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Abstract

Tuberculosis (TB) is a disease a�ecting mostly the Lungs and can be fatal when not fol-

lowed and appropriate measures taken to manage its severity and advancement in a popu-

lation. Despite TB being preventable and curable, approximately 10 million people world-

wide get it every year. This study investigated TB management outcome dynamics, the

transition probabilities of TB treatment outcomes and predicted future treatment out-

comes using Discrete Time Markov Chain Model. The results showed that there was a

gradual increase in transition probabilities from the non-absorbing states to cured/dead

states, although the proportion of persons transiting to cure were higher than those tran-

siting to death. Further, transition from the non-absorbing states to again non-absorbing

states steadily decline from 80.62% in the 1st
year to 0 for most of the transition in the

10th
year. In the 13th

year, the patients were either in cured or dead state. Those lost to

follow up (6.11%) were more than those Transferred out (2.47%) and more patients with

Extra-Pulmonary TB (10.94%) were dying despite none having a treatment failure and all

completing treatment in comparison to those with Pulmonary TB (7.04%). Future research

could investigate why the proportion of Extra-pulmonary TB patients who die is higher

than those with Pulmonary TB and why more patients are lost to follow-up. Increasing the

patients’ follow up period beyond one year would also shade more light on the transiting

probabilities of TB treatment outcomes.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Tuberculosis (TB) is a disease a�ecting mostly the Lungs and is spread from one person
to another through cough, sneeze and spit from a person infected with Mycobacterium
Tuberculosis (MTB). Being an air-borne disease, its transmission and by extension infec-
tion re-infection rates are high in areas with li�le or no detection capabilities. It can be
fatal when not followed and appropriate measures taken to manage its severity and ad-
vancement in a population. This chapter presents the background, problem statement,
objectives, methodology and significance of the study.

1.2 Background

According to WHO (2020) TB is responsible for 1.5 million deaths each year, becoming
the top killer infectious disease worldwide. A ¼ of the world population is estimated to
be infected with TB bacteria where nearly 15% of them fall ill with active TB while the
others have the MTB but are not ill and can not transmit the bacteria. Despite TB be-
ing preventable and curable, approximately 10 million people get it every year (Harding,
2020).
Another crisis in the prevention and treatment of TB is the emergence of Multidrug resis-
tance to TB (MDR-TB) by the patients on treatment. Between 2018 and 2019, there was
an increase in MDR-TB for Rifampicin regimen by 10%, with the statistic of reported cases
rising to 206,030 people from previous 186,883 people in 2018 (WHO, 2019). In Kenya in
2019, 86,504 cases were reported and treated for TB where 10% of them were children. As
of 2019, 688 cases developed MDR-TB which by extension increased the Drug-Resistant
TB treatment costs (more than Kshs 4,500 per treatment) to the government since TB
treatment is free in public and Faith-Based Organizations’ health facilities (MOH, 2020).

Therefore, in order to achieve 80% drop in TB incidence, 90% drop in TB related deaths by
2030 as targeted by the Sustainable Development Goals (SDGs) and realize vision 2030,
TB monitoring will be key to that achievement.
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1.3 Problem Statement

TB continues to be a concern among the infectious diseases in Kenya. Its five digit in-
cidence value and three digit value for MDR-TB in only 1 year requires a redress.TB
prevention and management has used Isoniazid (H), Rifampicin (R), Pyrazinamide (Z)
and Ethambutol (E) regimens at various dosage levels. Rifampicin regimen and Isoniazid
among the other regimens has widely been used in health facilities in Kenya.

With the emergence of MDR-TB, the dynamics of TB progression needs to be carefully
studied. Those who are cured, die, realize a treatment failure, are lost to follow up, com-
plete treatment, did not complete treatment or were transferred out of the health facility
to a referral or another facility needs to be considered. Their transition from one state to
another will provide the e�ectiveness of the treatment management program and inform
whether the patients develop resistant to Rifampicin regimen or not.

Therefore this study delves into investigating the transition probabilities and predict

future TB treatment outcomes.

1.4 Objectives

1.4.1 General Objective

To model the treatment outcomes for patients diagnosed with Pulmonary or Extra-Pulmonary
TB in Kenya.

1.4.2 Specific Objectives

In shaping the general objective, the specific objectives are;

1. Describe TB management outcome dynamics,

2. To obtain the transition probabilities of TB treatment outcomes and

3. To predict future TB treatment outcomes.

1.5 Methodology

The theory of Markov Chain, specifically the Discrete Time Markov Chain model is used
in this study. In analysis, Octave so�ware was utilized to develop the model and compute
the steady state probabilities. Data that was subjected to analysis for this work was
obtained from the Kenyan Ministry of Health.
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1.6 Significance of the Study

Among the standard TB treatments identified by WHO, Isoniazid (H), Rifampicin (R),
pyrazinamide (Z) and Ethambutol (E) regimens are recommended for prevention and
management of TB at various dosage levels (Maher D., et al., 1997). Specifically, Ri-
fampicin (R) regimen will be weighed in relation to the transiting probabilities of patients’
progression or retrogression towards cure and death respectively in Kenya. This will com-
plement the recent policies on Injectable Free Regimen and latent TB infection treatment
that was launched in June 30th 2020. The policies addressed the treatment of MDR-TB
treatment that does not use injections as fostered by WHO and preventive treatment for
inactive TB to those at risk of developing active TB respectively.

Further, towards the realization of the national strategic plan to control TB that envisions
curing atleast 597,000 cases of TB by 2023 which was launched in 2018, it will inform the
careful monitoring of patients at various states to hasten treatment successes.

In addition, it shades light on the state of those who develop Rifampicin MDR-TB within
our country, predicts the number of years it would take for them to be rid-o� the MTB,
with the prevailing treatment program remaining constant.
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CHAPTER 2

LITERATURE REVIEW

Many previous studies have explored di�erent aspects of Tuberculosis including risk fac-
tors, e�icacy of diagnostic tests, diagnosis, disease progression and its co-morbid out-
comes. In this chapter, some previous works that have been conducted are presented.

Hoad et al. (2009) while studying the infection transmission dynamics of TB, used stochas-
tic Markov chain model to find out the e�ects of local and global parameters on the
possibility of contracting TB in Gem and Asembo Divisions of Western Kenya. That is,
determine whether local (cluster) e�ect is stronger than the general global e�ect. Their
results indicated that the local transmission coe�icient was higher than the global coe�i-
cient in all model variations. Furthermore, a slight increase in the local e�ect and decline
in the global e�ect was observed. In relation to grouped (cluster) randomized trial, the
e�ectiveness of an intervention policy could be assessed by applying to one group and
not the other.

In another study, Ozcaglar et al. (2012) used Ordinary di�erential equations (ODE) and
Markov Chain Monte Carlo methods to explain the di�erent types of TB dynamics,
current treatment strategies e�ectiveness, multi-drug resistant TB (MDR-TB) and co-
infections in the US between 1980 and 2009. Their results indicated that the risk factors
to TB transmission was Social clusters, overcrowding in confined spaces and public trans-
portation. Further, they realised that treatment which focuses on genetically susceptible
persons could be successful and would potentially reduce TB prevalence. On multi-drug
resistant TB and co-infections (HIV/TB), exclusive treatment of one disease may reduce
prevalence and new infections or death from that disease, but may worsen the other dis-
ease. That is, transmission may be active for the second disease while the first one is
suppressed.

In a study conducted by Hill et al. (2012) on TB trends in the US, a system of di�erential
equations was used. They evaluated the intervention strategies on time to elimination,
treatment of TB active cases, the treatment of inactive (latent) infection and reducing
foreign-born persons who enter the country with latent TB infection. The study realised
that it could take more than 20 years to achieve elimination among the US-born popula-
tion when the treatment for chronic Latent TB infection was to be doubled. However, for
the foreign-born population, if the treatment rate for chronic latent TB infection was ac-
celerated four fold and the proportion of the foreign-born entering US was to be reduced
by 50%, then it was possible to achieve zero TB incidence.
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In Kenya, Kosgei et al. (2015) used Multivariate and logistic regression to explain the
impact of gender di�erence towards the treatment outcomes for 15 to 49 year old per-
sons diagnosed with pulmonary TB. Further, they investigated the factors linked to poor
outcomes evident in Kenya. Their results indicated that more females as compared to
males got a poor treatment outcome. They a�ributed the higher likelihood of poor pul-
monary TB treatment outcomes for females on cultural inequalities and socio-economic
di�erences in comparison to males. The poor treatment outcomes farther varied from
one county to another, some having low while others having high poor outcomes.

In China, Xu et al. (2017) used Markov Chain model to arrive at the factors associated
with TB and the measures which will ultimately end TB towards the realization of World
Health Organisation (WHO) goal of ending TB by 2050. Their results indicated that, TB
prevalence will reduce at a high rate in the next 8 years (a�er 2017) and then fla�en.
Undetected smear-negative TB formed the majority of the infected patients and with
the current interventions remaining constant, TB prevalence will stagnate at 163 cases
per 100,000 a�er 50 years. The controllable factors for a�aining the WHO target were to
escalate the proportion of notified cases, inhibit the progression of latent TB to active TB
and increasing the TB treatment success rate.

Onyango et al. (2018) used bivariate and Cox proportional hazards regression to explain
the epidemiology of childhood Tuberculosis in Kenya. From the results, Pediatric TB ac-
counted for 9% of all the TB patients, co-infection of TB/HIV was 28% and 4% of the
children under TB treatment died as 90% recorded a treatment success. Among the risk
factors identified were being HIV infected but not on ARV therapy, being HIV infected
and on ARV therapy, being a child with TB below the age of 5 years and diagnosed with
pulmonary disease. In addition, most TB pediatric cases (71%) were detected through
self-referral.

In another study by Li et al. (2020), Markov modelling was used to investigate the chal-
lenges posed by multi-drug-resistant TB in China. They projected the impact of improved
detection rate, expanded treatment coverage and when increased detection rate and ex-
panded treatment coverage are intertwined. Their results indicated that, with the pre-
vailing interventions remaining unchanged, a substantial decline (67% reduction) in drug
susceptible TB untreated (DS-TB+) prevalence and a considerable increase (three fold) in
MDR-TB prevalence from 2019 to 2050 will be observed. In addition, untreated MDR-TB
prevalence would rise three folds, whereas treated MDR-TB would exhibit a limited in-
crease by 2050. By the same year, 74% of Tuberculosis cases would be MDR-TB, whereas
most, 86% of those cases would remain untreated. MDR-TB detection and treatment
coverage solely would reduce prevalence but would not stop the increase of MDR-TB.
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Adeboye et al. (2020) used a joint model that consisted of a generalized logit model for
binary variables and Cox proportional hazards for survival times to TB diagnosed dataset
for Eastern Cape Province in South Africa. Their results showed that age, gender, smoking
status and Diabetes were significant covariates as smoking status and Diabetes were
significant factors for time-to-event in adults with TB. The joint model provided a be�er
predictive power for Tuberculosis prognostic factors.

In summary di�erent studies have been conducted and di�erent methods have been used
to study TB. In this work, Discrete Time Markov Chain model with Absorbing States has
been explored.
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CHAPTER 3

DISCRETE TIME MARKOV CHAIN MODEL WITH
ABSORBING STATES

3.1 Introduction

Events in life usually occur naturally in a random manner. Random occurrences follow a
stochastic process which evolve in time or space according to probabilistic laws. States are
the possible positions occupied thus the state space comprises of all the possible states of
the system. Occasionally some events transition between specific states, some of which
may be permanent states. In section 3.2 which follows, a few definitions are presented
a�er which the Discrete Time Markov Chain Model with Absorbing States is presented
in section 3.3.

3.2 Definitions

I Stochastic process

A stochastic process X(t), t ε T , is a collection of random variables indexed by the
time parameter t . Hence X(t) is the state of the process at time t .

II Markov process

A Markov process is a stochastic process such that the last state depends only on the
immediate former state, that is,

P[X(t)≤ x/X(tn) = xn,X(tn−1) = xn−1, · · · ,X(t0) = x0]

= P[X(t)≤ x/X(tn) = xn]
(3.1)

III Discrete Time Markov Chain

A Discrete Time Markov Chain is a Markov process with discrete state space and
discrete parameter space.
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IV Markov Property

The Markov Property states that the present state depends on the immediate past
state and not on the remote past state.

V Absorbing and Non-Absorbing States

An absorbing state is a state which when entered becomes a permanent state. On the
other hand, a Non-absorbing state is a state from which it is possible to exit. In section
3.3 which follows, the Markov Chain model with Absorbing States is presented.

3.3 The Model

A matrix P = ((Pi j)) of transition probabilities is a stochastic matrix if its elements are
non-negative and all its row sums are unity. Consider a Markov Chain model with s
non-absorbing states 1,2,3, · · · ,s and r absorbing states 1,2,3, · · · ,r. Thus r+ s = N,that
is,the total number of possible states of the system. The general transition probability
matrix is of the form;

P =



1 0 0 · · · 0 0 0 0 · · · 0

0 1 0 · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · 1 0 0 0 · · · 0

r11 r12 r13 · · · r1r q11 q12 q13 · · · q1s

r21 r22 r23 · · · r2r q21 q22 q23 · · · q2s
...

...
...

. . .
...

...
...

...
. . .

...

rs1 rs2 rs3 · · · rsr qs1 qs2 qs3 · · · qss



(3.2)

Which is compactly represented as;

P =

 I O

R Q

 (3.3)

Where;
I is an r x r identity matrix which gives the transition probabilities between absorbing
states.
O is an r x s zero matrix which gives the transition probabilities from absorbing to non-
absorbing states.
Q = ((qi j)) is an s x s matrix, qi j being the probability of moving from state i at time
(t−1) to state j at time t; i, j = 1,2,3, · · · ,s.
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R= ((rik)) is an s x r matrix, rik being the probability of moving from state i at time (t−1)
to state k (absorbing state) at time t; i = 1,2, · · · ,s and k = 1,2, · · · ,r.
The n-step transitional probability matrix is presented in section 3.4 as follows.

3.4 The n-Step Transition Probability Matrix

By the Chapman-Kolmogorov result, the n-step transition probability matrix is given by;

P(n) = Pn (3.4)

From equation 3.3,

P(2) =

 I O

R Q

 I O

R Q

 (3.5)

=

 I O

R+QR Q(2)


Therefore in general

P(n) =

 I O

(I +Q+Q(2)+Q(3)+ · · ·+Q(n−1))R Q(n)

 (3.6)

Hence

P(n) =

 I O

R(n) Q(n)

 (3.7)

Where;
I is an r x r identity matrix which gives the transition probabilities between absorbing
states in n-steps.
O is an r x s zero matrix which gives the transition probabilities from absorbing states to
non-absorbing states in n-steps.
R(n) = ((r(n)ik )) which equals to (I +Q+Q(2) +Q(3) + · · ·+Q(n−1))R is an s x r matrix
which gives the probability of moving from state i at time (t−1) to absorbing state k at
time t in n-steps; i = 1,2, · · · ,s and k = 1,2, · · · ,r.
Q(n) = ((q(n)i j )) is an s x s matrix, which gives the probability of moving from state i at
time (t−1) to state j at time t in n-steps; i, j = 1,2,3, · · · ,s.
As follows in section 3.5, the long run or steady state transition probability matrix is pre-
sented.
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3.5 The Fundamental Matrix

From equation 3.6 and equation 3.7,

R(n) = (I +Q+Q(2)+Q(3)+ · · ·+Q(n−1))R (3.8)

And using Calculus where,

1− xn

1− x
= 1+ x+ x2 + x3 + · · ·+ x(n−1) (3.9)

Then

I−Q(n)

I−Q
= I +Q+Q2 +Q3 + · · ·+Q(n−1) (3.10)

This implies that

(I−Q)−1(I−Q(n)) = I +Q+Q2 +Q3 + · · ·+Q(n−1) (3.11)

Therefore substituting in equation 3.8 we have that

R(n) = (I−Q)−1(I−Q(n))R (3.12)

Thus

P(n) =

 I O

(I−Q)−1(I−Q(n))R Q(n)

 (3.13)

Suppose we expand the following expression

(I−Q)(I +Q+Q(2)+ · · ·) = (I +Q+Q(2)+ · · ·−Q−Q(2)−·· ·) = I (3.14)

Then, taking limits of equation 3.10 ;

lim
n→∞

(I−Q)(I +Q+Q2 + · · ·+Q(n−1)) = lim
n→∞

(I−Q(n)) (3.15)

lim
n→∞

I = lim
n→∞

I− lim
n→∞

Q(n) (3.16)

Thus

lim
n→∞

Q(n) = O (3.17)
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In general,substituting in equation 3.17 for (I−Q(n)) then

lim
n→∞

P(n) =

 I O

(I−Q)−1R O

 (3.18)

The matrix (I−Q)−1R is called the Fundamental matrix of the absorbing Markov Chain.
The Fundamental matrix gives the steady state probabilities of moving from the non-
absorbing states to the absorbing states. In chapter 4 which follows, We apply the Ab-
sorbing Markov Chain Model to TB patients’ transition.



12

CHAPTER 4

APPLICATION OF THE DISCRETE TIME MARKOV
CHAIN MODEL

4.1 Introduction

TB management involves diagnosis and follow up where the patients will be given treat-
ment regimens (for this study Rifampicin regimen applies) then complete the treatment
which will result to cure. However, there are those who will be cured, die, lost to follow
up, move to treatment category 4, will not complete treatment and those who will be
transferred to referral or another facility. In exploring the various states, this chapter
presents the data for the study, the initial and n-step transition probability matrices and
discussion.

4.2 Data for the Study

The TB data for the study was obtained from the Kenyan Ministry of Health. The sam-
ple data captured 1456 patients who had been diagnosed and placed on treatment for
TB between January 2017 and December 2017 in various government hospitals across th
country. Their pre-existing co-morbid conditions and di�erent type of Extra- pulmonary
TB were not included in the study. The treatment regimen for TB was narrowed to Ri-
fampicin drug and whether the patients developed Drug Resistance (DR) from it or not.
The states that were occupied by the TB patients were, for the absorbing or permanent
states, Cured (C) and Dead (D), while for the non-absorbing states were, MTB Detected
(MD), MTB Not Detected (MND), Rifampicin Resistant (RR), not Rifampicin Resistant
(NRR), Pulmonary TB (P), Extra-Pulmonary TB (EP), treatment failure (F), lost to follow
up (LTFU), moved to category 4 treatment (MT4), not completed treatment (NC), com-
pleted treatment (TC) and transferred out (TO). The TB data for the study is shown in
Table 4.1.
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Table 4.1. 2017 Tuberculosis Data

Cured Dead F LTFU MT4 NC TC TO Total

MTB-Detected (MD) 776 69 7 82 11 2 185 30 1162

MTB-Not Detected (MND) 6 36 0 7 2 0 237 6 294

Rifampicin Resistant (RR) 29 4 1 4 2 0 21 0 61

Not Rifampicin Resistant (NRR) 753 101 6 85 11 2 401 36 1395

Pulmonary TB (P) 780 98 7 88 12 2 371 34 1392

Extra-Pulmonary TB (EP) 2 7 0 1 1 0 51 2 64

4.3 Initial and n-Step Transition Probability Matrices
4.3.1 The Transition Matrix
Let the states of the TB patients be denoted by the integers 1,2, · · · ,N at times t =
1,2, · · · . Let pi j denote the probability that a patient in state i at time (t−1) will be in
state j at time t , hence the transition matrix, P = ((pi j)); i, j = 1,2, ...,N. Then assuming
time homogeneity equation (3.3) holds. Let ni j(t) represent the number of patients in
state i at time (t − 1) who transit to state j at time t . Also let ni(t − 1) represent the
number of patients in state i at time (t−1), then the transition probabilities are estimated
from;

pi j =
ni j(t)

ni(t−1)
(4.1)

where I, j = 1,2, . . . ,N. This is the proportion of patients who were in state I at time
(t−1) who transit to state j at time t .

4.3.2 Initial Transition Probability Matrix
In this sub-section the one-step, initial transition probability matrix is obtained. Thus,
for example, the one-year transition probability of patients who were MTB-detected and
ended up being cured is 776/1162=0.6678 while the proportion of patients who were MTB-
detected and completed their treatment is 185/1162 =0.1592.
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Hence assuming time homogeneity, the one-step transition probability matrix P with
the two absorbing states is given by;

P =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0.6678 0.0594 0.0060 0.0706 0.0095 0.0017 0.1592 0.0258

0.0204 0.1224 0 0.0238 0.0068 0 0.8062 0.0204

0.4754 0.0656 0.0164 0.0656 0.0327 0 0.3443 0

0.5398 0.0724 0.0043 0.0609 0.0079 0.0014 0.2875 0.0258

0.5605 0.0704 0.0050 0.0632 0.0086 0.0014 0.2665 0.0244

0.0313 0.1094 0 0.0156 0.0156 0 0.7968 0.0313



(4.2)

4.3.3 n-Step Transition Probability Matrices

The two-step transition probability matrix is obtained as;

P(2) =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0.7687 0.0832 0.0010 0.0133 0.0026 0.0002 0.1246 0.0063

0.4766 0.1847 0.0041 0.0523 0.0076 0.0011 0.2526 0.0208

0.6962 0.1010 0.0024 0.0266 0.0046 0.0005 0.1585 0.0102

0.7104 0.1038 0.0016 0.0209 0.0036 0.0004 0.1501 0.0092

0.7201 0.1005 0.0015 0.0197 0.0034 0.0004 0.1456 0.0087

0.4866 0.1719 0.0042 0.0522 0.0080 0.0011 0.2552 0.0207



(4.3)

Considering the categories MTB Detected (MD), MTB Not Detected (MND), Rifampicin
Resistant (RR), Not Rifampicin Resistant (NRR), Pulmonary TB (P) and Extra-Pulmonary
TB (EP) separately, then the n-step transition probabilities are summarized in Tables 4.2,
4.3, 4.4, 4.5, 4.6 and 4.7 as shown.
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Table 4.2 shows the n-step transition probabilities for the patients who were MTB De-
tected.

Table 4.2. n-Step Transition Probabilities for MTB Detected

P(n) P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) P(10)

C 0.6678 0.7687 0.8411 0.8706 0.8845 0.8908 0.8937 0.8950 0.8956 0.8959

D 0.0594 0.0832 0.0945 0.0996 0.1020 0.1030 0.1035 0.1037 0.1038 0.1039

F 0.0060 0.0010 0.0007 0.0003 0.0001 0.0001 0 0 0 0

LTFU 0.0706 0.0133 0.0085 0.0036 0.0017 0.0008 0.0003 0.0002 0.0001 0

MT4 0.0095 0.0026 0.0014 0.0006 0.0003 0.0001 0.0001 0 0 0

NC 0.0017 0.0002 0.0002 0.0001 0 0 0 0 0 0

TC 0.1592 0.1246 0.0501 0.0237 0.0107 0.0049 0.0022 0.0010 0.0005 0.0002

TO 0.0258 0.0063 0.0035 0.0015 0.0007 0.0003 0.0001 0.0001 0 0

Table 4.3 shows the n-step transition probabilities for the patients who were MTB Not
Detected.

Table 4.3. n-Step Transition Probabilities for MTB Not Detected

P(n) P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) P(10)

C 0.0204 0.4766 0.6270 0.7029 0.7365 0.7520 0.7590 0.7622 0.7637 0.7643

D 0.1224 0.1847 0.2120 0.2246 0.2303 0.2329 0.2341 0.2347 0.2349 0.2350

F 0 0.0041 0.0014 0.0007 0.0003 0.0001 0.0001 0 0 0

LTFU 0.0238 0.0523 0.0184 0.0091 0.0040 0.0019 0.0008 0.0004 0.0002 0.0001

MT4 0.0068 0.0076 0.0032 0.0015 0.0007 0.0003 0.0001 0.0001 0 0

NC 0 0.0011 0.0004 0.0002 0.0001 0 0 0 0 0

TC 0.8062 0.2526 0.1297 0.0572 0.0263 0.0120 0.0054 0.0025 0.0011 0.0005

TO 0.0204 0.0208 0.0080 0.0038 0.0017 0.0008 0.0004 0.0002 0.0001 0
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Table 4.4 shows the n-step transition probabilities for the patients who were Rifampicin
Resistant.

Table 4.4. n-Step Transition Probabilities for Rifampicin Resistant

P(n) P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) P(10)

C 0.4754 0.6962 0.7900 0.8334 0.8531 0.8621 0.8662 0.8680 0.8689 0.8693

D 0.0656 0.1010 0.1170 0.1243 0.1276 0.1291 0.1298 0.1302 0.1303 0.1304

F 0.0164 0.0024 0.0009 0.0004 0.0002 0.0001 0 0 0 0

LTFU 0.0656 0.0266 0.0113 0.0052 0.0024 0.0011 0.0005 0.0002 0.0001 0

MT4 0.0327 0.0046 0.0019 0.0009 0.0004 0.0002 0.0001 0 0 0

NC 0 0.0005 0.0002 0.0001 0 0 0 0 0 0

TC 0.3443 0.1585 0.0739 0.0335 0.0153 0.0070 0.0032 0.0014 0.0007 0.0003

TO 0 0.0102 0.0048 0.0022 0.0010 0.0005 0.0002 0.0001 0 0

Table 4.5 shows the n-step transition probabilities for the patients who were Not
Rifampicin Resistant.

Table 4.5. n-Step Transition Probabilities for Not Rifampicin Resistant

P(n) P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) P(10)

C 0.5398 0.7104 0.7982 0.8369 0.8547 0.8628 0.8665 0.8682 0.8690 0.8693

D 0.0724 0.1038 0.1183 0.1249 0.1279 0.1292 0.1299 0.1301 0.1303 0.1303

F 0.0043 0.0016 0.0008 0.0004 0.0002 0.0001 0 0 0 0

LTFU 0.0609 0.0209 0.0105 0.0047 0.0021 0.0010 0.0004 0.0002 0.0001 0

MT4 0.0079 0.0036 0.0017 0.0008 0.0004 0.0002 0.0001 0 0 0

NC 0.0014 0.0004 0.0002 0.0001 0 0 0 0 0 0

TC 0.2875 0.1501 0.0658 0.0303 0.0138 0.0063 0.0029 0.0013 0.0006 0.0003

TO 0.0258 0.0092 0.0044 0.0020 0.0009 0.0004 0.0002 0.0001 0 0



17

Table 4.6 shows the n-step transition probabilities for the patients who had Pulmonary
TB.

Table 4.6. n-Step Transition Probabilities for pulmonary TB

P(n) P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) P(10)

C 0.5605 0.7201 0.8052 0.8424 0.8596 0.8674 0.8709 0.8725 0.8733 0.8736

D 0.0704 0.1005 0.1145 0.1208 0.1237 0.1250 0.1256 0.1259 0.1260 0.1261

F 0.0050 0.0015 0.0008 0.0003 0.0002 0.0001 0 0 0 0

LTFU 0.0632 0.0197 0.0102 0.0045 0.0021 0.0009 0.0004 0.0002 0.0001 0

MT4 0.0086 0.0034 0.0017 0.0007 0.0003 0.0002 0.0001 0 0 0

NC 0.0014 0.0004 0.0002 0.0001 0 0 0 0 0 0

TC 0.2665 0.1456 0.0632 0.0292 0.0132 0.0060 0.0028 0.0013 0.0006 0.0003

TO 0.0244 0.0087 0.0043 0.0019 0.0009 0.0004 0.0002 0.0001 0 0

Table 4.7 shows the n-step transition probabilities for the patients who had Extra-
Pulmonary TB.

Table 4.7. n-Step Transition Probabilities for Extra-Pulmonary TB

P(n) P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8) P(9) P(10)

C 0.0313 0.4866 0.6386 0.7150 0.7489 0.7644 0.7715 0.7747 0.7762 0.7769

D 0.1094 0.1719 0.1993 0.2120 0.2177 0.2204 0.2216 0.2221 0.2224 0.2225

F 0 0.0042 0.0014 0.0007 0.0003 0.0001 0.0001 0 0 0

LTFU 0.0156 0.0522 0.0186 0.0091 0.0041 0.0019 0.0009 0.0004 0.0002 0.0001

MT4 0.0156 0.0080 0.0032 0.0015 0.0007 0.0003 0.0001 0.0001 0 0

NC 0 0.0011 0.0004 0.0002 0.0001 0 0 0 0 0

TC 0.7968 0.2552 0.1304 0.0576 0.0265 0.0120 0.0055 0.0025 0.0011 0.005

TO 0.0313 0.0207 0.0081 0.0039 0.0017 0.0008 0.0004 0.0002 0.0001 0
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4.3.4 Fundamental Matrix
As was shown in equation 3.18, the Fundamental matrix gives the steady-state prob-
abilities of moving from the non-absorbing states to the absorbing states. Thus the
Fundamental matrix is given by;

(I−Q)−1R =



0.8961 0.1039

0.7648 0.2351

0.8696 0.1304

0.8696 0.1304

0.8738 0.1261

0.7774 0.2226


(4.4)

which refers to the probability of patients’ moving from Non-Absorbing to Absorbing

States in the long run within the program.

4.4 Discussion
From the dataset, 95.6% of the patients were diagnosed with Pulmonary (P) TB while
4.4% of them were diagnosed with Extra-Pulmonary (EP) TB. Among the 1,456 patients
diagnosed with either Pulmonary or Extra-Pulmonary TB, 53.71% were cured (C), 7.21%
died (D), 0.48% got a treatment failure (F), 6.11% were lost to follow-up (LTFU), 0.89%
were moved to category 4 treatment (MT4), 0.14% had not completed treatment (NC),
28.98% had completed treatment (TC) and 2.47% patients were transferred out (TO).
In relation to developing resistance for Rifampicin regimen among the patient placed on
TB treatment, 4.19% of the patients developed resistance while 95.81% did not develop
resistance. In the n-Step transition probability matrix, transition from Absorbing to
non-absorbing states (C/D to F, LTFU, MT4, NC, TC, TO) gave a zero probability as none
of the persons in the cured/dead states exited from those states. There was a gradual
increase in probability on transitions from the non-absorbing states (MD, MND, RR,
NRR, P and EP) to cured/dead state as the number of years advanced from 1 to 10,
although the proportion of persons transiting to cure was higher than those transiting
to death. However, transition from those non-absorbing states to again non-absorbing
states (MD, MND, RR, NRR, P and EP to F, LTFU, MT4, NC, TC and TO) steadily decline
from 80.62% for MND to TC in the 1st year, which had the highest probability, to 0 for
most of their transition in the 10th year.
In table 4.2, 66.78% of the MTB detected patients were cured in the 1st year, the
proportion increasing to 89.59% in the 10th year. Conversely, 5.94% of the same patients
died in the 1st year, the value increasing to 10.39% in the 10th year. 0.17% and 2.58% did
not complete treatment and were transferred out of the facility by the end of the 1st

year. their proportion gradually declined to 0 by the 10th year.
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In table 4.4, the proportion of Rifampicin resistant patients was 47.54% for those
who were cured and 6.56% for those who died in the 1st year. Their proportion gradually
increasing over 10 years to 86.93% and 13.04%.The proportion of those whose treatment
failed (1.64%) or were lost to follow up (6.56%) was higher for those who developed
Rifampicin resistance as compared to those who didn’t at 0.43% and 6.09% in table 4.5
respectively.
In table 4.6 and 4.7, the proportion of those cured was 56.06% and 3.13% for the patients
diagnosed with Pulmonary TB and Extra-Pulmonary TB. on the other hand, the pro-
portion of those who died was 7.04% and 10.94% for the patients with Pulmonary and
Extra-Pulmonary TB in the 1st year. The proportion cured from Pulmonary TB was very
high in comparison to those cured from Extra-Pulmonary TB. Then for those who died,
the proportion was higher in Extra-Pulmonary as compared to Pulmonary TB patients,
despite none of the patients having Extra-Pulmonary TB realized a treatment failure or
did not complete treatment in that year.
In the long run, at the 13th year, the patients cease to transit from non-absorbing to
non-absorbing states as all of them would either be cured or dead. Matrix 4.4 shows
that 89.61%, 76.48%, 86.96%, 86.96%, 87.38% and 77.74% of those with MTB-Detected,
MTB-Not detected, Rifampicin resistance, no Rifampicin resistance, Pulmonary TB and
Extra-Pulmonary TB respectively will be cured. While 10.39%, 23.51%, 13.04%, 13.04%,
12.61% and 22.26% of them with MTB-Detected, MTB-Not detected, Rifampicin resis-
tance, no Rifampicin resistance, Pulmonary TB and Extra-Pulmonary TB respectively
will have died.
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CHAPTER 5

CONCLUSION
5.1 Introduction

In this chapter, TB treatment outcome dynamics, the transition from the first to the 13th

year projection probabilities and the absorbing rates will be discussed. Of importance

will be the group that tested positive for MTB, developed resistance against Rifampicin

regimen and had either Pulmonary or Extra-Pulmonary TB. Section 5.2 which follows

present the summary of findings.

5.2 Summary
During the analysis of 1,456 patients’ data on TB, 53.71% were cured, 7.21% died, 0.48%
had a treatment failure, 6.11% were lost to follow-up, 0.89% moved to treatment category
four, 0.14% had not completed treatment, 28.98% had completed treatment and 2.47%
were transferred out to a referral facility or the patients’ preferred facility. Most of
the patients had pulmonary TB (95.6%) while only 4.4% had Extra-Pulmonary TB. In
regards to developing resistance to Rifampicin regimen, 4.19% developed resistance and
a majority of them (95.81%) did not.
Transition from absorbing to absorbing states had an identity matrix of probabilities,
transition from absorbing to non-absorbing states produced a zero matrix while transi-
tion from non-absorbing to absorbing states or from non-absorbing to non-absorbing
states produced probabilities ranging from 0.8062 which was the highest to 0 in the
1st year. Specifically, 66.78% of the patients who tested positive for MTB were cured,
with the proportion increasing to 89.59% in the 10th year. Conversely, 5.94% of the
positive MTB patients died, with their number rising to 10.39% at the 10th year. On the
other hand, 15.92% of the patients who tested positive for MTB completed treatment.
Contrasting those who did not complete treatment and had tested positive for MTB
with those who completed treatment, 0.17% did not complete treatment within the first
year but ended up completing a�er the 4th year, while 15.92% completed treatment
by the 1st year with the rest completing theirs at the 9th year. Those who were lost to
follow-up were more than those transferred out of the facility in the first year, 7.06%
and 2.58% respectively but their proportion declined to 0.01% and 0 in the 10th year.
With regards to developing resistance, 47.54% developed resistance to Rifampicin and
were cured, 6.56% died and there proportions increased steadily to 86.93% and 13.04%
respectively at the 10th year. Although neither of them were transferred out nor did not
complete treatment, 6.56% were lost to follow-up. Comparing those who had Pulmonary
TB against those who had Extra-pulmonary TB, 56.05% and 3.13% were cured and their
proportions increased to 87.36% and 77.69% respectively at the 10th year. However, more
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deaths inclined towards those with Extra-Pulmonary TB than those with Pulmonary
TB, having a proportion of 10.94% and 7.04% during the first year to 22.25% and 12.61%
respectively at the 10th year. Furthermore, 79.68% of those with Extra-Pulmonary TB
completed treatment and their proportion was higher in comparison to those with
Pulmonary TB and had completed treatment (26.65%) in the 1st year.

A�er projection upto the 13th year, the absorbing rates indicated that 89.61%, 76.48%,
86.96%, 86.96%, 87.38% and 77.74% of the patients with MTB detected, MTB-not detected,
developed Rifampicin, did not develop resistance, with pulmonary and Extra-Pulmonary
TB respectively will be cured. Conversely, 10.39%, 23.51%, 13.04%,13.04%, 12.61% and
22.26% of the patients with MTB detected, MTB-not detected, developed Rifampicin
resistance, did not develop resistance, with pulmonary and Extra-Pulmonary TB respec-
tively will have died.

5.3 Conclusion
Since the End TB Strategy envisions a fatality rate of 6.5% by 2025, the 2017 data
indicated a slightly higher yearly fatality rate for Kenyans towards that end. While
the increasing proportion of cure for the MTB positive patients plus those who develop
resistance is commendable, the worrying steady increase in the projected proportion of
those who die from MTB needs a redress. A need also to reduce the proportion of those
patients that are lost to follow-up and find out why those with Extra-Pulmonary TB are
more at risk of dying than those with Pulmonary TB despite their e�orts to complete
treatment plus not having treatment failures. Overly, the proportion of those dying from
the various non-absorbing states in the long run was more than 10%, which needs to be
lowered to below 6.5% before 2025.



22

CHAPTER 6

FUTURE RESEARCH
This study focused on TB patient who had been followed for only one year to develop the
transition probabilities. The treatment regimen was narrowed to Rifampicin drug but
Isoniazid (H), Pyrazinamide (Z) and Ethambutol (E) drugs at di�erent dosage levels and
phases are also administered to TB patients. Future studies can consider expanding the
follow-up period so as to check whether it has a significant impact to the time until the
absorption rates is achieved and include the other TB treatment regimens in evaluating
resistance development.
Future researchers can also find out why the proportion of Extra-pulmonary TB patients
who die is higher than those with Pulmonary TB despite their e�orts to complete treat-
ment and not realize a treatment failure, in the country.
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