94</u><br>91 | 103      | 82<br>95   | 12<br>13 | 643<br>682 | 2693<br>2812 | 107<br>119 | 504<br>509        |
| 86.8              | 20       | 2274           | 17748            | 425        | -356<br>-478 | -420         | 2004            | 75<br>88     | 59       | 91              | 76<br>42 | 82         | 18       | 715        | 2812         | 155        | 519               |
| 86.9              | -4       | 879            | 19550            | 356        | -478         | -415         | -610            | 112          | 83       | 104             | 52       | 82         | 18       | 857        | 2880         | 130        | 508               |
| 87                | 1        | 1773           | 19395            | 64         | -99          | -450         | -1728           | 102          | 77       | 82              | 46       | 101        | 16       | 795        | 2958         | 130        | 512               |
| 87.1              | 5        | 2643           | 23707            | 227        | -130         | -410         | -1350           | 102          | 71       | 81              | 61       | 82         | 23       | 817        | 2862         | 129        | 487               |
| 87.2              | -5       | 1808           | 22893            | 480        | -99          | -393         | -992            | 77           | 90       | 80              | 61       | 110        | 15       | 678        | 2879         | 130        | 516               |
| 87.3              | -8       | 1408           | 22868            | 370        | -21          | -407         | 97              | 31           | 79       | 91              | 90       | 97         | 27       | 582        | 2970         | 133        | 494               |
| 87.4              | 11       | -158           | 15877            | -94        | 106          | -389         | -2238           | -14          | 61       | 102             | 60       | 110        | 12       | 605        | 2924         | 129        | 499               |
| 87.5              | -9       | 190            | 16388            | -190       | 373          | -444         | -5681           | -31          | 107      | 98              | 53       | 66         | 22       | 667        | 2847         | 126        | 544               |
| 87.6              | -6       | -592           | 6456             | -205       | 93           | -435         | -4629           | -67          | 76       | 74              | 53       | 97         | 30       | 641        | 2883         | 138        | 547               |
| 87.7              | -8       | 2397           | 7168             | 495        | -137         | -270         | 1135            | -67          | 96       | 107             | 59       | 107        | 29       | 842        | 2948         | 143        | 571               |
| 87.8              | -3       | 2263           | 6285             | 431        | -232         | -266         | 1367            | -90          | 85       | 88              | 40       | 100        | 18       | 723        | 2962         | 152        | 580               |
| 87.9              | -5       | 1246           | 2124             | 164        | 177          | -352         | -3151           | -91          | 109      | 107             | 39       | 92         | 25       | 692        | 2870         | 151        | 577               |
| 88                | -3       | 2386           | 5374             | 338        | -221         | -302         | 280             | -122         | 89       | 116             | 37       | 95         | 33       | 650        | 2955         | 157        | 545               |
| 88.1              | -1       | 2046           | 6013             | 426        | 156          | -308         | -824            | -143         | 103      | 120             | 45       | 103        | 29       | 701        | 3022         | 176        | 575               |
| <u> </u>          | -6<br>6  | 2471<br>1929   | 7658<br>824      | 336<br>281 | 126<br>175   | -254<br>-201 | -1442<br>-1659  | -184<br>-211 | 80<br>87 | 108<br>138      | 49<br>46 | 110<br>119 | 25<br>32 | 682<br>683 | 2952<br>2945 | 185<br>168 | 593<br>581        |
| 88.4              | -2       | 1929           | -1928            | 562        | 175          | -201         | 588             | -211         | 87       | 118             | 40       | 119        | 28       | 710        | 3047         | 168        | 618               |
| 88.5              | -2       | 4710           | -1928<br>-98     | 838        | 435          | -191         | 7342            | -222         | 83       | 118             | 37       | 110        | 28       | 710        | 3108         | 176        | 633               |
| 00.5              | 14       | 4/10           | -20              | 030        | 433          | -0           | / 342           | -210         | 03       | 142             | 37       | 120        | 20       | /17        | 5108         | 1/0        | 033               |

| 88.6 | -6 | 6064  | -1777  | 1063 | -108 | 36   | 7940   | -228  | 118 | 116 | 36 | 145 | 31  | 678 | 3215 | 173 | 656 |
|------|----|-------|--------|------|------|------|--------|-------|-----|-----|----|-----|-----|-----|------|-----|-----|
| 88.7 | 3  | 5670  | 154    | 1207 | 48   | 100  | 9303   | -256  | 92  | 118 | 44 | 112 | 25  | 745 | 3238 | 182 | 643 |
| 88.8 | 13 | 3729  | -144   | 1080 | 30   | 127  | 9532   | -272  | 126 | 106 | 48 | 104 | 26  | 672 | 3301 | 183 | 683 |
| 88.9 | 13 | 4233  | -1555  | 1272 | -86  | 141  | 9409   | -260  | 123 | 138 | 48 | 104 | 33  | 613 | 3237 | 166 | 697 |
| 89   | 7  | 2786  | 3014   | 839  | -26  | 130  | 6425   | -241  | 111 | 125 | 58 | 128 | 38  | 645 | 3085 | 180 | 643 |
| 89.1 | -2 | 715   | -879   | 318  | -30  | -12  | -666   | 62    | 103 | 91  | 64 | 126 | 35  | 592 | 2817 | 180 | 592 |
| 89.2 | -1 | -3913 | -17848 | -677 | -52  | -263 | -12067 | 7452  | 93  | 75  | 66 | 106 | 60  | 492 | 2484 | 161 | 483 |
| 89.3 | 1  | -4212 | -22310 | -913 | -145 | -251 | -14350 | 20243 | 88  | 73  | 55 | 104 | 119 | 465 | 2378 | 163 | 455 |

Table A-27: XRF core scan for Sacred Lake

|               |    |      |    |     |       |      | Chemi | cal Elemen | ts (cps) |    |     |     |       |     |      |
|---------------|----|------|----|-----|-------|------|-------|------------|----------|----|-----|-----|-------|-----|------|
| Depth<br>(cm) | Al | Ca   | Cl | Cu  | Fe    | К    | Nb    | N          | Rb       | S  | Si  | Sr  | Ti    | Zn  | Zr   |
| 0.1           | 1  | 1447 | 21 | 102 | 2772  | 872  | -4    | 91         | 20       | 73 | 54  | 81  | 4374  | 104 | 203  |
| 0.2           | 1  | 514  | 4  | 33  | 1459  | 664  | 17    | 40         | 27       | 42 | 24  | 12  | 3154  | 52  | 140  |
| 0.3           | 1  | 547  | 11 | 28  | 914   | 631  | 4     | 30         | 8        | 36 | 25  | 13  | 2782  | 44  | 101  |
| 0.4           | 8  | 662  | 15 | 23  | 1386  | 736  | 1     | 19         | 31       | 33 | 57  | 27  | 3357  | 39  | 164  |
| 0.5           | 1  | 1061 | 4  | 25  | 2515  | 1050 | 28    | 17         | 30       | 23 | 74  | 51  | 5232  | 67  | 255  |
| 0.6           | 1  | 1085 | 9  | 38  | 3001  | 994  | 14    | 18         | 50       | 33 | 50  | 60  | 5722  | 83  | 197  |
| 0.7           | 2  | 788  | 13 | 30  | 2130  | 712  | 0     | 10         | 25       | 24 | 17  | 33  | 3227  | 39  | 123  |
| 0.8           | 7  | 857  | 11 | 37  | 3474  | 951  | 8     | 26         | 57       | 38 | 46  | 89  | 5472  | 117 | 293  |
| 0.9           | 1  | 1269 | 24 | 17  | 5285  | 1902 | 36    | 30         | 57       | 52 | 81  | 77  | 9339  | 121 | 434  |
| 1             | 2  | 1264 | 14 | 33  | 6179  | 1821 | 37    | 42         | 71       | 46 | 94  | 85  | 11607 | 181 | 467  |
| 1.1           | 9  | 1169 | 17 | 32  | 5316  | 1572 | 33    | 23         | 76       | 52 | 78  | 94  | 9615  | 151 | 455  |
| 1.2           | 2  | 1122 | 12 | 26  | 4850  | 1312 | 22    | 24         | 79       | 47 | 57  | 78  | 9008  | 115 | 366  |
| 1.3           | 4  | 1163 | 22 | 59  | 5025  | 1437 | 33    | 19         | 63       | 52 | 70  | 84  | 8390  | 132 | 336  |
| 1.4           | 4  | 1221 | 13 | 40  | 5514  | 1451 | 28    | 38         | 49       | 52 | 71  | 60  | 8929  | 120 | 401  |
| 1.5           | 1  | 1317 | 26 | 47  | 5542  | 1656 | 7     | 34         | 70       | 68 | 86  | 82  | 9388  | 115 | 398  |
| 1.6           | 8  | 1409 | 14 | 27  | 6472  | 1909 | 29    | 18         | 58       | 67 | 109 | 79  | 10357 | 131 | 405  |
| 1.7           | 4  | 1428 | 17 | 38  | 6577  | 2047 | 48    | 22         | 73       | 69 | 120 | 100 | 11416 | 134 | 524  |
| 1.8           | 4  | 1487 | 23 | 39  | 7241  | 2507 | 71    | 38         | 77       | 71 | 151 | 102 | 13954 | 156 | 581  |
| 1.9           | 2  | 1542 | 18 | 38  | 7542  | 2600 | 52    | 36         | 75       | 76 | 149 | 91  | 15469 | 179 | 673  |
| 2             | 13 | 1593 | 18 | 49  | 8034  | 2644 | 95    | 55         | 92       | 74 | 160 | 118 | 15986 | 199 | 716  |
| 2.1           | 13 | 1602 | 14 | 40  | 8498  | 3038 | 82    | 51         | 79       | 71 | 188 | 109 | 17940 | 219 | 808  |
| 2.2           | 4  | 1433 | 21 | 49  | 7977  | 2797 | 61    | 54         | 94       | 69 | 151 | 81  | 16698 | 210 | 813  |
| 2.3           | 5  | 1334 | 19 | 52  | 7610  | 2496 | 85    | 43         | 79       | 64 | 101 | 88  | 15824 | 212 | 779  |
| 2.4           | 4  | 1552 | 26 | 57  | 8397  | 2994 | 93    | 46         | 108      | 73 | 154 | 105 | 17104 | 210 | 906  |
| 2.5           | 5  | 1534 | 24 | 34  | 9145  | 3397 | 146   | 52         | 101      | 72 | 184 | 68  | 20068 | 242 | 1008 |
| 2.6           | 6  | 1419 | 21 | 45  | 8893  | 3401 | 93    | 57         | 91       | 66 | 188 | 109 | 20184 | 248 | 927  |
| 2.7           | 5  | 1341 | 19 | 61  | 9042  | 3217 | 80    | 46         | 74       | 61 | 159 | 95  | 19668 | 243 | 939  |
| 2.8           | 11 | 1333 | 16 | 54  | 8754  | 3751 | 117   | 65         | 101      | 51 | 185 | 92  | 20556 | 249 | 950  |
| 2.9           | 7  | 1226 | 37 | 55  | 9217  | 3312 | 95    | 57         | 90       | 66 | 136 | 79  | 20039 | 214 | 948  |
| 3             | 9  | 1328 | 26 | 47  | 9725  | 3724 | 112   | 50         | 109      | 61 | 186 | 73  | 21538 | 240 | 988  |
| 3.1           | 4  | 1400 | 21 | 56  | 10276 | 3898 | 120   | 75         | 110      | 65 | 207 | 69  | 22739 | 252 | 1021 |

| 3.2 | 2              | 1374                | 10       | 40              | 10339         | 3903         | 86        | 54       | 103 | 67 | 196        | 90        | 23409          | 258        | 952        |
|-----|----------------|---------------------|----------|-----------------|---------------|--------------|-----------|----------|-----|----|------------|-----------|----------------|------------|------------|
| 3.3 | 5              | 1414                | 35       | 62              | 10895         | 4210         | 115       | 64       | 76  | 69 | 218        | 84        | 24331          | 281        | 1000       |
| 3.4 | 16             | 1463                | 18       | 60              | 11967         | 4529         | 122       | 66       | 108 | 50 | 256        | 113       | 29176          | 295        | 1045       |
| 3.5 | 3              | 1428                | 34       | 58              | 11238         | 4424         | 103       | 64       | 119 | 66 | 225        | 109       | 25535          | 267        | 1017       |
| 3.6 | 4              | 1466                | 29       | 33              | 11560         | 4433         | 91        | 60       | 91  | 65 | 242        | 80        | 25372          | 273        | 1027       |
| 3.7 | 9              | 1322                | 25       | 48              | 11296         | 4458         | 110       | 71       | 121 | 58 | 267        | 98        | 26610          | 274        | 1020       |
| 3.8 | 7              | 1417                | 31       | 40              | 11121         | 4488         | 133       | 73       | 109 | 55 | 282        | 111       | 26835          | 273        | 1014       |
| 3.9 | 12             | 1336                | 24       | 43              | 10818         | 4325         | 153       | 61       | 104 | 53 | 243        | 92        | 25080          | 262        | 1050       |
| 4   | 6              | 1290                | 38       | 46              | 10730         | 4056         | 140       | 73       | 104 | 59 | 231        | 84        | 23566          | 282        | 1035       |
| 4.1 | 8              | 1275                | 33       | 51              | 10873         | 4011         | 107       | 72       | 95  | 54 | 207        | 109       | 24122          | 243        | 1030       |
| 4.2 | 16             | 1254                | 38       | 53              | 11394         | 4225         | 136       | 70       | 121 | 60 | 226        | 123       | 25134          | 284        | 1057       |
| 4.3 | 17             | 1258                | 32       | 52              | 10373         | 4017         | 97        | 79       | 108 | 42 | 214        | 77        | 23143          | 255        | 964        |
| 4.4 | 4              | 1196                | 29       | 47              | 10068         | 3910         | 102       | 56       | 96  | 56 | 231        | 80        | 22456          | 245        | 927        |
| 4.5 | 7              | 1166                | 21       | 43              | 9349          | 3873         | 111       | 60       | 120 | 46 | 254        | 78        | 21683          | 220        | 897        |
| 4.6 | 12             | 1142                | 30       | 42              | 9030          | 3952         | 79        | 53       | 78  | 52 | 235        | 69        | 21376          | 237        | 904        |
| 4.7 | 7              | 1216                | 35       | 59              | 10088         | 3907         | 123       | 59       | 93  | 48 | 204        | 75        | 23590          | 249        | 1000       |
| 4.8 | 12             | 1298                | 29       | 47              | 9916          | 4322         | 106       | 68       | 86  | 44 | 258        | 66        | 24167          | 241        | 915        |
| 4.9 | 7              | 1307                | 39       | 42              | 10072         | 4281         | 103       | 52       | 98  | 58 | 272        | 90        | 23711          | 242        | 952        |
| 5   | 17             | 1763                | 30       | 47              | 10801         | 4404         | 103       | 62       | 111 | 63 | 252        | 109       | 25088          | 268        | 957        |
| 5.1 | 10             | 1428                | 32       | 68              | 10800         | 4489         | 67        | 62       | 98  | 58 | 273        | 103       | 25663          | 274        | 1002       |
| 5.2 | 7              | 1531                | 42       | 58              | 11507         | 4902         | 126       | 77       | 137 | 61 | 286        | 76        | 26912          | 287        | 1036       |
| 5.3 | 17             | 1514                | 29       | 50              | 11549         | 4987         | 85        | 86       | 126 | 66 | 319        | 119       | 28115          | 274        | 1022       |
| 5.4 | 18             | 1244                | 26       | 47              | 9933          | 4227         | 127       | 58       | 89  | 53 | 266        | 81        | 22728          | 236        | 896        |
| 5.5 | 10             | 1238                | 20       | 63              | 10108         | 4174         | 93        | 69       | 108 | 53 | 249        | 87        | 23319          | 245        | 912        |
| 5.6 | 13             | 1301                | 29       | 51              | 9931          | 4188         | 88        | 66       | 103 | 54 | 242        | 68        | 23744          | 243        | 927        |
| 5.7 | 1              | 1301                | 25       | 33              | 9649          | 4057         | 101       | 48       | 95  | 47 | 242        | 82        | 22645          | 205        | 858        |
| 5.8 | 7              | 1258                | 33       | 40              | 9083          | 4066         | 90        | 31       | 87  | 49 | 269        | 77        | 22416          | 203        | 795        |
| 5.9 | 4              | 1238                | 25       | 40              | 9083          | 3875         | 71        | 51       | 87  | 53 | 209        | 75        | 21152          | 214        | 811        |
| 6   | 15             | 1173                | 30       | 43              | 8586          | 3671         | 82        | 60       | 101 | 51 | 240        | 87        | 20096          | 214        | 808        |
| 6.1 | 5              | 11/3                | 30       | 50              | 8603          | 3612         | 104       | 68       | 94  | 40 | 240        | 98        | 20090          | 217        | 858        |
| 6.2 | 11             | 1264                | 30       | 51              | 9449          | 4025         | 88        | 63       | 118 | 40 | 242        | 107       | 20002          | 223        | 927        |
| 6.3 | 11             | 1264                | 29       | 39              | 9449          | 3959         | 90        | 59       | 97  | 48 | 249        | 107       | 22938          | 249        | 927<br>952 |
| 6.4 | 10             | 1200                | 29       | 49              | 8647          | 3641         | 88        | 43       | 75  | 39 | 241        | 114       | 22833          | 229        | 890        |
| 6.5 | 9              | 1145                | 28       | <u>49</u><br>56 | 9111          | 3865         | 119       | 59       | 125 | 39 | 204        | 128       | 21204          | 223        | 923        |
|     | 9              | 1065                |          | 52              | 9111 9170     | 3565         |           | 71       | 123 | 42 | 249        | 90        | 20887          | 232        | 923        |
| 6.6 | 19             |                     | 34       |                 |               |              | 98        |          | 102 |    |            |           | 20887          |            |            |
| 6.7 | 3              | <u>1177</u><br>1111 | 28       | 47              | 10086<br>9220 | 4142<br>3827 | 55        | 74<br>61 | 95  | 43 | 279<br>256 | 103<br>63 | 20279          | 256<br>228 | 900        |
| 6.8 |                |                     | 30       |                 |               |              | 74        | 49       | 78  | 41 |            |           |                |            | 886        |
| 6.9 | <u>11</u><br>9 | 1015                | 28<br>28 | 48<br>49        | 8509<br>9144  | 3582<br>4023 | 78<br>135 | 60       | 94  | 45 | 224        | 80<br>76  | 20177<br>21397 | 217<br>225 | 808        |
| 7   | -              |                     |          |                 |               |              |           |          | -   |    | 260        |           |                |            | 898        |
| 7.1 | 9              | 979                 | 28       | 48              | 8706          | 3366         | 106       | 63       | 77  | 37 | 217        | 81        | 19163          | 206        | 839        |
| 7.2 | 6              | 1023                | 17       | 34              | 8274          | 3577         | 135       | 45       | 116 | 41 | 227        | 72        | 20432          | 217        | 914        |
| 7.3 | 7              | 1164                | 29       | 40              | 9258          | 3914         | 110       | 58       | 133 | 42 | 237        | 83        | 22297          | 219        | 976        |
| 7.4 | 7              | 1129                | 29       | 47              | 8973          | 3821         | 107       | 46       | 105 | 50 | 227        | 83        | 22105          | 221        | 875        |
| 7.5 | 8              | 1311                | 45       | 48              | 9998          | 4430         | 135       | 66       | 107 | 50 | 309        | 81        | 23434          | 255        | 974        |
| 7.6 | 24             | 1301                | 27       | 46              | 10341         | 4619         | 139       | 73       | 108 | 55 | 319        | 87        | 25320          | 259        | 1095       |
| 7.7 | 12             | 1393                | 19       | 53              | 10740         | 4912         | 141       | 70       | 106 | 53 | 303        | 84        | 26337          | 282        | 1077       |
| 7.8 | 4              | 1433                | 25       | 42              | 10469         | 4873         | 115       | 64       | 91  | 46 | 311        | 82        | 25553          | 274        | 1046       |

| 7.9          | 6        | 1247         | 31       | 42       | 10117        | 4428         | 143        | 64       | 120        | 45 | 291        | 103       | 24216          | 244        | 1007       |
|--------------|----------|--------------|----------|----------|--------------|--------------|------------|----------|------------|----|------------|-----------|----------------|------------|------------|
| 8            | 7        | 1331         | 39       | 51       | 10388        | 4731         | 147        | 70       | 132        | 54 | 323        | 100       | 25128          | 267        | 1046       |
| 8.1          | 7        | 1365         | 25       | 36       | 10298        | 4808         | 119        | 75       | 132        | 44 | 310        | 82        | 25096          | 266        | 1079       |
| 8.2          | 8        | 1280         | 23       | -22      | 10142        | 4579         | 117        | 57       | 133        | 55 | 321        | 84        | 24645          | 259        | 1014       |
| 8.3          | 13       | 1300         | 30       | 51       | 10047        | 4677         | 95         | 57       | 110        | 39 | 314        | 82        | 24587          | 257        | 984        |
| 8.4          | 4        | 1273         | 25       | 50       | 10129        | 4660         | 112        | 66       | 113        | 54 | 339        | 94        | 24666          | 250        | 970        |
| 8.5          | 9        | 1276         | 30       | 47       | 10060        | 4671         | 78         | 64       | 123        | 51 | 330        | 79        | 25799          | 240        | 988        |
| 8.6          | 18       | 1303         | 17       | 43       | 9930         | 4656         | 102        | 53       | 98         | 46 | 321        | 85        | 25327          | 239        | 1026       |
| 8.7          | 6        | 1205         | 22       | 43       | 9611         | 4124         | 110        | 53       | 117        | 55 | 284        | 99        | 22293          | 242        | 941        |
| 8.8          | 10       | 1294         | 27       | 61       | 10394        | 4516         | 156        | 64       | 103        | 54 | 319        | 92        | 25336          | 251        | 972        |
| 8.9          | 7        | 1277         | 24       | 58       | 9660         | 4339         | 111        | 62       | 104        | 53 | 284        | 92        | 23817          | 252        | 1002       |
| 9            | 10       | 1451         | 27       | 63       | 10940        | 4883         | 134        | 73       | 94         | 46 | 348        | 114       | 25628          | 275        | 1099       |
| 9.1          | 8        | 1342         | 34       | 54       | 11592        | 4725         | 103        | 63       | 102        | 61 | 350        | 100       | 26737          | 261        | 1014       |
| 9.2          | 12       | 1372         | 33       | 51       | 11106        | 4853         | 100        | 58       | 101        | 57 | 365        | 84        | 25485          | 267        | 984        |
| 9.3          | 5        | 1163         | 26       | 51       | 9831         | 4363         | 100        | 58       | 89         | 57 | 309        | 72        | 22479          | 228        | 905        |
| 9.4          | 11       | 985          | 29       | 31       | 8298         | 3659         | 99         | 60       | 81         | 40 | 254        | 82        | 19085          | 204        | 791        |
| 9.5          | 9        | 1096         | 36       | 48       | 8170         | 3914         | 85         | 47       | 83         | 39 | 259        | 75        | 19817          | 193        | 792        |
| 9.6          | 7        | 1107         | 26       | 41       | 8467         | 3854         | 80         | 61       | 110        | 38 | 254        | 73        | 21198          | 216        | 818        |
| 9.7          | 16       | 1108         | 26       | 56       | 9140         | 3989         | 105        | 59       | 83         | 38 | 274        | 82        | 21695          | 238        | 974        |
| 9.8          | 6        | 1030         | 26       | 42       | 8926         | 3674         | 111        | 53       | 94         | 37 | 231        | 75        | 20660          | 220        | 1003       |
| 9.9          | 4        | 1055         | 20       | 47       | 8684         | 3801         | 107        | 60       | 89         | 41 | 256        | 93        | 20248          | 217        | 906        |
| 10           | 7        | 900          | 25       | 42       | 7585         | 3249         | 74         | 44       | 77         | 34 | 200        | 61        | 17567          | 186        | 787        |
| 10.1         | 3        | 915          | 23       | 25       | 8061         | 3163         | 59         | 54       | 87         | 37 | 192        | 71        | 17539          | 176        | 739        |
| 10.2         | 5        | 933          | 22       | 51       | 7920         | 3463         | 72         | 55       | 69         | 24 | 192        | 71        | 19451          | 219        | 874        |
| 10.3         | 13<br>15 | 1072<br>1025 | 27<br>29 | 42       | 8892         | 3871<br>3671 | 100        | 63<br>54 | 110<br>101 | 34 | 237        | 86<br>74  | 21861          | 212<br>230 | 845        |
| 10.4         | 9        |              | 32       | 56<br>35 | 8615         |              | 116        | 44       | 101        | 34 |            |           | 21288          |            | 897        |
| 10.5<br>10.6 | 17       | 1148<br>1296 | 32       | 33       | 8320<br>9816 | 4114 4852    | 101<br>121 | 58       | 96         | 38 | 235<br>283 | 101<br>69 | 21692<br>25085 | 204<br>230 | 902<br>984 |
| 10.0         | 17       | 1296         | 32       | 49       | 9810         | 4832         | 121        | 67       | 123        | 46 | 285        | 100       | 25085          | 250        | 968        |
| 10.7         | 12       | 1319         | 38       | 49       | 10705        | 4916         | 119        | 64       | 86         | 40 | 321        | 78        | 26468          | 252        | 908        |
| 10.8         | 15       | 1471         | 32       | 66       | 11607        | 5312         | 145        | 76       | 127        | 44 | 323        | 119       | 29085          | 232        | 1129       |
| 11           | 15       | 1619         | 51       | 66       | 13544        | 5930         | 116        | 70       | 136        | 54 | 372        | 80        | 31776          | 298        | 1143       |
| 11.1         | 20       | 1557         | 38       | 47       | 11810        | 5293         | 144        | 74       | 106        | 56 | 333        | 91        | 28141          | 275        | 1076       |
| 11.2         | 10       | 1300         | 23       | 44       | 11010        | 4863         | 88         | 67       | 100        | 40 | 303        | 109       | 26200          | 266        | 997        |
| 11.3         | 15       | 1187         | 34       | 58       | 10294        | 4434         | 82         | 60       | 93         | 36 | 272        | 56        | 24359          | 249        | 895        |
| 11.4         | 5        | 1088         | 28       | 53       | 9562         | 4156         | 59         | 65       | 91         | 43 | 265        | 86        | 23102          | 225        | 887        |
| 11.5         | 9        | 1088         | 29       | 33       | 9316         | 4173         | 112        | 62       | 113        | 37 | 259        | 94        | 22284          | 224        | 880        |
| 11.6         | 17       | 1000         | 26       | 42       | 8516         | 3794         | 102        | 52       | 102        | 30 | 227        | 65        | 21292          | 213        | 817        |
| 11.7         | 8        | 1137         | 25       | 57       | 9468         | 4259         | 100        | 66       | 104        | 40 | 269        | 53        | 23454          | 225        | 890        |
| 11.8         | 22       | 1127         | 31       | 39       | 9257         | 4106         | 73         | 58       | 100        | 39 | 250        | 89        | 23115          | 232        | 890        |
| 11.9         | 6        | 1253         | 33       | 58       | 10230        | 4591         | 109        | 58       | 91         | 44 | 299        | 73        | 25204          | 243        | 985        |
| 12           | 16       | 1391         | 39       | 46       | 11003        | 5179         | 94         | 68       | 107        | 43 | 326        | 80        | 27932          | 281        | 1004       |
| 12.1         | 23       | 1355         | 36       | 44       | 10997        | 5208         | 121        | 67       | 103        | 55 | 341        | 71        | 27381          | 288        | 1020       |
| 12.2         | 18       | 1361         | 44       | 54       | 11412        | 5148         | 86         | 77       | 130        | 52 | 328        | 86        | 26322          | 279        | 978        |
| 12.3         | 17       | 1304         | 32       | 55       | 10930        | 4976         | 109        | 75       | 96         | 43 | 325        | 65        | 25620          | 270        | 986        |
| 12.4         | 11       | 1214         | 33       | 42       | 10491        | 4533         | 84         | 66       | 99         | 49 | 328        | 68        | 23903          | 246        | 941        |
| 12.4         | 11       | 1217         | 55       | 72       | 101/1        | 4555         | 07         | 00       |            |    | 520        | 00        | 25705          | 240        | 2          |

| 12.6 | 6  | 1124 | 19    | 49 | 9633  | 4194 | 114 | 65 | 88  | 38  | 258 | 74  | 22540 | 237 | 877  |
|------|----|------|-------|----|-------|------|-----|----|-----|-----|-----|-----|-------|-----|------|
| 12.7 | 13 | 1173 | 32    | 47 | 10011 | 4427 | 95  | 72 | 78  | 48  | 320 | 53  | 23849 | 242 | 939  |
| 12.8 | 3  | 1142 | 28    | 58 | 10251 | 4330 | 98  | 69 | 73  | 46  | 288 | 72  | 23765 | 251 | 949  |
| 12.9 | 7  | 1272 | 23    | 48 | 11382 | 4887 | 114 | 84 | 102 | 49  | 328 | 77  | 26702 | 282 | 1007 |
| 13   | 14 | 1265 | 31    | 47 | 10816 | 4646 | 104 | 66 | 98  | 40  | 306 | 82  | 24400 | 259 | 889  |
| 13.1 | 13 | 1554 | 26    | 39 | 10072 | 4276 | 86  | 60 | 101 | 39  | 276 | 79  | 23141 | 245 | 882  |
| 13.2 | 14 | 1130 | 37    | 40 | 9570  | 4304 | 91  | 59 | 75  | 35  | 264 | 69  | 22473 | 238 | 782  |
| 13.3 | 8  | 859  | 36    | 28 | 7360  | 3221 | 93  | 44 | 77  | 36  | 194 | 68  | 17373 | 178 | 658  |
| 13.4 | 20 | 738  | 33    | 34 | 6406  | 2610 | 48  | 40 | 57  | 33  | 181 | 53  | 14432 | 145 | 523  |
| 13.5 | 5  | 581  | 27    | 31 | 4559  | 2153 | 30  | 32 | 54  | 32  | 146 | 43  | 11205 | 111 | 407  |
| 13.6 | 5  | 696  | 27    | 37 | 5457  | 2456 | 34  | 32 | 37  | 27  | 169 | 59  | 13089 | 132 | 469  |
| 13.7 | 17 | 885  | 31    | 48 | 7026  | 3160 | 54  | 45 | 81  | 39  | 201 | 70  | 16539 | 172 | 614  |
| 13.8 | 7  | 980  | 49    | 42 | 8191  | 3755 | 82  | 54 | 69  | 33  | 249 | 55  | 19521 | 173 | 698  |
| 13.9 | 1  | 72   | 18    | 16 | 159   | 125  | 11  | 10 | 11  | 10  | 11  | 18  | 443   | 24  | 54   |
| 14   | 1  | 126  | 11274 | 24 | 169   | 117  | 17  | 30 | 56  | 99  | 12  | 17  | 490   | 35  | 60   |
| 14.1 | 3  | 213  | 17895 | 21 | 855   | 367  | 19  | 22 | 24  | 157 | 26  | 18  | 1831  | 57  | 97   |
| 14.2 | 2  | 339  | 18363 | 18 | 1239  | 622  | 22  | 17 | 22  | 158 | 37  | 19  | 3224  | 61  | 120  |
| 14.3 | 3  | 358  | 9496  | 20 | 1664  | 853  | 31  | 23 | 27  | 82  | 54  | 33  | 4037  | 51  | 145  |
| 14.4 | 8  | 557  | 7208  | 25 | 2505  | 1218 | 40  | 20 | 30  | 79  | 106 | 40  | 6199  | 78  | 222  |
| 14.5 | 5  | 890  | 687   | 38 | 4145  | 2033 | 68  | 36 | 63  | 36  | 182 | 57  | 10291 | 118 | 367  |
| 14.6 | 11 | 1391 | 42    | 54 | 7388  | 3601 | 92  | 66 | 73  | 60  | 337 | 74  | 20012 | 202 | 620  |
| 14.7 | 9  | 1401 | 53    | 37 | 7492  | 3729 | 109 | 51 | 84  | 70  | 332 | 86  | 19880 | 185 | 676  |
| 14.8 | 14 | 1719 | 56    | 51 | 8090  | 4082 | 103 | 63 | 91  | 72  | 371 | 87  | 20999 | 206 | 696  |
| 14.9 | 10 | 1773 | 64    | 47 | 8475  | 4273 | 98  | 56 | 101 | 83  | 423 | 66  | 21833 | 208 | 758  |
| 15   | 10 | 1441 | 56    | 41 | 9245  | 5059 | 96  | 50 | 90  | 73  | 450 | 75  | 25086 | 195 | 760  |
| 15.1 | 15 | 1551 | 54    | 61 | 8266  | 4518 | 122 | 57 | 109 | 67  | 384 | 212 | 22765 | 236 | 798  |
| 15.2 | 13 | 3594 | 57    | 67 | 8767  | 4560 | 107 | 60 | 78  | 76  | 432 | 396 | 24015 | 242 | 748  |
| 15.3 | 22 | 1454 | 53    | 52 | 8586  | 4541 | 127 | 42 | 101 | 74  | 420 | 100 | 23871 | 203 | 840  |
| 15.4 | 25 | 1657 | 47    | 50 | 9456  | 4806 | 159 | 61 | 95  | 84  | 424 | 97  | 25206 | 216 | 897  |
| 15.5 | 12 | 1428 | 60    | 54 | 9521  | 4704 | 148 | 51 | 112 | 74  | 430 | 94  | 24470 | 213 | 869  |
| 15.6 | 13 | 1338 | 47    | 56 | 9222  | 4738 | 146 | 59 | 86  | 62  | 409 | 101 | 25024 | 230 | 913  |
| 15.7 | 16 | 1450 | 68    | 57 | 9610  | 4953 | 177 | 62 | 102 | 72  | 424 | 91  | 25678 | 237 | 931  |
| 15.8 | 15 | 1383 | 45    | 52 | 9695  | 4758 | 151 | 54 | 107 | 75  | 401 | 94  | 24190 | 234 | 902  |
| 15.9 | 14 | 1395 | 43    | 64 | 10081 | 4783 | 155 | 57 | 104 | 75  | 395 | 94  | 25399 | 226 | 887  |
| 16   | 6  | 1495 | 69    | 54 | 9820  | 5480 | 145 | 45 | 101 | 73  | 439 | 78  | 27812 | 247 | 924  |
| 16.1 | 20 | 1476 | 65    | 58 | 9873  | 5807 | 144 | 63 | 101 | 74  | 474 | 85  | 27371 | 239 | 921  |
| 16.2 | 10 | 1412 | 67    | 51 | 9581  | 5173 | 140 | 64 | 104 | 70  | 441 | 84  | 27291 | 235 | 868  |
| 16.3 | 18 | 1325 | 64    | 52 | 9219  | 4939 | 123 | 53 | 102 | 66  | 403 | 75  | 25678 | 220 | 846  |
| 16.4 | 16 | 1433 | 56    | 62 | 9099  | 5393 | 123 | 73 | 80  | 72  | 422 | 95  | 26397 | 220 | 854  |
| 16.5 | 14 | 1528 | 61    | 42 | 9288  | 5294 | 145 | 51 | 100 | 79  | 435 | 99  | 26749 | 250 | 899  |
| 16.6 | 17 | 1320 | 63    | 90 | 9566  | 4849 | 137 | 62 | 76  | 74  | 404 | 96  | 27155 | 230 | 904  |
| 16.7 | 14 | 1319 | 52    | 55 | 9561  | 4931 | 123 | 77 | 115 | 65  | 394 | 87  | 26124 | 255 | 844  |
| 16.8 | 18 | 1386 | 58    | 60 | 9112  | 5033 | 164 | 63 | 83  | 70  | 405 | 89  | 26297 | 233 | 897  |
| 16.9 | 24 | 1354 | 58    | 54 | 9244  | 5077 | 154 | 60 | 110 | 70  | 409 | 74  | 26820 | 242 | 918  |
| 10.5 | 15 | 1398 | 43    | 48 | 9209  | 5253 | 155 | 64 | 110 | 64  | 430 | 97  | 26068 | 242 | 895  |
| 17.1 | 7  | 1428 | 49    | 60 | 9053  | 5026 | 95  | 69 | 100 | 63  | 434 | 54  | 26604 | 223 | 822  |
| 17.1 | 19 | 1390 | 53    | 63 | 9941  | 5019 | 102 | 67 | 92  | 67  | 433 | 69  | 28640 | 225 | 812  |
| 1/.2 | 17 | 1570 |       | 05 | 7771  | 5019 | 102 | 07 | 14  | 07  |     | 0)  | 20040 | 225 | 012  |

| 17.3         14         1384         49         61         9650         4864         128         71         82         67         435         88         27612         222         800           17.5         11         1396         62         59         8786         4870         145         62         91         80         385         127         25641         224         859           17.6         18         1563         82         63         9180         5067         114         60         91         82         731         222         820           17.7         13         1514         59         62         9533         5063         114         40         91         84         403         96         25797         231         787           17.8         108         77         94         63         863         4594         139         52         82         72         356         85         2336         212         770           18.1         15         1318         77         41         8329         4444         112         68         103         73         333         86         2233         101 </th <th>15.2</th> <th>1.4</th> <th>1204</th> <th>40</th> <th>(1</th> <th>0(50</th> <th>1074</th> <th>120</th> <th>71</th> <th>02</th> <th>(7</th> <th>42.5</th> <th>00</th> <th>27(12</th> <th>222</th> <th>000</th> | 15.2 | 1.4 | 1204 | 40 | (1 | 0(50 | 1074 | 120 | 71 | 02 | (7 | 42.5 | 00 | 27(12 | 222 | 000 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|------|----|----|------|------|-----|----|----|----|------|----|-------|-----|-----|
| 17.5         11         1396         62         59         8786         4870         144         60         119         72         411         98         7331         222         821           17.7         13         1514         59         62         9533         5063         114         40         91         84         403         96         25797         231         787           17.8         10         1863         78         54         970         4767         111         68         86         62         388         110         26412         205         812           17.9         16         1416         68         59         8748         4878         103         55         91         72         356         89         24037         210         788           18.1         15         151         154         85         77         9244         4834         130         70         71         336         82         2572         187           18.4         4         1542         85         77         924         4834         130         70         80         82         357         99         73                                                                                                                                                                                                                          |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 17.6         18         1563         82         63         9180         5067         141         60         919         72         411         98         27531         222         821           17.8         10         1863         78         54         9570         4767         111         68         88         2388         110         26412         205         812           17.9         16         1416         68         59         8748         4878         130         57         95         71         391         86         24022         210         789           18.1         15         1379         91         63         8630         4594         139         52         82         72         356         89         24037         210         789           18.1         12         1364         90         53         7848         4117         142         68         73         333         86         22393         191         785           18.3         13         135         91         48         8329         4404         135         63         917         2366         87         2717         787                                                                                                                                                                                                                          |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 17.7         13         1514         59         62         9333         5063         114         40         91         84         403         96         25797         231         787           17.9         16         1416         68         59         8748         4878         130         57         95         71         391         86         24022         218         776           18         15         1318         77         41         8392         4478         103         55         91         75         356         85         2336         212         720           18.1         13         131         131         91         48         8329         4304         121         68         103         73         333         86         22335         191         785           18.4         4         1542         85         57         9224         4484         130         70         80         82         357         90         24645         220         787           18.6         13         155         454         851         91         72         390         73         2556         79         72                                                                                                                                                                                                                           |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 17.8         10         1863         78         54         9570         4767         111         68         86         87         388         110         20412         205         812           17.9         16         1416         68         59         8743         438         130         57         95         71         336         24292         218         778           18.1         15         1318         77         41         8392         4478         103         55         91         75         356         89         24037         210         789           18.2         12         1364         90         53         7844         4117         142         52         95         78         346         74         2161         196         753           18.4         15145         85         57         9224         4434         130         70         80         82         357         90         24645         220         787           18.5         154         83         70         9499         4743         130         70         80         82         357         90         24645         200                                                                                                                                                                                                                              |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 16         146         68         59         8748         4878         130         57         95         71         391         86         2422         218         776           18         15         1318         77         41         8392         4478         103         55         91         75         356         85         2336         212         720           18.2         12         1364         90         53         7848         4117         142         52         95         78         346         74         21601         196         755           18.3         131         1315         91         48         8329         4304         121         68         103         73         356         87         2217         215         839           18.4         4         1542         85         57         9224         4834         135         63         97         71         356         87         2217         215         839           18.6         13         155         1455         62         51         8777         5055         125         56         77         2366         60         24681 <th></th> <th>-</th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                      |      | -   | -    |    |    |      |      |     |    | -  |    |      |    |       |     |     |
| 18         15         1379         91         63         8630         4494         139         52         82         72         356         99         24037         210         789           18.1         15         1318         77         41         8302         4478         103         55         91         75         356         85         2336         212         720           18.2         12         1364         90         53         7848         4117         142         52         95         78         346         74         21601         196         753           18.4         41542         85         57         9224         4843         135         63         97         71         356         87         25172         215         830           18.5         15         1545         83         70         9499         4743         130         70         80         82         357         90         224645         220         785           18.6         13         1552         62         51         8777         5055         125         56         75         72         368         60         2464                                                                                                                                                                                                                     |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 18.1         15         13.18         77         41         8392         4478         103         55         91         75         356         85         233.6         212         720           18.2         12         1364         90         53         7848         4117         142         52         95         78         346         74         21601         196         753           18.3         1315         91         48         8329         4404         121         68         103         73         333         86         2293         191         785           18.4         4         1542         85         57         9224         4834         135         63         97         71         356         87         2517         205         787           18.6         13         1558         65         53         9125         5014         115         59         91         72         300         73         2568         207         795           18.7         17         145         62         51         877         505         125         50         172         306         63         2407         790 </th <th></th>                                                  |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 18.2         12         1364         90         53         784         4117         142         52         95         78         346         74         21601         196         753           18.3         13         1315         91         48         8329         4304         121         68         103         73         333         86         22393         191         785           18.4         4         1542         85         57         9224         4834         130         70         80         82         357         90         24645         220         787           18.6         13         1558         65         53         9125         5014         115         59         91         72         300         73         2568         207         795           18.7         17         1455         62         51         8777         5055         125         56         75         72         368         60         24641         205         793           18.9         13         1323         68         67         8432         145         91         82         364         67         26344         218<                                                                                                                                                                                                                     |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 18.3         13         1315         91         48         8329         4304         121         68         103         73         333         86         22393         191         785           18.4         4         1542         85         57         9224         4834         135         63         97         71         356         87         25172         215         839           18.6         13         1558         65         53         9125         S014         115         59         91         72         390         73         25568         207         795           18.7         17         1455         62         51         8777         5055         125         56         75         772         368         60         24681         205         793           18.8         11         1276         61         51         8841         4510         147         53         99         73         356         93         23947         210         783           19.1         14         1337         55         36         7851         4189         119         60         96         91         330         88                                                                                                                                                                                                                     |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 18.4         4         1542         85         57         9224         4834         135         63         97         71         356         87         2517         215         839           18.5         15         1545         83         70         9499         4743         130         70         80         82         357         90         24645         220         787           18.6         13         1558         65         53         9125         5014         115         59         91         72         368         60         24641         205         793           18.8         11         1276         61         51         8871         4510         147         53         99         73         356         93         23947         210         783           18.9         13         1323         68         67         8959         4638         120         54         91         82         364         67         26384         218         802           19.1         14         1337         55         36         7851         4189         131         152         54         91         81         339 </th <th></th>                                                  |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| <b>18.5</b> 151548370949947431307080823579024645220787 <b>18.6</b> 1315586553912550141155991723907325568207793 <b>18.7</b> 11145562518777505512556757233666024681205793 <b>18.8</b> 1112766151884145101475399733569323947210783 <b>19.1</b> 1313236867895946381205491823646726344218802 <b>19.1</b> 1413375536785141891196096913308822550181711 <b>19.2</b> 5147154737903381167882743376721607196688 <b>19.3</b> 1812906759813843311125491813399523943198731 <b>19.4</b> 18116242408081434610768976136689222666616 <b>19.7</b> 71054394174623653824995522956818755162624 <b>19.6</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 18.6         13         1558         65         53         9125         5014         115         59         91         72         390         73         25568         207         795           18.7         17         1455         62         51         8777         5055         125         56         75         72         368         60         24681         205         793           18.8         11         1276         61         51         8844         4510         147         53         99         73         356         93         23947         210         781           19         11         1364         67         64         8442         4623         135         52         101         92         358         107         24021         199         73           19.1         14         1337         55         36         781         4189         119         60         96         91         330         88         2250         181         711           19.2         5         1471         54         73         7901         3989         116         78         82         74         327         67                                                                                                                                                                                                                          |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 18.8         11         1276         61         51         8841         4510         147         53         99         73         356         93         23947         210         783           18.9         13         1323         68         67         8959         4638         120         54         91         82         364         67         26384         218         802           19         11         1364         67         64         8442         4623         135         52         101         92         358         107         24021         199         781           19.1         14         1337         55         36         7851         4189         119         60         96         91         330         88         22550         181         711           19.2         5         1471         54         73         7001         3989         116         78         82         74         327         67         21607         196         671           19.4         18         1162         42         40         8081         4346         107         68         97         61         366         89 </th <th></th>                                                  |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 18.9         13         1323         68         67         8959         4638         120         54         91         82         364         67         26384         218         802           19         11         1364         67         64         8442         4623         135         52         101         92         358         107         24021         199         781           19.1         14         1337         55         36         7851         4189         119         60         96         91         330         88         22550         181         711           19.2         5         1471         54         73         7901         3989         116         78         82         74         327         67         21607         196         688           19.3         18         1200         67         59         8138         4331         112         54         91         81         339         95         23943         198         731           19.4         18         162         63         64         305         55         18861         153         654           19.6         17 </th <th></th>                                                          |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 19         11         1364         67         64         8442         4623         135         52         101         92         358         107         24021         199         781           19.1         14         1337         55         36         7851         4189         119         60         96         91         330         88         2250         181         711           19.2         5         1471         54         73         7901         3989         116         78         82         74         330         88         2250         181         711           19.3         18         1290         67         59         8138         4331         112         54         91         81         339         95         23943         198         731           19.4         18         162         42         40         8081         4346         107         68         97         61         366         89         22226         196         671           19.5         16         1044         58         33         7214         3744         93         46         63         64         305         55                                                                                                                                                                                                                           |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 19.1         14         1337         55         36         7851         4189         119         60         96         91         330         88         22550         181         711           19.2         5         1471         54         73         7901         3989         116         78         82         74         327         67         21607         196         688           19.3         18         1290         67         59         8138         4331         112         54         91         81         339         95         23943         198         731           19.4         18         1162         42         40         8081         4346         107         68         97         61         366         89         2226         196         671           19.5         16         1044         58         33         7214         3744         93         46         63         64         305         55         18861         163         646           19.6         17         1038         56         51         6890         3674         90         40         915         51         50         212 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                        |      |     |      |    |    |      |      |     |    | -  |    |      |    |       |     |     |
| 19.2         5         1471         54         73         7901         3989         116         78         82         74         327         67         21607         196         688           19.3         18         1290         67         59         8138         4331         112         54         91         81         339         95         23943         198         731           19.4         18         1162         42         40         8081         4346         107         68         97         61         366         89         2226         196         671           19.5         16         1044         58         33         7214         3744         93         46         63         64         305         55         162         634           19.6         17         1038         56         51         6890         3674         90         40         91         54         288         72         1849         164         616           19.7         7         1054         39         41         7462         3653         82         49         95         52         295         68         18755                                                                                                                                                                                                                             |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 19.3         18         1290         67         59         8138         4331         112         54         91         81         339         95         23943         198         731           19.4         18         1162         42         40         8081         4346         107         68         97         61         366         89         22226         196         671           19.5         16         1044         58         33         7214         3744         93         46         63         64         305         55         18861         153         634           19.6         17         1038         56         51         6829         3674         90         40         91         54         288         72         18849         164         616           19.7         7         1054         39         41         7462         3653         82         49         95         52         295         68         18755         162         624           19.8         8         1081         45         51         6829         3537         91         51         50         55         270         68                                                                                                                                                                                                                            |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 19.4         18         1162         42         40         8081         4346         107         68         97         61         366         89         22226         196         671           19.5         16         1044         58         33         7214         3744         93         46         63         64         305         55         18861         153         634           19.6         17         1038         56         51         6890         3674         90         40         91         54         288         72         18849         164         616           19.7         7         1054         39         41         7462         3653         82         49         95         52         295         68         18755         162         624           19.8         8         1081         45         51         6829         3537         91         51         50         272         70         17870         169         590           19.9         8         971         41         38         6848         3393         75         44         81         56         247         80         18432                                                                                                                                                                                                                            |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 19.5         16         1044         58         33         7214         3744         93         46         63         64         305         55         18861         153         634           19.6         17         1038         56         51         6890         3674         90         40         91         54         288         72         18849         164         616           19.7         7         1054         39         41         7462         3653         82         49         95         52         295         68         18755         162         624           19.8         8         1081         45         51         6829         3337         75         44         81         56         247         80         18432         168         563           20         14         906         39         55         7050         3360         105         53         51         49         250         55         17641         163         601           20.1         5         988         45         46         7915         3509         114         45         79         55         270         68                                                                                                                                                                                                                                 |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 19.6         17         1038         56         51         6890         3674         90         40         91         54         288         72         18849         164         616           19.7         7         1054         39         41         7462         3653         82         49         95         52         295         68         18755         162         624           19.8         8         1081         45         51         6829         3537         91         51         50         272         70         17870         169         590           19.9         8         971         41         38         6848         393         75         44         81         56         247         80         18432         168         563           20         14         906         39         55         7050         3600         105         53         51         49         250         55         161         601           20.1         5         988         45         46         7915         3509         114         45         79         55         270         68         19657         171                                                                                                                                                                                                                                   |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 19.7         7         1054         39         41         7462         3653         82         49         95         52         295         68         18755         162         624           19.8         8         1081         45         51         6829         3537         91         51         51         50         272         70         17870         169         590           19.9         8         971         41         38         6848         3393         75         44         81         56         247         80         18432         168         563           20         14         906         39         55         7050         3360         105         53         51         49         250         55         17641         163         601           20.1         5         988         45         46         7915         3509         114         45         79         55         270         68         19657         171         685           20.2         18         1087         40         44         6810         3416         91         55         70         52         255         67                                                                                                                                                                                                                                   |      | -   | -    |    |    |      |      |     | -  |    | -  |      |    |       |     |     |
| 19.8         8         1081         45         51         6829         3537         91         51         51         50         272         70         17870         169         590           19.9         8         971         41         38         6848         3393         75         44         81         56         247         80         18432         168         563           20         14         906         39         55         7050         3360         105         53         51         49         250         55         17641         163         601           20.1         5         988         45         46         7915         3509         114         45         79         55         270         68         19657         171         685           20.2         18         1087         40         44         6810         3416         91         55         70         52         255         67         1724         166         604           20.3         9         1607         34         51         7279         3661         120         41         71         59         280         93                                                                                                                                                                                                                                   |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 19.9         8         971         41         38         6848         3393         75         44         81         56         247         80         18432         168         563           20         14         906         39         55         7050         3360         105         53         51         49         250         55         17641         163         601           20.1         5         988         45         46         7915         3509         114         45         79         55         270         68         19657         171         685           20.2         18         1087         40         44         6810         3416         91         55         70         52         255         67         1724         166         604           20.3         9         1607         34         51         7279         3661         120         41         71         59         289         75         18985         183         675           20.4         5         1155         45         40         7362         4196         94         444         57         65         280         93                                                                                                                                                                                                                                  |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 20         14         906         39         55         7050         3360         105         53         51         49         250         55         17641         163         601           20.1         5         988         45         46         7915         3509         114         45         79         55         270         68         19657         171         685           20.2         18         1087         40         44         6810         3416         91         55         70         52         255         67         1724         166         604           20.3         9         1607         34         51         7279         3661         120         41         71         59         289         75         18985         183         675           20.4         5         1155         45         40         7362         4196         94         444         57         65         280         93         19530         177         661           20.5         9         1104         44         39         7174         3543         74         45         78         63         287         81                                                                                                                                                                                                                                 |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 20.1         5         988         45         46         7915         3509         114         45         79         55         270         68         19657         171         685           20.2         18         1087         40         44         6810         3416         91         55         70         52         255         67         1724         166         604           20.3         9         1607         34         51         7279         3661         120         41         71         59         289         75         18985         183         675           20.4         5         1155         45         40         7362         4196         94         44         57         65         280         93         19530         177         661           20.5         9         1104         44         39         7174         3543         74         45         78         63         287         81         18447         184         643           20.6         12         918         35         46         7300         3535         102         59         99         61         302         82                                                                                                                                                                                                                                |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 20.2         18         1087         40         44         6810         3416         91         55         70         52         255         67         17224         166         604           20.3         9         1607         34         51         7279         3661         120         41         71         59         289         75         18985         183         675           20.4         5         1155         45         40         7362         4196         94         44         57         65         280         93         19530         177         661           20.5         9         1104         44         39         7174         3543         74         45         78         63         287         81         18447         184         643           20.6         12         918         35         46         7300         3535         102         59         99         61         302         82         19421         179         651           20.7         16         947         38         37         6973         3469         105         46         98         49         285         80                                                                                                                                                                                                                              |      |     | 988  |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 20.3         9         1607         34         51         7279         3661         120         41         71         59         289         75         18985         183         675           20.4         5         1155         45         40         7362         4196         94         44         57         65         280         93         19530         177         661           20.5         9         1104         44         39         7174         3543         74         45         78         63         287         81         18447         184         643           20.6         12         918         35         46         7300         3535         102         59         99         61         302         82         19421         179         651           20.7         16         947         38         37         6973         3469         105         46         98         49         285         80         18957         174         629           20.8         15         1156         35         49         7417         3700         88         68         62         54         276         61                                                                                                                                                                                                                              | 20.2 | 18  | 1087 | 40 | 44 | 6810 | 3416 | 91  |    | 70 | 52 | 255  | 67 |       | 166 |     |
| 20.59110444397174354374457863287811844718464320.612918354673003535102599961302821942117965120.716947383769733469105469849285801895717462920.815115635497417370088686254276611962417762020.91110243653726437941055583553037319902179667214103243517288370795568353293691957618267021.191098594587394186133438358335702276720271521.281097465889764135736079653347822254215756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.3 |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 20.612918354673003535102599961302821942117965120.716947383769733469105469849285801895717462920.815115635497417370088686254276611962417762020.91110243653726437941055583553037319902179667214103243517288370795568353293691957618267021.191098594587394186133438358335702276720271521.281097465889764135736079653347822254215756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.4 | 5   | 1155 | 45 | 40 | 7362 |      | 94  | 44 | 57 | 65 | 280  | 93 | 19530 | 177 | 661 |
| 20.7         16         947         38         37         6973         3469         105         46         98         49         285         80         18957         174         629           20.8         15         1156         35         49         7417         3700         88         68         62         54         276         61         19624         177         620           20.9         11         1024         36         53         7264         3794         105         55         83         55         303         73         19902         179         667           21         4         1032         43         51         7288         3707         95         56         83         53         293         69         19576         182         670           21.1         9         1098         59         45         8739         4186         133         43         83         58         335         70         22767         202         715           21.2         8         1097         46         58         8976         4135         73         60         79         65         334         78                                                                                                                                                                                                                               | 20.5 | 9   | 1104 |    | 39 | 7174 | 3543 | 74  | 45 | 78 | 63 | 287  | 81 | 18447 | 184 | 643 |
| 20.8         15         1156         35         49         7417         3700         88         68         62         54         276         61         19624         177         620           20.9         11         1024         36         53         7264         3794         105         55         83         55         303         73         19902         179         667           21         4         1032         43         51         7288         3707         95         56         83         53         293         69         19576         182         670           21.1         9         1098         59         45         8739         4186         133         43         83         58         335         70         22767         202         715           21.2         8         1097         46         58         8976         4135         73         60         79         65         334         78         22254         215         756                                                                                                                                                                                                                                                                                                                                                                                         | 20.6 | 12  | 918  | 35 | 46 | 7300 | 3535 | 102 | 59 | 99 | 61 | 302  | 82 | 19421 | 179 | 651 |
| 20.91110243653726437941055583553037319902179667214103243517288370795568353293691957618267021.191098594587394186133438358335702276720271521.281097465889764135736079653347822254215756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.7 |     | 947  |    | 37 | 6973 |      | 105 | 46 | 98 |    | 285  | 80 | 18957 | 174 | 629 |
| 21         4         1032         43         51         7288         3707         95         56         83         53         293         69         19576         182         670           21.1         9         1098         59         45         8739         4186         133         43         83         58         335         70         22767         202         715           21.2         8         1097         46         58         8976         4135         73         60         79         65         334         78         22254         215         756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | 15  |      |    |    | 7417 |      |     |    |    |    | 276  | 61 |       |     | 620 |
| 21.1         9         1098         59         45         8739         4186         133         43         83         58         335         70         22767         202         715           21.2         8         1097         46         58         8976         4135         73         60         79         65         334         78         22254         215         756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 11  |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| <b>21.2</b> 8 1097 46 58 8976 4135 73 60 79 65 334 78 22254 215 756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | -   |      |    |    | 8739 |      |     |    |    |    |      |    |       |     |     |
| <b>213</b> 0 900 54 48 7838 3712 87 50 60 58 268 72 20427 102 674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.3 | 9   | 990  | 54 | 48 | 7838 | 3712 | 87  | 50 | 69 | 58 | 268  | 72 | 20437 | 192 | 674 |
| 21.4         12         1035         49         44         7583         3725         106         51         76         57         269         68         20554         173         668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| <b>21.5</b> 15 1010 36 51 7318 3714 83 57 67 42 281 52 20118 183 664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| <b>21.6</b> 4 1119 36 48 7691 3878 99 54 70 55 301 80 20640 181 648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| 21.7         10         985         31         54         7455         3947         84         60         78         47         277         68         20117         188         655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| <b>21.8</b> 5 997 29 56 8042 4141 83 51 81 45 313 80 20497 179 665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |     |      |    |    |      |      |     |    |    |    |      |    |       |     |     |
| <b>21.9</b> 13 969 33 41 7683 3681 105 64 92 65 275 70 20210 178 666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.9 | 13  | 969  | 33 | 41 | 7683 | 3681 | 105 | 64 | 92 | 65 | 275  | 70 | 20210 | 178 | 666 |

| 22         | 10       | 1105        | 20       | 66       | 0241         | 4146      | 02              | 40 | 70       | (0)      | 200        | 72       | 21705          | 201        | (17               |
|------------|----------|-------------|----------|----------|--------------|-----------|-----------------|----|----------|----------|------------|----------|----------------|------------|-------------------|
| 22<br>22.1 | 12<br>11 | 1105<br>930 | 39<br>49 | 55<br>43 | 8341<br>7179 | 4146 3521 | <u>93</u><br>91 | 42 | 72<br>66 | 60<br>54 | 286<br>252 | 73<br>73 | 21705<br>19680 | 201<br>155 | <u>647</u><br>647 |
|            |          |             | -        |          |              |           |                 | -  |          | -        |            |          |                |            |                   |
| 22.2       | 5        | 885         | 39       | 48       | 7060         | 3520      | 72              | 49 | 59       | 52       | 261        | 55       | 19208          | 159        | 585               |
| 22.3       | 12       | 1020        | 49       | 59       | 8093         | 3850      | 98              | 56 | 83       | 54       | 262        | 81       | 20465          | 190        | 636               |
| 22.4       | 12       | 1040        | 45       | 58       | 7829         | 3797      | 97              | 59 | 70       | 72       | 278        | 75       | 20702          | 194        | 666               |
| 22.5       | 8        | 907         | 54       | 44       | 6879         | 3418      | 113             | 53 | 69       | 51       | 235        | 83       | 18769          | 198        | 653               |
| 22.6       | 3        | 1102        | 34       | 42       | 8284         | 4014      | 107             | 51 | 87       | 60       | 286        | 96       | 21423          | 187        | 697               |
| 22.7       | 14       | 1105        | 36       | 37       | 8839         | 4206      | 104             | 51 | 79       | 66       | 295        | 88       | 21886          | 208        | 724               |
| 22.8       | 7        | 1127        | 51       | 47       | 8544         | 4178      | 101             | 59 | 86       | 62       | 298        | 60       | 23433          | 187        | 761               |
| 22.9       | 11       | 1071        | 36       | 19       | 7504         | 4253      | 122             | 50 | 71       | 51       | 304        | 79       | 21404          | 198        | 714               |
| 23         | 5        | 1002        | 55       | 41       | 7008         | 3632      | 106             | 48 | 97       | 61       | 244        | 76       | 18961          | 176        | 689               |
| 23.1       | 14       | 1021        | 58       | 48       | 7831         | 3852      | 130             | 46 | 90       | 56       | 272        | 86       | 20594          | 201        | 720               |
| 23.2       | 13       | 1112        | 65       | 54       | 8195         | 3993      | 107             | 56 | 65       | 59       | 281        | 84       | 22490          | 195        | 715               |
| 23.3       | 13       | 1056        | 58       | 53       | 8263         | 3814      | 104             | 57 | 89       | 50       | 239        | 89       | 20155          | 204        | 685               |
| 23.4       | 8        | 915         | 52       | 52       | 7051         | 3470      | 110             | 51 | 76       | 59       | 242        | 67       | 18817          | 165        | 609               |
| 23.5       | 5        | 1014        | 45       | 45       | 7151         | 3478      | 82              | 45 | 50       | 57       | 219        | 49       | 19501          | 156        | 595               |
| 23.6       | 6        | 983         | 42       | 56       | 7025         | 4166      | 102             | 45 | 89       | 54       | 234        | 94       | 20838          | 180        | 622               |
| 23.7       | 14       | 1062        | 65       | 51       | 7329         | 3897      | 82              | 46 | 63       | 61       | 262        | 77       | 21063          | 181        | 610               |
| 23.8       | 10       | 994         | 40       | 56       | 7119         | 3723      | 105             | 36 | 85       | 56       | 235        | 70       | 20179          | 185        | 680               |
| 23.9       | 11       | 926         | 39       | 56       | 7209         | 3537      | 112             | 61 | 55       | 46       | 232        | 67       | 19936          | 193        | 708               |
| 24         | 14       | 879         | 59       | 44       | 7470         | 3375      | 99              | 42 | 82       | 50       | 230        | 55       | 19520          | 176        | 711               |
| 24.1       | 5        | 845         | 56       | 36       | 6932         | 3258      | 116             | 50 | 62       | 47       | 196        | 61       | 17957          | 168        | 683               |
| 24.2       | 5        | 853         | 42       | 50       | 7268         | 3292      | 109             | 49 | 89       | 41       | 224        | 65       | 18740          | 187        | 716               |
| 24.3       | 10       | 867         | 52       | 51       | 7140         | 3295      | 110             | 40 | 61       | 48       | 224        | 66       | 19686          | 189        | 634               |
| 24.4       | 8        | 848         | 44       | 50       | 6828         | 3310      | 95              | 42 | 55       | 38       | 217        | 85       | 18312          | 159        | 626               |
| 24.5       | 11       | 820         | 57       | 53       | 7433         | 3478      | 101             | 57 | 68       | 45       | 220        | 60       | 18973          | 191        | 687               |
| 24.6       | 4        | 809         | 53       | 51       | 6488         | 3535      | 91              | 60 | 72       | 38       | 228        | 46       | 18357          | 169        | 597               |
| 24.7       | 5        | 737         | 59       | 56       | 6190         | 3113      | 89              | 48 | 65       | 36       | 213        | 59       | 17112          | 162        | 566               |
| 24.8       | 8        | 751         | 58       | 49       | 6242         | 3027      | 102             | 42 | 62       | 40       | 207        | 67       | 17300          | 156        | 610               |
| 24.9       | 6        | 767         | 56       | 52       | 6798         | 3200      | 72              | 47 | 73       | 42       | 218        | 89       | 18277          | 190        | 694               |
| 25         | 13       | 840         | 49       | 47       | 7413         | 3517      | 115             | 50 | 86       | 31       | 238        | 75       | 19932          | 170        | 739               |
| 25.1       | 2        | 976         | 63       | 66       | 8150         | 4017      | 93              | 63 | 87       | 52       | 261        | 58       | 21912          | 199        | 757               |
| 25.2       | 6        | 809         | 48       | 49       | 8203         | 3543      | 114             | 56 | 93       | 46       | 219        | 80       | 20998          | 196        | 788               |
| 25.3       | 8        | 950         | 55       | 62       | 9341         | 4095      | 128             | 56 | 89       | 53       | 271        | 105      | 23486          | 211        | 818               |
| 25.4       | 6        | 1003        | 63       | 68       | 8425         | 4113      | 141             | 59 | 93       | 46       | 260        | 83       | 23089          | 205        | 806               |
| 25.5       | 6        | 1047        | 72       | 51       | 8663         | 3888      | 146             | 61 | 102      | 61       | 263        | 100      | 22843          | 206        | 885               |
| 25.6       | 5        | 1180        | 70       | 69       | 8829         | 4434      | 140             | 60 | 90       | 59       | 302        | 88       | 24525          | 230        | 858               |
| 25.7       | 8        | 1175        | 67       | 62       | 8515         | 4974      | 133             | 64 | 94       | 50       | 328        | 82       | 24318          | 215        | 810               |
| 25.8       | 3        | 1034        | 72       | 53       | 8089         | 4730      | 122             | 47 | 60       | 60       | 371        | 86       | 23149          | 205        | 762               |
| 25.9       | 5        | 1038        | 57       | 46       | 7548         | 4000      | 102             | 59 | 57       | 57       | 328        | 55       | 21756          | 201        | 698               |
| 26         | 14       | 1107        | 56       | 46       | 7274         | 3957      | 80              | 52 | 77       | 56       | 311        | 69       | 20677          | 175        | 690               |
| 26.1       | 4        | 809         | 70       | 40       | 6536         | 3471      | 65              | 35 | 64       | 47       | 262        | 55       | 22477          | 173        | 587               |
| 26.2       | 14       | 706         | 54       | 50       | 5962         | 3041      | 82              | 49 | 60       | 33       | 237        | 45       | 16443          | 148        | 532               |
| 26.3       | 8        | 657         | 48       | 47       | 5353         | 2807      | 57              | 43 | 58       | 28       | 222        | 33       | 15291          | 134        | 536               |
| 26.4       | 2        | 555         | 36       | 39       | 5049         | 2412      | 64              | 36 | 57       | 29       | 180        | 57       | 14234          | 117        | 485               |
| 26.5       | 7        | 624         | 36       | 45       | 5603         | 2626      | 82              | 43 | 54       | 39       | 198        | 50       | 15762          | 141        | 532               |
| 26.6       | 13       | 697         | 36       | 55       | 6384         | 3154      | 62              | 53 | 63       | 39       | 238        | 53       | 18064          | 162        | 576               |

|      |    | 0.50 |    |    | ( <b>-</b> 0 ( |      |     |    | 60  |    |     | 10  | 10010 |     |     |
|------|----|------|----|----|----------------|------|-----|----|-----|----|-----|-----|-------|-----|-----|
| 26.7 | 11 | 858  | 33 | 63 | 6706           | 3275 | 90  | 54 | 60  | 45 | 262 | 49  | 18010 | 174 | 604 |
| 26.8 | 8  | 776  | 35 | 39 | 7039           | 3293 | 89  | 46 | 68  | 41 | 257 | 57  | 19097 | 168 | 616 |
| 26.9 | 8  | 754  | 24 | 41 | 6992           | 3367 | 82  | 50 | 68  | 45 | 260 | 64  | 18893 | 165 | 634 |
| 27   | 9  | 697  | 23 | 41 | 6627           | 3102 | 91  | 42 | 82  | 39 | 232 | 68  | 17320 | 170 | 618 |
| 27.1 | 10 | 683  | 23 | 48 | 6313           | 3021 | 67  | 45 | 51  | 38 | 228 | 50  | 16060 | 149 | 523 |
| 27.2 | 4  | 548  | 25 | 46 | 5467           | 2649 | 60  | 35 | 46  | 34 | 195 | 48  | 14359 | 129 | 456 |
| 27.3 | 13 | 480  | 31 | 40 | 4140           | 2160 | 57  | 31 | 26  | 35 | 155 | 43  | 11851 | 98  | 365 |
| 27.4 | 3  | 284  | 21 | 33 | 2725           | 1437 | 42  | 23 | 22  | 23 | 105 | 25  | 6533  | 74  | 269 |
| 27.5 | 3  | 235  | 20 | 37 | 2367           | 1031 | 57  | 30 | 46  | 13 | 22  | 34  | 6721  | 71  | 294 |
| 27.6 | 1  | 1154 | 49 | 29 | 3402           | 1480 | 35  | 40 | 24  | 63 | 14  | 9   | 17071 | 82  | 347 |
| 27.7 | 1  | 128  | 21 | 0  | 315            | 283  | 0   | 8  | 28  | 11 | 9   | 9   | 1264  | 6   | 46  |
| 27.8 | 12 | 826  | 7  | 36 | 4187           | 1663 | 24  | 18 | 41  | 33 | 126 | 23  | 10442 | 84  | 321 |
| 27.9 | 19 | 1910 | 18 | 16 | 7783           | 5506 | 47  | 20 | 79  | 47 | 307 | 90  | 17429 | 166 | 552 |
| 28   | 1  | 1127 | 31 | 51 | 5855           | 1515 | 62  | 34 | 52  | 32 | 108 | 34  | 9865  | 160 | 405 |
| 28.1 | 5  | 1939 | 18 | 61 | 5957           | 2181 | 32  | 45 | 41  | 43 | 106 | 61  | 12086 | 157 | 344 |
| 28.2 | 5  | 1817 | 14 | 42 | 3964           | 1512 | 23  | 29 | 50  | 36 | 69  | 97  | 8602  | 125 | 312 |
| 28.3 | 6  | 1000 | 22 | 31 | 3646           | 1260 | 43  | 29 | 48  | 21 | 76  | 54  | 7064  | 103 | 342 |
| 28.4 | 8  | 782  | 12 | 32 | 3791           | 1405 | 33  | 18 | 44  | 26 | 94  | 68  | 10139 | 87  | 311 |
| 28.5 | 1  | 777  | 22 | 36 | 4192           | 1492 | 52  | 17 | 44  | 39 | 87  | 56  | 8652  | 102 | 310 |
| 28.6 | 2  | 857  | 12 | 48 | 4319           | 1569 | 33  | 39 | 51  | 28 | 83  | 63  | 9014  | 117 | 331 |
| 28.7 | 4  | 804  | 16 | 19 | 4558           | 1725 | 70  | 34 | 44  | 34 | 94  | 58  | 9839  | 110 | 379 |
| 28.8 | 2  | 847  | 21 | 43 | 4862           | 1754 | 45  | 34 | 82  | 42 | 75  | 87  | 10257 | 117 | 399 |
| 28.9 | 4  | 820  | 24 | 29 | 6079           | 2093 | 62  | 32 | 47  | 34 | 113 | 39  | 14246 | 148 | 512 |
| 29   | 7  | 966  | 29 | 33 | 7401           | 3143 | 69  | 45 | 77  | 37 | 148 | 86  | 18777 | 174 | 673 |
| 29.1 | 11 | 977  | 34 | 35 | 7670           | 3265 | 100 | 33 | 81  | 48 | 159 | 88  | 17833 | 191 | 701 |
| 29.2 | 1  | 984  | 32 | 50 | 7726           | 2902 | 97  | 61 | 66  | 36 | 128 | 105 | 17455 | 204 | 654 |
| 29.3 | 6  | 858  | 29 | 50 | 7192           | 2417 | 130 | 36 | 89  | 29 | 89  | 86  | 15107 | 194 | 672 |
| 29.4 | 6  | 1027 | 24 | 45 | 7309           | 3201 | 117 | 38 | 71  | 34 | 149 | 85  | 16381 | 183 | 701 |
| 29.5 | 2  | 920  | 33 | 52 | 7583           | 2923 | 86  | 43 | 86  | 42 | 156 | 53  | 17085 | 192 | 724 |
| 29.6 | 1  | 892  | 30 | 61 | 8944           | 3006 | 104 | 46 | 70  | 34 | 177 | 65  | 18499 | 237 | 720 |
| 29.7 | 10 | 910  | 36 | 48 | 8134           | 3039 | 101 | 26 | 82  | 30 | 167 | 65  | 18694 | 212 | 712 |
| 29.8 | 1  | 892  | 28 | 60 | 7618           | 3164 | 91  | 58 | 72  | 35 | 175 | 69  | 17890 | 192 | 749 |
| 29.9 | 17 | 793  | 10 | 42 | 7060           | 2962 | 85  | 54 | 47  | 29 | 152 | 70  | 15572 | 190 | 687 |
| 30   | 7  | 731  | 20 | 28 | 6426           | 2607 | 98  | 31 | 67  | 42 | 130 | 70  | 14753 | 142 | 693 |
| 30.1 | 3  | 1092 | 23 | 57 | 6603           | 2894 | 112 | 68 | 73  | 44 | 155 | 49  | 16791 | 187 | 756 |
| 30.2 | 4  | 973  | 33 | 47 | 7178           | 3196 | 117 | 62 | 77  | 37 | 152 | 90  | 17730 | 205 | 722 |
| 30.3 | 11 | 889  | 23 | 41 | 7102           | 3177 | 97  | 65 | 63  | 30 | 153 | 102 | 18070 | 194 | 688 |
| 30.4 | 1  | 828  | 21 | 43 | 7302           | 3076 | 87  | 48 | 81  | 31 | 161 | 53  | 17353 | 170 | 628 |
| 30.5 | 7  | 774  | 26 | 27 | 6771           | 3018 | 91  | 52 | 89  | 47 | 148 | 66  | 17123 | 178 | 673 |
| 30.6 | 2  | 1011 | 25 | 71 | 7235           | 3715 | 78  | 50 | 80  | 38 | 162 | 97  | 17742 | 203 | 705 |
| 30.7 | 6  | 715  | 22 | 41 | 5975           | 2985 | 89  | 54 | 75  | 31 | 142 | 49  | 14652 | 169 | 581 |
| 30.8 | 9  | 553  | 25 | 45 | 5468           | 2282 | 78  | 36 | 60  | 22 | 119 | 58  | 12597 | 167 | 570 |
| 30.9 | 1  | 608  | 15 | 27 | 6012           | 2510 | 96  | 38 | 80  | 30 | 136 | 86  | 14681 | 151 | 603 |
| 31   | 9  | 802  | 35 | 55 | 6621           | 2994 | 126 | 49 | 109 | 38 | 177 | 70  | 17488 | 170 | 736 |
| 31.1 | 5  | 765  | 25 | 41 | 7298           | 3048 | 102 | 54 | 81  | 36 | 188 | 89  | 18128 | 184 | 688 |
| 31.2 | 1  | 738  | 25 | 54 | 6982           | 3041 | 99  | 50 | 89  | 33 | 170 | 69  | 17381 | 192 | 676 |
| 31.3 | 8  | 618  | 16 | 59 | 5926           | 2379 | 55  | 56 | 58  | 21 | 114 | 45  | 14225 | 175 | 631 |
|      |    |      |    |    |                |      |     |    |     |    |     |     |       |     |     |

| 21.4                | 0  | (05        | 22       | 56       | 5010         | 0.400        | 0.4             | 20       | 40       | 26       | 110        | 21              | 14204          | 126        | 5(0               |
|---------------------|----|------------|----------|----------|--------------|--------------|-----------------|----------|----------|----------|------------|-----------------|----------------|------------|-------------------|
| <u>31.4</u><br>31.5 | 8  | 625<br>678 | 23<br>20 | 56<br>38 | 5818<br>5997 | 2432<br>2559 | <u>84</u><br>67 | 38<br>43 | 40       | 36       | 110        | 31<br>64        | 14394<br>14641 | 136<br>155 | <u>568</u><br>583 |
|                     |    |            |          |          |              |              |                 |          |          |          | 136        | -               |                |            |                   |
| 31.6                | 1  | 620        | 16       | 56       | 6041         | 2392         | 66              | 42       | 55       | 25       | 141        | 60              | 15342          | 191        | 643               |
| 31.7                | 5  | 554        | 23       | 31       | 5479         | 2057         | 96              | 40       | 73       | 22       | 100        | 59              | 11863          | 155        | 595               |
| 31.8                | 1  | 531        | 25       | 48       | 4659         | 1863         | 60              | 39       | 31       | 21       | 88         | 60              | 10767          | 131        | 490               |
| 31.9                | 2  | 557        | 23       | 37       | 5017         | 1859         | 78              | 55       | 47       | 30       | 93         | 87              | 10989          | 123        | 459               |
| 32<br>32.1          | 3  | 514        | 37<br>33 | 49       | 4484         | 1969         | 74              | 39<br>47 | 64<br>64 | 22<br>29 | 93         | 41<br>51        | 11413          | 125<br>172 | <u>470</u><br>539 |
|                     | 2  | 682<br>650 | 33       | 40       | 6338         | 2461         | 100             | 33       | 29       | 29       | 130        |                 | 14860          |            |                   |
| 32.2<br>32.3        | 4  | 662        | <u> </u> | 38<br>50 | 5561<br>5861 | 2286<br>2431 | 40              | 41       | 37       | 31       | 119<br>134 | 58<br>71        | 14261<br>14557 | 138<br>157 | 482 540           |
| 32.3                | 9  | 818        | 27       | 49       |              | 2685         | 108             |          |          | 35       |            |                 |                | 137        |                   |
| 32.4                | 3  | 706        | 27       | 37       | 6906<br>6446 | 2685         | -637            | 55<br>43 | 86<br>63 | 35       | 151<br>123 | <u>90</u><br>39 | 15338<br>14400 | 1/9        | <u>590</u><br>581 |
| 32.5                | 11 | 614        | 21       | 46       | 5609         | 2409         | -037            | 43       | 53       | 33       | 123        | 55              | 13768          | 151        | 570               |
| 32.0                | 10 | 584        | 21       | 39       | 5188         | 2409         | 65              | 41       | 73       | 29       | 114        | 45              | 13/08          | 160        | 607               |
| 32.7                | 4  | 567        | 28       | 58       | 4867         | 2230         | 70              | 34       | 53       | 38       | 135        | 61              | 12372          | 147        | 527               |
| 32.8                | 14 | 561        | 27       | 44       | 4807         | 2097         | 49              | 35       | 48       | 30       | 133        | 63              | 12372          | 147        | 506               |
| 32.9                | 14 | 744        | 20       | 58       | 5740         | 2888         | 60              | 33       | 52       | 42       | 121        | 37              | 15912          | 145        | 584               |
| 33.1                | 8  | 749        | 29       | 45       | 6261         | 2851         | 59              | 48       | 104      | 34       | 172        | 119             | 16903          | 143        | 712               |
| 33.2                | 14 | 811        | 23       | 49       | 6901         | 3291         | 129             | 57       | 56       | 43       | 188        | 36              | 18991          | 169        | 735               |
| 33.3                | 2  | 694        | 27       | 44       | 5415         | 2930         | 76              | 34       | 68       | 48       | 187        | 61              | 15503          | 142        | 637               |
| 33.4                | 3  | 712        | 23       | 74       | 5393         | 2882         | 113             | 35       | 48       | 21       | 198        | 54              | 16316          | 175        | 644               |
| 33.5                | 7  | 780        | 23       | 52       | 6664         | 3147         | 81              | 58       | 68       | 47       | 210        | 46              | 18006          | 175        | 607               |
| 33.6                | 3  | 650        | 16       | 31       | 5329         | 2423         | 45              | 31       | 72       | 39       | 162        | 35              | 13661          | 126        | 507               |
| 33.7                | 5  | 714        | 8        | 56       | 5875         | 2727         | 94              | 45       | 72       | 47       | 170        | 85              | 15607          | 149        | 627               |
| 33.8                | 11 | 746        | 22       | 50       | 6204         | 2988         | 90              | 53       | 100      | 34       | 214        | 66              | 17714          | 148        | 670               |
| 33.9                | 1  | 760        | 16       | 51       | 6692         | 3280         | 130             | 43       | 74       | 51       | 221        | 35              | 19313          | 186        | 717               |
| 34                  | 1  | 778        | 19       | 60       | 6753         | 3175         | 136             | 62       | 83       | 39       | 166        | 62              | 18531          | 178        | 817               |
| 34.1                | 5  | 913        | 25       | 49       | 8233         | 3797         | 110             | 49       | 105      | 51       | 218        | 108             | 22537          | 216        | 895               |
| 34.2                | 19 | 869        | 32       | 52       | 8313         | 3627         | 124             | 44       | 104      | 49       | 187        | 59              | 22865          | 257        | 889               |
| 34.3                | 6  | 894        | 27       | 56       | 8275         | 3619         | 132             | 68       | 85       | 26       | 176        | 52              | 22649          | 207        | 857               |
| 34.4                | 9  | 859        | 17       | 67       | 8253         | 3598         | 98              | 67       | 116      | 40       | 177        | 85              | 22437          | 220        | 860               |
| 34.5                | 11 | 808        | 27       | 46       | 7391         | 3251         | 114             | 57       | 90       | 35       | 164        | 92              | 20570          | 196        | 796               |
| 34.6                | 1  | 796        | 38       | 53       | 7215         | 3329         | 137             | 44       | 80       | 42       | 191        | 51              | 20144          | 187        | 858               |
| 34.7                | 6  | 906        | 27       | 39       | 7807         | 3655         | 138             | 55       | 91       | 32       | 222        | 86              | 22080          | 200        | 868               |
| 34.8                | 11 | 927        | 40       | 46       | 8169         | 3834         | 142             | 44       | 137      | 56       | 226        | 91              | 22962          | 213        | 922               |
| 34.9                | 6  | 949        | 42       | 43       | 7947         | 3895         | 111             | 46       | 129      | 51       | 257        | 86              | 22546          | 201        | 881               |
| 35                  | 1  | 1017       | 48       | 35       | 8306         | 4131         | 140             | 52       | 125      | 61       | 267        | 84              | 23453          | 222        | 892               |
| 35.1                | 17 | 932        | 34       | 66       | 7979         | 3821         | 179             | 52       | 87       | 46       | 237        | 68              | 22534          | 209        | 848               |
| 35.2                | 6  | 1066       | 45       | 47       | 7966         | 4050         | 123             | 56       | 96       | 46       | 262        | 105             | 22754          | 201        | 841               |
| 35.3                | 7  | 956        | 56       | 52       | 8611         | 4167         | 87              | 46       | 102      | 52       | 255        | 89              | 23715          | 218        | 819               |
| 35.4                | 10 | 929        | 37       | 52       | 7896         | 3741         | 114             | 58       | 80       | 45       | 236        | 86              | 20821          | 208        | 787               |
| 35.5                | 11 | 924        | 31       | 51       | 7766         | 3604         | 121             | 59       | 101      | 28       | 231        | 90              | 21225          | 192        | 804               |
| 35.6                | 19 | 887        | 24       | 30       | 7978         | 3482         | 118             | 50       | 108      | 33       | 203        | 96              | 21749          | 200        | 800               |
| 35.7                | 5  | 918        | 27       | 57       | 8354         | 3737         | 152             | 59       | 101      | 32       | 229        | 73              | 21729          | 197        | 812               |
| 35.8                | 5  | 938        | 20       | 53       | 7533         | 3443         | 135             | 53       | 88       | 51       | 218        | 68              | 19808          | 202        | 747               |
| 35.9                | 11 | 779        | 27       | 55       | 7305         | 3433         | 101             | 56       | 106      | 35       | 200        | 79              | 18849          | 171        | 762               |
| 36                  | 12 | 744        | 23       | 34       | 6935         | 3281         | 110             | 34       | 87       | 33       | 209        | 71              | 19126          | 183        | 734               |

| 36.1      | 9  | 830        | 36       | 53       | 7573         | 3316         | 151        | 69       | 66  | 42       | 206        | 94       | 20897          | 202        | 784        |
|-----------|----|------------|----------|----------|--------------|--------------|------------|----------|-----|----------|------------|----------|----------------|------------|------------|
| 36.2      | 8  | 907        | 31       | 66       | 7956         | 3701         | 75         | 72       | 113 | 40       | 213        | 134      | 22332          | 226        | 824        |
| 36.3      | 15 | 842        | 27       | 56       | 7685         | 3529         | 109        | 54       | 99  | 40       | 220        | 77       | 20667          | 213        | 796        |
| 36.4      | 15 | 946        | 24       | 37       | 7899         | 3817         | 125        | 44       | 118 | 34       | 246        | 107      | 21947          | 214        | 773        |
| 36.5      | 5  | 880        | 29       | 51       | 7695         | 3602         | 121        | 61       | 86  | 39       | 220        | 96       | 20329          | 201        | 778        |
| 36.6      | 4  | 858        | 30       | 57       | 7648         | 3450         | 118        | 61       | 88  | 48       | 226        | 96       | 19801          | 194        | 779        |
| 36.7      | 6  | 887        | 31       | 44       | 9193         | 3432         | 150        | 56       | 99  | 46       | 230        | 97       | 20018          | 203        | 833        |
| 36.8      | 6  | 839        | 34       | 46       | 7250         | 3271         | 115        | 41       | 81  | 41       | 210        | 76       | 19795          | 173        | 787        |
| 36.9      | 4  | 813        | 24       | 49       | 7597         | 3231         | 104        | 48       | 115 | 33       | 185        | 114      | 18827          | 186        | 802        |
| 37        | 3  | 816        | 29       | 45       | 8207         | 3280         | 134        | 44       | 100 | 38       | 180        | 125      | 20775          | 188        | 777        |
| 37.1      | 3  | 887        | 32       | 67       | 8554         | 3362         | 140        | 65       | 118 | 48       | 201        | 120      | 21211          | 207        | 819        |
| 37.2      | 3  | 807        | 44       | 37       | 7856         | 3322         | 114        | 59       | 73  | 48       | 183        | 82       | 20574          | 194        | 818        |
| 37.3      | 2  | 822        | 113      | 53       | 7623         | 3254         | 148        | 58       | 117 | 41       | 177        | 118      | 19960          | 186        | 822        |
| 37.4      | 5  | 825        | 38       | 46       | 7618         | 3370         | 141        | 58       | 96  | 34       | 189        | 94       | 20057          | 212        | 860        |
| 37.5      | 9  | 862        | 39       | 47       | 7693         | 3320         | 132        | 67       | 79  | 43       | 174        | 81       | 20477          | 213        | 817        |
| 37.6      | 8  | 878        | 37       | 47       | 8204         | 3299         | 132        | 47       | 122 | 43       | 160        | 109      | 20890          | 196        | 818        |
| 37.7      | 7  | 783        | 44       | 53       | 7496         | 3307         | 76         | 51       | 109 | 39       | 181        | 91       | 22954          | 195        | 735        |
| 37.8      | 9  | 848        | 48       | 65       | 8481         | 3547         | 75         | 66       | 85  | 44       | 203        | 103      | 25804          | 200        | 789        |
| 37.9      | 4  | 951        | 54       | 64       | 7968         | 3717         | 94         | 66       | 89  | 48       | 219        | 119      | 23224          | 199        | 813        |
| 38        | 4  | 956        | 34       | 46       | 8071         | 3867         | 123        | 57       | 73  | 46       | 216        | 89       | 23450          | 227        | 901        |
| 38.1      | 8  | 989        | 45       | 51       | 8797         | 4023         | 133        | 62       | 86  | 35       | 237        | 92       | 23426          | 219        | 916        |
| 38.2      | 9  | 1047       | 41       | 46       | 8909         | 4064         | 153        | 50       | 99  | 46       | 226        | 83       | 24160          | 228        | 929        |
| 38.3      | 10 | 902        | 32       | 45       | 8742         | 3801         | 145        | 65       | 137 | 49       | 210        | 105      | 22891          | 213        | 912        |
| 38.4      | 13 | 984        | 54       | 50       | 9334         | 4015         | 157        | 62       | 118 | 42       | 220        | 100      | 24243          | 225        | 983        |
| 38.5      | 6  | 869        | 41       | 52       | 8650         | 3879         | 162        | 56       | 103 | 44       | 191        | 96       | 21614          | 210        | 930        |
| 38.6      | 13 | 944        | 40       | 58       | 8811         | 4126         | 136        | 40       | 85  | 49       | 229        | 76       | 22957          | 223        | 934        |
| 38.7      | 3  | 954        | 29       | 58       | 9410         | 4146         | 130        | 52       | 108 | 44       | 219        | 60       | 23361          | 235        | 932        |
| 38.8      | 11 | 819        | 29       | 61       | 8542         | 3554         | 161        | 51       | 115 | 37       | 193        | 70       | 21132          | 211        | 883        |
| 38.9      | 5  | 865        | 24       | 49       | 7997         | 3354         | 135        | 48       | 95  | 47       | 182        | 66       | 19816          | 194        | 837        |
| 39        | 7  | 744        | 22       | 48       | 7991         | 3185         | 110        | 64       | 96  | 28       | 164        | 106      | 19158          | 198        | 821        |
| 39.1      | 6  | 705        | 31       | 49       | 7747         | 3025         | 108        | 46       | 87  | 41       | 156        | 75       | 17966          | 206        | 769        |
| 39.2      | 6  | 659        | 34       | 51       | 7383         | 2835         | 108        | 55       | 90  | 32       | 137        | 78       | 17079          | 204        | 808        |
| 39.3      | 10 | 676        | 29       | 45       | 8186         | 3078         | 140        | 60       | 80  | 26       | 149        | 83       | 19296          | 199        | 777        |
| 39.4      | 9  | 769        | 22       | 48       | 6875         | 2950         | 92         | 39       | 71  | 26       | 154        | 65       | 16187          | 176        | 714        |
| 39.5      | 4  | 787        | 27       | 45       | 7259         | 3210         | 113        | 50       | 83  | 36       | 182        | 73       | 17756          | 176        | 745        |
| 39.6      | 1  | 663        | 30       | 48       | 7151         | 2844         | 92         | 43       | 76  | 27       | 142        | 75       | 16322          | 186        | 679        |
| 39.7      | 9  | 625        | 28       | 39       | 6872         | 2628         | 69         | 57       | 71  | 33       | 148        | 64       | 15227          | 178        | 673        |
| 39.8      | 1  | 630        | 23       | 49       | 7095         | 2742         | 91         | 58       | 53  | 31       | 137        | 59       | 16356          | 190        | 681        |
| 39.9      | 4  | 611        | 18       | 45       | 6416         | 2715         | 73         | 52       | 46  | 32       | 152        | 39       | 15232          | 158        | 582        |
| 40        | 7  | 386<br>500 | 33<br>23 | 34<br>42 | 4026         | 1723<br>2279 | 95<br>117  | 44       | 73  | 21<br>29 | 86         | 52<br>59 | 9856<br>15803  | 127<br>168 | 536        |
| 40.1      | -  |            | 35       |          | 6329         |              |            |          | 94  | 29       | 127        |          |                |            | 681        |
| 40.2 40.3 | 9  | 575<br>539 | 14       | 42       | 6105<br>6417 | 2599<br>2282 | 112<br>108 | 45<br>49 | 87  | 29       | 157<br>129 | 59<br>84 | 14801<br>13476 | 161<br>166 | 671<br>714 |
|           |    | 851        | 14       | 70       |              | 3396         | 108        | -        | 104 | 36       |            | 109      | 19792          | 231        |            |
| 40.4 40.5 | 4  | 660        | 23       | 32       | 8947<br>7049 | 2864         | 74         | 64<br>42 | 104 | 41       | 186<br>159 | 79       | 19792          | 182        | 871<br>700 |
| 40.5      | 8  | 776        | 35       | 32       | 7049         | 3293         | 89         | 42       | 68  | 41       | 257        | 57       | 14805          | 168        | 616        |
| 40.6      | 8  | 754        | 24       | 41       | 6992         | 3293         | 89         | 50       | 68  | 41       | 257        | 64       | 19097          | 165        | 634        |
| 40./      | 0  | /34        | 24       | 41       | 0992         | 330/         | 02         | 30       | 00  | 43       | 200        | 04       | 10093          | 103        | 034        |

| 40.0 | 0              | (07         | 22       | 41       | (()7         | 2102         | 01              | 10        | 00        | 20              | 222        | (0)       | 17220          | 170        | (10               |
|------|----------------|-------------|----------|----------|--------------|--------------|-----------------|-----------|-----------|-----------------|------------|-----------|----------------|------------|-------------------|
| 40.8 | <u>9</u><br>10 | 697<br>683  | 23<br>23 | 41 48    | 6627<br>6313 | 3102<br>3021 | <u>91</u><br>67 | 42<br>45  | 82<br>51  | <u>39</u><br>38 | 232<br>228 | 68<br>50  | 17320<br>16060 | 170<br>149 | <u>618</u><br>523 |
|      | -              |             |          | -        |              |              |                 |           | -         |                 |            |           |                | -          |                   |
| 41   | 4              | 548         | 25       | 46       | 5467         | 2649         | 60              | 35        | 46        | 34              | 195        | 48        | 14359          | 129        | 456               |
| 41.1 | 13             | 480         | 31       | 40       | 4140         | 2160         | 57              | 31        | 26        | 35              | 155        | 43        | 11851          | 98         | 365               |
| 41.2 | 3              | 284         | 21       | 33       | 2725         | 1437         | 42              | 23        | 22        | 23              | 105        | 25        | 6533           | 74         | 269               |
| 41.3 | 3              | 235         | 20       | 37       | 2367         | 1031         | 57              | 30        | 46        | 13              | 22         | 34        | 6721           | 71         | 294               |
| 41.4 | 1              | 1154        | 49       | 29       | 3402         | 1480         | 35              | 40        | 24        | 63              | 14         | 9         | 17071          | 82         | 347               |
| 41.5 | 1              | 319         | 18       | 52       | 6644         | 643          | 87              | 88        | 186       | 1               | 1          | 112       | 6003           | 281        | 951               |
| 41.6 | 1 2            | 771<br>1126 | 54<br>60 | 58<br>57 | 8055<br>7684 | 2031<br>3046 | 153<br>122      | 59<br>42  | 58<br>128 | 38<br>48        | 119<br>219 | 89<br>120 | 14618<br>15209 | 259<br>229 | <u>917</u><br>812 |
| 41.7 |                | 1356        |          | 42       |              | 3046         | 122             |           | 85        | 48              | 219        | 120       | 20248          | 229        | 990               |
| 41.8 | 1              | 1336        | 51<br>65 | 35       | 9369<br>9263 | 3022         | 194             | 100<br>54 | 115       | 45              | 156        | 84        | 18610          | 244        | 869               |
| 41.9 | 4              | 876         | 42       | 51       | 7870         | 2369         | 103             | 49        | 113       | 30              | 136        | 129       | 14583          | 231        | 909               |
| 42   | 4              | 1110        | 42       | 43       | 8461         | 2590         | 109             | 49        | 119       | 30              | 114        | 129       | 17028          | 233        | 909               |
| 42.2 | 7              | 975         | 34       | 61       | 7172         | 2390         | 83              | 55        | 87        | 24              | 112        | 112       | 13786          | 210        | 696               |
| 42.2 | 3              | 1205        | 33       | 38       | 6847         | 2344         | 66              | 34        | 101       | 35              | 109        | 151       | 13795          | 158        | 617               |
| 42.3 | 2              | 1203        | 50       | 49       | 6932         | 2068         | 80              | 52        | 93        | 41              | 109        | 131       | 12444          | 158        | 638               |
| 42.5 | 7              | 1150        | 44       | 51       | 6718         | 2659         | 114             | 40        | 90        | 35              | 154        | 96        | 14407          | 109        | 743               |
| 42.6 | 6              | 1226        | 42       | 52       | 8672         | 3197         | 111             | 57        | 94        | 47              | 187        | 102       | 17869          | 231        | 847               |
| 42.7 | 5              | 1537        | 52       | 52       | 9214         | 3412         | 133             | 51        | 104       | 54              | 179        | 102       | 20644          | 231        | 850               |
| 42.8 | 14             | 1310        | 52       | 70       | 8193         | 3280         | 120             | 45        | 75        | 38              | 150        | 73        | 17615          | 217        | 751               |
| 42.9 | 3              | 1090        | 44       | 62       | 8297         | 3068         | 120             | 39        | 95        | 35              | 130        | 120       | 19057          | 246        | 857               |
| 43   | 3              | 1292        | 51       | 59       | 8848         | 3241         | 109             | 53        | 87        | 41              | 157        | 86        | 20545          | 218        | 831               |
| 43.1 | 5              | 1104        | 55       | 70       | 8923         | 3125         | 110             | 61        | 82        | 48              | 151        | 89        | 20040          | 229        | 831               |
| 43.2 | 3              | 947         | 46       | 54       | 8228         | 2986         | 143             | 40        | 108       | 32              | 138        | 106       | 18497          | 215        | 922               |
| 43.3 | 6              | 1030        | 63       | 55       | 8338         | 3437         | 140             | 61        | 75        | 39              | 187        | 82        | 20241          | 236        | 925               |
| 43.4 | 9              | 1218        | 40       | 42       | 8973         | 3574         | 175             | 51        | 105       | 45              | 178        | 97        | 21818          | 236        | 989               |
| 43.5 | 6              | 1035        | 56       | 56       | 8875         | 3752         | 154             | 60        | 101       | 41              | 225        | 88        | 22244          | 235        | 968               |
| 43.6 | 5              | 985         | 55       | 56       | 9416         | 3846         | 152             | 62        | 91        | 35              | 203        | 126       | 23037          | 244        | 1014              |
| 43.7 | 9              | 1027        | 49       | 55       | 9252         | 4201         | 178             | 58        | 119       | 38              | 239        | 128       | 23839          | 240        | 979               |
| 43.8 | 4              | 1029        | 66       | 57       | 9102         | 4213         | 151             | 60        | 95        | 44              | 233        | 104       | 23588          | 228        | 961               |
| 43.9 | 6              | 1257        | 62       | 40       | 8875         | 4150         | 146             | 54        | 104       | 45              | 222        | 110       | 23416          | 229        | 978               |
| 44   | 8              | 937         | 53       | 48       | 9221         | 4148         | 172             | 64        | 93        | 45              | 227        | 85        | 24038          | 237        | 1039              |
| 44.1 | 5              | 961         | 53       | 74       | 9205         | 4141         | 198             | 85        | 124       | 34              | 221        | 120       | 23647          | 257        | 1099              |
| 44.2 | 11             | 1107        | 56       | 53       | 9420         | 4384         | 190             | 64        | 119       | 41              | 220        | 86        | 24176          | 234        | 1085              |
| 44.3 | 6              | 1040        | 47       | 58       | 9155         | 4260         | 153             | 72        | 101       | 50              | 249        | 96        | 24712          | 248        | 1013              |
| 44.4 | 16             | 945         | 57       | 48       | 10292        | 4350         | 164             | 67        | 97        | 35              | 259        | 83        | 25177          | 268        | 1076              |
| 44.5 | 14             | 953         | 52       | 54       | 9962         | 4582         | 188             | 57        | 126       | 51              | 287        | 119       | 24167          | 267        | 1110              |
| 44.6 | 13             | 1102        | 55       | 52       | 10241        | 5163         | 191             | 69        | 116       | 45              | 340        | 93        | 25899          | 258        | 1146              |
| 44.7 | 16             | 1044        | 52       | 69       | 10147        | 4962         | 171             | 80        | 129       | 34              | 319        | 84        | 25782          | 269        | 1161              |
| 44.8 | 12             | 1065        | 51       | 67       | 11446        | 4928         | 176             | 73        | 119       | 39              | 328        | 78        | 27433          | 275        | 1067              |
| 44.9 | 15             | 1001        | 49       | 54       | 10430        | 4792         | 157             | 64        | 102       | 39              | 304        | 80        | 26233          | 262        | 1064              |
| 45   | 13             | 1139        | 41       | 60       | 9543         | 5031         | 206             | 74        | 112       | 39              | 325        | 85        | 25350          | 268        | 1118              |
| 45.1 | 10             | 1081        | 34       | 53       | 10756        | 5413         | 183             | 63        | 109       | 41              | 375        | 93        | 26253          | 263        | 1142              |
| 45.2 | 14             | 1092        | 50       | 46       | 10607        | 5455         | 209             | 66        | 113       | 47              | 363        | 108       | 27044          | 274        | 1143              |
| 45.3 | 19             | 1005        | 51       | 56       | 10461        | 5083         | 172             | 74        | 106       | 39              | 355        | 75        | 24985          | 246        | 1083              |
| 45.4 | 4              | 911         | 40       | 51       | 8745         | 4406         | 157             | 56        | 109       | 32              | 295        | 95        | 22573          | 226        | 966               |

| 45.5 | 17 | 961  | 46 | 34 | 9858  | 4695 | 195 | 66  | 120 | 34 | 301 | 95  | 24507 | 236 | 1085 |
|------|----|------|----|----|-------|------|-----|-----|-----|----|-----|-----|-------|-----|------|
| 45.6 | 11 | 953  | 52 | 46 | 9843  | 5008 | 174 | 60  | 121 | 36 | 295 | 75  | 25131 | 255 | 1151 |
| 45.7 | 8  | 1036 | 53 | 51 | 10711 | 5086 | 181 | 78  | 104 | 45 | 318 | 79  | 25759 | 270 | 1154 |
| 45.8 | 21 | 1099 | 46 | 58 | 10675 | 5050 | 172 | 77  | 115 | 39 | 311 | 122 | 25213 | 272 | 1136 |
| 45.9 | 5  | 1087 | 45 | 50 | 10401 | 5251 | 209 | 81  | 127 | 38 | 315 | 101 | 25254 | 284 | 1123 |
| 46   | 14 | 1274 | 46 | 51 | 10733 | 5267 | 203 | 62  | 104 | 43 | 343 | 67  | 26494 | 272 | 1130 |
| 46.1 | 9  | 1167 | 36 | 40 | 10508 | 5362 | 187 | 68  | 110 | 41 | 341 | 90  | 26019 | 281 | 1145 |
| 46.2 | 11 | 1128 | 36 | 57 | 11145 | 5459 | 196 | 64  | 121 | 42 | 341 | 78  | 26132 | 270 | 1171 |
| 46.3 | 10 | 977  | 43 | 65 | 11109 | 5051 | 193 | 63  | 101 | 36 | 323 | 103 | 25560 | 270 | 1128 |
| 46.4 | 12 | 985  | 29 | 51 | 10336 | 4869 | 185 | 76  | 112 | 38 | 315 | 95  | 23882 | 276 | 1111 |
| 46.5 | 12 | 804  | 39 | 44 | 8846  | 4279 | 188 | 70  | 125 | 31 | 262 | 86  | 20830 | 243 | 1062 |
| 46.6 | 11 | 1055 | 46 | 51 | 10648 | 5175 | 207 | 63  | 121 | 40 | 324 | 93  | 27056 | 276 | 1206 |
| 46.7 | 15 | 1108 | 50 | 55 | 10617 | 5648 | 212 | 78  | 129 | 47 | 379 | 87  | 27973 | 279 | 1251 |
| 46.8 | 17 | 1135 | 58 | 51 | 11116 | 6033 | 222 | 69  | 103 | 44 | 431 | 94  | 28515 | 303 | 1273 |
| 46.9 | 15 | 1103 | 63 | 51 | 10504 | 5740 | 209 | 62  | 130 | 43 | 400 | 109 | 26550 | 256 | 1208 |
| 47   | 16 | 1000 | 46 | 54 | 10512 | 5328 | 209 | 58  | 104 | 40 | 343 | 71  | 25602 | 262 | 1144 |
| 47.1 | 9  | 1023 | 40 | 47 | 9971  | 5085 | 186 | 69  | 129 | 40 | 303 | 82  | 24259 | 264 | 1098 |
| 47.2 | 7  | 946  | 43 | 51 | 10516 | 5072 | 195 | 73  | 120 | 42 | 331 | 116 | 24431 | 262 | 1179 |
| 47.3 | 18 | 1042 | 42 | 45 | 10712 | 5270 | 227 | 67  | 109 | 35 | 353 | 87  | 25414 | 270 | 1192 |
| 47.4 | 6  | 1147 | 51 | 52 | 10662 | 5487 | 182 | 72  | 125 | 35 | 386 | 158 | 27497 | 280 | 1168 |
| 47.5 | 9  | 1091 | 39 | 55 | 10844 | 5572 | 216 | 70  | 130 | 42 | 362 | 76  | 26754 | 283 | 1250 |
| 47.6 | 9  | 1120 | 41 | 46 | 11099 | 5566 | 225 | 84  | 113 | 40 | 362 | 102 | 26903 | 289 | 1255 |
| 47.7 | 8  | 1096 | 41 | 56 | 11308 | 5534 | 232 | 69  | 114 | 39 | 370 | 88  | 27056 | 281 | 1207 |
| 47.8 | 21 | 1130 | 49 | 48 | 10898 | 5568 | 201 | 66  | 130 | 38 | 397 | 85  | 27038 | 297 | 1152 |
| 47.9 | 9  | 900  | 33 | 52 | 9556  | 4600 | 182 | 54  | 103 | 33 | 301 | 70  | 24097 | 231 | 1021 |
| 48   | 6  | 862  | 40 | 42 | 8437  | 4220 | 201 | 56  | 92  | 35 | 280 | 83  | 21121 | 241 | 955  |
| 48.1 | 9  | 747  | 41 | 38 | 8577  | 4122 | 159 | 56  | 95  | 31 | 290 | 68  | 20753 | 240 | 999  |
| 48.2 | 7  | 900  | 43 | 49 | 9359  | 4749 | 155 | 59  | 84  | 31 | 308 | 76  | 21558 | 243 | 970  |
| 48.3 | 4  | 793  | 37 | 47 | 7953  | 4026 | 155 | 60  | 82  | 34 | 282 | 74  | 19477 | 205 | 826  |
| 48.4 | 5  | 778  | 30 | 52 | 7201  | 3693 | 146 | 50  | 94  | 31 | 235 | 88  | 16930 | 198 | 780  |
| 48.5 | 8  | 769  | 38 | 50 | 8424  | 4005 | 155 | 65  | 86  | 32 | 263 | 69  | 19020 | 208 | 867  |
| 48.6 | 18 | 760  | 37 | 37 | 8424  | 3966 | 112 | 51  | 92  | 32 | 257 | 68  | 19782 | 204 | 788  |
| 48.7 | 11 | 2055 | 14 | 36 | 3736  | 1780 | 10  | 58  | 48  | 60 | 161 | 102 | 9378  | 131 | 296  |
| 48.8 | 8  | 1229 | 28 | 43 | 2025  | 793  | 31  | 24  | 37  | 30 | 79  | 44  | 4011  | 93  | 187  |
| 48.9 | 1  | 694  | 22 | 38 | 3173  | 1499 | 67  | 24  | 29  | 28 | 117 | 66  | 6929  | 106 | 399  |
| 49   | 9  | 718  | 37 | 44 | 6258  | 2647 | 101 | 50  | 52  | 38 | 236 | 81  | 15049 | 159 | 703  |
| 49.1 | 12 | 827  | 38 | 46 | 7320  | 3605 | 132 | 47  | 70  | 40 | 311 | 94  | 18089 | 199 | 841  |
| 49.2 | 11 | 908  | 47 | 43 | 8087  | 4083 | 160 | 54  | 76  | 41 | 355 | 44  | 21360 | 194 | 800  |
| 49.3 | 11 | 777  | 55 | 51 | 7462  | 4209 | 162 | 58  | 69  | 50 | 346 | 67  | 20281 | 194 | 935  |
| 49.4 | 12 | 994  | 45 | 52 | 9196  | 4910 | 196 | 55  | 86  | 54 | 394 | 95  | 24271 | 227 | 1118 |
| 49.5 | 11 | 1104 | 61 | 75 | 10960 | 5867 | 228 | 75  | 109 | 62 | 442 | 100 | 28524 | 288 | 1303 |
| 49.6 | 15 | 1328 | 62 | 73 | 11072 | 5797 | 248 | 91  | 127 | 67 | 436 | 87  | 29506 | 277 | 1296 |
| 49.7 | 13 | 1255 | 46 | 70 | 11237 | 6067 | 240 | 74  | 113 | 56 | 458 | 106 | 29926 | 294 | 1343 |
| 49.8 | 9  | 1137 | 45 | 61 | 11712 | 6058 | 231 | 85  | 90  | 57 | 488 | 98  | 29472 | 297 | 1295 |
| 49.9 | 15 | 1352 | 55 | 61 | 12340 | 6509 | 259 | 85  | 86  | 52 | 501 | 109 | 30853 | 312 | 1356 |
| 50   | 18 | 1268 | 44 | 59 | 12504 | 6739 | 260 | 100 | 100 | 52 | 521 | 119 | 31646 | 302 | 1375 |
| 50.1 | 15 | 1284 | 51 | 67 | 12625 | 6856 | 242 | 88  | 103 | 61 | 520 | 114 | 31712 | 311 | 1337 |

| 50.2         20         1163         32         61         1228         6871         234         77         119         47         539         103         31708         291         1203           50.4         10         1326         34         76         12805         6662         220         94         85         95         98         3255         313         1207           50.5         23         1237         36         67         1206         637         290         93         94         51         559         98         3206         306         1203           50.7         225         1082         39         0101         33         79         11761         6327         232         89         106         60         3515         95         20653         239         1101           50.8         11         10103         32         60         11028         5700         180         76         73         452         95         26570         244         101         1005         2866         271         1085         51.3         100         932         272         11675         51.5         103         23566                                                                                                                                                                                                             |      |    |      |    |    |       |      |     |    |     |    |     |     |       |     |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|------|----|----|-------|------|-----|----|-----|----|-----|-----|-------|-----|------|
| 50.4         10         1326         34         76         12805         627         220         94         85         49         530         109         32325         313         1297           50.6         9         1001         33         79         11761         6327         232         89         106         42         558         94         3000         310         1239           50.7         25         1082         39         69         12343         637         209         120         66         60         512         104         3015         239         116           50.9         11         1019         32         60         11028         5700         180         76         73         33         482         95         26570         284         1007           51.1         14         1187         31         65         61         142         58         100         285         17         1065         103         216         14         103         2859         126         116         14         75         85         62         521         18         1033         135         135         1278 <t< th=""><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                  |      |    |      |    | -  |       |      |     |    | -   |    |     |     |       |     |      |
| 50.5         23         1237         36         67         12907         6571         229         93         94         51         559         98         32305         306         1290           50.7         25         1082         39         69         1243         6337         216         75         106         42         558         94         30807         229         1217           50.8         11         1019         32         66         11883         6397         214         72         82         48         532         95         20653         229         1166           51         12         1030         32         66         1143         83         79         44         501         105         2858         271         1085           51.1         14         1187         31         63         11405         5931         166         61         73         42         512         828         278         1085           51.4         13         769         25         52         8849         454         145         69         64         46         385         74         22068         220 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th></td<>                                                         |      |    |      |    |    |       |      |     | -  |     | -  |     |     |       |     |      |
| 506         9         1001         33         79         11761         6327         232         89         106         42         558         94         30809         310         1239           507         125         108         13         1270         42         65         11883         6397         214         72         82         48         532         96         30637         329         116           51         12         1030         32         60         11028         5700         180         76         73         3         482         95         26570         284         1005           51.1         14         181         31         656         11445         585         174         83         79         44         501         105         2558         281         1085           51.2         23         1093         36         56         11445         585         12         103         28591         278         1086           51.4         13         858         84         484         145         69         64         463         352         97         32         286         200         9                                                                                                                                                                                                                     |      |    |      |    |    | 12805 |      |     |    |     |    |     |     |       |     |      |
| 507         25         1082         39         09         12343         6293         214         72         82         48         532         09         30152         2289         118           509         11         1019         32         61         1189         6248         209         80         66         43         535         95         29653         239         116           51         14         187         31         63         11502         5578         174         75         85         62         521         81         22571         288         108         76         73         53         442         515         103         28570         286         211         105         515         512         23         1093         25         72         11675         931         166         173         42         513         2751         288         103         2856         217         108         806         413         153         77         66         33         424         51         21786         225         842           51.6         14         764         32         56         8986         451                                                                                                                                                                                                              |      |    | 1237 |    |    |       |      | 209 |    | 94  |    |     | 98  |       | 306 |      |
| 508         13         1270         42         65         11883         6397         214         72         82         48         532         96         30637         309         1186           51         12         1030         32         60         11028         5700         180         76         73         53         482         95         26570         284         1005           51.1         14         1187         31         63         11502         5578         174         83         79         44         501         105         25568         271         1085           51.2         23         1093         36         56         11445         5858         174         75         85         62         521         81         27571         268         1005           51.4         13         769         25         52         8849         4513         133         77         66         33         424         51         1188         223         814           51.5         13         764         245         21         84         437         71         818         84         24         1184         2                                                                                                                                                                                                                     |      |    |      |    | 79 | 11761 |      | 232 | 89 | 106 | 42 | 558 | 94  |       | 310 | 1239 |
| 50.9         11         1019         32         61         11899         6248         209         80         66         43         535         95         29653         239         1166           51         11         14         1187         31         63         11502         5578         174         83         79         44         501         105         28568         271         1065           51.2         23         1093         25         72         11675         5931         106         61         73         42         515         103         28591         278         1096           51.4         13         858         38         48         9661         5020         129         66         72         44         432         73         2366         240         918           51.4         14         764         32         56         8986         4513         153         77         66         33         424         51         21786         225         874           51.0         14         764         25         28         8086         4056         1227         73         88         44         4                                                                                                                                                                                                                     |      |    |      |    | 69 |       |      |     |    | 106 |    |     | 104 |       |     |      |
| 51         12         103         32         60         11028         5700         180         76         73         35         442         95         26570         284         1095           51.1         23         1093         36         56         11445         5858         174         75         78         521         81         27571         268         1005           51.3         10         993         25         72         11675         5931         166         61         73         42         515         103         28591         278         1096           51.4         13         858         38         48         9661         5020         129         66         72         448         423         73         23366         240         918           51.5         13         764         432         545         864         444         512         518         64         453         74         240         512         517         518         504         4452         154         61         64         46         373         67         20705         195         842           51.8         508 <t< th=""><th></th><th></th><th>1270</th><th></th><th>65</th><th></th><th></th><th>214</th><th></th><th>82</th><th></th><th></th><th></th><th>30637</th><th>309</th><th></th></t<>                                         |      |    | 1270 |    | 65 |       |      | 214 |    | 82  |    |     |     | 30637 | 309 |      |
| 51.1         14         1187         31         65         11502         5578         174         75         85         62         521         81         27571         2068         1033           51.3         10         993         25         72         11675         5931         166         61         73         42         515         103         28591         278         1093           51.4         13         858         38         48         9661         5020         129         68         72         448         423         73         23966         240         918           51.5         14         764         32         56         8986         4513         153         77         66         33         424         51         21786         225         874           51.8         5         764         25         28         8086         4056         182         51         89         40         347         97         19281         208         2036         236         131           51.8         5         764         225         28         8086         4056         182         14         4431 <t< th=""><th></th><th></th><th></th><th></th><th>61</th><th></th><th></th><th></th><th></th><th></th><th></th><th>535</th><th></th><th></th><th></th><th></th></t<>                                                       |      |    |      |    | 61 |       |      |     |    |     |    | 535 |     |       |     |      |
| \$1.2         23         1003         36         56         11445         5858         174         75         85         62         521         81         2757         1268         1033           \$1.3         10         993         25         72         11675         5911         166         61         73         42         515         103         28591         278         1066           \$1.4         13         858         38         48         9661         5020         129         68         72         448         423         73         23966         240         918           \$1.6         14         764         32         55886         4513         153         77         66         33         424         51         205         874           \$1.8         808         2.6         48         7964         4452         154         61         64         46         375         67         20705         195         842           \$1.9         2.6         1016         35         61         11363         5705         229         77         38         44         441         90         24638         227                                                                                                                                                                                                                    |      |    | 1030 |    |    | 11028 |      |     |    | 73  | 53 |     | 95  |       |     |      |
| 51.3         10         993         25         72         11675         5931         166         61         73         42         515         103         2891         278         1096           51.4         13         858         38         48         9661         5020         129         68         72         48         423         73         23966         240         918           51.5         13         769         25         52         8849         4584         145         69         64         46         335         74         22068         220         919           51.6         14         764         32         56         8986         4513         153         77         66         34         424         51         21786         225         874           51.8         5         764         25         28         8086         4056         182         51         89         40         347         97         19281         208         938           52.4         10         227         73         88         44         497         104         26488         277         1214           52.1 <th>51.1</th> <th>14</th> <th>1187</th> <th>31</th> <th>63</th> <th>11502</th> <th>5578</th> <th>174</th> <th></th> <th>79</th> <th>44</th> <th>501</th> <th>105</th> <th>28568</th> <th>271</th> <th>1085</th>                | 51.1 | 14 | 1187 | 31 | 63 | 11502 | 5578 | 174 |    | 79  | 44 | 501 | 105 | 28568 | 271 | 1085 |
| 51.4         13         858         38         48         9661         5020         129         66         72         48         423         73         23966         240         918           51.5         13         760         25         52         8849         4584         143         60         64         46         385         74         22068         220         919           51.6         14         764         32         56         8986         4513         153         77         66         33         424         51         21786         225         874           51.8         5         764         25         28         8086         4056         182         51         89         40         347         97         1928         208         138           51.9         26         1016         35         61         11363         5705         229         77         39         46         497         104         2648         257         1241           52.1         16         884         24         53         11600         5239         231         70         79         44         441         432 <th>51.2</th> <th>23</th> <th>1093</th> <th></th> <th>56</th> <th>11445</th> <th>5858</th> <th>174</th> <th>75</th> <th>85</th> <th>62</th> <th>521</th> <th>81</th> <th>27571</th> <th>268</th> <th>1033</th>          | 51.2 | 23 | 1093 |    | 56 | 11445 | 5858 | 174 | 75 | 85  | 62 | 521 | 81  | 27571 | 268 | 1033 |
| 51.5         13         769         25         52         8849         4454         145         69         64         46         385         74         22068         220         919           51.6         14         764         32         56         8986         4452         154         61         64         46         375         67         20705         195         842           51.8         5         764         25         28         8086         4056         182         51         89         40         347         97         19281         208         998           51.9         26         1016         35         61         11363         5705         229         77         99         46         4497         104         26488         257         1241           52.1         16         884         24         53         11600         5239         231         70         79         44         441         441         2024         273         121           52.2         26         1005         36         63         11756         5757         218         76         98         47         513         11                                                                                                                                                                                                                     | 51.3 | 10 | 993  |    |    | 11675 | 5931 | 166 | 61 | 73  | 42 |     | 103 | 28591 | 278 |      |
| 51.6         14         764         32         56         8986         4513         153         77         66         33         424         51         21786         225         874           51.7         18         808         26         48         7964         4452         154         61         64         46         375         67         20705         195         842           51.8         5         764         25         28         8086         4056         182         51         89         40         347         97         19281         208         998           51.9         26         1016         35         61         11363         5705         229         77         98         44         447         104         26488         257         1241           52.1         16         884         24         53         11047         5239         231         70         79         444         441         90         2423         282         1221           52.3         14         948         36         55         11044         5069         197         69         77         39         444         84<                                                                                                                                                                                                                     | 51.4 | 13 | 858  | 38 | 48 | 9661  | 5020 | 129 | 68 | 72  | 48 | 423 | 73  | 23966 | 240 | 918  |
| 51.7         18         808         26         48         7964         4452         154         61         64         46         375         67         20705         195         842           51.8         5         764         25         28         8086         4056         182         51         89         40         347         97         19281         208         998           51.9         26         1016         35         61         11363         5705         229         77         99         46         499         106         2004         286         1336           52.1         16         884         24         53         1164         5023         231         70         99         44         441         90         2423         282         1241           52.2         26         1065         36         63         1176         5757         218         76         98         47         513         114         29274         273         1211           52.3         14         948         36         55         11044         5069         177         105         58         540         106         2                                                                                                                                                                                                                     |      | 13 | 769  | 25 | 52 | 8849  | 4584 | 145 | 69 | 64  | 46 | 385 | 74  | 22068 | 220 | 919  |
| 51.8         5         764         25         28         8086         4056         182         51         89         40         347         97         1928         208         998           51.9         26         1016         35         61         11363         5705         229         77         99         46         499         106         29004         286         1336           52.1         16         884         24         53         11690         5239         231         70         79         44         441         90         24432         282         1241           52.2         26         1065         36         63         11756         5757         218         76         98         47         513         114         29274         273         1221           52.3         14         948         36         55         11044         5069         197         69         77         39         444         84         25273         251         1180           52.4         12         1210         20         6314         269         77         105         58         540         106         29967                                                                                                                                                                                                                         |      |    |      | 32 | 56 | 8986  |      | 153 | 77 | 66  |    | 424 |     | 21786 | 225 |      |
| 51.8         5         764         25         28         8086         405         182         51         89         40         347         97         1928         208         998           51.9         26         1016         35         61         11363         5705         229         77         99         46         499         106         29040         286         1336           52.1         16         884         24         233         11690         523         231         70         79         44         441         90         2423         282         1241           52.2         26         1065         36         65         11044         5069         197         69         77         39         444         84         25273         251         1181           52.4         12         210         22         60         1030         57         253         158         62         3105         313         142         6078         235         91         107         48         503         97         29211         233         1262           52.6         12         1150         638         12125         <                                                                                                                                                                                                                 |      |    |      |    |    | 7964  |      | 154 |    | 64  |    |     | 67  |       |     |      |
| 52         9         905         26         45         10478         5410         227         73         88         44         497         104         26488         257         1241           52.1         16         884         24         53         11690         5239         231         70         79         44         441         90         24923         282         1241           52.3         14         948         36         55         11044         5069         197         69         77         39         444         84         25273         251         118           52.4         12         1210         22         60         10309         5128         237         65         86         41         435         68         25089         255         1214           52.6         12         1152         40         49         12102         6314         269         77         105         58         540         106         29967         294         1413           52.6         11         11         36         68         12181         6698         253         550         103         30838         297                                                                                                                                                                                                                       |      |    |      |    |    |       |      |     |    | 89  |    |     | 97  |       |     | 998  |
| 52.1         16         884         24         53         11690         5239         231         70         79         44         441         90         24923         282         1204           52.2         26         1065         36         63         11756         5757         218         76         98         47         513         114         29274         273         121           52.3         14         948         36         55         11044         5069         177         39         444         84         25273         251         118           52.4         12         1210         22         60         10309         5128         237         65         86         41         435         68         25089         255         1214           52.5         18         1089         33         89         11421         6078         235         91         107         48         503         97         29211         283         1262           52.6         12         1153         40         66         11726         6484         242         80         103         57         550         103         30838                                                                                                                                                                                                                   |      | 26 | 1016 |    |    | 11363 | 5705 | 229 | 77 | 99  | 46 | 499 | 106 | 29004 | 286 |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52   | 9  | 905  | 26 | 45 | 10478 | 5410 | 227 | 73 | 88  | 44 | 497 | 104 | 26488 | 257 | 1241 |
| 52.3         14         948         36         55         11044         5069         197         69         77         39         444         84         2523         251         1180           52.4         12         1210         22         60         10309         5128         237         65         86         41         435         68         2508         255         121           52.6         12         1152         40         49         12102         6314         269         77         105         58         540         106         29967         294         1413           52.7         18         1111         36         66         12181         6698         263         87         78         53         538         62         31056         315         134           52.9         16         1078         55         58         11653         6339         195         77         99         53         525         90         29005         286         1271           53.1         31         1098         40         66         11422         6434         226         80         101         55         539                                                                                                                                                                                                                        |      | 16 |      |    | 53 | 11690 |      | 231 | 70 | 79  | 44 | 441 | 90  | 24923 |     | 1204 |
| 52.4         12         1210         22         60         10309         5128         237         65         86         41         435         68         2508         255         1214           52.5         12         1152         40         49         1210         6314         299         77         105         58         540         106         2996         29211         283         1262           52.6         12         1152         40         49         12102         6314         299         77         105         58         540         106         29967         2941         1413           52.7         18         1111         36         68         12181         6698         263         87         78         53         538         62         31056         315         1342           52.8         17         1262         40         66         1656         6381         254         82         99         55         526         84         30970         280         1350           53.1         31         1098         40         63         11422         6434         226         80         101         55                                                                                                                                                                                                                  | 52.2 | 26 | 1065 | 36 | 63 | 11756 | 5757 | 218 | 76 | 98  | 47 | 513 | 114 | 29274 | 273 | 1221 |
| 52.5         18         1089         33         89         11421         6078         235         91         107         48         503         97         29211         283         1262           52.6         12         1152         40         49         12102         6314         269         77         105         58         540         106         29967         294         1413           52.7         18         1111         36         66         12181         6698         203         87         78         53         53         62         31056         315         1342           52.9         16         1078         55         58         11653         6339         195         77         99         53         526         84         30970         280         1350           53.1         31         1098         40         66         11565         6381         224         82         99         55         526         84         30970         280         1350           53.1         31         1098         40         63         1142         6434         226         80         101         55         539                                                                                                                                                                                                                    | 52.3 | 14 | 948  | 36 | 55 | 11044 | 5069 | 197 | 69 | 77  | 39 | 444 | 84  | 25273 | 251 | 1180 |
| 52.6         12         1152         40         49         12102         6314         269         77         105         58         540         106         29967         294         1413           52.7         18         1111         36         68         12181         6698         263         87         78         53         538         62         31056         315         1342           52.8         17         1210         40         69         11792         6484         242         80         103         57         550         103         3088         297         1306           53.9         16         1078         55         58         11653         6339         195         77         99         55         526         84         30970         280         1350           53.1         31         1098         40         63         11422         6434         226         80         101         55         539         127         29475         288         1275           53.2         15         1138         38         58         1212         6642         230         84         88         40         51                                                                                                                                                                                                                   | 52.4 | 12 | 1210 | 22 | 60 | 10309 | 5128 | 237 | 65 | 86  |    | 435 | 68  | 25089 | 255 | 1214 |
| 52.7         18         1111         36         68         12181         6698         263         87         78         53         538         62         31056         315         1342           52.8         17         1210         40         69         11792         6484         242         80         103         57         550         103         30838         297         1306           52.9         16         1078         55         58         11653         6339         195         77         99         53         525         90         29005         280         1271           53.1         31         1098         40         63         11422         6434         226         80         101         55         539         127         29475         288         1275           53.2         15         1138         38         58         12125         6642         230         84         88         40         561         97         30477         306         1280           53.3         9         1085         41         74         1208         5876         217         87         110         50         521                                                                                                                                                                                                                   | 52.5 | 18 | 1089 | 33 | 89 | 11421 | 6078 | 235 | 91 | 107 | 48 | 503 | 97  | 29211 | 283 | 1262 |
| 52.8         17         1210         40         69         11792         6484         242         80         103         57         550         103         30838         297         1306           52.9         16         1078         55         58         11653         6339         195         77         99         53         525         90         29005         286         1271           53         17         1262         40         66         11565         6381         254         82         99         55         526         84         30970         280         1350           53.1         31         1098         40         63         11422         6434         226         80         101         55         539         127         29475         288         1280           53.3         9         1085         41         74         12089         5876         217         87         110         50         525         114         2943         308         1272           53.4         27         1037         34         51         11962         6219         246         78         96         50         511                                                                                                                                                                                                                    | 52.6 | 12 | 1152 | 40 | 49 | 12102 | 6314 | 269 | 77 | 105 | 58 | 540 | 106 | 29967 | 294 | 1413 |
| 52.9         16         1078         55         58         11653         6339         195         77         99         53         525         90         29005         286         1271           53         17         1262         40         66         11565         6381         254         82         99         55         526         84         30970         280         1350           53.1         31         1098         40         63         11422         6442         226         80         101         55         539         127         29475         288         1275           53.2         15         1138         38         58         12125         6642         230         84         88         40         561         97         29475         288         1272           53.3         9         1085         41         74         12089         5876         217         87         110         50         525         114         2943         308         1272           53.4         27         1037         34         51         11962         6219         246         78         96         50         5111                                                                                                                                                                                                                     |      |    |      |    |    |       |      | 263 |    |     |    | 538 |     | 31056 |     |      |
| 53         17         1262         40         66         11565         6381         254         82         99         55         526         84         30970         280         1350           53.1         31         1098         40         63         11422         6434         226         80         101         55         539         127         29475         288         1275           53.2         15         1138         38         58         12125         6642         230         84         88         40         561         97         30477         308         1272           53.4         27         1037         34         51         11962         6219         246         78         96         50         511         107         29623         277         1283           53.5         10         1212         40         65         1210         6569         234         77         114         52         518         119         30196         305         1318           53.6         17         1174         39         51         12734         7001         230         58         114         56         546                                                                                                                                                                                                                   | 52.8 | 17 | 1210 | 40 | 69 | 11792 | 6484 | 242 | 80 | 103 | 57 | 550 | 103 | 30838 | 297 | 1306 |
| 53.1         31         1098         40         63         11422         6434         226         80         101         55         539         127         29475         288         1275           53.2         15         1138         38         58         12125         6642         230         84         88         40         561         97         30477         306         1280           53.3         9         1085         41         74         12089         5876         217         87         110         50         525         114         29943         308         1272           53.4         277         1037         34         51         11962         6219         246         78         96         50         511         107         29633         277         1283           53.6         17         1174         39         51         12734         7001         230         58         114         56         546         81         31346         318         1300           53.7         12         1181         35         62         13208         7016         221         89         106         52         592 <th></th>                                               |      |    |      |    |    |       |      |     |    |     |    |     |     |       |     |      |
| 53.2         15         1138         38         58         12125         6642         230         84         88         40         561         97         30477         306         1280           53.3         9         1085         41         74         12089         5876         217         87         110         50         525         114         29943         308         1272           53.4         27         1037         34         51         11962         6219         246         78         96         50         511         107         29623         277         1283           53.5         10         1212         40         65         12120         6569         234         77         114         52         518         119         30196         305         1318           53.6         17         1174         39         51         12734         7001         230         58         114         56         546         81         31346         318         1300           53.7         12         1181         35         62         13208         7016         221         89         106         52         592 <th>53</th> <th>17</th> <th>1262</th> <th>40</th> <th>66</th> <th>11565</th> <th>6381</th> <th>254</th> <th>82</th> <th>99</th> <th>55</th> <th>526</th> <th>84</th> <th>30970</th> <th>280</th> <th>1350</th> | 53   | 17 | 1262 | 40 | 66 | 11565 | 6381 | 254 | 82 | 99  | 55 | 526 | 84  | 30970 | 280 | 1350 |
| 53.3         9         1085         41         74         12089         5876         217         87         110         50         525         114         29943         308         1272           53.4         27         1037         34         51         11962         6219         246         78         96         50         511         107         29623         277         1283           53.5         10         1212         40         65         12120         6569         234         77         114         52         518         119         30196         305         1318           53.6         17         1174         39         51         12734         7001         230         58         114         56         546         81         31346         318         1300           53.7         12         1181         35         62         13208         7016         221         89         106         52         592         91         32024         297         1250           53.8         8         1109         33         60         12143         6537         184         75         98         42         540                                                                                                                                                                                                                 | 53.1 | 31 | 1098 |    | 63 | 11422 | 6434 | 226 | 80 | 101 | 55 | 539 | 127 | 29475 | 288 | 1275 |
| 53.4         27         1037         34         51         11962         6219         246         78         96         50         511         107         29623         277         1283           53.5         10         1212         40         65         12120         6569         234         77         114         52         518         119         30196         305         1318           53.6         17         1174         39         51         12734         7001         230         58         114         56         546         81         31346         318         1300           53.7         12         1181         35         62         13208         7016         221         89         106         52         592         91         32024         297         1250           53.8         8         1109         33         60         12143         6537         184         75         98         42         540         90         29724         279         1127           53.9         8         921         32         60         10522         5651         170         86         91         41         464                                                                                                                                                                                                                    |      | 15 | 1138 | 38 | 58 |       | 6642 | 230 |    | 88  |    |     | 97  | 30477 | 306 |      |
| 53.5         10         1212         40         65         12120         6569         234         77         114         52         518         119         30196         305         1318           53.6         17         1174         39         51         12734         7001         230         58         114         56         546         81         31346         318         1300           53.7         12         1181         35         62         13208         7016         221         89         106         52         592         91         32024         297         1250           53.8         8         1109         33         60         12143         6537         184         75         98         42         540         90         29724         279         1127           53.9         8         921         32         60         10522         5651         170         86         91         41         464         77         25820         275         1051           54.1         12         1004         27         63         12090         6478         186         87         111         45         545                                                                                                                                                                                                                    | 53.3 |    | 1085 |    |    | 12089 |      | 217 |    |     |    | 525 | 114 |       | 308 |      |
| 53.6         17         1174         39         51         12734         7001         230         58         114         56         546         81         31346         318         1300           53.7         12         1181         35         62         13208         7016         221         89         106         52         592         91         32024         297         1250           53.8         8         1109         33         60         12143         6537         184         75         98         42         540         90         29724         279         1127           53.9         8         921         32         60         10522         5651         170         86         91         41         464         77         25820         275         1051           54         19         1164         32         46         11753         6611         174         75         101         42         549         69         29440         276         1135           54.1         12         1004         27         63         12090         6478         186         87         1111         45         545                                                                                                                                                                                                                      |      |    |      |    |    |       |      |     |    |     |    |     |     |       |     |      |
| 53.7         12         1181         35         62         13208         7016         221         89         106         52         592         91         32024         297         1250           53.8         8         1109         33         60         12143         6537         184         75         98         42         540         90         29724         279         1127           53.9         8         921         32         60         10522         5651         170         86         91         41         464         77         25820         275         1051           54         19         1164         32         46         11753         6611         174         75         101         42         549         69         29440         276         1135           54.1         12         1004         27         63         12090         6478         186         87         111         45         545         86         29338         295         1158           54.2         13         1023         33         58         11641         5878         182         82         88         50         483                                                                                                                                                                                                                        |      |    |      |    |    |       |      |     |    |     |    |     |     |       |     |      |
| 53.8         8         1109         33         60         12143         6537         184         75         98         42         540         90         29724         279         1127           53.9         8         921         32         60         10522         5651         170         86         91         41         464         77         25820         275         1051           54         19         1164         32         46         11753         6611         174         75         101         42         549         69         29440         276         1135           54.1         12         1004         27         63         12090         6478         186         87         111         45         545         86         29338         295         1158           54.2         13         1023         33         58         11641         5878         182         82         88         50         483         102         27813         284         1093           54.3         15         1008         26         69         11954         6303         203         89         84         59         523                                                                                                                                                                                                                        |      |    |      |    | 51 | 12734 |      |     |    |     |    | 546 |     |       |     |      |
| 53.9         8         921         32         60         10522         5651         170         86         91         41         464         77         25820         275         1051           54         19         1164         32         46         11753         6611         174         75         101         42         549         69         29440         276         1135           54.1         12         1004         27         63         12090         6478         186         87         111         45         545         86         29338         295         1158           54.2         13         1023         33         58         11641         5878         182         82         88         50         483         102         27813         284         1093           54.3         15         1008         26         69         11954         6303         203         89         84         59         523         69         30954         290         1158           54.4         19         982         29         75         11599         6366         173         83         80         51         530                                                                                                                                                                                                                        |      |    |      |    |    |       |      |     |    |     |    |     |     |       |     |      |
| 54         19         1164         32         46         11753         6611         174         75         101         42         549         69         29440         276         1135           54.1         12         1004         27         63         12090         6478         186         87         111         45         545         86         29338         295         1158           54.2         13         1023         33         58         11641         5878         182         82         88         50         483         102         27813         284         1093           54.3         15         1008         26         69         11954         6303         203         89         84         59         523         69         30954         290         1158           54.4         19         982         29         75         11599         6366         173         83         80         51         530         72         30826         291         1184           54.5         19         1070         28         69         11427         6655         202         66         101         49         552                                                                                                                                                                                                                     |      |    |      |    |    |       |      |     |    |     |    |     |     |       |     |      |
| 54.112100427631209064781868711145545862938295115854.2131023335811641587818282885048310227813284109354.315100826691195463032038984595236930954290115854.41998229751159963661738380515307230826291118454.5191070286911427665520266101495528929756282117254.624117235511196063942197096635407538148287128854.7141071287012220674720774945758371317073021171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |    |      |    |    |       |      |     |    |     |    |     |     |       |     |      |
| 54.2         13         1023         33         58         11641         5878         182         82         88         50         483         102         27813         284         1093           54.3         15         1008         26         69         11954         6303         203         89         84         59         523         69         30954         290         1158           54.4         19         982         29         75         11599         6366         173         83         80         51         530         72         30826         291         1184           54.5         19         1070         28         69         11427         6655         202         66         101         49         552         89         29756         282         1172           54.6         24         1172         35         51         11960         6394         219         70         96         63         540         75         38148         287         1288           54.7         14         1071         28         70         12220         6747         207         74         94         57         583                                                                                                                                                                                                                     |      |    |      |    |    |       |      |     |    | 101 |    |     |     |       |     |      |
| 54.3         15         1008         26         69         11954         6303         203         89         84         59         523         69         30954         290         1158           54.4         19         982         29         75         11599         6366         173         83         80         51         530         72         30826         291         1184           54.5         19         1070         28         69         11427         6655         202         66         101         49         552         89         29756         282         1172           54.6         24         1172         35         51         11960         6394         219         70         96         63         540         75         38148         287         1288           54.7         14         1071         28         70         1220         6747         207         74         94         57         583         71         31707         302         1171                                                                                                                                                                                                                                                                                                                                                                        |      |    |      |    |    |       |      |     |    |     |    |     |     |       |     |      |
| 54.4         19         982         29         75         11599         6366         173         83         80         51         530         72         30826         291         1184           54.5         19         1070         28         69         11427         6655         202         66         101         49         552         89         29756         282         1172           54.6         24         1172         35         51         11960         6394         219         70         96         63         540         75         38148         287         1288           54.7         14         1071         28         70         12220         6747         207         74         94         57         583         71         31707         302         1171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |    |      |    |    |       |      |     |    |     |    |     |     |       |     |      |
| 54.5         19         1070         28         69         11427         6655         202         66         101         49         552         89         29756         282         1172           54.6         24         1172         35         51         11960         6394         219         70         96         63         540         75         38148         287         1288           54.7         14         1071         28         70         12220         6747         207         74         94         57         583         71         31707         302         1171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |    |      |    |    |       |      |     |    |     |    |     |     |       |     |      |
| 54.6         24         1172         35         51         11960         6394         219         70         96         63         540         75         38148         287         1288           54.7         14         1071         28         70         12220         6747         207         74         94         57         583         71         31707         302         1171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |      |    |    |       |      |     |    |     |    |     |     |       |     |      |
| <b>54.7</b> 14 1071 28 70 12220 6747 207 74 94 57 583 71 31707 302 1171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |    |      |    |    |       |      |     |    |     |    |     |     |       |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |    |      |    |    |       |      |     |    |     |    |     |     |       |     |      |
| <b>54.8</b> 17 1096 36 64 12621 6647 217 79 85 56 568 104 31085 291 1210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |    |      |    |    |       |      |     |    |     |    |     |     |       |     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54.8 | 17 | 1096 | 36 | 64 | 12621 | 6647 | 217 | 79 | 85  | 56 | 568 | 104 | 31085 | 291 | 1210 |

| 54.0         | 21       | 1050         | 24 | 50       | 12224          | ((())        | 200        | (2       | 96         | 5(       | 544 | 02       | 31723          | 299        | 1225         |
|--------------|----------|--------------|----|----------|----------------|--------------|------------|----------|------------|----------|-----|----------|----------------|------------|--------------|
| 54.9<br>55   | 21       | 1050<br>1050 | 34 | 58<br>63 | 112224         | 6663<br>6159 | 200<br>205 | 62<br>80 | 81         | 56<br>47 | 462 | 92<br>83 | 29626          | 299        | 1223         |
| 55.1         | 11       | 994          | 21 | 61       | 10945          | 5494         | 184        | 78       | 81         | 38       | 402 | 107      | 29020          | 293        | 11201        |
| 55.2         | 12       | 747          | 21 | 66       | 9356           | 4362         | 153        | 78       | 64         | 40       | 355 | 93       | 21572          | 243        | 962          |
| 55.3         | 10       | 725          | 18 | 64       | 9330           | 4126         | 159        | 64       | 81         | 40       | 300 | 70       | 20246          | 243        | 902          |
| 55.4         | 1        | 625          | 7  | 52       | 8402           | 3908         | 153        | 60       | 63         | 26       | 308 | 110      | 19066          | 248        | 896          |
| 55.5         | 1        | 2109         | 1  | 43       | 11861          | 7253         | 216        | 56       | 82         | 65       | 606 | 86       | 31414          | 20)        | 1103         |
| 55.6         | 1        | 64           | 22 | 16       | 182            | 284          | 12         | 15       | 13         | 7        | 1   | 33       | 933            | 18         | 1105         |
| 55.7         | 1        | 99           | 19 | 9        | 795            | 502          | 17         | 13       | 13         | 28       | 44  | 23       | 2379           | 54         | 416          |
| 55.8         | 1        | 169          | 14 | 15       | 1811           | 944          | 112        | 29       | 39         | 12       | 50  | 66       | 4943           | 59         | 575          |
| 55.9         | 1        | 311          | 21 | 50       | 3046           | 1370         | 90         | 37       | 29         | 25       | 69  | 70       | 8118           | 91         | 622          |
| 56           | 1        | 698          | 30 | 45       | 6977           | 3262         | 127        | 28       | 98         | 35       | 179 | 80       | 18285          | 215        | 950          |
| 56.1         | 4        | 942          | 40 | 39       | 8473           | 3891         | 158        | 47       | 106        | 61       | 255 | 119      | 21771          | 213        | 1103         |
| 56.2         | 14       | 826          | 41 | 61       | 8777           | 3707         | 220        | 63       | 88         | 44       | 235 | 83       | 21360          | 245        | 1086         |
| 56.3         | 4        | 889          | 34 | 53       | 8904           | 3887         | 147        | 45       | 92         | 56       | 239 | 123      | 20357          | 219        | 999          |
| 56.4         | 1        | 754          | 23 | 41       | 6822           | 3183         | 121        | 45       | 82         | 51       | 227 | 92       | 17308          | 166        | 821          |
| 56.5         | 5        | 922          | 31 | 53       | 8371           | 3885         | 136        | 42       | 102        | 43       | 251 | 95       | 20607          | 217        | 1015         |
| 56.6         | 9        | 993          | 44 | 72       | 8724           | 4056         | 160        | 63       | 97         | 56       | 267 | 119      | 21875          | 231        | 987          |
| 56.7         | 11       | 984          | 26 | 61       | 9209           | 4183         | 147        | 48       | 104        | 47       | 287 | 77       | 22274          | 218        | 989          |
| 56.8         | 12       | 1011         | 33 | 61       | 8682           | 4183         | 129        | 53       | 68         | 54       | 267 | 93       | 22451          | 218        | 899          |
| 56.9         | 9        | 969          | 32 | 55       | 8822           | 4278         | 130        | 64       | 112        | 50       | 284 | 97       | 22480          | 228        | 924          |
| 57           | 8        | 900          | 28 | 61       | 8679           | 4081         | 152        | 59       | 87         | 50       | 233 | 88       | 21729          | 223        | 1029         |
| 57.1         | 5        | 1054         | 44 | 58       | 9831           | 4654         | 155        | 61       | 89         | 60       | 286 | 78       | 24790          | 241        | 1089         |
| 57.2         | 9        | 1082         | 38 | 59       | 10273          | 4792         | 171        | 67       | 109        | 52       | 324 | 105      | 25691          | 239        | 1140         |
| 57.3         | 11       | 1230         | 45 | 60       | 9782           | 5450         | 156        | 57       | 111        | 51       | 332 | 81       | 25840          | 244        | 1107         |
| 57.4         | 15       | 1144         | 37 | 53       | 10517          | 5758         | 192        | 59       | 95         | 49       | 379 | 117      | 27820          | 274        | 1147         |
| 57.5         | 14       | 1215<br>1259 | 43 | 62       | 11161          | 6075<br>6330 | 174        | 80       | 120<br>101 | 46       | 396 | 95       | 28643<br>30591 | 295<br>294 | 1205<br>1215 |
| 57.6<br>57.7 | 21<br>15 | 1239         | 40 | 51<br>58 | 11534<br>11721 | 6190         | 201<br>193 | 70<br>78 | 101        | 40       | 428 | 73<br>81 | 30602          | 294        | 1213         |
| 57.8         | 10       | 1293         | 46 | 48       | 11257          | 5837         | 173        | 83       | 85         | 50       | 449 | 93       | 29391          | 298        | 1145         |
| 57.9         | 7        | 1267         | 35 | 63       | 11237          | 6201         | 174        | 73       | 100        | 41       | 423 | 81       | 29391          | 260        | 1212         |
| 58           | 28       | 1121         | 37 | 68       | 10883          | 5918         | 203        | 73       | 105        | 41       | 408 | 107      | 28033          | 269        | 1198         |
| 58.1         | 14       | 1169         | 40 | 59       | 12364          | 6225         | 177        | 72       | 95         | 22       | 400 | 90       | 30587          | 207        | 1194         |
| 58.2         | 17       | 1133         | 33 | 56       | 11763          | 5912         | 181        | 88       | 99         | 42       | 427 | 81       | 29791          | 318        | 1194         |
| 58.3         | 15       | 1666         | 30 | 66       | 10856          | 6163         | 200        | -1469    | 97         | 40       | 458 | 92       | 29578          | 267        | 1209         |
| 58.4         | 21       | 1210         | 42 | 65       | 11381          | 6500         | 186        | 78       | 111        | 59       | 472 | 99       | 31121          | 292        | 1251         |
| 58.5         | 16       | 1238         | 33 | 69       | 12128          | 6485         | 196        | 75       | 113        | 48       | 479 | 75       | 30892          | 289        | 1214         |
| 58.6         | 36       | 1292         | 34 | 60       | 11566          | 6318         | 192        | 85       | 88         | 48       | 444 | 75       | 30923          | 291        | 1192         |
| 58.7         | 25       | 1125         | 39 | 57       | 11137          | 5896         | 168        | 73       | 109        | 47       | 411 | 78       | 28075          | 293        | 1201         |
| 58.8         | 11       | 1137         | 29 | 58       | 11046          | 6012         | 186        | 74       | 121        | 35       | 441 | 106      | 29899          | 268        | 1244         |
| 58.9         | 7        | 1103         | 29 | 55       | 11475          | 6002         | 156        | 86       | 103        | 45       | 431 | 108      | 30323          | 294        | 1196         |
| 59           | 16       | 1164         | 30 | 52       | 10769          | 5953         | 201        | 72       | 112        | 37       | 438 | 114      | 28878          | 262        | 1231         |
| 59.1         | 7        | 1118         | 31 | 62       | 11192          | 6055         | 201        | 76       | 57         | 42       | 430 | 123      | 29752          | 288        | 1186         |
| 59.2         | 13       | 1371         | 24 | 66       | 11412          | 5950         | 202        | 71       | 83         | 38       | 414 | 115      | 29454          | 276        | 1178         |
| 59.3         | 12       | 1145         | 32 | 40       | 10904          | 5742         | 187        | 74       | 103        | 47       | 407 | 107      | 28677          | 270        | 1180         |
| 59.4         | 20       | 1454         | 41 | 53       | 10590          | 5896         | 150        | 73       | 118        | 43       | 395 | 142      | 28930          | 277        | 1233         |
| 59.5         | 9        | 1130         | 52 | 64       | 10571          | 5968         | 173        | 61       | 105        | 47       | 403 | 110      | 28347          | 265        | 1158         |

| 59.6 | 21 | 1434 | 49 | 61  | 11273 | 6261 | 186 | 69  | 80  | 49 | 440 | 83  | 29976 | 269 | 1163 |
|------|----|------|----|-----|-------|------|-----|-----|-----|----|-----|-----|-------|-----|------|
| 59.7 | 17 | 1152 | 52 | 56  | 11684 | 6224 | 186 | 76  | 113 | 49 | 463 | 77  | 30393 | 284 | 1191 |
| 59.8 | 8  | 1135 | 35 | 53  | 11008 | 6191 | 201 | 56  | 105 | 45 | 425 | 107 | 29330 | 274 | 1184 |
| 59.9 | 28 | 1180 | 34 | 53  | 10693 | 5978 | 174 | 62  | 101 | 48 | 413 | 93  | 28412 | 276 | 1185 |
| 60   | 14 | 1154 | 42 | 46  | 11126 | 5908 | 188 | 77  | 100 | 45 | 444 | 94  | 29404 | 256 | 1182 |
| 60.1 | 20 | 1241 | 36 | 56  | 12216 | 6093 | 199 | 78  | 79  | 42 | 450 | 90  | 29957 | 270 | 1205 |
| 60.2 | 28 | 1143 | 32 | 62  | 11944 | 6090 | 186 | 59  | 122 | 57 | 445 | 120 | 27671 | 289 | 1199 |
| 60.3 | 9  | 1134 | 26 | 64  | 12159 | 6188 | 186 | 70  | 106 | 61 | 453 | 85  | 30327 | 279 | 1174 |
| 60.4 | 21 | 1129 | 30 | 54  | 11991 | 5981 | 206 | 58  | 113 | 48 | 416 | 82  | 30364 | 293 | 1209 |
| 60.5 | 15 | 1044 | 32 | 60  | 10562 | 5642 | 202 | 71  | 99  | 45 | 394 | 102 | 27107 | 268 | 1152 |
| 60.6 | 10 | 1036 | 31 | 56  | 11312 | 5682 | 207 | 88  | 128 | 43 | 381 | 104 | 29552 | 269 | 1204 |
| 60.7 | 10 | 1129 | 28 | 58  | 11642 | 5754 | 206 | 69  | 101 | 40 | 413 | 93  | 31731 | 263 | 1241 |
| 60.8 | 14 | 1135 | 33 | 46  | 10500 | 5789 | 155 | 55  | 98  | 48 | 405 | 130 | 28036 | 271 | 1128 |
| 60.9 | 23 | 1151 | 31 | 74  | 10845 | 6352 | 215 | 82  | 123 | 46 | 423 | 106 | 28571 | 276 | 1223 |
| 61   | 11 | 1086 | 23 | 66  | 11354 | 5928 | 218 | 89  | 98  | 42 | 421 | 66  | 30018 | 280 | 1169 |
| 61.1 | 14 | 1180 | 35 | 157 | 11468 | 6287 | 165 | 226 | 97  | 48 | 484 | 58  | 31163 | 313 | 1197 |
| 61.2 | 19 | 1133 | 32 | 58  | 11990 | 6029 | 204 | 57  | 110 | 53 | 454 | 110 | 29596 | 295 | 1166 |
| 61.3 | 7  | 1059 | 36 | 55  | 11655 | 5869 | 194 | 75  | 97  | 51 | 451 | 108 | 30105 | 274 | 1158 |
| 61.4 | 13 | 1010 | 29 | 55  | 11579 | 5456 | 187 | 50  | 105 | 47 | 421 | 107 | 28103 | 262 | 1180 |
| 61.5 | 6  | 1164 | 22 | 53  | 10759 | 5953 | 182 | 76  | 92  | 40 | 429 | 72  | 27731 | 284 | 1141 |
| 61.6 | 15 | 1185 | 31 | 62  | 11604 | 6061 | 193 | 62  | 116 | 44 | 453 | 120 | 29687 | 298 | 1240 |
| 61.7 | 18 | 1183 | 33 | 59  | 11639 | 5928 | 172 | 77  | 88  | 47 | 462 | 83  | 28830 | 266 | 1165 |
| 61.8 | 17 | 1122 | 35 | 57  | 11625 | 5992 | 208 | 68  | 108 | 42 | 442 | 121 | 28458 | 298 | 1179 |
| 61.9 | 30 | 1065 | 43 | 53  | 11914 | 5648 | 184 | 83  | 91  | 52 | 441 | 100 | 27955 | 276 | 1109 |
| 62   | 16 | 1090 | 31 | 44  | 11552 | 5718 | 210 | 57  | 102 | 51 | 435 | 79  | 28673 | 286 | 1179 |
| 62.1 | 19 | 1068 | 35 | 54  | 11761 | 5431 | 198 | 68  | 96  | 45 | 413 | 111 | 27394 | 263 | 1178 |
| 62.2 | 18 | 1191 | 32 | 56  | 11920 | 6449 | 182 | 83  | 102 | 33 | 499 | 95  | 29656 | 286 | 1189 |
| 62.3 | 20 | 1227 | 46 | 57  | 12735 | 6752 | 198 | 88  | 116 | 41 | 539 | 125 | 32198 | 303 | 1244 |
| 62.4 | 14 | 1192 | 27 | 59  | 13562 | 6220 | 225 | 99  | 79  | 44 | 500 | 100 | 31940 | 311 | 1294 |
| 62.5 | 24 | 1120 | 31 | 56  | 13198 | 6146 | 236 | 93  | 113 | 37 | 506 | 100 | 32824 | 309 | 1285 |
| 62.6 | 21 | 1148 | 32 | 54  | 13563 | 6128 | 221 | 93  | 118 | 34 | 536 | 112 | 31703 | 304 | 1288 |
| 62.7 | 18 | 1075 | 27 | 44  | 13683 | 6029 | 194 | 92  | 96  | 46 | 526 | 81  | 30566 | 324 | 1276 |
| 62.8 | 17 | 963  | 20 | 48  | 11364 | 5202 | 196 | 77  | 100 | 38 | 434 | 116 | 26230 | 273 | 1158 |
| 62.9 | 17 | 841  | 20 | 40  | 10239 | 4528 | 159 | 58  | 64  | 34 | 380 | 77  | 24008 | 246 | 976  |
| 63   | 16 | 838  | 33 | 34  | 10400 | 4338 | 175 | 78  | 109 | 34 | 347 | 87  | 25639 | 245 | 1085 |
| 63.1 | 9  | 866  | 32 | 48  | 11118 | 4959 | 150 | 91  | 87  | 35 | 435 | 95  | 26039 | 260 | 1031 |
| 63.2 | 5  | 962  | 26 | 45  | 10761 | 4968 | 180 | 68  | 92  | 37 | 413 | 81  | 27680 | 269 | 1108 |
| 63.3 | 16 | 1042 | 36 | 49  | 11313 | 5560 | 169 | 82  | 71  | 40 | 430 | 70  | 28225 | 279 | 1082 |
| 63.4 | 9  | 924  | 26 | 42  | 11592 | 4949 | 171 | 77  | 90  | 30 | 383 | 90  | 23932 | 269 | 1049 |
| 63.5 | 8  | 900  | 32 | 36  | 10859 | 4413 | 148 | 64  | 80  | 33 | 338 | 86  | 23812 | 236 | 1059 |
| 63.6 | 7  | 902  | 35 | 49  | 8742  | 4090 | 134 | 72  | 97  | 36 | 304 | 100 | 20732 | 185 | 876  |
| 63.7 | 14 | 1156 | 33 | 55  | 10233 | 4628 | 171 | 76  | 88  | 32 | 317 | 106 | 21659 | 217 | 1042 |
| 63.8 | 9  | 954  | 41 | 47  | 12699 | 5214 | 174 | 80  | 85  | 32 | 390 | 70  | 27748 | 279 | 1141 |
| 63.9 | 17 | 891  | 38 | 50  | 11607 | 5076 | 176 | 82  | 89  | 29 | 348 | 88  | 25532 | 276 | 1032 |
| 64   | 8  | 1059 | 34 | 44  | 11119 | 5219 | 192 | 95  | 93  | 35 | 397 | 96  | 24978 | 271 | 1059 |
| 64.1 | 11 | 1280 | 35 | 45  | 12074 | 5762 | 173 | 83  | 90  | 31 | 403 | 115 | 26178 | 267 | 985  |
| 64.2 | 25 | 3195 | 34 | 33  | 11940 | 5852 | 176 | 85  | 91  | 40 | 445 | 160 | 28938 | 262 | 1071 |
|      |    |      |    |     |       |      |     |     |     |    |     |     |       |     |      |

| 64.3 | 9 163  | 25 | 10 |       |      |      |     |     |    |     |     |       |     |      |
|------|--------|----|----|-------|------|------|-----|-----|----|-----|-----|-------|-----|------|
|      | 105    | 35 | 43 | 11539 | 5479 | 190  | 63  | 90  | 33 | 414 | 120 | 26650 | 276 | 1083 |
| 64.4 | 2 95   | 32 | 47 | 11204 | 5554 | 219  | 62  | 109 | 35 | 409 | 122 | 26502 | 259 | 1083 |
| 64.5 | 134    | 34 | 59 | 12229 | 5968 | 235  | 82  | 87  | 40 | 473 | 146 | 30737 | 277 | 1152 |
| 64.6 | 20 130 | 40 | 58 | 11056 | 6409 | 197  | 65  | 110 | 33 | 448 | 122 | 27936 | 263 | 1133 |
| 64.7 | 124    | 26 | 62 | 11938 | 6035 | 203  | 79  | 104 | 36 | 395 | 93  | 30307 | 296 | 1149 |
| 64.8 | 8 1199 | 26 | 54 | 11903 | 5884 | 197  | 81  | 94  | 40 | 425 | 96  | 28492 | 280 | 1151 |
| 64.9 | 7 2330 | 32 | 50 | 11253 | 6201 | 181  | 79  | 112 | 41 | 440 | 331 | 26376 | 284 | 1084 |
| 65   | 7 148. | 40 | 45 | 13786 | 5697 | 184  | 77  | 105 | 41 | 390 | 361 | 29037 | 316 | 1179 |
| 65.1 | 4 2929 | 35 | 53 | 13302 | 5566 | 200  | 84  | 119 | 34 | 389 | 109 | 27024 | 272 | 1150 |
| 65.2 | 3 192  | 32 | 70 | 12393 | 6091 | 204  | 79  | 86  | 32 | 421 | 110 | 26610 | 274 | 1151 |
| 65.3 | 1279   | 36 | 85 | 10983 | 5694 | 191  | 94  | 122 | 34 | 397 | 88  | 27583 | 283 | 1063 |
| 65.4 | 6 1074 | 28 | 60 | 11040 | 5354 | 184  | 77  | 95  | 30 | 388 | 112 | 26136 | 264 | 1044 |
| 65.5 | 1 110  | 37 | 53 | 15336 | 5790 | 184  | 91  | 88  | 30 | 441 | 74  | 27860 | 285 | 1144 |
| 65.6 | 7 115  | 24 | 51 | 14881 | 5915 | 214  | 104 | 113 | 34 | 461 | 116 | 29879 | 309 | 1226 |
| 65.7 | 4 1074 | 28 | 44 | 12193 | 5796 | 174  | 69  | 92  | 35 | 428 | 91  | 26629 | 260 | 1067 |
| 65.8 | 8 1453 | 30 | 41 | 10571 | 5173 | 158  | 55  | 65  | 32 | 433 | 77  | 24847 | 245 | 922  |
| 65.9 | 107    | 34 | 53 | 9531  | 4606 | 148  | 70  | 83  | 38 | 371 | 85  | 22478 | 225 | 820  |
| 66   | 8 2053 | 23 | 44 | 7929  | 3883 | -579 | 61  | 90  | 27 | 318 | 88  | 18853 | 184 | 640  |
| 66.1 | 3 4330 | 23 | 20 | 5291  | 3299 | 46   | 36  | 40  | 29 | 290 | 64  | 12668 | 105 | 379  |
| 66.2 | 9 33   | 17 | 20 | 2593  | 1686 | 34   | 24  | 8   | 22 | 164 | 15  | 7286  | 68  | 187  |
| 66.3 | 2 80   | 28 | 15 | 297   | 197  | 22   | 14  | 17  | 13 | 20  | 21  | 864   | 17  | 55   |

Table A-28: XRF values from discrete samples from Lake Rutundu

|            | Chemical Elements (cps) |        |      |       |         |        |        |        |         |      |      |       |       |       |        |        |
|------------|-------------------------|--------|------|-------|---------|--------|--------|--------|---------|------|------|-------|-------|-------|--------|--------|
| Depth (cm) | Al                      | Si     | Р    | S     | K       | Ca     | Ti     | Mn     | Fe      | Ni   | Cu   | Zn    | Rb    | Sr    | Zr     | Nb     |
| 4          | 21543                   | 269562 | 4538 | 38594 | 2780733 | 938028 | 727700 | 256351 | 3576397 | 996  | 3078 | 56664 | 45090 | 18243 | 482845 | 88607  |
| 12         | 24677                   | 267509 | 4060 | 36697 | 2974693 | 894896 | 787324 | 227996 | 2896214 | 861  | 3525 | 60095 | 46858 | 17732 | 571554 | 106727 |
| 21         | 22066                   | 274728 | 3951 | 45108 | 2759583 | 902897 | 737450 | 256235 | 3483677 | 847  | 3755 | 54584 | 46410 | 17324 | 493408 | 92384  |
| 28         | 22404                   | 281929 | 2712 | 36563 | 2909363 | 862119 | 758387 | 240509 | 3435037 | 1074 | 3496 | 56505 | 48231 | 16551 | 480374 | 92496  |
| 36         | 18197                   | 266789 | 2479 | 39336 | 3016932 | 826593 | 779362 | 237889 | 2991947 | 1660 | 3585 | 58396 | 50647 | 15761 | 504999 | 93964  |
| 44         | 14750                   | 288833 | 3269 | 36112 | 2872863 | 877932 | 743720 | 246490 | 3144757 | 1181 | 3581 | 53664 | 48454 | 18285 | 487060 | 93198  |
| 52         | 19234                   | 285192 | 1650 | 28256 | 3220052 | 837183 | 781619 | 219437 | 2769660 | 580  | 3360 | 55400 | 52321 | 16832 | 571769 | 107093 |
| 60         | 22858                   | 288244 | 3257 | 37218 | 3016945 | 843649 | 792412 | 237184 | 2994161 | 675  | 3528 | 52204 | 51403 | 16401 | 519518 | 100079 |
| 68         | 23168                   | 287237 | 2294 | 39319 | 3062966 | 885389 | 766190 | 243685 | 2937379 | 1183 | 3309 | 57747 | 52311 | 18495 | 523787 | 97235  |
| 76         | 23466                   | 290741 | 2526 | 31875 | 3127288 | 891640 | 748591 | 237053 | 2620297 | 1024 | 3683 | 55636 | 53195 | 16620 | 543510 | 101701 |
| 84         | 22518                   | 295480 | 4193 | 40038 | 3025547 | 896415 | 713959 | 243968 | 2614862 | 982  | 3598 | 55622 | 52334 | 18678 | 520632 | 98329  |
| 92         | 16958                   | 278630 | 5869 | 54924 | 2763027 | 851194 | 661355 | 265182 | 2253706 | 973  | 3983 | 60437 | 50926 | 16335 | 500676 | 90403  |