

UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS

ACCESS CONTROL MODEL FOR CONTAINER-BASED VIRTUAL

ENVIRONMENTS

BY:

Titus Murithi Rugendo

 P53/10900/2018

SUPERVISOR:

Dr. Andrew M. Kahonge

A project submitted in partial fulfillment of requirements for the award of the Degree of

Master of Science in Distributed Computing Technology of University of Nairobi 2021.

ii

DEDICATION

I dedicate this Project to my dear mother Rose Keeru for her unending support in my

education pursuits.

To my dad Gilbert Rugendo for his great sacrifice throughout my life.

To my sister Esther Kagendo and my brother Eric Mwenda for their great support and

encouragement.

iii

ACKNOWLEDGMENTS

I wish to acknowledge and thank the Almighty God for giving me the time, knowledge

and strength, enabling me to complete my project.

I wish to express my sincere gratitude to my supervisor Dr. Andrew Mwaura for your

great support, time, invaluable advice and guidance that you provided to make this project

a success.

I also wish to thank all the members of the project panel Dr. Andrew Kahonge, Dr. Elisha

Abade, Mr. Eric Ayienga, Prof. Timothy Waema and Ms. Selina Ochukut for their

dedicated guidance, motivation and encouragement during the research period. I also

thank other members of the faculty for playing a great role in supporting and guiding me

over the years.

Finally, I would like to thank my friends Pascal Mutulu and Joseph Mwamba for their

encouragements and for always challenging me during the research period. This helped to

keep me focused all the time.

iv

ABSTRACT

With rapid development and adoption of virtualization technology, security concerns have

become more prominent. Access control is the focal point when it comes to security.

Since, it determines if a user can access a system and perform the action they intend to.

Containers provide an all or nothing access control mechanism. Where if a host machine

user has privileged access then they can access the containers as super users, enabling

them to perform any desired action. All unprivileged users on the host machine are denied

access to the container environment.

This research focuses on the concept of access control in container environment. It is

geared more towards Docker container environment since it is the most widely adopted

containerization technology. The study also focuses on analyzing existing container

authorization plugins to determine how they implement access control or other forms of

authorizations in containers. This research is based on exploratory research design. Since,

it will involve numerous tests to determine how container engines interact with third party

plugins to extend container functionalities. And, how current container authorization

plugins implement access control.

Additionally, this research led to the development of a container access plugin for Docker

containers that deny all host system users access to the containers. Access to container

environments is determined based on users created within the containers. A container user

access rights are checked against a defined access policy to determine if a user can access

the container. Users allowed access are logged in as non-root users, with read privileges

only. The administrator is responsible for allocating different rights and privileges to

container users, this limits actions a user can perform within the containers. Thus, to

achieve access control in container-based virtual environments the administrators must

create and use container users to determine who has access to specific containers and the

roles they can perform within the container environment.

v

TABLE OF CONTENTS

DECLARATION ... I

DEDICATION .. II

ACKNOWLEDGMENTS ... III

ABSTRACT ...IV

TABLE OF CONTENTS .. V

LIST OF FIGURES .. VIII

LIST OF TABLES ...IX

ABBREVIATIONS ... X

CHAPTER 1 .. 1

1.0 INTRODUCTION ... 1

1.1 BACKGROUND ... 1

1.2 PROBLEM STATEMENT ... 3

1.3 OBJECTIVES .. 4

1.4 RESEARCH QUESTIONS .. 4

1.5 SIGNIFICANCE ... 4

1.6 JUSTIFICATION ... 4

CHAPTER 2 .. 6

2.0 LITERATURE REVIEW ... 6

2.1 CONTAINERIZATION ... 6

2.2 LXC AND LXD ... 6

2.3 DOCKER CONTAINERS OVERVIEW ... 7

2.3.1 Docker Security .. 8

vi

2.4 ACCESS CONTROL ... 8

2.5 GRANULARITY .. 9

2.5.1 Attribute Based Access Control (ABAC) ... 9

2.6 RELATED WORKS .. 11

2.6.1 AuthZ Plugin ... 11

2.6.2 Distributed Role-Based Access Control (DRBAC) ... 12

2.6.3 Open Policy Agent Docker Authorization Plugin (OPA) .. 13

2.6.4 docker-authz-plugin by Everett Toews .. 15

2.7 DOCKER ADMINISTRATION .. 15

2.8 CONCEPTUAL MODEL .. 16

CHAPTER 3 .. 17

3.0 RESEARCH METHODOLOGY .. 17

3.1 RESEARCH DESIGN .. 17

3.2 POPULATION .. 18

3.3 SAMPLE SIZE ... 18

3.4 DATA COLLECTION .. 19

3.4.1 Focus Groups .. 19

3.4.2 Observations ... 19

3.5 DATA ANALYSIS ... 19

3.6 PLUGIN DEVELOPMENT ... 20

3.7 TESTING THE PLUGIN .. 20

3.8 TOOLS ... 21

CHAPTER 4 .. 22

4.0 RESULTS AND DISCUSSIONS .. 22

4.1 RESULTS .. 22

4.1.1 Selected Sample Size ... 22

4.1.2 Focus group data .. 22

4.1.3 Testing and Observations .. 23

4.1.4 Analysis of collected data ... 24

4.1.5 Plugin Development .. 26

4.1.6 Plugin Testing ... 28

4.1.6.1 Unit testing ... 28

vii

4.1.6.2 System testing ... 28

4.1.6.3 Usability testing ... 40

4.2 DISCUSSION .. 40

CHAPTER 5 .. 44

5.0 CONCLUSION AND RECOMMENDATIONS 44

5.1 CONCLUSION ... 44

5.2 LIMITATIONS FOR THIS STUDY ... 45

5.3 RECOMMENDATIONS FOR FURTHER WORK ... 46

REFERENCES .. 47

APPENDICES ... 49

PROJECT SCHEDULE .. 49

SAMPLE CODE: ... 49

GUIDE ON HOW TO USE THE CONTAINER ACCESS CONTROL PLUGIN (DOCKER-AUTHZ): ... 50

viii

LIST OF FIGURES

Figure 1: Container-based Virtualization Architecture (Sultan, Ahmad, & Dimitriou,

2019) .. 2

Figure 2: Hypervisor-based Virtualization Architecture (Sultan, Ahmad, & Dimitriou,

2019). ... 2

Figure 3: EBAC Methodology (Good, 2018). ... 11

Figure 4: Authorization allow scenario (Levin, 2016). .. 12

Figure 5: Authorization deny scenario (Levin, 2016) .. 12

Figure 6: Open Policy Agent Architecture (Block & Spazzoli, 2019) 14

Figure 7: Conceptual Model .. 16

Figure 8: Research Design Method.. 18

Figure 9: Plugin major components Development .. 27

Figure 10: How Plugin is Discovered by Container Engine .. 27

Figure 11: Plugin Information State Module Test .. 28

Figure 12: Initial Policy definition ... 29

Figure 13: Host users access test ... 30

Figure 14: Container Users access Test ... 31

Figure 15: Container Users Privileges ... 32

Figure 16: User titus creating a file in non-root mode ... 32

Figure 17: User titus request denied .. 33

Figure 18: Unprivileged user rugendo request denied ... 33

Figure 19:File creation and editing in root mode... 34

Figure 20: Changing policy file ownership ... 35

Figure 21: Denying all other groups all privileges .. 36

Figure 22: Host users’ groups .. 36

Figure 23: Policy file read test ... 37

Figure 24: Policy editing .. 37

Figure 25: New Policy Test .. 38

Figure 26: Default container root user access request ... 39

Figure 27: Non-Container user test .. 39

Figure 28: Usability test Response .. 40

../../trugendo.MO-DE/Documents/THESIS/FInal%20Report%20May%202020/Titus%20Rugendo%20MSC_Thesis%20Project%20Report.doc#_Toc48386464
../../trugendo.MO-DE/Documents/THESIS/FInal%20Report%20May%202020/Titus%20Rugendo%20MSC_Thesis%20Project%20Report.doc#_Toc48386465
../../trugendo.MO-DE/Documents/THESIS/FInal%20Report%20May%202020/Titus%20Rugendo%20MSC_Thesis%20Project%20Report.doc#_Toc48386466
../../trugendo.MO-DE/Documents/THESIS/FInal%20Report%20May%202020/Titus%20Rugendo%20MSC_Thesis%20Project%20Report.doc#_Toc48386467
../../trugendo.MO-DE/Documents/THESIS/FInal%20Report%20May%202020/Titus%20Rugendo%20MSC_Thesis%20Project%20Report.doc#_Toc48386468
../../trugendo.MO-DE/Documents/THESIS/FInal%20Report%20May%202020/Titus%20Rugendo%20MSC_Thesis%20Project%20Report.doc#_Toc48386469
../../trugendo.MO-DE/Documents/THESIS/FInal%20Report%20May%202020/Titus%20Rugendo%20MSC_Thesis%20Project%20Report.doc#_Toc48386470
../../trugendo.MO-DE/Documents/THESIS/FInal%20Report%20May%202020/Titus%20Rugendo%20MSC_Thesis%20Project%20Report.doc#_Toc48386471
../../trugendo.MO-DE/Documents/THESIS/FInal%20Report%20May%202020/Titus%20Rugendo%20MSC_Thesis%20Project%20Report.doc#_Toc48386472
../../trugendo.MO-DE/Documents/THESIS/FInal%20Report%20May%202020/Titus%20Rugendo%20MSC_Thesis%20Project%20Report.doc#_Toc48386473
../../trugendo.MO-DE/Documents/THESIS/FInal%20Report%20May%202020/Titus%20Rugendo%20MSC_Thesis%20Project%20Report.doc#_Toc48386481
../../trugendo.MO-DE/Documents/THESIS/FInal%20Report%20May%202020/Titus%20Rugendo%20MSC_Thesis%20Project%20Report.doc#_Toc48386482
../../trugendo.MO-DE/Documents/THESIS/FInal%20Report%20May%202020/Titus%20Rugendo%20MSC_Thesis%20Project%20Report.doc#_Toc48386488

ix

LIST OF TABLES

Table 1: Content Analysis .. 25

Table 2: Framework Analysis .. 26

x

ABBREVIATIONS

LXC Linux Containers

OpenVZ Open Virtuozzo

OS Operating System

RTK Rocket

API Application Programming Interface

ABAC Attribute Based Access Control

DRBAC Distributed Role-Based Access Control

HTTP HyperText Transfer Protocol

TLS Transport Layer Security

OPA Open Policy Agent

LDAP Lightweight Directory Access Protocol

DAF Docker Authorization Framework

LTS Long Term Support

IDE Integrated Development Environment

Golang Go Language

URL Uniform Resource Locator

URI Uniform Resource Identifier

1

CHAPTER 1

1.0 Introduction

1.1 Background

Virtualization technology has been widely adopted in the last decade (Bui, 2015).

It involves partitioning a computer system into multiple isolated virtual environments.

Various virtualization technologies have emerged to the market. These technologies can

be classified into two major groups: Hypervisor-based virtualization and Container-based

virtualization. Hypervisor virtualization is where each virtual host has a copy of its own

Operating system kernel. In container virtualization, all the virtual hosts or containers

share the host Operating System kernel. Hence, Container virtualization falls under the

Operating System level of Virtualization. This makes container virtualization a more

lightweight and efficient form of virtualization that simplify application deployment,

portability and configuration compared to hypervisor virtualization. Several container

technologies available include LXC, OpenVZ, Linux-Vserver and Docker, with Docker

being the most predominant.

When running services, security is always a major concern especially for the

service owner. With most services currently being run on virtual environments, we have

many security concerns that need to be addressed. Hypervisor-based virtual environments

are believed to be more secure than container-based virtual environments since they

provide an extra isolation layer between the host and applications (Bui, 2015). An

application running within a hypervisor virtual environment can only communicate with

the guest Operating System kernel and not the host Operating System kernel. For an

application to communicate with host kernel it must first bypass the guest Operating

System Kernel then the hypervisor. On the other hand, Containers communicate directly

with the host Operating System kernel. This has raised a lot of security concerns, like, if a

container or several containers or applications running in them are compromised, then

they can be used to attack and compromise other containers or the host system

(Chelladhurai, Chelliah, & Kumar, 2016).

2

Container 1 Container 2

Virtualization Layer i.e. Docker Engine

Host Operating System

 Hardware

Figure 1: Container-based Virtualization Architecture (Sultan, Ahmad, & Dimitriou,

2019)

Figure 2: Hypervisor-based Virtualization Architecture (Sultan, Ahmad, & Dimitriou,

2019).

From Figure1 and Figure 2 above we can see the comparison between container-

based virtualization and hypervisor-based virtualization architectures. Figure 1 above

shows how the architecture of container virtualization. Where there are multiple

containers sharing the same host kernel. Containers communicate to the host through the

container engine which is also where the containers run on. Figure 2 above shows that in

hypervisor based virtualization, each virtual environment has it s own Operating System

kernel. Thus the virtual environments do not communicate with host Operating System

kernel. On this paper we are going to focus on Docker containerization technology using

Linux kernel. The Docker engine is composed of Docker daemon which is responsible for

managing and executing containers running on top of it. And, Docker client, responsible

for providing an interface that users use interact with the containers. The user requests

and commands are sent to the Docker daemon by the client through RESTful APIs.

With various security concerns in virtual environments, an access control

mechanism is needed to prevent illegal or legal entities from illegally accessing

unauthorized resources. Currently existing Docker access permission techniques are

based on the Linux Kernel autonomic access control mechanism, namespace mechanism

Applications Applications

Guest Operating System Guest Operating System

Hypervisor

Host Operating System

Hardware

3

and control groups’ mechanism. They provide the basis for access between the containers

and the Linux kernel. However certain Docker container processes can gain access to

unrelated kernel resources like /sys or /proc in the root directory. This can lead to leakage

of kernel resources and cause a Docker container user to gain control permissions to the

entire host system (Lang, Jiang, Ding, & Bai, 2019).

Linux access control model is made up of three types namely: Discretionary

Access Control, whose flexibility and autonomy allows users to grant some or all their

access permissions to another user. This leads to the system’s failure to control the flow of

information and to determine a specific user permission scope. Secondly, we have the

Role-Based Access Control which relies on the idea of adding roles between users and

permissions. It controls the grant and revoke user permissions using roles. Finally, the

Mandatory Access Control. Docker is based on the Linux default Autonomous Access

Control model (Lang, Jiang, Ding, & Bai, 2019).

Docker daemon provides actions and alerts based on policy violations, incident

captures and event history. A hardened Docker Container provides various security

features like breakout protection and prevention of direct user access by the kernel.

Docker has an authorization framework that is not capable of implementing security

functions but provides a base for their implementation. The framework works by

extending Docker daemon through the REST interface to external authorization plugins.

The plugins are responsible for implementing mechanisms for allowing or denying user

requests (Hauser, Schmidt, & Menth, 2019.

1.2 Problem Statement

Ideally to effectively achieve adequate security for a system you must first factor

in its access control. Access control will help ensure that only legal users can access and

perform authorized actions within that system. With high adoption of containers as the

ideal way of virtualization, and the ultimate way for deploying micro services. Then,

container access control mechanisms need to be addressed. Since without proper

container authorization mechanisms there could be serious security breaches.

With the current system we have a problem where any privileged or sudo user in

Linux Operating System can access the containers as root with all privileges. Hence, they

can modify the contents of any container running within the Linux host system. The

4

access request does not require to be authorized by the default container configuration

since they are privileged users on the host.

This research will review the shortcomings of the existing container access control

plugins, evaluate how the container engine is used in the access control process. Since all

requests to the containers go through the container engine. And, try to find an effective

solution towards container access control by designing and developing a plugin model

that will address the current challenges of access control in containers.

1.3 Objectives

i. To review the concept of access control in container virtual computing

environments.

ii. To evaluate the existing container authorization frameworks in terms of how they

implement access control.

iii. To design and develop an access control plugin model that will make access

decisions to containers based on a specific container virtual environment user.

iv. To test and evaluate the performance and effectiveness of the developed access

control plugin in container based virtual environments.

1.4 Research Questions

i. How does the container engine allow the authorization plugins to achieve access

control in containers?

ii. Can we find an efficient solution to access control in container-based virtual

environments?

1.5 Significance

The results of this research will help container virtualization administrators, to be

able to control who has access to a specific container and what actions they can perform

in the container. The container administrators will be responsible for creating container

users, giving them privileges within a specific container and granting them access rights

to the container on the policy file.

1.6 Justification

Container-based virtualization is becoming common in many applications and

microservice deployment as they reduce the process, development process and

management of applications. Containers are offering a lightweight form of virtualization

where the applications running on containers in a similar host use a common kernel. This

5

leads to better resource utilization and improvement in efficiency. However, having all

containers applications communicating directly with the host kernel is less secure

compared to hypervisor virtualization where each guest Operating system applications

communicate with the guest kernel and not that of the host.

The purpose of this research is to identify the shortcomings of existing Docker

authorization plugins and determine how we can improve the security of Docker

containers by strengthening the access control scheme. This will ensure that any user

accessing and executing any action within a Docker container will have to be authorized

by the container administrator. This will help in mitigating the current issue where any

privileged or sudo user in a Linux host can access and execute actions on Docker

containers without having to be authorized. Additionally, we will try to address the issue

of default root access to the containers by all users. Users should be allowed access in

unprivileged mode then they can elevate their privileges depending on rights given by the

administrator.

6

CHAPTER 2

2.0 Literature Review

Various researches and implementations have been made to improve security in

container-based virtualization technology. Container-based virtualization makes the

virtualization layer to run as an application running within the Operating System. Since

containers interact directly with the host Operating System kernel. We are going to look at

and analyze access control mechanisms in container virtualization to identify security

vulnerabilities. This research will be focused on Docker containers running in Linux

Operating System.

2.1 Containerization

Containerization is a lightweight form of virtualization that consumes less space

and time to start. Containerization is a form of virtualization that is similar and different

in some ways to a virtual machine. Containers are lightweight compared to virtual

machines since they do not encapsulate the entire Operating System and its services. An

API is used to make calls for Operating System resources. A hypervisor-based virtual

machine includes an entire Operating System and the application, thus for each different

virtual machine an entire Operating System must be put in place. In containerization

multiple containers can run on a single Operating System sharing similar OS kernel. A

container contains the entire runtime environment including: the application, application

run time dependencies, libraries, settings, system tools, binaries and configuration files,

all bundled together into a single package. Thus, containers provide lightweight

application virtualization, isolation of its performance, fast and flexible deployment and

fine-grained resource sharing (Pahl, Brogi, Soldani, & Jamshidi, 2017).

2.2 LXC and LXD

These are Linux containers with LXC preceding LXD. These containers run only a single

application in their virtual environment. LXC was the origin of container revolution.

Since it was the underlying technology for Docker, CoreOS and LXD (Jain, 2016). Linux

namespaces are used to limit what processes running in the containers can do on the host

system (Kenlon, 2020).

7

2.3 Docker Containers Overview

Docker containerization is an open source technology capable of building,

shipping and running distributed applications. LXC is the underlying technology that is

used to implement Docker. Docker is widely used than other container technologies

because: Applications packaged in a Docker container can run almost in all Operating

systems without requiring any modifications. Secondly with Docker, one can deploy more

virtual environments within the same hardware compared to other technologies. Finally,

Docker interacts well with third party tools that aid in deployment and management of

containers, such as: kubernetes, ansible and Mesos (Bui, 2015). Docker consists of two

mainly used components namely, Docker Engine and Docker Hub.

Docker engine consists of Docker daemon which is responsible for execution and

management of Docker containers. And, a Docker Client that provides a user interface

where users can interact with the containers by sending their commands to the engine.

Docker adopts namespaces and control groups Linux features in order to create safe

virtual environments for its containers. The namespaces are responsible for isolating

users, processes, networks and devices. This is achieved by wrapping the Operating

System resources into different instances, giving containers an illusion that they have

their own dedicated resources. The Linux namespaces adopted by Docker are; mount,

hostname, inter-process communication, network and process identifiers. Cgroups on the

other hand are responsible for limiting resource consumption.

Docker consists of a Hub, which is a repository where Docker images are

published and can be downloaded by different users. Docker image is a combination of a

filesystem and parameters. Which is a series of data layers on top of a base image. A

Docker base image is based on a specific operating system distribution. For example, an

Ubuntu image or a CentOS image. When building containers, one must pull the desired

image from the Docker hub, for example Apache image, then run it to create the

container. Thus, a container is a running instance of a specific image. Docker containers

run a single application per container. Hence, if you must run another application or

another instance of the same application you must run another Docker container (Victor,

Marite, & Gundars, 2018).

8

2.3.1 Docker Security

To ensure that only authorized users access authorized resources securely in

containers, the access control technology in use should be flexible, controllable and

scalable. Docker is based on autonomous access control technology that is default for

Linux kernel and Role access control technology in Selinux. Role access control idea is

based on adding roles among users and permissions through roles (Lang, Jiang, Ding, &

Bai, 2019). Almost all privileged processes like; ssh and cron are managed by a support

system rather than the container. For instance: ssh access is managed by ssh service

running on the host. Thus, the kernel only allocates some functions to Docker containers

without having to be the real root permissions, in order to satisfy its authority

requirements.

Selinux is based on Mandatory Access Control and it separates processes in two ways:

i. Type Enforcement, where a label containing a type is associated with every

process and system object. In this process separation, the kernel enforces rules

based on permitted actions among the types.

ii. Multicategory Security, where a label assigned to a process or an object can be

specialized further with one or more categories, to create different instances of the

same type. An access request is accepted only if it is allowed by type enforcement

and the process and object are in the same category. Containers are assigned to

different categories to ensure that they are separated from each other even if they

have a similar type (Bacis, Mutti, Capelli, & Paraboschi, 2015).

 Docker access mechanism is also based on Namespaces and Control Groups on the

Linux kernel level to achieve isolation. The Namespaces are used to isolate processes,

networks and devices. The Control groups are responsible for limiting, measuring and

controlling the system resources being used by Docker processes.

2.4 Access Control
Access control is a combination of users’ authentication and authorization, access

permission operations, license agreement policies and digital rights management (Shoeb

& Sobhan, 2010). Authorization is a security function responsible for specifying access

privileges to various resources, by ensuring only the resource who is trusted to use a

service will have access to it. Authentication is a security function that determines

whether a user is valid as who they claim to be. An access control mechanism is a logical

component that serves to receive access request from a subject, to decide and enforce the

9

access decision. Access control mechanisms are deployed to protect objects by mediating

requests from subjects.

2.5 Granularity

Granularity means level of detail. In authorization it means the level of details

used to put on authorization rules for evaluating a decision to grant or deny access. There

are two types of granularity: Coarse, where the authorization for accessing a resource is

based on a check for an instance, and the associated roles. And, fine granularity, where

access to a resource is based on more details regarding the user or current environment.

Attribute Based Access Control (ABAC) is a fine-grained authorization system that

defines attributes for access control as: Subject or user, action, resource and environment.

2.5.1 Attribute Based Access Control (ABAC)

This is a logical access control model that controls access to objects by evaluating

rules against attributes of entities, where entities are subjects and objects. Logic access

control main purpose is to protect objects from unauthorized operations. A subject must

satisfy the access control policy established by the object owner, to be authorized to

perform the desired operation. Each object in the system must be assigned specific

attributes to characterize it, each object must also have at least one policy to define the

access rules for the allowable subjects, operations and environment conditions to that

object (Hu, et al., 2014).

i. Attributes are characteristics of the object, subject or environment conditions. The

information in attributes is defined by name-value pair. Attributes can be

categorized into:

• Subject attributes – used to describe the user attempting access. They may

include role, department or job title among others.

• Action attributes – used to describe the action being attempted. They may

include, read execute. Delete among others.

• Object attributes – used to describe the object or resource being accessed.

They may include the object type, the sensitivity or the location among

others.

• Environment attributes – these attributes deal with time, location or

dynamic aspects of the access control scenario.

ii. Subject is a human user. Subjects can have one or more attributes.

10

iii. An Object is a system resource whose access is managed by ABAC system.

iv. An Operation is the execution of a function upon an object at the request of a

subject

v. Policy includes the rules and relationships that are used to determine if a requested

access should be allowed given the subject and object attributes and possibly

environmental conditions.

vi. Environmental conditions are situational context in which access requests occur.

Allowable operation rules are expressed through two forms of computational

language: As a Boolean combination of attributes and conditions that satisfy the

authorization for an operation. And, as a set of relations associating subject and object

attributes and allowable operations. In Boolean language, the rules contain the ‘IF’ and

‘THEN’ statements regarding the user making the request, the resource and the action the

user wishes to perform.

The ABAC architecture is composed of:

i. Policy Enforcement Point – responsible for protecting objects. It inspects a request

and generates authorization request from it and sends to the policy decision point.

ii. Policy Decision Point – Responsible for evaluating incoming requests against the

policies configured in it. It returns a permit or deny decision.

iii. Policy Information Point – responsible for bridging policy decision point to

external attribute sources, like the LDAP server.

iv. Policy store – collection of logical rules and policies that guide access decisions.

v. Policy Editor – A software tool that allows administrators to create and edit

policies that are evaluated and enforced by the decision engine.

Figure 3 below shows how the above five EBAC components interact with each other to

perform authorization.

11

Subject Attributes Environment Attributes Resource & Action Attributes

 … … …

 PERMIT

 DENY

2.6 Related Works

2.6.1 AuthZ Plugin

AuthZ plugin works by approving or denying client requests of authentication and

commands to the Docker daemon. Different commands can only be run by different users

or groups, according to authorization set. When a HTTP request is made to the Docker

daemon, the authorization subsystem passes the request to the installed authorization

plugin. This request contains the user and the command they wish to run. The plugin is

responsible for making the decision whether to allow or deny the request.

User credentials and tokens are not passed to the authorization plugins. Thus,

proper authentication and security policies are not enabled on the plugins. To achieve this

the authorization plugin needs to be designed in a way that it will provide means that will

allow configurations from an administrator (Levin, 2016).

Figure 4 below shows the steps involved for an authorization request to become

successful in Docker containers. While Figure 5 below shows steps involved for an

unauthorized authorization request.

Figure 3: EBAC Methodology (Good, 2018).

User Environment Information

Asset

Authori

zation

Engine

Policy

12

 HTTP request

 Authentication HTTP request, user

 Process Request

 Allow

 Daemon command flow HTTP response, user

 Process Response

 Allow

 HTTP response

 HTTP request

 Authentication HTTP request, user

 Process Request

 Deny, error message

 Error message

2.6.2 Distributed Role-Based Access Control (DRBAC)

According to the research by Lang et al titled Research on Docker Role Access

Control Mechanism Based on DRBAC, the DRBAC can be used to implement

authorization in Docker containers. DRBAC is based on Public Key Infrastructure, for

identifying and verifying the identities of entities using a system. It provides a distributed

trust management and access control mechanism by describing a controlled behavior

based on roles. The roles are defined within a trust domain of an entity and can delegate

the role to other roles within different trust domains.

Figure 4: Authorization deny scenario (Levin, 2016).

Figure 4: Authorization allow scenario (Levin, 2016).

Figure 5: Authorization deny scenario (Levin, 2016)

Client Engine Plugin

Client Engine Plugin

Client Engine AuthZ Plugin

Client Engine AuthZ Plugin

13

DRBAC allocation syntax is [Subject Object] Issuer; where Object is the role,

Issuer is an entity and subject is a role or entity. This means that the signing certificate

declares that the role Object grants access to the subject. DRBAC is made of three

delegations:

i. Object delegation: [Subject A.a]A, Publisher A grants A.a role to Subject. A.a

role is a definition of A’s own namespace.

ii. Assignment delegation: [Subject A.a]B, B assigns delegate authority of the role

A.a to Subject. Afterwards Subject can delegate role A.a to another subject.

iii. Third-party delegation: [Subject A.a]B, Publisher B delegates role A to Subject,

where A and B are different entities.

DRBAC uses PKI identity authentication to verify the legality of a user identity. The

permission attribute certificate for a successful user is obtained from LDAP server. Role

mapping information and its constraints constitute current user authorization information,

which determine permissions given for that role. When a user who has been authenticated

to access a system, any access request is authenticated to authentication server on user’s

rights and a determination is made to determine the subsequent operation sequence.

According to Lang et al, for an administrator to be able to grant roles to different

users within Docker, the administrator must have root user and sysadm_t domain.

However, if the administrator has root and sysadm_t they can modify the policy source

code file directly, so that it can grant all the roles. Thus, the administrator should only

have dsm_r role. DRBAC uses proxy delegate, where Docker users enter the access

control module to authenticate their identity. They query the LDAP directory server to

verify if they are legit. If they are legit, they get a corresponding attribute certificate for

user binding, otherwise the user will be denied access to the container. The access control

module makes decisions based on current user’s permission information and re-defined

access control strategy.

2.6.3 Open Policy Agent Docker Authorization Plugin (OPA)

OPA is a policy engine that can be used to implement fine-grained access control

for any application. It can also be used in microservices authorization, where it authorizes

any request coming to a microservice before it is processed. The decision is made through

an API call from the microservice to OPA. OPA uses TLS to allow the Docker daemon to

14

authenticate the user. The user’s X.509 certificate subject common name, must be

configured with the user who is the subject of the authorization request. For OPA plugin

to work it needs to be made aware of the policy file location. The plugin should be

configured with a bind mount; /etc/docker mounted at /opa inside the plugin’s container,

to provide user-defined OPA policy. OPA uses three inputs to make a policy decision

(Nosek, 2019):

i. Data – Which is a set of facts about the outside world. This could be a list of users

and their granted permissions.

ii. Query Input – It triggers the computation leading to the decision to be made.

Specifies the question in JSON format whose answer will be decided by OPA. For

instance; the question, is user Titus allowed to invoke GET /protected /resource?

The JSON query will look like: Titus, GET, and /protect/resource.

iii. Policy - It specifies the computational logic, for the given data and query input,

yields a policy decision which is a query result. The computational logic is a set of

policy rules.

To make a policy decision the three inputs above are fed into the policy engine. The

engine interprets the policy rules and makes a policy decision based on data and query

input (Nosek, 2019).

 Sends Request Allows/denies access

 Response

 Queries Request Compliance

 Defines polices

 and facts

Figure 6: Open Policy Agent Architecture (Block & Spazzoli, 2019). Figure 6: Open Policy Agent Architecture (Block & Spazzoli, 2019)

OPA

Policy

Enforcement

Point

Policy

definition

Point

Policy

Decision

Point

Client

Admini

strator

Protected

System

15

From Figure 6 above, policy enforcement is not part of OPA. An external agent is

used to enforce for the system. OPA is just queried for request compliance and it will

respond with allow or deny result, then pass the responsibility of enforcing this decision

to the agent.

2.6.4 docker-authz-plugin by Everett Toews

This authorization plugin model was supposed to control access to Docker daemon by

approving or denying all requests. The model denies all requests unless one first runs the

hello-world image. After running this image, all other requests will be authorized by the

plugin to the Docker engine (Toews, 2016).

2.7 Docker Administration

 Docker containers are managed locally in Linux kernel using UNIX socket. This

enables a user within the Linux system be able to use the CLI to communicate with the

Docker engine to execute actions on Docker containers. The Docker CLI is limited only

to root users and Docker group users. Docker employs an all or nothing approach where

you either have admin access or no access. Docker does not offer admin segregation

controls, where different users can have different admin rights to different containers

(Kuusik, 2015).

AuthZ plugin is design accepts user requests from the DAF. However, it does not

transfer user information to the plugin leading to lack of proper access control. DRBAC

is based on role-based access control which is coarse-grained. DRBAC also allows a

subject to assign their roles to another subject. This research will borrow from OPA since

it is based on fine-grained access rules and has a decision point in its architecture.

However, our architecture will not use an agent for enforcing the decisions like in OPA,

rather we will use the inbuilt Docker Authorization Framework for executing the

decisions made by the plugin. Also, the policies and attributes will be defined on the

Docker container by the Docker administrator rather than in OPA where the Linux system

administrator defines them on the plugin. The research also borrows from the AuthZ

architecture, on the concept of using the DAF to execute decisions from the plugin.

16

2.8 Conceptual Model

 User Request Access allowed

 Denied Request

 Response

 Checks for users

 Access Decision to enforce policy

 Request Creates users

 Defines Policy

 From figure 7 above, the container administrator creates users in the container

and assigns privileges to them. Some can have super user rights while others cannot. The

administrator also defines the policy in terms of which container users can gain access to

the container. The policy is stored within the host machine where permissions have been

restricted to the administrators group only. When a container user sends an access request

to the Docker engine. The request is forwarded to the access control plugin which decides

to allow or deny the request based on the defined policy. On the policy the administrator

defines users who are allowed access to the container. Thus, the plugin checks the user in

the request URI against user defined in the policy and users in the container. If there is a

match, by the requesting user is allowed access in the policy and is a user in the container

they wish to access then the request is allowed. Otherwise, the request is denied.

Figure 7: Conceptual Model

Docker Container
Container

Engine

Plugin:

Policy Decision Point

Container

User

Container

Administrator

 Policy

Users

17

CHAPTER 3

3.0 Research Methodology

This research will be based on exploratory research design. Since it is main aim is

to understand container access control mechanisms by exploring the current problems

from default container access control mechanism and that adopted by other access control

plugins. And, propose a possible efficient solution to the problem.

3.1 Research Design

This research will review the container engine and current container access control

plugs in use. The main aim being to find an efficient way of solving access control in

container virtual environments. Meaning, the result of this research will lead to

development of a more efficient access control plugin for containers compared to the

current access controls in place. It will include selection of a population that is composed

of container virtualization experts within Nairobi, who will help determine key themes of

access control in containers. A sample of the experts will be selected and involved in the

data gathering and usability testing phases. This plugin development will use the waterfall

software development method of software development. The flow will be as in figure 8

below.

18

3.2 Population

This research will be conducted by including inputs from container virtualization

experts within Nairobi, Kenya.

3.3 Sample Size

The sample will target ten Container virtualization experts within Nairobi. The

sample selection will be based on snowballing technique where, three known Docker

experts, two from DTOne and one from Angani cloud services will be engaged in the

research, then asked for their referrals to other container virtualization experts within

Nairobi. DTOne and Angani are selected as the first sample because they use container

virtualization environments for running their applications. And, there is a great possibility

of accessing and interacting with their container experts. The selected sample will be

involved in the interviews and focus groups. Three of them will also be involved in the

tests that will be conducted during the research.

Figure 8: Research Design Method

Data

collection

Data

Analysis

Development

Integration

and Testing

Deployment

19

3.4 Data Collection

The data to be collected will be qualitative. It will be collected through.

3.4.1 Focus Groups

The discussion will involve the ten container virtualization experts from Nairobi region.

The main aim for the focus group will be to determine:

i. The most widely adopted container virtualization technology in Kenya.

ii. The access controls used by containers to prevent unauthorized access.

iii. How comfortable are administrators with the container default access control

model? If not, how would they welcome an access control plugin that restricts

users from accessing the containers based on a set policy.

iv. The most ideal Operating System where containers can be deployed to perform

optimally.

3.4.2 Observations

This will involve observing the tests that will be conducted on Docker

authorization framework and existing plugins. The tests will involve:

i. How the container engine accepts requests. This includes the format and syntax.

ii. How current container access control plugins have been implemented. In terms of

how they control access to containers.

iii. To test how the container engine interacts with the plugins. How the forwarding of

requests and responses happen between the engine and the plugin.

iv. Observing how the policy should be defined to be understood by the plugin and be

analyzed to decide if a user request is valid or not.

These tests should help find the existing gaps that have not been identified by current

container access control plugins. And, try to find an efficient solution to address these

gaps. The tests will also provide a guideline on how to develop a plugin that will

communicate with the container engine efficiently.

3.5 Data Analysis

The data collected from focus group will be analyzed to understand and summarize

the main features and themes between the current container technologies. It will address

why some container technologies are more adopted than others. And, determine the pros,

cons and features of default and current access control mechanisms in container

20

technology. To get this information. The data will be analyzed using content analysis.

This involves finding similar concepts on access control from all container virtualization

experts. The similar concepts will build a stronger ground regarding what is missing

together with what experts what in an ideal container access control framework.

Data collected through observations on tests conducted on existing container

authorization plugins will be analyzed using framework analysis. Where, related themes,

patterns and concepts will be mapped to identify the key issues that need to be addressed

in container access control. Also, the analysis is supposed to determine the ideal way of

communicating with the container engine, to help find an efficient solution to container

access control gaps.

3.6 Plugin Development

Once the data has been analyzed, and require patterns, themes and gaps identified

then a plugin model will be developed to address the gaps identified. The plugin will be

developed using python programming language. The development will involve

developing individual system components and ensuring that they can communicate with

each other as expected. Also, the plugin will be developed to achieve efficient

communication with the container engine. Thus, we will be evaluating how plugins

communicate with the container daemon to ensure we develop a usable product.

3.7 Testing the Plugin

The developed access control plugin will be tested through.

i. Unit testing - to ensure that the various components that will be developed or

whose parameters will require to be set, are working perfectly as expected on each

component.

ii. System testing – to ensure that all arising access control requirements have been

addressed by the final product. And, that the product is interacting well with its

intended environment without affecting container performance in Linux Operating

System.

21

iii. Usability testing - will be done to ensure that the system can be deployed and used

easily by small scale container administrators running Docker containers in Linux

environments.

3.8 Tools

The tools to be used in this research include:

i. A computer running Linux Ubuntu Operating System Ubuntu 18.04 LTS.

ii. Docker Engine version 19.03.8

iii. PyCharm-community IDE.

iv. Postman – API testing tool.

v. Docker-Machine version 0.16.0.

vi. Microsoft Excel for matching themes and patterns in data collected.

22

CHAPTER 4

4.0 Results and Discussions

We are going to review the results obtained from the research design and discuss them

against expected outcome.

4.1 Results

4.1.1 Selected Sample Size

The sample for this research included five container virtualization experts within

Nairobi. The selection technique was based on snowballing. Where three container

virtualization experts that were well know were asked if they knew other experts in that

field. The first three experts were from DTOne organization. They referred four more

experts, who referred two more experts. Nine container virtualization experts were

consulted but only five were around and willing to join a focus group and discuss the

container access control issue.

4.1.2 Focus group data

A single focus group discussion involving five container virtualization experts in

Nairobi was held on first day of February 2020. The experts were from the sample of

experts gathered during the snowballing sampling. Only the willing and available experts

were involved in this discussion. The focus group discussion was based on the subject

matter of access control in container based virtual environments. The discussion points

included:

Most widely used containerization technology and the reason – the discussion

concluded that the most widely adopted container virtualization technology is Docker.

Docker has been widely adopted because it is easier that other approaches. Also, docker

has partnered with google and Red Hat and, docker containers can be deployed on any

Operating system.

23

How access control has been implemented in container virtual environments? It

was noted that the current container based virtual environments like Docker and LXC do

not have an inbuilt authorization technique. All users in a system can access the

containers in root mode. Thus, can edit the contents or applications running from within

the container.

The best Operating system to test a container access control plugin on. Since

container technology is built on Linux kernel and most servers that run containers in

various organizations and cloud environments are Linux based, it was agreed it would be

feasible to use a Linux Operating system. This would ensure efficient testing without

having to involve a lot of dependency issues. If an access control plugin works on a

Linux kernel, then it would be easy to deploy the it in other operating systems. Since they

run within inbuilt Linux-based environment even on other Operating Systems. Like for

Docker, a Docker machine must be installed on other Operating Systems. Inside the

docker machine the command line is based on bash. This explained why most of the

servers used to run the containers are Linux based.

What would be an ideal access control plugin for container virtualization? It

should first and most importantly limit the users who can access the container virtual

environment. Access should be based on a user already within the container to limit the

root access for containers by everyone. Then extend access control to users on the host

machine if possible.

4.1.3 Testing and Observations

This was conducted by testing how the container engines handle user requests.

This is in terms of the key standards in terms of; syntax that the framework uses to

identify requests from users and its response syntax. It was determined that the basic

principle of docker plugin infrastructure is that it must work from certain defined

directories. The plugin uses HTTP requests to communicate with the container engine.

Plugs are discovered by being searched on the designated plugin directories. There are

only three types of files that can be put in a plugin directory (docker Inc, 2019).

i. .json – files containing full json specification for the plugin.

ii. .sock – UNIX domain sockets.

24

iii. .spec – files containing URLs, like tcp://localhost:port_number

It was observed that the syntax for an access control request in container environments

can only include: User, Request URI, Request Method, Request Body and Request

header. And, the response allowed is of the syntax: Allow, Message and Error if any

(docker Inc, 2019).

 Also, tests were done on the existing plugins to determine how they achieve

access control in Docker virtual environments. This was aimed at identifying the gaps and

issues that they have not addressed. Two current access control plugins for Docker

containers were put into test. Open Policy agent (OPA) for Docker authorization and

authz by Everett Toews. The plugins were tested in an Ubuntu based Linux kernel. The

authz plugin was tested within a Docker-Machine, where a virtual environment was

created, and dependencies installed. OPA was tested on a Docker engine running on

Ubuntu 18.04 LTS. Access control tests were done on both containers following the

documentation and directions given by the developers.

From the tests on the two plugs we were able to observe that authz does not use

any users to achieve access control to containers. Rather it denies all docker commands to

execute unless you first pull and install the hello-world image from Docker hub. After

running this image everyone on the host machine can run all docker commands even

access the containers. OPA does not depend on host or container users. Rather it uses

users and permissions defined on the policy. Each user is linked to a read-only permission

either with true al false rights to do so. To test access control a user from the policy is

loaded in json format to a configuration file located on ~/.docker directory. If the user has

read-only access then they cannot execute write commands, but if the user loaded to json

configuration file is allowed all rights then they can run all commands even access the

containers without being exempted.

4.1.4 Analysis of collected data

The data collected from the focus group was qualitative in nature. It was analyzed to

understand and summarize the main features of container based virtual environments and

how access control can be implemented. Content analysis method was used to analyze

this data to find common features and main themes from information that was discussed

25

by the container virtualization experts. The concepts gathered from collected data helped

to determine that Docker is the most widely used container technology. This is because it

was the main key word that came to the experts when they heard of container

virtualization. All of them had interacted with Docker technology and only one who had

interacted with another technology. A general pattern that was noted was that Docker

administrators have a challenge of controlling container access since, any host machine

user with super user rights can access any container as root the root user, default in the

containers. Leading there to be no need for creating specific container users. This posed

as a big challenge in auditing containers since you must rely on host system logs to make

major decisions like determining which user accessed a container at a given time. Refer to

table 1 below to find common themes among the container virtualization experts.

Code Description

Most adopted Container virtualization

Technology

Docker since it is easy to use and can be

used with all operating systems

Widely adopted Operating system for

use with Docker

Linux Kernel since it is built from on

LXC. Also, most servers run on Linux

environments

Is access control in containers an

issue?

yes, since anyone with super user access

to host system can access the containers as

root. By running the exec command.

Ideal Container access control plugin

Should make access decision based on

users already in the system. Container

users and if possible, host system users

also

Table 1: Content Analysis

The data collected from performed tests was also qualitative in nature. It was analyzed

using framework analysis. The key patterns and themes used in the current container

authorization plugins was determined. Also, the syntax of the container engine

authorization framework was analyzed to determine how the plugins are written to be

able to communicate with the framework. The analysis is as per table 2 below. It was

found that since Docker and LXC are developed using Go language then some of the

plugins like OPA are designed using the same language for easy integration. The authz

plugin was developed in python to simplify the code, since Go language is procedural

(Toews, 2016).

26

Code Description

How docker authorization framework

interacts with user requests By use of HTTP requests and responses

Docker daemon request and response

syntax

For an authorization request it gets the

following key parts: (User, Request Method,

URI, Request body and Request header) For

Response it takes a Boolean (True or False)

to allow or deny a request, a message and an

error if need be.

Languages that have been used to try

to develop container authorization

plugins

Golang since docker is developed using

Golang and python has been tested too using

flask framework.

Currently Developed plugins Open Policy Agent (OPA) using Golang and

authz by Everett Toews using python.

How do existing container plugins

communicate with the container

engine

Using http requests. The code structure

follows that of the syntax required by the

container engine.

Basic working of the current container

authorization plugins

They do perform authorization, but not

based on an existing container or system

user. OPA defines sample users and

permissions in the policy. Authz denies all

docker requests unless one runs the hello-

world image, then it allows all the

authorizations.

Table 2: Framework Analysis

4.1.5 Plugin Development

The container authorization plugin prototype has been developed using Python3

language, based on Flask framework. PyCharm was used as the IDE for developing the

prototype. Three main routes ‘/Plugin.Activate’, ‘/AuthZPlugin.AuthZReq’,

‘/AuthZPlugin.AuthZRes’ that are required to implement a Docker authorization plugin

were the first to be developed. The regular expression module was used to make container

access decisions based on a specific container user on the request URI. The prototype

checks for exec command and the username from the request URI.

27

From figure 9 above we can see the three main routes required for a plugin to

interact with the container engine. They are all implemented using HTTP POST method.

The ‘/info/state’ route uses GET method. It shows if a plugin is running or not. The

‘/AuthZPlugin.AuthZReq’ route is the main policy that is used to make authorization

decisions. It makes decisions based on exec command and username provided on the

request URI. The ‘/Plugin.Activate’ is used to test that the plugin works by displaying

specified information. The ‘/AuthZPlugin.AuthZRes’ returns the plugin responses based

on decision.

The file used to discover the plugin on the plugin directory by the container

engine is ‘.spec, using tcp://localhost:6000’ as shown on figure 10 below.

Figure 9: Plugin major components Development

Figure 10: How Plugin is Discovered by Container Engine

28

4.1.6 Plugin Testing

The authorization plugin prototype was tested using below ways.

4.1.6.1 Unit testing

 Each plugin component functionality was tested using the Postman API testing

tool. Individual URL routes ware tested to determine if they function properly as

expected. POST and GET requests were sent using the Postman tool to determine if they

returned the expected result.

From figure 11 above a test was conducted on ‘/info/state’ route module to

determine the state of the plugin while it was running. The result is 1 showing that the

plugin is working perfectly.

4.1.6.2 System testing

After finalizing the unit testing and ensuring all URLs and HTTP methods were

functioning as required. An Installation bash script was written to deploy the plugin in a

Linux Operating System running on Ubuntu Kernel. Docker engine was deployed on the

Ubuntu kernel, then Nginx and PostgreSQL docker images were used to create containers

Figure 11: Plugin Information State Module Test

29

and do the tests. The access control mechanism of the plugin was tested under different

scenarios as below.

During the start of testing the policy was defined to allow only one user access to

the containers. The user should be already created in the containers that are to be accessed

using the specified username.

From figure 12 above the policy is defined to allow only user ‘titus’ access to the

containers using the exec command. Both the username and exec command should be

included in the URI for the access to be allowed.

Access control for host system users

Normally all host users with privileged rights can access the containers in root

mode. According to our policy all host system users are restricted access to the containers.

No user from the Host system should be able to access any container when the plugin is

working.

Figure 12: Initial Policy definition

30

Figure 13: Host users access test

From figure 13 above, all host users have been denied access to the plugin when

they try to run the exec command. Also, if you specify a host user who is not in the

container, we can see that the request is denied by the plugin.

Access control for container users

According to defined policy on figure 12 above only container user ‘titus’ is

allowed access to the containers. Any other container user should not be allowed by the

plugin to access the containers even if they are already created in the container.

31

Figure 14: Container Users access Test

From figure 14 above we can see that only user ‘titus’ can access the container.

Users ‘elly’ and ‘rugendo’ are created within the container but since they are not allowed

access by the policy, their access requests get denied by the access control plugin.

Container Users Permission Test

The container administrator creates users and assigns different privileges to them.

Based on above tests we have seen that to access a container the URI must contain the

exec command and username. But the username is not being authenticated by password

as the access is allowed. For security Docker ensures that any user created in the

container only gains access in a non-privileged mode then they can elevate to superuser

by confirming their password on the inside. Any container user needs to be in root mode

or superuser mode to be allowed file write and modification rights within the container.

Otherwise, the write or modification requests will be denied.

32

Figure 15: Container Users Privileges

From figure 15 above we can see that only user ‘titus’ can elevate the privileges to

root mode since he is a member of sudo group. User ‘rugendo’ cannot be able to modify

or write to any files. User ‘titus’ can modify and write files but only when he has elevated

root mode.

Figure 16: User titus creating a file in non-root mode

From figure 16 above user ‘titus’ tries to create and write file titus_test.txt

in non-privileged mode.

33

Figure 17: User titus request denied

From Figure 17 above we can see that the request to create file titus_test.txt by

user ‘titus’ is denied since he is in unprivileged mode.

Figure 18: Unprivileged user rugendo request denied

From figure 18 we can see that user ‘rugendo’ too is denied the request of creating

a file called rugendo_test.txt. This is because is an unprivileged user.

34

Figure 19:File creation and editing in root mode

35

From figure 19 above user ‘titus’ can create and write a file called tito2_test.txt

when in privileged mode. User ‘rugendo’ request to be elevated to root mode is also

rejected since he is not a member of sudo group.

Altering Policy Test

The policy file is stored on the host Operating system. For our case it is stored on

the Ubuntu 18.04 LTS at ‘/usr/local/bin/docker-authz.py’ absolute path. To protect the

policy from authorized access and editing from host system users we created a password

protected group called authz and gave it all system privileges. The policy file ownership

was changed from default root to main container administrator who for our case was user

‘titus’. The group ownership was also changed from default root group to authz group.

Read, write and execute permissions were given to authz group members only. All other

users were not given any permissions to the file. Also, the default sudo and admin groups

were disabled from ‘/etc/sudoers’ file.

From figure 20 above, the policy file ownership is changed from root to user

‘titus’ and group ownership changed to ‘authz’ group. The policy file read, write and

execute permissions are assigned to the owner and owner group. No rights are assigned to

other host system users.

Figure 20: Changing policy file ownership

36

From figure 21 above, all default groups that have privileged access in Linux

kernel have been disabled. The group ‘authz’ has been given all privileges. This will

allow only members from this group to access and modify the policy file.

Figure 22: Host users’ groups

Figure 22 above shows the groups that each individual host system user belongs

to. Only user ‘titus’ and ‘elly’ belong to ‘authz’ group. This means that they are the only

ones with all privileges on the host system and that can access and modify the policy file.

Figure 21: Denying all other groups all privileges

37

Figure 23: Policy file read test

Figure 23 above shows different system users trying to read the policy file. User

‘pascal’ and ‘trugendo’ are denied read rights to the policy file because they do not belong

to ‘authz’ group. User ‘elly’ can elevate to root mode and read the policy though he is not

a member of the sudo group.

Figure 24: Policy editing

38

Figure 24 shows policy being edited to allow user too ‘elly’ to access containers.

According to policy any allowed user can access any container provided they exist in that

container.

Figure 25: New Policy Test

From figure 25 above, user ‘elly’ is not able to access Nginx container since he is

not created in that container. Whereas he can access container postgres since he an

existing user. This shows that the policy works for container users only. You must be a

member of a certain container and allowed on the policy to be granted access.

Root User test

By default, container engine allows host users to access all containers in

privileged mode. This allowed anyone from the host system to access the container and

do any modifications as they wished. The developed access control plugin denies the

default container root user access.

39

Figure 26: Default container root user access request

From figure 26 above, the container root user is denied access to the container.

This is because the policy allows only user ‘titus’ and ‘elly’ alone. Thus, all requests from

root user will be denied.

Non-existing container user test

For this test, we are going to try and login to a docker container using a username

that is not defined within the container. We will use one system user who is not in Nginx

container. From this test we have determined that this plugin authorizes only container

users and not host system users.

From figure 27 above, users’ ‘pascal’ and ‘trugendo’ are denied access to the

Nginx container since they are not member of that container. Even though they are host

system users, the policy makes allow or deny decisions based on container users. Thus,

theirs requests will be treated like those of unknown users, leading to their requests being

denied

Figure 27: Non-Container user test

40

4.1.6.3 Usability testing

The plugin code was shared with two Container virtualization administrators to

test the usability of the docker authorization plugin and give a performance review.

Figure 28: Usability test Response

Figure 28 above shows the response from one container virtualization

administrator who tested the plugin. He recommended that the plugin was best suitable

for organization custom developed applications since you must create users in the images.

For images downloaded from Docker hub, the administrator suggested that the container

administrator had to create users then recreate another image for other deployments.

The second administrator input was that the plugin will help resolve a lot of issues

regarding container access. Users who do configurations will be the only ones allowed

privileged access to the containers. This will also simplify auditing since they will be

checking container logs to determine which container user performed a certain action.

4.2 Discussion

The default access to container systems is based on all or nothing. Where you can

either have full access or no access at all. In this study were able to find that you can

control the access to container virtual environments by use of a plugin. The access control

policy is defined in terms of users created in the container virtual environment rather than

host users. This research led to development of an access control plugin model that uses

container users to make decisions on who should be allowed access into a specific

container. The users are created in the container by administrators and then used when

making decisions based on the policy of the plugin. The plugin uses user information in

the exec URL to check against the policy and container users before allowing access to

41

the container. Since the developed plugin can limit who has access to the containers, then

a container administrator can give different file permissions and privileges to different

container users. Where, sudo or superuser rights can be assigned to some specific users in

the container and give other users access rights without super privileges. The user’s

actions on the containers will be depend on the rights and permissions they have once the

plugin allows their access. The developed plugin does not make any decisions based on

host system users; in fact, it denies all their access requests.

Existing container access control plugins work by allowing or denying users from

running specific docker commands. Like for the case of authz plugin for docker

containers by Everett Toews, you either run all commands or denied running any

command at all. The authz plugin denies all requests until docker-machine root or any

other user pulls and installs hello-world plugin image. After running this image all users

in the docker-machine and host machine will be able to run all docker commands and

even access containers without any restriction. This is like the default container access

control policy of all or nothing access and running commands. Our developed access

control plugin model denies only access requests but allows all other docker commands to

be run by all users. To access a user must exist in the container and must be allowed in the

plugin. This research resulting plugin does not allow any host user to access the container

regardless of whichever situation.

In OPA container access control plugin, users used for access control are neither

host system nor container users. You define users on the policy with read-only rights set

to true or false and a json config file containing a specific user and http headers for

sending the request to the Docker engine. If the user in the json file has read-only rights

on the policy file, then you can only run read Docker commands. If the user read-only is

set to false, then you can run all commands. The worry with this is that if the settings are

using user with read-only set to false. You can run everything even gain access into the

container as root user without being limited. This research resulting container access

control plugin policy uses container users created by the container administrator to make

container access decisions only. All other docker commands are not restricted to any user.

Our plugin deals only with authorizing container access requests and does not make

decisions for other requests.

42

The challenges of both OPA and authz container authorization plugins is that they

do not make access decisions based on existing users. Either host system users or

container users. Our plugin model addresses this by using container users created by

container administrator to make decisions on who is allowed access. OPA and authz also

do not restrict access into the containers rather they give authorizations in terms of

commands one can run. If a user like in OPA can run all commands, then they can also

access all containers in root mode. This shows that access decisions are not made

depending on container users, rather if a certain user is set in the policy and json

configuration file then all users on the hosts machine can access all containers in

privileged mode. Our plugin has addressed this by making sure that access to containers

is based on container users only. A user who is not created in a certain container cannot

access it even if they have been allowed on the policy. Also, users created by the

container administrators for our case and are allowed access by the plugin, they gain

access as unprivileged users. Thus, a user can only perform actions like write, execute or

modification of files if they are allowed privileged rights. This means that we can allow

multiple users to the container and still limit what they can do within the container

environment.

The limitation of our plugin compared to OPA and authz is that we are only

concerned with access requests to containers, but we are not authorizing other container

requests that are run by host system users. The similarity issue with all these models is

there is a weakness in securing the policy document. Like for this plugin we had to

disable sudo and admin group privileges to protect the file against access by unauthorized

system privileged users. If there are other applications running in the host system, the

policy file access will need to depend on trust security mechanism.

From tests on the developed plugin, it shows that this research has led to the

development of a better access control plugin that makes access decisions based on who

is allowed into the containers. It has brought another level of access control to containers

where decisions are made based on container users and not host users. No user is directly

allowed into the container as root user. The main challenge during access is that the

allowed users are only authenticated against usernames only. The person is not asked for

password when the request is allowed. Though they gain access in unprivileged and only

43

elevated to superuser mode by authenticating using a password. This means we have also

to protect the policy file on the host machine even more from any unauthorized access.

44

CHAPTER 5

5.0 Conclusion and Recommendations

5.1 Conclusion

In this research, we sought to review the concept of access control and, try to

address the challenge of access to container-based environments by all privileged users in

a host system. We were able to evaluate and determine how current container

virtualization authorization frameworks implement access control. And, how they interact

with container engines. Additionally, we were able to design and develop an efficient

plugin for controlling access to containers. This study has successfully established that, a

container access control model that makes access decisions based on container specific

users can be implemented.

Our first objective was to review the concept of access control in container virtual

computing environments. This study found out that the default container virtual

environment access control is based on all or nothing mechanism. Where all privileged

host system users have full access and all privileges on all containers while host system

non privileged users have no access at all. To address this, container technology allows

third party plugins to be integrated with them to achieve additional features. Container

developers have created syntaxes to be used to ensure proper integration of the plugin

with the container engine. One common syntax provided is that of an access control

plugin, especially for Docker containers. Generally, container engine communicates with

plugins using generic APIs and HTTP methods. For the container engine to discover the

plugins they must be added to a plugin directory that is specified by a given container

technology. And, a policy which is a decision point that must be defined. Where all access

requests must pass through, then a decision is made whether access is granted or denied.

Our second objective was to evaluate the current container authorization

frameworks in terms of how they implement access control. From this study we found out

that several container authorization plugins have been developed to help implement

access control in Docker containers. The common one’s included OPA and authz.

Currently none of the two makes decisions based on users within the container or host

45

system users. The authz plugin denies all request until hello-world docker image is run by

a single privileged host system user. Once, the hello-world starts running all users in the

host machine can run all commands which had been restricted before, and even access all

containers as root. OPA defines users within its policy and gives them access rights based

on container commands. The access rights are defined in terms of read-only, where a user

with read only access cannot run write docker commands. While a user with all rights can

run all docker commands and even access the containers without any restrictions. OPA

allows one to use a single user account at a time.

Our third objective was to design and develop an access control plugin model that

will make access decisions to containers based on virtual environment users. This

research led to the design and development of a container access control plugin that uses

a policy and container specific users to determine which user is allowed access to the

container environment. The development was based on the default syntax provided by

Docker for developing a plugin.

Our final objective was to test and evaluate the performance and effectiveness of

the developed access control plugin. By tests done using our plugin, we have successfully

showed that access into containers can be controlled by using container specific users. We

were able to deny all host system users access to containers despite their privileges. And,

we were able to deny the default container root access to all containers. This enables the

administrator to give different container users different privileges and rights within the

containers.

5.2 Limitations for this study

This plugin can work best on a host system that is running all applications on

containers. If we have some applications running on the host system and having multiple

groups with privileged rights, the policy security might be threatened. This is because the

policy file is stored within the host system.

The developed container access control plugin can only be used to restrict access

to containers based on users in the specific container virtual environment. A container

administrator must first create specific container users and give them different privileges

since, all host system users are denied access to the containers.

46

Our plugin can only be implemented using Docker containers. Currently it cannot

be used with other container technologies since it is based on the Docker syntax of

communication. Where communication between Docker engine and the plugin uses

HTTP methods and docker .spec file.

5.3 Recommendations for further work

Container developers like docker and LXC should come up with a way of

prompting authorized users for passwords as they access the containers. Currently

container engines do not provide a way of including password in the URL or requesting

for password after being allowed access to the containers. The plugin uses only username

to authenticate users who are requesting access. No password is required. Though the

users are given access in unprivileged mode it would be nice to authenticate users using

password before access. From the research we have seen that you must add privileges to

specific users in the container like sudo rights where they can authenticate using a

password to execute commands. Whereas they are not asked for a password when they

are trying to access the containers.

Currently, our plugin can work on a host system that is running all applications on

containers. If we have some applications running on the host system and having multiple

groups with privileged rights, the policy file security might be threatened. This is because

our policy file is located within the host Operating System. Future studies should try to

find a way of incorporating the policy file within a specific container.

Future works should also look at how a container access control plugin can be

interfaced with host system users. This will help address the issue of which system user

can run a specific container command.

Finally, future works should try to implement an access control plugin that can be

used with other container technologies.

47

References

Alenius, F. (2010). Authentication and Authorization: Achieving Single Sign-on in an

Erlang Environment. Uppsala: Uppsala University.

Bacis, E., Mutti, S., Capelli, S., & Paraboschi, S. (2015). DockerPolicyModules:

Mandatory Access Control for Docker Containers. IEEE Conference on

Communications and Network Security. Bergamo: unibg.it.

doi:10.1109/CNS.2015.7346917

Block, A., & Spazzoli, R. (2019, February 26). Fine-Grained Policy Enforcement in

OpenShift with Open Policy Agent. Retrieved December 30, 2019, from Red Hat

OpenShift: https://blog.openshift.com/fine-grained-policy-enforcement-in-

openshift-with-open-policy-agent/

Bui, T. (2015, February 11). Analysis of Docker Security. Aalto University.

Chelladhurai, J., Chelliah, P. R., & Kumar, S. A. (2016). Securing Docker Containers

from Denial of Service. IEEE International Conference on Services Computing

(pp. 1-4). San Francisco, CA, USA: IEEE.

docker Inc. (2019). docker docs. Retrieved February 04, 2020, from docs.docker.com:

https://docs.docker.com/engine/extend/plugins_authorization/

docker Inc. (2019). Docker v19.03. Retrieved March 20, 2020, from docker docs:

https://docs.docker.com/engine/extend/plugin_api/

Good, M. (2018, July 23). Intro to Attribute Based Access Control (ABAC). Retrieved

December 30, 2019, from axiomatics: https://www.axiomatics.com/blog/intro-to-

attribute-based-access-control-abac/

Hauser, F., Schmidt, M., & Menth, M. (2019). xRAC: Execution and Access Control for

Restricted Application Containers on Managed Hosts. ArXiv, abs/1907.03544, 1-9.

Hu, V. C., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K., Miller, R., & Scarfone, K.

(2014). Guide to Attribute Based Access Control (ABAC) Definition and

Considerations. Gaithersburg: National Institute of Standards and Technology.

Jain, H. (2016, June 2). LXC and LXD: Explaining Linux Containers. Retrieved April 27,

2020, from Sumo Logic: https://www.sumologic.com/blog/lxc-lxd-linux-

containers/

Kenlon, S. (2020, January 30). Exploring simple Linux containers with lxc. Retrieved

April 27, 2020, from Red Hat: https://www.redhat.com/sysadmin/exploring-

containers-lxc

https://blog.openshift.com/fine-grained-policy-enforcement-in-openshift-with-open-policy-agent/
https://blog.openshift.com/fine-grained-policy-enforcement-in-openshift-with-open-policy-agent/
https://docs.docker.com/engine/extend/plugins_authorization/
https://docs.docker.com/engine/extend/plugin_api/
https://www.axiomatics.com/blog/intro-to-attribute-based-access-control-abac/
https://www.axiomatics.com/blog/intro-to-attribute-based-access-control-abac/
https://www.sumologic.com/blog/lxc-lxd-linux-containers/
https://www.sumologic.com/blog/lxc-lxd-linux-containers/
https://www.redhat.com/sysadmin/exploring-containers-lxc
https://www.redhat.com/sysadmin/exploring-containers-lxc

48

Kuusik, K. (2015, June 19). Docker Security – Admin Controls. Retrieved January 12,

2020, from Container Solutions: https://blog.container-solutions.com/docker-

security-admin-controls-2

Lang, D., Jiang, H., Ding, W., & Bai, Y. (2019). Research on Docker Role Access Control

Mechanism Based on DRBAC. Journal of Physics: Conference Series. 1168, pp.

1-9. Beijin: IOP Publishing Ltd.

Levin, L. (2016, February 18). Docker AuthZ Plugins: Twistlock’s Contribution to Docker

Security. Retrieved December 29, 2019, from Twistlock:

https://www.twistlock.com/2016/02/18/docker-authz-plugins/

Nosek, A. (2019, October 19). Open Policy Agent, Part I - The Introduction . Retrieved

December 30, 2019, from DZone: https://dzone.com/articles/open-policy-agent-

part-i-the-introduction

Pahl, C., Brogi, A., Soldani, J., & Jamshidi, P. (2017, May). Cloud Container

Technologies: a State-of-the-Art Review. IEEE Transactions on Cloud

Computing, 1. doi:10.1109/TCC.2017.2702586

Rodriguez, M., & Buyya, R. (2018). Container-based Cluster Orchestration Systems: A

Taxonomy and Future Directions. Distributed, Parallel, and Cluster Computing,

1-29.

Shoeb, Z. H., & Sobhan, A. (2010). Authentication and Authorization: Security Issues for

Institutional Digital Repositories. Library Philosophy and Practice, 1-8.

Sultan, S., Ahmad, I., & Dimitriou, T. (2019, April 17). Container Security: Issues,

Challenges, and the Road Ahead. IEEE Access, vii, 52976 - 52996.

Toews, E. (2016, July 30). Develop a Docker Authorization Plugin in Python. Retrieved

February 20, 2020, from github:

https://etoews.github.io/blog/2016/07/30/develop-a-docker-authz-plugin-in-

python/

Victor, G. d., Marite, K., & Gundars, A. (2018, May). Containers for Virtualization: An

Overview. Applied Computer Systems , XXIII, 21-27.

https://blog.container-solutions.com/docker-security-admin-controls-2
https://blog.container-solutions.com/docker-security-admin-controls-2
https://www.twistlock.com/2016/02/18/docker-authz-plugins/
https://dzone.com/articles/open-policy-agent-part-i-the-introduction
https://dzone.com/articles/open-policy-agent-part-i-the-introduction
https://etoews.github.io/blog/2016/07/30/develop-a-docker-authz-plugin-in-python/
https://etoews.github.io/blog/2016/07/30/develop-a-docker-authz-plugin-in-python/

49

Appendices

Project Schedule

Sample Code:

@plug.route("/info/<query>", methods=["GET"])

def state(query):

if query=="state":

qu=(1 if enabled else 0)

return str(qu)

else:

return "-1"

@plug.route("/Plugin.Activate", methods=["POST"])

def start():

return jsonify({"Implements": ["authz"]})

@plug.route("/AuthZPlugin.AuthZReq", methods=["POST"])

50

def req():

plugin_request=json.loads(request.data)

print(plugin_request)

response={"Allow":True}

if search(r'/(exec)$', plugin_request["RequestUri"]) != None:

docker_request=json.loads(base64.b64decode(plugin_request["RequestBody"]))

if match(r'^titus$', docker_request["User"])!=None:

response={"Allow":True}

else:

response={"Allow":False, "Msg":"You are not authorized to Run Execute command"}

if not enabled:

response={"Allow":True}

return jsonify(**response)

@plug.route("/AuthZPlugin.AuthZRes", methods=["POST"])

def res():

response={"Allow":True}

return jsonify(**response)

Guide on how to use the container access control Plugin (docker-authz):

Installing the plugin.

The plugin was deployed on a host machine running Ubuntu 18.04 LTS and had Docker

engine version 19.03.8 installed. To deploy the plugin run the install.sh script to update

the system then to install the requirements for this plugin to run. The requirements are:

i. python3

ii. pytthon3-Flask

iii. jq

Enter the directory containing the plugin code and change the scripts and the python code

to executable mode. Using command chmod +x.

Changing python and bash scripts to executable

51

 Exit from privileged mode to run the installation script.

Installing plugin

 Finalizing installation

The policy and startup script for enabling and disabling the plugin are installed at

location. /usrlocal/bin/.

Policy location

Operating docker authorization Plugin

The plugin starting and stopping can be done from systemd. Also, one can view the status

of the plugin, if it is running or if it is off. The plugin needs to be restarted whenever any

changes are made to the policy to ensure the new changes take effect. You need to have

super user privileges to perform start, stop or restart operations.

One can use below commands to start, stop, restart and view status of the plugin

52

Systemctl start docker-authz or service docker-authz start

Systemctl stop docker-authz or service docker-authz stop

Systemctl status docker-authz or service docker-authz status

Systemctl restart docker-authz or service docker-authz restart

Plugin Operations

Securing Policy

The plugin consists of:

i. The policy – where decisions on who has access to the containers is made.

ii. A bash script to enable or disable the authorization plug in. The commands can

only be executed by super users in authz group only.

The default sudo and admin group have been disabled in file /etc/sudoers/ and group

authz has been added to the file with all privileges. Note that host users in docker group

can run docker commands in unprivileged mode. The permissions for bash script and

policy in location /usr/local/bin were changed so as to allow only users in authz group to

access and modify the files. This has been done to prevent unauthorized users from

editing the policy and the enabling and disabling bash script. The group authz is created

and protected by an encrypted password.

53

Creating authz group

Assigning authz group users

The files ownership and group ownership were changed to user ‘titus’ as the owner and

group authz as the owner group. The read, write and execute commands were enabled for

owner and owner group and denied for other users using below commands:

chown titus docker-authz.py docker-authz – assigns the policy file to user titus who is the

administrator from default user root.

chgrp authz docker-authz.py docker-authz – assigns the policy file to the authz group.

chmod 770 docker-authz.py docker-authz – assigns read, write and execute permissions to

the policy fire for all members of authz group

54

 Changing policy file ownership and permissions

Four users on the host machine were added to different groups. Two users to authz group

(titus and elly) and one in docker group (trugendo) and one in sudo group (pascal). The

user on docker group is expected to run all docker commands but not able to access or

edit the policy file. The user in sudo group only will not be able to run any docker

commands and will not be able to access the policy file. The two users in authz group will

be able to access and edit the policy file.

Adding host system users to groups

User pascal who is in sudo group cannot get to privilleged mode since sudo group has

been disabled on sudoers file. User elly can be elevated to privilleged mode though not in

sudo group since he his in authz group which has been granted all privileges in sudoers

file. User trugendo and pascal are not able to access the policy file since they are not in

authz group.

55

testing docker-authz policy access permissions

Setting Up Docker working Environment

For this test we created two docker containers running Nginx and PostgreSQL

images.The containers were edited by adding three users in each image (titus, rugendo

and elly). Then the containers were committed to new images called;

nginx_authorization_test and postgres__authorization_test. User titus has sudo rights on

both images. User elly has super user privileges only on the postgres database image.

Pulling test images

Nginx and Postgres images were pulled from docker hub. Nginx is set to run on port 80

and postgres is running on port 5432. The ‘docker pull’ command was used. After pulling

images from Docker hub, they are stored in the local pool of the docker engine. From

here you can create containers from these images and edit with desired settings and data,

then recreate another image with all information in it.

56

Testing docker-authz policy access permissions

Image editing and recreation

The two images were run to containers then started. The running containers accessed

using root mode, by running command ‘docker exec’. The three users were created in

each container. Privilege rights being given to specific users (titus in both containers and

elly in postgres container only). Once the users have been created, the containers will be

committed to new images that contain the new users. These images are stored in the

docker engine but can also be pushed to docker hub or transferred to other hosts for use

with the new dat

.

57

Creating Docker containers from pulled Nginx and PostgreSQL images and Starting them

 Checking container users privileges

From above we can see Nginx users. Only user ‘titus’ has privileged rights in group sudo.

Testing docker-authz Plugin access control functionality.

Policy is defined as below. Only user ‘titus’ from within the container can access the

containers using ‘exec’ command.

Defined docker-authz policy

The access control test was done on docker containers running on docker daemon

19.03.8. The two containers were started and access to containers was tested by running

‘docker exec’ command.

58

Starting Containers from Pre-saved edited images

