COMPLETE GENOME ANALYSIS OF LYTIC PHAGES AND IDENTIFICATION OF HYPOTHETICAL PHAGE PROTEINS TARGETING MAJOR PROTEIN COMPLEXES OF Staphylococcus aureus

Oduor Joseph Michael Ochieng'

A thesis submitted in fulfillment of the requirement for the award of the degree of Doctor of philosophy in Virology at the KAVI – Institute of Clinical Research, in the College of Health Sciences of University of Nairobi.

24 June, 2021

DECLARATION

This thesis is my original work and it has not been presented a degree in any other university.

Joseph Michael Ochieng' Oduor (BSc, MSc)

H82/51916/2017

KAVI-Institute of Clinical Research, College of Health Sciences

University of Nairobi, Nairobi, Kenya

Date: 6 / May/ 2021. Signed

Supervisors' approval

This thesis has been submitted for examination with our approval as University supervisor (s).

 Dr. Marianne W. Mureithi, PhD., KAVI - Institute of Clinical Research (KAVI - ICR), School of Medicine - College of Health Sciences, University of Nairobi- Kenya.

Signature: _____ Date: 10/ May/ 2021.

 Dr. Atunga Nyachieo, Ph.D., Institute of Primate Research (IPR), WHO Collaborating Centre

Alast ____ Date: 7/ May/ 2021. Signature:

3. Prof. Mikael Skurnik,

Department of Bacteriology and Immunology,

Haartman Institute,

University of Helsinki

Signature: Jakan Dete: 6 / May/ 2021.

DEDICATION

This work is dedicated to my parents (Mr. John Oduor and Mrs. Phelister Akoth) and to any person who has supported me throughout the entire period of this work.

And for the greater glory of God!!!

ACKNOWLEDGEMENT

My heartfelt gratitude to the All Mighty (God) for by His grace this work has been done despite all the challenges faced. I sincerely wish to thank my supervisor Prof. Mikael Skurnik and the entire 2017-2018 Skurnik lab members (Human Microbiome Research Program, Faculty of Medicine-University of Helsinki -Finland) for their support throughout this work. Also, wish to thank Ermir Kadija (University of Shkodra "Luigj Gurakuqi", Shkodra-Albania) for facilitating phage sample isolation (Stabs) in his country.

Sincere gratitude to my academic and research funders; Finnish National Agency for Education (CIMO), the International Society for Infectious Diseases and the European Society of Clinical Microbiology and Infectious Diseases (ISID/ESCMID), the Academy of Finland, Jane and Aatos Erkko Foundation, and PhageBiotics (through Dr. Elizabeth Kutter, Evergreen State College-USA).

I also wish to acknowledge my Kenyan supervisors Dr. Marianne W. Mureithi and Dr Atunga Nyachieo for their support during this study.

Great thanks to my parents (Mr. John Oduor and Mrs. Phelister Akoth) for their mental and financial support.

Thank you very much (Asante sana / Kiitos paljon) to any person who contributed to this work, I do appreciate each of you out there.

God bless / Jumalan siunausta!!!

Table of Contents

DECLARATION	ii
DEDICATION	iv
ACKNOWLEDGEMENT	v
Table of Contents	vi
List of tables	ix
List of Figures	X
List of Appendices	xi
List of Abbreviation	xii
Abstract	xiii
CHAPTER ONE: INTRODUCTION	1
1.1 Background information	1
1.2 Problem statement	4
1.3 Justification for the study	4
1.4 Research questions	5
1.5 Null hypothesis (H ₀)	5
1.6 Objectives	6
1.6.1 General objective1.6.2 Specific objectives	6 6
CHAPTER TWO: LITERATURE REVIEW	7
2.1 Description of phages	7
2.2 Phage characterization	7
2.3 Life cycle of phages	8
2.4 Phage abundance and diversity	9
2.5 Staphylococcal Phages	10
2.6 Genome structures of S. aureus phages	12
2.7 Emergence of Multi-drug resistant S. aureus (MDRSA)	16
2.8 Phage therapy against staphylococcal infections	18
CHAPTER THREE: MATERIALS AND METHODS	20
3.1 Study area	20
 3.1.1 Nairobi- Kenya 3.1.2 Shkodra - Albania 3.1.3 Helsinki - Finland 	20 20 21
3.2 Sampling	21

3.2.1 Sampling design	
3.2.2 Sample size determination	21
3.2.3 Sample collection and sampling techniques	22
3.3 Materials	23
3.3.1 Bacterial cultures	
3.3.2 Phage isolation	24
3.3.3. Soft agar spot assay	25
3.3.4. Plaque purification of phages	26
3.3.5. Preparation of phage stocks using semi-confluent double-layer	plates26
3.3.6. Phage titration	27
3.4 Characterization of phages	27
3.4.1 Morphological analysis	27
3.4.2 Genome analysis	
3.4.2.1 DNA isolation	
3.4.2.2 DNA analysis by Agarose gel electrophoresis	29
3.4.2.3 Next generation sequencing	29
3.4.2.4 Phylogenetic analysis	
3.4.3 Proteomics of the phages	
3.4.4 Nucleotide sequence accession numbers	
5.5 Methods to assay physico-chemical properties of phages	
3.5.1 Thermal stability	
3.5.2 Ultra-violet (UV) stability	
3.5.5 pH stability	
3 5 5 Ethanol stability	33
3.6 Biological properties of the phages	
3 6 1 Adsorption curve	34
3.6.2 One step growth curve (O.S.G.C)	35
3.7 Host range analysis	
371 Spot assay	36
3.7.2 Relative efficiency of plating (R E O P)	
3.8 Quality assurance and ethical consideration	
3.8.1 Quality assurance	37
3.8.2 Ethical consideration	37
3.9 Statistical analysis	
CHAPTER FOUR: RESULTS	
4.1 Phage isolation and purification	
4.2 Characterization of phages	41
4.2.1 Morphological identification	41
4.2.2 Genome analysis	44
4.2.2.1 DNA extraction and gel analysis	44

4.2.2.2 Sequencing and annotation	46
4.2.2.3 Phylogenetic analysis	50
4.2.3 Screening for lethal genes	55
4.2.4 Proteomic	56
4.3 Physico-chemical properties	58
4.4 Growth properties of the Stab phages	65
4.5 Host range analysis of the phages	65
CHAPTER FIVE: DISCUSSION, CONCLUSION, LIMITATION, RECOMMENDATION AND SUGGESTION FOR FURTHER STUDIES	75
5.1 Discussion	75
5.1.1 Indicator/host bacteria	75
5.1.3 Screening for lethal genes	
5.1.4 Stability status of the Stabs	78
5.1.5 Growth properties of the novel phages	80
5.1.6 Host range analysis	81
5.2 Conclusion	84
5.3 Limitation of the study	86
5.4 Recommendations	86
5.5 Suggestion for further studies	86
CHAPTER SIX: REFERENCES	87
APPENDICES	127

List of tables

Table 1: Phage particle dimensions	43
Table 2: NanoDrop quantification for Stabs	44
Table 3: Summary of the Stab phage genome properties.	48
Table 4: A list of the screened antibiotic resistance genes	55
Table 5: Identified major structural proteins of the Stabs with close ranged	
molecular weight	57
Table 6: Strains sensitivity to the phages by spot and REOP assays.	71

List of Figures

Figure 1: Plaque assay of the isolated phages from various study sites	40
Figure 2: Transmission electron microscopy images of phages Stabs	43
Figure 3: Gel exhibition of Stabs' DNA samples with minimal contamination	45
Figure 4: Restriction analysis of Stabs showing the size of phages' genomes	46
Figure 5: Consensus motifs of the Stab phages' putative promoter sequences	48
Figure 6: Mauve alignment of annotated complete genomes of Stabs	51
Figure 7: Taxonomic classification of the Stabs	54
Figure 8: SDS-PAGE (10% acrylamide) of Stabs	58
Figure 9: Stability of Stabs at various environmental conditions	61
Figure 10: Stabs' stability at ethanol concentration (vol/vol %).	63
Figure 11: Stabs' stability at various chloroform concentration (vol/vol %)	64
Figure 12: Adsorption curves and adsorption rate constants (k) of Stabs	66
Figure 13: One step growth curves Stabs.	67
Figure 14: Efficiency of plating (EOP) (I) and Spot assay (II) of the Stabs on	
S.xylosus (indicator/host bacteria)	68
Figure 15: Spot assay tests of the Stabs on various Staphylococcus species	68
Figure 16: The relative E.O.P of Stab21 against <i>S.aureus</i> test strains	69
Figure 17: The relative E.O.P of Stab20 on various <i>Staphylococcus</i> spp	69
Figure 18: The relative E.O.P of Stab21 on various <i>Staphylococcus</i> spp	70

List of Appendices

Appendix I: Study sites.	
Appendix II: Bacterial strains	
Appendix III: Stab phages annotation results.	
Appendix IV: Putative promoters of the Stab phages	
Appendix V: Predicted rho-independent terminator sequences of the Stal	o phages.
Appendix VI: Stab phages' proteomic (LC-MS/MS) results	
Appendix VII: Publications.	
Appendix VII: Publications	

List of Abbreviation

ATCC:	American Type Cell Collection
CRISPR:	Clustered regularly interspaced short palindromic repeats
CFU:	Colony forming unit
DNA:	Deoxyribonucleic acid
EDTA:	Ethylenediamine tetra-acetic acid
ENA:	European Nucleotide Archive
EOP:	Efficiency of plating
HUSLAB:	Helsinki University Hospital Laboratory
ICTV:	International Committee on Taxonomy of Viruses
KNBS:	Kenya National Bureau of Statistics
LC-MS/MS:	Liquid chromatography tandem mass spectrometry
MDR:	Multi-drug resistant
MDRSA:	Multi-drug resistant Staphylococcus aureus
MRSA:	Methicillin Resistant Staphylococcus aureus
NaCl:	Sodium Chloride
NCBI:	National Centre for Biotechnology Information
NGS:	Next generation sequencing
PBS:	Phosphate buffered saline
PFU:	Plaque forming unit
RNA:	Ribonucleic acid
RNAP :	Ribonucleic acid polymerase
RpoE:	RNA polymerase extracytoplasmic E
SDS:	Sodium dodecyl sulphate
U.S.S.R:	Union of Soviet Socialist Republics
USA:	United States of America
Vol/Vol:	Volume by volume
W. H. O:	World Health Organization

Abstract

Background: Bacteriophages (phages) are obligate parasites of bacteria. Phages are grouped according to their life cycle as lytic, temperate (lysogenic), pseudo-lysogenic and chronic phages. Lytic phages have been applied efficiently (phage therapy) against human infections caused by pathogens such as *Staphylococcus aureus* or *Escherichia coli*. In addition, the viruses destroy antibiotic-resistant bacteria. Genome analysis of phages is significant since it helps in selection of safe phages from harmful ones. The analysis further facilitates the identification of phage genes with unknown functions from ones whose purpose are yet to be unravelled. These strange genes are also known as hypothetical genes and they encode hypothetical proteins. Some of these hypothetical genes have homologs in the GenBank. However, others are non-identical with the GenBank deposited genes and consequently referred as novel genes.

Objective: To explore novel lytic phages and compare them with the current known phages. Thereafter, establish functions of their hypothetical proteins against multidrug resistant *S. aureus* complex target proteins such as wall teichoic acid (WTA), lipoteichoic acid (LTA) and multidrug resistant efflux pumps associated with quinolones and linezolids.

Methods: Highly potent *Staphylococcus* lytic phages were isolated using *S. xylosus* sausage fermentor isolate. Thereafter, characterized through morphological, genomical and proteomic means. The phages' host range were determined by spot and double layer agar assays against numerous clinical samples of *S. aureus* that are MSSA or MDRSA (including MRSA).

Results: Four lytic phages; Stab20, Stab21, Stab22 and Stab23, were identified as *Kayviruses*. In addition, genomic analysis showed that these viruses are possessed numerous hypothetical proteins. Genome work further indicated inability of the Stabs to shuttle lethal genes like antibiotic resistance encoding genes and chromosomal point mutations associated with drug resistance or virulence. Proteomic outcome displayed the close similarity of the phages. Genomic and proteomic analysis showed that the Stabs are closely related with other phages such as Sb-1 and ISP which are

useful therapeutic agents. Stab20 and Stab21 phages had broad host range with high relative EOP. However, two other isolates were active against a few isolates.

Conclusion: Efficacy of these phages against human and livestock *Staphylococcus* bacteria isolates depicts their capability as good candidates for therapeutic and biocontrol phage cocktails.

CHAPTER ONE: INTRODUCTION

1.1 Background information

Bacteriophages (phages) have been used as therapeutic or bio-control agents against bacterial infections since 1919 (Summers, 2012). However, phages' bactericidal properties were first observed in 1896 by British Chemist E. H. Hankin while studying the effects of the water from the Ganges and Jumma rivers of India against *Vibrio cholerae* pathogen (Stone, 2002). Years later a British bacteriologist Frederick W. Twort made a similar observation (Sulakvelidze *et al.*, 2001). However, Felix d'Herelle, a French-Canadian microbiologist was the one who finally made use of phages as therapeutic and bio-control agents. Thus, he is considered as the "Father" of phage therapy (Summers, 2012; Wittebole *et al.*, 2014).

d'Herelle's first work involved controlling avian typhosis (*Salmonella gallinarum*) (Summers, 2012). He later treated a 12 year old boy who had severe Shigellosis with "anti-*Shiga*" phages (Sulakvelidze *et al.*, 2001). Thereafter, in 1921 d'Herelle performed a major mass treatment of persons suffering from Shigellosis and had them cured within 24 - 26 hours after receiving an oral dosage of shiga-phage. This work was at the Infants' Hospital in Paris under the supervision of Professor Hutinel (Dublanchet & Bourne, 2007). The success of this first mass phage therapy caught the attentions of many bacteriologists across Europe, North and South America who tried to replicate the work but, failed (Dublanchet & Bourne, 2007). However, d'Herelle continued with phage research and even helped establish a phage therapy institute in Georgia which is now the global centre of phage therapy (Summers, 2012).

Phages are the most trusted therapeutic and bio-control agents in the entire former Union of Soviet Socialist Republic (U.S.S.R). In Georgia and Russia phages are currently sold even over the counters in most pharmacies, besides being prescribed in hospitals (Brüssow, 2012). However, phage therapy is not being practiced in other parts of the world due to political and ideological difference amongst the earliest scientists (Summers, 2012). The advent of antibiotics and lack of knowledge on

phage biology also played a role in discouraging phage therapy in the western world (Oliveira et al., 2015; Adhya et al., 2014). However, the frequent use of antibiotics in hospitals and at home has resulted to the emergence of drug resistant bacterial strains (Spellberg et al., 2008). In addition, the issue of drug resistance has been exerbeited by excessive use of drugs in livestock husbandry. Most of the main antibiotics are used as animal feed additives to enhance rapid growth and for prophylactic purposes (Graham et al., 2007). The outcome of these human activities is the presence of excess antibiotic wastes in the environment which has selected for antibiotic resistant bacterial strains (Larsson, 2014; Phillips et al., 2004). However, some bacteria are just naturally resistant to certain antibiotics (Martínez, 2012). These include bacteria like *Enterococcus* spp which are naturally resistant to aminoglycosides and β -lactams (Hollenbeck & Rice, 2012; Miller et al., 2014). Staphylococcus spp such as S. aureus have been documented to be naturally non-responsive to β -lactams (Brown & Reynolds, 1980). Furthermore, S. aureus strains have been noted to possess drug resistant genes that enable them to develop resistance against multiple antibacterial agents (Hiramatsu et al., 2014; Kaatz et al., 2005).

Staphylococcus spp are gram positive bacteria. However, S. aureus appear as bunch of grapes and berries when viewed under a microscope after Gram staining unlike other species of staphylococci bacteria (Licitra, 2013). They form gray to golden yellow colonies on nutrient agar medium and can tolerate salt concentration of 10%. These bacteria are catalase and coagulase positive but oxidase negative (Gnanamani *et al.*, 2017). The microbes can grow aerobically and anaerobically (facultative microbes) at temperatures ranges between 18 - 40 °C but does best at 35 °C (Taylor & Unakal, 2020). S. aureus are commensal microorganisms of humans, birds and animals (Heaton *et al.*, 2020). However, they become pathogenic when the body's immune system gets compromised (Silva *et al.*, 2020).

Some strains of *S. aureus* have been identified to be resistant to almost all classes of antibiotics currently available and these are the multi-drug resistant *S. aureus* (MDRSA) (Howden *et al.*, 2011). Subsequently the WHO has currently ranked *S.*

aureus bacteria as one of priority 2- high risk pathogens (World Health Organization, 2017b). The bacterium is of high economic significance as it is pathogenic to humans and livestock, and is acquired from either humans or livestock (Fair & Tor, 2014; Mehndiratta & Bhalla, 2014; Smith, 2015). In human *S. aureus* causes infections which include skin and soft tissue infections (SSTIs) such as boils and mastitis. In addition, the bacteria are associated with diseases such as necrotizing pneumonia, and osteomylitis (Thomer *et al.*, 2016). Some of these *S. aureus* human illness such as SSTIs like mastitis and exudative epidermitis; arthritis and pneumonia are also common in pets, livestock and poultry (Heaton *et al.*, 2020). The mentioned effects of MDRSA on humans and their domesticated animals makes the pathogen a suitable tool for biological weapon and thus it also a threat to the global security.

However, there are only a few antibiotics available against the MDRSA strains and some of them have serious adverse effects on the users. These antibacterial agents include vancomycin, teicoplanin, rifampicin, fusidic acid, lincosamides (clindamycin and lincomycin), linezolid and quinupristin/dalfopristin (Rayner & Munckhof, 2005). Though, they pose major harm to patients such as nephrotoxicity, allergies, diarrhoea and thrombocytopenia (Marinho et al., 2011; Rafii et al., 2008). In addition, a number of these drugs are expensive and are out of reach for many people. Furthermore, only a few pharmaceutical firms are currently concerned with the production of new antimicrobials molecules as the venture is less profitable (Conly & Johnston, 2005). Another challenging factor is that the rate at which bacterial pathogens develop resistance to antibiotics is relatively faster compared to antibiotics' development and production pace (Carlet et al., 2012; Spellberg et al., 2008). The result of these has been the shortage of new antibacterial agent against the ever-emerging multi-drug resistant bacteria such as MDRSA. Currently biological agents such as phages and phage products like lysin proteins are being explored for therapeutic purpose. In addition, phages' "hypothetical proteins" and protein-protein interactions are being looked into in the quest for developing new antibacterial molecules against multi-drug resistant (MDR) bacteria such as MRSA. Hence this project focuses on the characterization of novel phages and exploration of new

'hypothetical proteins' from their genomes. The identified proteins might of great value in the development of effective drugs against various MDRSA currently circulating in the communities and hospitals around the world.

1.2 Problem statement

Emergence of multi-drug resistant bacteria such as MDRSA threatens the global public health and food security (Cheng et al., 2016; World Health Organization, 2017b). The WHO estimates that 64% of persons infected with MDRSA such as methicillin resistant Staphylococcus aureus (MRSA) are more likely to die than those infected with drug sensitive strains of S. aureus (World Health Organization, 2017b). However, only a few pharmaceutical companies are currently involved in the development of new antibiotics (Bartlett et al., 2013). This is due to the fact that research and development of new antibiotics is a non-profitable venture especially when coupled with stringent government regulations (Renwick & Mossialos, 2018). Another major dissuading factor is that bacteria manage to develop rapidly resistance even against the new drugs (Liljeqvist et al., 2012; Nathan & Goldberg, 2005). Consequently, there is scarcity of safe and effective antibiotics against MDRSA strains. Thus, the current major dependence on the old antibiotic or their modified molecules as antibacterial agents. These drugs often target the same sites which the bacteria can alter through mutations thus making them resistant to all the antibiotics in a similar antibiotics. The production of numerous generic antibiotics has also contributed to disincentive in the research and development of new antibiotics (Jose, 2010).

1.3 Justification for the study

Phages have been used for a century in some parts of the world as antibacterial agents and their efficacy and safety proved beyond doubt (Dedrick *et al.*, 2019; Oduor *et al.*, 2016; Schooley *et al.*, 2017). These viruses are capable of mutating to overcome phage or antibacterial resistance staged by the bacteria (Maxwell, 2016).

In addition, phages and their products such as lysin and tails are currently being used as antibacterial agents for food sanitization (Drulis-Kawa *et al.*, 2012). Besides, the viruses are readily available in the environment for easy exploration. This expedites development and production of new therapeutic regimen against phage-resistant bacterial strains.

In biocontrol and therapeutic application of phages, only lytic phages are of value. However, under certain conditions where no obligate lytic phages are available siphoviruses may be use but after deletion of lysogen (integrase) genes (Dedrick *et al.*, 2019). Thus, this work was designed to explore obligate novel lytic staphylococcus phages with antibacterial significance. In addition, the work only targeted staphylococcus pathogens due to limited time frame and funds that were available for the study.

1.4 Research questions

- i. What are the physico-chemical properties of the isolated lytic *Staphylococcus* phages?
- ii. What are the classification groups of the isolated lytic *Staphylococcus* phages?
- iii. Do the isolated lytic Staphylococcus phages possess novel genes?
- iv. Are there "super-spreader" Staphylococcus phages?
- v. How potent would the isolated novel proteins from the lytic *Staphylococcus* phages be against clinical and wild *Staphylococcus* strains?

1.5 Null hypothesis (H₀)

Lytic phages and their protein products are not effective antibacterial agents as compared to conventional antibiotics.

1.6 Objectives

1.6.1 General objective

To contribute towards development of new antibacterial agents against MDRSA using lytic phages and their novel protein products that target specific complex structures of these bacterial strains.

1.6.2 Specific objectives

- i. To determine the appropriate classification of the isolated lytic phages.
- ii. To establish the physico-chemical and growth properties of the isolated lytic phages.
- iii. To evaluate the host range of the isolated lytic Staphylococcus phages.
- iv. To establish whether the phages are "super spreaders".
- v. To identify genes encoding novel hypothetical proteins of unknown function within the genomes of the isolated lytic phages to be searched for host-toxic proteins.

CHAPTER TWO: LITERATURE REVIEW

2.1 Description of phages

Bacteriophages (phages) are prokaryotic viruses that attack bacterial cells (prokaryotes) only and not animal cells (eukaryotes). They are obligate intracellular parasites of eubacteria with either a DNA or RNA genome that might be single or double stranded (Krupovic *et al*, 2011). In addition, phages exist in different morphological features with varied structures. Some have spindle/helical (filamentous), icosahedral and complex morphology. A complex morphology is a combination of an icosahedral-head attached to a spindle (tail) structure that may be present or not. In some cases, the spindles might possess structures like the base plate, tail fibres and whiskers. Filamentous phages includes phage f1, Fd and M13 of *Escherichia coli*; Pf1, Pf4 and Pf5 of *Pseudomonas aeruginosa* and CTX φ of *V. cholerae* (Rakonjac *et al.*, 2011). Φ X174 phages of *Escherichia coli* are examples of icosahedral phages (McKenna *et al.*, 1992) while complex phages are like Twort-like phages of *S. aureus* (Nováček *et al.*, 2016).

These viruses form the largest life form on the earth's biosphere and are estimated to be 10^{30} - 10^{31} in number on the planet (Bar-On *et al.*, 2018; Hendrix *et al.*, 1999). Phages are responsible for keeping in check the bacterial population on the earth (Ackermann, 2007). In addition, phages maintain the bacterial balance on super-organisms (such as humans and other animals) to prevent disease outbreaks due to bacteria (Letarov & Kulikov, 2009). Phages exist wherever their bacterial host are found (Breitbart & Rohwer, 2005) and as such they are found even in hostile environments which includes deep-sea hydrothermal vent, the cold and hot deserts (Borriss *et al.*, 2003; Ji *et al.*, 2015; Prestel *et al.*, 2013; Yoshida-Takashima *et al.*, 2012).

2.2 Phage characterization

The International Committee on Taxonomy of Viruses (ICTV) has used the genomic content status and morphological appearance of phages to classify them into various

groups. Generally most phages belong to order Caudovirales which has nine main families that includes Ackermannviridae, Autographiviridae, Chaseviridae, Demerecviridae, Drexlerviridae, Herelleviridae, Myoviridae, Podoviridae and Siphoviridae (International Committee on Taxonomy of Viruses, 2020). These families have been classified based on the tail morphology (Fokine & Rossmann, 2014). Caudovirales are tailed phages with icosahedral capsids filled with doublestranded DNA (ds-DNA) and they constitute 96% of all the observed phages (Ackermann, 2007). The sizes of the Caudovirales genomes range from 11.6 kb of P1 phage infecting mycoplasmas to 500 kb of Bacillus phage G (Salmond & Fineran, 2015; Tu et al., 2001). Each family that form these orders are group into subfamilies that are further divided into genera that in turn has species. However, there are phages with neither genera nor subfamily like Brochothorix virus A9, Lactobacillus virus Lb338-1 and Lactobacillus virus LP65 of the Herelleviridae family (International Committee on Taxonomy of Viruses, 2020).

2.3 Life cycle of phages

Phages display numerous life cycles that have been used in differentiating them as lytic, lysogenic, pseudo-lysogenic and chronic phages (Clokie *et al.*, 2011). The life cycles are important to individual phage group for their survival. Lytic life cycle involves the infection and later destruction of the host bacteria after the phages have multiplied within them. The process ensures that the bacterial population is under control, besides facilitating long term evolution of the host bacteria through transduction (Weinbauer & Rassoulzadegan, 2004). The evolution of bacteria has made them resistant to predatory phage by acquiring immune systems to prevent phage adsorption and block invader DNA entry (Shabbir *et al.*, 2016). However, in order to ensure their survival phages have also had to evolve to counteract resistance from host bacteria by developing features such as anti-CRISPR systems (Maxwell, 2016). In the lysogenic life cycle after infection of the host bacterium the phage genome integrates as part of the host genome or resides as a plasmid in the cytoplasm. Such a form of phage is referred to as a prophage that establishes a long

mutual association between the phage and the host bacterium. Therefore, the bacterium is not killed and its survival might be enhanced if the phage carries hostbeneficial genes such as antibiotic resistant genes (Colomer-Lluch *et al.*, 2011; Muniesa *et al.*, 2013). The host bacterium might also turn pathogenic as in the case of *V. cholerae* that becomes pathogenic after acquiring CTX ϕ (Das *et al.*, 2011). These genes are inheritable and can be passed to a thousand generations from the host bacterium (Davis *et al.*, 2000).

Pseudo-lysogenic life cycle is unstable existence of phage in a host bacterium while waiting for the right environmental conditions for it to assume lytic or lysogenic life cycle. The phages might be waiting for nutrient enrichment, temperature fluctuation or exposure to sunlight (Baugher *et al.*, 2014; Wilson *et al.*, 1996). The chronic infection life cycle is found in archaeal viruses such as the filamentous phages and plasmaviruses like those that infect *Mycoplasma* spp (Clokie *et al.*, 2011). The life cycle of *Mycoplasma* bacteriophages involves slow continuous shedding of phage copies by budding from the host bacteria (*Mycoplasma* spp) for a long time without lysing the host (Weinbauer, 2004).

2.4 Phage abundance and diversity

Phage abundance within the biosphere varies biogeographically. There is more phage in the world ocean than on land. The ocean waters in total are thought to have about 4.0×10^{30} phage copies (Suttle, 2007) while a gram of soil sample on land has about 10^{8-10} phage copies (Wilhelm & Suttle, 1999; Williamson, 2011). However, phage copies on land vary from place to place. Where a gram of marine sediments has about 10^{10} phage copies as compared to one gram fresh water lake sediment which has an estimate of 10^9 phages (Danovaro *et al*, 2002). In addition, fresh water lakes have about 10^9 phage particles per milliliter than sea water of the same volume which has 10^7 phage particles (Breitbart, 2012). Phage are also present in marine snow (algal flocs), in which there about 10^{10} phage copies (Peduzzi *et al.*, 1993). Furthermore, phages are abundant in sea ice; which has an estimate of 10^{6-8} phage particles (Weinbauer, 2004) and in air. The concentration of these viruses in air does vary from one place to another. In some cheese processing plants about 10^8 PFU/m³ of phage particles have been isolated from the air within these factories (Daniel Verreault *et al.*, 2010).

Phages are also form part of animals and plants microbial systems where they ensure balance among the bacterial flora. Amongst animals, ruminating bovines have phage count of about 10^7 per gram of their feces while human's feces has 10^9 phage copies per gram (Niu *et al.*, 2009; Rohwer, 2003). Opportunistic infections are often as a result of broad spectrum antibiotics that eradicate useful bacteria that colonize the gut (Buffie *et al.*, 2012). Phages are also abundant in certain food eaten by humans and especially dairy products such as yogurt, cheese and raw milk. Cheese has been found to possess a phage content of about 10^9 PFU/gm that is clearly higher than that of yogurt which has 10^3 PFU/mL and raw milk has 10^4 PFU/mL (Madera *et al.*, 2004).

2.5 Staphylococcal Phages

The order *Caudovirales* has three families under which staphylococcal phages are classified. These includes *Herelleviridae*, *Podoviridae* and *Siphoviridae* families (International Committee on Taxonomy of Viruses, 2020). *Herelleviridae* family is a group of phages usually possessing a large capsid head with a diameter of about 85 - 100 nm to which is attached a complex uncontractile tail of 130 - 185 nm in length (Barylski *et al.*, 2020). Tails of phages from this family have a baseplate at the tip and a collar joining it to the head (Nováček *et al.*, 2016). *Herelleviridae* phages have a genome size greater than 106 kilobase pairs (kbp) (NCBI, 2020). They infect grampositive and gram-negative bacteria (O'Flaherty *et al.*, 2004). The family is currently grouped into five subfamilies which include *Bastillevirinae*, *Brockvirinae*, *Jasinkavirinae*, *Spounavirinae* and *Twortvirinae* (International Committee on Taxonomy of Viruses, 2020). Only the *Twortvirinae* subfamily that hosts staphylococcal phages within the *Herelleviridae* family. *Twortvirinae* has seven

genera and five of them are consists of only staphylococcal phage and they are *Baoshnavirus, Kayvirus, Sciuriunavirus, Sepunavirus, Silviavirus* and *Twortvirus* genus. These genera were created based on the *Staphylococcus* spp a virus destroys, the number of tRNA encoded by a virus genome, the genome size and its terminal repeats range. Previous studies show that members of genus *Sciuriunavirus* and *Sepunavirus* are more virulence on the strains of *S. sciuri* and *S. epidermidis* respectively. Genome analysis of phages from *Sciuriunavirus, Sepunavirus* and *Twortvirus* genera shows that they do not encode for tRNAs. Phages within *Baoshanvirus, Silviavirus* and *Kayvirus* genera each encodes for tRNAs. However, it is only Kayviruses which have four tRNAs while the other genera each has one tRNA (International Committee on Taxonomy of Viruses, 2020).

Podoviridae phages have smaller icosahedral or prolate heads with a diameter of about 50 – 60 nm, and a short, stubby, non-contractile tail or no tail at all (Hrebík *et al.*, 2019; Khan Mirzaei *et al.*, 2014). The *Podoviridae* family consists of three sub-families that include *Picovirinae*, *Rakietenvirinae*, *Sepvirinae*, and a number of genera. All staphylococcal podoviruses are members of the *Rakietenvirinae* subfamily within the *Andhravirus* and *Rosenblumvirus* genera.hosts. These phages have distinct small genomes of about 16 - 18.5 kbp void of tRNAs (Cater *et al.*, 2017; Culbertson *et al.*, 2019). *Herelleviridae* and *Podoviridae* viruses are obligate lytic phages that destroy bacteria.

Siphoviridae family, a member of the order *Caudovirales* contains the largest numbers of the tailed-phages. These are some of the populous staphylococcal phages and consequently are the major drivers *Staphylococcus* bacteria diversity (Deghorain & Van Melderen, 2012). The phages have either prolate or icosahedral capsids attached to long non-contractile tails void of sheaths. Their genome size is about 39-43 kb (Moller *et al.*, 2019; Xia & Wolz, 2014). These viruses are temperate phages capable of either co-existing with host bacteria or destroying them. They turn lytic when there is change in environmental conditions like exposure to ultra-violet radiation and antibiotics, pH and nutrient changes (Howard-Varona *et al.*, 2017). In

lysogenic cycle, they exist as prophages within the host bacteria genomes. The genomes of siphoviruses harbour lysogenic modules which consists of integrase and regulatory genes, and CI and Cro genes (Xia & Wolz, 2014). Siphoviruses are associated with *Staphylococcus* bacteria pathogenicity and ability to endure harsh environmental conditions. Pathogenic association of siphoviruses with *Staphylococcus* bacteria turns them unsuitable for phage therapy against staphylococcal infection.

2.6 Genome structures of S. aureus phages

These viruses have a genome size ranging from 16 kilobase pair (kbp) to about 157 kbp. Podoviruses are the only lytic of *S. aureus* phages with the smallest lineardouble stranded DNA genomes. The genome of staphylococcal podoviruses varies in size and can be from 16-18.5 kbp (https://blast.ncbi.nlm.nih.gov/Blast.cgi). They have fewer open reading frames (ORFs) of about 20-22 ORFs, obligate lytic life cycle and GC content (27-29%) (Oliveira *et al.*, 2019). These phages have conserved genome organization with two transcriptional units meeting near the centre. Locations of the DNA packaging and DNA polymerase genes of these phages are close at the start of the left genome terminus while the structural protein genes are at their right parts (Cater *et al.*, 2017). In addition, these phages have the least counts of hypothetical proteins because of their tiny genomes.

The *Twortvirinae* sub-family is the only group within the *Herelleviridae* family that house staphylococcal phages. *Twortvirinae* has seven genera but only one group that is exceptional. Genus *Harbinvirus* is the odd group with *Twortvirinae* subfamily that contains non-staphylococcal phages and especially Lactobacillus phages. Six other groups are genera *Baoshanvirus*, *Twortvirus*, *Sciuriunavirus*, *Sepunavirus*, *Silviavirus* and *Kayvirus*, and they specifically have staphylococcal phages. However, they all possess large linear double-stranded DNA genomes of about 125-170 kbp. The Herelleviruses have open reading frames (ORFs) of about 165-301, long terminal repeats (3-16 kbp), 29.97-30.60% GC content and 0-24 tRNAs

(Barylski *et al.*, 2020; Cui, Guo, *et al.*, 2017). *Baoshanvirus* are phages that destroy only *S.aureus* bacteria strains. They have a genome size of about 142.9-149.2 kbp, 201- 210 coding sequence (CDS) and 1 tRNA. Genus *Twortvirus* currently has Staphylococcus phage Twort species as the only members. They have 130 kbp genomes with 195 CDS void of tRNAs, and a GC- content of about 30.3 to 30.6% (Łobocka *et al.*, 2012). *Sciuriunavirus* are Staphylococcus phages targeting only *S. sciuri* and they possess genomes with about 139.6 kbp, encoding 202 genes and 0 tRNAs (https://blast.ncbi.nlm.nih.gov/Blast.cgi). While the *Sepunavirus* have genomes of approximately 139-142.6 kbp, encoding 200- 208 putative ORFs. Genes are tightly packed in the genome, occupying almost 90% of it and do not encode for tRNAs (Gutiérrez *et al.*, 2015; Melo *et al.*, 2014).

Unlike *Baoshanvirus*, phages of genus *Silviavirus* are smaller having genomes averaging 131.3-138.3 kbp, encoding 189 putative genes and with a single tRNA (Vandersteegen *et al.*, 2013). *Kayvirus* is dominant genus in the *Twortvirinae* subfamily and are distinguished by large genomes (140-151.6 kbp) encoding 200-254 putative ORFs. In addition, they have long terminal repeats (8-12 kbp), low and 3-5 tRNAs (Abatángelo *et al.*, 2017; Crane *et al.*, 2020; Gill, 2014; Haddad *et al.*, 2014; Philipson *et al.*, 2018).

Siphoviridae family has four genera exclusively made up of staphylococcal viruses and they are *Biseptimavirus*, *Fibralongavirus*, *Phietavirus*, *Sextaectvirus* and *Triavirus*. Siphoviruses genomes are often 39-47 kbp (Oliveira *et al.*, 2019; Yazdi *et al.*, 2019; Zeman *et al.*, 2019). However, their some siphoviruses either smaller or large genomes. Staphylococcus phage HOB 14.1 and Staphylococcus phage 6ec have genome size \approx 18.66 kbp and 93.79 kbp respectively (Aswani *et al.*, 2014; Lassen *et al.*, 2017). Siphoviruses are void of tRNA genes like phages in *Podoviridae* and a few viruses in *Herelleviridae* families. These phages are distinct from others by having high GC contents (31.0-34.99%) (Coombs *et al.*, 2020; Daniel *et al.*, 2007). *Caudovirilae* viruses have a general genomic architecture that consists of DNA replication, DNA packaging, structural (head and tail proteins) and lysis functional modules. However, siphoviruses are unique by possessing lysogen units (Xia & Wolz, 2014). Staphylococcal phages from the family *Herelleviridae* and *Podoviridae* are free of lysogeny genes but rich in hypothetical proteins (Cha *et al.*, 2019; Oduor *et al.*, 2019).

Lysogeny modules facilitate staphylococcal siphoviruses cohabitation with their host bacteria as prophages (Fernández *et al.*, 2018). The viruses are capable of endless replication with the host cells without producing virions. This association does only end when the environmental conditions get unfavourable for the relationship to continue (like exposure to antibiotics, pH and nutrients changes) (Howard-Varona *et al.*, 2017). In addition, the genes enhance bacterial virulence, enables the bacteria to jump into various host and survive harsh environmental conditions (Howard-Varona *et al.*, 2017; Kashif *et al.*, 2019; Xia & Wolz, 2014).

Siphoviruses such as phages $\phi 11$ and $\phi 80\alpha$ fortifies *S.aureus* survival in various environments by inducing biofilm formation (Fernández *et al.*, 2018). The phages facilitates bacterial aggregation on food industry surfaces (like preparation tables and milk tanks), implanted devices and on biological surfaces like human tissues (Khatoon *et al.*, 2018). Consequently making the bacteria highly infectious, more virulent, and insensitive to high temperatures and drugs (Y. Liu *et al.*, 2020; Moormeier & Bayles, 2017). The biofilm in turn enables environmental persistence and dissemination of the bacteria to humans and live stocks/pets (Bernier-Lachance *et al.*, 2020). $\phi 11$ and $\phi 80\alpha$ phages induces biofilm formation by upregulating production of polysaccharide intercellular adhesion (PIA). The polysaccharide is the main constituent of the extracellular matrix of *S.aureus* biofilms. In addition, the viruses downregulates several genes encoding dispersion factors such as proteases (*sspA, splF, splC, splB* and *splA*) or surfactants (*hld*) to keep bacteria aggregated (Fernández *et al.*, 2018).

Host jumping or adaptation to new environments is one characteristics staphylococcal bacteria have perfected over the years. The consequent has been the rapid emergence of livestock-acquired methicillin resistant *S. aureus* (LA-MRSA)

strains across the world (Anjum *et al.*, 2019). The host jumping capability has been associated with staphylococcal bacteria siphovirus infections. The phages possess genes like *fnbA* and *clfA* that generates adhesion proteins for attachment to host, for example humans when bacteria jumps from pets/live-stock animals (Fernández *et al.*, 2018; Laumay *et al.*, 2019).

As the bacteria shelter these viruses, they in turn provide protection to the host microbes against antibiotics and other invading phages (Haaber et al., 2016). They express phage repressor protein that inhibit the transition from temperate to lytic and infection of the host bacteria with another competitive phage (Bondy-Denomy et al., 2016; Davies *et al.*, 2016). Multi-drug resistance among staphylococcal bacteria has been the outcome of direct association with mobile genetic elements such as siphoviruses. In addition, these viruses have a major influence on the pathogenicity of the S. aureus strains (Moon et al., 2016; Xia & Wolz, 2014). To enhance drug resistance the viruses carry genes encoding drug resistant or pathogenicity islands (such as staphylococcal cassette chromosome mec (SCCmec)) from one bacterium to another. The SCCmec in certain circumstances does harbour multiple drug resistant encoding genes, resulting to MDR-S. aureus strains (Monecke et al., 2016). The virulence of these bacteria is also determined by these cassettes and subsequent diseases caused by the pathogens. Lethal genes transferred by the SCCmec include; Panton-Valentine leucocidin (lukSF), exfoliative toxin (ET), cell-wall anchored protein SasX and immune evasion cluster (IEC) genes (Xia & Wolz, 2014).

Skin and soft tissue infections namely furuncles, abscesses and otitis. In addition, serious diseases such as necrotising pneumonia and osteomyelitis are all associated with *lukSF* gene rich *S. aureus* (Hoppe *et al.*, 2019). There are four serotypes of exfoliative toxin (*et*) genes (*eta, etb, etc and etd*) but only *eta* and *etb* genes are known to induce staphylococcal infections in humans. These toxins are the tools used by *S. aureus* to initiate and sustain scalded skin syndrome in infants, and young children (Mohseni *et al.*, 2018). The toxin transferred from one staphylococcal strain to another by Salint phages. Staphylococcal bacteria carrying SasX genes are

associated with nasal colonization and subsequent fatal invasive infections. Also, it assists the microbe to evade activities of the human innate immunity. SasX are disseminated by phiSPß phages (Nakaminami *et al.*, 2017). Another gene that aids in human immunity evasion is the IEC gene that encodes for staphyokinase (*sak*), chemotaxis inhibitory protein (*chp*), staphylococcal complement inhibitory protein (*scn*)/Staphylococcal Complement Inhibitor (SCIN), staphylococcal enterotoxins (SEs) (Fisher *et al.*, 2018; Pietrocola *et al.*, 2017; Xia & Wolz, 2014).

SAK/sak degrades bactericidal properties of human antibacterial peptides α defensins and LL-₃₇. Moreover, it degrades the human immunoglobulin G (IgG) and human C₃b. In addition, the bacteria do inhibit complement proteins activities by using SCIN proteins to deactivate C₃bBb convertase of the alternative pathway. To ensure their safety *Staphylococcus* bacteria use *chp* to inhibit neutrophil cells' chemotaxis by blocking the functions of their receptors (C5a and formylated peptides). Consequently enabling the bacteria to escape the host innate immune system (Pietrocola *et al.*, 2017). The bacteria express their virulence in the host using the enterotoxins. Pneumonia, toxic shock syndrome, and food poisoning are the human diseases associated with the staphylococcal enterotoxins (Fisher *et al.*, 2018). The IEC genes are ferried from one bacteria to another mainly by the Φ Sa3int prophages. This process is referred to as transduction and is a form of horizontal gene transfer (Haaber *et al.*, 2017; Sieber *et al.*, 2020). However, the host bacteria can pass these virulent genes to their progenies through vertical gene transfer.

2.7 Emergence of Multi-drug resistant S. aureus (MDRSA)

These bacteria are highly contagious and pathogenic in humans and animals. Transmission of the *S. aureus* is either from humans, animals or from human to animals (Ballhausen *et al.*, 2017). Therefore, *S. aureus* infections pose a serious threat to global food security and public health (Minarini *et al.*, 2020; World Health Organization, 2017a). Since they are easily contracted within hospital set-ups and in the community (Gnanamani *et al.*, 2017). The *E. coli, Salmonella* spp, and *Shigella*

spp are all acquired via oral-fecal route by ingesting contaminated water or food (Hodges & Gill, 2010; Majowicz *et al.*, 2010). Meanwhile *S. aureus* infections are transmitted through contact with infected animals (Hau *et al.*, 2018) and inhalation of dust loaded with the bacteria (Kozajda *et al.*, 2019). *S. aureus* is further contracted by getting in contact with contaminated inanimate objects such as animal/human beddings or ingesting food harboring the bacteria (Venkatesh, 2018). The pathogen is known to cause serious skin and soft infections in both humans and livestock (Abrahamian *et al.*, 2019; Krukowski *et al.*, 2020). In human *S. aureus* is an etiological agent of various diseases such as pneumonia, bacteremia/sepsis, bacterial hepatitis, osteomyelitis and meningitis (Al-Obaidi & Desa, 2018; L. S. Miller *et al.*, 2019; Sharifipour *et al.*, 2020; Vlaeminck *et al.*, 2020). The mortality rate of *S. aureus* infections due to drug resistant strains has been estimated to be between 10% and 30% (Tom *et al.*, 2014; Yilmaz *et al.*, 2016).

However, there are only a few safe and effective new antibiotics against the MDRSA. In addition, only a handful pharmaceutical firm are currently engaged in the search for new types of antibiotics with novel antibacterial mechanisms (Plackett, 2020). Currently all antibiotics are based on the old antibacterial molecules with identical mode of actions against pathogenic bacteria. These antibiotics include protein, DNA/RNA and cell wall synthesis inhibitors (O'Rourke et al., 2020). The similarity in mode of action restricts the antibiotics to these few bacterial targets and in case a bacterium modifies them, it becomes resistant to all drugs within a specific class. This property has been exploited by most strains of bacteria like S. aureus to acquire resistance to β - lactam drugs such as penicillins, cephalosporins, carbapenems and monobactams (Foster, 2017). These facts affirm the urgency for novel antibacterial agents with different modes of action against multidrug resistant bacteria like MDRSA. Phages have shown high efficacy against all strains of bacteria including the multidrug resistant isolates (Fish et al., 2016; Kutateladze et al., 2016). This is possible due to the viruses' ability to co-evolve with the bacteria in the environment. Though, there are bacterial strains that develop resistance against phages (Seed, 2015). This hostile status often select for the most virulent phages to tackle phage-resistant bacteria to ensure their continuity (Maxwell, 2016; Stern & Sorek, 2011).

The selected phages often have modified biosynthetic activities to enable them bypass bacteria's defense mechanisms such as adaptive and innate immunity (Samson et al., 2013). The bacteria can defend against phages by changing or eliminating the phage receptor to prevent phage adsorption, by blocking the genetic material of the invader phage, or by restriction endonucleases that digest the phage DNA (Shabbir et al., 2016). They are the innate immunity mechanisms of the bacteria as they are functionally similar to animal immunity. The adaptive immunity of bacteria, in turn, involves the use of clustered regularly interspaced short palindromic repeats (CRISPR); acquired from the past successfully defeated invading phages (Bonsma-Fisher et al., 2018). The defense and counter-defense mechanisms are protein-driven which shows the need for phages' regular update of their genomes to synthesis appropriate proteins for invading perceived host bacteria. These proteins often evolve from "hypothetical genes" within the phage genomes. The phenomenon has been observed in lytic phages effective against generally Lactococcus lactis bacteria resistant to numerous phages within its environment (McGrath et al., 1999).

In phage therapy whenever a phage resistant bacterium emerges another phage strain effective against it is often isolated from the environment (Mattila *et al.*, 2015). This calls for continuous upgrade of phage bio-banks and this approach has been practiced for years in former USSR and Russia to enhance effective phage therapy (Weber-Dąbrowska *et al.*, 2016).

2.8 Phage therapy against staphylococcal infections

In recent years, phage therapy against staphylococcal infections has gain momentum across the continents. Numerous safety and efficacy animal experimental studies on staphylococcal infection treatment with phages have preceded these applications. Experimental studies with animal models proved that phage therapy is not only safe, but also effective. In addition, certain staphylococcal phages were observed to be strain specific (Pincus *et al.*, 2015). Results of studies focused on acute and chronic lethal *S. aureus* infections demonstrated that Staphylococcus phages were effective against the pathogen (Kishor *et al.*, 2016; Oduor *et al.*, 2016; Takemura-Uchiyama *et al.*, 2014). In certain instances single doses were sufficient to resolve the infections (Kifelew *et al.*, 2020; Ngassam-Tchamba *et al.*, 2020; Oduor *et al.*, 2016). These findings have cast out fears and doubts laid on the application of phages in veterinary and human medicine.

Numerous compassionate phage treatment done in Western Europe and North America were successful. Staphylococcus phages have been used to resolve MRSA corneal infections, diabetic foot ulcer, endocarditis and septic shock (Fadlallah *et al.*, 2015; Fish *et al.*, 2016; Petrovic Fabijan *et al.*, 2020). In either of the case reports, there were no report of adverse reactions such as diarrhoea, tachycardia, fever, hepatic/renal dysfunction, and inflammation.

CHAPTER THREE: MATERIALS AND METHODS

3.1 Study area

Sites of investigation included Nairobi (Kenya), Helsinki (Finland) and Shkodra (Albania). The study involved many sites to enhance the probability of fast isolation of strict lytic *Staphylococcus* phages. These phages are often difficult to isolate from the environment.

3.1.1 Nairobi- Kenya

Nairobi County (Appendix I), the most populous county in the Kenya with an estimated population of about 4.397 million(Kenya National Bureau of Statistics, 2019). The county has an area of 696.1sq Km and it has seventeen sub-counties namely; Westlands, Dagoretti North, Dagoretti South, Langata, Kibra, Roysambu, Kasarani, Ruaraka, Embakasi South, Embakasi North, Embakasi Central, Embakasi East. Embakasi West, Makadara, Starehe, Mathare and Kamukunji (https://nairobi.go.ke/devolution-public-service-administration/). Majority of its inhabitants dwell in slums such as Mathare, Kibera and Mukuru Kwa Jenga, which constitutes 60% of the city's settlement. Slum dwellers have poor access to basic human needs such as water, basic sanitation and health care services (Wamukoya et al., 2020). This make them prone to numerous bacterial infections and in most cases these bacteria are drug resistant strains (Maina et al., 2013; Njuguna et al., 2013). The slums' drainage systems and sewage treatment plants in the county were selected for the study as they provided rich sources of multidrug resistant bacteria.

3.1.2 Shkodra - Albania

In Albania the study was conducted at Shkodra County, the third most populous county in the country with an estimated population of about 88 500 (World Population Review, 2019). Despite having good housing facilities, there are about 40% informal settlement in the City of Shkodra (Morelli *et al.*, 2019). The county has sewage and wastewater treatment plants. However, occasionally there are leakage from these plants into nearby rivers (Rivers Kir, Drin and Buna) and lake

Shkodër resulting to their pollution (**Appendix I**) (Pandi Skaka, 2019). The encriched organic nutrient conditions make the rivers rich in bacterial flora that is ambient for bacteriophage colonization.

3.1.3 Helsinki - Finland

Helsinki is the Finnish capital city situated on a peninsula at the Gulf of Finland. The town is within Uusimaa region and is one of the most populous city in Finland. The city's total surface area is 715.48 sq Km with an estimated population of above 1.4 million (HelsinkiRegion, 2020). The city comprises of eight major districts namely: Southern, Northern, Eastern, Western, Central, Northeastern, Southeastern and Östersundom (Tikkanen & Selander, 2011). The Uusimaa region has good social amenities that includes; proper waste management system, healthcare and residential apartments. The city has a state of art sewage and wastewater treatment plant at Viikki known as Viikinmäki wastewater treatment plant (study site map **Appendix I**). The plant serves Helsinki city and other sections of neighbouring cities like Vantaa, Kerava, Tuusula, Sipoo and Järvenpää (HSY, 2020). The wastewater plant was selected for the study since it was the only suitable place for sampling raw sewage and wastewater.

3.2 Sampling

3.2.1 Sampling design

The selected study sites were sampled using convenient sampling technique. Cluster sampling technique was used to pick the sampling sites within the county. The names of particular areas of the sites to be studied were selected using simple random sampling methods.

3.2.2 Sample size determination

Sampling size was determined using the formula used by (Kothari, 2004).

$$n = {Z^2[pq]}/{\ell^2}$$

Where \mathbf{n} = desired number of water samples to be collected.

(Population is infinite)

 \mathbf{Z} = standard deviation is usually 1.96 which corresponds to 95% confidence interval.

 ρ = the proportion of informal settlement in Shkodra is about 40% and Nairobi the estimate is 60% (Morelli *et al.*, 2019; Wamukoya *et al.*, 2020).

Sample size for Shkodra:

 $q = 1 - \rho \rightarrow (1 - 0.4) = 0.5 \ \ell = 0.05 \ (5\% \text{ absolute precision})$

n Shkodra = $\{1.96^2 [0.6 \times 0.4]\} / 0.05^2$

n Shkodra = 368.7936 > 368.0 samples

Sample size for Nairobi:

q = 1 – $\rho \rightarrow$ (1 – 0.6) = 0.5 ℓ = 0.05 (5% absolute precision)

n _{Nairobi} = $\{1.96^2 [0.6 \times 0.4]\} / 0.05^2$

n Nairobi = 368.7936 > 368.0 samples

The sample sizes were apportioned according to the ρ -value of each site. However, in Helsinki the sample size was five (**n** = 5) since the metropolitan does not have a significant ρ -value. The city is void of informal settlement. In addition, this was an exploratory study and any sample size above five was significant.

3.2.3 Sample collection and sampling techniques

Environmental waste and river water samples were collected in sterile dark containers from the drainage systems, rivers sewage and wastewater treatment plants of the selected cities. In Nairobi samples came from the drainage systems, river and
sewage treatment plant (Dandora Sewage and wastewater treatment plant). While in Helsinki, the sources were wastewater from a sewage and wastewater treatment plant (Viikinmäki wastewater treatment plant) and compost soil. However, in Shkodra the samples were withdrawn from river(s) Kir in the east, Drin in the south and Buna in west of the city. Water samples were chosen for the study since polluted water are known to be rich bacterial flora (Blaak *et al.*, 2015; Okemo *et al.*, 2013).

Purposive and convenience sampling methods were applied during sample collection. The techniques were chosen to enhance thorough analysis of the samples resulting to precise reproducible outcomes (Ames *et al.*, 2019; Etikan *et al.*, 2015).

3.3 Materials

Bacterial strains: They are as listed in **Appendix II**. The isolates were from American type cell culture (ATCC), Hospital District of Helsinki and Uusimaa Laboratories (HUSLAB-Helsinki-Finland) and pig isolates (Vantaa pig farms-Finland). *S. xylosus* DD 34 that was used as a host strain when isolating the phages is a natural sausage fermenter isolated from dried sausage (Møller *et al.*, 1998). Other strains used were wild *S.aureus* prevously isolated and analysed in Nairobi (Oduor *et al.*, 2016).

Media, reagents and other consumables. The media included mainly; nutrient broth, luria broth (constituents are 10 g of tryptone [MC005, Neogen-USA], 5 g of yeast extract [NCM0218A, Neogen-USA], 10 g of NaCl, and 1 liter of distilled water; adjust the pH to 7.0 with 1 N NaOH)(LB) and tryptic soy broth (TSB) [MC005, Neogen-USA] and Agar (MC006, Neogen-USA). The reagents were sodium chloride salt, calcium chloride salt, magnesium sulphate, agarose powder, sodium citrate, glycerol, hydrochloric acid, uranyl acetate (U.A), sodium hydroxide, double distilled water, sodium dodecyle sulphate (SDS), 30% acrylamide/Bis (#1610154, Bio-Rad), 2× Laemmli buffer (#1610737, Bio-Rad), ammonium chloride, MIDORI^{Green} dye (#MG04 – NIPPON Genetics Europe, Germany), sucrose, InstantBlue[™] dye (#ISB1L, Sigma-Aldrich), TEMED, Page Ruler[™]-Plus preset (#26619, ThermoScientific), Gene Ruler (#SM0313, ThermoScientific), proteinase K

(#AM2546, ThermoScientific), DNase I (#EN0521, ThermoScientific), RNase A (#EN0531, ThermoScientific), restriction enzymes (EcoRV, EcoRI & HindIII) [EcoRI- #FD0274, ThermoScientific; EcoRV- #FD0304, ThermoScientific; HindIII-#ER0505, ThermoScientific], Gel loading dye purple (**6X**) [#B7024S- New England Biolabs], 1M Tris-Cl (pH 7.5), phenol, TM buffer, chloroform, ethanol, sodium acetate, TAE buffer, SM buffer, ammonium persulfate (APS), citrate-phosphate buffer. Other consumables were screw capped conical centrifuge tubes (15 and 20 mL), snap and screw capped eppendorfs (0.5mL and 1.5 mL), weighing boats, gloves, applicator sticks, inoculating loops, petri-dishes, concentrators (Vivaspin tubes,- (Sartorius, 2019)), tips (sterile-filtered and non-filtered), loading dye.

3.3.1 Bacterial cultures

Propagated the *S. aureus* strains (**Appendix II**) on LB agar (LA) plates. The bacteria were incubated at +37 °C overnight, then a colony from the streaks was sub-cultured and grown as previously described (Oduor *et al.*, 2016). Thereafter, bacterial mass was collected with a sterile plastic loop from the plates and suspended into 20% glycerol nutrient broth from which 200 μ l aliquots were distributed into sterile tubes for longer storage at -70°C.

3.3.2 Phage isolation

Phages from Nairobi were isolated from the sewage and wastewater samples as described elsewhere (Oduor, *et al.*, 2016). Briefly, centrifuged sewage/wastewater sample at 1500 ×*g* to sediment the debris and stored the supernatants at +4 °C. A colony of the host bacterium *S. aureus* (wild strain) was transferred from an overnight plate to 1.5 mL of LB and allowed to grow at +37 °C until OD₆₀₀ of 1.0 – 1.5. Added an aliquot (1.0 mL) of the culture into 20 ml of LB supplemented with 5mM CaCl₂ and 20 ml of sewage supernatant. Incubated the culture at +37 °C overnight while shaking at 120 rpm. Added chloroform (200 µL per 3.0 mL of the culture) to the overnight enrichment culture. Thereafter, incubated at room temperature (RT) for 20 min while rocking gently on a rocker machine. After the chloroform-treatment the enrichment culture was centrifuged at 4500 ×*g* for 20 min

to sediment the dead bacteria and other debris. The supernatant was filter sterilized using 0.45 μ m syringe-filters and stored at +4 °C and later shipped to Helsinki for further analysis.

Phages from Helsinki were isolated from sewage water and compost soil samples as previously described. However, the host strain used were a mixture of four MSSA clinical strains (#5523 & #5857) listed in **Appendix II** instead of wild host *S. aureus*.

Phages from Shkodra were isolated from the sewage and wastewater samples was carried out as described elsewhere (Oduor, *et al.*, 2016 & Kadija et. al., Unpublished). Briefly, centrifuged sewage/wastewater samples at 1500 ×*g* to sediment the debris and the supernatants stored at +4 °C. A colony of the host bacterium *S. xylosus* DD-34 was transferred from an overnight plate to 1.5 mL of LB and allowed to grow at +37 °C until OD₆₀₀ of 1.0 - 1.5. A 1 ml aliquot of the culture was mixed with 20 ml of 10× nutrient broth supplemented with 20mM CaCl₂ and 20 ml of sewage supernatant. Incubated the culture overnight at +37 °C while shaking at 120 rpm. Added chloroform at 200 µL per 3.0 mL of the overnight enrichment culture, and incubated at room temperature (RT) for 20 min while rocking gently on a rocker machine. After the chloroform-treatment the enrichment culture was filter sterilized using 0.45 µm syringe-filters and stored at +4 °C and later shipped to Helsinki for further analysis.

3.3.3. Soft agar spot assay

Detected the presence of phages in the filtrates was using spot assay. A bacterial overlay was prepared by mixing 0.2 mL of host bacteria (OD_{600} 1.0-1.5) to 3.0 mL molten 0.3% soft agar maintained at 55 °C. This mixture was immediately poured on pre-warmed LA plates and allowed to solidify. The phage suspensions were ten-fold serially diluted with sterile PBS, 5 µL drops of different dilutions pipetted on the solidified soft-agar, and allowed to adsorb for 30 minutes. Thereafter, incubated the plates at +37 °C overnight and observed for lysis zones under the drops.

3.3.4. Plaque purification of phages

Positive lysates were ten-fold serially diluted up to 10^{-10} , and $100 \ \mu$ L aliquots of $10^{-5} -10^{-10}$ dilutions were mixed with 0.2 mL of host-bacteria and added into 3.0 mL molten soft agar and poured on pre-warmed LA plates. Once cooled the plates were incubated overnight at +37 °C and the plaques observed the following day and counted to determine the plaque forming units (pfu). Picked single separated plaques with clear plaque-morphology, from the plates using a Pasteur-pipette. Transferred the agar plugs into 0.5 mL SM buffer for the phages to diffuse out of the agar, overnight at +4 °C. The phage titre was determined by spot assay and the plaque purification repeated 3-4 times to make certain that a phage prepared of a single phage was reached. Thereafter, phage stocks with high titres were prepared.

3.3.5. Preparation of phage stocks using semi-confluent double-layer plates

Several LA plates were pre-warmed, fresh host bacteria culture prepared to an OD₆₀₀ of 0.5 - 1.5 and 0.3% soft agar melted and cooled to +50 °C. Appropriately diluted phage lysates to achieve plates with semi-confluent plaques. Then added 0.04 mL of the diluted phage to 0.2 mL of host bacteria. Afterwards dispensed it into a tube with 3.0 mL molten soft agar. The tubes were then rapidly but gently vortexed and the soft agar poured on dry LA plates. Incubated the plates at +37 °C for 16 hrs, after cooling them for 30 min on the table. The plates with semi-confluent plaques were flooded with 3 mL of SM-buffer and rocked gently for 2.0 hrs. The soft agar and the remaining fluid was transferred into a sterile 15 ml centrifuge tube, 0.2 mL of chloroform was added for every 3.0 mL, and the tube rocked at RT for 20 min. Thereafter, centrifuged the tubes at $4500 \times g$ for 15 min., and the supernatants filtered through 0.45 and 0.22 µm syringe filters. The phage samples were further purified to remove chloroform traces as described by Invisorb[®] Spin Virus DNA mini kit (Stratec SE, 2019). Finally, added 0.6 mL of 40% sucrose for every 3.0 mL of the filtered lysate.

3.3.6. Phage titration

The phage lysates were ten-fold serially diluted with SM-buffer up to 10^{-10} dilution. One hundred µL aliquots of the $10^{-6} - 10^{-10}$ dilutions were analyzed using the softagar overlay method described in **3.3.5**. The plaques on plates were counted and counts between 30 and 300 pfu were used to determine the titre. The formula below was used for calculation:

Phage titer (**pfu/mL**) = {pfu} / {0.1 mL × lysate dilution factor}

The lysates with titers above 10^{10} pfu/mL were stored at +4 °C for further analysis.

3.4 Characterization of phages

3.4.1 Morphological analysis

15 mL of an overnight lysates with titers above 10^7 pfu/mL were prepared as indicated above (**3.3.5**) and concentrated to 0.5 mL. Performed lysate concentration using 6.0 mL Vivaspin® concentrators with 100 000 molecular weight (M.W) cutoff, at +4 °C, 4500×g. Thereafter, washed phage concentrates three to four times with 2.0 mL SM-buffer. Afterwards, pelleted the phages at +4 °C by centrifugation at 16100×g for 90 min. Then, re-suspended them into 450µL 0.1 M ammonium acetate.

A 3.0 μ L droplet of the phage sample was loaded onto a copper-carbon grid (diameter, 3 mm; 300 meshes) and allowed to adsorb for 60 seconds. Dried the grids with blotting papers, and stained them with 3.0 μ L 2% uranyl acetate (pH 7.4). Thereafter, dried them for 15 to 30 seconds. The observation, micrography and dimension estimation of the phages was done with JEOL JEM-1400 TEM (Jeol Ltd., Tokyo, Japan) fitted with a bottom mounted Gatan Orius SC 1000B camera (Gatan Inc., USA). The TEM ran at 80Kv with a magnification power of 8,000-150,000. The work was performed at the Electron Microscopy Unit (Institute of Biotechnology, University of Helsinki-Finland). The phage particle dimensions of five to ten virions

were determined and the measurements used to calculate the averages and standard errors (Oduor *et al.*, 2020).

3.4.2 Genome analysis

3.4.2.1 DNA isolation

Phenol-chloroform extraction method was used for DNA isolation and it was performed as described elsewhere (Green & Sambrook, 2017). Briefly, fresh 10.0 mL lysates with phage titer of at least 10⁹ pfu/mL were prepared as described above (3.3.5), then concentrated to 0.4 mL as mentioned earlier (2.4.1) and transferred into 1.5 mL microtubes. 1.3 μ L DNase I (IU/ μ L) and 4.0 μ L RNase A (1.0 mg/mL) were added to the tubes containing the phages and incubated at +37 °C for 30 min to digest bacterial DNA and RNA. Thereafter, 16.0 µL 0.5M EDTA, 1.2 µL Protenase K (20.0 mg/mL) and 20.0 µL 10% SDS were added to the above mixture and incubated at +56 °C for 60 min to degrade the phage capsids. After cooling the samples to RT 1 VOL phenol (pH 8.0) (volume equivalent to the sample) was added and gently rocked/mixed for 15 mins using a rocker machine. This was followed by centrifugation at 16100 \times g at RT for 5 min to sediment bacterial debris and other dirt. The clear aqueous upper phase was transferred into a new microtube for each sample. 1 VOL of phenol-chloroform (1:1) was added to the harvested aqueous samples and mixed as previously described for 15 min followed by 5 min centrifugation at $16100 \times g$ at RT. The aqueous upper phase was again collected and transferred to new microtubes. This procedure was repeated until a clear upper phase aqueous supernatant was emerged.

Finally, the aqueous sample was extracted with 1 VOL chloroform followed by DNA precipitation that was achieved by adding 0.1 VOL 3M NaOAc (pH 7.0) and 2 VOL absolute EtOH to the samples. The precipitated DNA formed a thread that was transferred into new 1.5 mL microtube containing 1.0 mL 70% EtOH and centrifuged at RT, $16,100 \times g$ for 20 min. The supernatant was discarded, the DNA pellet air-dried for 5 min, dissolved in 0.1 mL TE buffer (10.0 mM Tris-HCL, 1.0 mM EDTA, pH 8.0) and incubated at + 4 °C overnight. The DNA quantity and

quality was determined by NanoDrop1000 Spectrophotometer (Thermo Scientific, 2019) and finally the quantification was also carried out using Qubit[®] 2.0 fluorometer as described by the instrument's manual (Qubit ThermoFisher, 2010).

3.4.2.2 DNA analysis by Agarose gel electrophoresis

The genomic DNA of the phages were characterized by restriction enzyme digestions. Briefly, phage 1.0 μ L of DNA (approximately 300-600 ng/ μ L), 10 \times digestion buffer (1.0 µL), restriction enzyme (EcoRI, EcoRV or HindIII) (0.5 µL), and nuclease free water (7.5 µL) were mixed in a microtube for each enzyme and incubated at $+37^{\circ}$ C for 1.0 hr. Addition of 2.0 µL of Gel loading dye purple (6X) stopped the digestion. The samples and appropriate controls together with Gene Ruler were then loaded into the wells of a stain free 1% agarose gel impregnated with Midori green dye. Then separated DNA fragments at 65 kV, 200 mA for 150 mins. Thereafter, the stained gel for 20 min with Midori green dye and rinsed for 30 min with double distilled water. Thereafter. visualized using the Bio-Rad XR+ gel documentation system (Bio-Rad, 2020).

3.4.2.3 Next generation sequencing

Good quality genomic DNA of the phages was shipped for next generation sequencing (NGS) to Eurofins Genomics company (https://eurofinsgenomics.eu/) (Eurofins, 2019). The sequence reads received from NGS analysis were *de novo* assembled by A5-miseq pipeline [https://docs.csc.fi/apps/] (Coil *et al.*, 2015). The physical ends of the linear phage genomes were determined using the PhageTerm tool [https://galaxy.pasteur.fr] (Garneau *et al.*, 2017). Using this information, and read-coverage visualization using the Integrated genome viewer (IGV) [download: http://software.broadinstitute.org/software/igv/] (Robinson *et al.*, 2017) the phage genome sequences were re-arranged to reflect the physical form of the DNA packaged into phage particles. The genomes were submitted to rapid annotations-using-subsystem-technology (RAST)-server (Aziz *et al.*, 2008) to achieve preliminary prediction of the phage genes. The RAST annotations were manually verified using the Artemis tool (Carver *et al.*, 2008). The predicted functions of the

gene products were later confirmed and revised using the BLASTP, smart BLAST, PSI-BLAST (acceptable results threshold; query-cover: 90-100%, E-value: 1e-3 and identity: 90-100%) 2019), percentage (BLAST, InterProScan [https://www.ebi.ac.uk/interpro/search/sequence/] (Jones et al., 2014; Quevillon et al., 2005), HHpred (cutoffs used for considering meaningful results were, probability:90-100% and E-value:1e-3) and HMMERscan (reporting threshold at Evalue:1e-3) [https://toolkit.tuebingen.mpg.de/tools/hhpred] (Zimmermann et al., 2018) search tools. The tRNA genes were predicted with the aid of ARAGORN [http://www.ansikte.se/ARAGORN/] (Laslett & Canback, 2004) and tRNAscan-SE [http://lowelab.ucsc.edu/tRNAscan-SE/] (Lowe & Chan, 2016). Promoter genes were predicted using PePPER [http://genome2d.molgenrug.nl/]. While ARNold [http://rssf.i2bc.paris-saclay.fr/toolbox/arnold/] was used to predict for terminator genes (Gautheret & Lambert, 2001). Thereafter, promoter motif consensus of the phages were probed by MEME/MAST [https://meme-suite.org/meme/] (Bailey & Elkan, 1994). The genomes were screened for antibiotic resistance, virulence factor and toxin encoding genes using the antibiotic resistance database (ARDB) [htp://arpcard.mcmaster.ca] (B. Liu & Pop, 2009) and ResFinder 3.2 systems [https://www.genomicepidemiology.org/] (Zankari et al., 2012).

3.4.2.4 Phylogenetic analysis

The close relatives of the phages were identified using BLASTN search of the GenBank (NCBI GenBank, 2019). The similarity and alignment of the genomes was established using the EMBOSS stretcher tool [https://www.ebi.ac.uk/services/all] (Madeira *et al.*, 2019). The genomes and the reference phage genomes were also aligned and visualized using progressiveMAUVE [download: http://darlinglab.org/mauve/mauve.html] (Darling *et al.*, 2010). The VICTOR [https://ggdc.dsmz.de/home.php] (Meier-Kolthoff & Goeker, 2017) and Phylogeny fr-"One Click " Mode [http://phylogeny.lirmm.fr/phylo_cgi/index.cgi] (Dereeper *et al.*, 2008) tools were used to construct the phylogenetic trees of the phage genomes and of the selected phage proteins.

3.4.3 Proteomics of the phages

The phages were concentrated by centrifugation for 30 min at 4 °C and 4500 ×*g* using 100 kDa molecular weight cut-off Vivaspin concentrator[®] 20 (Sartorius, 2019). The phages were further purified by through glycerol step gradient (5% and 40% glycerol concentration v/v in TM-buffer) as described (Sambrook & Russell, 2006). The resulting phage titres were each > 6×10^{10} pfu/mL. Thereafter, diluted the phage stocks appropriately to get a final concentration of 6×10^8 pfu/mL. Then 20 µL of the diluted phage was mixed with 20 µL of 2× Laemmli buffer (loading buffer) and heated at 100 °C for 5 min. Ten µL of the heated ice-cooled sample were loaded to the wells of 10% SDS-PAGE with 5% stacking gel, and the electrophoresis was run at 80 V for 2 hr 50 min. The gel was stained for 3 hrs with InstantBlue dye. Thereafter, rinsed with milli-Q water (double distilled sterile water) and imaged with Bio-Rad gel-imaging system.

Analysed the proteomes of the purified phage particles using the liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Prior to trypsin digestion of the proteins to peptides, tris (2-carboxyethyl) phosphine (TCEP) reduced the phage proteins and afterwards alkylated with iodoacetamide. Tryptic peptide digests were purified by C18 reversed-phase chromatography columns (Varjosalo et al., 2013) and the mass spectrometry (MS) analysis was performed on an Orbitrap Elite Electron-Transfer Dissociation (ETD) mass spectrometer (Thermo Scientific, Waltham, MA, USA), using Xcalibur version 2.2, coupled to a Thermo Scientific nLC1000 nanoflow High Pressure Liquid Chromatography (HPLC) system. Peak extraction and subsequent protein identification were achieved using Proteome Discoverer 1.4 software (Thermo Scientific). Calibrated peak files were searched against all the predicted amino acid sequences of the Stab20, Stab21, Stab22 and Stab23, and Staphylococcus aureus subsp. aureus ST398 proteins (ASM188707v1, NCBI) by the SEQUEST search engine. Error tolerances on the precursor and fragment ions were ± 15 ppm and ± 0.8 Da, respectively. For peptide identification, a stringent cut-off (0.05 false discovery rate or 5%) was used. Performed LC-MS/MS

experiments at the Proteomics Unit, Institute of Biotechnology-University of Helsinki.

3.4.4 Nucleotide sequence accession numbers

The annotated sequences of the Stab20, Stab21, Stab22 and Stab23 phages are deposited at the nucleotide sequence databases under the accession numbers LR215718, LR215719, LR215720, and LR215721, respectively.

3.5 Methods to assay physico-chemical properties of phages

All the physico-chemical property experiments were done in triplicates to ensure reproducibility and statistical significance.

3.5.1 Thermal stability

Fresh phage lysates were prepared from the stocks and their pfu/mL count determined as indicated previously described (2.3.6). Working stocks with 10^9 pfu/mL were prepared for each phage. Aliquots of the phages were incubated at +35°C, +37°C, +40°C, +45°C, +50°C, +55°C and +60°C for 30 min. The phages incubated at +37°C were used as control samples. Cooled the samples to RT and afterwards viable phage particles were enumerated by the double-layer assay. The pfu values were counted after 18 hr incubation at +37°C using the colony/plaque counter machine (Stuart Scientific SC5). The pfu of the control plates (+37°C) were set to 100% and the values of the other samples were normalized to it to establish the effect of various temperatures on the phages.

3.5.2 Ultra-violet (UV) stability

Working stocks with 10^9 pfu/mL were prepared as described above and 200 µL aliquots dispensed into microtiter plate wells for irradiation. The energy applied on the phages were 0, 25, 50, 75, 100, 125 and 150 µJ/cm² for 30 min. In this experiment, 0 µJ/cm² was used as the positive control and PBS as the negative control. The phage numbers were enumerated as described above (2.5.1). The pfu of

the non-irradiated samples was set to 100% and the values of the other samples were normalized to it.

3.5.3 pH stability

Buffers with the pH-values of pH 1.4, 3.4, 5.4, 7.4, 9.4, 11.4 and 12.9 were prepared as follows. The low pH (1.4 to 5.4) buffers were prepared using citric acid monohydrate and adjusted with 1.0 M sodium hydroxide. The higher pH (9.4 to 12.9) buffers were made using sodium bicarbonate and adjusted with 1.0 M HCL. PBS was used as a neutral medium for pH 7.4, and was used as the control diluent for this experiment. Thereafter, 100 μ L of the phage lysate was added to 900 μ L of either PBS, acidic or alkaline medium. The mixtures were incubated at +37°C for 1 hr shaking at 120 rpm, serially diluted to 10⁻⁵ and pfu was enumerated as described above (2.5.1.). The pfu of the pH 7.4 samples was set to 100% and the values of the other samples were normalized to it.

3.5.4 Chloroform stability

Since chloroform is not water-soluble, one part of the phage working stocks (10^9 pfu/mL) was mixed with nine parts of chloroform and the mixture was vortexed and incubated at +37°C for 1 hr shaking at 120 rpm. For the positive control the phage stock was mixed with nine parts of PBS. Then the samples were serially diluted to 10^{-3} and 5 µL drops were spotted on double-agar plates with host bacteria. The plates were incubated at +37°C overnight and observed for lysis zones under the drops.

3.5.5 Ethanol stability

Ethanol solutions of 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 70% and 80%. (vol/vol %) were prepared. Phage stocks were diluted as described in (2.5.3) and 1 part of the diluted stock was mixed with 9 parts of the different ethanol solutions to give 10^{-1} diluent factor. The mixtures were vortexed and incubated at +37°C, 120 rpm for an hour. The samples were diluted to 10^{-3} for each sample and 5 µL drops were spotted double-agar plates with host bacteria, and allowed to adsorb for 30 min. The plates were incubated at +37°C overnight and observed for lysis zones under the drops. Phage mixed with PBS acted as the positive control, and

sterile PBS, as the negative control. Experimental outcomes were recorded as either positive or negative.

3.6 Biological properties of the phages

The biological properties of the phages were characterized with adsorption rate and growth curve assays. Growth characteristic (life cycle) experiments begun by first determining the phages' adsorption rates and afterwards the burst size using the one step growth curve (O.S.G.C) experiment.

3.6.1 Adsorption curve

The experiment was set up by using a fresh host bacterial culture at an OD_{600} of 0.5 -1.0, and a serially ten-fold diluted phage sample of predetermined titre. Briefly, 500 µL of host bacteria (S. xylosus) was sub-cultured in 5 mL fresh sterile LB and incubated at +37 °C to an OD₆₀₀ of 0.5 to 1.0. Then the culture was pelleted through centrifugation at 4500 \times g, the supernatant was discarded, and the pellet resuspended in 0.9 mL fresh LB. Thereafter, added 100 μ L of 10⁻⁵ dilution of phage lysate to an experimental tube (A) and to a control tube (B). The control tube only contained 0.9 mL of fresh LB medium. Incubated A and B at +37°C, 120 rpm for 15 min and sampling of 50 µl aliquots at 5 min intervals from each tube. Dispensed the aliquot into pre-chilled microtubes. The samples were briefly vortexed then centrifuged at $16,100 \times g$ at +4 °C for 10 min. 50 µL of the supernatant was added to 200 µL host bacteria in 3 mL molten soft agar media tubes previously maintained at 50°C. The mixtures were briefly vortexed, dispensed on pre-warmed LB agar plates and allowed to set (solidified) at RT (also called double plaque layer assay). Thereafter, the plates were incubated at +37 °C overnight and the experiment was run in triplicates. Plaques were counted from the plates and recorded at their respective time points (from 0 min to 15 min) on excel sheets. PFU from control tubes (tube B) were used as time point 0 min reference points. The values were normalized by having the average PFU of tube B representing 100% and calculating the ratio pfu count at various time points in reference to pfu counts of tube B. The outcomes of these ratios were multiplied with 100% and the data presented in curves and adsorption rate (k) calculated using the formulae below. Where B represented the bacterial titre, t time after infection, P_{θ} initial number of phages/ plaque counts and P number of phage unadsorbed (post adsorption plaque count) (Vandersteegen *et al.*, 2013).

$k = \{[(2.3/Bt)] [log (P_0/P)]\}$

3.6.2 One step growth curve (O.S.G.C)

Experiments were set up by first establishing the phages' multiplicity of infection (M.O.I). Briefly, 50 µL of an overnight culture (OD₆₀₀ of 1.0 - 1.5) of the host bacteria (S. xylosus) was diluted to 5.0 mL of fresh LB and grown for 60 to 120 min to reach a desired OD₆₀₀ of about 0.8. The culture was serially ten-fold diluted to 10^{-6} in PBS (pH 7.4), and then 100 µL aliquots of the dilutions were spread on LA plates. The plates were incubated at +37 °C overnight and the colonies counted the following day to determine the bacterial numbers as colony forming units (CFU) per mL The remaining culture was pelleted at 5000 rpm for 10 min and resuspended in 0.9 mL LB. 0.1 mL of appropriately ten-fold serial diluted phage lysate was added to 0.9 mL of host bacteria in tube A. Similarly, another 0.1 mL of lysate was dispensed to 0.9 mL LB without bacteria (blank control) in tube B. Tubes A and B were incubated at +37 °C for 10 min. The cultures were then centrifuged at +4 °C, 16,100 \times g for 10 min. Supernatant in tube A was harvested into a sterile tube Y, and 1.0 mL of fresh LB was added to the pellet (now tube Z1). Aliquots of 50 µL were collected from tubes B and Y, and added to the host bacteria in soft agar tubes. After gentle mixing, the mixture was poured on warm LA plate, and allowed to set before incubating at +37 °C overnight. The plaques were counted from each plate the following day. The difference between the plaque counts in tubes B and Y represented the number of adsorbed phage particles. Number of adsorbed phage particles (pfu/mL) was divided by the CFU/mL and the obtained value defined the M.O.I (PFU/CFU). One step growth experiment continued with tube Z1 and two more tubes (Z2 and Z3). Z2 and Z3 tubes had 0.9 mL LB and were incubated concurrently with Z1 which had bacteria pellet infected with phage. Incubation took place at +37 °C, 120 rpm for 60 min. There was sampling at every 5 min interval. However, at 5 min after the incubation begun two samples were picked; first 100 µL sampling that was dispensed to tube Z2 and second 50 µL which was picked for double plaque layer assay. After 10 min another pair of sampling was done but from different tubes. A 50 µL aliquot of Z1 was taken for double plaque layer assay and 100 µL pipetted from Z2 to Z3. Sampling continued from Z1 until 30 min time point, at this time point onwards sampling took place from Z1 and Z2; all for double layer assay. Z2 provided double layer assay samples from time point 30 min to 40 min. However, at 40 min there was a pair of sampling; with one from tube Z2 and another from Z3. Thereafter, between 45 min and 60 min sampling was carried out only from tube Z3. The double layered plates cooled at RT for 30 min before being incubated at +37 °C overnight. The plaques were counted from each plate time point 5, 10, 15, 20... 60 min and tabulated as per corresponding time point. For each phage (Stab20 - 23) the experiments were repeated five to ten times on different days. The data was analyzed by Prism GraphPad.

3.7 Host range analysis

3.7.1 Spot assay

Overnight cultures were prepared for test bacteria. A colony from each test strain was inoculated into 1.5 mL LB and the cultures were incubated at +37°C, 120 rpm to an OD ₆₀₀ of 1.0 - 1.5 for about 100 min. The LA plates were warmed-up in 37 °C incubator, and 0.3% soft agar molten and cooled to +50°C. 100 µL of the bacterial culture was mixed into 3.0 mL molten agar, vortexed mildly and poured on LA plates. The top agar was allowed to solidify for 30 min and 5.0 µL drops of each phage was pipetted on it. After the spots had dried, the plates were incubated overnight at +37°C and observed the next day for lysis zones under the drops.

3.7.2 Relative efficiency of plating (R.E.O.P)

The strains with positive spot assay were subjected to R.E.O.P experiments using the double layer assay. The indicator and test bacteria were grown to an OD $_{600}$ of 1.0 - 1.5, and 200 µL aliquots were added to 3.0 mL of 0.3% molten soft agar maintained at +50°C. To each tube, 50 µL of Stab20, Stab21, Stab22 and Stab23 lysate was added. The tubes were vortexed and poured on pre-warmed and dry LA plates. Next day, the plaques were counted and the R.E.O.P established for each phage and strain was determined by dividing the plaque counts from test strain with those from indicator bacteria.

$R.E.O.P = Test strain plaque count \div Indicator bacteria plaque count.$

The plaque counts and R.E.O.P results were tabled in excel sheets.

3.8 Quality assurance and ethical consideration

3.8.1 Quality assurance

The isolates used in the study such as the ATCC bacteria were certified isolates approved by both the Clinical Laboratory Standards Institute (CLSI) (CLSI, 2017) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (EUCAST, 2017). While the Finnish isolates had been analysed and approved as either MRSA or MSSA by the HUSLAB. The phages' genomes were compared against well-annotated phage genomes deposited in the NCBI global GenBank. All sensitive and bio-hazardous experiments were done either in biosafety cabinet class II type B2 or in fume hoods.

3.8.2 Ethical consideration

The study involved neither the human research participants nor the use of laboratory animals. This was *in vitro* study involving only laboratory bacterial isolates and

phages isolated from the environment. In addition, there were no genetic manipulation of the viruses. The study was carried out at the Department of Bacteriology and Immunology, Medicum, and the Human Microbiome Research Program, the Research Programs Unit, Faculty of Medicine, University of Helsinki. The facilities are authorized to carry out research with biosafety level BS2 pathogens. However, this work was approved by the KNH-UoN ethical review committee and it ERC number is **P262/05/2017**.

3.9 Statistical analysis

The experiments were performed at least in triplicates. The dimensions and plaque counts were presented as mean \pm S.D. Physico-chemical (thermal, pH and U.V stability), adsorption and one-step growth curve experimental data were analysed by GraphPad Prism version 8.0 (GraphPad software, San Diego. CA) (Prism 8, 2019). The comparative analysis on the stability of Stab phages was carried out using the 2way ANOVA accompanied with Bonferroni post-test at 95% and 99% confidence intervals.

CHAPTER FOUR: RESULTS

4.1 Phage isolation and purification

Nine phages were isolated during the study. **RN**, **JM** and **7** (Nairobi-[**A**]), **fWa-Sau02** and **fHe-Sau2a** (Helsinki-[**B**]) and Stab20, Stab21, Stab22 and Stab23 (Shkodra-[**C**]). Phages from Nairobi had turned impotent after several attempts to recover them after long storage (**Figure 1A**). Isolates from Helsinki were active but only on a few *S. aureus* strains but, often gave low yields (phage particles per millilitre). Minute clear lysis zones (plaques) are present on fWa-Sau02 plates but blurred on fHe-Sau02a plate where they were very tiny (**Figure 1B**). The Shkodra originating Stab phages depicted large countable plaques on their host bacteria (*S. xylosus* DD34) lawn (**Figure 1C**). The Stab phages displayed clear lytic characteristic in all *Staphylococcus* sp lawns they were active against and thus they became the major phages of interest in this work.

Figure 1: Plaque assay of the isolated phages from various study sites, which included Nairobi (A), Helsinki (B) and Shkodra (C). The clear lytic zones on the plates B and C are illustrations of plaques created phages after eating their hosts.

4.2 Characterization of phages

4.2.1 Morphological identification

The TEM micrographs showed that Stab20, Stab21, Stab22 and Stab23 were complex viruses made up of icosahedral heads attached to long flexible contractile tails. Their tail tips had wide structures known as the baseplate from which numerous fibre-like structures extended (**Figure 2 a-d**). Second images (**ii**) depict the phages' contracted tails and tail-tubes.

a. Stab20 phage status at normal stage (**i**) and during contraction (**ii**) the tail sheath becomes short and tail tube protrudes out of it. The red arrow- points the tail sheath and black arrow- points at the tail tube.

b. Stab21 phage status at normal stage (i) and during contraction (ii) the tail sheath becomes short and tail tube protrudes out of it. The red arrow- points the tail sheath and black arrow- points at the tail tube.

c. Stab22 phage status at normal stage (**i**) and during contraction (ii) the tail sheath becomes short and tail tube protrudes out of it. The red arrow- points the tail sheath and black arrow- points at the tail tube.

d. Stab23 phage status at normal stage (i) and during contraction (ii) the tail sheath becomes short and tail tube protrudes out of it. The red arrow- points the tail sheath and black arrow- points at the tail tube

Figure 2: Transmission electron microscopy images of phages Stab20 (a), Stab21 (b), Stab22 (c), and Stab23 (d). Uranyl acetate negative staining at original magnification of $25,000 \times$ illustrating phage particles with contracted and non-contracted tails.

These descriptions coupled with the measured virion dimensions (**Table 1**) associate the phages with the *Herelleviridae* family of the order *Caudovirales*.

Table 1: Phage particle dimensions were measured using the TEM-camera inbuilt software at a magnification of 15 000 \times . The results depict odd features of Stab20, which has the smallest capsid and tail, but possess a broader baseplate. Each data represent the mean \pm standard deviation for five to ten independent measurements.

	The dimensions of the structural features								
Phage	Capsid head	Tail length	Tail width	Baseplate width					
Stab20	83.96 ± 3.1 nm	$163.2 \pm 11.4 \text{ nm}$	$21.1 \pm 0.7 \text{ nm}$	$48.14 \pm 1.22 \text{ nm}$					
	(n = 5)	(n = 5)	(n = 5)	(n = 5)					
Stab 21	$91.3 \pm 0.25 \text{ nm}$	$196.5 \pm 3.1 \text{ nm}$	$23.4\pm0.6~\text{nm}$	$44.9 \pm 1.5 \text{ nm}$					
Stab21	(n = 8)	(n = 8)	(n = 5)	(n = 7)					

Stab22	$94.3 \pm 0.5 \text{ nm}$	$201.6\pm0.6~\text{nm}$	$21.3 \pm 0.4 \text{ nm}$	41.84 ±.0.74 nm	
	(n = 10)	(n = 5)	(n = 5)	(n = 5)	
Stab22	$92.50 \pm 2.6 \text{ nm}$	$198.9 \pm 2.9 \text{ nm}$	$20.3 \pm 0.3 \text{ nm}$	$42.3\pm0.8~\text{nm}$	
514025	(n = 10)	(n = 9)	(n = 9)	(n = 5)	

4.2.2 Genome analysis

4.2.2.1 DNA extraction and gel analysis

Preliminary quantification of the phages' DNA with NanoDrop indicated the success of the extraction after purification with ethanol to remove chloroform traces. Chloroform does influence UV absorbance that in turn inflates the NanoDrop results. In addition, DNA samples with chloroform-free for a successful restriction digestion to be realised since the compound denatures restriction enzymes. The concentrations were above the concentration required for sequencing which was 100.0 ng/ μ L (**Table 2**).

Table 2: NanoDrop quantification for Stab20, Stab21, Stab22 and Stab23 nucleic acid (DNA) samples. The table indicates extraction of sufficient DNA samples for sequencing since none was below the concentration threshold (100.0 ng/ μ L) as lowest was 293.89 ng/ μ L.

Repo	rt	Test type:				Nuclei	c Acid			3.1.2	2018 10:02			E
eport N	ame				F	Report Full	Mode	lgnor	e .					
	Sample ID	User ID	Date	Time	ng/ul	A260	A280	260/280	260/230	Constant	Cursor Pos.	Cursor abs.	340 raw	A
ľ	Stab 20	Default	3.1.2018	9:50	293,89	5,878	3,128	1,88	2,87	50,00	230	2,046	0,034	1
	Stab 21	Default	3.1.2018	9:53	345,75	6,915	3,668	1,88	2,69	50,00	230	2,566	0,048	
	Stab 22	Default	3.1.2018	9:56	644,15	12,883	6,795	1,90	2,68	50,00	230	4,810	0,037	
	Stab 23	Default	3.1.2018	9:59	355,39	7,108	3,788	1,88	2,78	50,00	230	2,557	0,023	
-				-										-
ŀ		-												-

The DNA samples were then analysed using agarose gel electrophoresis that showed intact high-molecular weight bands. The analysis showed that the DNA samples were of good quality as only minimal smearing was detectable under the bands (**Figure 3**).

Figure 3: Gel exhibition of Stabs' DNA samples with minimal contamination. There is absence smears up the ladder after DNA bands.

Afterwards, phage DNA samples were analysed by restriction digestion. The enzymes used included EcoRI, EcoRV and HindIII. Restriction fragments of the digested DNA samples were analysed by agarose gel electrophoresis (**Figure 4**). The analysis revealed numerous restriction fragments indicating that the phages had large genomes. This indicates that these phages might be *Herelleviridae* viruses.

Figure 4: Restriction analysis of Stabs showing the size of phages' genomes. The presence of numerous bands shows that these phages have large genomes.

4.2.2.2 Sequencing and annotation

The NGS results of the phage genomes were received as paired-end 150-base pairs (bp)-long reads. The reads were assembled *de novo* using the A5-miseq pipeline and the physical ends and terminal repeats of the phage genomes were determined as described in section 3.4.2.3. General properties of the phage genomes are shown in Table 3. The Stab20, Stab21, Stab22, and Stab23 genomes were 153,338 bp, 153,797 bp, 155,962 bp and 154,499 bp in size, respectively. The PhageTerm analysis was ran on Galaxy/Pasteur platform and it revealed that Stabs had long direct terminal-repeats ranging from 10814 to 12225 bp.

The annotation of the phage genomes showed that Stab20, Stab21, Stab22 and Stab23 had 223, 217, 218 and 206 predicted genes, respectively (Table 3). In silico analysis of 100 bp sequences upstream and downstream of each phage's conservative regulatory region indicated that Stabs had 28- 48 host specific putative promoters and 33-37 terminators (Appendix IV & V). The phages' promoters probing with MEME and MAST generated uniform consensus motifs (Figure 5) that resembles phage ISP motifs (Vandersteegen et al., 2011). Genomes analysis with ARTEMIS established that guanine-cytosine contents of the phages were between 30.2 and 30.9 %, slightly lower than that of the staphylococci in general (32.7 %). The genome analysis suggested that the phages are new members of the genus Kayvirus of the subfamily *Twortvirinae*. The genomes were compared using the progressiveMauve tool and the result is shown in Figure 5. The putative functions of the predicted gene products were annotated using BLASTP, HHMER, InterProScan, PSI/BLAST analysis, smart BLAST, PSI-BLAST and HHpred analyses. The tRNAscan-SE and ARAGORN showed that the phages possessed 1-4 tRNA genes. Pairwise sequence identity and BLASTn analyses identified clear differences between the Stab phages and the genus *Kayvirus* reference phage K (Table 3) (Figure 6).

Figure 5: Consensus motifs of the Stab phages' putative promoter sequences. Sequence pair 1-6 and 24-29 respectively represents -35 box and -10 box. The boxes have similar sequences but the spacer sequence (7-23) for each phage is unique and they illustrate that these phages are distinct.

Table 3: Summary of the Stab phage genome properties. The table displays how varied these phages are from each other with regard to genome size and analysis of nucleotide identity (ANI) percentages. In addition, it shows Stabs' close association with phage K.

Staphylococcus phages								
	Stab20	Stab21	Stab22	Stab23	Phage K*			
Genome size (bp)	153338	153797	155962	154499	148317			
Direct terminal-repeats size (bp)	10814	11149	12304	12225	8486			
% GC content	30.21	30.32	30.61	30.88	30.4			
Number of predicted genes	223	217	218	206	233			

Number of tRNA genes	4	4	2	1	4
Stab20 identity (%)	100	84.4	49.7	49.6	81.6
Stab21 identity (%)	84.4	100	73.4	76.9	76.2
Stab22 identity (%)	49.7	73.4	100	77.5	72.2
Stab23 identity (%)	49.6	76.9	77.5	100	67.4
Phage K identity (%)	81.6	76.2	72.2	67.4	100

*Phage K refers to Staphylococcus phage K, which is type member of the genus *Kayvirus* recognized by the International Committee on Taxonomy of Viruses (ICTV).

Putative functions were assigned to 75 predicted gene products of the phages including both non-structural and structural proteins (Appendix III). The structural proteins included capsid and scaffold protein, portal protein, prohead protease, membrane protein, tail tube, major tail sheath, tail morphogenetic, and tail tape measure proteins, baseplate proteins, adsorption-associated and carbohydrate-binding domain-containing tail proteins (Appendix III). The non-structural predicted gene products included DNA primase, DNA helicase, exonuclease, DNA polymerases (A/I and B/II), RNA polymerase sigma factor, integration host factor, thioredoxin, ribonucleotide reductase large and small subunits, resolvase, ribonucleotide reduction protein, replication protein, nucleoside 2-deoxy-ribosyltransferase, RNA ligase, ribonuclease H, and a tran-scriptional regulator (Appendix III). Majority of non-structural predicted proteins had a function in DNA/RNA synthesis and metabolism. The identified bacterial cell wall degrading enzymes and compounds associated with them included endolysin, holin and amidase. In addition, these viruses have abundant hypothetical proteins (Appendix III). Submitted the annotated Stab20, Stab21, Stab22 and Stab23 genomes to the European Nucleotide Archives and received the accession numbers LR215718, LR215719, LR215720 and LR215721, respectively.

4.2.2.3 Phylogenetic analysis

The whole genome phylogenetic comparisons showed that the Stab phages are closely related to the *Staphylococcus* phage K and the other members of *Kayvirus* genus (**Figure 7A**). Phylogenetic trees constructed based on the predicted amino acid sequences of the tail sheath (**Figure 7B**) and primase (**Figure 7C**) proteins illustrated the closest association between Stab20 and Stab21, and another, between Stab22 and Stab23.

Figure 6: Mauve alignment of annotated complete genomes of Stab20, Stab21, Stab22 and Stab23 from top to bottom; showing the locations of tRNAs, and the genes for proteins such as major tail sheath protein (blue), holin (yellow), DNA primase (purple), Ig-like domain containing protein (green) and adsorption-associated tail protein (red) within the genomes. The thick grey bar represents terminal-repeat regions. The mauve plots show conserved genomic regions of the four phages. The similarity levels vary with the heights of the curves and the intensities within the blocks that are proportional to the average nucleotide identities. The white spaces inside or outside the blocks represent regions of difference between the genomes of these phages.

0.06

0.8

0.6

Figure 7: Taxonomic classification of the Stabs. These are phylogenetic trees of the *Twortvirinae* subfamily illustrating the Stab phages genus. Phylogenetic trees created with whole genomes (A), predicted tail sheath (B) and DNA primase amino acid sequences (C) of the Stab phages and representatives of closely related phages selected from the ICTV database. The branch length is proportional to the number of substitutions per site. The abbreviations G1 – genus *Kayvirus*; G2 - genus *Silviavirus*; G3 - genus *Sepunavirus*; G4 – genus *Twortvirus*; F1^{*#} – are phage species which are members of the family *Herelleviridae* with neither subfamily nor genus. Used the VICTOR tool to create the phylogenetic tree in panel A, and those in panels B and C were constructed using Phylogeny.fr. "One Click" tool.

4.2.3 Screening for lethal genes

No antibiotic resistance, virulence factor, toxin-encoding gene or chromosomal point mutation (such as 23S, dfrB, fusA, grlA, grlB, gyrA, ileS, pbp2, pbp4, rpoB and pbp4_promoter_size_304bp) was present in the Stab genomes (**Table 4**). Furthermore, comparative protein analysis with HHpred/ HMMER scan/ BLASTp/ InterProscan showed that the Stabs were integrase free.

Table 4: This list shows that the Stabs were free of antibiotic resistance genes and chromosomal point mutations associated with *Staphylococcus* spp drug resistance.

No	Antibiotic resistance encoding genes	Stab20	Stab21	Stab22	Stab23
1	Aminoglycoside	-ve*	-ve	-ve	-ve
2	Beta-lactam	-ve	-ve	-ve	-ve
3	Colistin	-ve	-ve	-ve	-ve
4	Trimethoprim	-ve	-ve	-ve	-ve
5	Nitroimidazole	-ve	-ve	-ve	-ve
6	Fosfomycin	-ve	-ve	-ve	-ve
7	Fluoroquinolone	-ve	-ve	-ve	-ve
8	Fusidic Acid	-ve	-ve	-ve	-ve
9	MLS - Macrolide	-ve	-ve	-ve	-ve
10	Rifampicin	-ve	-ve	-ve	-ve
11	Tetracycline	-ve	-ve	-ve	-ve
12	Sulphonamide	-ve	-ve	-ve	-ve
13	Glycopeptide	-ve	-ve	-ve	-ve
14	Oxazolidinone	-ve	-ve	-ve	-ve
15	Phenicol	-ve	-ve	-ve	-ve
16	Chromosomal point mutations (23S, dfrB, fusA, grlA, grlB, gyrA, ileS, pbp2, pbp4, rpoB and pbp4_promoter_size_304bp)	-ve	-ve	-ve	-ve

*Negative results

4.2.4 Proteomic

This work showed that these phages are related to each other and to the typed Staphylococcus virus K that represents the Kayvirus genus associated phages. Analysis of phages' structural protein via SDS-PAGE revealed the common physical features of the Stabs (Figure 8). Dense conspicuous uniform bands across the gel illustrate the shared proteins with similar migration distance such as those at 70 kDa and 55-50 kDa. In addition, they represent the phages' dominant structural proteins with numerous copies such as the capsid and tail-sheath. 50-55 kDa bands of the SDS-PAGE are the most conspicuous and a deeper look at them gives an impression of two or more overlapping bands. Therefore, they might refer to the in silico genome analysis predicted major capsid and scaffold proteins of Stab20, Stab21, Stab22 and Stab23 with calculated molecular mass of 50.4 kDa and 51.5 kDa that might have co-migrated down the gel. Further, up the gel bands within molecular mass 70 kDa are visible across all the phages. The bands are perceived to be the in silico predicted phage terminase large-subunit proteins with calculated molecular mass of 70.2 - 70.4 kDa. Other most conspicuous bands are present just above 130 kDa mark of the molecular ladder. They are speculated to be the Stabs' tail tapemeasure proteins since the bands' molecular weight seems to correspond with the suggested in silico calculated molecular mass of the proteins (143.1-143.9 kDa) (Appendix III).

The LC-MS/MS work provided information on the phage structural and nonstructural proteins predicted by genome sequencing_(**Appendix VI**). The selection criteria for valid proteins were at least 5% sequence coverage and identification of \geq 2 unique peptides. LC-MS/MS outcome depicted that structural proteins (capsid, portal protein, tail tape-measure, major tail-sheath, tail morphogenetic protein and adsorption-associated tail protein) of the Stab phages had minor molecular weight variations (**Table 5**). In addition, the results showed that certain sequence annotated as Stabs' hypothetical proteins make up the structural units of these phages. These hypothetical proteins include *g102* (Stab20), *g163* (Stab21), *g097* (Stab22) and *g160* (Stab23) (**Appendix VI**). Furthermore, the LC-MS/MS also confirmed the existence of common non-structural proteins like DNA polymerase, Ribonucleotide reductase large-subunit, DNA repair recombinase, DNA helicase A/B, PhoH-related protein and AAA family ATPase (**Appendix VI**). However, host bacteria proteins were absent and these indicate that these non-structural proteins originated from phages.

Protein	Phages' protein molecular weight (kDa)						
	Stab20	Stab21	Stab22	Stab23			
Tape-measure	143.79	143.9	143.66	143.71			
Major capsid	51.24	51.21	51.3	51.26			
Major tail-sheath	64.42	64.46	64.23	64.49			
Tail tube	15.93	15.93	15.20	15.87			
Adsorption-associated tail protein	129.26	129.18	129.84	129.76			
Tail morphogenetic protein	20.96	20.92	21.23	21.02			

Table 5: A list of Stabs' major structural proteins identified with LC-MS/MS. The proteins' molecular weights are less distinct.

Figure 8: SDS-PAGE (10% acrylamide) of Stab20, Stab21, Stab22 and Stab23 showing major similarity and distinction among the phages' structural proteins. **ML**-molecular ladder (broad range molecular marker), **kDa**- kiloDalton.

4.3 Physico-chemical properties

There was little variation on the phages' stability when subjected to different environmental conditions such as ultra-violet (UV) irradiation, temperature, pH and exposure to organic solvents (ethanol and chloroform). All phages exhibited significant viral titre (p < 0.0001) when incubated at temperatures above 45 °C or exposed to 75 µJ/cm2 of UV-irradiation. Increased acidity or alkalinity had negative impact on these viruses' viability. Each was inactivated below pH 5.4 or above pH
9.4 (Figure 9A-C). Ethanol concentrations above 25% vol/vol were enough to inactivate all the four phages (Figure 10A and B). However, they exhibited resistance to chloroform (Figure 11).

Figure 9: Stability of Stabs at various environmental conditions such as temperature (A), UV-irradiation (B) and pH (C). The charts show the sensitivity of the phages to temperature, UV-irradiation and pH. Each data point shows the mean \pm standard deviation for three independent experiments.

a. The phages were active at 25% vol/vol of ethanol/PBS but, inactive at 30% vol/vol of a similar medium.

b. The phages were inactive at either 35% or 100% vol/vol of ethanol/PBS.

Figure 10: Stabs' stability at ethanol concentration (vol/vol %). These viruses are denatured (killed) by ethanol concentration above 25%; (**A**) and (**B**).

Figure 11: Stabs' stability at various chloroform concentration (vol/vol %). The phages exhibit resistance to chloroform.

4.4 Growth properties of the Stab phages

The Stabs exhibited distinct nature through their growth curves which shows varied adsorption rates and burst sizes. The adsorption curves represents the rate at which phages attach to their hosts, also known as adsorption kinetics (Storms & Sauvageau, 2015). Of the phages, Stab21 adsorbed rapidly, ca 90% in just 5 min while only 40, 60 and 70% for Stab20, Stab22 and Stab23 respectively in a similar moment (**Figure 12**). There were no observable significant variations between the phages' calculated adsorption rate constants for the 5 min time point. However, each phage displayed unique one step growth curve characterized by varied latent and lag phase per 30 min. The burst size varied between 42 and 130 (**Figure 13**).

4.5 Host range analysis of the phages

The tested strains that were positive with spot assay were further analysed with relative efficiency of plating (REOP) assay. In order to obtain countable plaques in all plates a dilution of 10^{-5} was used for the assay. This resulted to negative results with less virulent phage isolates. Dilutions between 10^{0} and 10^{-4} gave semi-confluent results with the control/host bacteria (*S. xylosus* DD-34) but few countable plaques with less sensitive strains. However, REOP can only be established with countable plaques. Subsequently <0.1 was considered the minimal REOP for strains that only had plaque counts at lower dilutions (10^{0} and 10^{-4}) (**Figure 14 - 18 & Table 6**).

Figure 12: Adsorption curves and adsorption rate constants (**k**) of Stab20 (**a**), Stab21 (**b**), Stab22 (**c**) and Stab23 (**d**) displayed by phages when interacting with *S.xylosus* DD-34 as host bacteria at 37 °C. The data is the average of three independent experiments carried out on separate days average bacterial titers were 7.2×10^8 CFU/mL (**a**), 3.93×10^7 CFU/mL (**b**), 3.83×10^7 CFU/mL (**c**), 1.2×10^8 CFU/mL (**d**). The point bars represents mean ± standard deviation.

Figure 13: One step growth curves Stab20 (**a**), Stab21 (**b**), Stab22 (**c**) and Stab23 (**d**) in S.xylosus DD-34 when incubated at 37 °C. The average burst size were 66, 130, 42 and 62 for Stab20, Stab21, Stab22 and Stab23, respectively. Each point data represent the mean \pm standard deviation for eight independent experiments.

Figure 14: Efficiency of plating (EOP) (**I**) and Spot assay (**II**) of the Stabs on *S.xylosus* (indicator/host bacteria).

Figure 15: Spot assay tests of the Stabs on various *Staphylococcus* species.

Figure 16: The relative E.O.P of Stab21 against *S.aureus* test strains 6298, 6297, 6296.

Figure 17: The relative E.O.P of Stab20 on various *Staphylococcus* spp (6283, 6284 & 6286).

Figure 18: The relative E.O.P of Stab21 on various *Staphylococcus* spp (6281 & 6252).

No	Strains	Origin	10	Spot assay				Average REOP				
NO.				Stab20	Stab21	Stab22	Stab23	Stab20	Stab21	Stab22	Stab23	
1	S. aureus	Human	5511	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0	
2	S. aureus	Human	5515	Pos	Pos	Neg	Neg	2.0	0.1	0.0	0.0	
3	S. aureus	Human	5523	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0	
4	S. aureus	Human	5526	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0	
5	S. aureus	Human	5527	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0	
6	S. aureus	Human	5528	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0	
7	S. aureus	Human	5530	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0	
8	S. aureus	Human	5531	Pos	Pos	Neg	Neg	2.4	0.5	0.0	0.0	
9	S. aureus	Human	5535	Neg	Pos	Neg	Neg	0.0	0.2	0.0	0.0	
10	S. aureus	Human	5676	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0	
11	S. aureus	Human	5677	Pos	Neg	Neg	Neg	2.2	0.0	0.0	0.0	
12	S. aureus	Human	5678	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0	
13	S. aureus	Human	5679	Pos	Pos	Neg	Neg	1.6	0.2	0.0	0.0	
14	S. aureus	Human	5680	Pos	Neg	Neg	Neg	1.8	0.0	0.0	0.0	
15	S. aureus	Human	5681	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0	
16	S. aureus	Human	5682	Pos	Pos	Neg	Neg	0.5	0.1	0.0	0.0	
17	S. aureus	Human	5683	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0	
18	S. aureus	Human	5684	Pos	Pos	Neg	Neg	0.9	0.8	0.0	0.0	
19	S. aureus	Human	5685	Pos	Pos	Neg	Neg	0.4	0.3	0.0	0.0	
20	S. aureus	Human	5686	Pos	Pos	Neg	Neg	2.4	0.4	0.0	0.0	
21	S. aureus	Human	5689	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0	
22	S. aureus	Human	5690	Pos	Pos	Neg	Neg	1.0	0.3	0.0	0.0	
23	S. aureus	Human	5691	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0	
24	S. aureus	Human	5692	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0	
25	S. aureus	Human	5693	Pos	Pos	Neg	Neg	1.2	0.5	0.0	0.0	

Table 6: This list shows that Stabs produced lysis zones (positive) in some *Staphylococcus* spp but could not form plaques on their lawns (negative).

26	S. aureus	Human	5694	Pos	Pos	Neg	Neg	1.3	0.7	0.0	0.0
27	S. aureus	Human	5695	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
28	S. aureus	Human	5696	Pos	Pos	Neg	Neg	1.3	0.1	0.0	0.0
29	S. aureus	Human	5697	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
30	S. aureus	Human	5698	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
31	S. aureus	Human	5699	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
32	S. aureus	Human	5700	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
33	S. aureus	Human	5701	Pos	Pos	Neg	Neg	1.3	0.1	0.0	0.0
34	S. aureus	Human	5702	Pos	Pos	Neg	Neg	0.8	0.1	0.0	0.0
35	S. aureus	Human	5703	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
36	S. aureus	Human	5704	Pos	Pos	Neg	Neg	0.3	0.1	0.0	0.0
37	S. aureus	Human	5705	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
38	S. aureus	Human	5849	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
39	S. aureus	Human	5851	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
40	S. aureus	Human	5852	Pos	Pos	Neg	Neg	1.5	0.1	0.0	0.0
41	S. aureus	Human	5853	Pos	Pos	Neg	Pos	0.2	0.2	0.0	<0.1
42	S. aureus	Human	5854	Pos	Pos	Neg	Neg	0.6	0.4	0.0	0.0
43	S. aureus	Human	5855	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
44	S. aureus	Human	5856	Pos	Pos	Neg	Neg	1.7	1.1	0.0	0.0
45	S. aureus	Human	5857	Pos	Pos	Neg	Pos	0.7	0.3	0.0	0.0
46	S. aureus	Human	5858	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
47	S. aureus	Human	5859	Pos	Pos	Neg	Neg	2.2	2.1	0.0	0.0
48	S. aureus	Human	5860	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
49	S. aureus	Human	5861	Pos	Neg	Neg	Neg	0.6	0.0	0.0	0.0
50	S. aureus	Human	6209	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
51	S. aureus	Human	6210	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
52	S. aureus	Human	6211	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
53	S. intermedius	Human	6212	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
54	S. intermedius	Human	6213	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
55	S. intermedius	Human	6219	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
56	S.epidermidis	Human	6220	Pos	Pos	Neg	Neg	<0.1	<0.1	0.0	0.0

									-		
57	S. epidermidis	Human	6221	Neg	Pos	Neg	Neg	0.0	<0.1	0.0	0.0
58	S. epidermidis	Human	6222	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
59	S. epidermidis	Human	6223	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
60	S. haemolyticus	Human	6224	Pos	Neg	Neg	Neg	<0.1	0.0	0.0	0.0
61	S. haemolyticus	Human	6225	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
62	S. haemolyticus	Human	6226	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
63	S. haemolyticus	Human	6227	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
64	S. haemolyticus	Human	6228	Pos	Pos	Neg	Neg	<0.1	0.1	0.0	0.0
65	S. saprophyticus	Human	6229	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
66	S. saprophyticus	Human	6230	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
67	S. saprophyticus	Human	6231	Pos	Pos	Pos	Pos	1.8	1.3	<0.1	<0.1
68	S. saprophyticus	Human	6232	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
69	S. saprophyticus	Human	6233	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
70	S. aureus (MRSA)	Pig	6248	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
71	S. aureus (MSSA)	Pig	6249	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
72	S. aureus (MRSA)	Pig	6250	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
73	S. aureus (MRSA)	Pig	6251	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
74	S. aureus (MSSA)	Pig	6252	Pos	Pos	Neg	Neg	<0.1	0.1	0.0	0.0
75	S. aureus (MRSA)	Pig	6253	Pos	Pos	Neg	Neg	0.7	0.4	0.0	0.0
76	S. aureus (MRSA)	Pig	6254	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
77	S. aureus (MRSA)	Pig	6258	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
<u>78</u>	S. aureus (MRSA)	Pig	6259	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
79	S. aureus (MRSA)	Pig	6259	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
80	S. aureus (MRSA)	Pig	6260	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
81	S. aureus (MRSA)	Pig	6261	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
82	S. aureus (MRSA)	Pig	6262	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
83	S. aureus (MRSA)	Pig	6263	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
84	S. aureus (MRSA)	Pig	6264	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
85	S. aureus (MRSA)	Pig	6265	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
86	S. aureus (MRSA)	Pig	6266	Neg	Neg	Neg	Neg	0.0	0.0	0.0	0.0
87	S. aureus (MRSA)	Pig	6273	Pos	Pos	Neg	Neg	0.1	0.3	0.0	0.0

88	S. aureus (MRSA)	Pig	6274	Pos	Pos	Neg	Neg	0.9	0.4	0.0	0.0
89	S. aureus (MSSA)	Pig	6278	Neg	Pos	Neg	Neg	0.0	0.1	0.0	0.0
90	S. aureus (MRSA)	Pig	6280	Pos	Pos	Neg	Neg	0.4	0.3	0.0	0.0
91	S. aureus (MRSA)	Pig	6281	Pos	Pos	Neg	Neg	0.7	1.2	0.0	0.0
92	S. aureus (MRSA)	Pig	6283	Pos	Pos	Neg	Neg	0.8	1.0	0.0	0.0
93	S. aureus (MRSA)	Pig	6284	Pos	Pos	Neg	Neg	0.9	1.1	0.0	0.0
94	S. aureus (MRSA)	Pig	6286	Pos	Pos	Neg	Neg	0.1	0.4	0.0	0.0
95	S. aureus (MRSA)	Pig	6287	Neg	Pos	Neg	Neg	0.0	0.2	0.0	0.0
96	S. aureus (MRSA)	Pig	6288	Pos	Pos	Neg	Neg	<0.1	0.1	0.0	0.0
97	S. aureus (MRSA)	Pig	6295	Pos	Pos	Neg	Neg	0.4	0.5	0.0	0.0
98	S. aureus (MRSA)	Pig	6296	Pos	Pos	Neg	Neg	0.5	0.3	0.0	0.0
99	S. aureus (MRSA)	Pig	6297	Pos	Pos	Neg	Neg	0.4	0.5	0.0	0.0
100	S. aureus (MRSA)	Pig	6298	Pos	Pos	Neg	Neg	0.5	0.8	0.0	0.0
101	S. xylosus	Sausage	DD-34	Pos	Pos	Pos	Pos	1.0	1.0	1.0	1.0

REOP: relative efficiency of plating.

CHAPTER FIVE: DISCUSSION, CONCLUSION, LIMITATION, RECOMMENDATION AND SUGGESTION FOR FURTHER STUDIES

5.1 Discussion

The arm race between phage and bacteria is an ongoing issue that is never going to end any time soon. Regular update of the global phage bio-bank with novel and safe phage isolate is imperative (Oduor *et al.*, 2020; Yerushalmy *et al.*, 2020). In this study, four novel phages have been isolated and characterized with the objective of exploring their therapeutic or bio-remedial significance.

5.1.1 Indicator/host bacteria

Staphylococcus xylosus is a coagulase negative Staphylococcus that forms part of the mammalian skin bacterial flora. Some strains of the bacterium such as S. xylosus DD-34 are used in food processing (Kaur et al., 2016; Leroy et al., 2017). On rare occasions S. xylosus has been found to be pathogenic in human and livestock (Akhaddar et al., 2010; Bochniarz et al., 2014). Furthermore, some strains of S. xylosus harbor genes encoding antibiotic resistance or virulence factors. In addition, their genomes does possess mobile genetic elements like plasmids, prophages, phages and transposons that facilitates dispersal of lethal genes among Staphylococcus bacteria (Firth et al., 2018; Kaur et al., 2016). These factors necessitated the screening for presence of unwanted/lethal encoding genes within the genomes of Stab phages. However, the DD-34 isolate used in this study was a foodquality S. xylosus strain free of genes encoding antibiotic resistance or virulence factors. Propagation of phages for therapeutic or bio-control purposes in food-grade bacteria is much safer than with clinical staphylococcus strains that often harbor lethal prophages and antibiotic resistant genes (Cervera-Alamar et al., 2018; Haddad et al., 2014). The DD-34 strain bacteria are used in meat processing industry (Møller et al., 1998).

5.1.2 Characterization of Stab phages

The International Committee on Taxonomy of Viruses (ICTV) classifies the viruses based on morphological properties and the Baltimore system. Viruses appear in various forms such as cylindrical/rod-like, icosahedral and complex. Staphylococcus phages are complex in structure since they consist of cylindrical and icosahedral features.

The morphological analysis of the Stab20, Stab21, Stab22 and Stab23 phages showed that they are myoviruses (**Figure 2**). These phages had long contractile tails ending with complex appendage (baseplate), full tail fibers and large icosahedral symmetrical heads. These features are similar to those observed in other previously isolated myovirus phages such as phages K, vB_SauM_Remus, JD007, and Sb_1 (Cui, Feng, *et al.*, 2017; Gutiérrez *et al.*, 2015; Kvachadze *et al.*, 2011; Łobocka *et al.*, 2012; Vandersteegen *et al.*, 2013). These findings show that the Stabs are closely associated with members of the subfamily *Twortvirinae* of *Kayvirus* genus. The dimensions of isolated viruses were 83.9-94.3 nm, 163.1-201.6 nm, 20.3-23.3 nm and 41.8-48.1 nm for head, tail, tail width and baseplate width, respectively (**Table 1**). These measures fell within the values of other *Kayvirus* genus phages (Ajuebor *et al.*, 2018; Cui *et al.*, 2017; Rees & Fry, 1981).

Stabs had 153.3kbp to 155.9 kbp genomes, larger than most viruses in their subfamily (*Twortvirinae*) (https://blast.ncbi.nlm.nih.gov/Blast.cgi; https://talk.ictvonline.org/). This huge genome size variation indicates that the Stabs might be members of a new genus within the *Twortvirinae* subfamily. However, analysis of nucleotide identity of these phages showed that they are associated with major typed viruses within the group of *Twortvirinae*. The results further affirmed their association with the genus *Kayvirus* phages such as Staphylococcus phage K (**Table 3**).

Stab20, Stab21, Stab22 and Stab23 genomes consist of 58%, 71%, 61% and 63% hypothetical proteins respectively. Most of these hypothetical proteins are homologous with those found in *Twortvirinae* phages (Barylski *et al.*, 2020; Imam *et al.*, 2019). Proteomic analysis of the Stabs designated some hypothetical proteins as structural proteins but the functions of a number of them could not be ravelled (**Appendix III**). Phylogenetic findings indicate that they are all members of this

genus in the Twortvirinae subfamily (Figure 6). In addition, it further supports similarity between Stab20 and Stab21, and Stab22 and Stab23 that had been observed by EMBOSS analysis (Table 3). These observations illustrate the uniformity amongst the predicted phage-encoded proteins (Table 5). In addition, SDS-PAGE analysis further affirms the close phylogenetic association of the Stabs (Figure 8). However, comprehensive protein analysis shows that these viruses are of different species as none of them is 95% identical to one another (Table 3) (Barylski et al., 2020). Morphological and genomic analyses clearly illustrate that these phages are new members of the Twortvirinae subfamily. The ICTV groups all Staphylococcus / Lactobacillus infecting phages with genomes 135-150 kbp as Twortvirinae but the Stabs have larger genomes (https://talk.ictvonline.org/taxonomy/). This implies that there is need to adjust the classification criteria Staphylococcus myoviruses to accommodate bigger staphylococci phages. Alternatively, the Stabs and other phages with such genomes (150 kbp>) (https://blast.ncbi.nlm.nih.gov/Blast.cgi) ought to be placed under a new genus but within Twortvirnae subfamily.

5.1.3 Screening for lethal genes

The Stabs were free of all lethal unwanted genes encoding for toxins, antibiotic resistance and integrase, and chromosomal point mutations (**Table 4**). Absence of integrase encoding genes indicates that these phages cannot engage in a lysogenic lifestyle with the target bacteria as observed with siphoviruses (J. Wang *et al.*, 2019). Therefore, if used for therapeutic or as sanitizers these phages would not pass lethal genes to the target bacterial pathogens. The absence of the antibiotic resistance-conferring genes such as *dfrB*, *fusA*, *grlA*, *grlB*, *gyrA*, *ileS*, and *rpoB* carrying point mutations or the *pbp4* promoter of 304 bp in size (**Table 4**), asserts safety of the Stabs. Furthermore, it infers the inability of these phages to instigate bacterial resistance to antibiotic classes such as beta-lactam, rifampin, ciprofloxacin, mupirocin, linezolid and trimethoprim-sulfamethoxazole drugs (Chatterjee *et al.*, 2017; Harris *et al.*, 2018; Iguchi *et al.*, 2016; Lai *et al.*, 2018). In addition, the results deduce the inability of the Stabs to physically release unwanted lethal genes into the

environment for uptake by other bacteria. These findings concur with the results of previous studies which describes the safety and therapeutic efficacy of phages related with the Stabs such as ISP and Sb_1 (Kvachadze *et al.*, 2011; Vandersteegen *et al.*, 2011).

5.1.4 Stability status of the Stabs

Phage stability determines the efficacy and application of the microbe either as therapeutic or bio-control agent. In addition, it is a pertinent factor to during packaging, shipment of phage cocktails and storage. The Stabs were stable for 1 hr at 35°C with over 90% viable phage particles. Incubation at temperatures over 40°C for 1 hr resulted in denaturing the phages with more than 85% decrease in viability (Figure 9A). These results concur with numerous previous studies which shows that Staphylococcus phages of either therapeutic or biocontrol significance are known to have an optimum viable temperature of $37 \pm 2^{\circ}$ C (Cui et al., 2017; Vandersteegen et al., 2013). However, certain studies indicates that thermal stability of the phages is directly associated with the host bacteria temperature tolerance levels. Previous findings have shown that phages isolated from regions with high temperatures or mammals with high body temperatures like birds have high thermal stability. The reverse of this observation is notable with phages from cold regions (Borriss et al., 2003; Cui et al., 2017; Prestel et al., 2013). Besides temperature, storage media also determines the shelf life of phages. Stabs depicted long shelf life in SM-buffer at +4 °C with a viability loss of 20% in 12 months. However, their viability in normal saline media at a similar temperature dropped to about 50%. This property does influence the application and storage of phage.

Ultra-violet (UV) energy is destructive to almost all biological life forms but with lethal dose variations. The toxic radiation energy that kills the host is often sufficient to destroy the predator virus as observed with this work. Radiation energy of UV at 25μ J/cm² or more resulted to over 50% reduction of viable pfu/mL for each phage (*p* < 0.0001) (**Figure 9B**). This illustrates how sensitive the Stab phages are to UV energy; a feature that has been observed with other myoviruses (Ramirez *et al.*,

2018). Unlike the podoviruses that are known to be stable even at high UV irradiation (Wang *et al.*, 2016). This indicates that Stabs cocktail for topical applications require precise formulation with ingredients that protects them from UV-irradiation for them to be effective.

Acidity or alkalinity of the medium does influence the potency of a phage. Phages isolated in this study were stable at a broad pH range of 5.4 - 9.4 at 37 °C. However, their performance was much better at pH 9.4 than at pH 5.4. Stab20 was at pH 5.4 statistically (p < 0.01) more stable than Stab21, Stab22 and Stab23. Nonetheless, these phages tolerate alkaline conditions at pH 9.4 but with 40% viability reduction (Figure 9C). The results show that oral administration of Stabs to patients without modification to protect them from the acidic environment of the stomach is impossible. However, they can be issued to patients as rectal and urethral suppositories since their pH stability coincides with these organs' pH 6.0 - 8.0 (Bono & Reygaert, 2019; Turner et al., 2012). In addition, they can be administered nasally as aerosols to patients since the nasal pH 5.5- 6.5 favour their existence (Baroody, 2011). These findings corroborate other pH endurance observations made on other members of Kayvirus genus isolated from a similar environment but elsewhere. Phage JD007 and phiIPLA-RODI have shown tolerance to broad range of pH 5-11 but at room temperature (Cui et al., 2017; Gutiérrez et al., 2015). These results signify the influence of the phage source to its pH endurance range and the microbe's origin as noted in other phages like of the acidophiles and halophiles (Akhwale *et al.*, 2019; Yu et al., 2006).

Organic solvents are destructive to many viruses but not all. Viruses with high lipid capsulation or envelope are more susceptible to denaturation by organic solvents than those with no or low lipid content (naked virus) (Rheinbaben *et al.*, 2007). This characteristics is observables among phages which are prokaryotic viruses but with variations from one to another (Jurczak-Kurek *et al.*, 2016). Observation made on the Stab phages deduced that they were highly sensitive to ethanol concentration (volume-by-volume percentage – Vol/Vol %) in SM-buffer or PBS above 25%

Vol/Vol (**Figure 10**). However, they were tolerant to 0-100% Vol/Vol chloroform concentration on similar buffers (**Figure 11**). These outcomes are in line with other findings which showed myoviruses to be less sensitive to chloroform but highly susceptible to ethanol (Jurczak-Kurek *et al.*, 2016).

5.1.5 Growth properties of the novel phages

In this work, the adsorption rates and burst-sizes of the phages (Figure 12 and Figure 13) inversely correlated for certain phages. Direct association of the two growth factors was shown for Stab20 (3.1×10⁻⁹mL/min; 66 pfu), Stab21 (1.0×10⁻ ¹⁰mL/min; 130 pfu) and Stab23 (2.2×10⁻⁹mL/min; 62). Stab22 (4.7×10⁻⁹mL/min; 42) had a high adsorption rate but with less progeny output. Adsorption rates for these phages were greater compared to those of Staphylococcus phage K and DRA88 but less to those of phages phi812 and SK311. (Alves et al., 2014; Pantucek et al., 1998). In addition, adsorption curves of these phages illustrate that at no time interval was the culture medium free of phages. This suggests that the lowest free-phage count was an equilibrium point at which the rates of adsorption and replication of the phages were equivalent. This duration is what defines the latent phase of one-step growth curve of phages. 25 min, 20 min, 30 min and 25 min were the latent periods for Stab20, Stab21, Stab22 and Stab23 respectively. Eclipse period occurs when there is active production of phages per actively infected bacteria. Replication rate is what determines the phage's eclipse period and subsequently its burst-size. Moreover, emergence of mutant phage-resistant bacterial strains is associated with low phage outburst pace. Since the bacterium has more chances of evolving against the predator and consequently colonization of the medium with mutant strains. However, the appearance of lag phase is often due to establishment of old bacteria population in the medium which does not support rapid phage replication (Bull & Gill, 2014). The curves also show the susceptibility of a target bacterium varies from one phage to another. Furthermore, it is worth noting that adsorption is just a physical property of a phage. Therefore, adsorption rate is not directly associated with a phage's burst size since phage can adsorb to dead bacteria (Krueger, 1931). Stab22 (4.7×10^{-9} mL/min; 42) had a high adsorption rate but with less progeny output which suggests that it might be viable therapeutically, only if used in large numbers. Therapeutic or bio-control potential of a phage is determined by its growth properties which includes adsorption rate and burst-size. Since phages with fast adsorption rates and large progeny, outputs are suitable for bio-remediation. Nonetheless fast adsorption and low burst-size may be important specifically in passive bioremediation where there are low bacterial concentrations (Bull & Gill, 2014). However, phage's exhibition of these properties may vary from one bacteria to another as observed with Staphylococcus phage philPLA-RODI (González-Menéndez *et al.*, 2018).

5.1.6 Host range analysis

Determination of the antibiogram plays a similar role in the use of antibiotic therapy as the determination of the phagogram in the use of phage therapy. In this work, host range analysis infers to robust phagogram since it entailed both spot and relative efficiency of plating (REOP) assays. A confluent bacterial lawn or a significantly low plaque count on the target-strain accompanied with low REOP (<0.1) as compared to host bacteria inferred to a negative result. Medium or large REOP (>0.1) backed with large zone of lysis inhibition marked a positive outcome. Greater REOPs (>2) indicated higher efficacy of phage against a target strain (Figure 18). Spot assay is the preferred technique for host range analysis in most labs since it is less demanding in terms of time and cost. However, this is not the efficient way of determining the virus virulence against bacteria because it can mislead. Occurrence of inhibition zones might be due to phage's lysis from without due to residual endolysin or bacteriocin in the lysate. Furthermore, they could be due to excessive adsorption of bacteria with high phage titre resulting to irreversible extensive damage to the bacteria (Abedon, 2011). False positives in the analysis is eliminated through spotting of serially diluted stock lysate on bacterial lawn (Kutter, 2009). In this study spot analysis samples were lysate diluent of 10⁻⁵ with a definite predetermined plaque counts of about 50 - 200 pfu/mL to eliminating the effects of residual bacteriocin and endolysin. However, spot assay does not exhibit the exact fitness of phages against their target bacteria. Reason being that the virus particles might only be concentrated at the specific point of application during the assay. In addition, the phage might encounter a resistance from the target bacteria in form of abortive infection which inhibits its replication (Hyman & Abedon, 2010).

Positive results exhibited by this study's modified spot assay were further analysed with efficiency of plating (E.O.P) using double agar layer method. The outcome plaque counts varied from one-target bacteria to another compared with the host's plaques. In certain instance, the plaques were higher for the tested strains than for the original host bacteria and vice versa (**Figure 18**). There were no plaques in some bacteria strains which had previously tested positive with spot assay analysis such as strain ID 6220 and 6221 (**Table 6**). In addition, the phages exhibited different plaque sizes from one strain of test bacteria to another. Most susceptible bacteria did present large plaques ($\approx 1.5 - 2.0$ mm) while least sensitive strains either had pinpoint plaques (<1 mm) or none (**Figure 16- 18**). The counts ratios provided relative E.O.P (R.E.O.P) values that showed the fitness of each phage against specific bacteria. *Staphylococcus* species/strains susceptible to Stabs produced large R.E.O.P and the lowest or none for non-susceptible strains (**Table 6**).

Abortive infections and emergence of mutant phage-resistant bacteria are detectable through efficiency of plating by spot and double agar layer assays. However, bacteriophage-insensitive mutants (BIMs) assay is the accurate means of determining emergence of phage-resistant strains among susceptible bacteria. Double agar assay is the most preferable means for determining the fitness of a phage against target-bacteria. High REOP should be the determinant factor when selecting a phage for bioremediation purposes. Classical Spot or classical efficiency of plating method (modified spot assay) is full of setbacks and might be influenced by residual bacteriocin or endolysin in the lysate. Failures of these techniques have been noted in some recent phage therapy works where bacteria have turned resistant against candidate phages during treatment (Krylov *et al.*, 2016; Schooley *et al.*, 2017). Despite the shortcomings spot and E.O.P, the assays are suitable in establishing the polyvalent nature of a phage. These assays illustrate Stab20 as a polyvalent phage

with large REOP across various targeted strains (Table 6) inferring to it potential as candidate for bioremediation purposes. However, Stab22 and Stab23 are monovalent phages due to their narrow host range. The phages grow well in *S. xylosus* but poorly or do not produce plaques in other species/strains of *Staphylococcus*.

5.2 Conclusion

In this study I have isolated the phages, and characterized them morphologically and genomicaly to elucidate their taxon. Structural analysis by TEM unveiled their morphology that consisted of icosahedral head attached to a tail with baseplate at the other end. The outcome of phylogenetic analysis showed that they are novel phages of the *Kayvirus* genus, *Twortvirinae* subfamily and *Herelleviridae* family of the order *Caudoviralea*. Genomic analysis depicted that they were free of lysogen, bacterial-virulence/chromosomal point mutations and antibiotic resistance encoding genes. In addition, the Stabs' genomes possess several hypothetical proteins but their functions could not be determined experimentally.

The findings further showed that the phages now known as Stabs (Stab20, Stab21, Stab22 and Stab23) are sensitive to U.V irradiation and temperatures over 40 °C. Thermal and UV findings exhibits these phages' potential as topical antistaphylococcal agents against SSTIs caused by staphylococcus bacteria. However, they are stable at pH range of 5.4 to 9.4, in chloroform but very sensitive to ethanol concentration above 25% vol/vol. In addition, they have varied growth properties as displayed by their adsorption and one step growth curves. The curves present Stab21 as a more virulent phage compared to other Stabs. Nonetheless, the growth activity of a phage directly correlated with the host bacteria. The two-fold higher plaque formation depicted by Stab20 in some *Staphylococcus* strains tested in the study compared to that in the original host clearly shows that phage's replication varies from one bacterium to another.

Exhibition of broad host range by Stab20 and Stab21 proves that these viruses have bio-remedial potential application. However, the poor lytic activities presented by Stab22 and Stab23 did not mean that they are of no significance. The specificity of Stab22 and Stab23 is of great importance especially in the events of tackling *Staphylococcus* sp specifically sensitive to them. In addition, they are of immense potential as candidates for phage therapy cocktails or bio-control products. The Stabs

are in the Skurnik lab phage bio-bank for possible use in case of emergency phage therapy where conventional antibiotics have failed.

5.3 Limitation of the study

Shortage of funds and time made it impossible to deduce functions of Stabs' numerous hypothetical proteins and *in vitro* ability of Stabs to act as "superspreaders". Host range analysis exhibits the Stabs potential as therapeutic and bio-control agents against *Staphylococcus aureus* and *Staphylococcus* sp. However, *S. aureus* clusters were not identified to establish whether they represented dominant circulating pathogens within either Finland, Europe or globally.

Genomic analysis of the phages suggested that they are safe but for clarity, there is need to assess it *in vivo* with an appropriate animal model.

5.4 Recommendations

There is need for more funding on phage biology/application research to unlock the therapeutic and bioremediation potential of these microbes.

5.5 Suggestion for further studies

There is need to study the significance of hypothetical proteins to phages' biological activities. The approach might involve studying virulence of phages with knockedout hypothetic proteins (genetically engineered phages with the proteins removed). Alternative could be the harvesting and purification of these phage proteins. Thereafter, test their toxicity against battery of bacteria as described by Ushanandini and her group (Mohanraj *et al.*, 2019). Understanding of these proteins might be the key to development of better and effective novel antibacterial drugs. Finally, there is need to establish whether Staphylococcus phages can act as "superspreaders".

CHAPTER SIX: REFERENCES

Abatángelo, V., Peressutti Bacci, N., Boncompain, C. A., Amadio, A. A., Carrasco, S., Suárez,
C. A., & Morbidoni, H. R. (2017). Broad-range lytic bacteriophages that kill
Staphylococcus aureus local field strains. *PLoS ONE*, *12*(7).
https://doi.org/10.1371/journal.pone.0181671

- Abedon, S. T. (2011). Lysis from without. *Bacteriophage*, *1*(1), 46–49. https://doi.org/10.4161/bact.1.1.13980
- Abrahamian, F. M., Sakoulas, G., Tzanis, E., Manley, A., Steenbergen, J., Das, A. F., Eckburg,
 P. B., & McGovern, P. C. (2019). Omadacycline for Acute Bacterial Skin and Skin
 Structure Infections. *Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America*, 69(Suppl 1), S23–S32.
 https://doi.org/10.1093/cid/ciz396
- Ackermann, H.-W. (2007). 5500 Phages examined in the electron microscope. Archives of Virology, 152(2), 227–243. https://doi.org/10.1007/s00705-006-0849-1
- Adhya, S., Merril, C. R., & Biswas, B. (2014). Therapeutic and Prophylactic Applications of Bacteriophage Components in Modern Medicine. *Cold Spring Harbor Perspectives in Medicine*, 4(1), a012518. https://doi.org/10.1101/cshperspect.a012518
- Ajuebor, J., Buttimer, C., Arroyo-Moreno, S., Chanishvili, N., Gabriel, E. M., O'Mahony, J., McAuliffe, O., Neve, H., Franz, C., & Coffey, A. (2018). Comparison of Staphylococcus Phage K with Close Phage Relatives Commonly Employed in Phage Therapeutics. *Antibiotics*, 7(2). https://doi.org/10.3390/antibiotics7020037

- Akhaddar, A., Elouennass, M., Naama, O., & Boucetta, M. (2010). Staphylococcus xylosus Isolated from an Otogenic Brain Abscess in an Adolescent. *Surgical Infections*, *11*(6), 559–561. https://doi.org/10.1089/sur.2010.010
- Akhwale, J. K., Rohde, M., Rohde, C., Bunk, B., Spröer, C., Boga, H. I., Klenk, H.-P., &
 Wittmann, J. (2019). Isolation, characterization and analysis of bacteriophages from the haloalkaline lake Elmenteita, Kenya. *PLOS ONE*, *14*(4), e0215734. https://doi.org/10.1371/journal.pone.0215734
- Al-Obaidi, M. M. J., & Desa, M. N. M. (2018). Mechanisms of Blood Brain Barrier Disruption by Different Types of Bacteria, and Bacterial-Host Interactions Facilitate the Bacterial Pathogen Invading the Brain. *Cellular and Molecular Neurobiology*, 38(7), 1349–1368. https://doi.org/10.1007/s10571-018-0609-2
- Alves, D. R., Gaudion, A., Bean, J. E., Esteban, P. P., Arnot, T. C., Harper, D. R., Kot, W.,
 Hansen, L. H., Enright, M. C., & Jenkins, A. T. A. (2014). Combined Use of
 Bacteriophage K and a Novel Bacteriophage To Reduce Staphylococcus aureus
 Biofilm Formation. *Applied and Environmental Microbiology*, *80*(21), 6694–6703.
 https://doi.org/10.1128/AEM.01789-14
- Ames, H., Glenton, C., & Lewin, S. (2019). Purposive sampling in a qualitative evidence synthesis: A worked example from a synthesis on parental perceptions of vaccination communication. *BMC Medical Research Methodology*, 19(1), 26. https://doi.org/10.1186/s12874-019-0665-4
- Anjum, M. F., Marco-Jimenez, F., Duncan, D., Marín, C., Smith, R. P., & Evans, S. J. (2019). Livestock-Associated Methicillin-Resistant Staphylococcus aureus From Animals and

Animal Products in the UK. Frontiers in Microbiology, 10.

https://doi.org/10.3389/fmicb.2019.02136

- Aswani, V. H., Tremblay, D. M., Moineau, S., & Shukla, S. K. (2014). Complete Genome Sequence of a Staphylococcus epidermidis Bacteriophage Isolated from the Anterior Nares of Humans. *Genome Announcements*, *2*(4). https://doi.org/10.1128/genomeA.00549-14
- Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K.,
 Gerdes, S., Glass, E. M., Kubal, M., Meyer, F., Olsen, G. J., Olson, R., Osterman, A. L.,
 Overbeek, R. A., McNeil, L. K., Paarmann, D., Paczian, T., Parrello, B., ... Zagnitko, O.
 (2008). The RAST Server: Rapid annotations using subsystems technology. *BMC Genomics*, *9*, 75. https://doi.org/10.1186/1471-2164-9-75
- Bailey, T. L., & Elkan, C. (1994). Fitting a mixture model by expectation maximization to
 discover motifs in biopolymers. *Proceedings. International Conference on Intelligent Systems for Molecular Biology*, 2, 28–36.
- Ballhausen, B., Kriegeskorte, A., van Alen, S., Jung, P., Köck, R., Peters, G., Bischoff, M., &
 Becker, K. (2017). The pathogenicity and host adaptation of livestock-associated
 MRSA CC398. *Veterinary Microbiology*, 200, 39–45.
 https://doi.org/10.1016/j.vetmic.2016.05.006
- Bar-On, Y. M., Phillips, R., & Milo, R. (2018). The biomass distribution on Earth. Proceedings of the National Academy of Sciences of the United States of America, 115(25),
 6506–6511. https://doi.org/10.1073/pnas.1711842115

Baroody, F. M. (2011). How Nasal Function Influences the Eyes, Ears, Sinuses, and Lungs. Proceedings of the American Thoracic Society, 8(1), 53–61. https://doi.org/10.1513/pats.201007-049RN

- Bartlett, J. G., Gilbert, D. N., & Spellberg, B. (2013). Seven ways to preserve the miracle of antibiotics. *Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America*, 56(10), 1445–1450. https://doi.org/10.1093/cid/cit070
- Barylski, J., Kropinski, A. M., Alikhan, N.-F., Adriaenssens, E. M., & {en=ICTV Report Consortium}. (2020). ICTV Virus Taxonomy Profile: Herelleviridae. *Journal of General Virology*. https://doi.org/10.1099/jgv.0.001392
- Baugher, J. L., Durmaz, E., & Klaenhammer, T. R. (2014). Spontaneously Induced Prophages in Lactobacillus gasseri Contribute to Horizontal Gene Transfer. *Applied and Environmental Microbiology*, *80*(11), 3508–3517.

https://doi.org/10.1128/AEM.04092-13

- Bernier-Lachance, J., Arsenault, J., Usongo, V., Parent, É., Labrie, J., Jacques, M., Malouin, F., & Archambault, M. (2020). Prevalence and characteristics of Livestock-Associated
 Methicillin-Resistant Staphylococcus aureus (LA-MRSA) isolated from chicken meat in the province of Quebec, Canada. *PLOS ONE*, *15*(1), e0227183.
 https://doi.org/10.1371/journal.pone.0227183
- Bio-Rad. (2020). Bio-Rad | Products for Life Science Research & Clinical Diagnostics | Bio-Rad. Bio-Rad. https://www.bio-rad.com/
- Blaak, H., Lynch, G., Italiaander, R., Hamidjaja, R. A., Schets, F. M., & Husman, A. M. de R. (2015). Multidrug-Resistant and Extended Spectrum Beta-Lactamase-Producing

Escherichia coli in Dutch Surface Water and Wastewater. PLOS ONE, 10(6),

e0127752. https://doi.org/10.1371/journal.pone.0127752

BLAST. (2019). BLAST: Basic Local Alignment Search Tool.

https://blast.ncbi.nlm.nih.gov/Blast.cgi#

- Bochniarz, M., Wawron, W., Szczubiał, M., Brodzki, P., Piech, T., & Kusy, R. (2014). Characteristics of Staphylococcus Xylosus Isolated from Subclinical Mastitis in Cows. *Annals of Animal Science*, *14*(4), 859–867. https://doi.org/10.2478/aoas-2014-0053
- Bondy-Denomy, J., Qian, J., Westra, E. R., Buckling, A., Guttman, D. S., Davidson, A. R., & Maxwell, K. L. (2016). Prophages mediate defense against phage infection through diverse mechanisms. *The ISME Journal*, *10*(12), 2854–2866. https://doi.org/10.1038/ismej.2016.79
- Bono, M. J., & Reygaert, W. C. (2019). Urinary Tract Infection. In *StatPearls*. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK470195/
- Bonsma-Fisher, M., Soutière, D., & Goyal, S. (2018). How adaptive immunity constrains the composition and fate of large bacterial populations. *Proceedings of the National Academy of Sciences*, 115(32), E7462–E7468.

https://doi.org/10.1073/pnas.1802887115

- Borriss, M., Helmke, E., Hanschke, R., & Schweder, T. (2003). Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice. *Extremophiles: Life Under Extreme Conditions*, 7(5), 377–384. https://doi.org/10.1007/s00792-003-0334-7
- Breitbart, M. (2012). Marine Viruses: Truth or Dare. *Annual Review of Marine Science*, 4(1), 425–448. https://doi.org/10.1146/annurev-marine-120709-142805

- Breitbart, M., & Rohwer, F. (2005). Here a virus, there a virus, everywhere the same virus? *Trends in Microbiology*, *13*(6), 278–284. https://doi.org/10.1016/j.tim.2005.04.003
- Brown, D. F. J., & Reynolds, P. E. (1980). Intrinsic resistance to β-lactam antibiotics in staphylococcus aureus. *FEBS Letters*, *122*(2), 275–278. https://doi.org/10.1016/0014-5793(80)80455-8
- Brüssow, H. (2012). What is needed for phage therapy to become a reality in Western medicine? *Virology*, *434*(2), 138–142. https://doi.org/10.1016/j.virol.2012.09.015
- Buffie, C. G., Jarchum, I., Equinda, M., Lipuma, L., Gobourne, A., Viale, A., Ubeda, C., Xavier,
 J., & Pamer, E. G. (2012). Profound Alterations of Intestinal Microbiota following a
 Single Dose of Clindamycin Results in Sustained Susceptibility to Clostridium
 difficile-Induced Colitis. *Infection and Immunity*, *80*(1), 62–73.
 https://doi.org/10.1128/IAI.05496-11
- Bull, J. J., & Gill, J. J. (2014). The habits of highly effective phages: Population dynamics as a framework for identifying therapeutic phages. *Frontiers in Microbiology*, 5. https://doi.org/10.3389/fmicb.2014.00618
- Carlet, J., Jarlier, V., Harbarth, S., Voss, A., Goossens, H., & Pittet, D. (2012). Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action.
 Antimicrobial Resistance and Infection Control, 1, 11. https://doi.org/10.1186/2047-2994-1-11
- Carver, T., Berriman, M., Tivey, A., Patel, C., Böhme, U., Barrell, B. G., Parkhill, J., &
 Rajandream, M.-A. (2008). Artemis and ACT: Viewing, annotating and comparing
 sequences stored in a relational database. *Bioinformatics (Oxford, England)*, 24(23),
 2672–2676. https://doi.org/10.1093/bioinformatics/btn529

- Cater, K., Dandu, V. S., Bari, S. M. N., Lackey, K., Everett, G. F. K., & Hatoum-Aslan, A. (2017). A Novel Staphylococcus Podophage Encodes a Unique Lysin with Unusual Modular Design. *MSphere*, *2*(2). https://doi.org/10.1128/mSphere.00040-17
- Cervera-Alamar, M., Guzmán-Markevitch, K., Žiemytė, M., Ortí, L., Bernabé-Quispe, P., Pineda-Lucena, A., Pemán, J., & Tormo-Mas, M. Á. (2018). Mobilisation Mechanism of Pathogenicity Islands by Endogenous Phages in Staphylococcus aureus clinical strains. *Scientific Reports*, 8(1), 16742. https://doi.org/10.1038/s41598-018-34918-2
- Cha, Y., Chun, J., Son, B., & Ryu, S. (2019). Characterization and Genome Analysis of Staphylococcus aureus Podovirus CSA13 and Its Anti-Biofilm Capacity. *Viruses*, 11(1), 54. https://doi.org/10.3390/v11010054
- Chatterjee, S. S., Chen, L., Gilbert, A., da Costa, T. M., Nair, V., Datta, S. K., Kreiswirth, B. N., & Chambers, H. F. (2017). PBP4 Mediates β-Lactam Resistance by Altered Function. *Antimicrobial Agents and Chemotherapy*, *61*(11). https://doi.org/10.1128/AAC.00932-17
- Cheng, G., Dai, M., Ahmed, S., Hao, H., Wang, X., & Yuan, Z. (2016). Antimicrobial Drugs in Fighting against Antimicrobial Resistance. *Frontiers in Microbiology*, *7*. https://doi.org/10.3389/fmicb.2016.00470
- Clokie, Martha Rj, Millard, A. D., Letarov, A. V., & Heaphy, S. (2011). Phages in nature. Bacteriophage, 1(1), 31–45. https://doi.org/10.4161/bact.1.1.14942
- Clokie, Martha RJ, Millard, A. D., Letarov, A. V., & Heaphy, S. (2011). Phages in nature. Bacteriophage, 1(1), 31–45. https://doi.org/10.4161/bact.1.1.14942

CLSI. (2017). Clinical & Laboratory Standards Institute: CLSI Guidelines. https://clsi.org/

- Coil, D., Jospin, G., & Darling, A. E. (2015). A5-miseq: An updated pipeline to assemble microbial genomes from Illumina MiSeq data. *Bioinformatics (Oxford, England)*, 31(4), 587–589. https://doi.org/10.1093/bioinformatics/btu661
- Colomer-Lluch, M., Jofre, J., & Muniesa, M. (2011). Antibiotic Resistance Genes in the Bacteriophage DNA Fraction of Environmental Samples. *PLOS ONE*, *6*(3), e17549. https://doi.org/10.1371/journal.pone.0017549
- Conly, J., & Johnston, B. (2005). Where are all the new antibiotics? The new antibiotic paradox. *The Canadian Journal of Infectious Diseases & Medical Microbiology*, *16*(3), 159–160.
- Coombs, G. W., Baines, S. L., Howden, B. P., Swenson, K. M., & O'Brien, F. G. (2020).
 Diversity of bacteriophages encoding Panton-Valentine leukocidin in temporally and geographically related Staphylococcus aureus. *PLoS ONE*, *15*(2).
 https://doi.org/10.1371/journal.pone.0228676
- Crane, A., Abaidoo, J., Beltran, G., Fry, D., Furey, C., Green, N., Johal, R., Rosa, B. L., Jimenez,
 C. L., Luong, L., Maag, G., Porche, J., Reyes, L., Robinson, A., Sabbara, S., Herrera, L.
 S., Negrete, A. U., Wilson, P., Geiler-Samerotte, K., & Pfeifer, S. P. (2020). The
 Complete Genome Sequence of the Staphylococcus Bacteriophage Metroid. *G3: Genes, Genomes, Genetics*, *10*(9), 2975–2979.
 https://doi.org/10.1534/g3.120.401365
- Cui, Z., Feng, T., Gu, F., Li, Q., Dong, K., Zhang, Y., Zhu, Y., Han, L., Qin, J., & Guo, X. (2017). Characterization and complete genome of the virulent Myoviridae phage JD007 active against a variety of Staphylococcus aureus isolates from different hospitals in
Shanghai, China. *Virology Journal*, *14*(1), 26. https://doi.org/10.1186/s12985-017-0701-0

Cui, Z., Guo, X., Dong, K., Zhang, Y., Li, Q., Zhu, Y., Zeng, L., Tang, R., & Li, L. (2017). Safety assessment of Staphylococcus phages of the family Myoviridae based on complete genome sequences. *Scientific Reports*, *7*, 41259.

https://doi.org/10.1038/srep41259

- Culbertson, E. K., Bari, S. M. N., Dandu, V. S., Kriznik, J. M., Scopel, S. E., Stanley, S. P., Lackey, K., Hernandez, A. C., & Hatoum-Aslan, A. (2019). Draft Genome Sequences of Staphylococcus Podophages JBug18, Pike, Pontiff, and Pabna. *Microbiology Resource Announcements*, 8(8). https://doi.org/10.1128/MRA.00054-19
- Daniel, A., Bonnen, P. E., & Fischetti, V. A. (2007). First Complete Genome Sequence of Two
 Staphylococcus epidermidis Bacteriophages. *Journal of Bacteriology*, *189*(5), 2086–
 2100. https://doi.org/10.1128/JB.01637-06
- Daniel Verreault, Louis Gendron, Geneviève M. Rousseau, Marc Veillette, Daniel Massé,
 William G. Lindsley, & C, D. (2010). Detection of airborne lactococcal
 bacteriophages in cheese manufacturing plants. *Applied and Environmental Microbiology*, 77(2), 491–497. https://doi.org/10.1128/AEM.01391-10
- Danovaro, R., Manini, E., & Dell'Anno, A. (2002). Higher Abundance of Bacteria than of
 Viruses in Deep Mediterranean Sediments. *Applied and Environmental Microbiology*, *68*(3), 1468–1472. https://doi.org/10.1128/AEM.68.3.14681472.2002

- Darling, A. E., Mau, B., & Perna, N. T. (2010). progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement. *PLOS ONE*, 5(6), e11147. https://doi.org/10.1371/journal.pone.0011147
- Das, B., Bischerour, J., & Barre, F.-X. (2011). Molecular mechanism of acquisition of the cholera toxin genes. *The Indian Journal of Medical Research*, *133*(2), 195–200.
- Davies, E. V., Winstanley, C., Fothergill, J. L., & James, C. E. (2016). The role of temperate bacteriophages in bacterial infection. *FEMS Microbiology Letters*, 363(fnw015). https://doi.org/10.1093/femsle/fnw015
- Davis, B. M., Moyer, K. E., Boyd, E. F., & Waldor, M. K. (2000). CTX Prophages in Classical
 Biotype Vibrio cholerae: Functional Phage Genes but Dysfunctional Phage
 Genomes. *Journal of Bacteriology*, *182*(24), 6992–6998.
- Dedrick, R. M., Guerrero-Bustamante, C. A., Garlena, R. A., Russell, D. A., Ford, K., Harris, K.,
 Gilmour, K. C., Soothill, J., Jacobs-Sera, D., Schooley, R. T., Hatfull, G. F., & Spencer,
 H. (2019). Engineered bacteriophages for treatment of a patient with a
 disseminated drug-resistant Mycobacterium abscessus. *Nature Medicine*, 25(5),
 730. https://doi.org/10.1038/s41591-019-0437-z
- Deghorain, M., & Van Melderen, L. (2012). The Staphylococci Phages Family: An Overview. *Viruses*, *4*(12), 3316–3335. https://doi.org/10.3390/v4123316
- Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.-F.,
 Guindon, S., Lefort, V., Lescot, M., Claverie, J.-M., & Gascuel, O. (2008).
 Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. *Nucleic Acids Research*, *36*(Web Server issue), W465-469. https://doi.org/10.1093/nar/gkn180

- Drulis-Kawa, Z., Majkowska-Skrobek, G., Maciejewska, B., Delattre, A.-S., & Lavigne, R.
 (2012). Learning from Bacteriophages—Advantages and Limitations of Phage and Phage-Encoded Protein Applications. *Current Protein and Peptide Science*, 13(8), 699–722. https://doi.org/10.2174/138920312804871193
- Dublanchet, A., & Bourne, S. (2007). The epic of phage therapy. *The Canadian Journal of Infectious Diseases & Medical Microbiology*, *18*(1), 15–18.
- Etikan, I., Musa, S. A., & Alkassim, R. S. (2015). Comparison of Convenience Sampling and Purposive Sampling. *American Journal of Theoretical and Applied Statistics*, *5*(1), 1. https://doi.org/10.11648/j.ajtas.20160501.11
- EUCAST. (2017). EUCAST: AST of bacteria. http://www.eucast.org/ast_of_bacteria/
- Eurofins. (2019). *Eurofins*. Eurofins Scientific. https://www.eurofins.com/contactus/worldwide-interactive-map/germany/eurofins-gatc-biotech/
- Fadlallah, A., Chelala, E., & Legeais, J.-M. (2015). Corneal Infection Therapy with Topical Bacteriophage Administration. *The Open Ophthalmology Journal*, *9*, 167–168. https://doi.org/10.2174/1874364101509010167
- Fair, R. J., & Tor, Y. (2014). Antibiotics and Bacterial Resistance in the 21st Century. *Perspectives in Medicinal Chemistry*, *6*, 25–64.

https://doi.org/10.4137/PMC.S14459

Fernández, L., González, S., Quiles-Puchalt, N., Gutiérrez, D., Penadés, J. R., García, P., & Rodríguez, A. (2018). Lysogenization of Staphylococcus aureus RN450 by phages φ11 and φ80α leads to the activation of the SigB regulon. *Scientific Reports*, *8*(1), 12662. https://doi.org/10.1038/s41598-018-31107-z

- Firth, N., Jensen, S. O., Kwong, S. M., Skurray, R. A., & Ramsay, J. P. (2018). Staphylococcal Plasmids, Transposable and Integrative Elements. *Microbiology Spectrum*, 6(6). https://doi.org/10.1128/microbiolspec.GPP3-0030-2018
- Fish, R., Kutter, E., Wheat, G., Blasdel, B., Kutateladze, M., & Kuhl, S. (2016). *Bacteriophage Treatment of Intransigent Diabetic Toe Ulcers- A Case Series*.
- Fisher, E. L., Otto, M., & Cheung, G. Y. C. (2018). Basis of Virulence in Enterotoxin-Mediated Staphylococcal Food Poisoning. *Frontiers in Microbiology*, *9*. https://doi.org/10.3389/fmicb.2018.00436
- Fokine, A., & Rossmann, M. G. (2014). Molecular architecture of tailed double-stranded DNA phages. *Bacteriophage*, *4*. https://doi.org/10.4161/bact.28281
- Foster, T. J. (2017). Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. *FEMS Microbiology Reviews*, 41(3), 430–449. https://doi.org/10.1093/femsre/fux007
- Garneau, J. R., Depardieu, F., Fortier, L.-C., Bikard, D., & Monot, M. (2017). PhageTerm: A tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. *Scientific Reports, 7*(1), 8292. https://doi.org/10.1038/s41598-017-07910-5
- Gautheret, D., & Lambert, A. (2001). Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. *Journal of Molecular Biology*, *313*(5), 1003–1011. https://doi.org/10.1006/jmbi.2001.5102
- Gill, J. J. (2014). Revised Genome Sequence of Staphylococcus aureus Bacteriophage K. Genome Announcements, 2(1). https://doi.org/10.1128/genomeA.01173-13

Gnanamani, A., Hariharan, P., & Paul-Satyaseela, M. (2017). Staphylococcus aureus:
 Overview of Bacteriology, Clinical Diseases, Epidemiology, Antibiotic Resistance and
 Therapeutic Approach. *Frontiers in* Staphylococcus Aureus.
 https://doi.org/10.5772/67338

- González-Menéndez, E., Arroyo-López, F. N., Martínez, B., García, P., Garrido-Fernández, A.,
 & Rodríguez, A. (2018). Optimizing Propagation of Staphylococcus aureus Infecting
 Bacteriophage vB_SauM-phiIPLA-RODI on Staphylococcus xylosus Using Response
 Surface Methodology. *Viruses*, *10*(4). https://doi.org/10.3390/v10040153
- Graham, J. P., Boland, J. J., & Silbergeld, E. (2007). Growth Promoting Antibiotics in Food Animal Production: An Economic Analysis. *Public Health Reports*, *122*(1), 79–87.
- Green, M. R., & Sambrook, J. (2017). Isolation of High-Molecular-Weight DNA Using Organic Solvents. *Cold Spring Harbor Protocols*, 2017(4), pdb.prot093450. https://doi.org/10.1101/pdb.prot093450
- Gutiérrez, D., Vandenheuvel, D., Martínez, B., Rodríguez, A., Lavigne, R., & García, P. (2015).
 Two Phages, philPLA-RODI and philPLA-C1C, Lyse Mono- and Dual-Species
 Staphylococcal Biofilms. *Applied and Environmental Microbiology*, *81*(10), 3336–3348. https://doi.org/10.1128/AEM.03560-14
- Haaber, J., Leisner, J. J., Cohn, M. T., Catalan-Moreno, A., Nielsen, J. B., Westh, H., Penadés,
 J. R., & Ingmer, H. (2016). Bacterial viruses enable their host to acquire antibiotic
 resistance genes from neighbouring cells. *Nature Communications*, 7(1), 13333.
 https://doi.org/10.1038/ncomms13333

Haaber, J., Penadés, J. R., & Ingmer, H. (2017). Transfer of Antibiotic Resistance in
Staphylococcus aureus. *Trends in Microbiology*, *25*(11), 893–905.
https://doi.org/10.1016/j.tim.2017.05.011

- Haddad, L. E., Abdallah, N. B., Plante, P.-L., Dumaresq, J., Katsarava, R., Labrie, S., Corbeil, J.,
 St-Gelais, D., & Moineau, S. (2014). Improving the Safety of Staphylococcus aureus
 Polyvalent Phages by Their Production on a Staphylococcus xylosus Strain. *PLOS ONE*, *9*(7), e102600. https://doi.org/10.1371/journal.pone.0102600
- Harris, T. M., Bowen, A. C., Holt, D. C., Sarovich, D. S., Stevens, K., Currie, B. J., Howden, B.
 P., Carapetis, J. R., Giffard, P. M., & Tong, S. Y. C. (2018). Investigation of trimethoprim/sulfamethoxazole resistance in an emerging sequence type 5 methicillin-resistant Staphylococcus aureus clone reveals discrepant resistance reporting. *Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases*, 24(9), 1027– 1029. https://doi.org/10.1016/j.cmi.2018.04.020
- Hau, S. J., Kellner, S., Eberle, K. C., Waack, U., Brockmeier, S. L., Haan, J. S., Davies, P. R.,
 Frana, T., & Nicholson, T. L. (2018). Methicillin-Resistant Staphylococcus aureus
 Sequence Type (ST) 5 Isolates from Health Care and Agricultural Sources Adhere
 Equivalently to Human Keratinocytes. *Applied and Environmental Microbiology*,
 84(2). https://doi.org/10.1128/AEM.02073-17
- Heaton, C. J., Gerbig, G. R., Sensius, L. D., Patel, V., & Smith, T. C. (2020). Staphylococcus aureus Epidemiology in Wildlife: A Systematic Review. *Antibiotics*, 9(2). https://doi.org/10.3390/antibiotics9020089

HelsinkiRegion. (2020). Facts about the Helsinki Region. Helsingin Kaupunki.

https://www.helsinkiregion.fi/hs/en/city-information/

Hendrix, R. W., Smith, M. C. M., Burns, R. N., Ford, M. E., & Hatfull, G. F. (1999).
Evolutionary relationships among diverse bacteriophages and prophages: All the world's a phage. *Proceedings of the National Academy of Sciences of the United States of America*, *96*(5), 2192–2197.

Hiramatsu, K., Katayama, Y., Matsuo, M., Sasaki, T., Morimoto, Y., Sekiguchi, A., & Baba, T.
(2014). Multi-drug-resistant Staphylococcus aureus and future chemotherapy. *Journal of Infection and Chemotherapy*, 20(10), 593–601.
https://doi.org/10.1016/j.jiac.2014.08.001

- Hodges, K., & Gill, R. (2010). Infectious diarrhea. *Gut Microbes*, 1(1), 4–21. https://doi.org/10.4161/gmic.1.1.11036
- Hollenbeck, B. L., & Rice, L. B. (2012). Intrinsic and acquired resistance mechanisms in enterococcus. *Virulence*, *3*(5), 421–569. https://doi.org/10.4161/viru.21282
- Hoppe, P.-A., Holzhauer, S., Lala, B., Bührer, C., Gratopp, A., Hanitsch, L. G., Humme, D.,
 Kieslich, M., Kallinich, T., Lau, S., Leistner, R., Niebank, M., Pokrywka, A., Ringe, H.,
 Schaper, A.-S., Schröder, J.-T., Schwarz, C., Staab, D., Stegemann, M. S., ... Krüger, R.
 (2019). Severe infections of Panton-Valentine leukocidin positive Staphylococcus
 aureus in children. *Medicine*, *98*(38), e17185.
 https://doi.org/10.1097/MD.00000000017185

Howard-Varona, C., Hargreaves, K. R., Abedon, S. T., & Sullivan, M. B. (2017). Lysogeny in nature: Mechanisms, impact and ecology of temperate phages. *The ISME Journal*, *11*(7), 1511–1520. https://doi.org/10.1038/ismej.2017.16

- Howden, B. P., McEvoy, C. R. E., Allen, D. L., Chua, K., Gao, W., Harrison, P. F., Bell, J.,
 Coombs, G., Bennett-Wood, V., Porter, J. L., Robins-Browne, R., Davies, J. K.,
 Seemann, T., & Stinear, T. P. (2011). Evolution of Multidrug Resistance during
 Staphylococcus aureus Infection Involves Mutation of the Essential Two Component
 Regulator WalKR. *PLOS Pathogens*, *7*(11), e1002359.
 https://doi.org/10.1371/journal.ppat.1002359
- Hrebík, D., Štveráková, D., Škubník, K., Füzik, T., Pantůček, R., & Plevka, P. (2019). Structure and genome ejection mechanism of Staphylococcus aureus phage P68. *Science Advances*, 5(10), eaaw7414. https://doi.org/10.1126/sciadv.aaw7414
- HSY. (2020). Viikinmäki wastewater treatment plant.

https://www.hsy.fi:443/en/experts/water-services/wastewater-treatmentplants/viikinmaki/Pages/default.aspx

Hyman, P., & Abedon, S. T. (2010). Chapter 7—Bacteriophage Host Range and Bacterial Resistance. In Advances in Applied Microbiology (Vol. 70, pp. 217–248). Academic Press. https://doi.org/10.1016/S0065-2164(10)70007-1

Iguchi, S., Mizutani, T., Hiramatsu, K., & Kikuchi, K. (2016). Rapid Acquisition of Linezolid Resistance in Methicillin-Resistant Staphylococcus aureus: Role of Hypermutation and Homologous Recombination. *PLOS ONE*, *11*(5), e0155512. https://doi.org/10.1371/journal.pone.0155512

Imam, M., Alrashid, B., Patel, F., Dowah, A. S. A., Brown, N., Millard, A., Clokie, M. R. J., & Galyov, E. E. (2019). VB_PaeM_MIJ3, a Novel Jumbo Phage Infecting Pseudomonas aeruginosa, Possesses Unusual Genomic Features. *Frontiers in Microbiology*, 10. https://doi.org/10.3389/fmicb.2019.02772 International Committee on Taxonomy of Viruses. (2020). *ICTV Virus Taxonomy 2019*. https://talk.ictvonline.org/taxonomy/

Ji, X., Zhang, C., Fang, Y., Zhang, Q., Lin, L., Tang, B., & Wei, Y. (2015). Isolation and characterization of glacier VMY22, a novel lytic cold-active bacteriophage of Bacillus cereus. *Virologica Sinica*, *30*(1), 52–58. https://doi.org/10.1007/s12250-014-3529-4

Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J.,
Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew,
M., Yong, S.-Y., Lopez, R., & Hunter, S. (2014). InterProScan 5: Genome-scale
protein function classification. *Bioinformatics*, *30*(9), 1236–1240.
https://doi.org/10.1093/bioinformatics/btu031

Jose, S. (2010, October 25). *Global Antibiotics Market to Reach US\$40.3 Billion by 2015, According to New Report by Global Industry Analysts, Inc.* PRWeb. http://www.prweb.com/releases/antibiotics/anti_infectives/prweb4688824.htm

Jurczak-Kurek, A., Gąsior, T., Nejman-Faleńczyk, B., Bloch, S., Dydecka, A., Topka, G., Necel,
A., Jakubowska-Deredas, M., Narajczyk, M., Richert, M., Mieszkowska, A., Wróbel,
B., Węgrzyn, G., & Węgrzyn, A. (2016). Biodiversity of bacteriophages:
Morphological and biological properties of a large group of phages isolated from
urban sewage. *Scientific Reports, 6*, 34338. https://doi.org/10.1038/srep34338

 Kaatz, G. W., McAleese, F., & Seo, S. M. (2005). Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. *Antimicrobial Agents and Chemotherapy*, *49*(5), 1857–1864. https://doi.org/10.1128/AAC.49.5.1857-1864.2005

103

Kashif, A., McClure, J.-A., Lakhundi, S., Pham, M., Chen, S., Conly, J. M., & Zhang, K. (2019).
 Staphylococcus aureus ST398 Virulence Is Associated With Factors Carried on
 Prophage φSa3. *Frontiers in Microbiology*, *10*.
 https://doi.org/10.3389/fmicb.2019.02219

Kaur, G., Arora, A., Sathyabama, S., Mubin, N., Verma, S., Mayilraj, S., & Agrewala, J. N.
 (2016). Genome sequencing, assembly, annotation and analysis of Staphylococcus xylosus strain DMB3-Bh1 reveals genes responsible for pathogenicity. *Gut Pathogens*, *8*. https://doi.org/10.1186/s13099-016-0139-8

- Kenya National Bureau of Statistics (Ed.). (2019). *2019 Kenya population and housing census* (Vol. 1). Kenya National Bureau of Statistics.
- Khan Mirzaei, M., Mirzaei, M. K., Eriksson, H., Kasuga, K., Haggård-Ljungquist, E., & Nilsson,
 A. S. (2014). Genomic, proteomic, morphological, and phylogenetic analyses of
 vB_EcoP_SU10, a podoviridae phage with C3 morphology. *PloS One*, *9*(12),
 e116294. https://doi.org/10.1371/journal.pone.0116294
- Khatoon, Z., McTiernan, C. D., Suuronen, E. J., Mah, T.-F., & Alarcon, E. I. (2018). Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. *Heliyon*, *4*(12). https://doi.org/10.1016/j.heliyon.2018.e01067
- Kifelew, L. G., Warner, M. S., Morales, S., Vaughan, L., Woodman, R., Fitridge, R., Mitchell, J.
 G., & Speck, P. (2020). Efficacy of phage cocktail AB-SA01 therapy in diabetic mouse wound infections caused by multidrug-resistant Staphylococcus aureus. *BMC Microbiology*, *20*(1), 204. https://doi.org/10.1186/s12866-020-01891-8
- Kishor, C., Mishra, R. R., Saraf, S. K., Kumar, M., Srivastav, A. K., & Nath, G. (2016). Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. *The*

Indian Journal of Medical Research, 143(1), 87–94. https://doi.org/10.4103/0971-5916.178615

- Kothari, C. R. (2004). *Research Methodology: Methods and Techniques*. New Age International.
- Kozajda, A., Jeżak, K., & Kapsa, A. (2019). Airborne Staphylococcus aureus in different environments—A review. *Environmental Science and Pollution Research International, 26*(34), 34741–34753. https://doi.org/10.1007/s11356-019-06557-1
- Krueger, A. P. (1931). THE SORPTION OF BACTERIOPHAGE BY LIVING AND DEAD SUSCEPTIBLE BACTERIA. *The Journal of General Physiology*, *14*(4), 493–516.
- Krukowski, H., Bakuła, Z., Iskra, M., Olender, A., Bis-Wencel, H., & Jagielski, T. (2020). The first outbreak of methicillin-resistant Staphylococcus aureus in dairy cattle in Poland with evidence of on-farm and intrahousehold transmission. *Journal of Dairy Science*, *103*(11), 10577–10584. https://doi.org/10.3168/jds.2020-18291
- Krupovic, M., Prangishvili, D., Hendrix, R. W., & Bamford, D. H. (2011). Genomics of Bacterial and Archaeal Viruses: Dynamics within the Prokaryotic Virosphere.
 Microbiology and Molecular Biology Reviews, 75(4), 610–635.
 https://doi.org/10.1128/MMBR.00011-11
- Krylov, V., Shaburova, O., Pleteneva, E., Bourkaltseva, M., Krylov, S., Kaplan, A.,
 Chesnokova, E., Kulakov, L., Magill, D., & Polygach, O. (2016). Modular Approach to
 Select Bacteriophages Targeting Pseudomonas aeruginosa for Their Application to
 Children Suffering With Cystic Fibrosis. *Frontiers in Microbiology*, *7*.
 https://doi.org/10.3389/fmicb.2016.01631

Kutateladze, M., Leshkasheli, L., Bolkvadze, D., Askilashvili, L., & Balarjishvili, N. (2016). Bacteriophages against multidrug resistant bacterial infections. *International Journal of Infectious Diseases*, 53, 46–47. https://doi.org/10.1016/j.ijid.2016.11.121

- Kutter, E. (2009). Phage host range and efficiency of plating. *Methods in Molecular Biology* (*Clifton, N.J.*), *501*, 141–149. https://doi.org/10.1007/978-1-60327-164-6_14
- Kvachadze, L., Balarjishvili, N., Meskhi, T., Tevdoradze, E., Skhirtladze, N., Pataridze, T.,
 Adamia, R., Topuria, T., Kutter, E., Rohde, C., & Kutateladze, M. (2011). Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. *Microbial Biotechnology*, *4*(5), 643–650.
 https://doi.org/10.1111/j.1751-7915.2011.00259.x
- Lai, C.-C., Chen, C.-C., Lu, Y.-C., Chuang, Y.-C., & Tang, H.-J. (2018). The clinical significance of silent mutations with respect to ciprofloxacin resistance in MRSA. *Infection and Drug Resistance*, *11*, 681–687. https://doi.org/10.2147/IDR.S159455
- Larsson, D. G. J. (2014). Antibiotics in the environment. *Upsala Journal of Medical Sciences*, 119(2), 108–112. https://doi.org/10.3109/03009734.2014.896438
- Laslett, D., & Canback, B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. *Nucleic Acids Research*, *32*(1), 11–16. https://doi.org/10.1093/nar/gkh152
- Lassen, S. B., Lomholt, H. B., & Brüggemann, H. (2017). Complete Genome Sequence of a Staphylococcus epidermidis Strain with Exceptional Antimicrobial Activity. *Genome Announcements*, *5*(10). https://doi.org/10.1128/genomeA.00004-17
- Laumay, F., Corvaglia, A.-R., Diene, S. M., Girard, M., Oechslin, F., van der Mee-Marquet, N., Entenza, J. M., & François, P. (2019). Temperate Prophages Increase Bacterial

Adhesin Expression and Virulence in an Experimental Model of Endocarditis Due to Staphylococcus aureus From the CC398 Lineage. *Frontiers in Microbiology*, *10*. https://doi.org/10.3389/fmicb.2019.00742

- Leroy, S., Vermassen, A., Ras, G., & Talon, R. (2017). Insight into the Genome of Staphylococcus xylosus, a Ubiquitous Species Well Adapted to Meat Products. *Microorganisms*, 5(3). https://doi.org/10.3390/microorganisms5030052
- Letarov, A., & Kulikov, E. (2009). The bacteriophages in human- and animal body-associated microbial communities. *Journal of Applied Microbiology*, *107*(1), 1–13. https://doi.org/10.1111/j.1365-2672.2009.04143.x
- Licitra, G. (2013). Etymologia: Staphylococcus Volume 19, Number 9—September 2013 -Emerging Infectious Diseases journal - CDC. 19(9). https://doi.org/10.3201/eid1909.et1909
- Liljeqvist, T. G. H., Andresen, D., Zuo, Y., & Weston, C. (2012). Bug breakfast in the Bulletin: Antimicrobial resistance: moving forward to the past. *New South Wales Public Health Bulletin*, *23*(1–2), 37. https://doi.org/10.1071/NB11043
- Liu, B., & Pop, M. (2009). ARDB--Antibiotic Resistance Genes Database. *Nucleic Acids Research, 37*(Database issue), D443-447. https://doi.org/10.1093/nar/gkn656
- Liu, Y., Zhang, J., & Ji, Y. (2020). Environmental factors modulate biofilm formation by Staphylococcus aureus. *Science Progress*, 103(1), 0036850419898659. https://doi.org/10.1177/0036850419898659
- Łobocka, M., Hejnowicz, M. S., Dąbrowski, K., Gozdek, A., Kosakowski, J., Witkowska, M., Ulatowska, M. I., Weber-Dąbrowska, B., Kwiatek, M., Parasion, S., Gawor, J., Kosowska, H., & Głowacka, A. (2012). Genomics of staphylococcal Twort-like

phages—Potential therapeutics of the post-antibiotic era. *Advances in Virus Research*, *83*, 143–216. https://doi.org/10.1016/B978-0-12-394438-2.00005-0

- Lowe, T. M., & Chan, P. P. (2016). tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. *Nucleic Acids Research*, 44(Web Server issue), W54– W57. https://doi.org/10.1093/nar/gkw413
- Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A.
 R. N., Potter, S. C., Finn, R. D., & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. *Nucleic Acids Research*, *47*(W1), W636–W641. https://doi.org/10.1093/nar/gkz268
- Madera, C., Monjardín, C., & Suárez, J. E. (2004). Milk contamination and resistance to processing conditions determine the fate of Lactococcus lactis bacteriophages in dairies. *Applied and Environmental Microbiology*, 70(12), 7365–7371. https://doi.org/10.1128/AEM.70.12.7365-7371.2004
- Maina, E. K., Kiiyukia, C., Wamae, C. N., Waiyaki, P. G., & Kariuki, S. (2013). Characterization of methicillin-resistant Staphylococcus aureus from skin and soft tissue infections in patients in Nairobi, Kenya. *International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 17*(2), e115-119. https://doi.org/10.1016/j.ijid.2012.09.006
- Majowicz, S. E., Musto, J., Scallan, E., Angulo, F. J., Kirk, M., O'Brien, S. J., Jones, T. F., Fazil,
 A., & Hoekstra, R. M. (2010). The Global Burden of Nontyphoidal Salmonella
 Gastroenteritis. *Clinical Infectious Diseases*, *50*(6), 882–889.
 https://doi.org/10.1086/650733

- Marinho, D. S., Huf, G., Ferreira, B. L., Castro, H., Rodrigues, C. R., Sousa, V. P. de, & Cabral,
 L. M. (2011). The study of vancomycin use and its adverse reactions associated to
 patients of a brazilian university hospital. *BMC Research Notes*, *4*, 236.
 https://doi.org/10.1186/1756-0500-4-236
- Martínez, J. L. (2012). Natural Antibiotic Resistance and Contamination by Antibiotic Resistance Determinants: The Two Ages in the Evolution of Resistance to Antimicrobials. *Frontiers in Microbiology*, *3*. https://doi.org/10.3389/fmicb.2012.00001
- Mattila, S., Ruotsalainen, P., & Jalasvuori, M. (2015). On-Demand Isolation of Bacteriophages Against Drug-Resistant Bacteria for Personalized Phage Therapy. *Frontiers In Microbiology, 6*, 1271–1271.
- Maxwell, K. L. (2016). Phages Fight Back: Inactivation of the CRISPR-Cas Bacterial Immune System by Anti-CRISPR Proteins. *PLOS Pathog*, *12*(1), e1005282. https://doi.org/10.1371/journal.ppat.1005282
- McGrath, S., Seegers, J. F. M. L., Fitzgerald, G. F., & Sinderen, D. van. (1999). Molecular Characterization of a Phage-Encoded Resistance System in Lactococcus lactis. *Applied and Environmental Microbiology*, *65*(5), 1891–1899.
- McKenna, R., Xia, D., Willingmann, P., Ilag, L. L., Krishnaswamy, S., Rossmann, M. G., Olson,
 N. H., Baker, T. S., & Incardona, N. L. (1992). Atomic structure of single-stranded
 DNA bacteriophage ΦX174 and its functional implications. *Nature*, 355(6356), 137–
 143. https://doi.org/10.1038/355137a0

- Mehndiratta, P. L., & Bhalla, P. (2014). Use of antibiotics in animal agriculture & emergence of methicillin-resistant Staphylococcus aureus (MRSA) clones: Need to assess the impact on public health. *The Indian Journal of Medical Research*, *140*(3), 339–344.
- Meier-Kolthoff, J. P., & Goeker, M. (2017). VICTOR: Genome-based Phylogeny and Classification of Prokaryotic Viruses. *BioRxiv*, 107862. https://doi.org/10.1101/107862
- Melo, L. D. R., Sillankorva, S., Ackermann, H.-W., Kropinski, A. M., Azeredo, J., & Cerca, N. (2014). Isolation and characterization of a new Staphylococcus epidermidis broad-spectrum bacteriophage. *The Journal of General Virology*, *95*(Pt 2), 506–515. https://doi.org/10.1099/vir.0.060590-0
- Miller, L. S., Fowler, V. G., Shukla, S. K., Rose, W. E., & Proctor, R. A. (2019). Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. *FEMS Microbiology Reviews*, 44(1), 123–153. https://doi.org/10.1093/femsre/fuz030
- Miller, W. R., Munita, J. M., & Arias, C. A. (2014). Mechanisms of antibiotic resistance in enterococci. *Expert Review of Anti-Infective Therapy*, *12*(10), 1221–1236. https://doi.org/10.1586/14787210.2014.956092
- Minarini, L. A. D. R., Andrade, L. N. de, De Gregorio, E., Grosso, F., Naas, T., Zarrilli, R., & Camargo, I. L. B. C. (2020). Editorial: Antimicrobial Resistance as a Global Public Health Problem: How Can We Address It? *Frontiers in Public Health*, *8*. https://doi.org/10.3389/fpubh.2020.612844

- Mohanraj, U., Wan, X., Spruit, C. M., Skurnik, M., & Pajunen, M. I. (2019). A Toxicity Screening Approach to Identify Bacteriophage-Encoded Anti-Microbial Proteins. *Viruses*, *11*(11), 1057. https://doi.org/10.3390/v11111057
- Mohseni, M., Rafiei, F., & Ghaemi, E. A. (2018). High frequency of exfoliative toxin genes among Staphylococcus aureus isolated from clinical specimens in the north of Iran:
 Alarm for the health of individuals under risk. *Iranian Journal of Microbiology*, *10*(3), 158–165.
- Moller, A. G., Lindsay, J. A., & Read, T. D. (2019). Determinants of Phage Host Range in
 Staphylococcus Species. *Applied and Environmental Microbiology*, 85(11), e0020919. https://doi.org/10.1128/AEM.00209-19
- Møller, J. K., Hinrichsen, L. L., & Andersen, H. J. (1998). Formation of amino acid (L-leucine, L-phenylalanine) derived volatile flavour compounds by Moraxella phenylpyruvica and Staphylococcus xylosus in cured meat model systems. *International Journal of Food Microbiology*, *42*(1–2), 101–117. https://doi.org/10.1016/s0168-1605(98)00069-5
- Monecke, S., Jatzwauk, L., Müller, E., Nitschke, H., Pfohl, K., Slickers, P., Reissig, A., Ruppelt-Lorz, A., & Ehricht, R. (2016). Diversity of SCCmec Elements in Staphylococcus aureus as Observed in South-Eastern Germany. *PLOS ONE*, *11*(9), e0162654. https://doi.org/10.1371/journal.pone.0162654
- Moon, B. Y., Park, J. Y., Robinson, D. A., Thomas, J. C., Park, Y. H., Thornton, J. A., & Seo, K. S. (2016). Mobilization of Genomic Islands of Staphylococcus aureus by Temperate Bacteriophage. *PLOS ONE*, *11*(3), e0151409.

https://doi.org/10.1371/journal.pone.0151409

Moormeier, D. E., & Bayles, K. W. (2017). Staphylococcus aureus biofilm: A complex developmental organism. *Molecular Microbiology*, *104*(3), 365–376. https://doi.org/10.1111/mmi.13634

Morelli, S., Del Soldato, M., Bianchini, S., Pazzi, V., Krymbi, E., Shpori, E., & Casagli, N. (2019). Detection of Seasonal Inundations by Satellite Data at Shkoder Urban Area, North Albania for Sustainable Management. *Sustainability*, *11*(16), 4454. https://doi.org/10.3390/su11164454

- Muniesa, M., Colomer-Lluch, M., & Jofre, J. (2013). Could bacteriophages transfer antibiotic resistance genes from environmental bacteria to human-body associated bacterial populations? *Mobile Genetic Elements*, *3*(4). https://doi.org/10.4161/mge.25847
- Nakaminami, H., Ito, T., Han, X., Ito, A., Matsuo, M., Uehara, Y., Baba, T., Hiramatsu, K., & Noguchi, N. (2017). First report of sasX-positive methicillin-resistant Staphylococcus aureus in Japan. *FEMS Microbiology Letters*, *364*(fnx171). https://doi.org/10.1093/femsle/fnx171
- Nathan, C., & Goldberg, F. M. (2005). Outlook: The profit problem in antibiotic R&D. *Nature Reviews. Drug Discovery*, 4(11), 887–891. https://doi.org/10.1038/nrd1878

NCBI. (2020). Complete genomes: Herelleviridae.

https://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=2560065

NCBI GenBank. (2019). GenBank Overview. https://www.ncbi.nlm.nih.gov/genbank/

Ngassam-Tchamba, C., Duprez, J. N., Fergestad, M., De Visscher, A., L'Abee-Lund, T., De Vliegher, S., Wasteson, Y., Touzain, F., Blanchard, Y., Lavigne, R., Chanishvili, N., Cassart, D., Mainil, J., & Thiry, D. (2020). In vitro and in vivo assessment of phage therapy against Staphylococcus aureus causing bovine mastitis. *Journal of Global Antimicrobial Resistance*, *22*, 762–770. https://doi.org/10.1016/j.jgar.2020.06.020

- Niu, Y. D., McAllister, T. A., Xu, Y., Johnson, R. P., Stephens, T. P., & Stanford, K. (2009).
 Prevalence and Impact of Bacteriophages on the Presence of Escherichia coli
 O157:H7 in Feedlot Cattle and Their Environment. *Applied and Environmental Microbiology*, 75(5), 1271–1278. https://doi.org/10.1128/AEM.02100-08
- Njuguna, H. N., Cosmas, L., Williamson, J., Nyachieo, D., Olack, B., Ochieng, J. B., Wamola, N., Oundo, J. O., Feikin, D. R., Mintz, E. D., & Breiman, R. F. (2013). Use of population-based surveillance to define the high incidence of shigellosis in an urban slum in Nairobi, Kenya. *PloS One*, *8*(3), e58437.

https://doi.org/10.1371/journal.pone.0058437

Nováček, J., Šiborová, M., Benešík, M., Pantůček, R., Doškař, J., & Plevka, P. (2016). Structure and genome release of Twort-like Myoviridae phage with a doublelayered baseplate. *Proceedings of the National Academy of Sciences of the United States of America*, *113*(33), 9351–9356. https://doi.org/10.1073/pnas.1605883113

 Oduor, J. M. O., Onkoba, W. N., Maloba, F., Arodi, W. O., Nyachieo, A., & Onditi, F. I. (2016).
 Safety and therapeutic efficacy of staphylococcus aureus specific lytic phage against multidrug-resistant S.aureus (MDRSA) in BALB/c mice: A prospective study.
 International Journal of Infectious Diseases, 45, 108.
 https://doi.org/10.1016/j.ijid.2016.02.278

Oduor, Joseph M. Ochieng', Kadija, E., Nyachieo, A., Mureithi, M. W., & Skurnik, M. (2020). Bioprospecting Staphylococcus Phages with Therapeutic and Bio-Control Potential. *Viruses*, *12*(2). https://doi.org/10.3390/v12020133 Oduor, Joseph Michael Ochieng', Kiljunen, S., Kadija, E., Mureithi, M. W., Nyachieo, A., & Skurnik, M. (2019). Genomic characterization of four novel Staphylococcus myoviruses. *Archives of Virology*, *164*(8), 2171–2173. https://doi.org/10.1007/s00705-019-04267-0

Oduor, Joseph Michael Ochieng', Onkoba, N., Maloba, F., Arodi, W. O., & Nyachieo, A. (2016). Efficacy of lytic Staphylococcus aureus bacteriophage against multidrugresistant Staphylococcus aureus in mice. *The Journal of Infection in Developing Countries*, *10*(11), 1208–1213. https://doi.org/10.3855/jidc.7931

- Oduor, Joseph Michael Ochieng', Onkoba, N., Maloba, F., & Nyachieo, A. (2016). Experimental phage therapy against hematogenous multi-drug resistant Staphylococcus aureus pneumonia in mice. *African Journal of Laboratory Medicine*. http://www.ajlmonline.org/index.php/ajlm/author/submission/435
- O'Flaherty, S., Coffey, A., Edwards, R., Meaney, W., Fitzgerald, G. F., & Ross, R. P. (2004). Genome of Staphylococcal Phage K: A New Lineage of Myoviridae Infecting Gram-Positive Bacteria with a Low G+C Content. *Journal of Bacteriology*, *186*(9), 2862– 2871. https://doi.org/10.1128/JB.186.9.2862-2871.2004
- Okemo, P. O., Nyamboya, R. A., & Ombori, O. (2013). *Antibiotic Resistance of Faecal Bacteria Indicators and Pathogens Isolated from Sludge and Wastewaters of Abattoirs in Nairobi, Kenya*. http://etd-library.ku.ac.ke/handle/123456789/9361
- Oliveira, H., Sampaio, M., Melo, L. D. R., Dias, O., Pope, W. H., Hatfull, G. F., & Azeredo, J. (2019). Staphylococci phages display vast genomic diversity and evolutionary relationships. *BMC Genomics*, *20*(1), 357. https://doi.org/10.1186/s12864-019-5647-8

Oliveira, H., Sillankorva, S., Merabishvili, M., Kluskens, L. D., & Azeredo, J. (2015). Unexploited opportunities for phage therapy. *Frontiers in Pharmacology*, *6*, 180. https://doi.org/10.3389/fphar.2015.00180

O'Rourke, A., Beyhan, S., Choi, Y., Morales, P., Chan, A. P., Espinoza, J. L., Dupont, C. L., Meyer, K. J., Spoering, A., Lewis, K., Nierman, W. C., & Nelson, K. E. (2020). Mechanism-of-Action Classification of Antibiotics by Global Transcriptome Profiling. *Antimicrobial Agents and Chemotherapy*, *64*(3). https://doi.org/10.1128/AAC.01207-19

Pandi Skaka. (2019, October 26). Modern wastewater treatment plant in Shkodra, highly beneficial for 104,000 local residents | Albanian Telegraphic Agency. http://en.ata.gov.al/2019/10/26/modern-wastewater-treatment-plant-in-shkodrahighly-beneficial-for-104000-local-residents/

- Pantůcek, R., Rosypalová, A., Doskar, J., Kailerová, J., Růzicková, V., Borecká, P., Snopková,
 S., Horváth, R., Götz, F., & Rosypal, S. (1998). The polyvalent staphylococcal phage
 phi 812: Its host-range mutants and related phages. *Virology*, *246*(2), 241–252.
 https://doi.org/10.1006/viro.1998.9203
- Peduzzi, P., & Weinbauer, M. G. (1993). Effect of concentrating the virus-rich 2-2nm size fraction of seawater on the formation of algal flocs (marine snow). *Limnology and Oceanography*, 38(7), 1562–1565. https://doi.org/10.4319/lo.1993.38.7.1562

Petrovic Fabijan, A., Lin, R. C. Y., Ho, J., Maddocks, S., Ben Zakour, N. L., & Iredell, J. R.
 (2020). Safety of bacteriophage therapy in severe Staphylococcus aureus infection.
 Nature Microbiology, 5(3), 465–472. https://doi.org/10.1038/s41564-019-0634-z

- Philipson, C. W., Voegtly, L. J., Lueder, M. R., Long, K. A., Rice, G. K., Frey, K. G., Biswas, B., Cer, R. Z., Hamilton, T., & Bishop-Lilly, K. A. (2018). Characterizing Phage Genomes for Therapeutic Applications. *Viruses*, *10*(4). https://doi.org/10.3390/v10040188
- Phillips, I., Casewell, M., Cox, T., De Groot, B., Friis, C., Jones, R., Nightingale, C., Preston, R.,
 & Waddell, J. (2004). Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. *Journal of Antimicrobial Chemotherapy*, *53*(1), 28–52. https://doi.org/10.1093/jac/dkg483
- Pietrocola, G., Nobile, G., Rindi, S., & Speziale, P. (2017). Staphylococcus aureus
 Manipulates Innate Immunity through Own and Host-Expressed Proteases.
 Frontiers in Cellular and Infection Microbiology, 7.
 https://doi.org/10.3389/fcimb.2017.00166
- Pincus, N. B., Reckhow, J. D., Saleem, D., Jammeh, M. L., Datta, S. K., & Myles, I. A. (2015). Strain Specific Phage Treatment for Staphylococcus aureus Infection Is Influenced by Host Immunity and Site of Infection. *PLoS ONE*, *10*(4), e0124280. https://doi.org/10.1371/journal.pone.0124280
- Plackett, B. (2020). Why big pharma has abandoned antibiotics. *Nature*, *586*(7830), S50– S52. https://doi.org/10.1038/d41586-020-02884-3
- Prestel, E., Regeard, C., Salamitou, S., Neveu, J., & DuBow, M. S. (2013). The bacteria and bacteriophages from a Mesquite Flats site of the Death Valley desert. *Antonie van Leeuwenhoek*, *103*(6), 1329–1341. https://doi.org/10.1007/s10482-013-9914-4

Prism 8. (2019). GraphPad. https://www.graphpad.com/scientific-software/prism/

Qubit ThermoFisher. (2010). *Qubit Fluorometric Quantitation—BE*.

https://www.thermofisher.com/uk/en/home/industrial/spectroscopy-elementalisotope-analysis/molecular-spectroscopy/fluorometers/qubit.html

- Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., & Lopez, R. (2005). InterProScan: Protein domains identifier. *Nucleic Acids Research*, *33*(Web Server issue), W116–W120. https://doi.org/10.1093/nar/gki442
- Rafii, F., Sutherland, J. B., & Cerniglia, C. E. (2008). Effects of treatment with antimicrobial agents on the human colonic microflora. *Therapeutics and Clinical Risk Management*, 4(6), 1343–1358.
- Rakonjac, J., Bennett, N. J., Spagnuolo, J., Gagic, D., & Russel, M. (2011). Filamentous bacteriophage: Biology, phage display and nanotechnology applications. *Current Issues in Molecular Biology*, *13*(2), 51–76.
- Ramirez, K., Cazarez-Montoya, C., Lopez-Moreno, H. S., & Campo, N. C. (2018).
 Bacteriophage cocktail for biocontrol of Escherichia coli O157:H7: Stability and potential allergenicity study. *PLOS ONE*, *13*(5), e0195023.
 https://doi.org/10.1371/journal.pone.0195023
- Rayner, C., & Munckhof, W. J. (2005). Antibiotics currently used in the treatment of infections caused by Staphylococcus aureus. *Internal Medicine Journal*, 35 Suppl 2, S3-16. https://doi.org/10.1111/j.1444-0903.2005.00976.x
- Rees, P. J., & Fry, B. A. (1981). The morphology of staphylococcal bacteriophage K and DNA metabolism in infected Staphylococcus aureus. *The Journal of General Virology*, 53(Pt 2), 293–307. https://doi.org/10.1099/0022-1317-53-2-293

- Renwick, M., & Mossialos, E. (2018). What are the economic barriers of antibiotic R&D and how can we overcome them? *Expert Opinion on Drug Discovery*, 13(10), 889–892. https://doi.org/10.1080/17460441.2018.1515908
- Rheinbaben, F. v., Gebel, J., Exner, M., & Schmidt, A. (2007). Environmental resistance,
 disinfection, and sterilization of poxviruses. In A. A. Mercer, A. Schmidt, & O. Weber
 (Eds.), *Poxviruses* (pp. 397–405). Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7557-7
- Robinson, J. T., Thorvaldsdóttir, H., Wenger, A. M., Zehir, A., & Mesirov, J. P. (2017). Variant Review with the Integrative Genomics Viewer. *Cancer Research*, *77*(21), e31–e34. https://doi.org/10.1158/0008-5472.CAN-17-0337
- Rohwer, F. (2003). Global Phage Diversity. *Cell*, *113*(2), 141. https://doi.org/10.1016/S0092-8674(03)00276-9
- Salmond, G. P. C., & Fineran, P. C. (2015). A century of the phage: Past, present and future. *Nature Reviews Microbiology*, *13*(12), 777–786.

https://doi.org/10.1038/nrmicro3564

- Sambrook, J., & Russell, D. W. (2006). Purification of Bacteriophage λ Particles by Centrifugation through a Glycerol Step Gradient. *Cold Spring Harbor Protocols*, *2006*(1), pdb.prot3969. https://doi.org/10.1101/pdb.prot3969
- Samson, J. E., Magadán, A. H., Sabri, M., & Moineau, S. (2013). Revenge of the phages:
 Defeating bacterial defences. *Nature Reviews. Microbiology*, *11*(10), 675–687.
 https://doi.org/10.1038/nrmicro3096

Sartorius. (2019). Vivaspin 20, 100,000 MWCO PES, 48pc | Sartorius.

https://www.sartorius.com/shop/ww/en/usd/master-products/centrifugalultrafiltration-devices/vivaspin-20%2c-100%2c000-mwco-pes%2c-48pc/p/VS2042

Schooley, R. T., Biswas, B., Gill, J. J., Hernandez-Morales, A., Lancaster, J., Lessor, L., Barr, J. J., Reed, S. L., Rohwer, F., Benler, S., Segall, A. M., Taplitz, R., Smith, D. M., Kerr, K., Kumaraswamy, M., Nizet, V., Lin, L., McCauley, M. D., Strathdee, S. A., ... Hamilton, T. (2017). Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. *Antimicrobial Agents and Chemotherapy*, *61*(10).

https://doi.org/10.1128/AAC.00954-17

- Seed, K. D. (2015). Battling Phages: How Bacteria Defend against Viral Attack. *PLOS Pathogens*, *11*(6), e1004847. https://doi.org/10.1371/journal.ppat.1004847
- Shabbir, M. A. B., Hao, H., Shabbir, M. Z., Wu, Q., Sattar, A., & Yuan, Z. (2016). Bacteria vs. Bacteriophages: Parallel Evolution of Immune Arsenals. *Frontiers in Microbiology*, 7. https://doi.org/10.3389/fmicb.2016.01292
- Sharifipour, E., Shams, S., Esmkhani, M., Khodadadi, J., Fotouhi-Ardakani, R., Koohpaei, A., Doosti, Z., & EJ Golzari, S. (2020). Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. *BMC Infectious Diseases*, 20(1), 646. https://doi.org/10.1186/s12879-020-05374-z
- Sieber, R. N., Urth, T. R., Petersen, A., Møller, C. H., Price, L. B., Skov, R. L., Larsen, A. R., Stegger, M., & Larsen, J. (2020). Phage-Mediated Immune Evasion and Transmission of Livestock-Associated Methicillin-Resistant Staphylococcus aureus in Humans.

Emerging Infectious Diseases, 26(11), 2578–2585.

https://doi.org/10.3201/eid2611.201442

- Silva, V., Capelo, J. L., Igrejas, G., & Poeta, P. (2020). Molecular Epidemiology of
 Staphylococcus aureus Lineages in Wild Animals in Europe: A Review. Antibiotics,
 9(3). https://doi.org/10.3390/antibiotics9030122
- Smith, T. C. (2015). Livestock-Associated Staphylococcus aureus: The United States Experience. *PLOS Pathogens*, *11*(2), e1004564. https://doi.org/10.1371/journal.ppat.1004564
- Spellberg, B., Guidos, R., Gilbert, D., Bradley, J., Boucher, H. W., Scheld, W. M., Bartlett, J.
 G., Edwards, J., & America, the I. D. S. of. (2008). The Epidemic of AntibioticResistant Infections: A Call to Action for the Medical Community from the
 Infectious Diseases Society of America. *Clinical Infectious Diseases*, 46(2), 155–164.
 https://doi.org/10.1086/524891
- Stern, A., & Sorek, R. (2011). The phage-host arms-race: Shaping the evolution of microbes. Bioessays, 33(1), 43–51. https://doi.org/10.1002/bies.201000071
- Stone, R. (2002). Stalin's Forgotten Cure. *Science*, *298*(5594), 728–731. https://doi.org/10.1126/science.298.5594.728
- Storms, Z. J., & Sauvageau, D. (2015). Modeling tailed bacteriophage adsorption: Insight into mechanisms. *Virology*, *485*, 355–362.

https://doi.org/10.1016/j.virol.2015.08.007

Stratec SE. (2019). Invisorb Spin Virus DNA Mini Kit—Stratec. https://www.molecular.stratec.com/products/details/invisorb-spin-virus-dna-minikit Stuart Scientific SC5. (n.d.). *Stuart—Keison Products*. Retrieved October 1, 2019, from https://www.keison.co.uk/stuart.shtml?gclid=Cj0KCQjwz8bsBRC6ARIsAEyNnvp9LtF Wlz_zMnj-8KdZB6KRlqqyDrw31uf8LD75-nqSOBD8Blj0g0oaAiutEALw_wcB

- Sulakvelidze, A., Alavidze, Z., & Morris, J. G. (2001). Bacteriophage Therapy. Antimicrobial Agents and Chemotherapy, 45(3), 649–659. https://doi.org/10.1128/AAC.45.3.649-659.2001
- Summers, W. C. (2012). The strange history of phage therapy. *Bacteriophage*, *2*(2), 130–133. https://doi.org/10.4161/bact.20757
- Suttle, C. A. (2007). Marine viruses—Major players in the global ecosystem. *Nature Reviews. Microbiology*, *5*(10), 801–812. https://doi.org/10.1038/nrmicro1750
- Takemura-Uchiyama, I., Uchiyama, J., Osanai, M., Morimoto, N., Asagiri, T., Ujihara, T.,
 Daibata, M., Sugiura, T., & Matsuzaki, S. (2014). Experimental phage therapy
 against lethal lung-derived septicemia caused by Staphylococcus aureus in mice.
 Microbes and Infection, 16(6), 512–517.

https://doi.org/10.1016/j.micinf.2014.02.011

- Taylor, T. A., & Unakal, C. G. (2020). Staphylococcus Aureus. In *StatPearls*. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK441868/
- Thermo Scientific. (2019). *NanoDrop[™] 2000/2000c Spectrophotometers*. https://www.thermofisher.com/order/catalog/product/ND-2000
- Thomer, L., Schneewind, O., & Missiakas, D. (2016). Pathogenesis of Staphylococcus aureus Bloodstream Infections. *Annual Review of Pathology*, *11*, 343–364. https://doi.org/10.1146/annurev-pathol-012615-044351

Tikkanen, T., & Selander, P. (2011). *City of Helsinki Urban Facts*. Bookwell Oy. www.hel.fi/tietokeskus

- Tom, S., Galbraith, J. C., Valiquette, L., Jacobsson, G., Collignon, P., Schønheyder, H. C.,
 Søgaard, M., Kennedy, K. J., Knudsen, J. D., Østergaard, C., Lyytikäinen, O.,
 Laupland, K. B., & the International Bacteraemia Surveillance Collaborative. (2014).
 Case fatality ratio and mortality rate trends of community-onset Staphylococcus
 aureus bacteraemia. *Clinical Microbiology and Infection*, *20*(10), 0630–0632.
 https://doi.org/10.1111/1469-0691.12564
- Tu, A.-H. T., Voelker, L. L., Shen, X., & Dybvig, K. (2001). Complete Nucleotide Sequence of the Mycoplasma Virus P1 Genome. *Plasmid*, 45(2), 122–126. https://doi.org/10.1006/plas.2000.1501
- Turner, C., Aye Mya Thein, N., Turner, P., Nosten, F., & White, N. J. (2012). Rectal pH in Well and Unwell Infants. *Journal of Tropical Pediatrics*, 58(4), 311–313. https://doi.org/10.1093/tropej/fmr088
- Vandersteegen, K., Kropinski, A. M., Nash, J. H. E., Noben, J.-P., Hermans, K., & Lavigne, R. (2013). Romulus and Remus, Two Phage Isolates Representing a Distinct Clade within the Twortlikevirus Genus, Display Suitable Properties for Phage Therapy Applications. *Journal of Virology*, *87*(6), 3237–3247.

https://doi.org/10.1128/JVI.02763-12

Vandersteegen, K., Mattheus, W., Ceyssens, P.-J., Bilocq, F., Vos, D. D., Pirnay, J.-P., Noben, J.-P., Merabishvili, M., Lipinska, U., Hermans, K., & Lavigne, R. (2011). Microbiological and Molecular Assessment of Bacteriophage ISP for the Control of Staphylococcus aureus. PLOS ONE, 6(9), e24418.

https://doi.org/10.1371/journal.pone.0024418

- Varjosalo, M., Keskitalo, S., Van Drogen, A., Nurkkala, H., Vichalkovski, A., Aebersold, R., & Gstaiger, M. (2013). The Protein Interaction Landscape of the Human CMGC Kinase Group. *Cell Reports*, *3*(4), 1306–1320. https://doi.org/10.1016/j.celrep.2013.03.027
- Venkatesh, V. (2018). Staphylococcus aureus and MRSA: Do we know the true burden? *Clinical Epidemiology and Global Health, 6*(3), 103–104. https://doi.org/10.1016/j.cegh.2017.10.003
- Vlaeminck, J., Raafat, D., Surmann, K., Timbermont, L., Normann, N., Sellman, B., van
 Wamel, W. J. B., & Malhotra-Kumar, S. (2020). Exploring Virulence Factors and
 Alternative Therapies against Staphylococcus aureus Pneumonia. *Toxins*, *12*(11).
 https://doi.org/10.3390/toxins12110721
- Wamukoya, M., Kadengye, D. T., Iddi, S., & Chikozho, C. (2020). The Nairobi Urban Health and Demographic Surveillance of slum dwellers, 2002–2019: Value, processes, and challenges. *Global Epidemiology*, *2*, 100024.

https://doi.org/10.1016/j.gloepi.2020.100024

- Wang, J., Zhao, F., Sun, H., Wang, Q., Zhang, C., Liu, W., Zou, L., Pan, Q., & Ren, H. (2019).
 Isolation and characterization of the Staphylococcus aureus bacteriophage
 vB_SauS_SA2. *AIMS Microbiology*, *5*(3), 285–307.
 https://doi.org/10.3934/microbiol.2019.3.285
- Wang, Z., Zheng, P., Ji, W., Fu, Q., Wang, H., Yan, Y., & Sun, J. (2016). SLPW: A Virulent Bacteriophage Targeting Methicillin-Resistant Staphylococcus aureus In vitro and In vivo. *Frontiers in Microbiology*, 7. https://doi.org/10.3389/fmicb.2016.00934

Weber-Dąbrowska, B., Jończyk-Matysiak, E., Żaczek, M., Łobocka, M., Łusiak-Szelachowska,
 M., & Górski, A. (2016). Bacteriophage Procurement for Therapeutic Purposes.
 Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01177

- Weinbauer, M. G. (2004). Ecology of prokaryotic viruses. *FEMS Microbiology Reviews*, *28*(2), 127–181. https://doi.org/10.1016/j.femsre.2003.08.001
- Weinbauer, M. G., & Rassoulzadegan, F. (2004). Are viruses driving microbial diversification and diversity? *Environmental Microbiology*, 6(1), 1–11.
- Wilhelm, S. W., & Suttle, C. A. (1999). Viruses and Nutrient Cycles in the Sea Viruses play critical roles in the structure and function of aquatic food webs. *BioScience*, 49(10), 781–788. https://doi.org/10.2307/1313569
- Williamson, K. E. (2011). Soil Phage Ecology: Abundance, Distribution, and Interactions with Bacterial Hosts. In G. Witzany (Ed.), *Biocommunication in Soil Microorganisms* (pp. 113–136). Springer. https://doi.org/10.1007/978-3-642-14512-4_4
- Wilson, W. H., Carr, N. G., & Mann, N. H. (1996). The Effect of Phosphate Status on the Kinetics of Cyanophage Infection in the Oceanic Cyanobacterium Synechococcus Sp.
 Wh78031. *Journal of Phycology*, *32*(4), 506–516. https://doi.org/10.1111/j.0022-3646.1996.00506.x
- Wittebole, X., De Roock, S., & Opal, S. M. (2014). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens.
 Virulence, 5(1), 226–235. https://doi.org/10.4161/viru.25991

World Health Organization. (2017a, 18). Antimicrobial resistance. WHO. http://ezproxy.ku.ac.ke:2081/mediacentre/factsheets/fs194/en/ World Health Organization. (2017b, February 27). WHO's first global report on antibiotic resistance reveals serious, worldwide threat to public health. WHO. http://www.who.int/mediacentre/news/releases/2014/amr-report/en/

- World Population Review. (2019, July 13). *Albania Population 2019 (Demographics, Maps, Graphs*). http://worldpopulationreview.com/countries/albania-population/
- Xia, G., & Wolz, C. (2014). Phages of Staphylococcus aureus and their impact on host evolution. Infection, Genetics and Evolution, 21, 593–601. https://doi.org/10.1016/j.meegid.2013.04.022
- Yazdi, M., Bouzari, M., & Ghaemi, E. A. (2019). Isolation and characterization of a potentially novel Siphoviridae phage (vB_SsapS-104) with lytic activity against Staphylococcus saprophyticus isolated from urinary tract infection. *Folia Microbiologica*, 64(3), 283–294. https://doi.org/10.1007/s12223-018-0653-9
- Yerushalmy, O., Khalifa, L., Gold, N., Rakov, C., Alkalay-Oren, S., Adler, K., Ben-Porat, S., Kraitman, R., Gronovich, N., Shulamit Ginat, K., Abdalrhman, M., Coppenhagen-Glazer, S., Nir-Paz, R., & Hazan, R. (2020). The Israeli Phage Bank (IPB). *Antibiotics*, *9*(5), 269. https://doi.org/10.3390/antibiotics9050269
- Yilmaz, M., Elaldi, N., Balkan, İ. İ., Arslan, F., Batırel, A. A., Bakıcı, M. Z., Gozel, M. G., Alkan,
 S., Çelik, A. D., Yetkin, M. A., Bodur, H., Sınırtaş, M., Akalın, H., Altay, F. A., Şencan,
 İ., Azak, E., Gündeş, S., Ceylan, B., Öztürk, R., ... Mert, A. (2016). Mortality predictors of Staphylococcus aureus bacteremia: A prospective multicenter study. *Annals of Clinical Microbiology and Antimicrobials*, *15*(1), 7. https://doi.org/10.1186/s12941-016-0122-8

Yoshida-Takashima, Y., Nunoura, T., Kazama, H., Noguchi, T., Inoue, K., Akashi, H.,
Yamanaka, T., Toki, T., Yamamoto, M., Furushima, Y., Ueno, Y., Yamamoto, H., &
Takai, K. (2012). Spatial Distribution of Viruses Associated with Planktonic and
Attached Microbial Communities in Hydrothermal Environments. *Applied and Environmental Microbiology*, *78*(5), 1311–1320.

https://doi.org/10.1128/AEM.06491-11

 Yu, M. X., Slater, M. R., & Ackermann, H.-W. (2006). Isolation and characterization of Thermus bacteriophages. *Archives of Virology*, 151(4), 663–679. https://doi.org/10.1007/s00705-005-0667-x

- Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., Aarestrup,
 F. M., & Larsen, M. V. (2012). Identification of acquired antimicrobial resistance
 genes. *The Journal of Antimicrobial Chemotherapy*, 67(11), 2640–2644.
 https://doi.org/10.1093/jac/dks261
- Zeman, M., Bárdy, P., Vrbovská, V., Roudnický, P., Zdráhal, Z., Růžičková, V., Doškař, J., & Pantůček, R. (2019). New Genus Fibralongavirus in Siphoviridae Phages of Staphylococcus pseudintermedius. *Viruses, 11*(12).

https://doi.org/10.3390/v11121143

Zimmermann, L., Stephens, A., Nam, S.-Z., Rau, D., Kübler, J., Lozajic, M., Gabler, F., Söding,
J., Lupas, A. N., & Alva, V. (2018). A Completely Reimplemented MPI Bioinformatics
Toolkit with a New HHpred Server at its Core. *Journal of Molecular Biology*, 430(15),
2237–2243. https://doi.org/10.1016/j.jmb.2017.12.007

APPENDICES

Appendix I: Study sites. Sampling sites in Nairobi, Kenya.

Sampling at Shaurimoyo/Burma Market_ Makadara

Sampling site in Shkodra, Albania.

Sampling site at Helsinki metropolitan, Finland.

Viikinmäki Sewage Treatment Plant

Appendix II: Bacterial strains. A table of bacterial strains used in the study and their origin. These bacteria are from either humans or livestock (pigs).

No.	Strains	ID	Origin
1	Staphylococcus aureus (MSSA)	5511	Human (blood)
2	S. aureus (MRSA)	5515	Human*
3	S. aureus (MSSA)	5523	Human (blood)
4	S. aureus (MSSA)	5526	Human (blood)
5	S. aureus (MSSA)	5527	Human (blood)
6	S. aureus (MSSA)	5528	Human (blood)
7	S. aureus (MSSA)	5530	Human (blood)
8	S. aureus (MSSA)	5531	Human (blood)
9	S. aureus (MSSA)	5535	Human (blood)
10	S. aureus (MSSA)	5676	Human*
11	S. aureus (MSSA)	5677	Human (abscesses)
12	S. aureus (MSSA)	5678	Human (skin wound)
13	S. aureus (MSSA)	5679	Human (skin wound)
14	S. aureus (MSSA)	5680	Human (sputum)
15	S. aureus (MSSA)	5681	Human *
16	S. aureus (MSSA)	5682	Human (skin wound)
17	S. aureus (MSSA)	5683	Human (abscesses)
18	S. aureus (MSSA)	5684	Human (skin wound)
19	S. aureus (MSSA)	5685	Human (genital skin)
20	S. aureus (MSSA)	5686	Human (finger scar)
21	S. aureus (MSSA)	5689	Human (skin tissue)
22	S. aureus (MSSA)	5690	Human (skin wound)
23	S. aureus (MSSA)	5691	Human *
24	S. aureus (MSSA)	5692	Human (skin scar)
25	S. aureus (MSSA)	5693	Human (skin wound)
26	S. aureus (MRSA)	5694	Human (decubitus)
27	S. aureus (MSSA)	5695	Human (skin wound)
28	S. aureus (MRSA)	5696	Human (skin scar)
29	S. aureus (MRSA)	5697	Human *
30	S. aureus (MRSA)	5698	Human (nose)
31	S. aureus (MRSA)	5699	Human (throat & nose)
32	S. aureus (MRSA)	5700	Human (throat & nose)
33	S. aureus (MRSA)	5701	Human (blood)
34	S. aureus (MRSA)	5702	Human (throat)
35	S. aureus (MRSA)	5703	Human (throat & nose)
----	------------------	------	-----------------------
36	S. aureus (MRSA)	5704	Human (throat)
37	S. aureus (MRSA)	5705	Human (abscess)
38	S. aureus (MRSA)	5849	Human (throat)
39	S. aureus (MRSA)	5851	Human (skin scar)
40	S. aureus (MRSA)	5852	Human (conjunctiva)
41	S. aureus (MSSA)	5853	Human (skin scar)
42	S. aureus (MSSA)	5854	Human (skin wound)
43	S. aureus (MSSA)	5855	Human (skin wound)
44	S. aureus (MSSA)	5856	Human (skin tissue)
45	S. aureus (MSSA)	5857	Human (skin scar)
46	S. aureus (MSSA)	5858	Human sputum
47	S. aureus (MSSA)	5859	Human (skin scar)
48	S. aureus (MSSA)	5860	Human (abscess)
49	S. aureus (MSSA)	5861	Human (joint fluid)
50	S. intermedius	6209	Human (skin scar)
51	S. intermedius	6210	Human (conjunctiva)
52	S. intermedius	6211	Human (wound)
53	S. intermedius	6212	Human (skin scar)
54	S. intermedius	6213	Human (skin scar)
55	S. epidermidis	6219	Human (blood)
56	S. epidermidis	6220	Human (blood)
57	S. epidermidis	6221	Human (blood)
58	S. epidermidis	6222	Human (blood)
59	S. epidermidis	6223	Human (blood)
60	S. haemolyticus	6224	Human (blood)
61	S. haemolyticus	6225	Human (blood)
62	S. haemolyticus	6226	Human (blood)
63	S. haemolyticus	6227	Human (blood)
64	S. haemolyticus	6228	Human (blood)
65	S. saprophyticus	6229	Human (urine)
66	S. saprophyticus	6230	Human (urine)
67	S. saprophyticus	6231	Human (urine)
68	S. saprophyticus	6232	Human (urine)
69	S. saprophyticus	6233	Human (urine)
70	S. aureus (MRSA)	6248	Pig
71	S. aureus (MSSA)	6249	Pig
72	S. aureus (MRSA)	6250	Pig
73	S. aureus (MRSA)	6251	Pig
74	S. aureus (MSSA)	6252	Pig

101	Control (S. xylosus)	DD-34	Food item (sausage)
100	S. aureus (MRSA)	6298	Pig
99	S. aureus (MRSA)	6297	Pig
98	S. aureus (MRSA)	6296	Pig
97	S. aureus (MRSA)	6295	Pig
96	S. aureus (MRSA)	6288	Pig
95	S. aureus (MRSA)	6287	Pig
94	S. aureus (MRSA)	6286	Pig
93	S. aureus (MRSA)	6284	Pig
92	S. aureus (MRSA)	6283	Pig
91	S. aureus (MRSA)	6281	Pig
90	S. aureus (MRSA)	6280	Pig
89	S. aureus (MSSA)	6278	Pig
88	S. aureus (MRSA)	6274	Pig
87	S. aureus (MSSA)	6273	Pig
86	S. aureus (MRSA)	6266	Pig
85	S. aureus (MRSA)	6265	Pig
84	S. aureus (MRSA)	6264	Pig
83	S. aureus (MRSA)	6263	Pig
82	S. aureus (MRSA)	6262	Pig
81	S. aureus (MRSA)	6261	Pig
80	S. aureus (MRSA)	6260	Pig
79	S. aureus (MRSA)	6259	Pig
77	S. aureus (MRSA)	6258	Pig
76	S. aureus (MRSA)	6254	Pig
75	S. aureus (MRSA)	6253	Pig

*The exact clinical source of these isolates could not be traced though they are from patients.

Appendix III: Stab phages annotation results. Annotation of Stab phage gene products. The LC-MS/MS identified gene products in **grey shade**.

	State 20	
p	phages at protein level.	
Τ	Table 1: Putative gene products of Stab20 phage NCBI/ENA accession number (acc. No.): LR215718, and its homolo	gy to Kayvirus

Stab20							
<u>Gp</u>	Genomic location	Predicted function	<u>AA</u>	<u>mw</u>	<u>Best hit (acc. no)</u>	<u>e-value (query</u> <u>coverage %)</u>	Phage with similar gene
Gp001	484654	putative membrane protein	56	6298	AUV57100.1	1e-31 (100 %)	Staphylococcus phage vB_SauM_LM12
Gp002	670963	hypothetical protein	97	11245	YP_009006863.1	6e-61 (100%)	Staphylococcus phage phiSA12
Gp003	9601145	hypothetical protein	61	6540	YP_009099453.1	3e-33 (100%)	Staphylococcus phage P108
Gp004	11751399	hypothetical protein	74	8889			
Gp005	14151705	TreC	96	11361	AUV57038.1	9e-62 (100%)	Staphylococcus phage vB_SauM_LM12
Gp006	17051992	hypothetical protein	95	10858	YP_008853954.1	3e-63 (100%)	Staphylococcus phage S25-4
Gp007	19922285	terminal repeat-encoded protein	97	11538	YP_009099457.1	9e-62 (100%)	Staphylococcus phage P108
Gp008	22892537	hypothetical protein	82	9964	YP_009006868.1	2e-50 (100%)	Staphylococcus phage phiSA12
Gp009	26142862	hypothetical protein	82	9382	ARM69064.1	3e-24 (95%)	Staphylococcus phage vB_Sau_CG
Gp010	28593185	hypothetical protein"	108	13000	YP_009006870.1	2e-62 (100%)	Staphylococcus phage phiSA12
Gp011c	(34043742)	hypothetical protein	112	13528	YP_007002124.1	1e-71 (100%)	Staphylococcus phage GH15
Gp012	40544362	TreJ	102	11808	YP_007112862.1	2e-70 (100%)	Staphylococcus phage JD007
Gp013	45684852	hypothetical protein	94	10985	YP_009196040.1	1e-64 (100%)	Staphylococcus phage philPLA-RODI
Gp014	49275118	terminal repeat-encoded	63	7674	YP_007002127.1	1e-39 (100%)	Staphylococcus phage GH15

		protein					
Gp015	56545812	hypothetical protein	52	6070	YP_008853962.1	2e-28 (100%)	Staphylococcus phage S25-4
Gp016	59786301	hypothetical protein	107	12453	YP_241037.1	1e-73 (100%)	Staphylococcus virus G1
Gp017	63956907	hypothetical protein	170	20668	VEV88440.1	6e-107 (100%)	Staphylococcus phage Stab21
Gp018	69717357	hypothetical protein	128	14985	VEV88378.1	1e-43 (99%)	Staphylococcus phage Stab23
Gp019	78008021	hypothetical protein	73	8464	YP_008853966.1	1e-47 (100%)	Staphylococcus phage S25-4
Gp020	81028245	hypothetical protein	47	5668	YP_008853967.1	1e-25 (93%)	Staphylococcus phage S25-4
Gp021	83028475	hypothetical protein	57	6783	VEV88448.1	1e-31 (100%)	Staphylococcus phage Stab21
Gp022	85558791	hypothetical protein	78	9008	YP_009196049.1	8e-48 (100%)	Staphylococcus phage philPLA-RODI
Gp023	88829226	hypothetical protein	114	13653	ARM69507.1	2e-75 (100%)	Staphylococcus phage vB_Sau_S24
Gp024	92939565	hypothetical protein	90	10843	BBC69463.1	2e-52 (96%)	Staphylococcus phage phiSA039
Gp025	95699733	hypothetical protein	54	6237	YP_009097941.1	6e-30 (100%)	Staphylococcus phage MCE-2014
Gp026	97379934	hypothetical protein	65	7628	VEV88452.1	7e-35 (100%)	Staphylococcus phage Stab21
Gp027	993910130	hypothetical protein	63	7314	VEV88454.1	7e-33 (95%)	Staphylococcus phage Stab21
Gp028	1011110389	TreT	92	10605	YP_009195839.1	1e-54 (96%)	Staphylococcus phage philPLA-RODI
Gp029	1046610696	TreU	76	9320	VEV89584.1	1e-46 (98%)	Staphylococcus phage Stab23
Gp030c	(1097711267)	hypothetical protein	96	11641	YP_009097946.1	2e-63 (100%)	Staphylococcus phage MCE-2014
Gp031c	(1135811606)	BofL	82	9992	ARM69513.1	2e-50 (100%)	Staphylococcus phage vB_Sau_S24
Gp032c	(1162211867)	hypothetical protein	81	9612	YP 008853977.1	8e-53 (100%)	Staphylococcus phage S25-4
Gp033c	(1186712112)	hypothetical protein	81	9979	YP_009097950.1	2e-50 (100%)	Staphylococcus phage MCE-2014
Gp034c	(1211212303)	putative membrane protein	63	7912	YP_008853979.1	8e-38 (100%)	Staphylococcus phage S25-4
Gp035c	(1230012785)	putative membrane protein	161	18130	YP_009097951.1	6e-110 (100%)	Staphylococcus phage MCE-2014

Gp036c	(1277813218)	hypothetical protein	146	17215	YP_009097952.1	5e-102 (100%)	Staphylococcus phage MCE-2014
Gp037c	(1323213774)	hypothetical protein	180	21527	YP_007002151.1	2e-127 (100%)	Staphylococcus phage GH15
Gp038c	(1378614274)	hypothetical protein	162	19492	YP_009097954.1	1e-118 (100%)	Staphylococcus phage MCE-2014
Gp039c	(1428914741)	hypothetical protein	150	17747	YP_009097955.1	1e-106 (100%)	Staphylococcus phage MCE-2014
Gp040c	(1475815162)	hypothetical protein	134	16464	YP_009097956.1	2e-92 (100%)	Staphylococcus phage MCE-2014
Gp041c	(1516515866)	Serine/threonine protein phosphatase	233	27262	YP_009097957.1	2e-172 (100%)	Staphylococcus phage MCE-2014
Gp042c	(1666417212)	hypothetical protein	182	21975	ASZ78174.1	2e-111(100%)	Staphylococcus phage SA3
Gp043c	(1721617434)	hypothetical protein	72	8368	YP_008853988.1	8e-46 (100%)	Staphylococcus phage S25-4
Gp044c	(1743517629)	hypothetical protein	64	7641	YP_241059.1	4e-40 (100%)	Staphylococcus virus G1
Gp045c	(1761918356)	hypothetical protein	245	28664	YP_008853990.1	6e-174 (100%)	Staphylococcus phage S25-4
Gp046c	(1853218771)	hypothetical protein	79	9377	YP_007002161.1	4e-48 (100%)	Staphylococcus phage GH15
Gp047c	(1877319162)	hypothetical protein	129	14773	YP_007002162.1	4e-85 (100%)	Staphylococcus phage GH15
Gp048c	(1925619429)	hypothetical protein	57	6819	YP_007002163.1	2e-34 (100%)	Staphylococcus phage GH15
Gp049c	(1947019952)	hypothetical protein	160	19000	YP_008853994.1	4e-111 (100%)	Staphylococcus phage S25-4
Gp050c	(2000220544)	hypothetical protein	180	20462	YP_009195864.1	1e-124 (100%)	Staphylococcus phage philPLA-RODI
Gp051c	(2054421074)	hypothetical protein	176	20542	YP_009195865.1	2e-125 (100%)	Staphylococcus phage philPLA-RODI
Gp052c	(2107721241)	putative membrane protein	54	6153	YP_009195866.1	3e-31 (100%)	Staphylococcus phage philPLA-RODI
Gp053c	(2124421531)	putative membrane protein	95	11294	YP_009195867.1	1e-59 (100%)	Staphylococcus phage philPLA-RODI
Gp054c	(2153122376)	hypothetical protein	281	31774	YP_009195868.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp055c	(2239023508)	AAA family ATPase	372	42215	YP_009099502.1	0.0 (100%)	Staphylococcus phage P108
Gp056c	(2366024001)	hypothetical protein	108	13348	ARQ96019.1	5e-71 (100%)	Staphylococcus phage qdsa002
Gp057c	(2397924395)	hypothetical protein	138	15993	YP_007002172.1	1e-97 (100%)	Staphylococcus phage GH15

Gp058c	(2452824830)	NTP pyrophosphohydrolase	100	11304	YP_241074.1	1e-66 (100%)	Staphylococcus phage GH15
Gp059c	(2483025018)	hypothetical protein	62	7321	YP_007002174.1	7e-37 (100%)	Staphylococcus phage GH15
Gp060c	(2506225223)	hypothetical protein	53	6402	YP_007002175.1	3e-31 (100%)	Staphylococcus phage GH15
Gp061c	(2522427275)	hypothetical protein	683	79750	YP_009195875.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp062c	(2735427617)	hypothetical protein	87	10140	YP_008854007.1	2e-56 (100%)	Staphylococcus phage S25-4
Gp063c	(2763427807)	hypothetical protein	57	6630	YP_009099510.1	7e-34 (100%)	Staphylococcus phage P108
Gp064c	(2781428392)	putative membrane protein	192	21480	ASZ77976.1	1e-132 (100%)	Staphylococcus phage SA3
Gp065c	(2838529011)	nucleoside 2- deoxyribosyltransferase	208	23648	YP_009006709.1	1e-140 (100%)	Staphylococcus phage phiSA12
Gp066c	(2900129897)	RNA ligase	298	34738	YP_009195880.1	0.0 (99%)	Staphylococcus phage philPLA-RODI
Gp067c	(3019330933)	PhoH-related protein	246	28533	YP_009195882.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp068c	(3098531599)	hypothetical protein	204	23020	YP_008854014.1	1e-147 (100%)	Staphylococcus phage S25-4
Gp069c	(3161532040)	ribonuclease H	141	15795	YP_007002186.1	3e-97 (100%)	Staphylococcus phage GH15
Gp070c	(3203032221)	hypothetical protein	63	7472	YP_241086.1	1e-39 (100%)	Staphylococcus virus G1
Gp071c	(3224432885)	hypothetical protein	213	24587	YP_009099518.1	3e-146 (100%)	Staphylococcus phage P108
Gp072c	(3287533105)	transcriptional regulator	76	8832	YP_241088.1	3e-47 (100%)	Staphylococcus virus G1
Gp073c	(3310833335)	hypothetical protein	75	9261	YP_009195888.1	4e-47 (100%)	Staphylococcus phage philPLA-RODI
Gp074c	(3344434136)	putative transglycosylase	230	24934	YP_007002191.1	3e-169 (100%)	Staphylococcus phage GH15
Gp075c	(3433435128)	putative membrane protein	264	29296	YP_007002192.1	0.0 (100%)	Staphylococcus phage GH15
Gp076c	(3512835436)	putative membrane protein	102	12173	YP_007002193.1	1e-67 (100%)	Staphylococcus phage GH15
Gp077c	(3555037037)	endolysin	495	54734	YP_009195893.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp078c	(3703737540)	holin	167	18110	YP_009195894.1	7e-119 (100%)	Staphylococcus phage philPLA-RODI
Gp079c	(3762537810)	hypothetical protein	61	7066	YP_241098.1	5e-36 (100%)	Staphylococcus virus G1

Gp080c	(3935339571)	hypothetical protein	72	8679	YP_241099.1	1e-47 (100%)	Staphylococcus virus G1
Gp081c	(4005840267)	hypothetical protein	69	7761	YP_007002198.1	4e-43 (100%)	Staphylococcus phage GH15
Gp082c	(4028040612)	putative membrane protein	110	12505	YP_007002199.1	1e-69 (100%)	Staphylococcus phage GH15
Gp083c	(4062540951)	hypothetical protein	108	13056	YP_007002200.1	6e-73 (100%)	Staphylococcus phage GH15
Gp084	4151141777	hypothetical protein	88	10364	YP_009195900.1	2e-56 (100%)	Staphylococcus phage philPLA-RODI
Gp085	4175542033	hypothetical protein	92	10579	YP_241104.1	4e-63 (100%)	Staphylococcus virus G1
Gp086	4203042440	hypothetical protein	136	15626	YP_241105.1	9e-94 (100%)	Staphylococcus virus G1
Gp087	4245544272	terminase large subunit	605	70243	YP_007112786.1	0.0 (100%)	Staphylococcus phage JD007
Gp088	4428645104	hypothetical protein	272	30484	YP_009195906.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp089	4509145264	hypothetical protein	57	6687	YP_009099539.1	9e-31 (100%)	Staphylococcus phage P108
Gp090	4526145740	hypothetical protein	159	18540	YP_007002208.1	6e-112 (100%)	Staphylococcus phage GH15
Gp091	4578247005	hypothetical protein	407	44868	YP_009195908.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp092	4709047431	hypothetical protein	113	12826	YP_007002210.1	2e-74 (100%)	Staphylococcus phage GH15
Gp093	4745047821	hypothetical protein	123	14479	YP_009195910.1	2e-85 (100%)	Staphylococcus phage philPLA-RODI
Gp094	4782549516	portal protein	563	64075	YP_007002212.1	0.0 (100%)	Staphylococcus phage GH15
Gp095	4971050483	prohead protease	257	28624	YP_007002213.1	0.0 (100%)	Staphylococcus phage GH15
Gp096	5050251461	hypothetical protein	319	36116	YP_009098016.1	0.0 (100%)	Staphylococcus phage MCE-2014
Gp097	5157752968	major capsid protein	463	51239	YP_009098017.1	0.0 (100%)	Staphylococcus phage MCE-2014
Gp098	5306053356	hypothetical protein	98	11215	YP_009098018.1	9e-63 (100%)	Staphylococcus phage MCE-2014
Gp099	5336954277	hypothetical protein	302	34161	YP_240905.1	0.0 (100%)	Staphylococcus virus G1
Gp100	5429155169	hypothetical protein	292	33716	YP_009099551.1	0.0 (100%)	Staphylococcus phage P108
Gp101	5516955789	hypothetical protein	206	23773	YP_009098021.1	2e-151 (100%)	Staphylococcus phage MCE-2014

Gp102	5580856644	hypothetical protein	278	31768	YP_240908.1	0.0 (100%)	Staphylococcus virus G1
Gp103	5664656861	hypothetical protein	71	8280	YP_240909.1	7e-48 (100%)	Staphylococcus virus G1
Gp104	5688858651	major tail sheath protein	587	64418	YP_009195921.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp105	5872459152	tail tube protein	142	15925	YP_240911.1	2e-102 (100%)	Staphylococcus virus G1
Gp106	5923759401	hypothetical protein	54	6739	YP_007002224.1	5e-31 (100%)	Staphylococcus phage GH15
Gp107	5939159531	hypothetical protein	46	5420	AFN38132.1	4e-20 (100%)	Staphylococcus phage A3R
Gp108	5957360031	hypothetical protein	152	18111	YP_240913.1	4e-107 (100%)	Staphylococcus virus G1
Gp109	6004460238	putative membrane protein	64	7125	BBC69542.1	2e-33 (100%)	Staphylococcus phage phiSA039
Gp110	6025460406	hypothetical protein	50	5818	YP_009098028.1	3e-30 (100%)	Staphylococcus phage MCE-2014
Gp111	6047460785	hypothetical protein	103	12238	YP_007002227.1	1e-68 (100%)	Staphylococcus phage GH15
Gp112	6091761375	hypothetical protein	152	18108	YP_007002228.1	5e-108 (100%)	Staphylococcus phage GH15
Gp113	6141961955	tail morphogenetic protein	178	20963	YP_009098031.1	1e-128 (100%)	Staphylococcus phage MCE-2014
Gp114	6200866066	tail tape measure protein	1352	143788	AUV56888.1	0.0 (100%)	Staphylococcus phage vB_SauM_LM12
Gp115	6614568571	N-acetylmuramoyl-L-alanine amidase	808	91281	ASZ78029.1	0.0 (100%)	Staphylococcus phage SA3
Gp116	6858569472	protease	295	34503	YP_009098034.1	0.0 (100%)	Staphylococcus phage MCE-2014
Gp117	6947272018	Glycerophosphoryl diester phosphodiesterase	848	95994	YP_009098035.1	0.0 (100%)	Staphylococcus phage MCE-2014
Gp118	7212572916	hypothetical protein	263	29329	YP_009099345.1	0.0 (100%)	Staphylococcus phage P108
Gp119	7291673440	hypothetical protein	174	19953	YP_240925.1	4e-124 (100%)	Staphylococcus virus G1
Gp120	7344074144	baseplate wedge subunit protein	234	26584	YP_240926.1	5e-174 (100%)	Staphylococcus virus G1
Gp121	7415975205	putative tail protein	348	39179	YP_007002237.1	0.0 (100%)	Staphylococcus phage GH15
Gp122	7522678291	hypothetical protein	1021	116293	YP_009098040.1	0.0 (100%)	Staphylococcus phage MCE-2014

Gp123	7840278923	hypothetical protein	173	19239	YP_240929.1	5e-125 (100%)	Staphylococcus virus G1
Gp124	7894482402	adsorption-associated tail protein	1152	129264	YP_009195940.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp125	8245182609	hypothetical protein	52	6305	YP_009099353.1	1e-27 (100%)	Staphylococcus phage P108
Gp126	8261084532	carbohydrate binding domain- containing protein	640	72571	YP_009099354.1	0.0 (100%)	Staphylococcus phage P108
Gp127	8454684920	hypothetical protein	124	14650	YP_009098045.1	1e-87 (100%)	Staphylococcus phage MCE-2014
Gp128	8492786303	putative capsid and scaffold protein	458	50436	YP_009098046.1	0.0 (100%)	Staphylococcus phage MCE-2014
Gp129	8639488142	DNA helicase A	582	67202	YP_009098047.1	0.0 (100%)	Staphylococcus phage MCE-2014
Gp130	8815489767	putative Rep protein	537	63147	YP_009098048.1	0.0 (100%)	Staphylococcus phage MCE-2014
Gp131	8976091202	DNA helicase B	480	54613	YP_009195947.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp132	9128191700	hypothetical protein	139	16206	YP_009195948.1	4e-98 (100%)	Staphylococcus phage philPLA-RODI
Gp133	9170092725	exonuclease	341	39342	YP_009195949.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp134	9272593102	hypothetical protein	125	15027	YP_009195950.1	2e-84 (100%)	Staphylococcus phage philPLA-RODI
Gp135	9310295021	putative recombination exonuclease B	639	73264	YP_009098052.1	0.0 (100%)	Staphylococcus phage MCE-2014
Gp136	9502195602	HNH homing endonuclease	193	22894	ANH50485.1	7e-132 (100%)	Staphylococcus phage pSco-10
Gp137	9560296198	hypothetical protein	198	23207	YP_009098053.1	7e-145 (100%)	Staphylococcus phage MCE-2014
Gp138	9621397280	DNA primase	355	41040	YP_009195953.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp139	9734697684	hypothetical protein	112	12964	YP_240943.1	3e-74 (100%)	Staphylococcus virus G1
Gp140	9768498136	hypothetical protein	150	17044	AUV56979.1	2e-103 (100%)	Staphylococcus phage vB_SauM_LM12
Gp141	9812398731	resolvase	202	23640	YP_009195956.1	2e-150 (100%)	Staphylococcus phage philPLA-RODI
Gp142	9874899140	ribonucleotide reduction protein Nrdl	130	14737	YP_009098058.1	1e-90 (100%)	Staphylococcus phage MCE-2014

Gp143	99155101269	ribonucleotide reductase large subunit	704	80259	YP_009195958.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp144	101283102332	ribonucleotide reductase small subunit	349	40444	YP_009195959.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp145	102350102679	hypothetical protein	109	12458	AUV57013.1	1e-74 (100%)	Staphylococcus phage vB_SauM_LM12
Gp146	102663102983	thioredoxin	106	12045	YP_009195961.1	2e-71 (100%)	Staphylococcus phage philPLA-RODI
Gp147	103190103786	hypothetical protein	198	23600	YP_007002262.1	2e-143 (100%)	Staphylococcus phage GH15
Gp148	103796104101	integration host factor	101	11928	YP_240952.1	9e-69 (100%)	Staphylococcus virus G1
Gp149	104177107395	DNA polymerase A	1072	124594	YP_009195964.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp150	107423107707	hypothetical protein	94	10843	YP_008854095.1	2e-51 (100%)	Staphylococcus phage S25-4
Gp151	107724108206	hypothetical protein	160	18919	YP_007002266.1	3e-117 (100%)	Staphylococcus phage GH15
Gp152	108293109600	hypothetical protein	435	48352	YP_009195967.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp153	109660110916	DNA repair protein	418	46764	YP_009195968.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp154	110920111273	hypothetical protein	117	13379	YP_240963.1	1e-81 (100%)	Staphylococcus virus G1
Gp155	111260111922	RNA polymerase sigma factor	220	26610	YP_008873651.1	1e-158 (100%)	Staphylococcus phage Sb1
Gp156	112049112681	hypothetical protein	210	23169	ASZ78069.1	3e-152 (100%)	Staphylococcus phage SA3
Gp157	112696113217	tail protein	173	18161	AEA36766.1	2e-116 (100%)	Staphylococcus phage GH15
Gp158	113232113459	lg-like protein	75	7829	YP_007002273.1	6e-47 (100%)	Staphylococcus phage GH15
Gp159	113554113814	hypothetical protein	86	10273	YP_007002274.1	2e-57 (100%)	Staphylococcus phage GH15
Gp160	113818114573	hypothetical protein	251	29179	YP_007002275.1	4e-180 (100%)	Staphylococcus phage GH15
Gp161	114566115816	metallophosphoesterase	416	47606	YP_007002276.1	0.0 (100%)	Staphylococcus phage GH15
Gp162	115830116198	membrane protein	122	14010	YP_007002277.1	7e-83 (100%)	Staphylococcus phage GH15
Gp163	116185116496	hypothetical protein	103	12038	YP_009099393.1	3e-70 (100%)	Staphylococcus phage P108

Gp164	116560117096	hypothetical protein	178	20762	YP_009098082.1	1e-130 (100%)	Staphylococcus phage MCE-2014
Gp165	117089117856	hypothetical protein	255	30073	YP_009098083.1	0.0 (100%)	Staphylococcus phage MCE-2014
Gp166	117834118280	hypothetical protein	148	17367	YP_009099396.1	8e-106 (100%)	Staphylococcus phage P108
Gp167	118280119143	hypothetical protein	287	32316	YP_007002282.1	0.0 (100%)	Staphylococcus phage GH15
Gp168	119515120246	hypothetical protein	243	28351	ARQ96133.1	1e-175 (100%)	Staphylococcus phage qdsa002
Gp169	120264120722	hypothetical protein	152	17850	YP_007002284.1	3e-108 (100%)	Staphylococcus phage GH15
Gp170	120787121230	hypothetical protein	147	17537	YP_007002285.1	3e-101 (100%)	Staphylococcus phage GH15
Gp171	121247121951	hypothetical protein	234	27445	YP_009098089.1	5e-170 (100%)	Staphylococccus phage MCE-2014
Gp172	122014122412	putative membrane protein	132	15428	YP_009006819.1	9e-93 (100%)	Staphylococcus phage phiSA12
Gp173	122559122801	hypothetical protein	80	9423	YP_009098091.1	3e-50 (100%)	Staphylococccus phage MCE-2014
Gp174	122806123363	putative membrane protein	185	21691	YP_009099404.1	2e-133 (100%)	Staphylococcus phage P108
Gp175	123399123575	hypothetical protein	58	6988	YP_009041391.1	7e-35 (100%)	Staphylococcus virus K
Gp176	123565123816	putative membrane protein	83	9246	VEV88755.1	1e-50 (100%)	Staphylococcus phage Stab21
Gp177	123809124042	hypothetical protein	77	8960	YP_009099407.1	2e-48 (100%)	Staphylococcus phage P108
Gp178	124124124768	putative membrane protein	214	25205	YP_007002293.1	5e-151 (100%)	Staphylococcus phage GH15
Gp179	125044125220	hypothetical protein	58	7005	YP_009006827.1	5e-33 (100%)	Staphylococcus phage phiSA12
Gp180	125213125509	hypothetical protein	98	11451	YP_009195996.1	2e-64 (100%)	Staphylococcus phage philPLA-RODI
Gp181	125548125739	putative membrane protein	63	7497	ACB89144.1	1e-34 (100%)	Staphylococcus phage A5W
Gp182	125752126120	hypothetical protein	122	14160	YP_009098101.1	4e-83 (100%)	Staphylococcus phage MCE-2014
Gp183	126133126480	hypothetical protein	115	12973	YP_009098102.1	2e-77 (100%)	Staphylococcus phage MCE-2014
Gp184	126486126758	membrane protein	90	9942	YP_009196000.1	2e-53 (100%)	Staphylococcus phage philPLA-RODI]
Gp185	126819127133	hypothetical protein	104	12493	VEV88776.1	1e-66 (100%)	Staphylococcus phage Stab21

Gp186	127148127498	hypothetical protein	116	13682	YP_009099417.1	6e-77 (100%)	Staphylococcus phage P108
Gp187	127498128100	hypothetical protein	200	23383	YP_007002302.1	2e-145 (100%)	Staphylococcus phage GH15
Gp188	128114128293	hypothetical protein	59	7277	YP_009196003.1	8e-35 (100%)	Staphylococcus phage philPLA-RODI
Gp189	128296128862	HNH endonuclease	188	21514	YP_009007668.1	1e-34 (96%)	Staphylococcus phage vB_SepS_SEP9
Gp190	129030129440	membrane protein	136	15408	YP_009196004.1	9e-90 (100%)	Staphylococcus phage philPLA-RODI
Gp191	129442129735	hypothetical protein	97	11644	AUV57037.1	1e-62 (100%)	Staphylococcus phage vB_SauM_LM12
Gp192	129752130039	putative membrane protein	95	10554	YP_007112901.1	2e-59 (100%)	Staphylococcus phage JD007
Gp193	130050130163	hypothetical protein	37	4422	YP_007002307.1	2e-13 (100%)	Staphylococcus phage GH15
Gp194	130156130428	hypothetical protein	90	10423	AUV57045.1	1e-52 (100%)	Staphylococcus phage vB_SauM_LM12
Gp195	130443131108	hypothetical protein	221	24930	AUV56940.1	1e-155 (100%)	Staphylococcus phage vB_SauM_LM12
Gp196	131185131490	hypothetical protein	101	11684	AUV57027.1	3e-64 (100%)	Staphylococcus phage vB_SauM_LM12
Gp197	131490131894	putative membrane protein	134	15205	AUV56992.1	6e-86 (100%)	Staphylococcus phage vB_SauM_LM12
Gp198	131899132135	hypothetical protein	78	9159	AUV57061.1	2e-49 (100%)	Staphylococcus phage vB_SauM_LM12
Gp199	132132132659	putative metallophosphatase	175	20607	AUV56964.1	7e-124 (100%)	Staphylococcus phage vB_SauM_LM12
Gp200	132640132951	hypothetical protein	103	12523	AUV57022.1	1e-67 (100%)	Staphylococcus phage vB_SauM_LM12
Gp201	132997133176	putative membrane protein	59	6342	YP_007002315.1	9e-28 (100%)	Staphylococcus phage GH15
Gp202	133191133454	hypothetical protein	87	10223	AUV57050.1	1e-51 (100%)	Staphylococcus phage vB_SauM_LM12
Gp203	133457133762	hypothetical protein	101	11520	YP_007002317.1	9e-41 (100%)	Staphylococcus phage GH15
Gp204	133840133998	putative membrane protein	52	5706	YP_009098109.1	3e-23 (100%)	Staphylococcus phage MCE-2014
Gp205	134014134238	hypothetical protein	74	8515	YP_009098110.1	9e-46 (100%)	Staphylococcus phage MCE-2014
Gp206	134251134451	hypothetical protein	66	7600	YP_008873669.1	1e-41 (100%)	Staphylococcus phage Sb1
Gp207	134452134742	putative membrane protein	96	11134	YP_007002323.1	1e-59 (100%)	Staphylococcus phage GH15

Gp208	134835135128	hypothetical protein	97	11414	YP_009099439.1	2e-64 (100%)	Staphylococcus phage GH15
Gp209	135125136033	Ribose-phosphate pyrophosphokinase	302	34960	YP_009196009.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp210	136051138441	Nicotinamide phosphoribosyltransferase	796	92251	ARM69254.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp211	138520138765	hypothetical protein	81	9863	YP_009098116.1	1e-49 (100%)	Staphylococcus phage MCE-2014]
Gp212	138785139189	hypothetical protein	134	16100	YP_009196017.1	5e-84 (100%)	Staphylococcus phage philPLA-RODI]
Gp213	139194139448	hypothetical protein	84	9899	YP_009099444.1	1e-47 (100%)	Staphylococcus phage P108
Gp214	139469139666	Hypothetical protein	65	7833	YP_009098118.1	1e-38 (100%)	Staphylococcus phage MCE-2014
Gp215	139732140043	hypothetical protein	103	11624	YP_009098119.1	1e-66 (100%)	Staphylococcus phage MCE-2014
Gp216	140046140555	hypothetical protein	169	20300	YP_009098120.1	4e-119 (100%)	Staphylococcus phage MCE-2014
Gp217	140557140892	hypothetical protein	111	12900	YP_009098121.1	3e-70 (100%)	Staphylococcus phage MCE-2014
Gp218	140892141110	hypothetical protein	72	8650	YP_007002335.1	7e-42 (100%)	Staphylococcus phage GH15
Gp219	141212141436	hypothetical protein	74	8869	AUV57111.1	6e-15 (50%)	Staphylococcus phage vB_SauM_LM12
Gp220	141436141630	hypothetical protein	64	7840	YP_008873679.1	7e-25 (100%)	Staphylococcus phage Sb1
Gp221	141654141968	hypothetical protein	104	12080	AEJ79800.1	4e-61 (100%)	Staphylococcus phage Sb1
Gp222	141984142274	hypothetical protein	96	11446			
Gp223	142290142460	hypothetical protein	56	6800			
Gp001	143008143178	Putative membrane protein	56	6298	AUV57100.1	1e-29 (100 %)	Staphylococcus phage vB_SauM_LM12
Gp002	143194143487	Terminal repeat-encoded protein	97	11245	YP_009006863.1	5e-59 (100%)	Staphylococcus phage phiSA12
Gp003	143484143669	hypothetical protein	61	6540	YP_009099453.1	2e-31 (100%)	Staphylococcus phage P108
Gp004	143699143923	putative membrane protein	74	8889	TAG94958.1	0.70 (64%)	
Gp005	143939144229	TreC	96	11361	AUV57038.1	7e-60 (100%)	Staphylococcus phage vB_SauM_LM12

Gp006	144229144516	Terminal repeat-encoded protein	95	10858	YP_008853954.1	2e-61 (100%)	Staphylococcus phage S25-4
Gp007	144516144809	Terminal repeat-encoded protein	97	11538	YP_009099457.1	7e-60 (100%)	Staphylococcus phage P108
Gp008	144813145061	Terminal repeat-encoded protein	82	9964	YP_009006868.1	1e-48 (100%)	Staphylococcus phage phiSA12
Gp009	145138145386	hypothetical protein	82	9382	YP_009099460.1	4e-38 (91%)	Staphylococcus phage vB_Sau_CG
Gp010	145383145709	terminal repeat-encoded protein	108	13000	AUG85650.1	9e-63 (99%)	Staphylococcus phage phiSA12
Gp011c	(145928146266)	hypothetical protein	112	13528	YP_007002124.1	1e-69 (100%)	Staphylococcus phage GH15
Gp012	146578146886	TreJ	102	11808	YP_007112862.1	1e-68 (100%)	Staphylococcus phage JD007
Gp013	147092147376	TreK	94	10985	YP_009196040.1	1e-62 (100%)	Staphylococcus phage philPLA-RODI
Gp014	147451147642	Terminal repeat-encoded protein	63	7674	YP_007002127.1	9e-38 (100%)	Staphylococcus phage GH15
Gp015	148178148336	hypothetical protein	52	6070	YP_008853962.1	1e-26 (100%)	Staphylococcus phage S25-4
Gp016	148502148825	TreP	107	12453	YP_241037.1	9e-72 (100%)	Staphylococcus virus G1
Gp017	148919149431	hypothetical protein	170	20668	AXU40178.1	2e-108 (98%)	Staphylococcus phage Stab21
Gp018	149495149881	hypothetical protein	128	14985	YP_008853965.1	8e-85 (98%)	Staphylococcus phage Stab23
Gp019	150324150545	hypothetical protein	73	8464	YP_008853966.1	1e-45 (100%)	Staphylococcus phage S25-4
Gp020	150626150769	hypothetical protein	47	5668	YP_008853967.1	7e-24 (93%)	Staphylococcus phage S25-4
Gp021	150826150999	hypothetical protein	57	6783	VEV88448.1	1e-31 (100%)	Staphylococcus phage Stab21
Gp022	151037151315	hypothetical protein	78	9008	YP_009196049.1	6e-46 (100%)	Staphylococcus phage philPLA-RODI
Gp023	151406151750	hypothetical protein	114	13653	ARM69507.1	2e-73 (100%)	Staphylococcus phage vB_Sau_S24
Gp024	151817152089	hypothetical protein	90	10843	BBC69463.1	1e-50 (96%)	Staphylococcus phage phiSA039
Gp025	152093152257	hypothetical protein	54	6237	YP_009097941.1	4e-28 (100%)	Staphylococcus phage MCE-2014

Gp026	152270152458	hypothetical protein	65	7628	VEV88452.1	5e-33 (100%)	Staphylococcus phage Stab21
Gp027	152472152654	terminal repeat-encoded protein	63	7314	YP_009097942.1	6e-31 (90%)	Staphylococcus phage Stab21
Gp028	152638152913	TreT	92	10605	YP_009195839.1	1e-52 (96%)	Staphylococcus phage philPLA-RODI
Gp029	152990153220	TreU	76	9320	VEV89584.1	1e-44 (98%)	Staphylococcus phage Stab23

Stab21							
<u>Gp</u>	Genomic location	Predicted function	<u>AA</u>	<u>MW</u>	<u>Best hit (acc no)</u>	<u>e-value (query</u> <u>coverage %)</u>	phage with similar gene
Gp001	485646	hypothetical protein	53	6072	YP_007112871.1	9e-31 (100%)	Staphylococcus phage JD007
Gp002	7411049	hypothetical protein	102	11792	YP_007112870.1	6e-67 (100%)	Staphylococcus phage JD007
Gp003	10611360	hypothetical protein	99	11562	YP_007112869.1	1e-63 (100%)	Staphylococcus phage JD007
Gp004	13761561	TreB	61	6855	YP_007112868.1	3e-31 (100%)	Staphylococcus phage JD007
Gp005	16691989	hypothetical protein	106	12354	AVX47357.1	4e-46 (100%)	Staphylococcus phage vB_SauM_0414_108
Gp006	20042297	hypothetical protein	97	11604	BBC69665.1	7e-64 (100%)	Staphylococcus phage phiSA039
Gp007	23012558	TreF	85	10310	YP_009196035.1	1e-53 (100%)	Staphylococcus phage philPLA-RODI
Gp008	26722911	hypothetical protein	79	8973	YP_009196036.1	1e-41 (100%)	Staphylococcus phage philPLA-RODI
Gp009	29223269	hypothetical protein	115	13689	YP_009098142.1	4e-77 (100%)	Staphylococcus phage Team1
Gp010c	c(34763814)	hypothetical protein	112	13472	YP_009196038.1	1e-71 (100%)	Staphylococcus phage philPLA-RODI
Gp011	41254433	TreJ	102	11768	AFN37829.1	5e-69 (100%)	Staphylococcus phage Staph1N
Gp012	46404927	hypothetical protein	95	11102	YP_007112861.1	1e-63 (100%)	Staphylococcus phage JD007
Gp013	49775249	hypothetical protein	90	10539	ARM69069.1	1e-57 (100%)	Staphylococcus phage vB_Sau_CG
Gp014	57735931	hypothetical protein	52	6070	YP_007112859.1	9e-27 (100%)	Staphylococcus phage JD007
Gp015	60986421	TreP	107	12352	YP_007112857.1	9e-72 (100%)	Staphylococcus phage JD007
Gp016	65157027	hypothetical protein	170	20780	AXU40178.1	1e-108 (98%)	Staphylococcus phage VB_SavM_JYL01
Gp017	70917447	hypothetical protein	118	13865	VEV88121.1	7e-71 (98%)	Staphylococcus phage Stab20

Table 2: Putative gene products of Stab21 phage NCBI/ENA accession number (acc.No.): LR215719, and its homology to Kayvirus phages at protein level.

Gp018	79778198	hypothetical protein	73	8469	YP_007112855.1	2e-45 (100%)	Staphylococcus phage JD007
Gp019	82798416	hypothetical protein	45	5459	YP_007112854.1	4e-24 (100%)	Staphylococcus phage JD007
Gp020	84788651	hypothetical protein	57	6765	VEV88124.1	1e-31 (100%)	Staphylococcus phage Stab20
Gp021	89049374	hypothetical protein	156	17885	AVX47376.1	5e-103 (100%)	Staphylococcus phage vB_SauM_0414_108
Gp022	94349631	hypothetical protein	65	7481	VEV88129.1	5e-33 (100%)	Staphylococcus phage Stab20
Gp023	96379819	hypothetical protein	60	6962	VEV88130.1	5e-31 (100%)	Staphylococcus phage Stab20
Gp024	981910475	hypothetical protein	218	25574	AUV56944.1	6e-72 (97%)	Staphylococcus phage vB_SauM_LM12
Gp025	1048310758	TreT	91	10518	YP_009195839.1	4e-23 (100%)	Staphylococcus phage philPLA-RODI
Gp026	1083411022	hypothetical protein	62	7512	YP_007002139.1	1e-35 (100%)	Staphylococcus phage GH15
Gp027c	c(1136011596)	hypothetical protein	78	9557	AVX47381.1	1e-49 (100%)	Staphylococcus phage vB_SauM_0414_108
Gp028c	c(1159812083)	hypothetical protein	161	19058	YP_241045.1	4e-111 (100%)	Staphylococcus virus G1
Gp029c	c(1209612503)	hypothetical protein	135	16464	YP_008873525.1	4e-94 (100%)	Staphylococcus phage Sb1
Gp030c	c(1250312934)	hypothetical protein	143	17323	AFN38052.1	2e-94 (100%)	Staphylococcus phage A3R
Gp031c	c(1312513373)	hypothetical protein	82	9987	QAU05802.1	3e-49 (100%)	Staphylococcus virus Sa87
Gp032c	c(1337313855)	membrane protein	160	18385	YP_007112840.1	7e-106 (100%)	Staphylococcus phage JD007
Gp033c	c(1384814279)	hypothetical protein	143	16785	YP_008854159.1	4e-96 (100%)	Staphylococcus phage S25-3
Gp034c	c(1429314835)	hypothetical protein	180	21586	YP_007112838.1	3e-125 (100%)	Staphylococcus phage JD007
Gp035c	c(1484715335)	hypothetical protein	162	19434	QAU05805.1	4e-118 (100%)	Staphylococcus virus Sa87
Gp036c	c(1534815746)	hypothetical protein	132	16141	YP_007112836.1	3e-89 (100%)	Staphylococcus phage JD007
Gp037c	c(1574316450)	Serine/threonine protein phosphatase	235	27697	YP_007112835.1	7e-172 (100%)	Staphylococcus phage JD007
Gp038c	c(1654118391)	lipase acylhydrolase domain protein	616	68944	YP_007112834.1	0.0 (100%)	Staphylococcus phage JD007

Gp039c	c(1930119849)	hypothetical protein	182	21954	YP_007112833.1	1e-124 (100%)	Staphylococcus phage JD007
Gp040c	c(1985320071)	hypothetical protein	72	8425	YP_007002157.1	8e-44 (100%)	Staphylococcus phage GH15
Gp041c	c(2007220266)	hypothetical protein	64	7641	YP_241059.1	3e-38 (100%)	Staphylococcus virus G1
Gp042c	c(2025620993)	hypothetical protein	245	28633	YP_007112830.1	1e-174 (100%)	Staphylococcus phage JD007
Gp043c	c(2117221411)	hypothetical protein	79	9369	AFN38067.1	2e-51 (100%)	Staphylococcus phage A3R
Gp044c	c(2141321802)	hypothetical protein	129	15153	YP_008854169.1	2e-89 (100%)	Staphylococcus phage S25-3
Gp045c	C (2190122074)	hypothetical protein	57	6819	YP_007002163.1	2e-34 (100%)	Staphylococcus phage GH15
Gp046c	C (2211522597)	hypothetical protein	160	18855	YP_008873543.1	4e-110 (100%)	Staphylococcus phage Sb1
Gp047c	c(2264723189)	hypothetical protein	180	20415	ARM69103.1	1e-123 (100%)	Staphylococcus phage vB_Sau_CG
Gp048c	c(2318923722)	hypothetical protein	177	20707	YP_241067.1	2e-124 (100%)	Staphylococcus virus G1
Gp049c	c(2372523889)	hypothetical protein	54	6196	YP_008854174.1	5e-30 (100%)	Staphylococcus phage S25-3
Gp050c	c(2389224170)	putative membrane protein	92	10955	AFN37865.1	4e-54 (100%)	Staphylococcus phage Staph1N
Gp051c	c(2417025015)	hypothetical protein	281	31748	YP_241070.1	0.0 (100%)	Staphylococcus virus G1
Gp052c	c(2502726154)	AAA family ATPase	375	42599	YP_007112820.1	0.0 (99%)	Staphylococcus phage JD007
Gp053c	c(2629826624)	hypothetical protein	108	12980	YP_241072.1	4e-73 (100%)	Staphylococcus virus G1
Gp054c	c(2661727033)	hypothetical protein	138	15979	YP_241073.1	8e-96 (100%)	Staphylococcus virus G1
Gp055c	c(2716627468)	nucleoside triphosphate pyrophosphohydrolase	100	11304	ARM69324.1	1e-64 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp056c	c(2746827656)	hypothetical protein	62	7309	YP_007112816.1	3e-35 (100%)	Staphylococcus phage JD007
Gp057c	c(2770027861)	hypothetical protein	53	6370	YP_241076.1	1e-29 (100%)	Staphylococcus virus G1
Gp058c	c(2786129909)	hypothetical protein	682	79800	AZB49981.1	0.0 (100%)	Staphylococcus phage 812h1
Gp059c	c(2998730250)	hypothetical protein	87	10147	YP_007112813.1	6e-54 (100%)	Staphylococcus phage JD007
Gp060c	c(3026730440)	hypothetical protein	57	6670	YP_008854008.1	1e-31 (100%)	Staphylococcus phage S25-4

Gp061c	c(3044731025)	hypothetical protein	192	21478	YP_007112811.1	4e-131 (100%)	Staphylococcus phage JD007
Gp062c	c(3101831641)	hypothetical protein	207	23650	VEV89232.1	4e-129 (100%)	Staphylococcus phage Stab22
Gp063c	c(3164132201)	HNH homing endonuclease	186	21870	AXY83933.1	1e-100 (100%)	Staphylococcus phage Terranova
Gp064c	c(3224133137)	RNA ligase	298	35071	YP_008854188.1	0.0 (100%)	Staphylococcus phage S25-3
Gp065c	c(3313733361)	hypothetical protein	74	8165	YP_008873561.1	2e-40 (100%)	Staphylococcus phage Sb1
Gp066c	c(3343034170)	Phosphate starvation-inducible protein PhoH, predicted ATPase	246	28575	YP_009097984.1	0.0 (100%)	Staphylococcus phage MCE-2014
Gp067c	c(3422234836)	hypothetical protein	204	23008	YP_008854191.1	1e-145 (100%)	Staphylococcus phage S25-3
Gp068c	c(3485235277)	ribonuclease H	141	15795	YP_007112805.1	2e-95 (100%)	Staphylococcus phage JD007
Gp069c	c(3526735458)	hypothetical protein	63	7444	YP_008854193.1	2e-37 (100%)	Staphylococcus phage S25-3
Gp070c	c(3548136122)	hypothetical protein	213	24573	YP_007112803.1	2e-144 (100%)	Staphylococcus phage JD007
Gp071c	c(3611236342)	transcriptional regulator protein	76	8831	YP_007112802.1	3e-47 (100%)	Staphylococcus phage JD007
Gp072c	c(3634536572)	hypothetical protein	75	9225	YP_008854019.1	2e-45 (100%)	Staphylococcus phage S25-4
Gp073c	c(3668137373)	transglycosylase	230	24826	YP_009098202.1	2e-167 (100%)	Staphylococcus phage Team1
Gp074c	c(3757138365)	membrane protein	264	29309	YP_007112798.1	0.0 (100%)	Staphylococcus phage JD007
Gp075c	c(3836538673)	hypothetical protein	102	12135	YP_007112797.1	4e-65 (100%)	Staphylococcus phage JD007
Gp076c	c(3878640273)	N-acetylmuramoyl-L-alanine amidase	495	54754	YP_007112796.1	0.0 (100%)	Staphylococcus phage JD007
Gp077c	c(4027340776)	holin	167	18096	AUV56969.1	5e-117 (100%)	Staphylococcus phage vB_SauM_LM12
Gp078c	c(4086141046)	hypothetical protein	61	7066	YP_007002196.1	3e-34 (100%)	Staphylococcus phage GH15
Gp079c	c(4259442812)	hypothetical protein	72	8691	YP_009097998.1	2e-45 (100%)	Staphylococcus phage MCE-2014
Gp080c	c(4329243501)	hypothetical protein	69	8019	YP_008873578.1	5e-43 (100%)	Staphylococcus phage Sb1
Gp081c	c(4351443846)	hypothetical protein	110	12477	YP_008854029.1	3e-69 (100%)	Staphylococcus phage S25-4

Gp082c	c(4385944185)	hypothetical protein	108	13056	YP_007002200.1	5e-71 (100%)	Staphylococcus phage GH15
Gp083c	c(4421844484)	hypothetical protein	88	10121	YP_241102.1	1e-50 (100%)	Staphylococcus virus G1
Gp084	4462545011	membrane protein	128	14819	YP_008854032.1	3e-82 (100%)	Staphylococcus phage S25-4
Gp085	4498945267	hypothetical protein	92	10579	YP_008873583.1	3e-61 (100%)	Staphylococcus phage Sb1
Gp086	4526445674	hypothetical protein	136	15626	YP_007112787.1	7e-92 (100%)	Staphylococcus phage JD007
Gp087	4568947506	Terminase, large subunit	605	70243	YP_009041305.1	0.0 (100%)	Staphylococcus virus K
Gp088	4749948320	hypothetical protein	273	30649	YP_009098222.1	0.0 (100%)	Staphylococcus phage Team1
Gp089	4830748480	hypothetical protein	57	6674	YP_240894.1	1e-29 (100%)	Staphylococcus virus G1
Gp090	4847748956	hypothetical protein	159	18524	YP_007112783.1	2e-110 (100%)	Staphylococcus phage JD007
Gp091	4899950189	hypothetical protein	396	43647	YP_008854038.1	0.0 (100%)	Staphylococcus phage S25-4
Gp092	5027550616	hypothetical protein	113	12852	YP_240898.1	4e-72 (100%)	Staphylococcus G1
Gp093	5063451005	hypothetical protein	123	14479	YP_009195910.1	2e-83 (100%)	Staphylococcus phage philPLA-RODI
Gp094	5100952700	Portal protein	563	64051	YP_240900.1	0.0 (100%)	Staphylococcus virus G1
Gp095	5289453667	Prohead protease	257	28624	YP_007002213.1	0.0 (100%)	Staphylococcus phage GH15
Gp096	5368654642	hypothetical protein	318	36016	YP_007112777.1	0.0 (100%)	Staphylococcus phage JD007
Gp097	5475856149	Major capsid protein	463	51211	YP_007112776.1	0.0 (100%)	Staphylococcus phage JD007
Gp098	5624156537	hypothetical protein	98	11257	YP_007112775.1	5e-60 (100%)	Staphylococcus phage JD007
Gp099	5655057458	hypothetical protein	302	34161	YP_240905.1	0.0 (100%)	Staphylococcus virus G1
Gp100	5747258350	hypothetical protein	292	33758	YP_007112773.1	0.0 (100%)	Staphylococcus phage JD007
Gp101	5835058970	hypothetical protein	206	23746	YP_240907.1	5e-149 (100%)	Staphylococcus virus G1
Gp102	5898959825	hypothetical protein	278	31782	YP_240908.1	0.0 (100%)	Staphylococcus virus G1
Gp103	5982760042	hypothetical protein	71	8280	YP_240909.1	6e-46 (100%)	Staphylococcus virus G1

Gp104	6006961832	major tail sheath protein	587	64458	YP_007112769.1	0.0 (100%)	Staphylococcus phage JD007
Gp105	6190562333	tail tube protein	142	15925	YP_009041323.1	1e-100 (100%)	Staphylococcus virus K
Gp106	6243062570	hypothetical protein	46	5408	YP_008873604.1	2e-23 (100%)	Staphylococcus phage Sb1
Gp107	6261363071	hypothetical protein	152	18131	EF136582.1	3e-97 (100%)	Staphylococcus phage 812 strain phi812
Gp108	6308463278	hypothetical protein	64	7157	YP_240914.1	7e-35 (100%)	Staphylococcus virus G1
Gp109	6336063671	hypothetical protein	103	12252	YP_008854056.1	1e-6 (100%)	Staphylococcus phage S25-4
Gp110	6380364261	hypothetical protein"	152	18122	YP_008854057.1	5e-106 (100%)	Staphylococcus phage S25-4
Gp111	6430564841	tail morphogenetic protein	178	20915	YP_009195929.1	2e-125 (100%)	Staphylococcus phage philPLA-RODI
Gp112	6489468952	putative tail lysin	1352	143895	YP_007002230.1	0.0 (100%)	Staphylococcus phage GH15
Gp113	6903171457	tail lysin	808	91180	YP_007112760.1	0.0 (100%)	Staphylococcus phage JD007
Gp114	7147172358	protease	295	34593	YP_009041332.1	0.0 (100%)	Staphylococcus virus K
Gp115	7235874904	Glycerophosphoryl diester phosphodiesterase	848	96085	YP_007112758.1	0.0 (100%)	Staphylococcus phage JD007
Gp116	7501175802	hypothetical protein	263	29343	YP_240924.1	0.0 (100%)	Staphylococcus virus G1
Gp117	7580276326	hypothetical protein	174	19953	YP_007002235.1	3e-122 (100%)	Staphylococcus phage GH15
Gp118	7632677030	putative baseplate protein	234	26584	YP_008873616.1	4e-172 (100%)	Staphylococcus phage Sb1
Gp119	7704578091	baseplate	348	39179	ARM68952.1	0.0 (100%)	Staphylococcus phage vB_Sau_CG
Gp120	7811281171	hypothetical protein	1019	116346	YP_009041338.1	0.0 (100%)	Staphylococcus virus K
Gp121	8128281803	hypothetical protein	173	19239	YP_007002239.1	4e-123 (100%)	Staphylococcus phage GH15
Gp122	8182485282	adsorption-associated tail protein	1152	129184	ARM68955.1	0.0 (100%)	Staphylococcus phage vB_Sau_CG
Gp123	8533185489	hypothetical protein	52	6208	YP_240931.1	3e-27 (100%)	Staphylococcus virus G1
Gp124	8549087412	hypothetical protein	640	72602	YP_007112749.1	0.0 (100%)	Staphylococcus phage JD007
Gp125	8743587806	hypothetical protein	123	14496	YP_007112748.1	9e-84 (100%)	Staphylococcus phage JD007

Gp126	8781389189	hypothetical protein	458	50465	YP_008854075.1	0.0 (100%)	Staphylococcus phage S25-4
Gp127	8928091028	DNA helicase A	582	67219	AKC02275.1	0.0 (100%)	Staphylococcus phage IME-SA1
Gp128	9104092653	putative Rep protein	537	63159	YP_007002246.1	0.0 (100%)	Staphylococcus phage GH15
Gp129	9264694088	DNA helicase B	480	54558	AVX47482.1	0.0 (100%)	Staphylococcus phage vB_SauM_0414_108
Gp130	9416795192	putative exonuclease	341	39267	YP_007002248.1	0.0 (100%)	Staphylococcus phage GH15
Gp131	9519295569	hypothetical protein	125	14912	YP_007112960.1	2e-86 (100%)	Staphylococcus phage JD007
Gp132	9556997488	exonuclease	639	73446	YP_007112959.1	0.0 (100%)	Staphylococcus phage JD007
Gp133	9748898084	hypothetical protein	198	23180	YP_007112958.1	3e-143 (100%)	Staphylococcus phage JD007
Gp134	9809999166	DNA primase	355	40927	YP_007112957.1	0.0 (100%)	Staphylococcus phage JD007
Gp135	9923299570	hypothetical protein	112	12964	YP_240943.1	2e-72 (100%)	Staphylococcus virus G1
Gp136	99570100022	hypothetical protein	150	17012	YP_008854085.1	2e-101 (100%)	Staphylococcus phage S25-4
Gp137	100009100617	resolvase	202	23613	YP_008873634.1	1e-148 (100%)	Staphylococcus phage Sb1
Gp138	100634101026	Ribonucleotide reduction protein Nrdl	130	14734	ABL87151.1	2e-88 (100%)	Staphylococcus phage 812
Gp139	101041103155	Ribonucleotide reductase of class Ib (aerobic), alpha subunit	704	80291	YP_009006789.1	0.0 (100%)	Staphylococcus phage phiSA12
Gp140	103169104218	Ribonucleotide reductase of class Ib (aerobic), beta subunit	349	40446	YP_007002259.1	0.0 (100%)	Staphylococcus phage GH15
Gp141	104236104565	hypothetical protein	109	12384	YP_007112950.1	5e-73 (100%)	Staphylococcus phage JD007
Gp142	104549104869	thioredoxin-like protein	106	12059	YP_008873639.1	1e-69 (100%)	Staphylococcus phage Sb1
Gp143	105112105672	hypothetical protein	186	22107	YP_007002262.1	1e-132 (100%)	Staphylococcus phage GH15
Gp144	105682105987	integration host factor	101	11928	YP_009098279.1	7e-67 (100%)	Staphylococcus phage Team1
Gp145	106063109281	DNA polymerase I	1072	124537	YP_009006795.1	0.0 (100%)	Staphylococcus phage phiSA12
Gp146	109351109593	hypothetical protein	80	9026	VEV88253.1	4e-50 (100%)	Staphylococcus phage Stab20

Gp147	109610110092	hypothetical protein	160	18947	YP_009098069.1	1e-115 (100%)	Staphylococcus phage MCE-2014
Gp148	110179111450	hypothetical protein	423	46908	YP_008854097.1	0.0 (100%)	Staphylococcus phage S25-4
Gp149	111510112766	recombinase protein	418	46793	AZB49858.1	0.0 (100%)	Staphylococcus phage 812
Gp150	112770113123	hypothetical protein	117	13379	YP_009041370.1	9e-80 (100%)	Staphylococcus virus K
Gp151	113110113772	RNA polymerase sigma factor	220	26610	AQT25578.1	8e-157 (100%)	Staphylococcus phage pSa-3
Gp152	113899114531	hypothetical protein	210	23172	YP_008854277.1	2e-150 (100%)	Staphylococcus phage S25-3
Gp153	114545115066	Ig-like protein	173	18147	AEA36766.1	4e-116 (100%)	Staphylococcus phage GH15
Gp154	115081115308	major tail protein	75	7787	YP_007112935.1	5e-45 (100%)	Staphylococcus phage JD007
Gp155	115403115663	hypothetical protein	86	10273	YP_007002274.1	2e-55 (100%)	Staphylococcus phage GH15
Gp156	115667116422	hypothetical protein	251	29112	YP_007112933.1	2e-180 (100%)	Staphylococcus phage JD007
Gp157	116415117665	DNA polymerase	416	47534	YP_007112932.1	0.0 (100%)	Staphylococcus phage JD007
Gp158	117679118047	membrane protein	122	14008	YP_007112931.1	2e-81 (100%)	Staphylococcus phage JD007
Gp159	118034118345	hypothetical protein	103	12010	YP_008873658.1	1e-68 (100%)	Staphylococcus phage Sb1
Gp160	118409118945	hypothetical protein	178	20824	YP_240973.1	6e-128 (100%)	Staphylococcus virus G1
Gp161	118938119705	hypothetical protein	255	30046	YP_007112928.1	0.0 (100%)	Staphylococcus phage JD007
Gp162	119683120129	hypothetical protein	148	17337	YP_008854111.1	4e-104 (100%)	Staphylococcus phage S25-4
Gp163	120129120992	hypothetical protein	287	32356	YP_008854112.1	0.0 (100%)	Staphylococcus phage S25-4
Gp164	121364122095	hypothetical protein	243	28351	ARQ96133.1	8e-174 (100%)	Staphylococcus phage qdsa002
Gp165	122113122571	hypothetical protein	152	17850	YP_007002284.1	3e-106 (100%)	Staphylococcus phage GH15
Gp166	122636123079	hypothetical protein	147	17497	YP_007112923.1	3e-99 (100%)	Staphylococcus phage JD007
Gp167	123096123800	hypothetical protein	234	27400	YP_007112922.1	9e-169 (100%)	Staphylococcus phage JD007
Gp168	123862124260	putative membrane protein	132	15429	YP_009098309.1	7e-91 (100%)	Staphylococcus phage Team1

Gp169	124407124649	hypothetical protein	80	9421	YP_007112920.1	7e-49 (100%)	Staphylococcus phage JD007
Gp170	124654125211	hypothetical protein	185	21702	ARM69003.1	9e-132 (100%)	Staphylococcus phage vB_Sau_CG
Gp171	125247125423	hypothetical protein	58	6988	YP_240984.1	5e-33 (100%)	Staphylococcus virus G1
Gp172	125413125664	hypothetical protein	83	9190	ARQ96141.1	5e-50 (100%)	Staphylococcus phage qdsa002
Gp173	125657125890	hypothetical protein	77	8840	YP_008854298.1	8e-48 (100%)	Staphylococcus phage S25-3
Gp174	125971126615	hypothetical protein	214	25138	YP_008854123.1	3e-148 (100%)	Staphylococcus phage S25-4
Gp175	126630126878	hypothetical protein	82	9067	AVX47531.1	2e-45 (100%)	Staphylococcus phage vB_SauM_0414_108
Gp176	126890127066	hypothetical protein	58	6991	YP_008854125.1	1e-31 (100%)	Staphylococcus phage S25-4
Gp177	127059127355	hypothetical protein	98	11342	YP_240987.1	3e-63 (100%)	Staphylococcus virus G1
Gp178	127394127585	Putative membrane protein	63	7511	ACB89144.1	4e-35 (100%)	Staphylococcus phage A5W
Gp179	127598127966	hypothetical protein	122	14272	YP_007112910.1	1e-82 (100%)	Staphylococcus phage JD007
Gp180	127979128326	hypothetical protein	115	13029	AFN38826.1	5e-77 (100%)	Staphylococcus phage MSA6
Gp181	128326128604	hypothetical protein	92	10184	YP_009098321.1	1e-56 (100%)	Staphylococcus phage Team1
Gp182	128665128979	hypothetical protein	104	12520	YP_008854307.1	1e-67 (97%)	Staphylococcus phage S25-3
Gp183	128994129344	hypothetical protein	116	13711	YP_009041401.1	7e-77 (100%)	Staphylococcus virus K
Gp184	129344129946	hypothetical protein	200	23356	YP_240994.1	2e-145 (100%)	Staphylococcus virus G1
Gp185	129960130139	hypothetical protein	59	7275	YP_007112904.1	8e-35 (100%)	Staphylococcus phage JD007
Gp186	130366130776	hypothetical protein	136	15400	YP_007112903.1	4e-91 (100%)	Staphylococcus phage JD007
Gp187	130778131071	hypothetical protein	97	11672	YP_007112902.1	7e-63 (100%)	Staphylococcus phage JD007
Gp188	131088131375	hypothetical protein	95	10540	YP_240999.1	1e-59 (100%)	Staphylococcus virus G1
Gp189	131492131755	hypothetical protein	87	9918	YP_007112899.1	1e-53 (100%)	Staphylococcus phage JD007
Gp190	131833132138	hypothetical protein	101	11777	YP_008854311.1	2e-65 (100%)	Staphylococcus phage S25-3

Gp191	132138132542	hypothetical protein	134	15169	YP_007112897.1	3e-88 (100%)	Staphylococcus phage JD007
Gp192	132547132783	hypothetical protein	78	9192	YP_007112896.1	2e-48 (100%)	Staphylococcus phage JD007
Gp193	132780133307	Phosphoesterase	175	20597	YP_009006842.1	7e-126 (100%)	Staphylococcus phage phiSA12
Gp194	133288133608	hypothetical protein	106	12898	YP_008854315.1	5e-68 (100%)	Staphylococcus phage S25-3
Gp195	133608133838	hypothetical protein	76	8860	YP_008854316.1	3e-44 (100%)	Staphylococcus phage S25-3
Gp196	133891134070	hypothetical protein	59	6422	AFN38011.1	1e-29 (100%)	Staphylococcus phage Staph1N
Gp197	134085134348	hypothetical protein	87	10251	YP_007112891.1	7e-56% (100%)	Staphylococcus phage JD007
Gp198	134351134668	hypothetical protein	105	11992	YP_007112890.1	1e-68 (100%)	Staphylococcus phage JD007
Gp199	134669135349	hypothetical protein	226	25749	YP_007112889.1	8e-160 (100%)	Staphylococcus phage JD007
Gp200	135427135585	membrane protein	52	5686	YP_007112888.1	2e-23 (100%)	Staphylococcus phage JD007
Gp201	135601135825	hypothetical protein	74	8573	YP_007112887.1	2e-46 (100%)	Staphylococcus phage JD007
Gp202	135838136038	hypothetical protein	66	7699	YP_008854323.1	9e-42 (100%)	Staphylococcus phage S25-3
Gp203	136039136329	Putative membrane protein	96	11082	YP_009006850.1	2e-58 (100%)	Staphylococcus phage phiSA12
Gp204	136423136731	hypothetical protein	102	12049	YP_007112884.1	5e-63 (100%)	Staphylococcus phage JD007
Gp205	136728137636	Ribose-phosphate pyrophosphokinase	302	35262	YP_008854326.1	0.0 (100%)	Staphylococcus phage S25-3
Gp206	137651138046	hypothetical protein	131	15360	BBC69643.1	2e-87 (100%)	Staphylococcus phage phiSA039
Gp207	138050139519	Nicotinamide phosphoribosyltransferase	489	56176	YP_009006853.1	0.0 (100%)	Staphylococcus phage phiSA12
Gp208	139598139843	hypothetical protein	81	9830	YP_008854328.1	2e-50 (100%)	Staphylococcus phage S25-3
Gp209	139860140252	hypothetical protein	130	15352	YP_007112880.1	1e-86 (100%)	Staphylococcus phage JD007
Gp210	140254140451	hypothetical protein	65	7838	YP_007112879.1	2e-39 (100%)	Staphylococcus phage JD007
Gp211	140516140812	hypothetical protein	98	11330	YP_007112878.1	9e-64 (100%)	Staphylococcus phage JD007
Gp212	140816141127	hypothetical protein	103	11715	YP_009006858.1	1e-66 (100%)	Staphylococcus phage phiSA12

Gp213	141130141369	hypothetical protein	79	9779	BBC69651.1	2e-49 (100%)	Staphylococcus phage phiSA039
Gp214	141359141514	hypothetical protein	51	6141	YP_007112875.1	2e-29 (100%)	Staphylococcus phage JD007
Gp215	141518141712	hypothetical protein	64	7717	YP_009041432.1	3e-37 (100%)	Staphylococcus virus K
Gp216	141729142082	hypothetical protein	117	13906	YP_007112873.1	4e-77 (100%)	Staphylococcus phage JD007
Gp217	142101142487	hypothetical protein	128	15650	YP_007112872.1	5e-85 (100%)	Staphylococcus phage JD007
Gp001	143133143294	hypothetical protein	53	6072	YP_007112871.1	9e-31 (100%)	Staphylococcus phage JD007
Gp002	143389143697	hypothetical protein	102	11792	YP_007112870.1	6e-67 (100%)	Staphylococcus phage JD007
Gp003	143709144008	hypothetical protein	99	11562	YP_007112869.1	1e-63 (100%)	Staphylococcus phage JD007
Gp004	144024144209	TreB	61	6855	YP_007112868.1	3e-31 (100%)	Staphylococcus phage JD007
Gp005	144317144637	hypothetical protein	106	12354	AVX47357.1	4e-46 (100%)	Staphylococcus phage vB_SauM_0414_108
Gp006	144652144945	hypothetical protein	97	11604	BBC69665.1	7e-64 (100%)	Staphylococcus phage phiSA039
Gp007	144949145206	hypothetical protein	85	10310	YP_009196035.1	1e-53 (100%)	Staphylococcus phage philPLA-RODI
Gp008	145320145559	hypothetical protein	79	8973	YP_009196036.1	1e-41 (100%)	Staphylococcus phage philPLA-RODI
Gp009	145570145917	hypothetical protein	115	13689	YP_009098142.1	4e-77 (100%)	Staphylococcus phage Team1
Gp010c	c(146124146462)	hypothetical protein	112	13472	YP_009196038.1	1e-71 (100%)	Staphylococcus phage philPLA-RODI
Gp011	146773147081	TreJ	102	11768	AFN37829.1	5e-69 (100%)	Staphylococcus phage Staph1N
Gp012	147288147575	hypothetical protein	95	11102	YP_007112861.1	1e-63 (100%)	Staphylococcus phage JD007
Gp013	147625147897	hypothetical protein	90	10539	ARM69069.1	1e-57 (100%)	Staphylococcus phage vB_Sau_CG
Gp014	148421148579	hypothetical protein	52	6070	YP_007112859.1	9e-27 (100%)	Staphylococcus phage JD007
Gp015	148746149069	TreP	107	12352	YP_007112857.1	9e-72 (100%)	Staphylococcus phage JD007
Gp016	149163149675	hypothetical protein	170	20780	AXU40178.1	1e-108 (98%)	Staphylococcus phage VB_SavM_JYL01
Gp017	149739150095	hypothetical protein	118	13865	VEV88121.1	7e-71 (98%)	Staphylococcus phage Stab20

Gp018	150625150846	hypothetical protein	73	8469	YP_007112855.1	2e-45 (100%)	Staphylococcus phage JD007
Gp019	150927151064	hypothetical protein	45	5459	YP_007112854.1	4e-24 (100%)	Staphylococcus phage JD007
Gp020	151126151299	hypothetical protein	57	6765	VEV88124.1	1e-31 (100%)	Staphylococcus phage Stab20
Gp021	151552152022	hypothetical protein	156	17885	AVX47376.1	5e-103 (100%)	Staphylococcus phage vB_SauM_0414_108
Gp022	152082152279	hypothetical protein	65	7481	VEV88129.1	5e-33 (100%)	Staphylococcus phage Stab20
Gp023	152285152467	terminal repeat-encoded protein	60	6962	VEV88130.1	5e-31 (100%)	Staphylococcus phage Stab20
Gp024	152467153123	hypothetical protein	218	25574	AUV56944.1	6e-72 (97%)	Staphylococcus phage vB_SauM_LM12
Gp025	153131153406	Terminal repeat-encoded protein	91	10518	YP_009195839.1	4e-23 (100%)	Staphylococcus phage philPLA-RODI
Gp026	153482153670	hypothetical protein	62	7512	YP_007002139.1	1e-35 (100%)	Staphylococcus phage GH15

Stab22										
<u>Gp</u>	Genomic location	Predicted function	<u>AA</u>	<u>MW</u>	Best hit acc. No.	<u>e-value (query</u> <u>coverage %)</u>	phage with similar gene			
Gp001	312491	hypothetical protein	59	7075	YP_008854130.1	3e-15 (96%)	Staphylococcus phage S25-4			
Gp002	7151239	hypothetical protein	174	19562	AVP40463.1	4e-69 (98%)	Staphylococcus phage phiSA_BS1			
Gp003	13071519	hypothetical protein	70	7958						
Gp004	18692162	TreA	97	11137	ARM69483.1	2e-56 (100%)	Staphylococcus phage vB_Sau_S24			
Gp005	21592344	membrane protein	61	7046	YP_008853952.1	8e-17 (98%)	Staphylococcus phage S25-4			
Gp006	23472520	membrane protein	57	6631	ARM69272.1	5e-17 (100%)	Staphylococcus phage vB_Sau_Clo6			
Gp007	25322828	hypothetical protein	98	11140	AXU40163.1	1e-50 (100%)	Staphylococcus phage VB_SavM_JYL01			
Gp008	30433246	putative membrane protein	67	7957						
Gp009	32593573	hypothetical protein	104	11887	ARM69275.1	2e-72 (100%)	Staphylococcus phage vB_Sau_Clo6			
Gp010	35873886	hypothetical protein	99	11591	ARM69488.1	8e-63 (100%)	Staphylococcus phage vB_Sau_S24			
Gp011	39034190	TreC	95	10992	ARM69276.1	4e-51 (100%)	Staphylococcus phage vB_Sau_Clo6			
Gp012	41904486	TreE	98	11398	ARM69278.1	3e-34 (100%)	Staphylococcus phage vB_Sau_Clo6			
Gp013	45114738	TreF	75	8713	ARM69279.1	1e-44 (100%)	Staphylococcus phage vB_Sau_Clo6			
Gp014	47754985	terminal repeat-encoded protein	76	9014	YP_009099458.1	3e-21 (100%)	Staphylococcus phage P108			
Gp015	50695332	hypothetical protein	87	10195	YP_008853956.1	1e-37 (91%)	Staphylococcus phage S25-4			
Gp016	53325583	terminal repeat-encoded protein	83	9443	BBC69667.1	2e-18 (100%)	Staphylococcus phage phiSA039			
Gp017c	(58346118)c	hypothetical protein	94	11231	ASZ78147.1	1e-54 (100%)	Staphylococcus phage SA3			

 Table 3: Putative gene products of Stab22 phage NCBI/ENA accession number (acc. No.): LR215720, and its homology to Kayvirus phages at protein level.

Gp018	65186832	TreJ	104	12109	ARM69283.1	4e-60 (98%)	Staphylococcus phage vB_Sau_Clo6
Gp019	69397409	hypothetical protein	156	18824	AVP40358.1	4e-92 (100%)	Staphylococcus phage phiSA_BS1
Gp020	74837737	hypothetical protein	84	9973	AVR55650.1	5e-40 (100%)	Staphylococcus phage phiSA_BS2
Gp021	82658555	hypothetical protein	96	11308			
Gp022	88929143	hypothetical protein	83	9758	AVP40364.1	2e-37 (100%)	Staphylococcus phage phiSA_BS1
Gp023	92149621	hypothetical protein	135	15710	YP_009097937.1	1e-83 (98%)	Staphylococcus phage MCE-2014
Gp024	1011710434	hypothetical protein	105	11917	BBC69674.1	1e-49 (98%)	Staphylococcus phage phiSA039
Gp025	1051210748	hypothetical protein	78	9068	ARM69294.1	6e-37 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp026	1083611318	terminal repeat-encoded protein	160	18554	YP_009195837.1	4e-76 (99%)	Staphylococcus phage phiIPLA-RODI
Gp027	1139911587	hypothetical protein	62	7258	VEV88129.1	2e-33 (100%)	Staphylococcus phage Stab20
Gp028	1160011869	TreT protein	89	10190	VEV88131.1	1e-48 (100%)	Staphylococcus phage Stab20
Gp029	1195612186)	TreU protein	76	9177	VEV88132.1	2e-36 (100%)	Staphylococcus phage Stab20
Gp030c	c(1244812711)	BofL	87	10640	YP_007002141.1	1e-24 (100%)	Staphylococcus phage GH15
Gp031c	c(1272712972)	hypothetical protein	81	9652	AXU40190.1	4e-52 (100%)	Staphylococcus phage VB_SavM_JYL01
Gp032c	c(1297213403)	hypothetical protein	143	17363	YP_009195845.1	2e-86 (100%)	Staphylococcus phage phiIPLA-RODI
Gp033c	c(1340013837)	hypothetical protein	145	16823	AVR55457.1	2e-92 (97%)	Staphylococcus phage phiSA_BS2
Gp034c	c(1385114393)	hypothetical protein	180	21507	YP_007002151.1	3e-124 (100%)	Staphylococcus phage GH15
Gp035c	c(1440514893)	GTP cyclohydrolase II	162	19487	ARM69517.1	6e-116 (100%)	Staphylococcus phage vB_Sau_S24
Gp036c	c(1504515755)	Serine/threonine phosphatase protein	236	27927	YP_009006684.1	8e-158 (100%)	Staphylococcus phage phiSA12
Gp037c	c(1691217460)	hypothetical protein	182	21968	YP_008853987.1	1e-108 (100%)	Staphylococcus phage S25-4
Gp038c	c(1759117830)	hypothetical protein	79	9442	YP_007002161.1	7e-48 (100%)	Staphylococcus phage GH15
Gp039c	c(1783218218)	hypothetical protein	128	14789	ASZ78180.1	8e-78 (100%)	Staphylococcus phage SA3
Gp040c	c(1831818491)	hypothetical protein	57	6819	YP_007002163.1	3e-36 (100%)	Staphylococcus phage GH15

Gp041c	c(1853219014)	hypothetical protein	160	19046	VEV88152.1	2e-107 (100%)	Staphylococcus phage Stab20
Gp042c	c(1906419600)	hypothetical protein	178	20718	ARM69316.1	6e-79 (99%)	Staphylococcus phage vB_Sau_Clo6
Gp043c	c(1960020133)	hypothetical protein	177	20637	ARM69317.1	8e-117 (98%)	Staphylococcus phage vB_Sau_Clo6
Gp044c	c(2013620300)	putative membrane protein	54	6286	YP_007002167.1	3e-26 (100%)	Staphylococcus phage GH15
Gp045c	c(2030020599)	putative membrane protein	98	11605	ARM69530.1	2e-35 (100%)	Staphylococcus phage vB_Sau_S24
Gp046c	c(2059921444)	hypothetical protein	281	31668	ARM69531.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp047c	c(2145722575)	AAA family ATPase	372	42054	ARM69321.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp048c	c(2272923070)	hypothetical protein	113	13285	VEV88159.1	6e-72 (100%)	Staphylococcus phage Stab20
Gp049c	c(2304823464)	hypothetical protein	138	15941	YP_007002172.1	3e-95 (100%)	Staphylococcus phage GH15
Gp050c	c(2359823900)	NTP pyrophosphohydrolase	100	11304	YP_007002173.1	4e-66 (99%)	Staphylococcus phage GH15
Gp051c	c(2390024088)	hypothetical protein	62	7292	ARM69325.1	1e-35 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp052c	c(2413224293)	hypothetical protein	53	6447	ARM69537.1	9e-31 (100%)	Staphylococcus phage vB_Sau_S24
Gp053c	c(2429426345)	hypothetical protein	683	79762	YP_008854006.1	0.0 (100%)	Staphylococcus phage S25-4
Gp054c	c(2642226685)	hypothetical protein	87	10190	ARM69328.1	1e-55 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp055c	c(2670226875)	LysM domain-containing protein	57	6656	YP_007002178.1	5e-33 (100%)	Staphylococcus phage GH15
Gp056c	c(2688227460)	membrane protein	192	21498	ARM69541.1	3e-130 (100%)	Staphylococcus phage vB_Sau_S24
Gp057c	c(2745328055)	nucleoside 2-deoxyribosyltransferase protein	200	22430	VEV88168.1	4e-116 (100%)	Staphylococcus phage Stab20
Gp058c	c(2805528192)	hypothetical protein	45	4936	VEV88417.1	6e-23 (100%)	Staphylococcus phage Stab23
Gp059c	c(2819428604)	hypothetical protein	136	15636	AVP40314.1	3e-90 (100%)	Staphylococcus phage phiSA_BS1
Gp060c	c(2860428828)	putative membrane protein	74	8129	ARM69543.1	1e-36 (100%)	Staphylococcus phage vB_Sau_S24
Gp061c	c(2889629636)	PhoH-related protein	246	28646	ARM69333.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp062c	c(2969030265)	hypothetical protein	191	21477	ARM69334.1	6e-129 (100%)	Staphylococcus phage vB_Sau_Clo6

Gp063c	c(3028330708)	ribonuclease H	141	15844	ARM69546.1	5e-96 (100%)	Staphylococcus phage vB_Sau_S24
Gp064c	c(3070130889)	hypothetical protein	62	7442	ARM69336.1	2e-36 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp065c	c(3091231553)	hypothetical protein	213	24475	ARM69337.1	7e-144 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp066c	c(3154331773)	transcriptional regulator	76	8831	YP_007112802.1	4e-49 (100%)	Staphylococcus phage JD007
Gp067c	c(3177632003)	hypothetical protein	75	9231	YP_007002190.1	4e-44 (100%)	Staphylococcus phage GH15
Gp068c	c(3211332811)	transglycosylase	232	25289	ARM69551.1	3e-168 (100%)	Staphylococcus phage vB_Sau_S24
Gp069c	c(3300133795)	putative membrane protein	264	29353	VEV89254.1	0.0 (100%)	Staphylococcus phage Stab23
Gp070c	c(3379634104)	putative membrane protein	102	12254	AUV57026.1	2e-63 (100%)	Staphylococcus phage vB_SauM_LM12
Gp071c	c(3421934514)	hypothetical protein	98	11766	VEV89258.1	8e-65 (100%)	Staphylococcus phage Stab23
Gp072c	c(3461636106)	N-acetylmuramoyl-L-alanine amidase	496	54904	YP_009097995.1	0.0 (100%)	Staphylococcus phage MCE-2014
Gp073c	c(3610636609)	holin	167	18068	YP_009195894.1	2e-116 (100%)	Staphylococcus phage philPLA-RODI
Gp074c	c(3669536880)	hypothetical protein	61	7052	YP_007002196.1	7e-36 (100%)	Staphylococcus phage GH15
Gp075c	c(3821938437)	hypothetical protein	72	8709	YP_007002197.1	5e-47 (100%)	Staphylococcus phage GH15
Gp076c	c(3890639115)	hypothetical protein	69	7871	ANH50542.1	1e-41 (100%)	Staphylococcus phage pSco-10
Gp077c	c(3912839460)	hypothetical protein	110	12563	YP_007002199.1	1e-69 (100%)	Staphylococcus phage GH15
Gp078c	c(3947339799)	putative membrane protein	108	13157	ARM69350.1	1e-71 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp079	4023940625	membrane protein	128	14809	YP_009195900.1	2e-57 (100%)	Staphylococcus phage philPLA-RODI
Gp080	4060340881	hypothetical protein	92	10610	ANH50538.1	4e-61 (100%)	Staphylococcus phage pSco-10
Gp081	4087841288	hypothetical protein	136	15698	ANH50537.1	8e-93 (100%)	Staphylococcus phage pSco-10
Gp082	4130343120	terminase, large subunit	605	70430	ARM69355.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp083	4313443934	hypothetical protein	266	29765	ARM69356.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp084	4392144094	hypothetical protein	57	6755	ARM69144.1	1e-28 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp085	4409144570	hypothetical protein	159	18521	YP_007002208.1	1e-109 (100%)	Staphylococcus phage GH15

Gp086	4466345823	hypothetical protein	386	42608	AUV56911.1	4e-146 (100%)	Staphylococcus phage vB_SauM_LM12
Gp087	4596246252	membrane protein	96	11038	ARM69147.1	3e-59 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp088	4625846629	hypothetical protein	123	14479	YP_009195910.1	2e-85 (100%)	Staphylococcus phage phiIPLA-RODI
Gp089	4663348324	portal protein	563	63969	ARM69149.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp090	4851849282	prohead protease	254	28019	ARM69150.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp091	4930150260	hypothetical protein	319	36065	ARM69364.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp092	5037651767	major capsid protein	463	51298	ANH50522.1	0.0 (100%)	Staphylococcus phage pSco-10
Gp093	5185952131	hypothetical protein	90	10280	ANH50521.1	1e-42 (100%)	Staphylococcus phage pSco-10
Gp094	5214453052	hypothetical protein	302	34108	ARM69154.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp095	5306653944	capsid protein	292	33715	ARM69368.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp096	5394454564	hypothetical protein	206	23735	ANH50518.1	2e-147 (100%)	Staphylococcus phage pSco-10
Gp097	5458355419	hypothetical protein	278	31816	YP_007112771.1	0.0 (100%)	Staphylococcus phage JD007
Gp098	5542155636	hypothetical protein	71	8252	YP_007002221.1	3e-47 (100%)	Staphylococcus phage GH15
Gp099	5566357426	major tail sheath	587	64225	ASZ78017.1	0.0 (100%)	Staphylococcus phage SA3
Gp100	5749957909	tail tube protein	136	15202	AFN38130.1	3e-90 (100%)	Staphylococcus phage A3R
Gp101	5843159729	hypothetical protein	432	50246	YP_238556.1	5e-156 (99%)	Staphylococcus virus Twort
Gp102	5978459942	hypothetical protein	52	6502	YP_009006753.1	1e-29 (100%)	Staphylococcus phage phiSA12
Gp103	5993260069	hypothetical protein	45	5334	AFN38132.1	8e-19 (100%)	Staphylococcus phage A3R
Gp104	6010360564	hypothetical protein	153	18043	ARM68939.1	4e-104 (98%)	Staphylococcus phage vB_Sau_CG
Gp105	6057760771	membrane protein	64	6992	ANH50510.1	3e-34 (100%)	Staphylococcus phage pSco-10
Gp106	6084261153	hypothetical protein	106	12160	YP_007002227.1	2e-62 (100%)	Staphylococcus phage GH15
Gp107	6128561740	hypothetical protein	151	17978	ARM69381.1	2e-104 (100%)	Staphylococcus phage vB_Sau_S24
Gp108	6177562320	tail morphogenetic protein	181	21234	AXU40054.1	3e-129 (100%)	Staphylococcus phage VB_SavM_JYL01

Gp109	6237366422	tail length tape-measure protein	1349	143659	ARM69383.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp110	6650268925	tail lysin	807	91433	ASZ78029.1	0.0 (100%)	Staphylococcus phage SA3
Gp111	6893969826	protease	295	34633	YP_009195932.1	0.0 (100%)	Staphylococcus phage philPLA-RODI
Gp112	6982672372	Glycerophosphoryl diester phosphodiesterase	848	96077	ARM69386.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp113	7247973270	hypothetical protein	263	29292	ARM69174.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp114	7327073794	hypothetical protein	174	19948	ARM69175.1	2e-123 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp115	7379474498	baseplate wedge subunit protein	234	26539	ARM69389.1	5e-172 (100%)	Staphylococcus phage vB_Sau_S24
Gp116	7451375559	baseplate morphogenetic protein	348	39121	ARM69177.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp117	7558077820	hypothetical protein	746	85246	YP_008854069.1	0.0 (100%)	Staphylococcus phage S25-4
Gp118	7792878449	structural protein	173	19298	BBC69556.1	2e-124 (100%)	Staphylococcus phage phiSA039
Gp119	7847081946	adsorption-associated tail protein	1158	129844	ARM69393.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp120	8199582153	hypothetical protein	52	6277	YP_008854072.1	3e-29 (100%)	Staphylococcus phage S25-4
Gp121	8215484073	hypothetical protein	639	73210	ARM69182.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp122	8408784452	hypothetical protein	121	14388	ARM69183.1	5e-74 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp123	8445985832	tail fiber protein	457	50960	ARM69184.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp124	8592187669	DNA helicase A	582	67211	ARM69399.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp125	8768189294	Rep protein	537	63201	ARM69186.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp126	8928790729	DNA helicase B	480	54531	ARM69187.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp127	9080891089	hypothetical protein	93	10916	AVP40297.1	4e-54 (100%)	Staphylococcus phage phiSA_BS1
Gp128	9108992114	recombination exonuclease A	341	39505	YP_008854079.1	0.0 (100%)	Staphylococcus phage S25-4
Gp129	9211494033	recombination exonuclease B	639	73035	ARM69190.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp130	9403394629	anti-sigma factor	198	23365	ARM69192.1	2e-133 (100%)	Staphylococcus phage vB_Sau_Clo6

Gp131	9464495711	DNA primase	355	40979	ANH50483.1	0.0 (100%)	Staphylococcus phage pSco-10
Gp132	9577796115	hypothetical protein	112	12964	YP_240943.1	2e-72 (100%)	Staphylococcus virus G1
Gp133	9611596567	hypothetical protein	150	17155	ANH50481.1	5e-99 (100%)	Staphylococcus phage pSco-10
Gp134	9655497162	resolvase	202	23617	ANH50480.1	1e-147 (100%)	Staphylococcus phage pSco-10
Gp135	9717997571	Ribonucleotide reduction protein Class Ib, Nrdl	130	14764	ARM69197.1	1e-90 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp136	9758699700	Ribonucleotide reductase, large subunit	704	80063	ARM69198.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp137	99714100763	Ribonucleotide reductase, small subunit	349	40410	YP_009099373.1	0.0 (100%)	Staphylococcus phage P108
Gp138	100781101110	hypothetical protein	109	12401	ARM69413.1	5e-75 (100%)	Staphylococcus phage vB_Sau_S24
Gp139	101094101414	thioredoxin	106	12048	ARM69201.1	3e-70 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp140	101622102218	hypothetical protein	198	23602	YP_007002262.1	2e-141 (100%)	Staphylococcus phage GH15
Gp141	102228102533	integration host factor	101	11839	ANH50469.1	2e-67 (100%)	Staphylococcus phage pSco-10
Gp142	102609105827	DNA polymerase A	1072	124521	ARM69417.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp143	105896106138	hypothetical protein	80	9144	ARM69418.1	1e-49 (100%)	Staphylococcus phage vB_Sau_S24
Gp144	106155106637	hypothetical protein	160	18974	ANH50464.1	3e-117 (100%)	Staphylococcus phage pSco-10
Gp145	106724107902	hypothetical protein	392	43625	ARM69420.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp146	107962109209	DNA repair recombinase protein	415	46753	YP_007002268.1	0.0 (100%)	Staphylococcus phage GH15
Gp147	109213109566	hypothetical protein	117	13421	YP_007002269.1	2e-80 (99%)	Staphylococcus phage GH15
Gp148	109553110215	RNA polymerase sigma factor	220	26600	ARM69210.1	2e-157 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp149	110342110974	hypothetical protein	210	23241	YP_008873652.1	2e-149 (100%)	Staphylococcus phage Sb1
Gp150	110987111508	tail morphogenetic protein	173	18261	AEA36766.1	5e-113 (99%)	Staphylococcus phage GH15
Gp151	111523111759	Ig-like domain	78	8101	AVX47510.1	1e-40 (92%)	Staphylococcus phage vB_SauM_0414_108

Gp152	111856112116	hypothetical protein	86	10205	ARM69214.1	7e-57 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp153	112120112875	hypothetical protein	251	29132	ARM69215.1	1e-180 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp154	112868114118	metallophosphoesterase	416	47610	ARM69429.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp155	114132114500	membrane protein	122	14023	YP_009006809.1	4e-82 (100%)	Staphylococcus phage phiSA12
Gp156	114487114798	hypothetical protein	103	11967	ARM69431.1	2e-70 (100%)	Staphylococcus phage vB_Sau_S24
Gp157	114864115400	hypothetical protein	178	20826	ARM69219.1	5e-129 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp158	115393116160	hypothetical protein	255	30047	ARM69220.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp159	116138116584	hypothetical protein	148	17405	ANH50449.1	2e-130 (100%)	Staphylococcus phage pSco-10
Gp160	116584117447	hypothetical protein	287	32298	VEV88618.1	0.0 (100%)	Staphylococcus phage Stab23
Gp161	117806118537	hypothetical protein	243	28342	YP_007002283.1	9e-175 (100%)	Staphylococcus phage GH15
Gp162	118555119013	hypothetical protein	152	17823	YP_007002284.1	2e-106 (100%)	Staphylococcus phage GH15
Gp163	119078119521	hypothetical protein	147	17443	ARM69438.1	2e-99 (100%)	Staphylococcus phage vB_Sau_S24
Gp164	19538120242	hypothetical protein	234	27570	ARM69439.1	6e-161 (100%)	Staphylococcus phage vB_Sau_S24
Gp165	120305120703	hypothetical protein	132	15381	ARM69227.1	5e-79 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp166	120851121096	hypothetical protein	81	9504	ARM69228.1	2e-48 (97%)	Staphylococcus phage vB_Sau_Clo6
Gp167	121166121342	hypothetical protein	58	7052	YP_007002290.1	1e-31 (100%)	Staphylococcus phage GH15
Gp168	121335121583	putative membrane protein	82	9125	VEV88279.1	3e-48 (100%)	Staphylococcus phage Stab20
Gp169	121576121809	hypothetical protein	77	8869	ARM69232.1	4e-47 (100%)	Staphylococcus phage vB_Sau_Clo6
		Ribulose 1,5-biphosphate					
Gp170	121889122533	carboxylase/oxygenase small subunit	214	25071	ARM69446.1	1e-144 (100%)	Staphylococcus phage vB_Sau_S24
Gp171	122808122984	hypothetical protein	58	6924	ARM69448.1	1e-32 (100%)	Staphylococcus phage vB_Sau_S24
Gp172	122977123273	hypothetical protein	98	11449	YP_009098099.1	1e-61 (100%)	Staphylococcus phage MCE-2014
Gp173	123312123503	membrane protein	63	7398	ACB89144.1	6e-32 (100%)	Staphylococcus phage A5W

Gp174	123515123901	hypothetical protein	128	15095	YP_009195998.1	3e-64 (100%)	Staphylococcus phage philPLA-RODI
Gp175	123914124261	hypothetical protein	115	13047	ANH50431.1	5e-74 (100%)	Staphylococcus phage pSco-10
Gp176	1246267124539	membrane protein	90	9959	ARM69240.1	5e-53 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp177	124599124919	hypothetical protein	106	12690	VEV88288.1	1e-65 (97%)	Staphylococcus phage Stab20
Gp178	124942126000	hypothetical protein	352	41190	YP_009098107.1	5e-70 (99%)	Staphylococcus phage MCE-2014
Gp179	125979126356	hypothetical protein	125	14672	ARM69242.1	6e-71 (92%)	Staphylococcus phage vB_Sau_Clo6
Gp180	126356126958	hypothetical protein	200	23377	YP_007002302.1	5e-145 (100%)	Staphylococcus phage GH15
Gp181	126978127370	hypothetical protein	130	15125	AZB66577.1	4e-15 (100%)	Staphylococcus phage phiSP38-1
Gp182	127371127559	hypothetical protein	62	7570	ANH50426.1	3e-30 (95%)	Staphylococcus phage pSco-10
Gp183	127885128334	putative membrane protein	149	16749	ARM69244.1	5e-80 (91%)	Staphylococcus phage vB_Sau_Clo6
Gp184	128336128626	hypothetical protein	97	11624	ARM69458.1	2e-60 (100%)	Staphylococcus phage vB_Sau_S24
Gp185	128646128873	putative membrane protein	75	8216	YP_238658.1	8.6	Staphylococcus virus Twort
Gp186	128889129176	hypothetical protein	95	10902	ARM69460.1	3e-45 (100%)	Staphylococcus phage vB_Sau_S24
Gp187	129178129843	hypothetical protein	221	25004	ARM69461.1	1e-150 (100%)	Staphylococcus phage vB_Sau_S24
Gp188	129920130225	hypothetical protein	101	11643	ARM69248.1	9e-63 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp189	130225130638	hypothetical protein	137	15305	ARM69249.1	1e-50 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp190	130641131165	metallophosphoesterase	174	20477	YP_007002312.1	3e-122 (100%)	Staphylococcus phage GH15
Gp191	131258131437	putative membrane protein	59	6360	AUV57092.1	2e-30 (100%)	Staphylococcus phage vB_SauM_LM12
Gp192	131452131715	hypothetical protein	87	10295	YP_009041416.1	8e-50 (98%)	Staphylococcus virus K
Gp193	131718132035	hypothetical protein	105	12066	ARM69464.1	9e-67 (100%)	Staphylococcus phage vB_Sau_S24
Gp194	132036132716	hypothetical protein	226	25789	ARM69036.1	2e-130 (100%)	Staphylococcus phage vB_Sau_CG
Gp195	132794133018	hypothetical protein	74	8477	ARM69252.1	9e-48 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp196	133034133294	membrane protein	86	9708	BBC69640.1	1e-27 (97%)	Staphylococcus phage phiSA039
Gp197	13310134218	ribose-phosphate pyrophosphokinase	302	34752	ARM69253.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
-------	--------------	--	-----	-------	----------------	--------------	-----------------------------------
Gp198	134236136674	nicotinamide phosphoribosyl transferase	812	93458	ARM69254.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp199	136754137008	hypothetical protein	84	9939	ARM69469.1	7e-47 (100%)	Staphylococcus phage vB_Sau_S24
Gp200	137031137342	hypothetical protein	103	11707	ARM69256.1	1e-66 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp201	137367137801	hypothetical protein	144	16853	AVR55483.1	1e-77 (97%)	Staphylococcus phage phiSA_BS2
Gp202	137794137938	hypothetical protein	48	5772			
Gp203	138187138336	hypothetical protein	49	6062	AUV57107.1	1e-11 (100%)	Staphylococcus phage vB_SauM_LM12
Gp204	138365138628	hypothetical protein	88	10778	ATP66760.1		
Gp205	138660138971	hypothetical protein	103	12128	ARM69266.1	2e-52 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp206	138986139333	hypothetical protein	115	13463	AVP40379.1	6e-59 (98%)	Staphylococcus phage phiSA_BS1
Gp207	139348139827	hypothetical protein	159	18930	ANH50414.1	6e-22 (39%)	Staphylococcus phage pSco-10
Gp208	139901140023	hypothetical protein	40	4852	ARM69258.1	3e-17 (92%)	Staphylococcus phage vB_Sau_Clo6
Gp209	140055140228	hypothetical protein	57	7022	ANT44694.1	4e-24 (100%)	Staphylococcus phage vB_SscM-1
Gp210	140297140494	hypothetical protein	66	7636	AXF38435.1	4e-15 (92%)	Staphylococcus phage Quidividi
Gp211	140773140997	hypothetical protein	74	8632	YP_006561216.1	3e-32 (100%)	Staphylococcus virus IPLA7
Gp212	141043141444	hypothetical protein	133	16128	AVP40385.1	3-87 (100%)	Staphylococcus phage phiSA_BS1
Gp213	141479141814	hypothetical protein	111	12917	VEV88320.1	9e-69 (100%)	Staphylcoccus phage Stab20
Gp214	141814142221	hypothetical protein	135	15478	AVR55468.1	1e-71 (100%)	Staphylococcus phage phiSA_BS2
Gp215	142306142581	hypothetical protein	91	10492	YP_009196021.1	2e-42 (100%)	Staphylococcus phage philPLA-RODI
Gp216	142600142830	hypothetical protein	76	9027			
Gp217	142971143378	hypothetical protein	136	16229	YP_009196025.1	1e-79 (97%)	Staphylococcus phage philPLA-RODI
Gp218	143412143549	hypothetical protein	46	5679			

Gp001	143970144149	hypothetical protein	59	7075	YP_008854130.1	3e-15 (96%)	Staphylococcus phage S25-4
Gp002	149269149427	hypothetical protein	174	19562	AVP40463.1	4e-69 (98%)	Staphylococcus phage phiSA_BS1
Gp003	149501149809	hypothetical protein	70	7958			
Gp004	149972150298	TreA	97	11137	ARM69483.1	2e-56 (100%)	Staphylococcus phage vB_Sau_S24
Gp005	150397150714	membrane protein	61	7046	YP_008853952.1	8e-17 (98%)	Staphylococcus phage S25-4
Gp006	150794151195	membrane protein	57	6631	ARM69272.1	5e-17 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp007	151771152025	hypothetical protein	98	11140	AXU40163.1	1e-50 (100%)	Staphylococcus phage VB_SavM_JYL01
Gp008	152239152516	putative membrane protein	67	7957			
Gp009	152609153082	hypothetical protein	104	11887	ARM69275.1	2e-72 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp010	153161153325	hypothetical protein	99	11591	ARM69488.1	8e-63 (100%)	Staphylococcus phage vB_Sau_S24
Gp011	153381535601	TreC	95	10992	ARM69276.1	4e-51 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp012	153605153793	TreE	98	11398	ARM69278.1	3e-34 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp013	153830154075	TreF	75	8713	ARM69279.1	1e-44 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp014	148413148643	terminal repeat-encoded protein	76	9014	YP_009099458.1	3e-21 (100%)	Staphylococcus phage P108
Gp015	148727148987	hypothetical protein	87	10195	YP_008853956.1	1e-37 (91%)	Staphylococcus phage S25-4
Gp016	148990149238	terminal repeat-encoded protein	83	9443	BBC69667.1	2e-18 (100%)	Staphylococcus phage phiSA039
Gp017	149495149776 c	hypothetical protein	94	11231	ASZ78147.1	1e-54 (100%)	Staphylococcus phage SA3
Gp018	150176150490	TreJ	104	12109	ARM69283.1	4e-60 (98%)	Staphylococcus phage vB_Sau_Clo6
Gp019	150597151064	hypothetical protein	156	18824	AVP40358.1	4e-92 (100%)	Staphylococcus phage phiSA_BS1
Gp020	151141151392	hypothetical protein	84	9973	AVR55650.1	5e-40 (100%)	Staphylococcus phage phiSA_BS2
Gp021	151923152210	hypothetical protein	96	11308			
Gp022	152550152798	hypothetical protein	83	9758	AVP40364.1	2e-37 (100%)	Staphylococcus phage phiSA_BS1
Gp023	152872153276	hypothetical protein	135	15710	YP_009097937.1	1e-83 (98%)	Staphylococcus phage MCE-2014

Gp024	153766154092	hypothetical protein	105	11917	BBC69674.1	1e-49 (98%)	Staphylococcus phage phiSA039
Gp025	154170154406	hypothetical protein	78	9068	ARM69294.1	6e-37 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp026	154494154976	terminal repeat-encoded protein	160	18554	YP_009195837.1	4e-76 (99%)	Staphylococcus phage philPLA-RODI
Gp027	155057155245	hypothetical protein	62	7258	VEV88129.1	2e-33 (100%)	Staphylococcus phage Stab20
Gp028	155258155527	TreT protein	89	10190	VEV88131.1	1e-48 (100%)	Staphylococcus phage Stab20
Gp029	155614155844	TreU protein	76	9177	VEV88132.1	2e-36 (100%)	Staphylococcus phage Stab20

Stab23 p	Stab23 putative gene products (Gp)											
<u>Gp</u>	Genomic location	Predicted function	<u>AA</u>	<u>MW</u>	<u>Best hit acc. No.</u>	<u>e-value (query</u> <u>coverage %)</u>	phage with similar gene					
Gp001	5531536	hypothetical protein	327	36796	ARM69482.1	1e-119 (79%)	Staphylococcus phage vB_Sau_S24					
Gp002	17662059	hypothetical protein	97	11159	ARM69271.1	6e-58 (100%)	Staphylococcus phage vB_Sau_Clo6					
Gp003	20562217	putative membrane protein	53	5951	ARM69484.1	2e-26 (98%)	Staphylococcus phage vB_Sau_S24					
Gp004	23142499	putative membrane protein	61	7238								
Gp005	25152829	hypothetical protein	104	11954	ARM69275.1	1e-70 (100%)	Staphylococcus phage vB_Sau_Clo6					
Gp006	28433136	hypothetical protein	97	11232	ARM69277.1	5e-55 (100%)	Staphylococcus phage vB_Sau_Clo6					
Gp007	31403391	hypothetical protein	83	9746	ARM69279.1	2e-52 (100%)	Staphylococcus phage vB_Sau_Clo6					
Gp008	34793727	hypothetical protein	82	9860	ARM69280.1	4e-37 (100%)	Staphylococcus phage vB_Sau_Clo6					
Gp009	37403976	hypothetical protein	78	8862	ARM69493.1	2e-50 (100%)	Staphylococcus phage vB_Sau_S24					
Gp010c	(42194551)c	hypothetical protein	110	13307	ARM69282.1	8e-61 (100%)	Staphylococcus phage vB_Sau_Clo6					
Gp011	48625170	TreJ	102	11938	ARM69283.1	8e-64 (100%)	Staphylococcus phage vB_Sau_Clo6					
Gp012	53625835	hypothetical protein	157	18855	ARM69285.1	3e-101 (98%)	Staphylococcus phage vB_Sau_Clo6					
Gp013	58926137	hypothetical protein	81	9901	AVP40359.1	3e-36 (96%)	Staphylococcus phage phiSA_BS1					
Gp014	69957153	TreN	52	5985	ARM69287.1	2e-27 (100%)	Staphylococcus phage vB_Sau_Clo6					
Gp015	72277535	hypothetical protein	102	11944	ARM69500.1	2e-68 (100%)	Staphylococcus phage vB_Sau_Clo6					
Gp016	76988024	TreP	108	12401	ARM69501.1	1e-71 (100%)	Staphylococcus phage vB_Sau_S24					
Gp017	81238440	hypothetical protein	105	12181	BBC69674.1	8e-33 (100%)	Staphylococcus phage phiSA039					
Gp018	85148921	hypothetical protein	135	15740	ARM69291.1	1e-84 (98%)	Staphylococcus phage vB_Sau_Clo6					

Table 4: Putative gene products of Stab23 phage NCBI/ENA accession number (acc. No.): LR215721, and its homology to Kayvirus phages at protein level.

-							
Gp019	94979751	hypothetical protein	84	9730	ARM69292.1	3e-56 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp020	996510243	hypothetical protein	92	10789	VEV88348.1	2e-51 (100%)	Staphylococcus phage Stab20
Gp021	1033510808	hypothetical protein	157	18016	ARM69078.1	8e-87 (100%)	Staphylococcus phage vB_Sau_CG
Gp022	1088711051	hypothetical protein	54	6181	ARM69297.1	1e-29 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp023	1106411327	hypothetical protein	87	10250	ARM69079.1	6e-55 (100%)	Staphylococcus phage vB_Sau_CG
Gp024	1133111519	hypothetical protein	62	7173	VEV88129.1	2e-33 (100%)	Staphylococcus phage Stab20
Gp025	1153211801	TreT	89	10112	ARM69081.1	6e-55 (100%)	Staphylococcus phage vB_Sau_CG
Gp026	1188612107	TreU	73	8944	VEV88132.1	6e-45 (100%)	Staphylococcus phage Stab20
Gp027c	(1238812678)c	hypothetical protein	96	11594	VEV88133.1	5e-62 (100%)	Staphylococcus phage Stab20
Gp028c	(1277514487)c	putative tail fiber protein	570	64852	YP_009097947.1	2e-61 (24%)	Staphylococcus phage MCE-2014
Gp029c	(1455514806)c	BofL	83	10015	ARM69301.1	6e-51 (97%)	Staphylococcus phage vB_Sau_Clo6
Gp030c	(1482215067)c	hypothetical protein	81	9681	YP_008853977.1	7e-52 (100%)	Staphylococcus phage S25-4
Gp031c	(1506715588)c	hypothetical protein	173	20327	YP_009099479.1	2e-80 (99%)	Staphylococcus phage P108
Gp032c	(1559416073)c	putative membrane protein	159	17910	ARM69303.1	5e-105 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp033c	(1606616320)c	hypothetical protein	84	9675	ASZ78168.1	8e-49 (100%)	Staphylococcus phage SA3]
Gp034c	(1632016754)c	hypothetical protein	144	16762	YP_007002150.1	1e-87 (100%)	Staphylococcus phage GH15
Gp035c	(1676917263)c	GTP cyclohydrolase II	164	19751	ARM69306.1	3e-118 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp036c	(1727817730)c	hypothetical protein	150	17704	YP_009097955.1	2e-92 (100%)	Staphylococcus phage MCE-2014
Gp037c	(1883619381)c	hypothetical protein	181	21873	YP_008853987.1	6e-100 (92%)	Staphylococcus phage S25-4
Gp038c	(1938519600)c	hypothetical protein	71	8347	ARM69310.1	4e-41 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp030a	(10507 20346)	hypothetical protein	240	20100	VD 000105858 1	80.151 (08%)	Staphylococcus phage phiIPLA-
000390	(1939720340)C	nypometical protein	249	29109	11_009193030.1	00-131 (90%)	KODI
Gp040c	(2048320722)c	hypothetical protein	79	9398	YP_007002161.1	8e-47 (100%)	Staphylococcus phage GH15

Gp041c	(2072421110)c	hypothetical protein	128	14679	ARM69313.1	7e-84 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp042c	(2120821381)c	hypothetical protein	57	6861	ARM69314.1	3e-34 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp043c	(2142221904)c	hypothetical protein	160	19093	ARM69525.1	1e-110 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp044c	(2195422490)c	hypothetical protein	178	20200	YP_008853995.1	5e-108 (100%)	Staphylococcus phage S25-4
Gp045c	(2249023023)c	hypothetical protein	177	20640	ARM69317.1	3e-118 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp046c	(2319323474)c	putative membrane protein	93	11124	ARM69530.1	7e-58 (100%)	Staphylococcus phage vB_Sau_S24
Gp047c	(2347424319)c	hypothetical protein	281	31672	ARM69320.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp048c	(2433125461)c	AAA family ATPase	376	42536	ARM69321.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp049c	(2561225938)c	hypothetical protein	108	12813	ARM69322.1	3e-71 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp050c	(2593126347)c	hypothetical protein	138	16029	ARM69323.1	3e-97 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp051c	(2648226784)c	nucleoside triphosphate pyrophosphohydrolase	100	11290	YP_007002173.1	7e-66 (100%)	Staphylococcus phage GH15
Gp052c	(2678426972)c	hypothetical protein	62	7293	YP_007112816.1	3e-35 (100%)	Staphylococcus phage JD007
Gp053c	(2701627177)c	hypothetical protein	53	6336	ARM69326.1	8e-25 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp054c	(2717829229)c	hypothetical protein	683	80127	ARM69327.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp055c	(2930729570)c	hypothetical protein	87	10232	ARM69539.1	2e-56 (100%)	Staphylococcus phage vB_Sau_S24
Gp056c	(2958729760)c	Lysin	57	6628	YP_007002178.1	1e-33 (100%)	Staphylococcus phage GH15
Gp057c	(2976730345)c	putative membrane protein	192	21438	ARM69541.1	8e-133 (100%)	Staphylococcus phage vB_Sau_S24
Gp058c	(3033830961)c	nucleoside 2-deoxyribosyltransferase	207	23457	VEV88533.1	5e-131 (100%)	Staphylococcus phage Stab21
Gp059c	(3096131098)c	hypothetical protein	45	5041	AVP40312.1	4e-17 (97%)	Staphylococcus phage phiSA_BS1
Gp060c	(3110031324)c	putative membrane protein	74	8080	ARM69119.1	5e-37 (100%)	Staphylococcus phage vB_Sau_CG
Gp061c	(3139232132)c	PhoH-related protein	246	28760	ARM69333.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp062c	(3218432894)c	hypothetical protein	236	27107	ARM69545.1	2e-167 (100%)	Staphylococcus phage vB_Sau_S24

Gp063c	(3291233337)c	ribonuclease H	141	15774	ARM69546.1	2e-98 (100%)	Staphylococcus phage vB_Sau_S24
Gp064c	(3333033518)c	hypothetical protein	62	7505	ARM69336.1	6e-39 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp065c	(33541-34182)c	hypothetical protein	213	24475	ARM69548.1	4e-146 (100%)	Staphylococcus phage vB_Sau_S24
Gp066c	(3417234402)c	transcriptional regulator	76	8833	YP_007002189.1	2e-48 (100%)	Staphylococcus phage GH15
Gp067c	(3440534632)c	hypothetical protein	75	9235	BBC69504.1	2e-47 (100%)	Staphylococcus phage phiSA039
Gp068c	(3474135430)c	transglycosylase	229	25065	BBC69505.1	3e-149 (100%)	Staphylococcus phage phiSA039
Gp069c	(3562536419)c	putative membrane protein	264	29297	ARM69552.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp070c	(3642036728)c	hypothetical protein	102	12173	YP_009099524.1	1e-67 (100%)	Staphylococcus phage P108
Gp071c	(3684237462)c	hypothetical protein	206	24604	YP_009097994.1	2e-144 (100%)	Staphylococcus phage MCE-2014
Gp072c	(3752539015)c	N-acetylmuramoyl-L-alanine amidase	496	54981	ARM69554.1	0.0 (99%)	Staphylococcus phage vB_Sau_S24
Gp073c	(3901539518)c	holin	167	18111	ARM69345.1	1e-118 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp074c	(3960339788)c	hypothetical protein	61	7052	ARM69556.1	4e-36 (100%)	Staphylococcus phage vB_Sau_S24
Gp075c	(4101541233)c	hypothetical protein	72	8665	ARM69347.1	4e-47 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp076c	(4169741906)c	hypothetical protein	69	7804	ARM69348.1	2e-42 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp077c	(4191942251)c	hypothetical protein	110	12491	ANH50541.1	1e-71 (100%)	Staphylococcus phage pSco-10
Gp078c	(4226442590)c	hypothetical protein	108	13100	ARM69350.1	2e-73 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp079	4314943424	hypothetical protein	91	10695	ARM69352.1	6e-55 (94%)	Staphylococcus phage vB_Sau_Clo6
Gp080	4339343680	hypothetical protein	95	10934	ANH50538.1	1e-62 (95%)	Staphylococcus phage pSco-10
Gp081	4367744087	hypothetical protein	136	15726	ANH50537.1	2e-93 (100%)	Staphylococcus phage pSco-10
Gp082	4410245919	terminase, large subunit	605	70485	ARM69142.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp083	4591246733	hypothetical protein	273	30512	YP_007002206.1	0.0 (100%)	Staphylococcus phage GH15
Gp084	4689047369	hypothetical protein	159	18524	ARM69145.1	1e-110 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp085	4741248707	hypothetical protein	431	47006	ARM69359.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24

Gp086	4878949136	hypothetical protein	115	13154	ARM69147.1	1e-75 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp087	4914249513	hypothetical protein	123	14479	YP_009195910.1	2e-85 (100%)	Staphylococcus phage phiIPLA- RODI
Gp088	4951751208	portal protein	563	64038	ARM69149.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp089	5140252166	prohead protease	254	28062	ARM69150.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp090	5218553135	hypothetical protein	316	35836	ARM69364.1	3e-159 (100%)	Staphylococcus phage vB_Sau_S24
Gp091	5325154642	major capsid porotein	463	51260	ARM69152.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp092	5473455006	hypothetical protein	90	10382	ARM69153.1	8e-56 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp093	5502055928	hypothetical protein	302	34082	ARM69154.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp094	5594256820	capsid protein	292	33741	ARM69155.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp095	5682057440	hypothetical protein	206	23748	ARM69156.1	4e-151 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp096	5745958295	hypothetical protein	278	31794	ARM69157.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp097	5829758512	hypothetical protein	71	8280	YP_007002221.1	7e-48 (100%)	Staphylococcus phage GH15
Gp098	5853960302	major tail sheath	587	64491	ARM69159.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp099	6037560803	tail tube protein	142	15871	ARM69160.1	5e-102 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp100	6090261039	hypothetical protein	45	5307	ANH50512.1	3e-24 (100%)	Staphylococcus phage pSco-10
Gp101	6107361534	hypothetical protein	153	17945	ARM69163.1	3e-97 (98%)	Staphylococcus phage vB_Sau_Clo6
Gp102	6154761789	hypothetical protein	85	8865	ARM68940.1	2e-50 (94%)	Staphylococcus phage vB_Sau_CG
Gp103	6178961983	putative membrane protein	64	6950	ANH50510.1	6e-36 (100%)	Staphylococcus phage pSco-10
Gp104	6199962151	hypothetical protein	50	5859	ARM69379.1	6e-30 (100%)	Staphylococcus phage vB_Sau_S24
Gp105	6221962530	hypothetical protein	103	12190	ARM69380.1	3e-68 (100%)	Staphylococcus phage vB_Sau_S24
Gp106	6221962530	hypothetical protein	151	18036	ARM69381.1	1e-106 (100%)	Staphylococcus phage vB_Sau_S24
Gp107	6316163697	tail morphogenetic protein	178	21023	ARM69382.1	1e-128 (100%)	Staphylococcus phage vB_Sau_S24

Gp108	6375167809	tail length tape-measure protein	1352	143711	ARM69383.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp109	6788970312	tail lysin	807	91344	ARM69171.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp110	7032671213	peptidoglycan hydrolase	295	34650	ARM69172.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp111	7121373759	Glycerophosphoryl diester phosphosdiesterase	848	95925	ARM69173.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp112	7386674657	hypothetical protein	263	29277	ARM69174.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp113	7465775181	hypothetical protein	174	19939	ARM69388.1	4e-123 (100%)	Staphylococcus phage vB_Sau_S24
Gp114	7518175885	baseplate wedge subunit	234	26526	ARM69176.1	1e-172 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp115	7590076946	baseplate morphogenetic protein	348	39110	ARM69177.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp116	7696780512	tail morphogenetic protein	1181	134933	ARM69391.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp117	8062381144	baseplate morphogenetic protein	173	19121	ARM68954.1	3e-124 (100%)	Staphylococcus phage vB_Sau_CG
Gp118	8116584641	adsorption-associated tail protein	1158	129758	ARM69393.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp119	8469084848	hypothetical protein	52	6305	YP_009099353.1	2e-29 (100%)	Staphylococcus phage P108
Gp120	8484986762	hypothetical protein	637	72509	ASK86679.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp121	8677687147	hypothetical protein	123	14553	ARM69397.1	2e-87 (100%)	Staphylococcus phage vB_Sau_S24
Gp122	8715488527	tail fiber protein	457	50699	ARM69398.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp123	8861690364	DNA helicase A	582	67212	ARM69399.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp124	9037691989	replication protein	537	63285	ANH50490.1	0.0 (100%)	Staphylococcus phage pSco-10
Gp125	9198293424	DNA helicase B	480	54588	ANH50489.1	0.0 (100%)	Staphylococcus phage pSco-10
Gp126	9350493785	hypothetical protein	93	10859	ARM69188.1	1e-52 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp127	9378594810	recombination exonuclease A	341	39336	YP_009195949.1	0.0 (100%)	Staphylococcus phage phiIPLA- RODI
Gp128	9481095187	hypothetical protein	125	15133	YP_009099363.1	7e-87 (100%)	Staphylococcus phage P108
Gp129	9518797106	recombination exonuclease B	639	73229	ARM69404.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24

Gp130	9710697702	hypothetical protein	198	23207	YP_009098053.1	1e-143 (100%)	Staphylococcus phage MCE-2014
Gp131	9771798784	DNA primase	355	40951	ANH50483.1	0.0 (100%)	Staphylococcus phage pSco-10
Gp132	9884999187	hypothetical protein	112	12947	ARM69194.1	2e-73 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp133	9918799639	hypothetical protein	150	17128	ARM69195.1	3e-102 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp134	99626100234	resolvase	202	23692	ARM69196.1	1e-147 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp135	100251100643	ribonucleotide reduction protein NrdI	130	14738	ARM69410.1	2e-91 (100%)	Staphylococcus phage vB_Sau_S24
Gp136	100658102772	ribonucleotide reductase, large subunit	704	79967	ARM69411.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp137	102786103835	ribonucleotide reductase, small subunit	349	40472	ARM69199.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp138	103853104182	hypothetical protein	109	12387	ARM69413.1	3e-74 (100%)	Staphylococcus phage vB_Sau_S24
Gp139	104166104486	thioredoxin	106	12018	ARM69201.1	2e-70 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp140	104694105290	hypothetical protein	198	23582	ANH50470.1	4e-143 (100%)	Staphylococcus phage pSco-10
Gp141	105300105605	DNA binding protein	101	11909	ARM69203.1	2e-68 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp142	105681108863	DNA polymerase A	1060	122811	ARM69417.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp143	108934109176	hypothetical protein	80	9198	ARM69418.1	5e-51 (100%)	Staphylococcus phage vB_Sau_S24
Gp144	109193109675	hypothetical protein	160	18932	ARM69206.1	3e-117 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp145	109761110933	hypothetical protein	390	43495	ARM69207.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp146	110993112249	repair recombinase	418	46734	ARM69208.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp147	112253112606	hypothetical protein	117	13352	ANH50461.1	1e-81 (100%)	Staphylococcus phage pSco-10
Gp148	112593113255	RNA polymerase sigma factor	220	26594	ARM69210.1	7e-159 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp149	113382114014	hypothetical protein	210	23198	ARM69211.1	2e-151 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp150	114036114548	tail morphogenetic protein	170	17429	ARM69425.1	7e-114 (100%)	Staphylococcus phage vB_Sau_S24
Gp151	114563114781	Ig-like domain	72	7399	YP_007002273.1	1e-37 (95%)	Staphylococcus phage GH15
Gp152	114877115137	hypothetical protein	86	10232	ARM69214.1	2e-57 (100%)	Staphylococcus phage vB_Sau_Clo6

Gp153	115141115896	hypothetical protein	251	29423	ARM69428.1	1e-178 (100%)	Staphylococcus phage vB_Sau_S24
Gp154	115889117139	metallophosphoesterase	416	47594	ARM69429.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp155	117153117521	membrane protein	122	14068	ANH50453.1	2e-83 (100%)	Staphylococcus phage pSco-10
Gp156	117508117819	hypothetical protein	103	11981	ARM69431.1	3e-70 (100%)	Staphylococcus phage vB_Sau_S24
Gp157	117883118419	hypothetical protein	178	20830	ARM69219.1	2e-130 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp158	118412119179	hypothetical protein	255	30033	ANH50450.1	0.0 (100%)	Staphylococcus phage pSco-10
Gp159	119157119603	hypothetical protein	148	17427	ARM69434.1	3e-105 (100%)	Staphylococcus phage vB_Sau_S24
Gp160	119603120466	hypothetical protein	287	32318	ARM69222.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp161	120825121556	hypothetical protein	243	28351	ARQ96133.1	1e-175 (100%)	Staphylococcus phage qdsa002
Gp162	121574122032	hypothetical protein	152	17907	ARM69437.1	2e-108 (100%)	Staphylococcus phage vB_Sau_S24
Gp163	122097122540	hypothetical protein	147	17398	ARM69438.1	1e-100 (100%)	Staphylococcus phage vB_Sau_S24
Gp164	122557123279	hypothetical protein	240	28131	ARM69439.1	2e-152 (100%)	Staphylococcus phage vB_Sau_S24
Gp165	123340123738	putative membrane protein	132	15345	ARM69227.1	8e-81 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp166	123886124128	hypothetical protein	80	9393	ARM69441.1	4e-51 (100%)	Staphylococcus phage vB_Sau_S24
Gp167	124133124690	putative membrane protein	185	21584	ARM69229.1	6e-129 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp168	124726124902	hypothetical protein	58	6935	ARM69443.1	6e-34 (100%)	Staphylococcus phage vB_Sau_S24
Gp169	124895125143	putative membrane protein	82	9103	ARM69231.1	9e-51 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp170	125136125369	hypothetical protein	77	8916	ARM69445.1	2e-48 (100%)	Staphylococcus phage vB_Sau_S24
Gp171	125450126094	ribulose 1, 5-biphosphate carboxylase/oxygenase small subunit	214	25158	ARM69446.1	6e-141 (100%)	Staphylococcus phage vB_Sau_S24
Gp172	126109126357	hypothetical protein	82	8829	ARM69447.1	2e-45 (100%)	Staphylococcus phage vB_Sau_S24
Gp173	126369126545	hypothetical protein	58	7009	YP_009098098.1	2e-33 (100%)	Staphylococcus phage MCE-2014
Gp174	126538126834	hypothetical protein	98	11243	ARM69236.1	2e-60 (100%)	Staphylococcus phage vB_Sau_Clo6

Gp175	126882127064	putative membrane protein	60	7068	ARM69237.1	3e-34 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp176	127077127445	hypothetical protein	122	14063	ARM69451.1	2e-84 (100%)	Staphylococcus phage vB_Sau_S24
Gp177	127458127805	hypothetical protein	115	13026	ARM69239.1	1e-76 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp178	127805128083	putative membrane protein	92	10180	ARM69240.1	1e-56 (68%)	Staphylococcus phage vB_Sau_Clo6
Gp179	128153128458	hypothetical protein	101	12163	YP_007002300.1	3e-70 (100%)	Staphylococcus phage GH15
Gp180	128473128823	hypothetical protein	116	13666	YP_007112906.1	3e-77 (100%)	Staphylococcus phage JD007
Gp181	128823129206	hypothetical protein	127	15075	ANH50427.1	2e-19 (100%)	Staphylococcus phage pSco-10
Gp182	129207129386	hypothetical protein	59	7220	ANH50426.1	2e-31 (100%)	Staphylococcus phage pSco-10
Gp183	129612130022	putative membrane protein	136	15168	ARM69244.1	2e-90 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp184	130024130317	hypothetical protein	97	11641	ARM69458.1	5e-63 (100%)	Staphylococcus phage vB_Sau_S24
Gp185	130334130621	putative membrane protein	95	10554	ARM69459.1	2e-61 (100%)	Staphylococcus phage vB_Sau_S24
Gp186	130669131334	hypothetical protein	221	25046	ARM69247.1	1e-153 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp187	131411131716	hypothetical protein	101	11646	ARM69248.1	1e-66 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp188	131716132123	hypothetical protein	135	15378	ARM69249.1	6e-85 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp189	132126132443	hypothetical protein	105	12152	ARM69464.1	3e-70 (100%)	Staphylococcus phage vB_Sau_S24
Gp190	132521132724	hypothetical protein	60	7771	ARM69251.1	4e-37 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp191	132758132982	hypothetical protein	74	8477	ARM69252.1	1e-47 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp192	132999133907	ribose-phosphate pyrophosphokinase	302	35002	ARM69253.1	0.0 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp193	133926135395	Nicorinamide phosphoribosyltransferase	489	56102	ARM69468.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp194	135476135730	hypothetical protein	84	9866	ARM69469.1	1e-47 (100%)	Staphylococcus phage vB_Sau_S24
Gp195	135754136065	hypothetical protein	103	11704	ARM69256.1	3e-69 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp196	136144136434	hypothetical protein	96	11568	ARM69471.1	6e-65 (100%)	Staphylococcus phage vB_Sau_S24
Gp197	136431136544	hypothetical protein	37	4458	ARM69258.1	5e-17 (100%)	Staphylococcus phage vB_Sau_Clo6

Gp198	136575136757	hypothetical protein	60	7226			
Gp199	136799136960	hypothetical protein	53	6171			
Gp200	137003137284	hypothetical protein	93	10814	ARM69261.1	8e-57 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp201	137342139615	RNA ligase	757	89137	ARM69476.1	0.0 (100%)	Staphylococcus phage vB_Sau_S24
Gp202	139715139984	hypothetical protein	89	10321	ARM69263.1	7e-59 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp203	140013140402	hypothetical protein	129	15203	ARM69264.1	3e-90 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp204	140429140578	hypothetical protein	49	5846	ARM69265.1	1e-26 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp205	141030142235	hypothetical protein	103	11972	ARM69266.1	1e-68 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp206	141030142235	hypothetical protein	401	47057	ANT44859.1	2e-91 (87%)	Staphylococcus phage vB_SscM-1
Gp001	5531536	hypothetical protein	327	36796	ARM69482.1	1e-119 (79%)	Staphylococcus phage vB_Sau_S24
Gp002	17662059	hypothetical protein	97	11159	ARM69271.1	6e-58 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp003	20562217	putative membrane protein	53	5951	ARM69484.1	2e-26 (98%)	Staphylococcus phage vB_Sau_S24
Gp004	23142499	putative membrane protein	61	7238			
Gp005	25152829	hypothetical protein	104	11954	ARM69275.1	1e-70 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp006	28433136	hypothetical protein	97	11232	ARM69277.1	5e-55 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp007	31403391	hypothetical protein	83	9746	ARM69279.1	2e-52 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp008	34793727	hypothetical protein	82	9860	ARM69280.1	4e-37 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp009	37403976	hypothetical protein	78	8862	ARM69493.1	2e-50 (100%)	Staphylococcus phage vB_Sau_S24
Gp010c	(42194551)c	hypothetical protein	110	13307	ARM69282.1	8e-61 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp011	48625170	TreJ	102	11938	ARM69283.1	8e-64 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp012	53625835	hypothetical protein	157	18855	ARM69285.1	3e-101 (98%)	Staphylococcus phage vB_Sau_Clo6
Gp013	58926137	hypothetical protein	81	9901	AVP40359.1	3e-36 (96%)	Staphylococcus phage phiSA_BS1
Gp014	69957153	TreN	52	5985	ARM69287.1	2e-27 (100%)	Staphylococcus phage vB_Sau_Clo6

Gp015	72277535	hypothetical protein	102	11944	ARM69500.1	2e-68 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp016	76988024	TreP	108	12401	ARM69501.1	1e-71 (100%)	Staphylococcus phage vB_Sau_S24
Gp017	81238440	hypothetical protein	105	12181	BBC69674.1	8e-33 (100%)	Staphylococcus phage phiSA039
Gp018	85148921	hypothetical protein	135	15740	ARM69291.1	1e-84 (98%)	Staphylococcus phage vB_Sau_Clo6
Gp019	94979751	hypothetical protein	84	9730	ARM69292.1	3e-56 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp020	996510243	hypothetical protein	92	10789	VEV88348.1	2e-51 (100%)	Staphylococcus phage Stab20
Gp021	1033510808	hypothetical protein	157	18016	ARM69078.1	8e-87 (100%)	Staphylococcus phage vB_Sau_CG
Gp022	1088711051	hypothetical protein	54	6181	ARM69297.1	1e-29 (100%)	Staphylococcus phage vB_Sau_Clo6
Gp023	1106411327	hypothetical protein	87	10250	ARM69079.1	6e-55 (100%)	Staphylococcus phage vB_Sau_CG
Gp024	1133111519	hypothetical protein	62	7173	VEV88129.1	2e-33 (100%)	Staphylococcus phage Stab20
Gp025	1153211801	TreT	89	10112	ARM69081.1	6e-55 (100%)	Staphylococcus phage vB_Sau_CG
Gp026	1188612107	TreU	73	8944	VEV88132.1	6e-45 (100%)	Staphylococcus phage Stab20

Appendix IV: Putative promoters of the Stab phages. Consensus motif of predicted Stab20 promoters

A table of Stab20 putative promoter sequences.

No.	Upstream of gene	<u>Strand</u>	<u>p-value</u>			Promoter sequence		
					<u>-35 box</u>	<u>Spacer</u>	<u>-10 box</u>	
1.	g001	+	9.71 × 10 ⁻⁵	Т	TGACAA	CTATGAAGCGGTTATGG	TATACT	
2.	g011c	+	1.00 × 10 ⁻⁶		TTGACT	TCTGAATAACTATACTG	TAATAT	
3.	g012	+	1.67 × 10 ⁻⁶		TTGACT	TATTAATCATATGGTAG	TAATAT	
4.	g013	+	1.33 × 10 ⁻⁸		TTGACA	CCTTACAAGATACATGT	TATTAT	
5.	g015	+	4.82 × 10 ⁻⁷		TTGACT	TATGTTTATTCTTATAG	TAATAT	

6.	g016	+	1.57×10^{-7}		TTGACA	GTCACTTGAAACCATGA	TATTAT	
7.	g017	+	8.51 × 10 ⁻⁹		TTGACT	TTCAAGCCCTGCCATGT	TATTAT	
8.	g018	+	1.58 × 10 ⁻⁹		TTGACA	CTTTCAAGCCCTCATGA	TATACT	
9.	g019	+	2.40×10^{-7}		TTGACA	AACTTCAAACCACATGT	TAATAT	
10.	g020	+	7.30 × 10 ⁻⁹		TTGACA	TTCAACCCCTACCATGT	TAATAT	
11.	g021	+	4.40×10^{-8}		TTGACA	AACTAACCGCTTCATGA	TAATAT	
12.	g022	+	3.82 × 10 ⁻⁹		TTGACA	CTTAGCCCCTTAGATGT	TATTAT	
13.	g023	+	2.40 × 10 ⁻⁷		TTGACT	TCCAAGCCCTACAATGG	TAATAT	
14.	g029	+	6.08 × 10 ⁻⁵	Т	TTACAA	CTATTTAATTTGTATGC	TATAAT	
15.	g030c	-	7.01 × 10 ⁻⁷		TTGACA	TTCTAATTATTATCCTT	TATACT	
16.	g031c	-	7.01 × 10 ⁻⁷		TTGACA	TTCTAATTATTATCCTT	TATACT	
17.	g041c	-	4.82 × 10 ⁻⁷		TTGACT	TTTATAAATAAGTATGG	TAAGAT	
18.	g045c	-	8.01 × 10 ⁻⁸		TTGACA	TTAATAAACATATGTGT	TAATAT	
19.	g051c	-	2.64 × 10 ⁻⁸		TTGACT	TTTTCACTAACTTGTGT	TATACT	
20.	g055c	-	1.94 × 10 ⁻⁷		TTGACA	AATGAAAATACTTGTAT	TATAAT	
21.	g061c	-	1.75 × 10 ⁻⁷		TTGACA	AATATTACTTACTATGA	TATGAT	
22.	g073c	-	4.40 × 10 ⁻⁸		TTGACT	TCATAAGTTAACTATGC	TATAAT	

23.	g080c	-	5.68 × 10 ⁻⁶	TTGACT	TATTTATCAATATAGTA	TATAGT	
24.	g106	+	8.51 × 10 ⁻⁹	TTGACA	TTATAAAATTTATATGC	TATTAT	
26.	g111	+	2.13 × 10 ⁻⁶	TTGACA	ААТТААААСТААТАААС	TATAAT	
27.	g115	+	2.31 × 10 ⁻⁸	TTGACA	CAAGAGTAGTATCATAG	TATACT	
28.	g123	+	7.30 × 10 ⁻⁹	TTGACA	GAAAGTTAATAATATGG	TATACT	
29.	g129	+	2.31 × 10 ⁻⁸	TTGACT	TGGAGAGTATTATGTGG	TATACT	
30.	g131	+	2.37 × 10 ⁻⁴	TTGACA	AAAGAGGGTATGTTGGA	TTATAA	Т
31.	g132	+	1.15 × 10 ⁻⁸	TTGACA	TTTTATATGTTAGGTGG	TATAAT	
32.	g150	+	1.33 × 10 ⁻⁸	TTGACA	ATATGTTTAACTTATGT	TATACT	
33.	g152	+	4.40 × 10 ⁻⁸	TTGACA	ААТАТААААААСТАТСТ	TATAAT	
34.	g159	+	6.33 × 10 ⁻⁸	TTGACA	ATTTATAATATCTATGA	TACACT	
35.	g164	+	3.89 × 10 ⁻⁸	TTGACT	CTTTTTACTATATATGG	TATATT	
36.	g166	+	1.24×10^{-4}	TTTACA	AGAGGTGTTATTTATGG	TTATAA	Т
38.	g173	+	6.33 × 10 ⁻⁸	TTGACT	CTCTTTTTGTTTTATGG	TATATT	
39.	g181	+	4.37 × 10 ⁻⁷	TTGACA	GATGAAGCATTTTAATA	TATACT	
40.	g185	+	1.26 × 10 ⁻⁷	TTGACA	CTTCTAAACTTTTGTAT	TATACT	
41.	g190	+	8.99 × 10 ⁻⁸	TTGACA	AATGAGTGTGCATAGGT	TATACT	

42.	g196	+	2.31 × 10 ⁻⁸	TTGACA	TTAGGTTTCTTTTATTA	TATACT	
43.	g204	+	2.02 × 10 ⁻⁸	TTGACA	GCAGGTATTTTTTATAG	TATACT	
44.	g215	+	6.39 × 10 ⁻⁷	TTGACT	TGGGTAGATATCTATTA	TATAAT	

Consensus motif of predicted Stab21 promoters

A table of Stab21 putative promoter sequences.

No.	Upstream of gene	Strand	<i>p</i> -value		Putative promoter sequence		
			·····	<u>-35 box</u>	<u>Spacer</u> *	<u>-10 box</u>	
1.	g010c	+	1.30×10^{-6}	TTGACT	TCTGAATAACTATACTG	TAATAT	
2.	g011	+	1.75 × 10 ⁻⁶	TTGACT	TTTGTATTATATGGTAG	TAATAT	
3.	g012	+	1.00×10^{-9}	TTGACA	CCTTATAAGATACATGT	TATTAT	
4.	g014	+	4.20×10^{-8}	TTGACT	TGTGTTTCTTTCTATAG	TAATAT	
5.	g015	+	4.70 × 10 ⁻⁸	TTGACA	GTCACTTGAAACCATGA	TATTAT	

6.	g016	+	3.34 × 10 ⁻⁹		TTGACT	TCCAAGCCCTACCATGT	TATTAT
7.	g017	+	3.34 × 10 ⁻⁸		TTGACA	CTCTCAAGCCTTAATGG	TATACT
8.	g018	+	8.07 × 10 ⁻⁸		TTGACA	AACTTCCAAATACATGA	TAATAT
9.	g019	+	3.34 × 10 ⁻⁸		TTGACA	TTCAACCCCTACCATGT	TAATAT
10.	g020	+	1.61 × 10 ⁻⁸		TTGACA	AACTAACCGCTTCATGA	TAATAT
11.	g021	+	3.76 × 10 ⁻¹⁰		TTGACA	CCCTAGCATATAGATGG	TAATAT
12.	g026	+	5.00 × 10 ⁻⁵	Т	TTACAA	TCTTTTAATTTGTATGA	TATAAT
13.	g037c	-	4.20 × 10 ⁻⁸		TTGACT	TTTTTTACTAAGTATGG	TAAGAT
14.	g042c	-	1.08 × 10 ⁻⁸		TTGACA	TTATTATCAATATATGT	TATTAT
15.	g048c	-	1.82 × 10 ⁻⁸		TTGACT	TTTTCACTAACTTATGT	TATACT
16.	g052c	-	3.19 × 10 ⁻⁷		TTGACA	AATTCAAATACTTGTAA	TATAAT
17.	g058c	-	3.34 × 10 ⁻⁸		TTGACA	AATATTATTACTATGG	TATGAT
18.	g072c	-	3.74 × 10 ⁻⁸		TTGACT	TCATAAGTTAACTATGC	TATAAT
19.	g079c	-	3.31 × 10 ⁻⁶		TTGACT	TATTTATCAATATAGTA	TATAGT
20.	g106	+	1.72 × 10 ⁻⁹		TTGACA	CTTTAAAATTTATATG T	TATTAT
21.	g109	+	1.51 × 10 ⁻⁶		TTGACA	ААТТААААСТААТАААТ	TATAAT
22.	g113	+	1.82 × 10 ⁻⁸		TTGACA	CAAGAGTAGTATCATAG	TATACT

23.	g121	+	3.74 × 10 ⁻⁸	TTGACA	GAAAGTTAATAATATGG	TATACT	
24.	g127	+	3.74 × 10 ⁻⁸	TTGACT	TGAAAA GG ATTATGTGG	TATACT	
25.	g129	+	5.25 × 10⁻⁵	TTGACA	AAAGAGGGTATGTTGGA	TTATAA	Т
26.	g130	+	9.44 × 10 ⁻⁹	TTGACA	TTTTATATGTTAGGTGG	TATAAT	
27.	g146	+	2.00 × 10 ⁻⁷	TTGACA	ATACATTTAACTTATGT	TATACT	
28.	g148	+	2.34 × 10 ⁻⁸	TTGACA	AATATAAAAAACTATGT	TATAAT	
29.	g155	+	1.41 × 10 ⁻⁸	TTGACA	ATTTATAATATCTATGA	TACACT	
30.	g160	+	1.08 × 10 ⁻⁸	TTGACT	CTTTTTACTATATATGG	TATATT	
31.	g162	+	3.01 × 10⁻⁵	TTTACA	AGAGGTGTTATCTATGG	TTATAA	Т
32.	g169	+	4.70 × 10 ⁻⁸	TTGACT	CTCTTTTTGTTTTATGG	TATATT	
33.	g178	+	4.55 × 10 ⁻⁷	TTGACA	GATGAAGCATTTTAATA	TATACT	
34.	g182	+	3.74 × 10 ⁻⁸	TTGACA	CCTTTGTACTTTTGTAT	TATACT	
35.	g186	+	6.16 × 10 ⁻⁹	TTGACA	ATTGAGTATACATAGG T	TATACT	
36.	g200	+	2.97 × 10 ⁻⁸	TTGACA	GCAGGTATTTTTTATAG	TATACT	
37.	g211	+	9.56 × 10 ⁻⁷	TTGACT	TAGGTAGATACTTATTA	TATAAT	

Consensus motif of predicted Stab22 promoters

A table of Stab22 putative promoter sequences

	Upstream of gene	Strand	<i>p</i> -Value			Promoter sequences	
					<u>-35 box</u>	Spacer*	<u>-10 box</u>
1.	g001	+	7.11 × 10 ⁻¹⁰		TTGACA	GCTATGAAGCGGTATGG	TAAGAT
2.	g002	+	1.52 × 10 ⁻¹⁰		TTGACA	TTAAGTAAGTAGTATGG	TATGAT
3.	g003	+	1.87 × 10 ⁻¹⁰		TTGACA	AATAGTAAGTAGTATGT	TATACT
4.	g004	+	2.93 × 10 ⁻¹¹		TTGACA	AGTAGTAAGTAGTGTGG	TATGAT
6.	g006	+	4.55 × 10 ⁻⁵	Т	TTAATA	TTTACTTTACAGGAAGT	TATAAT
7.	g016	+	2.19 × 10 ⁻⁷		TTGACT	TCTTATATGAGACTTGG	CATAAT

9.	g018	+	4.33 × 10 ⁻⁶		TTGACT	TATTAGTCATTATCCTT	TAATAT
10.	g021	+	1.92 × 10 ⁻⁵		TTGACT	TATCTCTTATTATGGTT	TAATAT
11.	g022	+	5.51 × 10 ⁻⁸		TTGACA	GTCACTTGAAACCATGA	TATAAT
12.	g023	+	2.30 × 10 ⁻¹⁰		TTGACT	TCCAAGCCCTACCATGA	TATACT
13.	g024	+	8.35 × 10 ⁻⁸		TTGACA	CACTAACCGCTTCATGA	TATTAT
14.	g025	+	6.59 × 10 ⁻⁷		TTGACT	TTCAAGCCCTAAACCTT	TATAAT
15.	g026	+	2.86 × 10 ⁻⁷		TTGACT	TCCAAGCCTTAAACCTT	TATAAT
16.	g029	+	6.83 × 10 ⁻⁵	Т	TTACAA	CTATTTAATTTGTATGC	TATAAT
17.	g036c	-	7.16 × 10 ⁻⁹		TTGACA	TTTATAAATAAGTATGG	TAAGAT
18.	g043c	-	2.53 × 10 ⁻⁸		TTGACT	TTTTCACTAACTTATGT	TATAAT
19.	g047c	-	2.00 × 10 ⁻⁷		TTGACA	AATGCAAATACTTGTAG	TATACT
20.	g053c	-	3.56 × 10 ⁻⁸		TTGACA	AATATTATTACCTGTGA	TATGAT
21.	g060c	-	5.43 × 10 ⁻⁹		TTGACA	AGCCTCCTTAGTTATGG	TATACT
22.	g067c	-	7.11 × 10 ⁻¹⁰		TTGACT	TCCTAAGTTAACTATGG	TATAAT
23.	g075c	-	3.37 × 10 ⁻⁶		TTGACT	TATTTATCAATATAGTA	TATAGT
24.	g104	+	1.92 × 10 ⁻⁹		TTGACA	AGTATAATTAGATACGG	TATACT
25.	g106	+	1.13 × 10 ⁻⁶		TTGACA	ААТТАААААТААТАААТ	TATAAT

26.	g110	+	1.13 × 10 ⁻⁷	TTGACA	CAAGAGTAGTATCATAG	TATACT
27.	g118	+	1.40 × 10 ⁻⁹	TTGACA	GGAAGTTAATAATATGG	TATACT
28.	g124	+	1.07 × 10 ⁻⁸	TTGACT	TAATAAGTATTCTGTGG	TATACT

Consensus motif of predicted Stab23 promoters

A table of Stab23 putative promoter sequences.

No.	Upstream of gene	<u>Strand</u>	<u>p-Value</u>	Promoter sequences				
					<u>-35 box</u>	Spacer*	<u>-10 box</u>	
1.	g001	+	3.61 × 10 ⁻¹⁰		TTGACA	TTTAGTAAGTAGTATGG	TAAGAT	
2.	g002	+	7.38 × 10 ⁻¹⁰		TTGACA	AGTAGTAAGTAGTGTGG	TAAGAT	
3.	g010c	-	1.56 × 10⁻ ⁶		TTGACT	TCTGAATAACTATACTG	TAATAT	
4.	g011	+	2.47 × 10 ⁻⁶		TTGACT	TATTAATCATATGGTAG	TAATAT	
5.	g012	+	2.54 × 10 ⁻⁸		TTGACA	CATTACAAGATACATGT	TATTAT	

6.	g014	+	4.29 × 10 ⁻⁸		TTGACA	GTACATAAACAACATGG	TAATAT	
7.	g015	+	5.49 × 10 ⁻⁸		TTGACA	ACTTAGAAACAACGTGT	TAATAT	
8.	g016	+	1.69 × 10 ⁻⁷		TTGACA	GTCACTTGAAACCATGA	TATTAT	
9.	g017	+	8.99 × 10 ⁻⁹		TTGACT	TCCAAGCCCTACCATGT	TATTAT	
10.	g018	+	2.14 × 10 ⁻⁹		TTGACT	TCCAAGCCCTAGCATGA	TATACT	
11.	g019	+	3.32 × 10 ⁻⁸		TTGACA	ACCTTCCAAATACATGT	TATTAT	
12.	g020	+	1.92 × 10 ⁻⁸		TTGACA	TCCAACCCCTATCATGT	TAATAT	
13.	g021	+	1.44 × 10 ⁻⁶		TTGACT	TCCAAGCCCTATAATGA	TAATAT	
14.	g026	+	3.40 × 10 ⁻⁴	Т	TTACAA	CTATTTAATTTGTATG T	TACAAT	
15.	g027c	-	5.06 × 10 ⁻⁶		TTGACA	TTCTAATTACCATCCTT	TATACT	
16.	g036c	-	1.43 × 10 ⁻⁸		TTGACA	TTTATAAATAAGTATGG	TAAGAT	
17.	g039c	-	5.55 × 10 ⁻⁷		TAGACA	AGACGATATTGATATGG	TATAAT	
18.	g045c	-	4.18 × 10 ⁻⁷		TTGACT	TTTCCAATAGTATGTGT	TATACT	
19.	g048c	-	3.80 × 10 ⁻⁷		TTGACA	AATGCAAATACTTGTAT	TATAAT	
20.	g054c	-	1.66 × 10 ⁻⁸		TTGACA	AGTATTAATTACTATGA	TATGAT	
21.	g060c	-	1.05 × 10 ⁻⁸		TTGACA	AGCCTCCTTAGTTATGG	TATACT	
22.	g067c	-	6.96 × 10 ⁻⁸		TTGACT	TCCTGAGTTAATTATGC	TATAAT	

23.	g075c	-	1.20 × 10 ⁻⁵	TTGACT	TATTTATCAATATAGTA	TATAGT	
24.	g101	+	7.97 × 10 ⁻⁷	TTGACA	AGGAATATTAAAGCTGA	TATACT	
25.	g105	+	2.29 × 10⁻ ⁶	TTGACA	GATTAAAAATAATAAA T	TATAAT	
26.	g109	+	1.23 × 10 ⁻⁸	TTGACA	CAAGAGTAGTATCATAG	TATACT	
27.	g117	+	2.16 × 10 ⁻¹⁰	TTGACA	GAAAGTTAATAATATGG	TATACT	
28.	g123	+	3.16 × 10 ⁻⁹	TTGACT	TAATAAGTATTCTATGG	TATACT	
29.	g125	+	1.62 × 10 ⁻⁴	TTGACA	AAAGAGGGTATGTTGGA	TTATAA	Т
30.	g126	+	7.63 × 10 ⁻⁹	TTGACA	TTTTATATGTTAGGTGG	TATAAT	
31.	g143	+	2.91 × 10 ⁻⁸	TTGACA	AAATGTTTAACTTATGT	TATACT	
32.	g145	+	1.05 × 10 ⁻⁸	TTGACA	AATACAAAAAACTATGT	TATAAT	
33.	g152	+	2.54 × 10 ⁻⁸	TTGACA	ATTTATAATAACTATGT	TACACT	
34.	g157	+	3.44 × 10 ⁻⁷	TTGACT	CTTTTTACTATATATGG	TATATT	
35.	g159	+	8.21 × 10 ⁻⁵	TTTACA	AGAGGTGTTATTATGG	TTATAA	Т
37.	g166	+	2.82 × 10 ⁻⁷	TTGACT	CTCTTTTGTTTATGG	TATATT	
38.	g169	+	2.50 × 10 ⁻⁵	TTGACT	ACATTCAAGAGTTAGAA	CAAAAT	
39.	g175	+	1.36 × 10 ⁻⁷	TTGACA	GATGGAATATTTTAGTA	TATACT	
40.	g179	+	1.52 × 10 ⁻⁷	TTGACA	TTTCTAAACTTTTGTAT	TATACT	

41.	g183	+	4.29 × 10 ⁻⁸	TTGA	AATGAGTGTACATA	GGT <u>TATACT</u>	
42.	g187	+	1.92 × 10 ⁻⁸	TTGA	CA TTAGGTTTCTTTTA	TTG <u>TATACT</u>	
43.	g190	+	3.80 × 10 ⁻⁹	TTGA	CA GCAGGTATTTATTA	TAG <u>TATACT</u>	
44.	g194	+	1.69 × 10 ⁻⁷	TTGA	AATAGGGGTTTCTA	TTA <u>TATAAT</u>	
45.	g196	+	1.10 × 10 ⁻⁷	TTGA	CT TAGGTAGAGTTTTA	TTG <u>TATAAT</u>	
46.	g201	+	5.49 × 10 ⁻⁸	TTGA	CA TTAAATAAATAACG	TGT <u>TAAGAT</u>	
47.	g202	+	4.29 × 10 ⁻⁸	TTGA	CA TTAAATAAATAATG	TGT <u>TAAGAT</u>	
48.	g206	+	5.05 × 10 ⁻⁷	TTGA	CA TAGGTAGAGTTTTA	CTA <u>TATACT</u>	

Appendix V: Predicted rho-independent terminator sequences of the Stab phages.

<u>No.</u>	Downstream of gene	Position	<u>Strand</u>	Regulatory element sequence **	ΔG (kcal/mol) [#]
1	g011c	3352:3400c	-	AATTATACAATACACTAGGAATAATATCCTAGTGTaTTTATTTTGCGG	-11.60
2	g011c	145876:145924c	-	AATTATACAATACACTAGGAATAATATCCTAGTGTaTTTATTTTGCGG	-11.60
3	g014	5128:5174	+	AATTATACGATTCCCTGGGATTAAATTCCTAGGGATTTTTATTTGTT	-13.80
4	g014	147652:147698	+	AATTATACGATTCCCTGGGATTAAATTCCTAGGGATTTTTATTTGTT	-13.80
5	g018	7361:7411	+	ATTTATATAAACCGCTTCGGATTAAATTCTTGAAGCGGTTATTTTCTTTA -	10.90
6	g018	149885:149935	+	ATTTATATAAACCGCTTCGGATTAAATTCTTGAAGCGGTTATTTTCTTTTA -	10.90
7	g021	8476:8525	+	AAAAATTAAAATAAGGGGTTGACACTTAGCCCCTTAgaTGTTATTATTAA	-10.80
8	g021	151000:151049	+	AAAAATTAAAATAAGGGGTTGACACTTAGCCCCTTAgaTGTTATTATTAA	-10.80
9	g029	10689:10727	+	TAGATTAAGAGGAGGGCAAACGCCCTCTTTTATTTTAT	-11.40
10	g029	153213:153251	+	TAGATTAAGAGGAGGGCAAACGCCCTCTTTTATTTTAT	-11.40
11	g030c	10937:10982c	-	GTATAGATAAGAGAGGGGGG <mark>CATATA</mark> CCTCCTCTTTTTATTTAGA	-12.70
12	g031c	11335:11380c	-	ATAATACCTTAGAGGAAGAATAATATTCTTTCTCTCTTTTTTATAT	-8.20
13	g048c	19214:19256c	-	ATTAATTCTTAGGCTACTTTAATTAGTAGCCTTTTTTTGTTGA	-10.90
14	g050c	19980:20024c	-	TAGGTACAGAAGCAGACTTTTAATAAGTCTGCTTTTCTCTTATAT	-11.40

Table 1: Putative Rho-independent transcription terminators of phage Stab20.

15	g062c	27331:27376c	-	AAACTCATTTAGAAGGACTTTAAAAAAGTTCTTCTTTTTTGTTGA	-7.70
16	g067c	30119:30186c	-	ATGTTGACAAACCTCTTTAGTTATGGTATACTTATCTTATAATAACTAAGGAGGAG TTTTTATGAATT	-6.80
17	g074c	33401:33446c	-	TAATATTAAGACTAAGATTAATTTCTTAGTCTTTTTGTATATT	-10.20
18	g075c	34295:34338c	-	AATAATAAATTAGAGAGGTTAATACCTCTCTTTTTTGTCTTTA	-11.90
19	g077c	35504:35549c	-	AATAGAAATTTAGACGGAT <mark>TTTAA</mark> ATCCGTCTaTTTTTTTTGCAA	-10.70
20	g091	46986:47026	+	ATAAAACTGAAGAGGAGTAATTACTCCTCTTTTTGTTTGC	-10.20
21	g094	49512:49556	+	ATTAATTAATAAGCCTAGAATAAATCTAGGCTTTGTTTATTTTT	-11.50
22	g097	52989:53035	+	ACAAGAGAATAGGGATAAACTTAGGGTTTATCCCTTTTTTATTAAAA	-8.30
23	g105	59149:59191	+	TTAATATACTAGACCAACTAAAAAGTTGGTCTTTTTTTTT	-11.10
24	g113	61946:61992	+	GTATATGTAAAGGGTGGTA <mark>GGTGATAC</mark> TACCATCCTTATTTTTTAA	-11.10
25	g117	72014:72057	+	TTTAATATTAAAGACCTATTAATTTAGGTCTTTTTTAGTTGTA	NA
26	g124	82396:82438	+	TGAATAAACTAGAGGGGTT <mark>GATT</mark> GACCCCTCTTTATTTAATAA	-13.60
27	g128	86292:86336	+	AATATGCCATAGACTAGGAAACTTATCCTAGTCTTTTTTTT	-11.70
28	g148	104079:104123	+	GACTTAATGAAGAAGAGAAATAATTCTCTTCtTTTTTTTTGACA	-8.90
29	g152	109596:109636	+	TATAAGATATAGAGTGCCTTAGAGCACTCTTTTATTTGAGA	-8.80
30	g158	113456:113498	+	ATAATAATTAAGACCAACT <mark>AAA</mark> AAGTTGGTCTTTTTTATTGA	-11.10
31	g163	116485:116529	+	GATTTCTTATAGAGTCAAGTCTTTACTTGACTCTTTTACTATAT	-10.90

32	g203	133765:133806	+	AAATTTGTAAATACCTGTTGACAGCAGGTATTTTTTATAGTA	-8.30
33	g210	138443:138441	+	AAATATTTAAACTCCCTATTGACAAAGGGAGTTTTTTATTGTA	-9.30

+ Positive/forward strand

- Negative/reverse strand

**The predicted secondary structures are indicated by colours, the stems in blue and the loops in red.

[#] Δ G: Free energy of stem-loop region.

<u>No.</u>	Downstream of gene	Position	<u>Strand</u>	Regulatory element sequence **	<u>ΔG (kcal/mol)[#]</u>
1	g001	642:684	+	AATAGGAATATGAAGCGGTTAATTCCGCTTCTCTTACTTA	-11.90
2	g001	642:684	+	AATAGGAATATGAAGCGGTTAATTCCGCTTCTCTTACTTA	-11.90
3	g010c	3424:3472c	-	AATTATATAATACACTGGGAATAATATCCTAGTGTaTTTATTTTGCGG	-11.30
4	g010c	146072:146120c	-	AATTATATAATACACTGGGAATAATATCCTAGTGTaTTTATTTTGCGG	-11.30
5	g013	5262:5308	+	AATTATACAATTCCCTAGGATTAGATTTCTAGGGATTTTTATTTA	-11.30
6	g013	147910:147956	+	AATTATACAATTCCCTAGGATTAGATTTCTAGGGATTTTTATTTA	-11.30
7	g017	7487:7539	+	AATTTATATAAACCGCTTCGGATTAAATTCTTGAAGCGGTTTTTTTATGTAAA	-11.60
8	g017	150135:150187	+	AATTTATATAAACCGCTTCGGATTAAATTCTTGAAGCGGTTTTTTTATGTAAA	-11.60
9	g026	11022:11062	+	AATAACAAATAGAGGGAATAAAATCCCTCTTTTATTTTA	-9.40
10	g026	153670:153710	+	AATAACAAATAGAGGGAATAAAATCCCTCTTTTATTTTA	-9.40
11	g027c	11323:11365c	-	ACCTAAGAGGAGGGGATTTAATTTCCCCCTCTTTTTTTATTT	-7.10
12	g038c	16541:18391c	-	AATTTTAATTACCTACCTACTAAGGTAGGTTTTTTATTGAC	-10.30
13	g045c	21857:21902c	-	AATTAATATTTAGGCTACTTTAATTAGTAGCCTTTTTTTGTTGACA	-12.00
14	g047c	22626:22669c	-	TAGGTAAAGAAGCAGACTTTTAATAAGTCTGCTTTTCTCTTATA	-11.40
15	g055c	27052:27100c	-	CTTTCCTTTTTCACCTTGCTTGTAGCCAAGCAGGGTGTTTTTTTT	-11.00

Table 2	2: Putative	Rho-inde	pendent	transcription	terminators of	f phage	Stab21.
			1			1 0	

16	g059c	29965:30009c	-	AAACTCATTTAGAAGGACT <mark>TTAAA</mark> AAGTTCTTCTTTTTTGTTGA	-8.30
17	g073c	36638:36683c	-	TAATATATTAAGACTAAGA <mark>TTAATT</mark> TCTTAGTCTTTTTGTATATT	-10.20
18	g074c	37531:37575c	-	AATAATAAATTAGAGAGGT <mark>TAAT</mark> ACCTCTCTtTTTTTGTATTTA	-11.90
19	g076c	38740:38785c	-	AATAGAAATTTAGACGGAT <mark>TTTAA</mark> ATCCGTCTaTTTTTTTGCAAA	-10.70
20	g091	50170:50210	+	ATAAAACTGAAGAGGAGTAATTACTCCTCTTTTTTGTTTG	-10.20
21	g094	52696:52740	+	ATTAATTAATAAGCCTAGAATAAATCTAGGCTTTGTTTATTTTT	-11.50
22	g097	56170:56216	+	ACAAGAGAATAGGGATAAACTTAGGGTTTATCCCTTTTTTATTAAAA	-8.30
23	g105	62330:62372	+	TTAATAGATTAGACCAACTAAAAAGTTGGTCTTTTTTTATTGA	-11.10
24	g111	64832:64878	+	GTATATGTAAAGGGTGGTAGGTGATACTACCATCCTTATTTTTTAA	-11.10
25	g115	74900:74943	+	TTTAATATTAAAGACCTATTAATTTAGGTCTTTTTTAGTTGTA	N/A
26	g122	85276:85318	+	TGAATAAACTAGAGGGGTTGATTGACCCCTCTTTATTTAATAA	-13.60
27	g126	89178:89222	+	AATATGCCATAGACTAGGAGAAATTTCCTAGTCTTTTTTTT	-11.90
28	g144	105965:106009	+	GGCTTAATGAAGAAGAGAAATAATTCTCTTCtTTTTTTTGACA	-8.90
29	g148	111446:111486	+	TATAAGATATAGAGTGCCTTAGAGCACTCTTTTATTTGAGA	-8.80
30	g154	115305:115347	+	ATAGTAATTAAGACCAACTAAAAAGTTGGTCTTTTTTTATTGA	-11.10
31	g159	118334:118378	+	GATTTCTTATAGAGTCAAGTCTTTACTTGACTCTTTTACTATAT	-10.90
32	g168	124327:124371	+	GAACAGTGATTGAGTCAAGTTAATTCTTGACTCTCTTTTGTTTT	-11.60

33	g199	135352:135393	+	AAATTTATAAATGCCTGTT <mark>GAC</mark> AGCAGGTATTTTTTATAGTA	-8.30
34	g207	139519:139567	+	ATAAATATTTAAACTCCCT <mark>ATTGACAAAGGGAGTT</mark> tTTTATTATATAGT	-11.50

+ Positive/forward strand

- Negative/reverse strand

** The predicted secondary structures are indicated by colours, the stems in blue and the loops in red.

[#] Δ G: Free energy of stem-loop region

<u>No.</u>	Downstream gene	Position	<u>Strand</u>	Regulatory element sequence**	<u>ΔG (kcal/mol)[#]</u>
1	g003	1760:1807	+	ATTCTATACAAACCCTCTATCGGTCAATAGAGGGTTTTTTTATTTA	-11.50
2	g003	145418:145465	+	ATTCTATACAAACCCTCTATCGGTCAATAGAGGGTTTTTTTATTTA	-11.50
3	g016	5594:5638	+	AATAGTAAGTAGCTAGGTA <mark>TTAATT</mark> TACCTAGCTTTTCTAATTTC	-12.50
4	g016	149252:149296	+	AATAGTAAGTAGCTAGGTA <mark>TTAATT</mark> TACCTAGCTTTTCTAATTTC	-12.50
5	g017c	5777:5822c	-	ATTATAGAATTCACTGGGAATAATATTCCTGGTGTATTTTTGCGG	-9.10
6	g017c	149435:149480c	-	ATTATAGAATTCACTGGGA <mark>ATAATATTCCT</mark> GGTGTATTTTTGCGG	-9.10
7	g018	6818:6864	+	GAAATTCAAGATTAGGGG <mark>TTGCAATTCC</mark> CCCCCTAATCTGTTATAATA	-8.80
8	g018	150476:150522	+	GAAATTCAAGATTAGGGG <mark>TTGCAATTCC</mark> CCCCTAATCTGTTATAATA	-8.80
9	g020	7741:7787	+	AATTATACAATTCCCTAGGATTAAATTCCTAGGGATTTTTATTTGTT	-14.10
10	g020	151399:151445	+	AATTATACAATTCCCTAGGATTAAATTCCTAGGGATTTTTATTTGTT	-14.10
11	g023	9628:9681	+	AAATTATATAAACCGCTTC <mark>GGATTAAATTCTT</mark> GAAGCGGTcTTATTTTTATTTT	-11.60
12	g023	153286:153339	+	AAATTATATAAACCGCTTCGGATTAAATTCTTGAAGCGGTcTTATTTTTATTTT	-11.60
13	g026	11341:11377	+	GACACACAGAAGCGGTTTAAACCGCTTCTATATATAA	-6.90
14	g026	154999:155035	+	GACACACAGAAGCGGTTTAAACCGCTTCTATATATAA	-6.90
15	g029	12179:12217	+	TAGATTAAGAGGAGGGCAAACGCCCTCTTTTATTTTAT	-11.40
16	g029	155837:155875	+	TAGATTAAGAGGAGGGC <mark>AAAC</mark> GCCCTCTTTTATTTTAT	-11.40
17	g030c	12425:12470c	-	ATAATACCTCAGAGGAAGA <mark>ATAATATTCTTTCTCT</mark> CTTTTTATTTTA	-8.20
18	g040c	18273:18318c	-	ATTAATTTTTAAGGCTACT <mark>TTAAAT</mark> AGTAGCCTTTTTTTGTTGACA	-12.20
19	g042c	19041:19087c	-	TTACATGAAAAAGCAGACT <mark>CTTAATA</mark> GGTCTGCTTTTCTCTTATATT	-10.80
20	g050c	23484:23532c	-	CTTTCCTTTTTCACCTTGC TTGTAACCAA GCAGGGTGTTTTTTTATATA	-11.00
21	g068c	32069:32115c	-	TAAAATATTAAGACTAAGA <mark>TTAATT</mark> TCTTAGTCtTTTTTGTATATT	-10.20
22	g069c	33001:33795c	-	GTAAATAATAGAGAGAGGT <mark>TAAT</mark> ACCTCTCTtTTTTTGTTTTA	-12.10
23	g071c	34172:34217c	-	AGTATAAATTTAGACGGATTTAAAATCCGTCTaTTTTTTTGCAA	-10.70

Table 3: Putative Rho-independent transcription terminators of phage Stab22.

24	g075c	37403:37438c	-	TAATCAGGTTCCCCG <mark>TGAGA</mark> CGGGTTATGCTTGGAT	-5.40
25	g086	45804:45844	+	ATACAAATGAAGAGGAGT <mark>AACT</mark> ACTCCTCTTTTTTGCTAT	-10.20
26	g089	48320:48364	+	ATTAATTAATAAGCCTAGA <mark>ATAAA</mark> TCTAGGCTTTATTTATTTTT	-11.50
27	g092	51788:51834	+	ACAAGAGAATAGGGATAAACTTAGGGTTTATCCCTTTTTTATTAAAA	-8.30
28	g100	58328:58373	+	TATAGAATATAGACCTAAC <mark>AATAAAA</mark> GTTAGGTCTTTTCTATTGAC	-10.90
29	g108	62311:62357	+	GTATATGTAAAGGGTGGTA <mark>GGTGATAC</mark> TACCATCCTTATTTTTAA	-11.10
30	g112	72368:72411	+	TTTAATATTAAAGACCTAT <mark>TAAT</mark> TTAGGTCTTTTTTAGTTGTA	NA
31	g119	81940:81982	+	TGAATAAACTAGAGGGGTT <mark>GATT</mark> GACCCCTCTTTATTTAATAA	-13.60
32	g123	85821:85864	+	AATATGCCATAGACTAGGA <mark>TAAAC</mark> TCCTAGTCTTTTTTTCTTGA	-11.40
33	g141	102511:102555	+	GACTTAACGAAGAAGAGAAATAATTCTCTTCtTTTTTTTGACA	-8.90
34	g151	111757:111800	+	TAAATAATTAAGACCAACT <mark>AAAA</mark> AAGTTGGTCTTTTTTATTGA	-11.00
35	g169	121794:121837	+	CAATCAATCAAGCTAACAT <mark>TAA</mark> TTTGTTAGCTTTTTTATTGACA	NA
36	g198	136677:136719	+	AATAGTTAAACTCCCTATT <mark>GACA</mark> AATAGGGGTTTCTATTATAT	-9.70
37	g207	139831:139877	+	AAAAGATTTAACTCTATCT <mark>ATTGACAT</mark> AGGTAGAGTTTTAGTGTATA	-8.80

+ Positive/forward strand

- Negative/reverse strand

** The predicted secondary structures are indicated by colours, the stems in blue and the loops in red. # ΔG : Free energy of stem-loop region
<u>No.</u>	Downstream gene	<u>Position</u>	<u>Strand</u>	Regulatory element sequence**	<u>ΔG</u> (kcal/mol) [#]
1	g001	1658:1704	+	TTCTATACAAAACCCTCTACTGGGAATAGAGGGTTTTTTTATTTA	-11.00
2	g001	143932:143978	+	TTCTATACAAAACCCTCTACTGGGAATAGAGGGTTTTTTTATTTA	-11.00
3	g009	3983:4029	+	GACAAATCGTAGAGAGGGCTTAAGTAGTCCTCTCTTATTTAGGTTAG	-12.30
4	g009	146257:146303	+	GACAAATCGTAGAGAGGGCTTAAGTAGTCCTCTCTTATTTAGGTTAG	-12.30
5	g010c	4169:4214c	-	ATTATACAATACACTGGGA <mark>ATAATAT</mark> TCCTAGTGTATTTTTCGGT	-10.80
6	g010c	146443:146488c	-	ATTATACAATACACTGGGA <mark>ATAATATT</mark> CCTAGTGTATTTTTCGGT	-10.80
7	g013	6152:6196	+	TTATACAATATCCCTGGGA TTAAAT TCCTAGGGTTTTTTATTTGT	-14.00
8	g013	148426:148470	+	TTATACAATATCCCTGGGA TTAAAT TCCTAGGGTTTTTTATTTGT	-14.00
9	g018	8929:8979	+	AATTATAAAACCGCTTCG <mark>GATTAAATTCT</mark> TGAAGCGGTTATTTTCTTTTA	-10.90
10	g018	151203:151253	+	AATTATAAAACCGCTTCGGATTAAATTCTTGAAGCGGTTATTTTCTTTA	-10.90
11	g026	12098:12141	+	ATTAGATTAAGAGGAGGGCAAACGCCCTTCTTTATTTTATTCT	-13.10
12	g026	154372:154415	+	ATTAGATTAAGAGGAGGGCAAACGCCCTTCTTTATTTTATTCT	-13.10
13	g027c	12348:12393c	-	GTATAGATAAGAGAGGGGGG <mark>CATATA</mark> CCTCCTCTTTTTATTTTAGA	-12.70
14	g028c	12742:12784c	-	TAAATTATAAATCACTCTT <mark>AA</mark> TAGAGTGAtTTTTTATATAAA	NA
15	g042c	21163:21208c	-	ATTAATTTTTAAGGCTACT <mark>TTAATT</mark> AGTAGCCTTTTTTTGTTGACA	-12.20
16	g044c	21932:21976c	-	TAGATACAGAAGCAGACTTTTAATAAGTCTGCTTTTCTCTTATAT	-11.40
17	g051c	26368:26416c	-	CTTTCCTTTTTCACCTTGC TTGTAACCAA GCAGGGTGTTTTTTTTATAT	-11.00
18	g068c	34698:34743c	-	TAATATATTAAGACTAAGATTAATTTCTTAGTCTTTTTGTATATT	-10.20
19	g069c	35587:35630c	-	AAATAATAGAGAGAGAGGT <mark>TAAT</mark> ACCTCTCTTTTTTTTGTTTC	-12.10
20	g071c	36796:36841c	-	AATAGTAATTTAGACGGATTTTATATCCGTCTaTTTTTTTTGCAA	-11.40
21	g076c	41504:41553c	-	TACGTACTTTTTCTTCTGTAAGTACTGATATAGAGGGaTTTTACTTTAGA	-5.40
22	g085	48688:48728	+	ATAAAATTGAAGAGGAGTAAATACTCCTCTTTTTTGCTAT	-10.20

Table 4: Putative Rho-independent transcription terminators of phage Stab23.

23	g088	51204:51248	+	ATTAATTAATAAGCCTAGA <mark>ATAAA</mark> TCTAGGCTTTATTTATTTTT	-11.50
24	g091	54663:54709	+	ACAAGAGAATAGGGATAAACTTAGGGTTTATCCCTTTTTTATTAAAA	-8.30
25	g099	60800:60843	+	TTAATATTAGACCAACT <mark>AAAA</mark> AAGTTGGTCTTTTTTATTGA	-11.00
26	g107	63688:63734	+	GTATATGTAAAGGGTGGTA <mark>GGTGATAC</mark> TACCATCCTTATTTTTTAA	-11.10
27	g111	73755:73798	+	TTTAATATTAAAGACCTAT <mark>TAAT</mark> TTAGGTCTTTTTTAGTTGTA	NA
28	g118	84635:84677	+	TGAATAAACTAGAGGGGTT <mark>GATT</mark> GACCCCTCTTTATTTAATAA	-13.60
29	g122	88516:88559	+	AATATGCCATAGACTAGGA <mark>TAAA</mark> CTCCTAGTCTTTTTTTCTTGA	-11.40
30	g141	105583:105627	+	GACTCAATGAAGAAGAGAAATAATTCTCTTCtTTTTTTTTGACA	-8.90
31	g145	110929:110969	+	TATAAGATATAGAGTGCCTTAGAGCACTCTTTTATTTAAGA	-8.80
32	g151	114778:114821	+	ATAATAATTAAGACCAACT <mark>AAAA</mark> AAGTTGGTCTTTTTTTATTGA	-11.00
33	g156	117808:11752	+	GATTTCTTATAGAGTCAAG <mark>TCTTTA</mark> CTTGACTCTTTTTACTATAT	-10.90
34	g165	123806:123850	+	GAACAGTGATTGAGTCAAG <mark>TTAATT</mark> CTTGACTCTCTTTTTGTTTT	-11.60
35	g170	125354:125398	+	AAACCAATCAAGCTAACAT <mark>TAAT</mark> TTGTTAGCtTTTTTTATTGACA	NA

+ Positive/forward strand

Negative/reverse strand
** The predicted secondary structures are indicated by colours, the stems in blue and the loops in red.

[#] Δ G: Free energy of stem-loop region

Appendix VI: Stab phages' proteomic (LC-MS/MS) results.

Table 1: The Stab20 phage particle associated proteins identified using LC-MS/MS of tryptic peptides. The selection criteria for the proteins were a minimum of 5% sequence coverage and ≥ 2 unique peptides.

Gene	Predicted function of gene product	Coverage (%) # Unio	# Unique	MW
			Peptides	[kDa]
g114	Tail tape-measure protein	46.97	47	143.7
g158	Ig-like domain containing protein	78.67	4	7.8
g124	Adsorption-associated tail protein	41.23	29	129.2
g143	Ribonucleotide reductase large subunit	49.72	28	80.2
g097	Major capsid protein	74.08	22	51.2
g149	DNA polymerase A	32.37	25	124.5
g126	Carbohydrate binding domain-containing protein	55.94	26	72.5
g153	DNA repair protein	46.65	20	46.7
g104	Major tail sheath protein	50.94	19	64.4
g157	Tail protein	33.53	8	18.2
g115	N-acetylmuramoyl-L-alanine amidase	23.51	14	91.2
g117	Glycerophosphoryl diester phosphodiesterase	35.73	14	95.9
g210	Nicotinamide phosphosribosyltransferase	23.87	13	92.2
g129	DNA helicase A	35.22	13	67.2
g094	Portal protein	41.40	13	56.8
g077c	Endolysin	34.14	11	54.7
g075c	Putative membrane protein	42.05	12	29.3
g087	Terminase large subunit	21.16	9	70.2
g123	Hypothetical protein	59.54	8	19.2
g095	Prohead protease	60.16	12	27.3
g119	Hypothetical protein	68.97	8	19.9
g118	Hypothetical protein	16.73	3	29.3
g152	Hypothetical protein	28.05	7	48.3

g195	Hypothetical protein	41.18	5	24.9
g055c	AAA family ATPase	26.13	7	42.5
g156	Hypothetical protein	62.38	9	23.2
g161	Metallophosphoesterase	21.39	7	47.6
g102	Hypothetical protein	50.72	8	31.7
g127	Hypothetical protein	50.00	6	14.6
g194	Hypothetical protein	48.89	4	10.4
g169	Hypothetical protein	26.32	3	17.8
g133	Exonuclease	23.75	6	39.3
g122	Hypothetical protein	11.87	6	112.1
g105	Tail tube protein	44.37	5	15.9
g128	Putative capsid & scaffold protein	20.96	7	50.4
g137	Hypothetical protein	45.07	6	24.9
g135	Putative recombinase exonuclease B	15.81	6	73.2
g209	Ribose-phosphate pyrophosphokinase	29.80	7	34.9
g099	Hypothetical protein	25.17	4	34.1
g168	Hypothetical protein	19.12	3	29.3
g116	Protease	10.17	3	34.5
g131	DNA helicase B	14.17	6	54.6
g167	Hypothetical protein	19.51	4	32.3
g141	Resolvase	30.20	4	23.6
g101	Hypothetical protein	15.53	4	23.8
g164	Hypothetical protein	20.22	3	20.7
g090	Hypothetical protein	17.61	3	18.5
g121	putative tail protein	15.52	4	39.2
g140	Hypothetical protein	12.00	2	17.0
g189	HNH endonuclease	18.09	4	21.5
g078c	Holin	20.36	4	18.1
g054c	Hypothetical protein	10.68	3	31.8

g112	Hypothetical protein	34.87	4	18.1
g061c	Hypothetical protein	10.83	4	79.7
g096	Hypothetical protein	12.54	3	36.1
g144	Ribonucleotide reductase small subunit	12.61	3	40.4
g111	Hypothetical protein	13.59	2	12.2
g100	Hypothetical protein	17.81	3	33.7
g067c	PhoH-related protein	15.04	3	28.5
g076c	Putative membrane protein	17.65	2	12.2
g187	Hypothetical protein	14.50	2	23.4
g038c	Hypothetical protein	25.93	3	19.5
g091	Hypothetical protein	4.10	2	43.0
g130	Putative replication protein	9.12	3	63.1
g146	Thioredoxin	15.45	2	12.5
g120	Baseplate wedge subunit	9.40	1	26.6
g098	Hypothetical protein	15.31	2	11.2
g147	Hypothetical protein	13.64	2	23.6
g041c	Serine/threonine protein phosphatase	9.87	2	27.2
g172	Putative membrane protein	18.94	2	15.4
g216	Hypothetical protein	20.12	2	20.3
g051c	Hypothetical protein	17.61	2	20.5
g069c	Ribonuclease H	13.48	2	15.8
g066c	RNA ligase	6.71	2	34.7
g062c	Hypothetical protein	28.74	2	10.1

Table 2: The Stab21 phage particle associated proteins identified using LC-MS/MS of tryptic peptides. The selection criteria for the proteins were a minimum of 5% sequence coverage and ≥ 2 unique peptides.

			# Unique	
Gene	Predicted function	Coverage (%)	Peptides	MW [kDa]
g154	Major tail protein	81.58	6	7.9
g112	Putative tail lysin	47.15	52	143.9
g122	Adsorption-associated tail protein	56.25	48	129.1
g104	Major tail sheath protein	61.93	27	64.8
g139	Ribonucleotide reductase of class 1b (aerobic), alpha subunit	62.22	35	81.2
g124	Hypothetical protein	67.50	34	72.6
g094	Portal protein	55.77	23	64.0
g149	Recombinase protein	63.40	27	46.8
g153	Ig-like domain	92.57	12	18.4
g145	DNA polymerase I	34.70	30	124.5
g076c	N-acetylmuramoyl-L-alanine amidase	44.15	18	54.8
g097	Major capsid protein	61.29	18	51.5
g113	Tail lysin	31.96	18	93.0
g115	Glycerolphosphoryl diester phosphodiesterase	39.98	21	96.6
g207	Nicotinamide phosphoribosyltransferase	45.10	14	56.2
g127	DNA helicase A	37.93	18	67.9
g095	Prohead protease	61.39	16	28.8
g120	Hypothetical protein	26.27	18	116.4
g087	Terminase large subunit	36.36	13	70.2
g038c	Lipase acylhyrolase domain protein	45.08	16	70.5
g121	Hypothetical protein	60.67	9	19.8
g164	Hypothetical protein	56.57	11	29.3
g116	Hypothetical protein	27.61	4	29.9
g152	Hypothetical protein	69.91	11	23.9

g074c	Membrane protein	36.00	10	30.7
g066c	PhoH predicted ATPase	54.66	12	28.7
g052c	AAA family ATPase	31.69	10	43.8
g117	Hypothetical protein	70.86	8	20.1
g126	Tail fibre protein	33.62	10	50.4
g197	Hypothetical protein	62.07	6	10.2
g129	DNA helicase B	38.68	12	55.3
g157	DNA polymerase	28.20	8	48.2
g064c	RNA ligase	34.45	7	35.2
g048c	Hypothetical protein	39.66	5	20.9
g100	Capsid	43.00	8	33.9
g101	Hypothetical protein	28.99	8	23.8
g102	Hypothetical protein	41.73	6	31.8
g114	Protease	13.85	4	34.7
g133	Hypothetical protein	42.92	8	24.7
g137	Resolvase	52.45	8	23.9
g058c	Hypothetical protein	21.26	10	79.7
g105	Tail tube protein	43.75	5	16.2
g091	Hypothetical protein	22.98	5	43.6
g143	Hypothetical protein	28.10	5	28.8
g165	Hypothetical protein	24.39	3	19.3
g088	Hypothetical protein	32.89	8	34.2
g148	Hypothetical protein	25.12	5	47.7
g163	Hypothetical protein	25.69	4	32.4
g168	Putative membrane protein	20.13	4	18.1
g189	Hypothetical protein	20.41	2	11.2
g099	Hypothetical protein	19.21	4	34.1
g142	Thioredoxin-like protein	43.75	5	12.8
g199	Hypothetical protein	22.12	4	25.7

g205	Ribose-phosphate pyrophosphokinase	24.68	6	35.9
g077c	Holin	18.28	4	20.4
g119	Baseplate protein	15.47	4	39.3
g110	Hypothetical protein	33.33	4	19.0
g111	Tail morphogenetic protein	49.49	5	23.1
g125	Hypothetical protein	40.85	4	17.0
g130	Putative exonuclease	23.28	4	40.2
g170	Hypothetical protein	14.14	2	22.3
g174	Hypothetical protein	11.50	3	26.5
g184	Hypothetical protein	24.52	4	24.2
g147	Hypothetical protein	23.75	4	18.9
g096	Hypothetical protein	17.28	4	36.7
g128	Putative replication protein	11.71	4	63.2
g132	Exonuclease	9.53	3	73.5
g160	Hypothetical protein	21.20	3	21.5
g167	Hypothetical protein	27.31	4	27.9
g059c	Hypothetical protein	43.68	4	10.1
g047c	Hypothetical protein	23.20	3	20.5
g035c	Hypothetical protein	30.12	3	20.0
g055c	Nucleoside triphosphate pyrophosphohydrolase	20.95	2	12.0
g118	Putative baseplate protein	20.34	2	26.8
g180	Hypothetical protein	30.25	2	13.4
g070c	Hypothetical protein	11.01	3	26.3
g051c	Hypothetical protein	8.62	2	32.7
g036c	Hypothetical protein	21.05	3	16.3
g161	Hypothetical protein	13.73	2	30.0
g090	Hypothetical protein	14.47	2	18.5
g151	RNA polymerase sigma factor	15.42	2	27.3

g098	Hypothetical protein	14.56	2	11.9
g162	Hypothetical protein	25.50	2	17.4
g073c	Transglycosylase	13.22	2	26.3
g067c	Hypothetical protein	27.75	2	23.5
g054c	Hypothetical protein	16.45	2	17.6
g041c	Hypothetical protein	32.39	2	8.5

Table 3: The Stab22 phage particle associated proteins identified using LC-MS/MS of tryptic peptides. The selection criteria for the proteins were a minimum of 5% sequence coverage and ≥ 2 unique peptides.

			# Unique	
Gene	Predicted functions	Coverage (%)	Peptides	MW [kDa]
g123	Tail fiber protein	70.74	25	51.0
g136	Ribonucleotide reductase, large subunit	70.22	40	80.9
g109	Tail length tape-measure protein	51.70	51	143.7
g119	Adsorption-associated tail protein	55.35	46	129.8
g142	DNA polymerase A	45.71	35	124.4
g099	Major tail sheath	52.96	24	64.6
g072c	N-acetylmuramoyl-L-alanine amidase	48.09	21	55.0
g089	Portal protein	49.02	21	63.9
g186	Hypothetical protein	33.00	2	11.5
g112	Glycerolphosphoryl diester phosphodiesterase	55.92	33	96.6
g092	Major capsid protein	61.51	19	51.5
g146	DNA repair recombinase protein	59.28	23	46.7
g082	Terminase, large subunit	43.14	18	70.4
g110	Tail lysin	33.37	17	92.5
g047c	AAA family ATPase	51.46	17	42.7
g198	Nicotinamide phosphoribosyl transferase	29.03	18	93.5
g069c	Putative membrane protein	50.76	14	29.3
g126	DNA helicase B	54.32	19	55.3
g161	Hypothetical protein	57.37	11	29.3
g124	DNA helicase A	36.05	14	67.9
g061c	PhoH-related protein	50.20	13	28.7
g149	Hypothetical protein	70.37	12	24.0
g095	Capsid protein	50.51	10	33.8
g090	Prohead protease	62.84	12	28.8
g121	Hypothetical protein	34.27	12	73.2

g150	Ig-like domain protein	44.25	6	18.4
g097	Hypothetical protein	50.72	9	31.8
g114	Hypothetical protein	65.14	7	20.0
g002	Hypothetical protein	61.24	8	20.0
g113	Hypothetical protein	14.18	3	29.8
g122	Hypothetical protein	69.42	5	14.4
g129	Recombination exonuclease B	20.74	8	73.7
g134	Resolvase	47.55	7	23.9
g145	Hypothetical protein	35.09	6	44.4
g154	Metallophosphoesterase protein	36.26	9	48.3
g118	Structural protein	52.25	8	19.9
g162	Hypothetical protein	35.98	5	19.2
g207	Hypothetical protein	58.18	8	19.5
g054	Hypothetical protein	65.52	8	10.2
g130	Anti-sigma factor	37.26	5	25.0
g117	Hypothetical protein	16.73	6	85.3
g083	Hypothetical protein	26.38	5	34.6
g100	Tail tube protein	45.65	5	15.4
g165	Hypothetical protein	33.10	7	16.9
g206	Hypothetical protein	38.79	5	13.6
g116	Baseplate morphogenetic protein	19.48	5	39.2
g197	Ribose-phosphate pyrophosphokinase	40.07	8	35.2
g053c	Hypothetical protein	16.84	6	79.7
g035c	GTP cyclohydrolase II	38.89	6	19.5
g096	Hypothetical protein	20.29	6	23.8
g133	Hypothetical protein	22.78	4	18.3
g139	Thioredoxin	58.04	5	12.8
g159	Hypothetical protein	31.54	5	17.5
g160	Hypothetical protein	24.31	5	32.4

g187	Hypothetical protein	20.52	4	25.9
g073c	Holin	17.62	4	21.1
g046c	Hypothetical protein	29.47	6	32.1
g043c	Hypothetical protein	31.84	4	20.9
g094	Hypothetical protein	25.17	4	34.1
g107	Hypothetical protein	34.81	4	18.9
g111	Protease	11.15	4	34.8
g125	Rep protein	16.36	6	63.3
g140	Hypothetical protein	28.10	5	28.8
g157	Hypothetical protein	12.50	2	21.5
g019	Hypothetical protein	30.38	5	19.0
g085	Hypothetical protein	23.27	4	18.5
g086	Hypothetical protein	12.41	3	44.4
g101	Hypothetical protein	16.48	5	50.9
g115	Baseplate wedge subunit	11.86	2	26.8
g128	Recombination exonuclease A	17.25	4	39.6
g148	RNA polymerase sigma factor	20.70	3	27.3
g180	Hypothetical protein	25.00	4	24.2
g057c	Nucleoside 2-deoxyribosyltransferase	34.83	5	22.5
g144	Hypothetical protein	13.75	2	19.0
g151	Major tail protein	86.08	3	8.3
g194	Hypothetical protein	22.57	3	25.8
g210	Hypothetical protein	25.33	2	8.6
g070c	Putative membrane protein	13.21	2	12.8
g062c	Hypothetical protein	36.41	4	23.3
g049c	Hypothetical protein	21.01	2	15.9
g079	Membrane protein	17.61	3	16.6
g093	Hypothetical protein	15.79	2	10.9
g158	Hypothetical protein	13.73	2	30.0

g163	Hypothetical protein	19.02	2	19.3
g164	Hypothetical protein	12.61	2	28.0
g189	Hypothetical protein	42.07	3	16.2
g065c	Hypothetical protein	14.54	3	26.3
g059c	Hypothetical protein	38.46	2	16.3
g032c	Hypothetical protein	13.82	2	18.5
g029	Terminal repeat encoded protein U (TreU)	26.67	2	10.9
g106	Hypothetical protein	12.96	2	12.9
g131	DNA primase	7.76	2	41.7
g147	Hypothetical protein	21.37	2	13.4
g153	Hypothetical protein	19.05	2	29.2
g182	Hypothetical protein	19.35	2	7.6
g188	Hypothetical protein	25.49	2	11.8
g190	Metallophosphatase	15.17	2	20.8
g067c	Hypothetical protein	16.00	2	9.2
g042c	Hypothetical protein	16.20	2	20.8
g036c	Serine/threonine protein phosphatase	5.08	2	27.9

Table 4: The Stab23 phage particle associated proteins identified using LC-MS/MS of tryptic peptides. The selection criteria for the proteins were a minimum of 5% sequence coverage and ≥ 2 unique peptides.

Gene	Predicted protein	Coverage (%)	# Unique Peptides	MW [kDa]
g136	Ribonucleoitide reductase, largel subunit	38.20	18	80.9
g072c	N-acetylmuramoyl-L-alanine amidase	40.64	15	55.0
g108	Tail length tape-measure protein	21.58	18	143.7
g109	Tail lysin	25.77	14	92.4
g088	Portal protein	22.74	9	64.0
g091	Major capsid protein	38.28	11	51.5
	Glycerophosphoryl diester			
g111	phosphodiesterase	31.18	14	96.5
g117	Baseplate morphogenetic protein	60.67	9	19.9
g142	DNA polymerase A	20.85	15	122.7
g146	Repair recombinase	38.76	12	46.7
g096	Hypothetical protein	48.20	9	31.8
g118	Adsorption-associated tail protein	11.49	9	129.7
g098	Major tail sheath	26.90	9	64.9
g122	Tail fiber protein	29.10	11	50.7
g123	DNA helicase A	20.41	6	67.9
g054c	Hypothetical protein	10.54	7	80.1
g099	Tail tube protein	52.78	6	16.1
g193	Nicotinamide phosphoribosyltransferase	15.71	5	56.2
g028c	Putative tail fiber protein	18.60	6	64.8
g106	Hypothetical protein	27.22	3	18.9
g120	Hypothetical protein	14.13	4	72.5
g093	Hypothetical protein	18.21	3	34.1
g113	Hypothetical protein	32.57	3	20.0
g115	Baseplate morphogenetic protein	15.47	3	39.2

g149	Hypothetical protein	21.76	3	23.9
g160	Hypothetical protein	13.19	3	32.4
g048c	AAA family ATPase	13.39	5	43.2
g082	Terminase, large subunit	6.78	3	70.4
g084	Hypothetical protein	17.61	2	18.5
g154	Metallophosphoesterase	9.95	3	48.3
g162	Hypothetical protein	24.39	3	19.3
g165	Putative membrane protein	27.81	4	17.5
g069c	Putative membrane protein	9.85	3	29.3
g050c	Hypothetical protein	18.12	2	16.0
g089	Prohead protease	21.46	3	28.9
g116	Tail morphogenetic protein	3.30	3	134.9
g129	Recombinase exonuclease B	4.38	2	73.3
g130	Hypothetical protein	26.42	3	24.8
g158	Hypothetical protein	16.86	3	30.0
g061c	PhoH-related protein	19.43	3	28.9
g055c	Hypothetical protein	13.83	2	10.9
g110	Peptidoglycan hydrolase	10.47	2	34.7
g125	DNA helicase B	6.38	2	55.3
g134	Resolvase	13.73	2	24.0
g144	Hypothetical protein	16.25	2	18.9
g035c	GTP cyclohydrolase II	13.94	2	19.9

Appendix VII: Publications.

Research articles published:

 Oduor J.M.O, Kadija E, Mureithi.W.M, Nyachieo. A, Skurnik M (2020). Bioprospecting Staphylococcus phages with therapeutic and bio-control potential. *MDPI Journal of Viruses*.

Abstract

Emergence of antibiotic-resistant bacteria is a serious threat to the public health. This is also true for Staphylococcus aureus and other staphylococci. Staphylococcus phages Stab20, Stab21, Stab22, and Stab23, were isolated in Albania. Based on genomic and phylogenetic analysis, they were classified to genus Kayvirus of the subfamily Twortvirinae. In this work, we describe the in-depth characterization of the phages that electron microscopy confirmed to be myoviruses. These phages showed tolerance to pH range of 5.4 to 9.4, to maximum UV radiation energy of 25 μ J/cm², to temperatures up to 45 °C, and to ethanol concentrations up to 25%, and complete resistance to chloroform. The adsorption rate constants of the phages ranged between $1.0 \times$ 10^{-9} mL/min and 4.7×10^{-9} mL/min, and the burst size was from 42 to 130 plaque-forming units. The phages Stab20, 21, 22, and 23, originally isolated using Staphylococcus xylosus as a host, demonstrated varied host ranges among different Staphylococcus strains suggesting that they could be included in cocktail formulations for therapeutic or bio-control purpose. Phage particle proteomes, consisting on average of ca 60–70 gene products, revealed, in addition to straight-forward structural proteins, also the presence of enzymes such DNA polymerase, helicases, recombinases, exonucleases, and RNA ligase polymer. They are likely to be injected into the bacteria along with the genomic DNA to take over the host metabolism as soon as possible after infection.

Keywords: <u>MRSA; Kayvirus; bacteriophage; genome; proteome; stability</u> <u>https://doi.org/10.3390/v12020133</u>

✓ Oduor J.M.O, Kadija E, Kiljunen S, Mureithi.W.M, Nyachieo. A, Skurnik M (2019). Genomic characterization of four novel *Staphylococcus* myoviruses. *Archives of Virology*.

Abstract

We report here the annotation of the complete genomes of four novel lytic Staphylococcus phages; Stab20, Stab21, Stab22 and Stab23. These phages have double-stranded DNA genomes ranging between 153,338 and 155,962 bp in size with terminal repeats of 10,814-12,304 bp. The genome analysis suggests that they represent new phage species within the genus *Kayvirus* in the subfamily *Twortvirinae* of the family *Herelleviridae*.

Key words: Kayviruses; Staphylococcus aureus; Twortvirinae; https://doi.org/10.1007/s00705-019-04267-0

Appendix VIII: Conference presentations certificates.

i). AIBBC conference:

<u>Joseph M. Ochieng Oduor</u>, Ermir Kadija, Saija Kiljunen, Marianne W. Mureithi, Atunga Nyachieo, Mikael Skurnik. **Bioprospecting for novel phages with therapeutic significance against pathogenic** *Staphylococcus* **spp**. 4th African International Biomedical and *Biotechnology Conference* (August 28 – 30, 2019) Nairobi - Mombasa, Kenya.

ii). BSI conference:

Joseph M. Ochieng Oduor', Ermir Kadija, Saija Kiljunen, Marianne W. Mureithi, Atunga Nyachieo, Mikael Skurnik. Isolation and characterization of a novel *Staphylococcus aureus* bacteriophages. (February 9 -10, 2019) *Beyond Sciences Conference- 4th International Remote Conference*.

CERTIFICATE OF EXCELLENCE

issued to Joseph Michael Ochieng Odour

for selection as a top presenter at the Beyond Sciences Initiative 4th International Remote Conference: Science & Society

February 9-10th, 2019

TRINITY COLLEGE UNIVERSITY OF TORONTO

iii). EMBO workshop\conference:

Joseph M. Ochieng Oduor, Ermir Kadija, Saija Kiljunen, Marianne W. Mureithi, Atunga Nyachieo, Mikael Skurnik. Isolation and characterization of a novel Staphylococcus aureus bacteriophages. EMBO workshop Virus of Microbes (July 9-13, 2018) Wroclaw, Poland.

EMBO excellence in life sciences

Germany

Appendix IX: Ethical approval letter.

UNIVERSITY OF NAIROBI COLLEGE OF HEALTH SCIENCES P O BOX 19676 Code 00202 Telegrams: varsity Tel:(254-020) 2726300 Ext 44355

Ref: KNH-ERC/A/230

Dear Joseph

Joseph Michael Ochieng' Oduor Principal Investigator (PhD candidate) KAVI- Institute of Clinical Research College of Health Sciences University of Nairobi

KNH-UON ERC Email: uonknh_erc@uonbi.ac.ke Website: http://www.facebook.com/uonknh.erc Facebook: https://www.facebook.com/uonknh.erc Twitter: @UONKNH_ERC https://witter.com/UONKNH_ERC

KENYATTA NATIONAL HOSPITAL P O BOX 20723 Code 00202 Tel: 726300-9 Fax: 725272 Telegrams: MEDSUP, Nairobi

27th July, 2017

Revised Research Proposal - Complete Genome Analysis of Lytic Phages and Identification of Hypothetical Phage Proteins Targeting Major Protein Complexes of *Staphylococcus Aureus* (P262/05/2017)

This is to inform you that the KNH- UoN Ethics & Research Committee (KNH- UoN ERC) has reviewed and approved your above proposal. The approval period is from 27th July, 2017 – 26th July 2018.

This approval is subject to compliance with the following requirements:

- a) Only approved documents (informed consents, study instruments, advertising materials etc) will be used.
- All changes (amendments, deviations, violations etc) are submitted for review and approval by KNH-UoN ERC before implementation.
- c) Death and life threatening problems and serious adverse events (SAEs) or unexpected adverse events whether related or unrelated to the study must be reported to the KNH-UoN ERC within 72 hours of notification.
- d) Any changes, anticipated or otherwise that may increase the risks or affect safety or welfare of study participants and others or affect the integrity of the research must be reported to KNH- UoN ERC within 72 hours.
- e) Submission of a request for renewal of approval at least 60 days prior to expiry of the approval period. (*Attach a comprehensive progress report to support the renewal*).
- f) Submission of an <u>executive summary</u> report within 90 days upon completion of the study. This information will form part of the data base that will be consulted in future when processing related research studies so as to minimize chances of study duplication and/ or plagiarism.

For more details consult the KNH- UoN ERC websitehttp://www.erc.uonbi.ac.ke

Yours sincerely,

۱ PROF M.L. OHINDIA

SECRETARY, KNH-UON ERC

c.c. The Principal, College of Health Sciences, UoN The Director, CS, KNH The Chair, KNH- UoN ERC The Assistant Director, Health Information, KNH The Director, KAVI-Institute of Clinical Research, UoN Supervisors: Prof. Mikael Skurnik, University of Helsinki, Finland Dr.Atunga Nyachieo, Institute of Primate Research, UoN Dr. Marianne W.Mureithi, KAVI-ICR, UoN

Protect to discover