FACULTY OF ENGINEERING

DEPARTMENT OF MECHANICAL & MANUFACTURING
ENGINEERING

SMART GRID ENERGY MANAGEMENT
SYSTEM FOR INDUSTRIAL APPLICATIONS

HERINE ATIENO OMONDI, BSC (ELECTRICAL AND
ELECTRONIC ENGINEERING), UNIVERSITY OF NATROBI
F56/12539/2018

Project report submitted for the partial fulfillment of the requirement for the
award of the Degree of Masters of Science in Energy Management 1n the
Department of Mechanical and Manufacturing Engineering in the University of
Nairobi

18" November 2020




Smart Grid Energy Management System for Industrial Applications F56/12539/2018

DECLARATION
This Project Report is my original work and has not been presented for a Degree in this or

any other University:

Omondi Herine Atieno - F56/12539/2018

Signature: I Sy Date: 18/11/2020
This report has been submitted with our approval as University Supervisors

Dr. Peter Moses Musau

S -

Signature: Date: 18/11/2020

Dr. Abraham Nyete

-
Signature: W Date: 18/11/2020



Smart Grid Energy Management System for Industrial Applications F56/12539/2018

DEDICATION
| dedicate this project report to my parents, Mr. and Mrs. Omondi and my brother for their

unwavering support and motivation throughout my academic journey.



Smart Grid Energy Management System for Industrial Applications F56/12539/2018

ACKNOWLEDGEMENT
To begin with, | thank God for the special gift of life and for giving me the capacity, strength,

knowledge and opportunity to undertake this research project to completion.

Secondly, | sincerely express my gratitude to my supervisors, Dr. Peter Moses Musau and Dr.

Abraham Nyete for their unwavering professional guidance, inspiration and encouragement.

| also thank my fellow research scholars, classmates and friends for the continued support and

motivation throughout the course of our study.



Smart Grid Energy Management System for Industrial Applications F56/12539/2018

Table of Contents
DECLARATION .ttt sttt et skt e et e e b bt e bt e s he e et e e ek e e et e e sbneenbeeabeeennee e I
DEDICATION L.ttt ettt ettt e ab e e bt e she e et e e e be e e nbe e saeeanbeesbeeanneeas I
ACKNOWLEDGEMENT ...ttt ettt st b e beennee s i
LIST OF ABBREVIATIONS . ... e vii
ABSTRACT .ttt R e R e e Rt e e n e r e nnee s IX
CHAPTER 1: INTRODUCTION ...ttt 1
IO ST 1ot 0 {1 o T SRS PSS 1
1.2 Problem STAtEMENT ........c.oiiiiiiee e 2
IR T @ o 1= ot =SSOSR 3
1.3.1 MaAIN ODJECLIVE ....covieeceic ettt ettt e te et e sreesaeenne e 3
1.3.2 SUD-ODJECTIVES. ...ttt bbb 3
1.4 RESEAICN QUESTIONS ....c.vieiieeieiiieieetie st sie et st ettt ettt e st e e stesneesaeesteeneesbeenteaneenreenneenee e 4
1.5 SCOPE OF WOTK ...ttt bbbttt bbb 4
1.6 JUSTITICAEION ...ttt bbbttt bbb 4
1.7 CONEFIDULION ...ttt bbbttt b e bbb 5
1.8 Project Report OrganizZation............couiieiiieriesie st 5
CHAPTER 2: LITERATURE REVIEW .....ooiii ettt 6
2.1 LITErature REVIBW .......oviiiiiiiiieieeee et b bbb 6
2.2 RESEAICH GAP....c.viiuiiiteeie ettt ettt et e et e b et e e teer e ae e reeaeaneers 11
2.3 Problem FOrmuUIALION. ..........ooiiiiicc e 13
2.3.1 Forecasting and Load Scheduling Model ... 13
2.3.2 Possible Load COmMBINALIONS .........ccueiiiiiiiiiiiiiceeeee s 14
2.3.3 Objective Energy Cost FUNCLION..........ccciiiiiiiiic it 14
2.3.4 Power Balance CONSTIAINT .........coviiiiiiiinie e 15



Smart Grid Energy Management System for Industrial Applications F56/12539/2018

2.3.5 ECONOMIC VIADIIITY ..o e s 15

2.4 Chapter CONCIUSTON .......oiiiiiiiiieiee ettt sb bbb 16
CHAPTER 3: METHODOLOGY ...ttt be bt 17
3.1 Scheduling of INAUSEIIAl LOAAS ........covueiiiiieiiiie e 17
3.2 Optimization Methods for Energy Management in Smart Grids...........cccocvevevivereeviesnene. 17
3.3 Review of Previous Methods in EMS ............coiiiiiiiiiee e 18
3.3.1 Fuzzy Inference SYStem (FIS) .....cov oot 19
3.3.2 Mixed Integer Linear Programming (MILP) .........cccoiiiiiiiiiic e 19
3.3.3 Monte Carlo SIMulation (IMCS) .......c.coiieiiiie e 19
3.3.4 Binary Integer Programming (BIP) ........cccvoiiiiiii i 20

3.4 Long Short Term Memory TEChNIQUE .....cceocvveieiiieie e 20
3.6 Design of the Proposed EMS ... 23
3.7 Simulation and Validation TOOIS ........ccccoiiiiiiiiiie e 24
CHAPTER 4: RESULTS, DISCUSSION AND ANALYSIS .....ooiiiieeiiereee e 26
4.1 LSTM FOrecasting MOGE ..........ooiiiiiiiiee s 28
4.2 Load Scheduling Using Predicted EICtriCity PriCeS.........ccccviiiiiiiiiiiieieee s 33
4.3 Economic Viability of an Industrial EMS ... 38
4.3.1 CoSt BENETIt ANAIYSIS ...c.veeiiiieieciice et 38
4.3.2 PayDACK PEIIOM ......c.viiiieciiee ettt sttt 39
4.3.3 REtUrn 0N INVESIMENT. ..ot 39

4.4 Validation of Approach Used in ThiS ProjJeCt ........ccviiiiiiiiiiiii e 40
4.5 Chapter CONCIUSION .......cciiiiii ettt e et e e e e be e s e e eneea 41
CHAPTER 5: CONCLUSION AND RECOMMENDATIONS ......oooiiiieieeeeee 43
5.1 CONCIUSIONS ...ttt bbbt b et 43
5.2 Recommendations for FUItNEr WOTK............cocoiiiiiiiise e 44



Smart Grid Energy Management System for Industrial Applications F56/12539/2018

APPEND X ettt e e nr e e 47
APPENAIX A e b bR bR bbbt r et bbb e 47
APPENAIX B bbb 61
APPENAIX C ettt bbb Rttt n b b e 66
N o 01 00 [ I SR 87
N 0] 01 0L =SSR 93

Vi



Smart Grid Energy Management System for Industrial Applications

LIST OF ABBREVIATIONS

ARIMA

BEMS

BPPT

BIP

CEMS

CBA

DEMS

DER

DR

DSM

DTOUC

EGS

EMMS

EMS

ESS

FTT

FIS

GUIOS

HAN

HEMS

Autoregressive Integrated Moving Average
Building Energy Management System
Back Propagation Through Time

Binary Integer Programming

Community Energy Management System
Cost Benefit Analysis

Data Centre Energy Management System
Distributed Energy Resource

Demand Response

Demand Side Management

Disaggregation and Time of Use Calculator
Energy Generation System

Energy Monitoring and Management System
Energy Management System

Energy Storage System

Fixed Time Tariff

Fuzzy Inference System

Graphical User Interface and Operation Scheduler

Home Area Network

Home Energy Management System

vii

F56/12539/2018



Smart Grid Energy Management System for Industrial Applications

ICT
IEEE
IMD
LSTM
MILP
MCS
NICLCE
OpenADR
PBP
RERs
RNN
ROI
RTP

ST

STN

Information Communication Technology
Institute of Electrical and Electronic Engineering
In-operation Machine Detection

Long Short Term Memory

Mixed Integer Linear Programming

Monte Carlo Simulation

National Institute of Clean and Low Carbon Energy
Open Automated Demand Response

Payback Period

Renewable Energy Resources

Recurrent Neural Network

Return on Investment

Real Time Pricing

Schedulable Task

State Task Network

viii

F56/12539/2018



Smart Grid Energy Management System for Industrial Applications F56/12539/2018

ABSTRACT
Over the years, energy needs have become complicated due to rapid industrialization, population

growth and enforcement of stringent measures to reduce the carbon footprint globally. Industries
being amongst the largest consumers of electricity generated worldwide, can realize huge savings
in energy cost by implementing energy management programs. This research incorporates the
aspects of a smart grid in designing an energy management system (EMS) where demand side
management (DSM) is utilized to enable industrial users minimize their energy costs. A forecasting
model for electricity prices and demand is developed using Long Short Term Memory (LSTM) -
Recurrent Neural Network (RNN) technique. The predicted prices are used in load scheduling to
realize potential energy cost savings. The non-priority loads are scheduled to leverage on low
electricity prices during off peak times. The effectiveness of the designed energy management
strategy is tested using an IEEE 30 bus system. A suitable operation schedule with committed units
for each hour is given for one sample day. Using the test system with 20 loads yielded an annual
energy cost saving of $2,961,169.20, a payback period (PBP) of 4 years 5 months, and a return on
investment (ROI) of 22.78%. The ROI can be improved by considering savings from future years
of having the EMS in place. Overall, industries can maintain a competitive edge by investing in
an effective EMS that will enable them minimize their electrical energy costs which forms one of

the top operating expenses.

Keywords: Smart Grid, Energy Management System, Long Short Term Memory, Recurrent Neural

Network, Demand Side Management, Demand Response, Time of Use
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CHAPTER 1: INTRODUCTION
1.1 Background
This chapter has introduced the topic of investigation by explaining the major changes in energy
demand over the years leading to the shift towards smart grids. It has explained the meaning of a
smart grid, its components, and benefits to both consumers and utilities. It has further discussed
the concept of energy management and types of EMSs used in different areas. The objectives of
the research have also been highlighted and the scope of the work defined. The last section of the

chapter has outlined the organization of the rest of the report.

The current energy infrastructure was conceived decades ago when energy needs were quite simple
such as powering radios and light bulbs. Electricity generation was centralized and done from non-
renewable sources like fossil fuels. The power system was limited to one-way interaction between
the utility companies and the consumers who were billed monthly. However, in the 21% century,
there are complex energy needs that call for modernizing of the grid as the old power system model
is incapable of readily responding to the changes. The adoption of a smart grid is one form of
modernizing the energy infrastructure to create a resilient, sustainable, reliable, and secure grid.
The smart grid consists of a network of communication and computer processing tools, control
systems, automation, and innovative technologies to make the grid respond digitally to the rapidly
changing demand. A smart grid allows for a two-way dialogue between the utility companies and
consumers, as well as between consumers, where electricity and information is easily exchanged.
The components of a smart grid include, smart substations, smart relays, smart meters, smart
appliances, automated feeder switches, wireless sensors, synchro phasors and storage devices [1].
Additionally, a smart grid promotes the utilization of renewable energy resources to better manage
the electricity needs thereby creating energy independence from the utility grid. Figure 1.1
represents a smart grid with wind and solar Distributed Energy Resources (DERS), transmission

lines as well as residential, commercial, and industrial units.
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Figure 1.1: Smart Grid

A smart grid improves customer engagement in power management through energy demand
management programs. Active consumer engagement enables individuals to control their own
energy consumption hence achieve energy savings. Not only does the adoption of a smart grid
benefit the consumers but also the utilities by reducing the peak loads and operational cost, as well
as improving the power system security and increasing the integration of renewable resources.
Energy management is crucial in ensuring that energy is used judiciously to minimize costs and
reduce environmental impacts. There are two approaches to energy management that is
considering the supplier side or the consumer side. Both approaches are significant in ensuring a
balance between demand and supply to improve the network’s reliability. An energy management
system consists of tools for data collection, analysis, and visual display for effective energy
management. A smart energy management system enables the conversion of power network data
into useful information for decision support to optimize power system operation. The EMS helps
in the effective control, conservation, and monitoring of energy use to minimize consumption
hence yield energy savings. Different types of energy management systems are used within

different setups such as micro-grids, households, industries, and communities [2].

1.2 Problem Statement

Smart grids offer numerous opportunities for both consumers and utilities in regards to improved
reliability, remote control, integration of renewables, and power management. With the increased
adoption of smart grids in recent years, industrial consumers have to devise effective ways of
promoting their interaction with utility companies. Industries can leverage on the capabilities of a

smart grid to design effective energy management schemes to better position themselves in their
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various sectors of operation. For instance, the use of smart metering tools and actively engaging
machine operators in power management can aid in the development of an operational EMS that
can greatly reduce the peak load during unexpected periods hence benefitting not only the

industries but also the utilities.

Energy management is a competitive strategy that industries can use to maximize their profits
while minimizing on costs. Previous research works have focused on specific applications of
EMSs including smart homes, data centers, buildings, communities, a coal mining plant, and a
vehicle testing facility. Despite addressing the effective use of energy with an aim of reducing
energy costs and maximizing efficiency, past researches have not fully leveraged aspects of the
smart grid in designing energy management schemes. Very few researchers have given a specific
algorithm for demand side management as most prefer to discuss them theoretically without
providing any practical solution. A good number of past research works addressing demand and
price forecasting use conventional time series modelling techniques such as ARIMA which are

preferable when dealing with linear time series data.

This research has recommended the use of proper load scheduling as a demand side management
technique to minimize energy cost in industries. The EMS has enabled the end users to understand
their energy usage and variation of electricity prices with demand hence informing the choice to
schedule the loads. Load scheduling was done in a manner that reduced the total energy costs while
distributing the load ensuring peak demand was experienced at off-peak hours with low electricity
prices. The developed EMS has enabled both the consumers and utilities to realize the full benefits
of the smart grid by optimizing the use of energy data for power system planning and industrial
operations.

1.3 Objectives
1.3.1 Main Objective

To design a general Energy Management System (EMS) that provides recommendations on
suitable Time of Use (TOU) for industrial loads based on the predicted electricity prices to

minimize energy cost.

1.3.2 Sub-Objectives
i)  Todevelop a prediction model for electricity prices and demand.

3
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i)  To devise a technique for load scheduling using the forecasted electricity prices.
i) To generate a suitable operating schedule effective in minimizing energy cost. TOU
iv)  To determine the economic viability of implementing an industrial energy management

system.

1.4 Research Questions

)] Which methods are suitable for time series modelling and forecasting?

i) What are the crucial factors that need to be considered when performing load scheduling
to ensure energy cost reduction?

iii) How does variation in electricity prices and demand affect load scheduling?

iv) What tools of economic analysis adequately assess the feasibility of investing in an
industrial EMS?

1.5 Scope of Work

This research has developed a generalized EMS to enable the users optimize their energy
consumption with ease. Demand Side Management (DSM) technique was employed in controlling
energy use with an aim of saving on cost and improving energy efficiency. The process involved
optimizing the consumption patterns with respect to the predicted electricity prices prior to
selecting a suitable loads’ schedule. Python programming was used to analyze the collected data
on demand and electricity prices before performing load and price forecasting. LSTM-RNN which
is a machine learning algorithm was used in the forecasting. The predicted prices were used in
advising the consumer on preferred TOU to reduce the energy cost. The effectiveness of the

developed model in minimizing energy cost was tested using an IEEE 30 Bus system.

1.6 Justification

In the 4" industrial revolution, reducing electrical energy cost is crucial in boosting the
competitiveness of a manufacturer. The adoption of a solid energy management scheme would
significantly reduce the operational expenditure in an industry as well as the associated
environmental impacts. Industries have a huge potential of leveraging energy consumption data
obtained from a smart grid EMS to improve energy efficiency and achieve savings. Such an EMS
enables the industrial consumer to take advantage of lower electricity prices during off-peak times

and avoid creating another peak after load shifting by considering each load’s needs individually.
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The EMS ensures there is peak load management thus maintaining the power system’s reliability.
An EMS that utilizes the capabilities of smart grids to effectively minimize energy consumption
would help industries maximize on their profits hence this research work has provided a feasible

solution for large energy consumers.

1.7 Contribution

This research has developed a generalized EMS that recommends suitable TOU for industrial loads
based on the predicted electricity prices. The EMS has taken advantage of the opportunity offered
by smart grids to process data, make informed decisions, and actively engage consumers in
controlling their energy consumption. Load scheduling which is a form of demand side
management has been utilized to ensure the attainment of optimum energy cost. The effectiveness
of the proposed tool has been tested using an IEEE 30 bus system having 20 loads and 6 generators.
The EMS has enabled the industrial users to make decisions on when to operate the energy
intensive loads. In this research project, LSTM-RNN has been used in developing a forecasting
model to determine the hourly electricity prices before performing load scheduling while taking
advantage of low demand times. A recommended schedule with the committed load units has been
generated to advise the consumer on how to shift usage to more effective time periods where

energy cost is minimum.

1.8 Project Report Organization

The rest of the report has been organized in chapters as follows: Chapter 2 has reviewed related
works to identify the existing gaps to help in problem formulation. Chapter 3 has discussed the
methods used in previous works as well as the method used in this research. Chapter 4 has
discussed and analyzed the simulation results while chapter 5 has described the conclusions arrived

at and recommended some topics for future research.
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CHAPTER 2: LITERATURE REVIEW
This chapter has reviewed nine past research works in the area of smart grids and energy
management in homes and industries. The contributions made in each of the reviewed works and
the methods used have been highlighted. The existing gaps have been identified to inform the
formulation of a problem for the research. A comparison has also been made between the existing

model of EMS and the proposed one.

2.1 Literature Review

Y. Nozaki et al [2] proposed a Data Center Energy Management System (DEMS) that jointly
optimized energy usage of all the available equipment in the facility including air-conditioning,
power feeding, and ICT systems. Power balance for all devices across different data centers was
ensured by combining the DEMS with cutting edge technologies such as cloud computing and
virtualization technology. The authors also discussed other energy management systems including
a Home Energy Management System (HEMS), a Building Energy Management System, (BEMS),
and a Community Energy Management System (CEMS). Tests run on each of these systems
yielded either a reduction in carbon dioxide emission or a considerable saving in energy. Two
standardization approaches to reduce EMS costs were demonstrated. With shared use of the
communication system, the energy cost was minimized whereas the International standardization
activities integrated various tasks to achieve the advantages of a smart grid. Experimental analysis

was done on a large scale micro grid and the test bed for network integration control system used.

The smart grid technologies discussed by Samad and Kiliccote included the use of micro grids,
direct load control, storage, cogeneration, and energy efficiency functionalities [3]. These authors
addressed in in-depth automated demand response (DR) as the standardization for communication
to achieve maximum production and energy efficiency. Both major production loads and support
loads were considered in determining the total industrial energy consumption that needed to be
optimized. The authors acknowledged the major role that consumers play in energy management
in homes, industries, and buildings following the increased integration of renewable energy
resources. It was established that an understanding of the rate structures in the electricity market
was crucial in peak load scheduling and management. Additionally, it was proven that automation
enabled a faster demand response where loads were used to maintain the grid’s balance in real

time. The use of a standard information model such as open automated demand response
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(openADR) was recommended to support demand side management activities. When designing
the automated DR system, only electrical loads were considered. However, in practical industrial
facilities there are several demand management opportunities that revolve around energy

generation and storage.

Collins et al. [4] came up with an energy monitoring and management system (EMMS) suitable
for improving energy efficiency, cost savings, and ecological profile in industries. The system

had several modules for in-operation machine detection (IMD), disaggregation and time of use
calculator (DTOUC), and a graphical user interface and operation scheduler (GUIOS). The
designed EMMS was best suited for the scheduling of operations to moderate energy consumption.
The DTOUC and GUIOS worked together to provide feedback after the taking of measurements
from a single reference point in the system. The GUIOS generated feedback to the operator through
the fuzzy inference system to ensure energy and cost savings. The size of a machine’s consumption
determined the potential cost saving. It was recommended to shift the time of use of the machines
to a more effective time period. Using the proposed system for a long time in energy intensive
industries resulted in significant savings in consumed energy and costs. A case study of a vehicle
testing facility was undertaken and the power disaggregation model simulated. The GUI scheduler
was used to schedule machine operations assuming that all processes are schedulable. In reality,

some production processes cannot be scheduled and have to be executed as the need arises.

Ogwumike et al. [5] performed scheduling and optimization of various residential loads
considering dynamic electricity prices. A day-ahead variable pricing technique was used to ensure
that minimum energy bill was attained. The operation of the smart appliances was subject to the
machine’s operational constraints and the consumer’s specific constraints. The scheduling of the
home appliances involved mathematical formulation of a constrained linear programming problem
solved using Mixed Integer Linear Programming (MILP) optimization technique simulated in
MATLAB/SIMULINK. The simulation model representing the residential loads had an intelligent
energy controller that monitored the appliances’ status and power consumption before
optimization. Considering, RTP and FTT, it was noted that optimal scheduling of appliances can
yield huge savings in energy. The proposed model mentioned the need to incorporate renewable
energy, solar, and an energy storage device for load balancing but did not proceed to implement

them.
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The authors in [6] introduced a generalized energy management scheme based on state task
network (STN) and considering DERs in an industrial facility. The optimal scheduling of
schedulable tasks (STs) and use of DERs was done based on a day ahead hourly electricity prices.
An objective function was formulated to minimize energy cost whereas several linear constraints
were encompassed to guarantee the operations of the processes. MILP was used to solve the
objective function. The designed system incorporated process, energy storage system (ESS) and
energy generation system (EGS) modeling and also gave the industrial facility the ability to sell
excess energy. The DR scheme was effective in maintaining a balance between electricity supply
and demand, improving the power system reliability, and reducing the energy costs. Additionally,
it enabled the consumers to shift their electricity usage from peak periods to off peak periods. The
authors assumed that changes in electricity prices and scheduling of STs only occurred at time

horizon interval boundaries.

Using the concept of a smart grid, a power management system with energy storage capability
suitable for an industry was developed in [7]. A three pronged approach was used, where a smart
grid power management system was first established using smart grid concepts. Secondly, a smart
EMS suitable for a coal mine was created to boost energy efficiency, increase the utilization of
renewable resources, and improve the reliability of the energy supplying system. The outcomes of
the prior stages were used to design the green and smart coal mine having an optimized energy
structure. Power quality was considered in the design to ensure that the power system was safe and
reliable hence guarantee the ultimate mining production. Other factors taken into account in the
system simulation included the control of distributed generation, reactive power compensation,
emergency power supply, and peak shaving. Systematic design and optimization was done using
energy 3R technology from the National Institute of Clean and Low Carbon Energy (NICLCE).
Zhou et al. [7] only addressed smart power management system based on hybrid energy storage
disregarding other aspects of power system operation including generation, transmission,

distribution, and end use on the consumer side.

M. Acone et al [8] developed an EMS for smart houses that optimized energy consumption and
electricity cost while ensuring the consumer’s comfort. Both the electrical and thermal loads were
taken into account in the optimization whereas the consumer’s comfort was ensured by

maintaining a steady balance between the in-house temperature and the electrical load usage. The
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operation of the EMS was also based on the user’s priorities and power tariff when shifting loads
to an appropriate time. MATLAB, Simulink and Stateflow were used to simulate the EMS model
with the outdoor temperature, set-point temperature, people’s presence and the windows state as
the inputs. Monte Carlo Simulation was used to compare between the normal and economy
scenarios. The authors assumed that lights and steady loads had fixed power consumption,
shiftable loads absorbed constant active power in a given work cycle and each appliance performed

a single work cycle daily. However, these assumptions are not guaranteed in real life scenarios.

The authors in [9] addressed the significance of adopting a smart grid for effective energy demand
management to overcome the problems facing the traditional electric grid. Smart home technology
was used to illustrate the role played by the smart grid in ensuring seamless integration of
renewable energy to satisfy the rapidly increasing energy demand. The smart homes utilized
Information and Communication Technology (ICT) to enable intelligent communication between
smart home appliances and smart meters via a home area network (HAN) thereby managing the
peak electric demand. These appliances communicated with the electric utility through the
advanced metering infrastructure of the smart meters and made intelligent decisions to shift loads
to off peak hours where the power tariff was lower thereby saving on cost. A case study of a
Puducherry single family home having two bedrooms, a hall and a kitchen was considered.
Mahmood et al. [9] failed to consider the technical challenges such as voltage regulation, flicker,
and harmonic distortion that are introduced into an existing power system following the integration

of renewable energy sources.

The idea of energy storage in prosumer based systems for both energy sharing and management
was introduced in [10]. The proposed scheme was highly effective for peak load management with
an aim of ensuring that the supply satisfies the demand. The efficacy of the model developed after
introducing the storage factor was tested by comparing its performance with that of other users
who had Renewable Energy Resources (RERs) of different capacities but lacked a storage system.
The implementation of the proposed scheme revealed that there was a higher reduction in the
shortage of energy for the system with energy storage than that of the one without ESS. The model
effectively minimized the demand-supply gap while considering the price of surplus energy.
Binary Integer Programming (BIP) was used for solving the objective function and MATLAB for

simulating the proposed model. The model was robust in load management but was not
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comprehensive since it offered only one tool for Demand Side Management (DSM), that is, the

use of the energy storage functionality. Table 2.1 gives a summary of the literature reviewed, their

key contributions, approaches used and their weaknesses.

Table 2.1: Summary of Literature Review

Reference | Contribution Method Used Weakness

[2] Proposed a standardization | Experimental Incorporated only one aspect of smart
approach with shared use of | analysis grids, that is, real time communication
communication system in EMSs to
reduce the overall energy cost

[3] Recommended the use of a standard | Theoretical Only electrical loads were considered
information model, (openADR), to | analysis when designing the automated DR
support demand side management system
activities

[4] Designed an EMMS for scheduling | Fuzzy inference | All processes in the vehicle testing
of operations to moderate energy | system facility were assumed to be schedulable
consumption by shifting times of which isn’t true in reality
usage

[5] Used a day-ahead variable pricing | Mixed Integer | The need to incorporate renewable
technique to ensure that minimum | Linear energy, solar, and an energy storage
energy bill was attained in a | Programming device for load balancing was mentioned
residential set up but not implemented.

[6] Proposed a DR scheme based on | Mixed Integer | Changes in electricity prices and
day ahead hourly prices to balance | Linear scheduling of STs were assumed to only
supply and demand, improve | Programming occur at time horizon interval boundaries
reliability, and reduce cost

[7] Developed a smart grid power | Case study of a | The system was only based on hybrid
management system with energy | coal mine energy storage disregarding other aspects
storage capability of power system operation including

generation, transmission, distribution,
and end use

[8] Designed an EMS for smart houses | Monte Carlo | The assumption that
to optimize energy consumption | Simulation each appliance performed
and cost taking into account the a single work cycle daily is not
comfort of the user guaranteed in real life

[9] Developed a system for energy | Case study None of the technical challenges that are
demand management in smart introduced into an existing power system
homes where ICT is integrated to following the integration
facilitate communication between of renewable energy sources was
the smart appliances and smart addressed
meters.

[10] Introduced the concept of energy | Binary Integer | Only one tool for DSM, that is,
storage in prosumer based systems | Programming use of energy storage functionality was

explored

This Designed a generalized EMS that | Long Short Term | Historical electricity prices and demand

Project employs DSM and can be | Memory Recurrent | were used as inputs to the LSTM
customized for utilization in many | Neural Network network overlooking other factors that
industrial set ups. would influence electricity prices

including information on public holidays
and weather patterns.
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2.2 Research Gap

Previous research works have focused on specific applications of energy management systems
such as homes, data centers, buildings, and communities. The reviewed research works have not
fully leveraged aspects of the smart grid in designing energy management schemes. The approach
taken involves installing energy meters on each equipment and doing offline computations as part
of the process of load scheduling and energy optimization. Additionally, no specific algorithm for
DSM is given. Energy is one of the top operating expenses in an industry but its management is
often overlooked. In most developing countries, the energy demand-supply gap continues to widen
each day due to population, economic, and industrial growth. A few authors have addressed energy
management in specific industries by considering only the electrical loads. There is need for
sustainable energy use in industries to ensure minimum energy costs are achieved and

environmental ramifications mitigated.

This research work has integrated the ability of smart grids to process and analyze data as well as
engage consumers to design an EMS that optimizes energy use in the industry. The collected
historical data on electricity prices and demand has been used within the LSTM-RNN forecasting
model. The type and number of loads in an industry have been considered when generating a
suitable schedule to utilize off peak hours. Unlike other research works that use actual prices to
perform the scheduling, a comparison was also made using both actual and predicted prices. The
resulting cost saving when predicted prices were used was computed hence making it clear to the
consumer the amount that could be saved by adopting the recommended schedule. In summary,
the EMS has effectively monitored the details of energy consumption, analyzed the data, and
enabled the consumer to make decisions to manage usage, minimize energy cost, and maximize
profits. Figures 2.1a) and 2.1b) represent the EMS architectures of the existing and the proposed

model respectively.

11
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Industrial Loads {(Machines and appliances)

h 4
Determination of Machine Status

¥
Power Measurements and Consumption Profile

h 4
GUI for Load Scheduling and Optimization

User Input

h 4

Figure 2.1a: EMS Architecture of Existing Model [4]

Load Demand

¥

Data Preprocessing % Electricity Prices

h 4

Forecasting Model

h 4
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2.3 Problem Formulation

The smart grid DSM programs give consumers the opportunity to manage and control their energy
consumption reliably. An example of such a DSM program is load shifting which enables users to
reduce their energy usage during peak periods by shifting non-critical loads to off-peak hours. This
also reduces grid congestion and the probability of occurrence of power outages by improving the
power system’s reliability. In this research, a forecasting model has been developed using a
machine learning technique. The inputs to the model were historical data on hourly electricity
prices and demand. The predicted prices were used to determine suitable load schedules for the
industry ensuring that non-shiftable loads were prioritized and the power balance constraint was
satisfied. The cost of energy consumed was calculated using both the actual and predicted
electricity prices before computing the potential saving. The economic viability of implementing
the EMS was also assessed using various economic tools. This research has addressed the energy
cost reduction problem from multiple dimensions that is, by minimizing the energy consumption

and cost as well as evaluating the economic feasibility of implementing the EMS.

2.3.1 Forecasting and Load Scheduling Model

The collected time series data was refined in preparation for performing demand and price
forecasting. RNNs were used to model the time series to ensure that accurate predictions were
made. Specifically, LSTM networks were used to learn order dependence in the given sequence.
Once accurate forecasting was achieved, the predicted electricity prices were used to perform load

scheduling.

The main objective when training the machine learning model was to minimize the loss function.
The mean squared error (MSE) loss estimator was chosen due to its suitability in determining the
accuracy of the model when dealing with regression problems. MSE was selected over mean
absolute error due to its ability to converge even with fixed learning rate and its sensitivity to
outliers in the dataset. The magnitude of loss value was directly proportional to the gradient of
MSE loss and this gradient reduced as the loss approached zero. A good model should have MSE
values closer to zero implying that the probability of the model to make accurate predictions is
high. The number of epochs in the LSTM networks was increased until minimum MSE was

obtained. The MSE was computed using the formula in equation (2.1):
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1 1
MSE = " =1 ef = t=1(V _ft)z (2.1)

Where n is the size of the test set, e, is the forecast error, y, is the actual value, and f; is the

forecasted value.

The load scheduling algorithm considered the predicted electricity prices and load type to generate

suitable operating times for non-priority loads away from peak periods.

2.3.2 Possible Load Combinations

The number of possible load combinations was determined using a pseudocode written in Python.
Given n number of loads, the possible combinations was given by an array of binary groupings
with a count from 0 to 2" — 1 with n being the total number of loads [4]. The viable load
combinations ensured that the supply met the demand at all times and all priority loads were on.
A unit commitment schedule was generated showing all the possible machine combinations and

the resulting energy cost.

2.3.3 Objective Energy Cost Function
Upon scheduling of the loads, the known power consumption rates and operation times of the
active machines were used to determine the energy cost using equation (2.2) which was the overall

formulation for computing the energy cost.

F(P) = Yi(C Xt xXP) (2.2)
Where:

F(P;) = Total cost of electricity consumed by the i'" active machine ($)

C, = Hourly electricity price ($/MWh)

t = Running time of each machine (h)

P; = Power consumed by the i active machine (MW)

n = Number of machines
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2.3.4 Power Balance Constraint
The maximum power consumption for all the machines balanced the power supplied by the
generators and/or utility grid at any given instant satisfying the power balance constraint given in

equation (2.3a).

Pys = (Xt P) + P, (2.3a)
Where

Py = Peak power supplied

P; = Power consumed by the i*" active machine (MW)

P, = Power loss

Considering a region with hundreds of industries that lacked EMSs and shared a distribution grid,
the losses in each company would result in a huge power demand hence a significant impact on
the grid. However, taking the case of a single industry within this zone, the impact of losses on the
grid could be considered negligible. Equation (2.3a) was modified as given in equation (2.3b) for

a system with negligible power loss.

Pgs = (i1 PY) (2.3b)

The non-priority loads were scheduled to take advantage of lower electricity prices ensuring that

the constraint in equation (2.3c) was met.
Yi=1 Pv < Pgs — XikZ1 Pry (2.3¢c)

Where Py is the power consumed by each non-priority load and P,, is the power consumed by

each priority load.

2.3.5 Economic Viability

The economic feasibility of investing in the industrial EMS was evaluated using CBA. The costs
which included the staff time utilized in setting up, implementing and conducting trainings on the
use of the system were estimated. Others costs included that of purchasing additional metering

tools and hiring experts to actualize the installation and use of the EMS. On the other hand, the
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energy and non-energy benefits of the EMS were also determined. The results of the CBA were
evaluated using simple payback period (PBP) and return on investment (ROI) computation using

equations (2.4) and (2.5) respectively.

Initial investement cost in the EMS (2 4)

PBP =

Annual energy cost saving

1
ROI = — (2.5)

2.4 Chapter Conclusion

The reviewed research works addressed energy management in different applications including
homes, data centers and specific industries. Various aspects of the smart grid such as remote
control, consumer engagement, and data processing ability are not fully utilized in designing the
EMS. This project has incorporated these aspects in devising an energy management strategy for
shifting usage of loads to more effective TOU. It has also integrated a forecasting and load
scheduling model to generate a unit commitment schedule with a huge potential of energy cost
saving in energy intensive industries. Both shiftable and non-shiftable loads have been taken into

consideration.
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CHAPTER 3: METHODOLOGY
This chapter has an overview of the main models of industrial loads in existence and the
optimization methods for energy management in smart grids. It has also reviewed the methods
used in past researches giving their strengths and weaknesses. A description of LSTM-RNN
technique used in this research has been given as well and its key parameters mapped to the
forecasting problem. A flowchart has been used to summarize the steps involved in developing the

EMS. The simulation and validation tools have also been highlighted in this chapter.

3.1 Scheduling of Industrial Loads
Mathematical modelling is mainly used when scheduling industrial loads. The scheduling
acknowledges the machines’ interdependencies in various production segments and lines. There

are two main types of models for industrial power loads namely:

1) Single Objective Model: In this model, the objective function minimizes the overall cost of
energy by employing load rescheduling to satisfy the existing industry constraints such as
power balance, production process, energy storage and generation constraints.

i) Multi-Objective Model: This model has the ability to evaluate problems from multiple
dimensions such as lifetime assessment and computation of emission levels. The
scheduling approaches used for multi-objective models can be based on optimality theory

(single person decision) or game theory (multiple decision makers) [11].

3.2 Optimization Methods for Energy Management in Smart Grids

Optimization is usually done to determine the best possible solution to a problem in a case where
there are several contradictory considerations. There exist various optimization techniques that aid
in attaining optimal solutions for energy management in smart grids. These methods are broadly

classified into three as described in [12]:

i)  Rule-based techniques: These methods provide reasonable solutions based on the existing
conditions of a system and decision trees are normally used for defining specific cases
under investigation.

i)  Optimization based techniques: These techniques utilize mathematical formulations that
are either maximized or minimized to obtain the best local or global solutions while

satisfying the necessary constraints [12]. Exact mathematical or approximate methods are
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used depending on the complexity of the formulated problem. The exact methods can either

be linear or non-linear depending on the nature of the objective function and the constraints.

Hybrid techniques: These methods combine a number of optimization algorithms so that

the output is based on the preeminent qualities of the combined techniques. The goal of

hybrid techniques is to capitalize on the pros of each algorithm used to improve the quality

of the solution while speeding up convergence. Hybrid methods are better placed in dealing

with complicated problems since they overcome limitations of other optimization

techniques when used solely.

Optimization techniques for energy
management in smart grids

Figure 3.1 summarizes the main techniques for optimizing energy management in smart grids.

l ¥ ']r
Rule-based techniques Optimization-based techniques Hybrid techniques
Exact mathematical methods Approximate methods
Linear models Monlineer modsls Heuristics hietahauristics . q'm'ﬁﬂal
intalligence
1 I I ]

Linear Quadratic Constroctive Trajectory Fuled-
programming (LEY [rosramming algorithms methods bazad

- Integer linear Convesx Local search Population-bazad |, Agent-
programming (ILEF) progremming algorithms methods bazad

- Alixed integer linear MNoncomvex L Expert
programming (MILF) Programmming Systems

Figure 3.1: Major Techniques for Optimizing Energy Management in Smart Grids [12]

3.3 Review of Previous Methods in EMS

The methods used in the research works reviewed in chapter 2 are fuzzy inference system, Monte

Carlo simulation, binary integer programming, and MILP. This section has addressed the uses of

these methods, their strengths and weaknesses.
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3.3.1 Fuzzy Inference System (FIS)

The fuzzy system has been employed in [4] to compute the optimal scheduling points to reduce
consumption in designing an energy management and monitoring system. This intelligent
computational method gives outputs based on the given inputs and the fuzzy inference rules. Its

working principle is based on fuzzy logic that is similar to human reasoning.

Strengths: Fuzzy logic is simple to use as it only requires a set of input and output variables
together with an assortment of fuzzy rules. The method is also quite flexible even when dealing

with inaccurate data.

Weakness: There is no much clarity for defining the fuzzy rules hence can lead to inaccurate results

if the rules are not sufficiently expressive.

3.3.2 Mixed Integer Linear Programming (MILP)

MILP was used in [5] to schedule and optimize residential loads under a day-ahead variable pricing
tool and in [6] to solve the constrained linear programming problem for scheduling of the home
appliances involved. MILP is a form of constraint programming with integer or real-valued
domains and requiring linear constraints and objective functions. This method is applicable where

the decision variables are either discrete or continuous.

Strengths: MILP has excellent performance in solving both single and multi-objective models with
bounds and linear constraints. Various mathematical solvers such as XPRESS, MATLAB,
CPLEX, and Gurobi exist for use with MILP to optimize objective functions. These mathematical
solvers integrate the latest unconventional algorithms and exhibit exceptional performances on
optimization. Being a constrained programming technique, it’s easy to use and simple to
understand. Regardless of the limitation by the constraints, MILP is effective in modeling and

solving both theoretical and practical optimization problems.

Weakness: However, MILP as a constrained programming tool is unsuitable in cases with several

possibilities that cannot fit into a linear programming formula.

3.3.3 Monte Carlo Simulation (MCYS)
This method has been applied in [8] to optimize the energy consumption and cost in smart houses

ensuring the comfort of the users. Monte Carlo simulation is a computational algorithm majorly
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used in prediction and forecasting models to assess the effects of risks and uncertainties when
working with random variables. This technique uses repetitive and random sampling to yield

statistical results. The fundamental concept is to use randomness to solve deterministic problems.

Strength: This optimization tool is suitable in solving numerical integration and probability
distribution functions. It is highly effective in tackling estimation problems, doing accurate

forecasting, and performing risk analysis.

Weakness: Monte Carlo simulation has an overreliance on the inputs hence reasonable assumptions

have to be made to obtain quality outputs.

3.3.4 Binary Integer Programming (BIP)
BIP has been used in [10] to solve the objective function for prosumer based energy sharing and
management system. This method is preferred in solving binary problems with linear inequalities

where each variable can take either the value 0 or 1.

Strengths: Integer programming is suitable for modelling any variable or constraint to be used in
a linear program but cannot be input directly in its original form. BIP improves the modelling

capability since variables take on integer values that are realistic and flexible.

Weaknesses: BIP has a restrictive parameter set and is not easy to model or solve compared to

linear programs hence unsuitable for applications with widely varying conditions.

3.4 Long Short Term Memory Technique

The method used for forecasting the electricity prices and demand is Long Short Term Memory
(LSTM) which is a Recurrent Neural Network (RNN) capable of learning long sequences with
long time lags [13]. Unlike Feed Forward Networks that do not model memory, RNNs store
activations from each time step in the internal state of the network to provide a temporal memory
thereby remembering previous inputs. This capability makes RNNs better suited for capturing
information from sequences and time series. A simple RNN learns using back propagation through

time and experiences the vanishing gradient problem when tackling long term dependencies.

The pioneers of the use of LSTM were Hochreiter and Schmidhuber who devised the method to
solve the problem of vanishing gradient by controlling the cell states using various gates [14]. The

hidden layers in LSTM have memory blocks with four parts namely:
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i) Input gate which controls the activations that enter the memory cell.
i)  Forget gate which assists the network in resetting the memory cells by forgetting past
inputs.
iii)  Output gate which determines the output to pass on to successive networks and the ones to
be filtered.

iv)  Self-connected memory cell

The information at different states is regulated by the inputs and the hidden states generated from
the previous steps after sigmoid or tanh activations within the neural network layers.
Backpropagation through time (BPPT) is the training algorithm used in LSTM [13]. Equations
(3.1) to (3.5) summarize the mathematical functions of the gates which perform the task of limiting
the information passing through the memory cell. Figure 3.2 shows the architecture of LSTM

memory block.

Figure 3.2: Architecture of LSTM memory block [13]

i, = sigmoid (Wy;xy + Wyihe_1 + by) (3.2)
fe = sigmoid (Wyrx; + Wyshe_1 + by) (3.2
or = sigmoid Wyox¢ + Wyohi_q + by) (3.3)
Ct = ft-Cr_q + ig. tanh(Wyexy + Wyche_q1 + be) (3.4)
h; = 0. tanh(c;) (3.5)
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Where i, is the input gate, f; is the forget gate, o, Is the output gate, c; denotes the cell state
generated as an additional variable for the cell, x; is the input, h;,_; is the hidden state in the
previous step, W is the weight matrix and b is the biases to each layer. The symbol . stands for the

operation of element-wise multiplication.
In this research, there were 3 main steps followed in designing the prediction model:

i)  Data preprocessing
i) Building the RNN

iii)  Making the prediction and visualization

The LSTM model required that the times series data was within the scale of the network’s
activation function hence the need to rescale the values to between -1 and 1 using MinMaxScaler
in Python. The single input sample data was then reshaped into a 3D array since LSTM requires a
three dimensional input with [samples, time steps, features]. Stacked LSTM with four layers was
used in this research work where each hidden layer had 50 LSTM units. The model was fit using
the efficient Adam version of stochastic gradient descent and optimized using the mean squared
error loss function. Once the model was defined, it was fit on the training dataset before being used

to make predictions.
3.5 Mapping the Method to the Problem

LSTM was used in this research work to forecast the hourly electricity prices and demand. Some

of the keys aspects of the LSTM forecasting model are highlighted:

e Layers — The number of layers influence the learning capacity of the model. It is important
to use additional layers and have different numbers of neurons in each to improve
hierarchical learning.

e Features and time steps — These define the shape of the input by specifying what the model
expects for each sample. The use of lag observations as input features and time steps can
improve the predictive capability of the model.

e Batch size — This is the number of training examples used in an iteration. The batch size

determines the level of manipulation required for both the training and test datasets.

22



Smart Grid Energy Management System for Industrial Applications F56/12539/2018

e Optimization algorithm — There are several optimization algorithms that tend to either
accelerate or decelerate the learning process to improve the configuration’s efficiency.

e Weight regularization — This is done to control the rate of learning and reduce overfitting
of the networks.

e Dropout — This is a regularization method that slows down learning within the recurrent
LSTM networks.

e Loss function - This is an evaluation method for performance of a specific algorithm in
modelling the given data. Optimization is done to enable the loss function learn how to
reduce the prediction error.

LSTM parameters were mapped to the forecasting problem as summarized in Table 3.1.

Table 3.1: Parameter Mapping for the Forecasting Problem

LSTM Parameter [Mapping to the Forecasting Problem

Input Historical values of electricity price and demand

Output Predicted values of electricity price and demand

Bias Error value being fed back to the input of the forecasting model
Gates Factors that regulate the variation of electricity price and demand

3.6 Design of the Proposed EMS
The EMS has enabled the industrial consumer to make a suitable selection of the operating hours
to ensure optimal energy cost. This has been done taking into consideration the predicted hourly

electricity prices. Figure 3.3 shows the key steps involved in designing the proposed EMS.
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Figure 3.3: Flowchart showing the steps followed in developing the EMS
3.7 Simulation and Validation Tools
The time series forecasting model was built using LSTM-RNN in Python environment. Adam
optimization algorithm which is an improved version of stochastic gradient descent was used to
update the network weights iterative based in training data within the LSTM model. This

optimization technique is easy to implement, has high computational efficiency, and is suitable for
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solving complex problems with many parameters. The predicted hourly electricity prices were
used to advise the consumer on suitable operation times that would yield minimum energy cost.
Based on the consumer’s choice and priority of the loads, a given operation schedule was selected
and minimum total energy consumed obtained. The effectiveness of the designed model was tested
using an IEEE 6 generator 30 bus system with 20 loads. Figure 3.4 represents the IEEE 30 bus
system [15].

29-TL 27 281
26 25
so-o+

Figure 3.4: IEEE 6 generator 30 bus system
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CHAPTER 4: RESULTS, DISCUSSION AND ANALYSIS
This chapter presents the simulation results, discussion, and analysis to inform the conclusions.
Graphs were drawn to visualize the gathered data on electricity prices and demand in Texas. Values
obtained from the designed forecasting model were compared to the actual data. A unit
commitment schedule was generated showing machine combinations during each hour and the
potential saving if the recommended schedule was adopted. The economic viability of the EMS

was also determined using cost benefit analysis, payback period and return on investment.

Graphs of price variation against time were plotted for each of the zones and attached in Appendix
B. The visualizations showed that price variation for each zone was almost similar hence only one
zone was selected for further data analysis and modelling. Zone 3, which is Houston was selected
because it had the largest population in the state of Texas. Figure 4.1 shows the electricity price

variation for zone 3 over the duration of six months.

According to Figure 4.1, it is evident that the electricity prices were extremely higher than normal
on a few occasions in the months of August, September, and the beginning of October 2019. In
August, which is part of summer, the prices were above $9,000/MWh for some hours due to the
heat wave that was experienced in the state leading to huge energy consumption as most consumers
turned on their air conditioners. A state of emergency was declared by the energy regulatory body,
the Electric Reliability Council of Texas (ERCOT), requesting consumers to conserve energy and
power plants to ramp up for the supply to meet the demand which was over 70,000MW. The
process of modelling the load scheduling algorithm was started by visualizing how the average
monthly electricity prices and demand varied with time for the 6 months with August being month
0 (Figure 4.2).
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Figure 4.1: Electricity Price Variation for Zone 3
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Figure 4.2: Comparison of Average Monthly Electricity Demand and Prices in Zone 3
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According to Figure 4.2, demand was directly proportional to price such that at a high demand,
the electricity price was also high. For instance, in the month of August 2019 (month 0), demand
was over 55,000 MW resulting in the highest average monthly price of over $120/MWh. Figure
4.2 showed that there existed a positive correlation between the electricity price and power demand
hence load scheduling could be done based on any one of the parameters. A forecasting model
was developed to predict the electricity prices which were then used to recommend suitable

operation schedules.

4.1 LSTM Forecasting Model

Long Short Term Memory (LSTM) networks which are recurrent neural networks that have the
capability of learning order dependence were used to model the forecasting algorithm. Data
collected from 1% August 2019 to 31 December 2019, formed 80% of the collected data, and was
used for training the LSTM model while the remaining 20% (from 1 January to 2" February
2020) was used to test the model.

Table 4.1 gives the actual and predicted hourly demand and electricity prices for 20" January 2020
which was taken as the sample day. These results showed that the lowest actual demand of
36,990.80MW occurred at 1 a.m. This was mainly because of the few industrial, business, and
economic activities that were undertaken at that time. Most people in homes are usually asleep by
that time as well. However, there was a notable increase in the actual demand from 38850.34MW
to 46996.48MW between 4a.m. and 7a.m. which are the hours where most people wake up and
businesses begin to operate again. Overall, demand was higher in the morning hours, up to 10 a.m.
compared to the afternoons. Later in the evening, between 5p.m. to 8p.m., the demand increased
and could be justified by the increase in activities within residential areas as people get back from
work. For the entire sample day, the highest hourly actual electricity cost of 19.10$/MWh was
incurred between 6p.m. and 7p.m. when demand was 42,227.32MW whereas the least price of
15.91 $/MWh occurred between 11p.m. and midnight when demand was 38637.67MW. The
percentage difference between the actual and predicted values was also computed and given in
Table 4.1. For the demand, the percentage difference between the actual and forecasted values

ranged between 0.06 and 3.08 while for the price, it ranged between 0.89 and 14.01.
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The results obtained for the entire test period were used to plot the graph in Figure 4.3 comparing
the actual and predicted hourly demand values. According to Figure 4.3, the machine learned the
pattern of variation of the demand and predicted values that closely matched the actual demand.
This was achieved as the number of epochs in the LSTM model was increased from 50 to 150
when compiling the RNN thereby reducing the mean squared error loss from 9.5936*10* to
5.4008*10.

Figure 4.4 compares the actual and predicted hourly electricity prices. It is evident that the machine
learned the pattern in the time series data given in the training set and used that pattern to predict
the values in the test set. However, there were negative prices at certain instances implying that
the supply was greater than the demand at those times and the utility was actually paying the
consumers to use the energy. As the number of epochs was increased, the mean squared error loss
reduced from 1.2395*10* at 50 epochs to 1.0490*10* at 150 epochs.

Both Figures 4.3 and 4.4 prove that the designed model adequately learnt the pattern of the given
time series data and suffices in making sequence predictions. The hourly predicted prices were

then used to generate a suitable operating schedule for the available loads away from peak periods.
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Comparison of Actual and Predicted Hourly Demand for January 2020
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Figure 4.3: Comparison of Actual and Predicted Hourly Demand
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Comparison of Hourly Actual and Predicted Electricity Prices for January 2020
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Figure 4.4: Comparison of Hourly Actual and Predicted Electricity Prices
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Table 4.1: Comparison of actual and predicted hourly demand and electricity prices for 20th

January 2020

Time | Actual Predicted | % Difference in | Actual Predicted | %  Difference in

Demand | Demand | Actual and | Price Price Actual and Predicted

(MW) (MW) Predicted Demand | ($/MWh) | ($/MWh) | Price
0:00 | 37376.23 | 37253.25 | 0.33 16.27 15.86 2.51
1:00 | 36990.80 | 36825.34 | 0.45 15.83 14.77 6.71
2:00 | 37096.04 | 36956.25 | 0.38 15.45 14.58 5.59
3:00 |37627.19 | 37648.26 | 0.06 15.63 14.27 8.67
4:00 | 38850.34 | 38651.77 | 0.51 15.22 14.77 2.95
5:00 41348.07 | 40411.59 | 2.26 16.51 14.20 14.01
6:00 | 44660.07 | 43354.40 | 2.92 17.45 16.14 7.52
7:00 |46996.48 | 45943.34 | 2.24 18.29 16.89 7.61
8:00 |46965.85 | 46770.92 | 0.42 18.02 17.60 2.32
9:00 | 45644.25 | 45511.32 | 0.29 18.10 16.77 7.31
10:00 | 44143.57 | 44078.36 | 0.15 17.35 16.91 2.49
11:00 | 42273.42 | 42606.68 | 0.79 16.27 15.85 2.57
12:00 | 40709.94 | 40473.54 | 0.58 15.65 14.72 5.93
13:00 | 39559.74 | 39508.46 | 0.13 15.61 14.35 8.085
14:00 | 38635.64 | 38745.38 | 0.28 15.47 14.65 5.33
15:00 | 38132.82 | 38274.52 | 0.37 15.20 14.55 4.27
16:00 | 38199.35 | 38481.92 | 0.74 15.60 14.26 8.57
17:00 | 39388.85 | 39067.95 | 0.81 17.31 14.91 13.85
18:00 | 42227.32 | 40925.42 | 3.08 19.10 17.11 10.42
19:00 | 42960.61 | 43917.34 | 2.23 18.66 18.82 0.89
20:00 | 43075.2 | 41863.78 | 2.81 17.84 17.35 2.76
21:00 | 42206.17 | 42687.68 | 1.14 17.27 16.25 5.90
22:00 | 40406.11 | 40680.94 | 0.68 17.12 15.77 7.90
23:00 | 38637.67 | 38859.29 | 0.57 14.11 15.91 12.75
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4.2 Load Scheduling Using Predicted Electricity Prices

The hourly predicted prices were used to recommend suitable operating times that would help the
consumer reduce energy consumption as well as cost. The decision to use the electricity prices for
scheduling was made upon establishing the relationship between the electricity price and demand
according to Figure 4.2. As a result, load scheduling was done based on any one parameter either

price or demand since the same effect was observed.

A chart was generated showing all the active loads during each hour and the energy cost incurred
with and without an EMS using the original schedule as well as the proposed schedule. It was upon
the user to decide on whether to adopt the recommended schedule or not. The effectiveness of the
operating schedule given was tested on an industrial system modeled based on IEEE 30 bus system.
The system had 30 buses, 6 generators, and 20 loads with the supply and demand side parameters

summarized in Tables 4.2 and 4.3 respectively.

Table 4.2: Supply Side Parameters

Busbar Generator (Maximum Power,
MW)

1 200

2 80

13 50

22 35

23 30

27 40

Total supply | 435
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Table 4.3: Demand Side Parameters

Busbar | Unit Type of Load | Capacity (MW)
2 A Priority 20
3 B Non-priority 25
4 C Priority 36
7 D Priority 19
8 E Non-priority 13
10 F Priority 22
12 G Priority 14
14 H Non-priority 37
15 I Priority 31
16 J Non-priority 22
17 K Non-priority 26
18 L Priority 17
19 M Priority 12
20 N Non-priority 30
21 @) Priority 10
23 P Priority 24
24 Q Non-priority 28
26 R Priority 21
29 S Non-priority 33
30 T Priority 45
Total Demand 485

The industrial system had 12 priority loads including key production machines and 8 non-priority
loads. At every instance, scheduling was done such that all priority loads were on, the power
balance constraint was met, and the non-priority loads took advantage of the off-peak hours to
minimize the energy cost. Considering the 8 non-priority loads, there were 256 possible
combinations (Table in Appendix C) out of which 17 of them led to violation of the power balance
constraint. Using the 239 viable load combinations, scheduling was done taking advantage of
lower hourly electricity prices to operate non-priority loads that consumed high power. A unit
commitment chart was generated to suggest suitable operation times for the consumer to utilize
the available loads. Tables 4.4a) and 4.4b) give the original and recommended schedule
respectively, with the committed units on the sample day (20" January 2020) as well as the energy

cost incurred when using actual and predicted electricity prices.
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Table 4.4a): Unit Commitment Original Schedule for 20th January 2020

Hourly | Hourly

Energy | Energy

Unit Commitment - Original Schedule |consumption|  Total Actual |Predicted| Cost Cost

of Non-  |Consumption|Electricity |[Electricity| using using

Priority by all Loads Price Price Actual [ Predicte

Time |[ABCDEFGHI J KLMNOPQRST|Loads (MW) (MW) ($/MWh) | ($/MWh) | Prices ($) | d Prices
12:0000AM|11111110110110111101 176 447 16.27 15.86| 7273.81| 7091.02
100000AM|10111110111110111111 167 438 15.83 14.77)  6932.45] 6467.42
20000AM |11110111110111111101 163 434 15.45 14.58| 6703.13| 6328.10
30000AM 10110111 101111111111 162 433 15.63 14.27| 6767.79| 6180.76
40000AM(11111110111111110101 161 432 15.22 1477  6576.12] 6381.81
50000AM|10111111110111111111 160 431 16.51 14.20| 7115.81] 6118.72
60000AM|10110111100111110101 159 430 17.45 16.14|  7503.50| 6939.61
700000AM|10110110100110111101 159 430 18.29 16.89| 7862.55| 7264.51
80000AM|10111110100110110101 158 429 18.02 17.60] 7730.58| 7551.16
90000AM |11111110100110110101 156 427 18.10 16.77|  7726.57| 7161.64
10:0000AM[1011011010111011010 1 156 427 17.35 16.91| 7406.32| 7221.87
11:0000AM|1111111010111111010 1 155 426 16.27 15.85| 6928.89| 6751.11
12:0000PM[1 1111111 101110111101 155 426 15.65 14.72| 6664.77| 6269.73
100000PM(11111110110111111111 154 425 15.61 14.35| 6634.25| 6098.32
200000PM (11111111100110111111 153 424 15.47 14.65| 6560.34| 6210.79
30000PM (11110111 110111110111 153 424 15.20 1455 6444.80] 6169.42
40000PM|11111111111110110111 152 423 15.60 14.26| 6596.69| 6031.47
50000PM (10111111 100111111101 151 422 17.31 1491 7305.88| 6293.85
6:00:00PM [1111011010011011010 1 151 422 19.10 17.11| 8061.26| 7221.02
70000PM (1011011010011011010 1 151 422 18.66 18.82| 7872.41] 7942.19
80000PM (10110110110110110101 150 421 17.84 17.35|  7509.59| 7302.61
900:00PM [10110110101111110101 149 420 17.27 16.25| 7251.30| 6823.64
10:0000PM|11111111101110110101 149 420 17.12 15.77)  7190.40| 6622.45
11:0000PM[11110110110110110111 148 419 14.11 15.90| 5910.00| 6663.48
Total Energy Cost 170529.17(161106.69
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Table 4.4b): Unit Commitment Proposed Schedule for 20th January 2020

Hourly Hourly

) ) Consumption Total Actual | Predicted| Energy Energy

Unit Cammitment - Proposed Schedule of Non-  |Consumption|Electricity | Electricity | Cost using |Cost using

Priority | by all Loads | Price Price Actual | Predicted

Time ABCDEFGHIJKLMNOP QRS T|Loads (MW)| (MW) ($/MWh) | ($/MWh) | Prices ($) | Prices ($)
120000AM|1 1111110110110111101 88 359 16.27 15.86 5841.83 5695.02
10000AM|1 011111011111 0111111 122 393 15.83 14.77 6220.21 5802.96
20000AM|11110111110111111101 142 413 15.45 14.58 6378.79 6021.90
30000AM|1 011011110111 1111111 154 425 15.63 14.27 6642.75 6066.57
40000AM(|11111110111111110101 116 387 15.22 14.77 5891.11 5717.04
50000AM|1 0111111110121 1111111 163 434 16.51 14.20 7165.34 6161.31
60000AM|1 011011110011 1110101 67 338 17.45 16.14 5898.10 5454.85
70000AM|1 0110110100110111101 28 299 18.29 16.89 5467.22 5051.37
80000AM|10111110100110110101 13 284 18.02 17.60 5117.68 4998.90
90000AM|11111110100110110101 38 309 18.10 16.77 5591.36 5182.54
1000000AM|1 011011010111 0110101 26 297 17.35 16.91 5151.47 5023.17
110000AM|1 111111010111 1110101 94 365 16.27 15.85 5936.73 5784.40
120000PM|1 1121111110111 0111101 129 400 15.65 14.72 6258.00 5887.07
10000PM |1 1112111011011 1111111 151 422 15.61 14.35 6587.42 6055.27
20000PM|11111111100110111111 136 407 15.47 14.65 6297.31 5961.78
300000PM |1 1110111110111110111 147 418 15.20 14.55 6353.60 6082.12
40000PM |1 1211111111111 0110111 156 427 15.60 14.26 6659.07 6088.50
50000PM |1 011111110011 1111101 108 379 17.31 14.91 6561.44 5652.53
6:0000PM|11110110100110110101 25 296 19.10 17.11 5654.34 5064.98
70000PM (1 01 10110100110110101 0 271 18.66 18.82 5055.51 5100.32
80000PM |1 0110110110110110101 22 293 17.84 17.35 5226.39 5082.34
90000PM |1 011011010111 1110101 56 327 17.27 16.25 5645.66 5312.69
100000PM|1 1111121110111 0110101 101 372 17.12 15.77 6368.64 5865.60
110000PM|1 111011011011 0110111 80 351 14.11 15.90 4950.86 5582.06
Total Energy Cost 142920.77| 134695.30

Potential saving upon implementing EMS 8205.47

The results in Tables 4.4a) and 4.4b) were used to compare the total daily energy cost using the

original and the proposed schedules as summarized in Table 4.4c).
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Table 4.4c: Comparison of Total Energy Cost using the Original and Proposed Schedules

Total Daily Energy | Total Daily Energy
Cost Using Actual | Cost Using
Prices Predicted Prices

Original schedule 170529.17 161106.69

Proposed schedule 142920.77 134695.30

Cost saving achieved | 27608.40 26411.40

using proposed

schedule

% cost saving 16.19 16.39

Table 4.4c shows that the proposed schedule yielded approximately 16% energy cost saving daily
whether the actual or predicted hourly electricity prices were used in performing the load
scheduling. Based on the analysis in Table 4.4b, adopting the recommended schedule yielded a
potential energy cost saving of $ 8225.47 on that sample day assuming that the industry operated
for the entire 24 hours. If each month has 30 working days and each day has a similar energy cost
saving, the annual energy cost savings is computed as follows:

$8225.47 N 30 days N 12 months
day month year

Annual energy cost saving = = $2961169.20 per annum

The annual energy cost saving is $2,961,169.20 which is a huge cost that industries can save on if

they put in place an industrial EMS.

The load profile for the sample day before and after load scheduling was also plotted in Figure 4.5.
It was noted that the scheduling distributed the load in a manner that ensured the peak demand
occurred at off-peak hours where electricity prices were minimum. Upon load scheduling, a peak
demand of 425 MW was experienced at 3 a.m. when the hourly electricity price was $14.27/MWh
and another peak demand of 434 MW was experienced at 5 a.m. when the price was least,
$14.20/MWh. The low electricity prices during the hours after midnight were attributed to the least
cost of generation at that time since consumption was originally low thus disengaging high cost

generation such as thermal units.
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Comparison of Load Profile before and after Load
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Figure 4.5: Comparison of Load Profile before and after Scheduling

4.3 Economic Viability of an Industrial EMS

The economic analysis of investing in an industrial EMS was done using the cost benefit analysis,

payback period, and return on investment.

4.3.1 Cost Benefit Analysis

There were various costs incurred when implementing an EMS. Some of the categories of cost
included that of hiring external experts to help in the set up and installation, cost of training the
employees on the EMS implementation activities, and the cost of extra energy monitoring
equipment. On the other hand, there were energy and non-energy benefits that arose due to the
adoption of the EMS. The energy benefits were as a result of improved energy performance
yielding energy savings and related cost savings. Typically, some of the non-energy benefits
include a reduction in greenhouse gas emissions where dependency on fossil fuels is reduced,
improved resources’ usage, enhanced equipment lifespan, and improved industry’s
competitiveness and production. However, in this case, the non-energy benefits were not
quantified. The costs and benefits of setting up and implementing an EMS were as outlined in
Tables 4.6a and 4.6b respectively.
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Table 4.6a: Annual EMS Set Up Cost [16]

Category Activity Cost ($)
Staff time EMS training 200,000
EMS set up 900,000
EMS implementation 400,000
Expert support International experts 1,000,000
Local consultants 150,000
Other operational expenses Extra energy  monitoring | 10,000,000
equipment
Other low cost expenses 350,000
Total 13,000,000

Table 4.6b: Annual EMS Set Up Benefits

Category Monetary value ($)

Energy cost savings | 2,961,169.20

Non-energy benefits | N/A

4.3.2 Payback Period

This is the time required to repay the initial capital investment with the operating savings attributed
to the investment. PBP helps in quantifying the results of the CBA. The initial cost of investing in
the EMS was $13,000,000 whereas the annual saving was $ 2,961,169.20 yielding a payback
period of 4.39 years.

Initial investement cost in the EMS _ $13,000,000
Annual energy cost saving $2,961,170.476/year

PBP =

= 4.39

4.3.3 Return on Investment
ROl is a ratio between the net profit and the initial investment cost. The ROI of implementing the
designed EMS was obtained to be 0.2278.

ROI = —— =1 —0.2278
PBP 4.39
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4.4 Validation of Approach Used in This Project

This research work has developed a generalized EMS model that could be customized for use in
various industrial sectors unlike the reviewed papers which focused on specific applications. For
instance, [4] narrowed down to an EMMS for a vehicle testing facility whereas [7] developed a
power management system for a coal mine. The EMS recommended in this report could be used
for various setups provided that the historical data on the electricity prices and demand are
available for utilization in the forecasting model to predict values to inform the load scheduling.
Additionally, previous research works have not fully leveraged on aspects of the smart grid in
designing energy management schemes. In [2], the only smart grid aspect considered was real time
communication between the appliances and the EMS. However, this project has incorporated three

key aspects of smart grids including:

i)  The ability to process and analyze data
i)  Real time communication between smart meters and the EMS

iii)  Active consumer engagement in demand management

In [3], an automated DR scheme was proposed to support demand side management activities
while in [10], the use of energy storage functionality was explored. The other reviewed works do
not recommend any specific technique for DSM. This project has incorporated load scheduling as
a DSM technique where non-priority loads of high value have been scheduled for use during off
peak hours where electricity prices are lower compared to peak hours. The EMS architectures of
the existing and the adopted model in this project were compared in Figures 2.1a) and 2.1Db)
respectively. It is noted that using this project’s approach, the consumer’s choice in selecting the
preferred schedule was influenced by the potential savings likely to be obtained using the
recommended scheme whereas in existing models, a mere observation of the value of power

consumption of the loads informed the decision.

In [4], a rule based technique was used in solving the energy optimization problem while [5], [6]
and [10] used mathematical based methods, that is, MILP and BIP. The rule based method is just
like human reasoning hence not very reliable whereas the mathematical approaches are suitable
where there exist few appliances. The mathematical techniques tend to have a large convergence

time thus metaheuristic algorithms such as genetic algorithm are preferred for cost and energy
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consumption minimization. Time series modelling is mainly done using statistical forecasting
methods like ARIMA. However, in this research, a machine learning technique based on neural
networks was used in the forecasting model. LSTM-RNN being a machine learning algorithm has
high computational efficiency in handling large data sets compared to traditional statistical time

series models.

Just like the EMSs in past research works, the developed Industrial EMS in this project yielded a
considerable energy cost saving. In [4], the usage of 20 machines for heating and cooling in a
vehicle testing facility was shifted from time period 1 (8a.m to 4p.m.) to time period 2 (1a.m. to 9
a.m.) resulting in an annual cost saving of $6491.4. Similarly, in this project, a daily energy cost
saving of $8225.47 was achieved using an industrial test system with 20 high consumption loads
in a 24 hour operations industry. It is noted that the value of the energy cost saving depended on
the size of an industry based on its scale and hours of operations. The energy cost savings
accumulate over time with continued use of the industrial EMS resulting in a significant value of

saving.
4.5 Chapter Conclusion

The historical data on electricity prices and demand were successfully used in developing a time
series forecasting model based on LSTM RNN. The accuracy of the prediction model was
monitored using the MSE loss which reduced as the number of epochs increased in the LSTM
networks. The forecasted price influenced the scheduling of the non-priority loads in order to take
advantage of off peak times when electricity prices were lower. The results obtained using the
forecasted prices were compared with those obtained with actual prices. This is different from the
approach used in other research works where either the actual or predicted prices are used in the
load scheduling and not both. Using predicted prices in the scheduling is suitable for future

planning once a good forecasting model is developed.

A unit commitment chart was generated showing possible machine combinations for one sample
day and the potential energy cost saving that would be achieved using the original and proposed
schedules with actual and predicted electricity prices. The proposed load schedule yielded a
16.19% saving using actual prices and 16.39% saving with the predicted prices compared to the
original schedule. The annual energy saving obtained upon adopting the recommended schedule

41



Smart Grid Energy Management System for Industrial Applications F56/12539/2018

and using the predicted prices, was $2,961,169.20 yielding a PBP of 4.39 years with an initial
capital cost of $13,000,000. The PBP indicated the results of the CBA implying that the initial
investment cost would be paid back in less than five years. Typically, there is a huge investment
cost in an industrial EMS and a PBP of 5 years is considered economically profitable when both
the energy and non-energy benefits are taken into account. In this research, a challenge was
encountered when quantifying the non-energy benefits hence these were overlooked. In practice,
the monetary value of these benefits need to be considered to be able to realize a reasonable cost

to benefit ratio as well as ROI.
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CHAPTER 5: CONCLUSION AND RECOMMENDATIONS
This chapter has given a detailed conclusion from the research and suggested focus areas for future

studies.

5.1 Conclusions

This research was aimed at designing a general EMS that utilized DSM to minimize energy cost.
The DSM technique used is load scheduling whereby suitable operation times were suggested to
the consumer based on the predicted hourly electricity prices. It is noted that whenever demand
was high exceeding the supply, the electricity price was also high hence the need to shift time of
use of machines to off peak periods. A unit commitment schedule was generated to enable the
consumer to easily make a choice on shiftable loads which were not of priority. This operation
schedule ensured that all priority loads were on at all times and the power balance constraint was
always satisfied. Using the recommended operation schedule resulted in potential energy cost

savings since the time of use of non-priority loads was shifted to a more effective time period.

The LSTM —RNN s effective in time series forecasting especially when dealing with non-
stationary and non-linear data compared to conventional techniques such as ARIMA. The use of a
mean squared loss function made it possible to track the error value and ensure that it was
minimum by increasing the number of epochs. During demand forecasting, increasing epochs from
50 to 150 reduced the MSE loss from 9.5936*10* to 5.4008*10. The predicted hourly electricity
prices were used to schedule the available loads on one sample day. All the priority loads were on
for 24 hours during the sample day while the non-priority ones were scheduled to take advantage
off-peak periods with lower electricity prices. A unit commitment chart was generated showing a
possible schedule for available loads and the resulting energy saving if the predicted prices were
effectively used in shifting the TOU. Testing the effectiveness of the designed model using an
IEEE 30 bus system with 20 loads yielded an annual energy cost saving of $2,961,169.20. Long

term use of an industrial EMS is likely to yield huge energy and cost savings.

In conclusion, the designed industrial energy management model enabled users to actively manage
their energy consumption by shifting the use of non-priority loads to off peak durations. The
system generated automated unit commitment schedules daily based on the hourly predicted prices

thereby improving energy performance and saving on cost. Taking into consideration the non-
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energy benefits of implementing an EMS as well as the future savings to be yielded by the EMS
would help in obtaining a shorter PBP and a higher ROI to justify the investment.

This research has used a better forecasting model based on machine learning rather than the
conventional time series modelling and analysis methods. It has also utilized the predicted price
values in recommending the suitable load schedules rather than solely using the actual prices thus
could be used in future system planning. Additionally, both the priority and non-priority loads
were considered in the scheduling. Overall, it can be concluded that a well implemented EMS can
help an industry realize significant energy saving and energy related cost savings which can be

used in generating new business opportunities and maintaining competitiveness.

5.2 Recommendations for Further Work
Further research should be done in the following areas to improve on the findings of this work:

i) Use of other inputs that affect parameters in the LSTM network when developing the
forecasting model. This project only considered historical data on electricity prices and
demand. Other inputs to the LSTM network would include information on holidays,
specific day of the week or specific week of the year and weather patterns.

i) Considering other DSM techniques when developing the EMS. This project only
incorporated proper load scheduling to reduce energy cost whereas there exist other
techniques such as valley filling and peak clipping which modify the load profile for
dynamic energy management.

iii) Designing an EMS that integrates the management of other forms of energy rather than
electrical energy. Energy is a top operating expense in industries. Other than electrical
energy, other forms of energy that need to be monitored in industries include natural gas,
water, compressed air and steam.

iv) Exploring the integration of an industrial EMS with resource planning systems taking into
account all factors of production such as the availability of raw materials, capital, power

supply, and labor.
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Appendix B

F56/12539/2018

A sample of the electricity prices’ and demand’ data obtained from ERCOT’s website

Date Price Zone Date Load
8/1/2019 0:00 14.9725 LZ_AEN 8/1/2019 OOO 4879098
8/1/20190:00 15.4175|LZ_CPS

8/1/20190:00| 14.8525|LZ_HOUSTON 8/1/2019 1:00| 45795.72
8/1/20190:00{ 14.9875(LZ_LCRA 8/1/2019 2:00| 43642.73
8/1/20190:00| 14.4225|LZ NORTH 8/1/2019 3:00| 42269.95
8/1/20190:00|  14.405|LZ_RAYBN .
8/1/20190:00|  15.835|LZ_SOUTH 8/1/20194:00| 41738.05
8/1/20190:00| 13.7675|Lz_WEST 8/1/2019 5:00| 42466.69
8/1/2019 1:00 13.77|L.Z_AEN 8/1/20196:00{ 43963.8
8/1/2019 1:00| 13.6375|LZ_HOUSTON

8/1/20191:00|  13.79|LZ_LCRA 8/1/2019.8:00| 47032.88
8/1/2019 1:00| 12.7575|LZ_ NORTH 8/1/20199:00{ 50543.7
8/1/20191:00| 12.7225|L.Z_RAYBN 8/1/2019 10:00! 54552.66
8/1/2019 1:00| 15.6425|LZ_SOUTH .
8/1/20191:00|  11.015|LZ_WEST 8/1/2019 11:00| 58606.93
8/1/20192:00| 13.1275|LZ AEN 8/1/2019 12:00| 62142.24
8/1/2019 2:00 13.8|LZ_CPS 8/1/201913:00] 65502.1
8/1/20192:00| 13.0975|LZ_LCRA

8/1/20192:00|  12.325|LZ_NORTH 8/1/2019 15:00] 69064.36
8/1/20192:00| 12.3025|LZ_RAYBN 8/1/2019 16:00| 69423.25
8/1/2019 2:00| 14.5575|L.Z_SOUTH 8/1/2019 17:00| 68873.78
8/1/2019 2:00| 11.0875|LZ_ WEST :
8/1/20193:00 12.4725|LZ_AEN 8/1/201918:00| 67408.39
8/1/20193:00{ 13.3325(LZ_CPS 8/1/201919:00| 65187.94
8/1/20193:00] 12.3475|LZ_HOUSTON| | 8/1/2019 20:00| 62743.85
8/1/20193:00|  11.475|LZ_NORTH

8/1/20193:00 11.4425|LZ_RAYBN 8/1/2019 22:00 56392.16
8/1/20193:00| 14.3775|LZ_SOUTH 8/1/201923:00| 52189.19
8/1/20193:00| 9.7275|LZ_WEST 8/2/2019 0:00| 48586.96
8/1/20194:00|  12.79|LZ_AEN :

8/1/2019 4:00 13.6225|LZ_CPS 8/2/2019 1:00| 45676.93
8/1/20194:00] 12.675|.z_HoUsTON|| 8/2/20192:00] 43704.77
8/1/20194:00| 12.6775|LZ_LCRA 8/2/20193:00| 42372.65
8/1/20194:00|  11.845|LZ_NORTH 8/2/20194:00| 41991.95
8/1/20194:00| 11.8075|LZ_RAYBN

8/1/2019 4:00 14.6475|LZ_SOUTH 8/2/20195:00| 42776.25
8/1/20194:00{  10.205(LZ_WEST 8/2/2019 6:00| 44159.82
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Graphs Showing Electricity Price Variation for all Zones
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ELECTRICITY PRICE VARIATION FOR ZONE LZ_HOUSTON
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ELECTRICITY PRICE VARIATION FOR ZONE LZ_NORTH
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ELECTRICITY PRICE IN KSH
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Appendix C
Project Code

Visualizing the variation in price and demand with time for the 8 zones in Texas

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
os.listdir('data’)
# reading project data
data=pd.read_csv('./data/ElectricityPrices.csv',sep=",", parse_dates=['Date"])
data=data.iloc[:,0:14]
print(‘population size= %d'%len(data))
print(data.dtypes)
data.head()
raw=pd.read_csv('./data/ElectricityPrices.csv',sep="", parse_dates=['Date"])
raw
raw.min()
#data reprocessing and cleaning
data.isna().sum() # total number of entries which are not a number (NaN)
price_data=pd.DataFrame()
price_data['Date']=data['Date’].dt.date
price_data['Time']=data['Date"].dt.time
price_data['Price’]=data['Price']
price_data['Zone']=data['Zone']
price_data.head()
def unique_zone():
zones=[]
for Zone, data in price_data.groupby('Zone"):

zones.append(Zone)
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return zones
def zoneCode_gen():
_z=unique_zone()
zone_code=[]
count=1
while count<=len(_2):
zone_code.append(count)
count+=1
Area_Code=pd.DataFrame()
Area_Code['Code_No."]=zone_code
Area_Code['Zone'l= _z
return Area_Code
def loc_zone(code):
areas=zoneCode_gen()

zone=list(areas.Zone[areas['Code_No.]==code])

#print(zone[0])
return zone[0]

def req_zone(code):
reg_zone=loc_zone(code)
Area_Code=zoneCode_gen()
elec_price = price_data.merge(Area_Code, on=['Zone'])
req_data=elec_price[elec_price['Code_No."]==code]
cols_drop=['Code_No."]
req_data=req_data.drop(cols_drop, axis=1)
req_data.Date=pd.to_datetime(req_data['Date"])
#req_data=req_data.set_index('Date’)
return req_data

def plot_price_var(code):

wk_data=req_zone(code)
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wk_data=wk_data.set_index('Date")
reg=loc_zone(code)
plt.figure(figsize=(20,15))
plt.plot(wk_data.Price)
plt.xlabel('TIME',fontsize=15,weight=100)
plt.ylabel(ELECTRICITY PRICE ($/MWh)"fontsize=15,weight=100)
plt.title(ELECTRICITY PRICE VARIATION FOR ZONE %s' %reg,fontsize=15,weight=1000)
plt.grid(True)
plt.show()

def daily_d(code,month):
w=re(_zone(code)
wk=w.reset_index()
daily=pd.DataFrame()
daily['Date']=wk.Date
daily['Price]=wk.Price
daily = daily[daily['Date"].dt.month==month]
return daily

def monthly_data(month,city_code):
_ddata=pd.DataFrame()
_ddata=daily_data(city_code)
_ddata['Month']=_ddata['Date"].dt.month
monthly_data=_ddata[ ddata['Month']==month]
monthly_data=monthly_data.set_index('Date")
return monthly data

def annual_var(zone_code):
req=pd.DataFrame()
req=req_zone(zone_code)
req=req.reset_index()
reg['Month']=req.Date.dt.month

reg=req.groupby('Month').mean()
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return req

zones=[i for i in range(1,8)]

for zone in zones:
plot_price_var(zone)

# SAMPLE DATA FOR ANALYSIS

#From the visualizations above it is noted that price variation for each zone is almost similar to each and every other
zone

#Hence one zone to use for further data analysis and modelling.
# sample zone LZ_Huston of zone code 3
sample_data=req_zone(3)#TRY WITH DIFFERENT ZONE CODE
sample_zone=str(sample_data['Zone"].unique())
sample_data=sample_data.drop('Zone',axis=1)
print('population size= %d'%len(sample_data))
sample_data.head()

os.listdir('data’)

# reading regional demand data for LZ_Houston
demand_data=pd.read_csv('./data/DemanData.csv',parse_dates=['Date'])
demand_data=demand_data.iloc[:,0:14]

print(‘population size= %d'%len(demand_data))
print(demand_data.dtypes)

demand_data.head()

# data cleaning and feature engineering
demand_data.dropna(axis=1, how="all', inplace=True)
demand_data.dropna(axis=0, how="all', inplace=True)
data.isna().sum()

print(‘population size= %d'%len(demand_data))
demand_data=demand_data.drop_duplicates(keep= "first’)
print(‘population size= %d'%len(demand_data))
_data=pd.DataFrame()

_data['Date’]=demand_data['Date"].dt.date
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_data['Time']=demand_data['Date'].dt.time
_data.Date=pd.to_datetime(_data['Date")

# data.Time=pd.to_datetime.time(_data['Time])
_data['Load]=demand_data['Load"]

# merged demand data and price data

price_demand = sample_data.merge(_data, how="outer")
price_demand.isna().sum()
price_demand.dropna(axis=0, how="all', inplace=True)
price_demand.head()

price_demand.dtypes
price_demand=price_demand.set_index('Date")
weekly data = price_demand.resample("W").mean()
monthly_data= price_demand.resample('m').mean()
monthly_data.head
monthly_data=monthly_data.reset_index()
monthly_data.head

daily_data = price_demand.resample(‘'d’).mean()
daily_data.head(10)

# PERFORMING COMPARISON ANALYSIS

A comparison is made between the trend at which the demand profile and price is varying

#using average monthly data of demand and price
plt.figure(1)

plt.figure(figsize=(20,10))

ax=plt.subplot(121)

monthly_data['Load"].plot(ax=ax)

F56/12539/2018

plt.titteCAVERAGE MONTHLY ELECTRICITY DEMAND VARIATION',fontsize=15,weight=1000)

plt.ylabel'(DEMAND (MW)',fontsize=15,weight=100)
plt.xlabel((MONTH',fontsize=15,weight=100)
plt.grid(True)

ax=plt.subplot(122)
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monthly_data['Price'].plot(ax=ax)
plt.titleCAVERAGE MONTHLY ELECTRICITY PRICE VARIATION', fontsize=15,weight=1000)
plt.ylabel'PRICE ($/MWh)' fontsize=15,weight=100)
plt.xlabel('MONTH',fontsize=15,weight=100)
plt.grid(True)

plt.show()

Demand Forecasting

import numpy as np

import matplotlib.pyplot as plt
pd.plotting.deregister_matplotlib_converters()

import seaborn as sns

import pprint

%matplotlib inline

Step 1: Importing files after importing the necessary libraries
df = pd.read_csv("ModifiedDemanData.csv™)
print("="*50)

print("First Five Rows ","\n")

print(df.head(2),"\n")

print("="*50)

print("Information About Dataset"”,"\n")
print(df.info(),"\n")

print("="*50)

print("Describe the Dataset ","\n")
print(df.describe(),"\n")

print("="*50)

print("Null Values t "',"\n")
print(df.isnull().sum(),"\n")

Step 2 - Reformat the datetime columns

# Extract all Data Like Year Month Date Time etc

demand = df
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demand["Month"] = pd.to_datetime(df["Datetime"]).dt.month_name()
demand["Year"] = pd.to_datetime(df["Datetime"]).dt.year
demand["Date"] = pd.to_datetime(df["Datetime"]).dt.date
demand["Time"] = pd.to_datetime(df["'Datetime"]).dt.time
demand["Week"] = pd.to_datetime(df["Datetime"]).dt.week
demand["Day"] = pd.to_datetime(df["Datetime"]).dt.day_name()
demand = df.set_index("Datetime")

demand.index = pd.to_datetime(demand.index)

demand.head(10)

Step 3

TestData = demand.tail(745)

Training_Set = demand.iloc[:,0:1] #All rows column O(index which is the datetime) and 1

Training_Set = Training_Set[:-745] #Exclude the last 745 rows
print("Training Set Shape ", Training_Set.shape)

print("Test Set Shape ", TestData.shape)

from sklearn.preprocessing import MinMaxScaler

Training_Set = Training_Set.values

F56/12539/2018

sc = MinMaxScaler(feature_range=(0, 1)) #transform each value in the column proportionally within the range [0,1]

#preserves the shape of the dataset, use a scaler after the train_test_split to avoid data leakage

Train = sc.fit_transform(Training_Set)
X_Train =[]
Y _Train =]
# Range should be from 745 Values to END
for i in range(745, Train.shape[0]):
# X_Train 0-745
X_Train.append(Train[i-745:i])
#Y Would be 745 th Value based on past 745 Values
Y_Train.append(Train[i])
# Convert into Numpy Array

X_Train = np.array(X_Train)
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Y _Train = np.array(Y_Train)

print(X_Train.shape)

print(Y_Train.shape)

# Shape should be Number of [Datapoints , Steps, 1)

# we convert into 3-d Vector or #rd Dimesnsion

X_Train = np.reshape(X_Train, newshape=(X_Train.shape[0], X_Train.shape[1], 1))
X_Train.shape

Step 4: Modelling

from tensorflow import keras

from tensorflow.keras import layers

from keras.layers.core import Dense, Activation, Dropout

from keras.layers.recurrent import LSTM

from keras.models import Sequential

regressor = Sequential()

# Adding the first LSTM layer and some Dropout regularisation
regressor.add(LSTM(units = 50, return_sequences = True, input_shape = (X_Train.shape[1], 1)))
regressor.add(Dropout(0.2))

# Adding a second LSTM layer and some Dropout regularisation
regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.2))

# Adding a third LSTM layer and some Dropout regularisation
regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.2))

# Adding a fourth LSTM layer and some Dropout regularisation
regressor.add(LSTM(units = 50))

regressor.add(Dropout(0.2))

# Adding the output layer

regressor.add(Dense(units = 1))

# Compiling the RNN

regressor.compile(optimizer = 'adam’, loss = 'mean_squared_error’)
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regressor.fit(X_Train, Y_Train, epochs = 150, batch_size = 32)
Df_Total = pd.concat((demand[["Load"]], TestData[[""Load"]]), axis=0)
inputs = Df_Total[len(Df_Total) - len(TestData) - 745:].values
inputs.shape
inputs = Df_Total[len(Df_Total) - len(TestData) - 745:].values
# We need to Reshape
inputs = inputs.reshape(-1,1)
# Normalize the Dataset
inputs = sc.transform(inputs)
X test =]
for i in range(745, 1490):
X_test.append(inputs[i-745:i])
# Convert into Numpy Array
X_test = np.array(X_test)
# Reshape before Passing to Network
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
# Pass to Model
predicted_stock_price = regressor.predict(X_test)
# Do inverse Transformation to get Values
predicted_stock_price = sc.inverse_transform(predicted_stock_price)
True_Price = TestData["Load"].to_list()
Predicted_Price = predicted_stock price
dates = TestData.index.to_list()
Machine_Df = pd.DataFrame(data={
"Date":dates,
"TrueLoad": True_Price,
"PredictedLoad":[x[0] for x in Predicted_Price ]
by
True_Price = TestData["Load"].to_list()

Predicted_Price = [x[0] for x in Predicted_Price ]
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dates = TestData.index.to_list()

#Machine Learned the Pattern Predicting Future Values

fig = plt.figure(figsize=(15,10))

ax1=fig.add_subplot(111)

x = dates

y = True_Price

y1 = Predicted_Price
pd.plotting.register_matplotlib_converters() #to handle the error float argument must be a string or no. not a timestamp
plt.plot(x,y, color="green", label="Actual Load")
plt.plot(x,y1, color="red", label="Predicted Load")

# beautify the x-labels

plt.gcf().autofmt_xdate()
plt.xlabel('Dates’,weight=1000,fontsize=15)
plt.ylabel("Demand (MW)",weight=1000,fontsize=15)
plt.title("Comparison of Actual and Predicted Hourly Demand for January 2020",weight=1000,fontsize=15)
plt.legend()

Price Forecasting

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
pd.plotting.deregister_matplotlib_converters()

import seaborn as sns

import pprint

%matplotlib inline

Step 1: Importing files after importing the necessary libraries
df = pd.read_csv("ModifiedElectricityPrices.csv")
print("="*50)

print("First Five Rows ","\n")

print(df.head(2),"\n")

print("="*50)
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print("Information About Dataset”,"\n")

print(df.info(),"\n")

print("="*50)

print("Describe the Dataset ","\n")

print(df.describe(),"\n")

print("="*50)

print("Null Values t ","\n")

print(df.isnull().sum(),"\n")

Step 2: Reformatting the datetime columns

# Extract all Data Like Year Month Date Time etc

dataset = df

dataset["Month"] = pd.to_datetime(df["Datetime"]).dt.month_name()
dataset["Year"] = pd.to_datetime(df["Datetime"]).dt.year
dataset["Date"] = pd.to_datetime(df["Datetime"]).dt.date
dataset["Time"] = pd.to_datetime(df["Datetime"]).dt.time
dataset["Week"] = pd.to_datetime(df["'Datetime"]).dt.week
dataset["'Day"] = pd.to_datetime(df["Datetime"]).dt.day_name()
dataset = df.set_index("Datetime") #set datetime as the index
dataset.index = pd.to_datetime(dataset.index)

dataset.head(10)

Step 3: Unique months

# How many Unique Months do we Have in the Dataset
print(df.Month.unique(),"\n")

print("Total Number of Unique Months", df.Month.nunique(), "\n")
Step 4: Modelling

TestData = dataset.tail(744)

F56/12539/2018

Training_Set = dataset.iloc[:,0:1] #All rows column 0(index which is the datetime) and 1 which is the price

Training_Set = Training_Set[:-744] #Exclude the last 744 rows
from sklearn.preprocessing import MinMaxScaler

Training_Set = Training_Set.values
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sc = MinMaxScaler(feature_range=(0, 1)) #transform each value in the column proportionally within the range [0,1]
#preserves the shape of the dataset, use a scaler after the train_test_split to avoid data leakage
Train = sc.fit_transform(Training_Set)
X_Train =[]
Y_Train =[]
# Range should be from 744 Values to END
for i in range(744, Train.shape[0]):
# X_Train 0-744
X_Train.append(Train[i-744:i])
#Y Would be 744 th Value based on past 744 Values
Y _Train.append(Train[i])
# Convert into Numpy Array
X_Train = np.array(X_Train)

Y _Train = np.array(Y_Train)

print(X_Train.shape)

print(Y_Train.shape)

# Shape should be Number of [Datapoints , Steps, 1)

# we convert into 3-d Vector or #rd Dimesnsion

X_Train = np.reshape(X_Train, newshape=(X_Train.shape[0], X_Train.shape[1], 1))
X_Train.shape

#LSTM RNN

from tensorflow import keras

from tensorflow.keras import layers

from keras.layers.core import Dense, Activation, Dropout

from keras.layers.recurrent import LSTM

from keras.models import Sequential

regressor = Sequential()

# Adding the first LSTM layer and some Dropout regularisation

regressor.add(LSTM(units = 50, return_sequences = True, input_shape = (X_Train.shape[1], 1)))
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regressor.add(Dropout(0.2))

# Adding a second LSTM layer and some Dropout regularisation
regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.2))

# Adding a third LSTM layer and some Dropout regularisation
regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.2))

# Adding a fourth LSTM layer and some Dropout regularisation
regressor.add(LSTM(units = 50))

regressor.add(Dropout(0.2))

# Adding the output layer

regressor.add(Dense(units = 1))

# Compiling the RNN

regressor.compile(optimizer = 'adam’, loss = 'mean_squared_error")
regressor.fit(X_Train, Y_Train, epochs = 150, batch_size = 32)

Df_Total = pd.concat((dataset[["Price"]], TestData[["Price"]]), axis=0)

inputs = Df_Total[len(Df_Total) - len(TestData) - 744:].values #Values of the test data twice

inputs.shape

inputs = Df_Total[len(Df_Total) - len(TestData) - 744:].values

# We need to Reshape

inputs = inputs.reshape(-1,1)

# Normalize the Dataset

inputs = sc.transform(inputs)

X_test=1]

for i in range(744, 1488):
X_test.append(inputs[i-744:i])

# Convert into Numpy Array

X_test = np.array(X_test)

# Reshape before Passing to Network

X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
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# Pass to Model
predicted_stock_price = regressor.predict(X_test)
# Do inverse Transformation to get Values
predicted_stock_price = sc.inverse_transform(predicted_stock_price)
True_Price = TestData["Price"].to_list()
Predicted_Price = predicted_stock price
dates = TestData.index.to_list()
Machine_Df = pd.DataFrame(data={
"Date™:dates,
"TruePrice™: True_Price,
"PredictedPrice":[x[0] for x in Predicted_Price ]
)
True_Price = TestData["Price"].to_list()
Predicted_Price = [x[0] for x in Predicted_Price ]
dates = TestData.index.to_list()
#Machine Learned the Pattern Predicting Future Values
fig = plt.figure(figsize=(15,10))
ax1= fig.add_subplot(111)
X = dates
y = True_Price
y1 = Predicted_Price
pd.plotting.register_matplotlib_converters() #to handle the error float argument must be a string or no. not a timestamp
plt.plot(x,y, color="green", label="Actual Price")
plt.plot(x,y1, color="red", label="Predicted Price")
# beautify the x-labels
plt.gcf().autofmt_xdate()#to format the x axis nicely if it has dates
plt.xlabel('Dates")
plt.ylabel("Price ($/MWh)™)
plt.title("Comparison of Hourly Actual and Predicted Electricity Prices for January 2020™)

plt.legend()
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Load Combinations
#Possible non-priority load combinations
import numpy as np
def dec2bin(num):
if num>0:
dec2bin(int(num//2))
print(num%z2,end=")
N_loads=8 #Total number of non-priority loads
CombN=2**N_loads #Possible combinations
print("possible combinations =",+ CombN)
LoadState=np.zeros((CombN, N_loads))
LoadState
for i in range(0,CombN):
LoadState= bin(i)

print (LoadState)

#Possible combinations of loads where 0 means OFF and 1 means ON (256 by 8 matrix)

X = np.array([LoadState])

#Power consumed by the non-priority loads (8 by 1 matrix)
Y = np.array([25,13,37,22,26,30,28,33])
Total_PowerConsumed = np.dot(X,Y)
Total_PowerConsumed

import pandas as pd

#convert array into a dataframe

df = pd.DataFrame (Total_PowerConsumed)

#save to csv file

filepath = "TotalConsumptionforNonPriorityLoads.csv'
df.to_csv(filepath,index=False)

df2 = pd.DataFrame (X)

#save to csv file

filepath = 'Combinations.csv'
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df2.to_csv(filepath,index=False)

F56/12539/2018

Table Showing the Possible Non-priority Load Combinations (Total Priority Loads = 271MW)

B |E|H|J |K|N |Q]|S | Total Non-Priority | Possibility of
Load (MW) Combination
1 1 /0 (0 (2 |1 |1 |1 |1 |164 Impossible
2 1 |10 |1 |0 |1 |1 1|1 |179 Impossible
3 1 |10 (1 |1 1|0 |1 1|1 |175 Impossible
4 1 /0 (1 (1|1 |0 |1 |1 |11 Impossible
5 1 /0 (212 (12 1 |1 |0 |1 |173 Impossible
6 1 ]0 (1 |1 |1 |1 1|10 |168 Impossible
7 1 ]0 |1 |1 |1 |1 1|1 |201 Impossible
8 1 (10 ]1 |1 |1 1 (1 |177 Impossible
9 1 |1 (1|0 |0 |1 1 |1 |166 Impossible
0 (1 |1 |1 (0 (1 |1 0 |1 |164 Impossible
11 |1 |1 (1 |0 |1 |1 1 (1 |[192 Impossible
2 |1 |1 (1|1 |0 |1 1 (1 |188 Impossible
3 |1 |1 (1|1 1|1 |0 1 (1 |184 Impossible
4 |1 |1 |1 (1 (1 |1 0 |1 |186 Impossible
5 (1 |1 |1 (11 |1 110 |181 Impossible
6 (1 |1 (1|1 |1 |1 1 (1 |214 Impossible
7 |0 |1 (1 |1 |1 |1 1 (1 |189 Impossible
18 (0 |0 |1 |1 (1 |1 1|1 |176 Possible
19 (0 |1 |1 (0 |1 |1 1|1 |167 Possible
20 (0 |1 |1 (1 (0 |1 1|1 |163 Possible
22 |1 |1 |1 (0 |1 |O |1 |1 |162 Possible
22 |0 |1 |21 (1|1 |1 |0 |1 |162 Possible
23 |1 |1 |1 (110 |1 0 |1 |160 Possible
24 |0 |1 |1 (1 |1 ]0 1 |1 |159 Possible
25 (1 |1 |1 (0 |21 |1 110 |159 Possible
26 |1 |1 |1 (1|0 |0 |1 |1 | 158 Possible
27 |0 |1 |1 |1 |1 |1 |1 |0 |156 Possible
28 (1 |1 |1 (1|1 |0 |0 |1 |156 Possible
29 (1 |1 |0 (0 |21 |1 1 |1 |155 Possible
30 |1 {1 |1 (1|0 |1 |1 |0 |155 Possible
33 |0 |0 |2 |0 |1 |1 |1 |1 |154 Possible
32 |1 |0 |1 |0 |0 |1 |1 |1 |153 Possible
33 (1 |1 |1 (11 |1 0 |0 |153 Possible
34 (0 |1 |0 (1 |1 |1 1 |1 |152 Possible
3% |1 {0 |1 (0 |1 |1 |0 |1 |1;51 Possible
36 |1 (1|0 (1|0 |1 |1 |1 |151 Possible
37 |1 |1 |1 (1|1 |0 |1 |0 |1m1 Possible
38 (0 |0 |1 (1 |0 |1 1 ]1 |150 Possible
39 (1 |0 |1 (0 |1 ]|O 1 |1 |149 Possible
40 (1 |1 |0 |1 |21 {1 |0 |1 |149 Possible
41 (0 |0 |1 |1 |21 |1 |0 |1 |148 Possible
42 |1 |0 (1 |1 |0 |1 0 |1 |147 Possible
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43 |1 |1 |0 |1 |1 |O 1 (1 |147 Possible
4 |0 |0 |1 |1 |1 |O 1 |1 |146 Possible
45 (1 |0 |1 |0 |1 |1 1 |0 |146 Possible
46 |1 |0 |1 |1 |0 |O 1 (1 |145 Possible
47 (1 |1 |0 |1 (1 |1 1 |0 |144 Possible
48 (0 |0 |1 |1 (1 |1 1 (0 |143 Possible
49 |1 |0 |1 |1 |1 |0 0 |1 |143 Possible
50 |1 0 [0 |0 |1 |1 1)1 142 Possible
51 |1 |0 |1 (1 |0 |1 1 (0 |142 Possible
52 |0 |1 |1 (0 |0 |1 1 (1 (141 Possible
53 |1 |0 |1 (1 |1 |1 0 |0 |140 Possible
54 |10 |0 |O (1 |1 |1 111 139 Possible
5 {0 |1 |1 (0 |1 |1 0 |1 |139 Possible
5 (1 |0 |0 (1 |0 |1 111 138 Possible
57 |11 |0 |1 (1 |1 |0 1 (0 |138 Possible
58 |1 |1 |1 (0|0 |1 0 |1 |138 Possible
59 [0 11110 1|1 |0 1 ]1 137 Possible
60 (1 |0 |O (1 |1 |1 0 |1 136 Possible
61 |1 111 )]0 ]0 |0 1 ]1 136 Possible
62 |0 |1 |1 (1 ]0 |1 0 |1 |[135 Possible
63 |0 |1 |1 (0 |1 |1 1 (0 |134 Possible
64 (1 |0 |0 (1 (1 |O 1 ]1 134 Possible
65 |1 11110 1|1 |0 0 |1 134 Possible
66 |0 |1 |1 (1 |0 |O 1 (1 |133 Possible
67 |1 |1 |1 (0 |0 |1 1 (0 |[133 Possible
68 |0 |1 |1 (1 |1 |0 0 |1 (131 Possible
69 (1 |0 |O (1 |1 |1 110 131 Possible
70 |1 1]1 )]0 (1 |1 0|0 131 Possible
71 |0 |1 |0 (0 |1 |1 1 (1 |130 Possible
72 10 |1 |1 (1 ]0 |1 1 (0 |130 Possible
73 11 |1 |1 (1|0 |0 0 |1 |130 Possible
74 |1 110 |0 |0 |1 1 ]1 129 Possible
75 |1 111 )0 1|1 |0 110 129 Possible
76 |0 |0 |1 (0 |0 |1 1 (1 |128 Possible
77 10 |1 |1 (1 |1 |1 0 [0 |[128 Possible
78 |1 110 |0 (|1 |1 0 |1 127 Possible
79 |1 1]1 1|1 (0 |1 0|0 127 Possible
80 |0 |0 |1 (0 |1 |1 0 |1 126 Possible
81 |0 |1 |0 (1 |0 |1 1 (1 |126 Possible
82 |0 |1 |1 (1|1 |0 1 (0 |126 Possible
83 |1 |0 |1 (0 |0 |1 0 |1 125 Possible
84 |1 110 |0 |1 |0 1 ]1 125 Possible
85 |1 1|1 1)1 1]0 |0 110 125 Possible
86 |0 |0 |1 (0 |1 |O 1 (1 |124 Possible
87 |0 |1 |0 (1 |1 |1 0 |1 |124 Possible
88 (1 |0 |1 (0 |0 |O 1 ]1 123 Possible
89 |1 1]0 |1 |0 |1 0 |1 123 Possible
90 |1 |1 |1 (1|1 |0 0 [0 [123 Possible
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91 |0 |0 |1 (1 |0 |1 0 |1 [122 Possible
92 |0 |1 |0 (1 |1 |0 1 (1 |122 Possible
93 |1 |1 |0 (0 |1 |1 1 (0 [122 Possible
94 |0 |0 |1 (0 |1 |1 1 (0 (121 Possible
9%5 |1 |0 |1 (0 |1 |O 0 |1 (121 Possible
9% |1 |1 |0 (1 |0 |O 1 (1 (121 Possible
97 |0 |0 |1 (1 |0 |O 1 (1 |120 Possible
98 (1 |0 |1 |0 |0 |1 1 ]0 |120 Possible
99 (0 |1 |0 (1 |1 |1 110 |119 Possible
1001 |1 (0 |1 |1 |O 0 [1 |[119 Possible
1001/0 |0 (1 |1 |1 |O 0 |1 |118 Possible
1021 |0 (1 |0 |1 |1 0 |0 |118 Possible
1031 |1 (0 |1 |0 |1 1|0 |118 Possible
104 | O 0[O0 |0 |1 |1 111 117 Possible
105/0 |0 (1 |1 |0 |1 1 (0 |117 Possible
1061 |0 (1 |1 |0 |O 0 |1 |117 Possible
10711 |0 |0 |O |0 |1 1 ]1 116 Possible
1081 |0 |1 |0 (1 |O 110 116 Possible
109 | 1 110 |1 (1 |1 0|0 116 Possible
1100 |0 |1 |1 |1 |1 0 [0 [115 Possible
1111 |0 (0O |0 |1 |1 0 |1 |114 Possible
11211 |0 |1 |1 (0 |1 0|0 114 Possible
113 | 1 110 |1 1|1 |0 110 114 Possible
11410 |0 (0O |1 |0 |1 1 (1 |113 Possible
1150 |0 (1 |1 |1 |O 1 (0 |113 Possible
116 |0 |1 (1 |0 |0 |1 0 |1 |[113 Possible
1171 |0 |0 O (1 |O 1 ]1 112 Possible
1181 |0 |1 |1 (0 |O 110 112 Possible
1190 |0 (O |1 |1 |1 0 |1 (111 Possible
1200 |1 (1 |0 |0 |O 1 (1 (111 Possible
1211 |0 (0O |1 |0 |1 0 |1 |110 Possible
12211 |0 |1 |1 (1 |0 0|0 110 Possible
1230 |0 |0 |1 (1 |O 1 ]1 109 Possible
12410 |1 (1 |0 |1 |O 0 [1 |109 Possible
1251 |0 (0O |O |1 |1 1 (0 |109 Possible
126 | 0 1]1 )]0 |0 |1 110 108 Possible
12711 |0 |0 |1 (0 |O 1 ]1 108 Possible
128 | 1 1|11 )]0 ]0 |0 0 |1 108 Possible
12910 |0 (O |1 |1 |1 1 (0 |106 Possible
1300 |1 (1 |0 |1 |1 0 [0 |106 Possible
1311 |0 |0 |1 (1 |O 0 |1 106 Possible
132 | 0 1|1 1)1 1]0 |0 0 |1 105 Possible
13311 |0 |0 |1 |0 |1 110 105 Possible
13411 |1 (1|0 |0 |1 0 [0 |105 Possible
135/0 |1 (0 |0 |0 |1 1 |1 |104 Possible
136 | 0 1|10 1|1 |0 110 104 Possible
13711 |0 |0 |1 |1 |1 0|0 103 Possible
1381 |1 (1 |0 |0 |O 1 (0 |103 Possible
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139 (0 |1 |0 |0 |1 |1 0 |1 |102 Possible
140(0 |1 |1 (1 (0 |1 0 |0 |102 Possible
14111 |0 (O |1 |1 |O 1 (0 [101 Possible
14211 |1 (0 |0 |0 |1 0 [1 (101 Possible
14311 |1 |1 |0 (1 |O 0 |0 |101 Possible
14410 |0 |1 |0 |0 |1 0 |1 |100 Possible
1450 |1 |0 |0 |1 |O 1|1 |100 Possible
146 | O 1111110 |0 110 100 Possible
147 | 1 110 |0 |0 |O 1 11 |99 Possible
14810 |0 |1 |0 |0 |O 1 |1 |98 Possible
1490 |1 |0 |1 |0 |1 0 |1 |98 Possible
1500 |1 |1 |1 |1 |0 0 |0 |98 Possible
151 |0 110 |0 (|1 |1 110 |97 Possible
152 | 1 110 |0 |1 |0 0 |1 |97 Possible
15311 |1 |1 |1 |0 |O 0 |0 |97 Possible
1540 [0 |1 |0 |1 |O 0 |1 |96 Possible
155 | 0 110|110 |0 1 |1 |96 Possible
156 | 1 110 |0 |0 |1 1 10 |96 Possible
157|/0 |0 |1 |0 |0 |1 1 10 |95 Possible
1581 |0 |1 |0 [0 |O 0 |1 |95 Possible
1590 |1 |0 |1 |1 |O 0 |1 |9 Possible
160 | 1 110 |0 (|1 |1 0 |0 |94 Possible
1610 |0 |1 |0 |1 |1 0 |0 |93 Possible
1620 |1 |0 (1 |0 |1 1|10 |93 Possible
631 |1 |0 |1 |0 |O 0 |1 |93 Possible
1640 |0 |1 |1 |0 |O 0 |1 |92 Possible
6511 |0 |1 |0 |0 |1 0 |0 |92 Possible
166 | 1 110 |0 |1 |0 1 10 |92 Possible
1670 |0 |0 [0 [0 |1 1|11 |91 Possible
1680 [0 |1 |0 (1 |O 110 |91 Possible
169 (0 |1 |0 (1 |1 |1 0 |0 |91 Possible
1701 |0 |1 |0 (O |O 110 |90 Possible
171 |1 1]10 |1 (|0 |1 0 |0 |90 Possible
1720 |0 |0 |0 |1 |1 0 |1 |89 Possible
1730 |0 |1 |1 |0 |1 0 |0 |89 Possible
174 | 0 110 |1 1|1 |0 1 10 |89 Possible
17511 |0 |0 |O |0 |1 0 |1 |88 Possible
176 |1 |0 |1 |0 (1 |O 0 |0 |88 Possible
7711 |1 |0 |1 |0 |O 1 |0 |88 Possible
1780 |0 |0 |O |1 |O 1|1 |87 Possible
17910 |0 |1 |1 (0 |O 1 |0 |87 Possible
1801 |0 (0O |0 |O |O 1|1 |86 Possible
181 |1 110|111 |0 0 |0 |86 Possible
182 (0 |0 |0 (1 |0 |1 0 |1 |85 Possible
1830 |0 |1 |1 |1 |O 0 |0 |85 Possible
184 |0 |0 |0 |O |1 |1 1 |0 |84 Possible
1851 |0 |0 O |1 |O 0 |1 |84 Possible
186 |1 |0 |1 |1 |0 |O 0 |0 |84 Possible
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1870 |0 |0 |1 |0 |O 1|1 |83 Possible
8|0 |1 |1 |0 |0 |O 0 |1 |83 Possible
189 (1 |0 |0 (0O [0 |1 1|10 |83 Possible
190/0 |0 |O |1 |1 |O 0 |1 |81 Possible
9111 |0 |0 |0 |1 |1 0 |0 |81 Possible
1920 |0 |0 |1 |0 |1 1 ]/0 |80 Possible
1930 |1 |1 |0 |0 |1 0 |0 |80 Possible
19411 |0 |0 |1 |0 |O 0 |1 |80 Possible
1951 |0 |0 |O |1 |O 110 |79 Possible
19 (0 |0 |0 |1 |1 |1 0 |0 |78 Possible
19710 |1 |1 |0 |0 |O 110 |78 Possible
1981 |0 |0 (1 |0 |1 o |0 |77 Possible
199 |0 |0 |0 |1 |1 |O 1|10 |76 Possible
200 | 0 1 (0|0 |0 |1 0|1 (76 Possible
200(0 |1 |1 ({0 |1 |O 0 |0 |76 Possible
202(1 |0 |0 (1 |0 |O 110 |75 Possible
203 | 1 111 )]0 ]0 |0 0 |0 |75 Possible
204 | 0 110 |0 |0 |O 111 |74 Possible
261 |0 |0 (1 (1 |O 0 |0 |73 Possible
20600 |1 |0 (0 |1 |O 0|1 |72 Possible
207(0 |1 |1 (1 ]0 |O 0|0 |72 Possible
208 | 0 110 |0 |0 |1 110 |71 Possible
209 |1 110 |0 |0 |O 0|1 (71 Possible
2100({0 |0 |1 (0 |O |O 0 |1 |70 Possible
211(0 |1 |0 (0 |1 |1 0 |0 |69 Possible
21210 |1 |0 (1 |0 |O 0 |1 |68 Possible
213 | 1 110 |0 |0 |1 0 |0 |68 Possible
21410 |0 |1 (0 |O |1 0 |0 |67 Possible
215(0 |1 |0 (0 |1 |O 1|10 |67 Possible
216 {1 |1 |0 [0 |O |O 1 |0 |66 Possible
217(0 |0 |1 (0 |O |O 1 |10 |65 Possible
218 | 0 110 |1 (|0 |1 0 |0 |65 Possible
219 [ 1 110 |0 |1 |0 0 |0 |64 Possible
2200 |0 |0 [0 |O |1 0 |1 |63 Possible
221/0 |0 |1 (0 |1 |O 0 |0 |63 Possible
22210 110|110 |0 1 /0 |63 Possible
22311 |0 |1 (0 |O |O 0 |0 |62 Possible
22410 |0 |0 (O (O |O 1 |1 |61 Possible
225(0 |1 |0 (1 |1 |0 0 |0 |61 Possible
226 (1 |1 |0 (1 |0 |O 0 |0 |60 Possible
22710 |0 |0 (0O |1 |O 0 |1 |59 Possible
2280 |0 |1 (1 ({0 |O 0 |0 |59 Possible
22910 |0 |0 [0 |O |1 1 |0 |58 Possible
230(1 |0 |0 [0 |O |O 0 |1 |58 Possible
231(0 |0 |0 |0 |1 |1 0 |0 |56 Possible
23210 |0 |0 (1 |0 |O 0 |1 |55 Possible
23311 |0 [0 [0 |O |1 0 |0 |55 Possible
23410 |0 |0 [0 |1 |O 1 |0 |54 Possible
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235(1 |0 |0 [0 |O |O 1|10 |53 Possible
236 (0 |0 |0 (1 |0 |1 0 |0 |52 Possible
2371 |0 |0 (O |1 |O 0 |0 |51 Possible
2380 |0 |0 (1 |0 |O 1 ]0 |50 Possible
2390 |1 |1 ({0 |0 |O 0 |0 |50 Possible
2400 |0 |0 (1 |1 |O 0 |0 |48 Possible
24111 |0 |0 (1 |0 |O 0 |0 |47 Possible
242 | 0 110 |0 |0 |O 0 |1 |46 Possible
24310 |1 |0 (0 |O |1 0 |0 |43 Possible
24410 |1 |0 [0 |O |O 110 |41 Possible
245(0 |1 |0 (0 |1 |O 0 |0 |39 Possible
246 {1 |1 |0 [0 |O |O 0 |0 |38 Possible
24710 |0 |1 (0 |O |O 0 |0 |37 Possible
248 | 0 110|110 |0 0 |0 |35 Possible
24910 |0 |0 [0 |O |O 0 |1 |33 Possible
250({0 |0 |0 (O |O |1 0 |0 |30 Possible
25110 |0 |0 (O |O |O 1 (0 |28 Possible
25210 |0 |O (O |1 |O 0 |0 |26 Possible
25311 |0 |0 (O |O |O 0 |0 |25 Possible
25410 |0 |0 (1 |0 |O 0 |0 |22 Possible
255(0 |1 |0 (0 |O |O 0 |0 |13 Possible
256 (0 |0 |0 (O |O |O 0 |0 |O Possible
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Appendix E

Table of Corrections

F56/12539/2018

No.

Concern Raised

Correction Made

1

Clarification of statement given
in page 1 paragraph 2 line 2
concerning centralized
generation

The statement has been rephrased to illustrate that
several decades ago electricity generation was
centralized and from non-renewable sources

Missing explanation for the
smart grid diagram in Figure
1.1

The components in Figure 1.1 have been stated to
include wind and solar Distributed Energy Resources
(DERs), transmission lines as well as residential,
commercial, and industrial units

Lack of evidence of how the
load scheduling technique used
smooths the load profile as was
stated in the last paragraph of
Section 1.2

The statement in the last paragraph of Section 1.2 has
been rephrased to show that the load scheduling done,
distributed the load ensuring peak demand was
experienced at off-peak hours with low electricity
prices. This is further supported by the graph plotted in
Figure 4.5 to compare the load profile for the sample day
before and after scheduling

Use of EMS and TOU
abbreviations in the statement
of the main objective

The full forms of EMS and TOU have been used to state
the main objective

Clarification on the running
time, t of each machine as
given in Equation 2.2

An assumption was made of a case where all machines
had an equal runtime of 1 hour at their rated power

How the total load demand
depicted in Table 4.3 was met
by the available supply givenin
Table 4.2

All the priority loads were ON each hour as they were
the key production loads whereas the non-priority loads
with high consumption were rescheduled for use during
hours with low electricity prices ensuring that the power
balance constraint given in Equation 2.3c was met at all
times

Lack of a reference that guided
the computation of the EMS
initial investment cost as given
in Table 4.6a

Reference [16] has been included

How the validation of results
was achieved

A comparison was made between the energy cost
savings achieved in this project and that in reference [4]
as explained in the last paragraph of Section 4.4

level of
the

Clarification on
accuracy achieved by
forecasting model

The MSE loss values obtained upon increasing the
number of epochs in the RNN have been included in
paragraph 3 and 4 of Section 4.1

10

Contradictory statement given
in recommendation iv) of
Section 5.2 compared to what
was stated in Section 2.2

Recommendation iv) has been rephrased to illustrate
that further research should integrate EMSs with other
resource planning systems taking into account all factors
of production within an industry
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