UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS

A MULTI-TENANCY CLOUD TRUST MODEL USING QUALITY OF SERVICE
MONITORING: A CASE OF INFRASTRUCTURE AS A SERVICE (laaS)

By
Pascal M. Mutulu

P53/10982/2018

Supervisor

Dr. Andrew M. Kahonge

A project report submitted in partial fulfillment of requirements for the award of Master of
Science in Distributed Computing Technology of the University of Nairobi.

2020

DECLARATION

This research project is my original work and has not been submitted for examination in any other

university

Signature:cccceeveeevveeeeereeeee, Date:ooovviiviiiinn.,
Pascal M. Mutulu

P53/10982/2018

This research report has been submitted in partial fulfillment of the requirements for the award of
Master of Science in Distributed Computing Technology of the School of Computing and

Informatics of the University of Nairobi, with my approval as the University supervisor.

Signature:oooviiiiiiiiii Date: ..oooiiiiii

Dr. Andrew M. Kahonge

DEDICATION
This research project is dedicated to my lovely wife Grace, my two children Ariel and Blaise and

my dear parents Japheth and Ruth.

ACKNOWLEDGEMENT
First, 1 would like to thank almighty God for bringing me this far and enabling me to complete this

research project.

Secondly, to my supervisor, Dr. Andrew M. Kahonge for the dedication, guidance and
encouragement throughout the project. Your patience and humility impacted me at a personal

level, and | am so grateful for the lessons I have learnt from you.

I would also like to acknowledge my wife, Grace Musyoki and children, Ariel Ndanu and Blaise
Mutulu for standing by me throughout the process. Your words of encouragement kept me moving.
Though I worked for long hours and my interaction with you was affected to some extent, you still

had hope that this will come to an end and our normal interactions would resume.

Finally, to my classmates Titus and Joseph. You were instrumental to me through giving me honest
feedback and criticizing my work positively. For your constant reminders that we should keep
progressing, | say thank you.

ABSTRACT

Digitization and changes in technological trends have necessitated the need for enterprises to start
or have plans of migrating their services to cloud computing environments. This is to benefit from
the many advantages that come with cloud computing. Third party providers whom majorly
consume multi-tenancy architectures mainly offer the cloud platforms. This come with some
challenges mostly when it comes to trust. The cloud consumers and cloud providers agree on some
cloud service level agreements. Mostly the consumers have faith that they benefit from what they
have agreed with the provider but lack a way of verifying the SLAs as well as doing QoS

monitoring on their own.

This research project focuses on coming up with a multi-tenancy cloud trust model using QoS
monitoring. Our key focus was the infrastructure as a service cloud model. It also involved
developing a prototype to show case the proposed model. The overall research strategy employed

was exploratory.

The model developed assists cloud consumers to be able to evaluate cloud services before they
purchase services. This prevents them from leasing already congested clouds, or which do not meet
their specifications. They also have the capability of continuous QoS monitoring of the cloud
environment in real time when need be. On the other hand, cloud providers also benefit from the
trust provided by our model because it might lead to good company reputation making them to sell

more.

TABLE OF CONTENTS

DECLARATION L.ttt sttt sttt e s e s e bt e st e be st e e e b e sbe e enenneneens i
DEDICATION ...ttt ittt b ettt e b e st et et ebe e be st e reete st e s s ebeebe b eneesesbe e anennes iii
ACKNOWLEDGEMENT ...ttt sttt sttt ene st se e abe st seenennns iv
ABSTRACT ...ttt sttt sttt bt e Rt et et e Rt e b e bRt e R e R et e st Re bt e Rt Rt neere et s Y
ABBREVIATIONS AND ACRONYMS ..ottt sn s iX
LIST OF FIGURES ...ttt sttt sttt sttt st nne s Xi
LIST OF TABLES ..ottt ettt ettt be st nenn s Xiii
CHAPTER ONE: INTRODUCTIONcotitiiieiiiiiieisie sttt esse e saesesse e 1
1.1 Background OF the rESEAICHcciiiiieieee e 1
1.2 ProbIem StAtEMENT.......c.ooiiie ettt nee e 1
1.3 ODJECHIVES. ...ttt bbbttt bbbt b bbb 2
1.4 RESEAICH QUESTIONS ...ttt b bbbttt bbbt 3
LT 1111 =1 o o SO 3
118 SCOPIE et bRt b b e 3
1.7 ReSEArch SIGNITICANCEc.eoiuiiiiiiiieiie et 3
CHAPTER TWO: LITERATURE REVIEWooi ittt 5
2.1 Cloud ComMPUEING (CC) vttt bbbttt 5
2.1.1 Definition of Cloud COMPULINGcoviiiiiiieieseee e 5
2.1.2 KEY CRArACTEIISTICS.evitiieiei ettt bbbt 5

2. 1.3 SEIVICE MOUEIS ...ttt sttt be e 6
2.1.4 Deployment MOEISc..oiiiie e 6
2.1.5 CC Reference ArChitECIUIE........ocieieieiece e 6
2.1.6 Trust as key to adoption of cloud COMPULINGccccoviieiieiiic e 8

2.2 Multi-tenancy architecture and characteristiCs..........covveiieiieiieie e 8
2.2.1 MUIti-tenanCy CharaCteriStICS.ccuiiiiieiie et 8
2.2.2 MUItI-tenanCy arChiteCIUIE.........ei i 9

2.3 Trust and its relation to multi-tenancy CloUdS...........cocoiviiiii i, 9
2.3.1 The CONCEPL OF TIUSTiiiieiie et ae e e nee s 9
2.3.2 CharaCterisStiCs OF TrUST........coiiiiiie et 10
2.3.3 Trust 1eVels iN the CIOUM..........ccoveiriie e 10

2.4 REIAIEO WOTKS ...ttt e e e e e e e e ettt e e e e e e e e e eeeeeenaan 11

2.4.1 Chains of trust in the ClOUd............ooiiiii s 11
2.4.2 Cloud Computing Service Security Strength Measuring Trust Model......................... 12
2.4.3 Collaborative cloud services Authorization models in multi-tenancy environments... 13
2.4.4 Trusted computing environment model (MTCEM)ccoviieiiiie i 13
2.4.5 Cross-tenant trust model (CTTM)ooivoiiccece e 14
A ® Lo I3 1Y, o] a1 (o] 1o TSSO 15
2.6 CONCEPLUAL MO ..ot enre e sneenns 16
2.7 SUIMMIAIY ...ttt sttt ettt et e e st e e s sttt e aab e e e st e e ea bt e e eb b e e e e bt e e e bt e e e bb e e e bbeeenbneennnes 17
CHAPTER THREE: METHODOLOGY ...ttt e s 18
3.1 ReSEArCh deSIGN SITALEQYeeveiueeieerieieteite sttt sttt sttt sb et sb e sae e eneas 18
3.2 Delphi METNOMo ere s 18
3.2.1 Characteristics of Delphi Method ... 19
3.3 Population and SAMPIE.........ooiieeee s 19
R B L 1 W O] | [=Tod A T o PSSR 19
3.5 DALA ANAIYSIS ...ttt 20
3.6 PrOtOLYPE DESIGN ...ttt bbbttt bbb ene s 20
T A 1o To PR 20
3.7.1 OpeNSLACK CIOUT. ...t 20
3. 7.2 PIOMELNEUS ...ttt sttt et e et e s e nteeneeane e neeneeaneeseeeneennee e 21
LT3 GrAFANA ... 23
3.8 Conclusion and justification of the methodologyccccooviieiieiicic e, 23
CHAPTER FOUR: RESULTS AND DISCUSSIONS.......coccoiiiiiiiiciie e 24
4.1 DAtA ANAIYSIS ...veevveiiieiie et et e e e e e e e te e e nraereere e 24
4.2 The overall prototype architecture of the proposed modelccooveveiieevieiie e, 25
4.3 The cloud service provider ENVIFONMENT...........ccouiiiieiie i 26
4.3.1 The Cloud Platform (OpenStack)cocveiiiiieiiie e 26
4.3.2 Actual provisioned resources for the OpenStack cloud............ccccovviiiiiiiciic e, 27
4.3.3 OpenStack modules INStalled............ccouoiiiiiiiii e 29
B34 BIOKET ..ottt e e 33
4.3.5 NOUE EXPOITET ...ttt bbbttt bbbt bbbt e et nbesb et beene e 34

4.4 Third Party QOS MONITOEcccuiiieiieie e sees et te e ra et sra e teeaeaneesraeeeenee e 35

4.3 THE ClOUA CONSUMET ...ttt bbbttt bbb enes 36
4.4 How the prototype works - End to End Integration of the components.............c..cccevveneee. 37
A4.4.1 LOW-IEVEL ESIGN ...ttt 37
4.4.2 Integration between node exporter and Broker...........ccccveveiievveic s 38
4.4.3 Integration between the broker and Q0S MONILOXcccoevveviiivcie i 40

4.5 QO0S MELIICS ANAIYSIScvveiviiitieie ettt s et e e e aneesre e reenee e 41
4.5.1 Discrepancies between the actual and logical metrics assigned to the consumer. 41
4.5.2 How the metrics are manipulatedccooeiveiiiii e 43

4.6 Evaluation of the MOlccoiiiiie e e 43
4.6.1 FOIMAL TESTING ...ttt bbbttt se e bt 43
4.6.2 Evaluation by the expert Panelist..........cccooiiiiiiiiiiiicee e 44

4.7 The model SNOMCOMINGSooviiiiiiiieie s 44
4.8 DISCUSSIONS.veeueetiestteseeeteesteesteaseesteesteaseesteesseaseesseesseeseeaseesseaneeaseesbeaseeaseesseenseaneesseenseaneenns 44
CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS ..o 47
T8 A 0T Tod 1115 o] o S PRSPR 47
5.2 Recommendations fOr fUrtNer WOIKccooveeiieiiiie e 47
5.3 LIMITALIONS ..evvveeieeiiesieee ettt ettt et e e ste e s e e teete e st e sneenteeneeaneenteaneenneennn 48
REFERENGES ...ttt et et e et e e et e e et e e et e e anbe e e snt e e e snteeenneeeenneeen 49
APPENDICES ...ttt e e e et e et e et e e et e e et e e et e e e an e e anta e e nate e e nnaeeennreeans 52
AppendiX 1: ProjeCt SChEAUIEoviieeeee e 52
APPENAIX 2: BUAGEL ...ttt et sta e aa et e e e sneesraeneenee e 52
Appendix 2: Hardware and Software reqUIrementsccccoeeveeieiieeieese e 52

viii

ABBREVIATIONS AND ACRONYMS

API - Application Programming Interface

AWS - Amazon Web Services

CC - Cloud Computing

CCTIM - Cross-Tenant Trust Model

CRTM - Core Root of Trust Measurement

CSA - Cloud Security Alliance

CSA - Cloud Security Appliance

CSP - Cloud Service Provider

CTA - Cloud Trust Authority

DC - Data Center

FSF - Free Software Foundation

GT - Grounded Theory

laaS — Infrastructure as a Service

ISO - International Organization for Standardization
IT - Information Technology

MTAaaS - Multi-Tenant Authorization as a Service
MTC — Multi-Tenancy Cloud

MTCEM - Trusted computing environment model
NIST - National Institute of Science and Technology
NSE — Nairobi Security Exchange

OS - Operating System

PaaS — Software as a Service

QoS - Quality of Service

Saa$S - Software as a Service

SME - Small and Medium Enterprises

SP — Service Provider

STAR - Security, Trust and Assurance Registry
Taa$S - Trust as a Service

TC - Trusted Computing

TCG - Trusted Computing Groups

TCP - Trusted Computing Platform

LIST OF FIGURES

Figure 2: 1 CC Reference Architecture (Source - NIST, SP 500-292)
Figure 2: 2 Single versus multi-tenancy architectures

Figure 2: 3 Chains of trust in relation to cloud (Huang & Nicol 2013)
Figure 2: 4 MTCEM Model (Brown et al 2012).

Figure 2: 5 MTAaaS architecture (Tang & Sandhu, 2013)

Figure 2: 6 Conceptual model

Figure 3: 1 OpenStack landscape.

Figure 3: 2 Prometheus Architecture

Figure 3: 3 Project Schedule

Figure 4: 1 The overall prototype architecture of the proposed model
Figure 4: 2 The OpenStack login graphic user interface (GUI)
Figure 4: 3 Allocated disk space and partitioning.

Figure 4: 4 Allocated CPU.

Figure 4: 5 Allocated RAM

Figure 4: 6 OpenStack modules installed.

Figure 4: 7 Sample OpenStack dashboard created.

Figure 4: 8 Sample virtual machines created.

Figure 4: 9 Created Networks

Figure 4: 10 Identity service

Figure 4: 11 OpenStack images and storage

Figure 4: 12 Prometheus docker container

Figure 4: 13 Prometheus runtime and build information

Figure 4: 14 Node exporter.

Figure 4: 15 visualization of the cloud platform metrics.

Figure 4: 16 Different metrics of the cloud platform

Figure 4: 17 Sample cloud consumer view 38

Figure 4: 18 Low-level diagram of how the prototype works

Figure 4: 19 Node exporter service status

Figure 4: 20 Broker connection to the node exporter.

Figure 4: 21 Inter-connecting the Third party QoS monitor to the broker
Figure 4: 22 Sample metrics assigned to a cloud consumer

Figure 4: 23 Setting metric parameters

Figure 4: 24 QoS monitor showing actual resources.

Xii

LIST OF TABLES

Table 2.1: Definition of cloud Actors

Table 4.1: Metrics analysis

Table 4.2: Actual resources usage against what the consumer sees through the QoS monitor

Xiii

CHAPTER ONE: INTRODUCTION

1.1 Background of the research

According to Ismail et al, 2017 most companies and organization are going through digital
transformations by automating much of their traditional business processes. It states that
companies not able to embrace the digitizing world may be victims of “digital Darwinism” and
thus enterprises that cannot adapt to technological trends may not survive. With all this
digitization, the various services need to reside in servers; building a data center (DC) is costly,
consumes much time and requires huge capital to maintain. This has necessitated these clients to

look for third party providers to offer them platforms where they can deploy their services.

The third-party providers commonly known as “cloud providers” consume virtualization to create
different instances for the different clients. At a minimum, a virtualization technology has host
hardware, hypervisor and the virtual machines. The client’s instances must not be able to interfere
with each other but share resources (AlJahdali et al, 2014). They should be segregated and appear

as a physical server to the customer. This necessitates the need for multi-tenancy technology.

On acquiring such services as compute, storage, networking the client and the Cloud Service
Provider (CSP) agree on some service level agreements (SLAS) (Ansari, 2018). The cloud provider
may commit that their cloud has all the cloud-computing characteristics such as redundancy, high
availability, fault tolerance, optimum performance among others. Since the cloud provider has
most of the control, depending on the service acquired by the client there is need for a way to

confirm the provision of the agreements.

To enhance trust to the client that they are benefiting from all what they purchased for, there needs
to be a third party means to confirm the same. This is the reason we came up with this trust model
to address that problem. It makes it possible for the cloud consumer to confirm the cloud platform

status in real time at any moment if they have access to the third party QoS monitor.

1.2 Problem statement

According to Odun-Ayo and ldoko, 2018 trust is a very complex belief. In cloud computing trust
does not have a specific definition. One way is to describe it as the level of confidence the client
has in the services a CSP offers. In some institutions it is required that their data is held following

1

some certain standards such as -: data should not move beyond a certain jurisdiction, replication
should take place at a certain time, backups should be up to date, latency and response time should
be within a certain threshold among many others. As discussed under the background information
all these agreements are contained in the cloud service level agreements (SLAS).

Multi-tenancy cloud architecture is most commonly used by the CSPs. This enable them to offer
different cloud consumers, services under the same hardware. The consumers, commonly known
as tenants lease a space where they host their services. These consumers are abstracted from
knowing each other and thus it might appear as if they are the only users. This brings a problem
such that a tenant could be allocated logical resources, which are not physically available on the

hardware.

Most cloud consumers depend on the same CSPs to offer them monitoring tools where they can
confirm some of the metrics such as availability and latencies. Most of the other metrics the
consumer has faith that the CSP will have them as agreed. This might be because bodies like
International Organization for Standardization (ISO) certify the CSP (Huang and Nicol, 2013).
This is not always the case as the design and architecture of these clouds could have changed
leaving the cloud status not as at the point it was during the certification. In addition, other clouds
may not be certified at all.

That is why we have proposed a third party QoS monitor, independent of the CSP that could be
integrated to the cloud services acquired, fostering trust of the cloud consumer as they can verify
resources according to the signed SLA. According Sen, 2013 there is lack of common industry
standard that clients can scale their providers. Effective cloud-based monitoring tools would most
likely need some integration of monitoring tools that are utilized by both consumer and the

provider providing unambiguous identification of all actions carried out on client’s cloud services.

1.3 Objectives

The main objective is to come up with a multi-tenancy cloud trust model using QoS monitoring

for laaS.
Sub objectives will be to achieve the following:

I To review the various trust models used in multi-tenancy clouds

ii. To come up with a multi-tenancy cloud trust model using QoS monitoring.
iii. To develop a prototype of the proposed model

iv. To evaluate the model.

1.4 Research questions

I. What is the match between the provisioned and actual cloud services offered to the
consumer?
ii. How can QoS monitoring enhance trust on multi-tenancy cloud in the laaS cloud model?

iili. How can increase in trust on multi-tenancy clouds contribute to its adoption?

1.5 Justification

Fully pledged cloud providers like Amazon Web Services provide a list of compliance reports
from third party auditors known as Amazon artifact reports. The reports indicate whether the
auditors have tested and verified Amazon’s compliance with global, regional, and industry specific

security standards and regulations. The released reports are publicly available in AWS artifact.

Since in Kenya most of the cloud providers do not publicly provide their compliance reports, then
this research helps in providing a way for the cloud consumers in Kenya to benchmark and to
ensure that the agreed metrics and agreements between them and the cloud service provider are
achieved. It clears doubts on the clients and hence fosters their trust in the cloud providers and

which in turn can boosts cloud adoption.

Again, cloud is growing at a faster rate with the government and other institutions wanting to
benefit from the advantages that come with cloud services. The research helps them in identifying

the right requirements to assist in evaluating which cloud providers to adopt.

1.6 Scope

The scope of the project was to come up with a trust model of multi-tenancy clouds in the 1aaS

cloud model using QoS monitoring.

1.7 Research Significance

This research benefits cloud consumers by providing them with ways of doing cloud QoS

monitoring to ensure that they are benefitting from all what they purchased from the CSP. The

model developed also helps in continuous monitoring of the cloud services as well as the overall
cloud platform status in real time. This greatly helps them in evaluating cloud providers and choose

the best depending on the quality of service they need.

On the other hand, cloud service providers benefit from the trust from the cloud consumers, such
as leading to increase on cloud adoption making them to sale more. Trust brings with it good
reputation, which may lead to more clients acquiring services from you as a result. Again, CSPs
being aware that cloud consumers are sure of what they need and can confirm certain metrics using
third party QoS monitor, make them ensure they follow the best practices as well as setting well

planned and designed infrastructure in place.

CHAPTER TWO: LITERATURE REVIEW

This chapter shall discuss the following: - cloud computing, multi-tenancy clouds, trust, review of

related literature, QoS monitoring, the conceptual model and then finally provide the summary.

2.1 Cloud Computing (CC)

2.1.1 Definition of cloud computing

CC is traced back to the mid 1990°s when the grid-computing concept arose (Weinhardt et al
2009). Grid computing concept is a consequential model of the electrical power grid to put
emphasis on features like reliability and simplicity (Foster and Kesselman 1999). It is evident that
in the recent years, CC has turned into a trend to keep watch in the IT arena with features such as
scalability, flexibility, availability among others. National Institute of Science and Technology
(NIST) defines CC as a “model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction”
NIST continues to give the most CC essential attributes, service and deployment models as below:

2.1.2 Key characteristics

i On demand self-service — Ability of users to spin services automatically lacking the
necessity of assistance from the CSP.

ii. Extensive network access - Services hosted in CC environment are reachable from
various devices like tablets, laptops and mobile phone over the internet.

iii. Resource pooling - CSPs computing resources share among multiple cloud users
utilizing multi-tenant model.

iv. Elasticity - Resources are adjustable automatically. This enables vertical or horizontal
scalability to be rapid.

V. Metered service — The cloud-based systems by design control, enhance resources
through a means of a metering capability.

2.1.3 Service Models

The service models include the following, first is the Software as a Service (SaaS) where the user
consumes commands running on the cloud provider’s platform and does not control or manage
any fundamental infrastructure. Second is Platform as a Service (PaaS). In this case the user can
install onto the cloud infrastructure acquired applications programmed and supported by the
provider. The consumer has control over the installed applications and may be can freely configure
settings in the environment hosting the application. Lastly, we have Infrastructure as a Service
(1aaS) where the consumer has the capability to control operating systems, installed applications
and storage. They may also have some control on networking modules.

2.1.4 Deployment Models
Private cloud — This consumed by one organization. It might serve several consumers like business
departments and managed by the organization, third party or even both parties. It might be located

on either on or off premises.
Public cloud - Cloud infrastructure is open for consumption by the public

Community cloud - Used by a specified community who share the same interests such as policy
or compliance. It can be under the control of one of the members or organization in the specific

community or even a third party.

Hybrid cloud — It is a combination of two discrete cloud infrastructures or more bound by

consistent technology allowing data and applications portability.

2.1.5 CC Reference Architecture

According to figure 2.1 below, NIST identifies five major cloud actors defined in table 2:1. These
key players make the complete architecture cloud ecosystem. Each is an independent element that
has its own structure and thus work together through the user of well-predefined technologies.
Under the cloud provider is where service models reside. The laaS is usually the bottom layer

below the PaaS and SaaS and seats directly above the abstraction layer.

d) CLOUD PROVIDER
CLOUD Cloud Service
Cloud Orchestration .
CONSUMER Management | | |~y 1y BROKER
Service layer Business
\ y Saag Support Service
T CLOUD IaaS Intermediation
AUDITOR o
R Provisioning/ Service
esource Configuration -
- : Abstraction and Aggregation
Security Audit
Control Layer
Privacy Impact Physical
audit Resource Layer Portabality/ Service
Hardware Interoperability Arbitrage
Performance Facility
\ Audat Y,
(CLOUD CARRIER)

Figure 2: 1 CC Reference Architecture (Source - NIST, SP 500-292)

Actor

Definition

Cloud Consumer

A person or organization that maintains a business relationship with, and

uses service from, Cloud Providers.

Cloud Provider

A person, organization, or entity responsible for making a service

available to interested parties.

Cloud Auditor

A party that can conduct independent assessment of cloud services,
information system operations, performance and security of the cloud

implementation.

Cloud Broker

An entity that manages the use, performance and delivery of cloud
services, and negotiates relationships between Cloud Providers and Cloud

Consumers.

Cloud Carrier An intermediary that provides connectivity and transport of cloud

services from Cloud Providers to Cloud Consumers.

Table 2.1: Definition of cloud Actors (NIST, SP 500-292)

2.1.6 Trust as key to adoption of cloud computing

According to Meixner and Buettner, 2012, currently decisions on adoption of cloud related
solutions; trust and security are the major obstacles to adoption and growth. They continue to state
issues of security and trust as moderately solved so far. Clearly, literature about trust, security and
cloud computing exist, though most of it is focused on IT. Human perspective, people’s
anticipations, concerns as well as psychological aspects have less been examined and documented
(Meixner and Buettner, 2012).

2.2 Multi-tenancy architecture and characteristics

NIST in the key characteristics 2.1.2 (iii) discussed above stated that resources sharing among
multiple tenants is by use of multi-tenant architecture. It forms the basis of our literature in this
section. Study done by Cloud Security Appliance (CSA) in 2017 on the top threats which
organizations face in the adoption of cloud include shared technology vulnerabilities, abuse and
disreputable consumption of cloud computing, intruders, loss of data among others. Multi-tenancy
is acknowledged as one of the distinctive implications of security and privacy in CC.

2.2.1 Multi-tenancy characteristics

Multi-tenancy characteristics (Bezemer and Zaidman, 2010):

The first characteristics is hardware sharing. According to Wang et al, 2008 having numerous

tenants on the same server improves utilization.

Secondly, highly configurable. In a multi-tenancy, tenants utilize the same application instance. In
as such, the consumer requires it to appear as if they are using a dedicated one. As a result, a crucial
obligation of multi-tenant application is the ability to design the application to a tenant needs the

same way as in single tenancy (Mietzner, 2009).

And finally, application and database instance sharing. In multi-tenancy as the application is

runtime configurable. Deployments such as updates are easy as few instances are affected.

2.2.2 Multi-tenancy architecture

The below figure 2.2 show the key difference between single-tenancy and multi-tenancy which
have been discussed above in the multi-tenancy characteristics. In the single tenancy, each client
has their own virtual server or even hardware while on multi-tenancy clients known as tenants
share the same hardware or even the underlying infrastructure. This is abstracted from each other

and thus from a specific tenant point of view it seems like its own physical server which is not

shared.
Chient .
Client
Client | | Client Client | | Client
P E— :
Simgle-Tenancy
Iukti-Tenaney
N A
Client || Cliemt
Clisnt
Client
— Clisnt

Figure 2: 2 Single versus multi-tenancy architectures

2.3 Trust and its relation to multi-tenancy clouds

2.3.1 The concept of trust

Trust has been known to people for a long time. It is old as the account of man and presence of
human social relations. Classical disciplines such as economics, psychology and philosophy seem
to have most of the literature and studies regarding trust. All of them focus on general
understanding of trust. Philosophy for instance traces the trust concept back to the ancient Greek,

where people-build trust in others only if they were confident that they feared detection and

corporal punishment, hence, that could prevent them from stealing or harming (Wang and
Emurian, 2005).

Economics see trust in terms of organizational contexts while Psychology concentrations is on
interpersonal trust and sees it as crucial to personality and development (Erikson, 1963). Based on
social sciences we adopt the following definition by Huang and Nicol, 2013. It describes trust as
a mental state that comprise three attributes. First is expectancy where the trustor anticipates some
precise behavior from the trustee, second is belief where the trustor believes that the specific
behavior happens centered on the confirmation of the trustee’s competency, integrity and goodwill,

and then thirdly is readiness that the trustor is willing to take risk because of the belief.
This research focuses on trust as it relates to multi-tenant clouds or largely CC.

2.3.2 Characteristics of trust
According to Wang and Emurian, 2005, the following characteristics of trust have mostly been

researched and Meixner and Buettner, 2012, give their relationship with cloud computing.

Trustor and trustee — The relationship always depend on trusting party and the party to be trusted
known as trustor and trustee respectively. In this case, cloud service provider becomes the trustee

and the consumer becomes the trustor.

Vulnerability — Needed and works in areas where uncertainty, risk and vulnerability are involved.

This might involve the large number of vulnerabilities consumers face with cloud computing.

Produced actions — Mostly yields actions that contains majorly risk-taking conducts. Consumers

trust in cloud service might lead to client evening paying more and continuing to use it regularly.

Subjective matter — Observed differently by different parties. Each enterprise or individual has
different preference in terms of technology that influence their level of trust towards cloud

computing.

2.3.3 Trust levels in the cloud
Huang and Nicol, 2013 proposes several trust mechanisms and the aspect of trust they address.
They are as below but not limited to the mentioned:

10

Reputation based trust — Typically, higher reputation translates into much trust by many entities in
a society. The reputation of a CSP determines how cloud user consume the cloud services

provided.

SLA verification-based trust — A good way for cloud service providers and cloud users to relate is
to “Trust but verify”. Quality of Service (QoS) monitoring and SLA verification is critical in trust

management for cloud computing.

Cloud transparency mechanisms — Cloud providers should use transparency and accountability to
obtain trust. For instance, “Security, Trust and Assurance registry (STAR) launched by Cloud
Security Alliance (CSA) as a program to be used freely by the public to broadcast security controls

self-assessment for users to assess their security services.

Trust as a service — The same way we can have third party professionals manage SLA verification
and QoS monitoring, RSA introduced the use of Cloud Trust Authority(CTA), a cloud service
known as Trust as a service (TaaS) to deliver a single point use for configuration as well as

management of security of cloud services offered by numerous providers.

Evidence based — Metrics such as performance could be measured and thus evidence provided

fostering trust.

Others include opinion from peer users, attribute assessment and certification, statements from the

cloud service provider, assessment of the cloud auditor among others

2.4 Related works

This section critically evaluates some of the related works that have been done in relation to trust

on the multi-tenant clouds.

2.4.1 Chains of trust in the cloud

Huang & Nicol 2013 propose a model, which focuses on customer verification of services through
third party professionals to foster trust through QoS monitoring and SLA verification. They
suggest chain of trusts between the cloud provider, auditor, broker, cloud user and the cloud service
as depicted in the figure 2:3 below. It does not give control to the end customer to monitor any

aspects on their own as most of the control in relations to trust is bestowed on the cloud auditor,

11

such that as long as they have certified the cloud broker, cloud provider and the cloud service then
the cloud user will also trust them. Architecture of the cloud might change quite often. This might
mean that the audit done by the cloud auditor might need some changes as soon as the architecture
changes. This is may not always be the case as most audits are done yearly or after any major

changes.

, ﬂv Provided by - - \"‘tnl
et i1 AU

,Cloud,'Service S A

lhas

Jrust? » Cloud Provider

| has)|
Believe? F

L 4

Attributes
(policy)
Certified by

In Remmd
List of

- g Certified by
et Attributes
Cloud Broker

(policy) Cloud auditor

3> Depends on

Figure 2: 3 Chains of trust in relation to cloud (Huang & Nicol 2013)

2.4.2 Cloud Computing Service Security Strength Measuring Trust Model

Shaikh & Sasikumar, 2015 proposes a trust model that measures the cloud security and establishes
a trust value. It uses some considerations such as identity management, authorization,
authentication, confidentiality among others to come up with the value. It only focuses on security
on the cloud environment and the parameters are evaluated through interaction with the cloud
environment. The trust value is consumed by customers to evaluate the cloud vendor they ought
to purchase. This model does not give the customers some level of monitoring or a way of verifying

the trust once they have acquired the cloud service.

12

2.4.3 Collaborative cloud services Authorization models in multi-tenancy environments

Tang et al 2015, in their research about collaborative cloud services authorization models in multi-
tenancy environments suggest that trust between CSPs and cloud users is like the trust relations
between organizations and their contracted outsourcing vendors. They identify three independent
organizations namely the enterprise, the outsourcing company and the auditing firm whom are
responsible for storage services, service coding and reporting respectively. They propose a
mathematical model for authorization as a service. They do not seem to provide any tools
employable to directly foster trust to the cloud consumers.

2.4.4 Trusted computing environment model (MTCEM)

As a counter measure to cloud security risks Brown et al 2012, discusses the proposed Multi-
tenancy trusted computing environment model (MTCEM) by Li et al, 2010 that implements the
trusted computing groups (TCG). According to Anderson, 2003 Trusted Computing Platform
(TCP) a set of principles, standards and technologies that makes a data owner to trust as well as
holding accountable the underlying computing infrastructure where applications that create, store
and changes their data runs. TCP comprises two assertions discussed below, and the architecture
shown in the figure 2.4 below:

Transitive trust — This suggests that computing platforms might only adjust from a Core Root of
Trust Measurement (CRTM). This includes hardware or even encrypted firmware certified by a
certified body of specialists and thus deemed trustworthy. Implicitly trust is implied such that one

level of initialization trusts the previous.

Platform attestation — A computing policy displays to a third party that it is trusted. The systems
trustworthiness is attested by the other systems it interacts with and thus in turn considered reliable
by further systems. Main challenge is how to express conventional reasonable and quantifiable
metrics useful to show how trustworthy the system is.

A critical look at the trusted computing (TC) model discussed above presents some limitations and
has some drawbacks as presented by the internet community. Professor Anderson (University of
Cambridge) claims that it is more of Information Technology (IT) industry than for people. It
might give providers much power making them come up with unfair policies. Again, Stallman,

2018 the GNU project founder and Free Software Foundation (FSF) president, says that trusted

13

http://www.cl.cam.ac.uk/~rja14/

computing may expose free operating software as well as free application to a risk that users may
not have the capability to run them anymore. Such criticisms raise some critical issues with trusted

computing that may make it impossible to be implemented with actual technology.

Virtual instance | Virtual instance
> Applications Applications
> Guest OS Guest OS
Customer ‘\ ‘\
————————————————— e —m ek
CSP >
VMM Measurement Flow
Execution flow I OS
» OS5 Load code

Attestation | The Third Party
| Auditor

CRTM

Root of Trust

Host Platform

Figure 2: 4 MTCEM Model (Brown et al 2012).

2.4.5 Cross-tenant trust model (CTTM)

Tang & Sandhu, 2013 suggest a cross-tenant trust model (CTTM) in CC. The model consists of
unilateral trust relations that reflect access control needs by two different tenants namely the trustor
and the trustee. They suggest a multi-tenant authorization as a service (MTAaaS) to enable the

implementation as shown in figure 2:5.

Their key contribution is proposing a cloud based MTAaaS where different tenants communicate
to the MTAaaS platform with the use of application programming interface (API) which than gets

the policies specific to the tenant and thus providing application centric security.

14

< MTAaaS platform)

Tenant A Tenant B Tenant X
policy policy . policy

Figure 2: 5 MTAaasS architecture (Tang & Sandhu, 2013)

Their work mostly focusses on the trust between the different tenants. Different tenants in a multi-
tenant architecture need not to know each other as a basic requirement, actualizing such a model
could be difficult and does not contribute much trust between the CSP and the consumer
perspective. Cloud hardware providers already provide abstraction between tenants that is a basic

requirement for such architectures.

2.5 QoS Monitoring

According to Odun-Ayo, Ajayi, and Falade, 2018 provisioning of the appropriate resources to
cloud workloads depends on the QoS requirements of such workloads. In the laaS compute and
storage resources are offered at a fee. The resources may include and not limited to CPU, memory,
disk, storage, networks, and bandwidth among many others. Cloud consumers selects a cloud

service that can offer services with adequate QoS guarantee.

From the above introduction, one way to define QoS could be stated the overall performance of a
service such as cloud computing service. In cloud, QoS may entail the level of performance,

availability, and reliability obtainable by an application, platform or the infrastructure that hosts
15

it. Sample QoS metrics or parameters of cloud SLA include availability, throughput, response time,

memory utilizations, processing capacity among others.

2.6 Conceptual Model

CLOUD AUDITOR CLOUD BROKER

7y D 4

|
|
: e
| 7
v &~
CLOUD SERVICE
PROVIDER

A‘

v

THIRD PARTY QOS
MONITOR

A4

CLOUD CONSUMER

Figure 2: 6 Conceptual model

Figure 2.6 above represents the conceptual model of the model developed. In section 2.1.5, we
discussed the cloud computing reference architecture model and the various actors involved. We
had planned to introduce the third party QoS monitor who can keep watch of the cloud service

provider platform in real time as compared to the cloud auditor who audits the cloud occasionally.

Cloud consumers wishing to join the cloud in addition to the audit reports done by the cloud auditor
can benefit from the real time cloud overall performance from the QoS monitor. The third party
QoS monitor is built by third party and connects to the cloud through secure, high through put

direct connect link.

16

2.7 Summary

The literature was analyzed critically discussing what has been done so far and the gaps that exist.
It was established that cloud computing consumes multi-tenant architecture and thus it is a key
characteristic. Again, technically trust may not have a specific definition but has two key actors
who include the trustor and the trustee. In addition, most cloud trust models developed do not seem
to suggest third party QoS monitoring tools or parties who can carry QoS monitoring as a way of

enhancing trust. The project was aimed at bridging that gap.

17

CHAPTER THREE: METHODOLOGY

According to Oates, 2005 this chapter discusses the strategies, methodological approach used,
methods of data collection, analysis of the methods used as well as the justification of the
methodological choice. In this case, methodology means the framework used to assemble, plan
and direct the research process. It is evident that multiplicity of such frameworks formulated over
the years, each has its own documented merits and demerits. Each single methodology designed

to suit a specific kind of a project.

3.1 Research design strategy

Research design comprises the research strategy carried out which involves the study one is about
to do. It also extends to justifying one’s choice of research design. It further describes where to get

data, population and even steps of the activities to carry out (Oates, 2005).

Exploratory research design is the overall research design strategy employed in this research.
Delphi method is utilized to do data collection and analysis, population and sampling among other
activities. The research design perfectly helps in exploring the concepts and techniques around
trust in multi-tenancy clouds and thus able to come up with a well-thought and researched

conceptual framework from where a model is developed.

3.2 Delphi method

According to Skinner et al, 2015 Delphi method was developed in the 1950°s by the Rand
Corporation. It is a methodical and interactive research procedure used to get opinion of a panel
of independent experts in relation to a specific task. They highly recommend the use of this method
while conducting information systems research more so for a qualitative research study, though it

might not be suitable to all scenarios.

Rowe & Wright, 2001 suggest Delphi method to be most effective when statistical method is
unfavorable, several experts are available, and then one can simply average the input of the several
individuals or use a group. It is specifically appropriate for acquiring expert inputs while resolving

an information systems related issue.

18

3.2.1 Characteristics of Delphi method

Skinner et al, 2015 suggest some generic characteristics that Delphi method should possess:

I. Use of experts — To best fit the panel, an individual need to be technically knowledgeable

and interested in their fields.

ii. Panel — The panel should comprise of a group of selected experts without any size
limitations

iii. Anonymity — The individuals need not to beware of official position of the other panelist
so that their opinions are not affected

iv. Rounds — Execution is in a series of rounds with two rounds considered minimum. Three
structured rounds are generally sufficient.

v. Iteration and feedback — Analysis of opinions collected from the panelists is done and

answers shared back for comments and/or basis for the next round.

3.3 Population and Sample

The population from which sample is drawn consist of cloud experts or individuals who have been
supporting cloud consumers technically. This is because such individuals know how the multi-
tenancy cloud works and due to the support, they do to the cloud consumers they know some pain
points of these customers. A target of ten cloud experts either managing clouds directly or
supporting cloud formed the population.

Delphi method does not conclusively define how many individuals should form a panel. Some
researchers suggest a minimum of two individuals with a maximum of up to one hundred or even

more. Generally, there is no accepted number of panelist or groups.

Purposive sampling was used in selection of these individuals as we needed to focus on their
technicality and experience about cloud or using cloud. One panel consisting of five individuals
was to be deemed enough.

3.4 Data Collection
This being a qualitative research and depending on the methodology the data collection technique

consumed was interviews through open-ended questions and literature review. Since the

19

respondents must remain anonymous to each other to avoid bias then each was contacted

independently.

The data collected, due to ethical issues is treated with uttermost confidentiality and only
publishable or distributed to a third party upon permission from the data owner. The participants
attended to the interview voluntarily. This means during the analysis the companies the

respondents work for are not be disclosed.

3.5 Data Analysis

According to Oates (2005), data analysis idea is to look for patterns within data and draw
conclusions. Data provided by the panelist was analyzed by comparing the common patterns
among the various respondents. This helped in determining the QoS metrics to focus on as well as

the best way to architect the model.

3.6 Prototype Design

According to Kim, 2019, a prototype can be described in two ways: As an original model of
something that serves as a basis for other thing or as an early sample including the functions of
tests, created to find a design solution. A prototype design of the proposed model is developed to

describe our proposed model.

3.7 Tools

3.7.1 OpenStack cloud

It is an open source standard cloud computing platform mainly written in Python deployed in both
private and public cloud mostly as infrastructure as a services (laaS). It controls a large pool of
compute, networking as well as storage resources and is manageable through dashboard or
OpenStack API. It works well with other open source and enterprise technologies making it ideal
for heterogeneous infrastructure. Many world’s largest brands use OpenStack to run their
businesses. Some of the platinum members include AT&T, Ericsson, Huawei, Intel, Rackspace,
Redhat, Suse and Tencent cloud. This makes it to be the most favorable cloud platform for this
project. More information can be found on the following URL.: https://www.openstack.org/.

20

https://www.openstack.org/

OPENSTACK

OPENSTACK-USER ——— [wesFRONTEND —————— T2 APIPROXIES

Horizon ECZAPI

& SDK
- y . OPENSTACK-OPERATIONS
OpensStackClient

. .
— {42 WORKLOAD PROVISIONING
Pythan SDK o

%7 WPPLICATION LIFECYCLE

14t orcHESTRATION
O MONITCRING TOOLS

Magnum Trove Murano Freezer Heat Mistral Aodh

)) Ceilometer
Sahara Solum Masakari Senlin Zagar Blazar
Maonasca Panko
S coMpuTE 1 r Q OPTIMIZATION / POLICY TOOLS —
[“conramens |
Watcher Vitrage
Nova Zun Qinling
OPENSTACK-ADJACENTENABLERS Congress Rally
il CONTAINER SERVICES ‘*' NETWORKING

@ MULTI-REGION ToOLS

-
— i|| HARDWARE LIFECYCLE E STORAGE ~ [l BILLING / BUSINESS LOGIC —
Kuryr | o | ACCELERATORS CloudKitt
oL Y
g Neutron Qctavia Designate Ironic Cyborg Swift Cinder Manila
141 NFY

@l SHARED SERVICES Tricircle

Keystone Placement Glance Barhican Searchlight Karbor

OPENSTACK-LIFECYCLEMANAGEMENT
V¥ DEPLOYMENT / LIFECYCLE TOOLS ¥4 packaGING RECIPES FOR...
Kolla-ansible OpenStack-Charms TripleO Bifrost Kayobe RPM Puppet
Bold represents Core Functionality OpenStack-Helm OpenStack-Ansible OpenStack-Chef Containers (LOCI, Kolla)

Version 201910.01 £ openstack.

Figure 3: 1 OpenStack landscape.

As per the above figure 3.1 OpenStack has several components, which we shall consume in this

project. The components to be utilized include:

Nova — Used for compute service which handle the virtual machines
Swift — Used for object storage

Cinder — Used for block storage

Neutron — used for networking

Keystone — used for identity service

Glance — used for image service

Horizon — used for dashboard

3.7.2 Prometheus
Prometheus is an open source monitoring and alerting toolkit maintained independently of any

company. Most components are built with Go, making them easy to build and deploy as static

21

binaries. It works best in recording any purely numeric time series and fits both machine-centric

monitoring as well as monitoring of highly dynamic service-oriented architecture.

Prometheus Architecture (source: https://prometheus.io/docs/introduction/overview/))

Service discovery Prometheus
Short-lived alerting .+ pagerduty

jobs . . e

! kubernetes file sd '

push metrics Alertmar‘ager T Email
at exit *
H discowver -
i targets ¥ notify
: H b etc
Pushgateway ' Prometheus server :

. : push

: alerts
G pull | Retrieval |-+ TspB k- HTTP ;

metrics server

PromQL

9 Prometheus
: ! web Ul
| | y visualization

exparters
and export

Prometheus |
targets weeemeeeeeeel o AP clients

Figure 3: 2 Prometheus Architecture

As per the above figure 3.2 Prometheus consist of several optional components as discussed below
Prometheus server — Scarps and stores times series data

Push gateway — for supporting short-lived jobs

Alert manager — Handles alerts

Special service exporters — for services like HA Proxy, StatsD, and Graphite among others.

It uses PromQL — A flexible query language to leverage dimensionality.

On our project, we shall consume Prometheus to act as the broker where external third parties
connect to and hence acts as the endpoint. More information about Prometheus can be found in

the following url https://prometheus.io/.

22

https://prometheus.io/docs/introduction/overview/
https://prometheus.io/

3.7.3 Grafana

Grafana is multi-platform and open source analytics and interactive visualization software. Written
in Go programming language, it provides charts, graphs and alerts for web when connected to
supported data sources. In our prototype, Grafana will be used as the third party QoS monitor with
the capabilities of visualizing metrics from the OpenStack cloud and sharing the same with the

cloud consumer in a way they can understand.

3.8 Conclusion and justification of the methodology

Cloud Multi-tenancy being the underlying architecture for cloud computing and with limited
research done on trust specifically in Kenya, the use of Delphi methodology fits in. This enabled
us to get expert opinions in the relation to cloud status in Kenya from industry practitioners. As a
result, we were able to come up with a realistic model, which can benefit both the cloud consumer

and the cloud provider in building a stronger relationship.

23

CHAPTER FOUR: RESULTS AND DISCUSSIONS

In this chapter, we describe the system prototype in detail. We discuss the interconnection between
the various components used, how it works and how it brings in the trust model aspect. Most tools
used are open source and hence we can use them for research and even modify them to fit the

purpose we intend to.

4.1 Data analysis

From the data collected through the open-minded interview sessions with the panelists several
conclusions were drawn. The first round of interview was conducted before the prototype
development began. It sought to establish cloud consumers pain points in term of QoS monitoring
and acquisition of cloud services, institutions majorly consuming cloud services hosted locally,
the best ways in which the trust model could be designed and if any of them knew existence of

such a trust model in Kenya. The general conclusions drawn were as below:

I Most of the cloud customers consuming cloud services within Kenya are mostly
institutions, which do not want their data to go outside the country. This is majorly
contributed by policies within such institutions. This was according to four out of six
respondents.

ii. According to two out of three panelist who were major cloud consumers, such
customers in (i) choose to remain with a certain cloud consumer despite poor services
as there were no enough options in Kenya or they lacked insights about the other
companies and feared they might experience the issues as with their current provider.

iii. Most cloud consumers lack visibility of their cloud service provider platform, making
it difficult to make some decisions.

iv. None of the individuals interviewed knew of any existing platform in any Kenya’s CSP
where they could verify the QoS metrics using a third party QoS monitor.

V. Three of the cloud consumers said that, such a trust model would be very beneficial in
helping cloud consumers make some decisions related to cloud hosting services.

Vi, They also expressed that CSP might not want direct connection to their cloud platform

by third parties as it might be a way of exposing them.

24

4.2 The overall prototype architecture of the proposed model

We shall start by discussing the overall prototype architecture of the proposed model. How data
flow from the cloud service provider to the cloud consumer. We shall also put into perspective
how the various tools used are utilized to accomplish the solution. We shall refer to the below

figure 4.1.

CLOUD SERVICE PROVIDER

OpenStaCk H 9

BROKER

CLOUD FLATFORM (For connac tion from third partias)
L

g " =

e

LY

5

9

g

-

w -

ﬁ‘

-\ G
‘. f—’ Grafana
CLOUD CONSUMER THIRD PARTY QoS MONITOR

Figure 4: 1 The overall prototype architecture of the proposed model

At the cloud service provider, OpenStack cloud platform is set up. It serves as an infrastructure as
service cloud model platform. A virtual data center (vDC) is created for cloud consumers from
where they can then create their own virtual machines, images as well as their own virtual private
clouds (VPC). In addition, a broker is set up where third party QoS monitors can connect to
avoiding direct connection to the core platform. The broker serves the sole purpose of mediating

between the cloud platform and external networks. The broker has a module installed on the cloud

25

platform from where it scraps metrics. The module is referred to as node exporter. The tool used

to work as the broker is Prometheus.

The third party QoS monitor once allowed connects to the cloud service broker through a secure
connection by use of application programming interfaces (APIs) and can get the metrics scraped
from the cloud platform by the broker. The tool used to represent the third party QoS monitor in
this project is Grafana. It has the capability of visualizing the cloud platform status by displaying
the various metrics. This is then shared with the cloud consumers. Various ways can be used to
share the data such as: provisioning them and giving them a web portal to log into or connecting

through APIs or manually share the report with them inform of excel pdf or any other formats.

The cloud consumer uses the information from the third party QoS monitor to make trustworthy
decisions related to service level agreements with the cloud provider. If allowed they could also

connect to the third party QoS monitor with APIs.

4.3 The cloud service provider environment

This part will discuss the cloud platform in depth by describing how and where it has been setup,
resources allocated, modules installed and how it collects data and shares with the third party QoS

monitor.

4.3.1 The Cloud Platform (OpenStack)

This is the most crucial part of the setup as it where the metrics are scraped from and it is the part
where the cloud services are being hosted. It is installed in Ubuntu 18.08 LTS server. As per the
below figure 4.2 it accessible over the internet through a web browser. Once you insert your

username and password it takes you to your panel from where you can manage your resources.

26

openstack.

Log in
User Name
|
Password
"
Sign In

Figure 4: 2 The OpenStack login graphic user interface (GUI)

4.3.2 Actual provisioned resources for the OpenStack cloud.

The actual resources provisioned for use by the platform is as below:
Hard disk — 393 GB (Partition where OpenStack is installed)

RAM - 31 GB

CPU - 16

This are the most crucial metrics, as we shall focus on them to derive crucial decisions in our trust
model. Figure 4.3 below show the hard disk size and portioning done. The total amount of allocated
space is 450 GB.

27

stackfopenstack:~5 d
Filesystem Size
udew 16
tmpis 3.2G
Sdev/adaz 383E
topis lai
topis 5.0M
topis 186G
Jfdev/loopl 94M
Sdev/loopl 94M
tmpis 3.2G
atackfBopenstack: ~%

£ -h
Used Awvail Use% Mounted on
i 1a& 0% fdev
1.4M .2G 1% frun
356 338G 10% /
] 18 0% fdev/shm
0 5.0M 0% frun/leck
0 16G 0% fays/Ifs/cgroup
94M 0 100% /snap/core/8935
94M 0 100% /snap/core/9066
0 3.2G 0% Sfrun/user/1000

Figure 4: 3 Allocated disk space and partitioning.

The figure below 4.4 show the allocated CPU, model and architecture of the hardware.

Architecture:

CEU op-mode (3) @

Byte Order:

CEU(3):

On-line CEU(s) list:
Thread(s) per core:
Core(3) per socket:
Socket(3):

HUMZ node (s):
Vendor ID:

CEU family:

Model:

Model name:
Stepping:

CPFU MH=:

BogoMIPS:

Hypervisor wvendor:
Virtualization type:
L1d cache:
L1i cache:
L2 cache:
L3 cache:
HUMA node0
NUME nodel
NUM: node?
HUMA node3
HUMZ noded
HUMA noded
HUMA nodeé
HUMA node7
Flags:

CEU{3):
CEU{s3):
CEUO(s3):
CEU{3):
CEU(3):
CEU(3):
CEU(3):
CEU(3):

stack@openstack:~3 |

Figure 4: 4 Allocated CPU.

stackfopenstack:~% lscpu

X386 _64

32-bit, &4-bit
Little Endian
1lg

0-15

=

enuineIntel

%]

ntel (R) Xeon(R) CBU E5-4650 v2 @ 2.40GHz

s H oo o) oo oo R

2400.000
4800.00
VMware
full

32K

32K
256K
25600K
0,1

r

e A R #L]

r
g,9

10,11

12,13

14,15

fpu vme de pse tsc m3r pae mce cXE apic sep mtr

CER = L O U8

topology tac _relisble nonstop tac cpuid aperfmperf pni peclmulgdg ssa

28

The allocated RAM is shown in the below figure 4.5

stackf@openatack:~% top

top - 19:03:28 up 46 min, 1 user, load average: 1.64, 1.43, 1.08

Taska: 388 total, 1 running, 230 3leeping, 0 stopped, 0 zomkbie

%Cpu{s): 1.8 us, 1.1 sy, 0.0 ni, 9%6.2 id, 0.8 wa, 0.0 hi, 0.0 =i, 0.0 st
KiB Mem : 32937268 total, 25072268 free, 6691044 used, 1173956 buff/cache
55296

i
3956
KiB Swap: 8388604 total, 83838604 free, 0 used. 25529684 avail Mem

Figure 4: 5 Allocated RAM

4.3.3 OpenStack modules installed

These are the modules described in section 3.7.1. This part shall focus on the key modules installed
in our environment. The folders containing the installed modules can be are shown the below
figure 4.6. If one needs to modify the configuration related to a certain module then they navigate

to the associated folder.

stacklopenstack:~5 11
total 108

drwxr-xr-x 19 atack stack 40946 Mar 16 17:13 ./

drwxr-xr-x 3 root root 4096 Mar 12 16:56 ../
—-IW—————— 1 stack stack 175 Apr 13 23:41 .bash history
-rwW-r--r—— 1 stack stack 220 Bpr 4 2018 .bash logout
-rw-r--r—-— 1 atack stack 3771 Apr 4 2018 .bashrc
drwxr-xr-x 2 root root 4096 Mar 12 17:16 bin/
drwxr-xr-x 4 stack stack 409%& Mar 12 17:14 bindep-—wenw/
drwxr-xr-x 3 stack stack 4096 Mar 12 17:13 .cache/
drwxr-xr-x 13 atack stack 4096 Mar 12 17:23 cinder/
drwxr-xr-x & stack root 4096 Mar 12 18:02 data/
drwxrwxr-x 16 stack stack 4096 Apr 13 23:35 devstack/
-rw-r--r-— 1 atack stack 44 Mar 12 18:04 devstack.subunit
drwxr-xr-x 13 stack stack 40%& Mar 12 17:21 glance/
drwxr-xr-x 14 stack stack 4096 Mar 12 17:44 horizon/
drwxr-xr-x 17 stack stack 4096 Mar 12 17:18 keystone/
drwxr-xr-x 2 stack stack 4096 Mar 12 17:35 logs/

i 1 stack stack 2 Mar 12 17:15 .my.cnf
drwxr-xr-x 16 stack stack 4096 Mar 12 17:25 neutron/
drwxr-xr-x 15 atack stack 40986 Mar 12 17:30 nova/,
drwxr-xr-x 4 3stack stack 40%6 Mar 12 18:08 .novaclient/
drwxr-xr-x 10 stack stack 40%6 Mar 12 17:28 noVHC/S
drwxr-xr-x 13 stack stack 4096 Mar 12 17:32 placement/
-rw-r--r—— 1 stack stack 8207 Apr 4 2018 .profile
drwxr-xr-x 10 stack stack 4096 Mar 12 18:01 requirements/
drwxr-xr-x 12 atack stack 40946 Mar 12 18:04 tempest/
—IW—————— 1l root root 1892 Mar 12 17:05 .viminfo
-rw-r-—-r—-— 1 3atack stack 165 Mar 12 17:536 .wget-hsats

atacklopenstack:~& I

Figure 4: 6 OpenStack modules installed.

29

Below are few module snapshots at work.

i Horizon (Dashboards)

As shown in the below figure 4.7 this is the module concerned with the graphical user interface. It

IS used to create the specific dashboards.

TRopenstack. = demo~
Project v

Project /| Compute / Overview
APl Access

Compute v OVQereW

Instances Limit Summary

Images Compute
Key Pairs
Server Groups
Volumes by Instances VCPUs
Used 3 0f 5 Used 10 of 10
Netweork >
Volume
Admin > '
Identity > .
Volumes Volume Snapshots
Used 3 of 10 Used 107 10
Network
Floating IPs Security Groups
Allocated 0 of 50 Used 10f 10

Figure 4: 7 Sample OpenStack dashboard created.

ii. Nova (Compute services)

& admin

b

RAM
Used 20GB of 50GE

3

Volume Storage
Used 390GE of 1000GE

| ' y

Security Group Rules Metworks Ports Routers
Used 4 of 100 Used 1 of 100 Used 9 of 500 Used 1 of 10

This is the module used to handle compute services like virtual machines as seen in the below

figure 4.8. In our case the demo user has three instances (virtual machines created).

30

Project v
Project /| Compute / Instances

APl Access
Compute v |nStanceS
Overview
m Instance ID = = Filter & Launch Instance (Quota exceeded) More Actions =
Images Displaying 3 items
Key Pairs g [Instance Image IP Address Flavor KoY Sratus Availability 7 Power Age Actions
Name Name Pair Zone State
Server Groups
ascal-ub shared 192.168.233.137 Shut 1 month
Volumes > (m] intu private 10.0.0.12, mismall - Shutoff nava None Down 2 weeks Start Instance | =
d44:122d:a041:0:f816:3eff fe1d:6445
Network > ciros-pascal cirmos-0.4. private 10.0.0.25, Shut 1 month
O -testpromet 0-x86_64 fd44:122d:a041:0:1816:3eff.fed6:baal mixlarge - Shutoff nova None Start Instance | =
Admin > heus -disk shared 192.166.233.122 Down 3 weeks
Identity > cirros-0.4. private 10.0.0.40, Shut 1 manth
O cimos-demo 0-x86_64 fd44:22d'a041:0:1816:3eff fed46:3384 m1small - Shutoff nova None Start Instance | =

disk shared 192 168.233.160 Down 3 weeks

Figure 4: 8 Sample virtual machines created.

iii. Neutron (Networks)

This is module used to create the networking components such as private or public networks. As

per the figure, 4.9 below three networks have been created which consist private, shared and public

— .
s:openstack. @demo~ & admin ~
Project v
Project / Network / Metworks
APl Access
Compute bl NetWO rkS
Volumes b
Network - Name =+« Filter + Craate Network
Network Topology Displaying 3 items
O Name Subnets Associated Shared External Status Admin State Availability Zones Actions
ipv6-private-subnet fd44 f22d:a041::/64 . . .
Routers O private private_subnet 10.0.0.0/26 No No Active up nova Edit Network
Security Groups
O shared shared-subnet 192.168.233.0/24 Yes No Active up nova Edit Network | =
Floating IPs
. public-subnet 172.24.4.0/24 . y .
admin s O public ipv6-public.subnet 2001-db8. /64 No Yes Active up nova Edit Network
Identity > Displaying 3 items

Figure 4: 9 Created Networks

iv. Keystone (identity service)

This the identity service which deals with creation of users as well authentication and
authorization. It is the enables a user to be directed to their project or virtual data center while they

31

login in through the GUI. It also controls the API integrations

—
fsopenstack. =demo~
Project >
Identity / Users
Admin >
deniy ~ Users
Domains
Projects
m Dispiesing & ems
Groups O User Name Description Email
Roles O admin
Application Credentials
demo - demo@example.com
O alt_demo - alt_demo@example_com
O nova
O glance
O cinder
O neutron

O placement

Displaying & items

Figure 4: 10 Identity service

User Name ==

User ID

ab116b07c5d64af08d5088edfbe0683b

8dc1768ecaeed25ba8%arf308d6a1ef2

99c7ec89dd04a5811d4d7d14844b5e

d9d009a83ba548e1a082de732450e63f

0419912a3aa24dfc80122b3a4b8c47dd

e7f783370c4i41899e94dcb85f53d293

da7e2360815f486c819ac61adb547elf

ca96073c23c24bfeb9b32507404f2adc

V. Glance and Swift (Images and Storage)

Filter

Enabled

+ Create User

Domain Name

Default

Default

Default

Default

Default

Default

Default

Default

. Figure 4.10 shows various users

& admin =

Actions

Edit

Edit

Edit

Edit

Edit

Edit

Edit

Edit

Swift is used for object storage while Glance is used for images services. As seen the below figure

4.11 we were able to create images from which instances could be deployed and storage done in

the shown volumes.

32

[Iopenstack e~

» Images
Q

Owine Name ¢
> »dm
>
> > de
) > dem
>
i
sopenstack = dum -
v
e chare
» Volumes
. . v
mapnt Dy v
Neme Doscription Slee Status Group Type
¥
borm.
>
) 1

Figure 4: 11 OpenStack images and storage

4.3.4 Broker

Type Sastus
mage o
whet »
rage #

Amached To

dev'véa on

& admin +
x + O ~
Disk
Visibiliey Protected Size
Format
121
Py No oL %
H on No
s
hared No Pk La
& wiin -
* ' e = T
Availabilin,
VHISTEY Boowble Encrypted Actions
Zooa
Ea
EO1 Vosr
] Eo o

The broker is where the third party QoS monitor connects. This acts like an abstraction layer

preventing direct connections to the cloud platform. In our case, Prometheus has been setup in a

containerized environment as shown in figure 4.12. It run on Ubuntu server. Prometheus has a

component installed in the cloud platform that it uses to scrap metrics. The below figure 4.13

shows the Prometheus run time and build information.

[root@webservices ~]# docker ps

CONTAINER ID IMAGE COMMAND CREATED
620del04163b grafana/grafana "/run.sh" 7 weeks ago
47£13493£683 ubuntu:l4.04 "/bin/bash" 7 weeks ago
[rootlwebservices ~]1# l

Figure 4: 12 Prometheus docker container

STATUS
Up 7 weeks
TUp 7 weeks

EORT

0.0.
0.0.

3 HAMES
0.0:3000->3000/tcp grafana
0.0:9090-»>5090/tcp prometheusl

33

Runtime Information

Uptime 2020-03-16 16:24:41.650217265 +0000 UTC

Build Information

Version 1.31

Revision bed 76954e80349ch7ecibaba3247ocd712169dfch
Branch master

BuildUser root@37i0aa346b26

BuildDate 20161104-20:24:03

GoVersion go1.7.3

Figure 4: 13 Prometheus runtime and build information

4.3.5 Node exporter
This is an application packaged and running as a service on the OpenStack platform as shown in
the below figure 4.14. Node exporter is part of the broker and which makes it hard for any

manipulations to be done within the cloud platform and the broker.

tackBopenstack:~% id node exporter
uid=999 (node exporter) gid=95%33% (node_ exporter) groups=333% (node exporter)
stackfopenstack:~§ systemctl status node exporter.service
node exporter.service - Frometheus Node Exporter
Loaded: loaded (/fetc/aystemd/system/node exporter.service; enabled; wvendor

Aotive: gince Wed 2020-05-06 18:17:49 EAT; 1h 31lmin ago
Main FID: 1631 (node exporter)
Tasks: 35 (limit: 4915)
CGroup: /f3ystem.slice/node exporter.service

881691 jusr/local/bin/node exporter

ztacklfopenatack:~% 233 -altnp | grep 91

LISTEN 100 0.0.0.0:8775 0.0.0.0:%
LISTEN 100 127.0.0.1:32969 0.0.0.0:%
fd=41), ("uwsgi",pid=1091, fd=4)}

LISTEN 128 *:9100 *yk

stacklopenatack:~§ l

Figure 4: 14 Node exporter.

34

4.4 Third Party QoS Monitor

This forms the intermediary between the cloud service provider and the cloud consumer. Cloud

consumers can verify the status of the CSP cloud platform through the third party QoS monitor. It

is installed in Ubuntu server 18.04 LTS server and is set up in third parties’ environment. It

connects to the broker from where in can request and get metrics of the cloud platform. To display

this Grafana is used and displays the actual metrics of the cloud platform as shown in the figure

4.15 below.

28 Node Exporter Full -

da Prometheus Job node-exporter v Host: openstack » Port 9100~

-+

Quick CPU / Mem / Disk

CPU Busy Sys Load (5m ... Sys Load (15... RAM Used SWAP Used

™ 88
5.;]

-~ Basic CPU / Mem / Net / Disk

Q& »

CPU Basic

37GiB
28 GiB
19GiB
9GiB

— 0B

19:35 19:40 19:45 19:20

BusyUser Busylowait = BusyIRQs — BusyOther = idie

Network Traffic Basic

0bps

-1.0 Mbps

-2.0 Mbps
19:

19:25 19:30 19:35 19:40 19:45

nt == recv br-tun == recv ens160 recvlo recv ovs-system

trans br-tun trans ens160

trans lo trans trans virbrQ trans virbr0-nic

CPU / Memory / Net / Disk

Figure 4: 15 visualization of the cloud platform metrics.

== RAM Total == RAM Used

==/ == [yar/libflxcfs == frun == [runflock

Root FS Used ... RAM T...

31GiB

RootF...

393 GiB

Memory Basic

19:25 19:30 19:35 19:40 19:45

RAM Cache + Buffer == RAM Free SWAP Used

Disk Space Used Basic

19:35 19:40

/run/netns /runfuser/1000

SWAP ...

8 GiB

Uptime

1.5 hours

Different metrics can be visualized using the tool such as CPU, memory, disk utilization as well

as availability as shown in the below figure 4.16

35

28 Node Exporter Full -

datasource Prometheus ~ Job node-exporter = Host: openstack = Port 0100 ~
> Quick CPU / Mem / Disk

»> Basic CPU/Mem / Net / Disk (4 paneis
» CPU/ Memory / Net / Disk (7 pane

> Memory Meminfo

> Memory Vmstat

> System Timesync (4 pane

> System Misc (9 pane

> Systemd (2pane

> Storage Disk (2 pane

> Storage Filesystem

> Network Traffic

> Network Sockstat (5 pane

> Network Netstat

> Node Exporter (2pane

Figure 4: 16 Different metrics of the cloud platform

4.3 The cloud consumer

Once provisioned by the third party QoS monitor, cloud consumers can view the cloud status
through a web interface. Through this, it is possible for cloud consumers to verify the status of a

certain metrics of the cloud even before they purchase and hence boosting their trust and

confidence. Figure 4.17 below show a sample cloud consumer view.

36

n | Node Exporter Full - 7|2 & olast3ominutes v (@ O v

datasource Prometheus ~ Job node-exporter ~ Host: openstack = Port 9100~
~ Quick CPU / Mem / Disk

© cPUBusy i sys Load (5m .. © sys Load (1 b RAM Used L SWAP Used ¥ Root FS Used ... Peruc. i RAMT.. i swAp..

16 31GiB 8 GiB
Lsyslo.. i RootF.. i uptime
» 7.3% » 6.4% 23% | 0% B o4 | _

1.27 393 GiB 1.7 hours

~ Basic CPU/ Mem / Net / Disk

CPU Basic y Memory Basic
100 7 GiB
75 28GiB
E 19 GiB
25 aGB
e e,
0% R ——— . e
19:35 19:40 19:45 19:50 19:55 20:00 19:35 19:40 19:45 19:50 19:55 20:00
Busy System == Busy User == Busy lowait Busy IRQs == Busy Other Idle RAM Total RAM Used == RAM Cache + Buffer RAM Free == SWAP Used
Network Traffic Basic g Disk Space Used Basic
2.0 Mbps 100%
1.0 Mbps 2 A
’ v A \ 75%
0bps s — - —
1.0 Mops V\/\/\/\/\/\/ 50%
-2.0 Mops 25%
19:35 19:40 19:45 19:50 19:55 20:00
recv br-ex recy br-int recy br-tun recv ens160 == recv lo == recy ovs-system 0%
== [eCV VirbrQ == recv virbr0-nic == trans br-ex trans br-int == trans br-tun == trans ens160 19:35 19:40 19:45 19:50 19:55 2000
== trans lo == trans ovs-system = trans virbr0 == trans virbr0-nic / Mvar/lib/ixcfs frun frunflock == /run/netns == /run/user/1000

» CPU/Memory / Net / Disk (7 paners)

Figure 4: 17 Sample cloud consumer view

4.4 How the prototype works - End to End Integration of the components

4.4.1 Low-level design

Figure 4.18 below represents the actual low-level diagram of the developed prototype with the
actual connections. It clearly depicts how the different components integrate with each other from
the cloud service provider to the cloud consumer. The ports used can be change to any other so

long as the right configuration is done.

37

CLOUD SERVICE PROVIDER ENVIRONMENT

Node Exporter 197.248.129.45:9100 N s ics ;
Listening on port 9100 Craps metrics irom node
*:9100 exporter with target as

Openstack IP 197.248.120.45 | 197.248.129.45:9100

Sends the metrics

Broker IP is 197.248.129.38 listening

on port 9090
CLOUD PLATFORM BROKER

»

A

http://
197.248.129.38:9090

(

Service request
TOSIAOJd 90INIS
Gets metrics from
broker

P

Connects to broker as data source
through http
http://197.248.129.38:9090

Accesses http://197.248.129.46:3000
through a browser

CLOUD CONSUMER

/]\Gets metrics from the third party QoS
monitor THIRD PARTY QoS MONITOR

1P 197.248.129.46 port 3000
(197.248.129.46:3000)

Figure 4: 18 Low-level diagram of how the prototype works

4.4.2 Integration between node exporter and broker
The below figure 4.19 shows the exact service status running on the cloud platform together with
the port it is listening to.

tacklopenstack:~% id node exporter
1uid=99% (node_exporter) gid=9%9% (node exporter) groups=9%3%9 (node_exporter)
stacklopenstack:~% systemctl status node exporter.service

node exXxporter.service — Frometheus Node Exporter
Loaded: loaded (/fetc/systemd/system/node exporter.service; enabled; wvendor
Aotiwve: since Wed 2020-05-06 12:17:49 EAT; 1h 31lmin ago

Main PID: 1691 (node exporter)
Tasks: 35 (limit: 4915)
Ceroup: /fsystem.slice/node exporter.service
881691 fusr/local/bin/node_exporter
stacklopenstack:~5% 33 -altnp | grep 91

LISTEN 0 100 0.0.0.0:8775 0.0.0.0:%
LISTEN 0 100 127.0.0.1:32969 0.0.0.0:%
fd=4), ("uwsgi”,pid=1091, fd=4))

LISTEN 0 128 *:9100 oy

stack@openstack:~5 ||

Figure 4: 19 Node exporter service status.

38

The figure 4.20 below show how the broker (Prometheus in our case) connects to the node exporter

to scrap the metrics.

root@47£13493£683: /prometheus-1.3.1.linux-amdad# 11
total 71068

ArwHrWwir-x. 5 1000 1000 4096 Mar 17 13:44 ./

drwxr-xr-x. 22 root root 4096 Mar 12 20:18 ../

-IW-IW-I—- 1 1000 1000 11357 Hov 4 2018 LICENSE

-IW-IW-I—- 1 1000 1000 2552 Nov 4 20146 NOTICE

AdrwHIWAT-X 2 1000 1000 38 Nov 4 2016 conscle_libraries/
AdrwHIWATr-X 2 1000 1000 4096 Nov 4 2018 consoles/
drwi————— 262 root root 8192 May & 20:21 data/

—IWHE-XI-X 1 1000 1000 62829079 Nov 4 201é prometheus®
-IW-L——I—— 1 root root 1282 Mar 16 17:20 prometheus.yml
-IW-L——I—. 1 root root 1058 Mar 12 20:2]1 prometheus.yml.original
-IWHI-XI-X. 1 1000 1000 9590020 Nov 4 2016 promtcool*

root@47£13493£683: /prometheus-1.3.1.linux-amd644 vi prometheus.vml

ﬂ my global config

global:
scrape interval: 153 # By default, scrape targets every 15 seconds.
evaluation_interval: 153 # By default, scrape targets every 15 seconds.
scrape_timeout is set to the global default (103).

Lttach these labels to any time series or alerts when communicating with
external systems (federation, remote storage, Alertmanager).
external labels:

monitor: "codelab-monitor!

Load rules once and periodically evaluate them according to the global 'evaluation interwval'.
rule_files:

- "first.rules™

- "second.rules”™

A scrape configuration containing exactly one endpoint to scrape:
Here it's Prometheus itself.
scrape_configs:
The job name is added as & label “Jjob=<job _name>” to any timeseries scraped from this config.
#PAS - job name: 'prometheus'

Owverride the glokal default and scrape targets from this job ewvery 5 seconds.
#PASscrape_interval: 53

metrics_path defaults to '/metrics’
acheme defaults to "http'.

#PAS static_configs:
#PAS- targets: ['localhost:90907]

157.248.129.45 (node exporter) replace with .47 to pull from the node exporter only
- job_name: 'node-exporter’
jcrape interval: 53

static configs:
- targets: ['1597.248.129.45:9100"]

Figure 4: 20 Broker connection to the node exporter.

39

4.4.3 Integration between the broker and QoS monitor
Figure 4.21 below shows how interconnection between the third party QoS monitor in our case
Grafana and broker is happening.

Data Sources / Prometheus

= Settings == Dashboards

@ Prometheus Default

HTTP
URL © hitp://197.248.129.38:9090
Access Server (default)

Whitelisted Cookies &

Auth

Basic auth With Credentials
TLS Client Auth With CA Cert
Skip TLS Verify

Forward QAuth Identity

Scrape interval
Query timeout

HTTP Method

Misc

Custom query parameters i)

Figure 4: 21 Inter-connecting the Third party QoS monitor to the broker

40

4.5 QoS metrics analysis

4.5.1 Discrepancies between the actual and logical metrics assigned to the consumer.

Bearing in mind, that we know the resources allocated to physical cloud platform; the cloud could
be configured in such that we could assign logical capacity to cloud consumers than the cloud
could physically accommodate. This means that we could assign fake resources like virtual CPU,
ram and hard disk to a consumer during provisioning and which would be visible in their virtual

data center. Unless they know how to confirm then they would believe the right capacity has been

provisioned.
Physical RAM 31GB
Physical HDD 500GB
Tenant Demo allocated RAM 50 GB
Tenant Demo allocated HDD 1000 GB

Table 4.1: Metrics analysis

The figure 4:22 below and table 2 above shows sample metrics assigned to a cloud consumer
(demo). Doing some analysis, we realize that the user is assigned a RAM of 50 GB whereas the
physical cloud platform has a total of 31 GB RAM. Again, the user is allocated a storage of 1000
GB, but the cloud platform has a total of 500 GB. With the QoS monitor such illegalities are easily
noticed.

Also, table 3 below shows the status of the actual cloud resources and how the QoS monitor
displays them to the consumer. This shows that the consumer can view the actual status of the
cloud. The small deviations are as a result of the workloads in the server. For hard disk, RAM and
CPU usage we do not expect any changes.

Hard disk | RAM | CPU | CPU Busy | Sys Load

Actual Resources 393 GB 31GB | 16 52 % 4.7%
Visible to consumer through QoS | 393 GB 31GB | 16 3.2% 6.4%
monitor

Table 4.2: Actual resources usage against what the consumer sees through the QoS monitor

41

f:openstack. m demo -

Project W

Project | Computa | Owverview

QOverview

Instences | jmit Summary
images Compule

Key Pairs
Server Groups
Vodumas 3 Intances: VCPUs RAM
Used 3ol S Uzed 10of 10 U=ed 20GE of S0G8
MNetwork »
Volume
Admin » '
Identity » .
Volumas Volume Snapshots Volume Storags
Usad 3 of 10 Used 1 of 10 Usad 390GE of 1000GE
Network
Flaating IPs Security Groups Security Growp Rules Hetwarks Ports
Allecaled 0 of 50 Used 1ol 10 Used 4 of 100 Lized 1 of 100 Used % of 500

Usage Summary
Select a period of time lo query its usage:

2020-05-05 B | o 2020-05-06

Active Instances: 3
Active RAM: 0GB
This Pericd's WCPU-Howrs: 287 67
This Peniod's GB-Howrs: T853.32
This Pericd's RAM Howrs: 21443034

Usage & Downboad CSV Summary
Displaying 3 Rems
Instance Name VCPUs Disk RAM Age
pascal-demo-ubuntu 1 20GB 2G8 1 month, 2 weaks
chmos-pascal-est-prometheus 8 160GE 16GB 1 month, 2 weeks
dimos-dema 1 2068 2GEB 1 month, 3 weaks
Désplaying 3 tems.

Figure 4: 22 Sample metric assigned to a cloud consumer

42

4.5.2 How the metrics are manipulated

Since open source cloud platform are highly configurable, it is possible to tune it to serve the
purpose you need. Rogue CSPs cloud program it such that they steal small portions of resources
from cloud consumer. The portions might almost be negligible, but they might affect one
applications efficiency. For instance, in our cloud platform you can edit consumer metrics by just
clicking button and updating as shown in the below figure 4.23. A simple solution to this would
be to set threshold such that you cannot provision more than the cloud platform can physically

accommodate.

E Openstack = demo ~ & admin =

Project
Admin / System / Defaulis
Admin v

e DETAUIES

Compute >
Compute Quotas Volume Quotas Network Quotas
Volume >
Network > # Update Defaults
System v Displaying 10 items
uota tome o
0
Metadata Definitions sl £l
. Injected File Content Bytes 10240
System Information
Length of Injected File Path 255
Identity >
Injected Files 5
Instances 10
Key Pairs 100
Metadata ltems 128
RAM (MB) 51200

Server Group Members 10
Server Groups 10

Displaying 10 items

Figure 4: 23 Setting metric parameters

4.6 Evaluation of the model

4.6.1 Formal testing

From the above section 4.5 so that metrics could be altered logically on the cloud platform. Despite
the metric allocated on the cloud platform, the QoS monitor shows the right metric since it is
getting them directly from the hardware. For instance, the RAM and hard disk allocated in the
figure 4.22 which surpass the actual hardware resources does not affect the result of the QoS

monitor as shown in the below figure 4.24. If the cloud consumer had access to the QoS monitor

43

realizing that more RAM and hard disk space allocated was more than is available in the physical

cloud would have been faster. This shows that model is effective

B8 Node Exporter Full -

Prometheus «
Quick CPU / Mem / Disk

CPU Busy Sys Load (3m Sys Load (15 RAM Used SWAP Used Root FS Used RAMT SWAP

31Gi8 8 GiB

RootF Uptime

393GiB 1snes

Basic CPU / Mem / Net / Disk

Figure 4: 24 QoS monitor showing actual resources.

4.6.2 Evaluation by the expert panelist

The general feedback after evaluation by the expert panelists was that the model served the purpose
and was a true representation of how third party QoS monitoring ought to be done. It was suggested
that the QoS monitor should keep history of the metrics to realize unusual trends occurring due to
cloud service provider actions such as tampering with the API scraping the metrics. The developed
model already had that capability.

4.7 The model shortcomings

High latencies because of traffic congestion in the connection between the QoS monitor and the
broker could lead to inconsistence values at the QoS monitor side. This should be remediated by
the use of high throughput secure direct connect link between the two parties. This would ensure
that always the capacity allocated is proportionate to the actual traffic pushed by the cloud

platform.

4.8 Discussions

This section shall discuss the results. As seen in the above results, we realized it is possible for
CSPs to allocate logical resources to cloud consumers that even exceed what the physical
infrastructure can accommodate. We were able to test that using various users in our prototype and

were able confirm that. The QoS monitor comes in to help cloud consumers confirm whether what

44

they have been provisioned is available. This answers our first research question on the match

between the provisioned and actual capacity provisioned.

Comparing our proposed model with the other models within our related works we find out that it
is possible to give control to the cloud consumer to verify QoS metrics in real time without having
to go through the cloud auditor. One of the models, which closely relates to our work in section
2.4.1 proposes QoS monitoring by third party professionals mainly the cloud auditor without
giving the cloud consumers ability to view metrics from any tool as audit reports might not be up

to date. This makes our model a more viable solution.

Again, comparing our proposed model with the conceptual model we can conclude that it was
realized. The only modification done to the conceptual model to actualize the proposed model was
the broker, which abstracts direct connection to the cloud platform. This means that the
information acquired from the literature review and which contributed much to the development
of the conceptual model was helpful in identifying the gap and hence the need of finding a solution

leading to this proposed model.

This proposed model could be commercialized in two ways. The first way would be the cloud
consumer pays the third party QoS monitor then the QoS monitor pays the cloud service provider.
This way it might be somehow difficult to penetrate the market as it is dependent on the cloud
consumer. Our assumption is that only big institutions will go that way since they know the benefit
whereas small enterprises or individuals would choose to go directly to the cloud service provider,
as they might not worry much about metrics.

The second model is where the cloud service provider pays the third party QoS monitor and
discerning cloud consumers or already existing user acquire it for free for a certain period. This
would boost sales on the CSPs side because it would be easier for clients to verify cloud status
before even, they purchase the service and hence boosting their confidence and trust. In addition,
the third party QoS monitor would act the cloud platform monitoring operations center and able to

share unbiased feedback to the CSP where there are anomalies.

45

The principle of “Trust but Verify” in the cloud would best fit in this model and thus making it a
source of trust using the QoS monitor. This is according to the trust levels in the cloud discussed

in section 2.3.3 (iii) which emphasis on SLA verification-based trust.

46

CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS

This chapter discusses our conclusion, recommendations for further works and limitations

5.1 Conclusion

Our first objective was to explore the various trust model used in the multi-tenancy clouds. We
were able to get several of them discussed in the literature review. Most of which focused on trust
among the different tenants or trust through third party professionals. None of them was focusing
on a third party QoS monitor where cloud consumers could get metrics in real time. This was a

great opportunity for us to think through and come up with the developed model

The second objective was to develop a multi-tenancy clouds trust model using QoS monitoring.
The objective was achieved, and we were able to come up with a model that enabled cloud
consumer to go through the third party QoS monitor to confirm in real time the status of the cloud
service provider platform status. This would help greatly once making the initial decision of which
cloud platform to adopt.

The third objective was to develop a prototype of the proposed model. We were able to come up
with a prototype, which worked almost the same as our proposed model. It was able to capture the
anomalies in relation to assignment of resources to cloud customers. The prototype was developed
using readily available tools, which made it easier and cheaper for us to consume. We were able

to configure and program the tools to accomplish what we intended to.

5.2 Recommendations for further work

We recommend future works to implement a granularity to the information given to the cloud
consumer. This means that after the cloud consumer has already acquired the cloud service then
they can continue using the third party QoS monitor capable of showing only their virtual data
center that hosts their resource. This will enable then not only to see the overall status of the cloud

but also have more visibility to the resources allocated to them only.

We also recommend that cloud service providers to adopt the model. They could replicate a similar
model within their environment making them more transparent to their discerning cloud
consumers. As discussed, this might go a long way in helping them strengthen their reputation
which in turn may lead to more sales and hence revenue growth.

47

5.3 Limitations

This system works well where cloud consumer is constrained to using CSP within a country. Since
most of the full-fledged public cloud companies such as Microsoft Azure and Amazon web
services do not have presence in all the countries then such consumers are left with few choices to
select from and hence a need to scrutinize what they have locally before they can leap in. Also, the
model works best where the third QoS monitor and the CSPs trust each other first. CSP
negotiations should be from a management level where the QoS monitor also acts a monitoring
entity for the said CSP and hence they see it as a benefit and not a way of exposing them.

48

REFERENCES

AlJahdali, H., Albatli, A., Garraghan, P., Townend, P., Lau, L. and Xu, J., 2014, April. Multi-
tenancy in cloud computing. In 2014 IEEE 8th International Symposium on Service Oriented
System Engineering (pp. 344-351). IEEE.

Anderson, R., 2003. 'Trusted Computing' Frequently Asked Questions,
https://www.cl.cam.ac.uk/~rjal4/tcpa-faq.html accessed on 21st December 2019.

Ansari, A., 2018. Service Level Agreement Governance For Cloud Computing.
10.13140/RG.2.2.11361.15206.

Bezemer, C.P. and Zaidman, A., 2010, September. Multi-tenant SaaS applications: maintenance
dream or nightmare?. In Proceedings of the Joint ERCIM Workshop on Software Evolution
(EVOL) and International Workshop on Principles of Software Evolution (IWPSE) (pp. 88-92).
ACM.

Brown, W.J., Anderson, V. and Tan, Q., 2012, September. Multitenancy-security risks and
countermeasures. In 2012 15th International Conference on Network-Based Information
Systems (pp. 7-13). IEEE.

Erikson, E.H., 1963. Childhood and society (2nd Eds) New York. NY: Norton.

Foster I, Kesselman C (1999) The grid: blueprint for a future computing infrastructure. Morgan
Kaufmann, San Mateo

Huang, J. and Nicol, D.M., 2013. Trust mechanisms for cloud computing. Journal of Cloud
Computing: Advances, Systems and Applications, 2(1), p.9.

Ismail, M.H., Khater, M. and Zaki, M., 2017. Digital Business Transformation and Strategy:
What Do We Know So Far. Cambridge Service Alliance, November.

Kim, D.Y., 2019. A Design Methodology Using Prototyping Based on the Digital-Physical
Models in the Architectural Design Process. Sustainability, 11(16), p.4416.

Li, X.H., Liu, T.C., Li, Y. and Chen, Y., 2008, December. SPIN: Service performance isolation
infrastructure in multi-tenancy environment. In International Conference on Service-Oriented
Computing (pp. 649-663). Springer, Berlin, Heidelberg.

Li, X.Y., Zhou, L.T., Shi, Y. and Guo, Y., 2010, July. A trusted computing environment model
in cloud architecture. In 2010 International Conference on Machine Learning and
Cybernetics (Vol. 6, pp. 2843-2848). IEEE.

Meixner, F. and Buettner, R., 2012. Trust as an integral part for success of cloud computing.
In The Seventh International Conference on Internet and Web Applications and Services, ICIW.

Mietzner, R., Metzger, A., Leymann, F. and Pohl, K., 2009, May. Variability modeling to
support customization and deployment of multi-tenant-aware software as a service applications.
In Proceedings of the 2009 ICSE Workshop on Principles of Engineering Service Oriented
Systems (pp. 18-25). IEEE Computer Society.

49

http://www.cl.cam.ac.uk/~rja14/
https://www.cl.cam.ac.uk/~rja14/tcpa-faq.html

Odun-Ayo, I., Ajayi, O. and Falade, A., 2018. Cloud Computing and Quality of Service: Issues
and Developments.

Oates, B.J., 2005. Researching information systems and computing. Sage.
Odun-Ayo, I. and Idoko, B.E., 2018. Cloud Trust Management—Issues and Developments.

Odun-Ayo, I., Misra, S., Abayomi-Alli, O. and Ajayi, O., 2017, December. Cloud multi-tenancy:
Issues and developments. In Companion Proceedings of the10th International Conference on
Utility and Cloud Computing (pp. 209-214). ACM.

Padhy, R.P., Patra, M.R. and Satapathy, S.C., 2011. Cloud computing: security issues and
research challenges. International Journal of Computer Science and Information Technology &
Security (IJCSITS), 1(2), pp.136-146.

Povedano-Molina, J., Lopez-Vega, J.M., Lopez-Soler, J.M., Corradi, A. and Foschini, L., 2013.
DARGOS: A highly adaptable and scalable monitoring architecture for multi-tenant
Clouds. Future Generation Computer Systems, 29(8), pp.2041-2056.

Rowe, G. and Wright, G., 2001. Expert opinions in forecasting: the role of the Delphi technique.
In Principles of forecasting (pp. 125-144). Springer, Boston, MA.

Sen, J., 2013.Security and Privacy Issues in Cloud Computing: Innovation Labs, Tata
Consultancy Services Ltd., Kolkata, INDIA

Shaikh, R. and Sasikumar, M., 2015. Trust model for measuring security strength of cloud
computing service. Procedia Computer Science, 45, pp.380-389.

Skinner, R., Nelson, R.R., Chin, W.W. and Land, L., 2015. The Delphi Method Research
Strategy in Studies of Information Systems. Cais, 37, p.2.

Stallman, R, 2018. Can You Trust Your Computer?, https://www.gnu.org/philosophy/can-you-
trust.en.html accessed on 21st December 2019.

Tang, B. and Sandhu, R., 2013, August. Cross-tenant trust models in cloud computing. In 2013
IEEE 14th International Conference on Information Reuse & Integration (IRI) (pp. 129-136).
IEEE.

Tang, B., Sandhu, R. and Li, Q., 2015. Multi-tenancy authorization models for collaborative
cloud services. Concurrency and Computation: Practice and Experience, 27(11), pp.2851-2868.

Wang, Y.D. and Emurian, H.H., 2005. An overview of online trust: Concepts, elements, and
implications. Computers in human behavior, 21(1), pp.105-125.

Wang, Z.H., Guo, C.J.,, Gao, B., Sun, W., Zhang, Z. and An, W.H., 2008, October. A study and
performance evaluation of the multi-tenant data tier design patterns for service oriented
computing. In 2008 IEEE International Conference on e-Business Engineering (pp. 94-101).
IEEE.

50

http://www.stallman.org/
https://www.gnu.org/philosophy/can-you-trust.en.html
https://www.gnu.org/philosophy/can-you-trust.en.html

Weinhardt, C., Anandasivam, A., Blau, B., Borissov, N., Meinl, T., Michalk, W. and St6Rer, J.,
2009. Cloud computing — a classification, business models, and research directions. Business &
Information Systems Engineering, 1(5), pp.391-399.

51

Appendix 1: Project Schedule

APPENDICES

The following schedule was followed.

. _ Fan2020 [Feb 2020 Mar 2020 \
D [Task Name Btart Finish Duration —F —— —
_ _ | [[pepo[| Baps[[| p5|
| |Prepanng the semistructured | 505050 (1242020 | 1w =
mterview
2 |Data collection and analysis |1/23/2020|1/31/2020 | 1 4w |
B |Interpreting the data 2/3/2020 27772020 | 1w =
H [Designing the prototype 2/6/2020 |2/19/2020 | 2w o
b |[Developing the protype 2/17/2020| 3/6/2020 3w |
b | Writing the Project report 2/17/2020| 4/3/2020 Tw [
Appendix 2: Budget
id | Item Cost (KSh)
1 | Internet connectivity 10,000
Since most of the tools used are open source no
2 | capital has been used 0
3 | Power (running on premise server) 5,000
4 | Miscellaneous 1,000
TOTAL 16,000

Appendix 2: Hardware and Software requirements

The below hardware and software requirement were tested to work in deploying the respective

tools. This can vary depending on usage.

OpenStack cloud

i. Ubuntu server 18.04 LTS

ii. 8GBRAM

52

iii. 2vCPUS
Iv. Hard disk capacity of 250GB
v. Internet connection

vi. User with sudo privileges

vii. Python, Django framework, Apache and MY SQL programming language skills

Prometheus
i. Ubuntu 16.04 server or higher
ii. A non-root user with sudo privileges
iii. Go and Time series database skills
iv. Docker for deploying containers
Grafana
I. Ubuntu server 18.04 LTS
ii. 4GBRAM
iii. 1CPU
iv. Apache, SQLite database and Go programming language

v. Docker for deploying the ubuntu container

53

