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Abstract

In this dissertation, we enumerate the 27 lines on a smooth cubic surface X ⊂ P3. We
do this by understanding the combinatorics of the subset S of disjoint lines on X of the
Grassmanian Gr(2,4) of lines on P3. Further, using the incidence correspondence de�ned
by the projection (X ,�) �→ X where � is a line on X , we show that the relation is a 27-
sheeted covering map by studying the inverse image of lines on a smooth cubic X under
the blowup map

B�6 : B�6P2 ��� X .
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1 Introduction

Themain goal of this thesis is to study the configuration of lines on a nonsingular complex
cubic surfaces and be able to demonstrate that there are 27 lines on such a surface.

We do this in two ways

(i) We explore the geometry of GrasmaniannGr(2,4) of Lines onP3 through the Plűcker
embedding

Gr(2,4) �→ P5

and the representation of lines in Gr(2,4). We then show that there is at least a
line on a cubic surface X in P3 and that one can find two such lines � and m which
are disjoint on X . Further, we demonstrate that the set of lines intersecting a given
arbitrary line � in P3 is a subset of Gr(2,4) and that the set has exactly 5 pairs of
disjoint lines. We also appreciate that if one line of the 5 pairs of lines that inter-
sect � also intersects a line m disjoint to �, then 5 disjoint lines of the five pairs of
lines also do intersect m. This gives 17 disjoint lines on X : �, m, the 5 disjoint lines
intersecting both � and m, the 5 disjoint lines that only intersect � and the other
5 disjoint lines that only intersect m. We then convince the reader and ourselves
that any line on X \{The 17 lines above} would intersect exactly 3 of the five lines
intersecting the line �; for if more, the line would be � or m and if less then the line
would intersect atleast 3 of the five lines. There are therefore

�5
3

�
= 10 disjoint lines

on X \{The 17 lines above}.

(ii) we appreciating that a smooth cubic is birational to P2 and that the blow up B�6P2

of P2 at 6 points in general position is isomorphic

B�6 : B�6P2 ��� X

to a smooth cubic X . We further demonstrate that the space of smooth cubics is a
dense open subset U of P19. Now by taking a subset M of the product U ×Gr(2,4)
consisting of pairs (X ,�) of a smooth cubic X and a Line � on X , we define the
incidence correspondence

π : M →U

by the projection (X ,�) �→ X . The goal of the thesis is then equivalent to counting
the number of inverse images of π ; that is, showing that π is a 27-sheeted covering
map. Finally, we count these inverse images of π by counting the images under
the blow-up map B�6, of the 6 exceptional hypersurfaces, the strict transform of
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�6
2

�
:= 15 lines through any two of the six blown up points and the strict transform

of
�6

5

�
:= 6 conics through any five of the six blown up points.

The outline of the thesis is as follows:

Chapter 2:
In this chapter, we introduce algebra-geometry dictionary and the geometric object of
our study: Irreducible Smooth cubic.
Chapter 3:
This chapter sets up the stage for the thesis’ enumerative goal by focusing on notions such
as blowup of P2 at 6 points, space of smooth cubics and the geometry of Grassmanian
Gr(2,4) of lines on P3.

Chapter 4:
Here, we enumerate lines on smooth cubic in two ways: though combinatorics of lines
on smooth cubic or through the analysis of the preimage, through the blowup map

B�6 : B�6P2 ��� X ,

of lines on the smooth cubic X .
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2 Preliminaries

This chapter is a quick basic overview based on [SKKT20], [GethA02] and [Sha13] of the
subject: Algebraic Geometry. This is intended to set up notation as well as introduce the
object study, smooth cubic in P3. We will occasionally remind ourselves some Commu-
tative Algebra or refer the reader to [AM69].

2.1 What is Algebraic Geometry?

Let k be an algebraically closed field of characteristic 0.

De�nition 2.1.1. [Projective Space] For a positive integer n, an a�ne n-space An is the
coordinate space V = kn without a vector space structure. Projective n-space is the quotient

Pn = P(kn+1) = kn+1
x j

\{0̄}/k∗

with a point p = [x0 : x1 : . . . : xn] = {(λx0,λx1, . . . ,λxn) ∈ kn+1 \{0̄} : λ ∈ k∗} in Pn is the
equivalence class of the nonzero vector (xi) ∈ kn+1. If we are not in doubt of the identity of
the underlying �eld, we would write Pn for Pn

k .

The projective n-space can be considered as the parameter space of lines through the
origin in a�ine n+1 space or the a�ine n-spaces with it’s n−1 compactifying hyperplanes
at infinity. That is, on the j-th a�ine chart {x j �= 0} for example,

Pn
<x0,x1,...,xn> = {x j �= 0}∪{x j = 0}= An�

x0
x j
,

x1
x j
,...,
�x j
x j
,..., xn

x j

�∪Pn−1�
x0:x1:...:�x j:...:xn

�

Therefore, each chart {x j �= 0} for j = 0, . . . ,n gives an embedding

τ : {x j �= 0}= An �→ Pn

(y0, . . . : y j−1,y j+1, . . . ,yn) �→ [y0 : . . . : y j−1 : 1 : y j+1 : . . . : yn].

2.1.1 A�ine and Projective Algebraic Varieties

Proposition 2.1.2. Let R = k[x1, . . . ,xn] be the polynomial ring in �nite variable xi over
algebraically closed �eld k and S a �nitely generated k-algebra. Then

S ∼= R/I
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for an ideal I �R.

Proof. Let s1, . . . ,sn ∈ S be k-algebra generators of S. The ring homomorphism

ϕ : R → S

de�ned by ϕ(x j) = s j surjective since s j generate S. By considering I = kerϕ �R, the
result follows from The First Isomorphism Theorem of Rings.

De�nition 2.1.3. A subset X ⊂ An
k is an a�ne variety if X = V(I) for some ideal I of

R = k[x1, . . . ,xn] where the vanishing set V(I) of I is de�ned as

V(I) = {(a1, . . . ,an) = a ∈ An
k : f (a) = 0 for all f ∈ I �R = k[x1, . . . ,xn]}⊆ An

k .

Example 2.1.4. [Some Basic Vanishing Sets]

1. For the Zero ideal, V(0) = An
k .

2. For the ideal (1) = R, V(R) = /0.

3. For a nonconstant polynomial f ∈ R \ k generating a principle ideal ( f ) �R, we get the
hypersurface

Vf = V(( f )) = {(a1, . . . ,an) = a ∈ An
k : f (a) = 0}⊂ An

k

de�ned by zeros of f .

4. Let (a1, . . . ,an) = a ∈ An
k be a point in kn and de�ne

ma = (x1 −a1, . . . ,xn −an)�R = k[x1, . . . ,xn].

We can realize ma as the kernel ma = kereva of the evaluation-at- �a� map eva : R → k
de�ned by f �→ f (a). By the Proposition 2.1.2 above, we have that R/ma ∼= k so that ma

is a maximal ideal of R corresponding to points of An
k .

Theorem 2.1.5. [Week Nullstellensatz]
Assume k is algebraically closed. Then every maximal ideal of R = k[x1, . . . ,xn] is of the
form ma = (x1 −a1, . . . ,xn −an)�R for some (a1, . . . ,an) = a ∈ An

k .

Example 2.1.6. Let k = R which is not algebraically closed. The principle ideal I = (x2 +

1) = ker
�

evi : R[x] f �→ f (i)−−−−→ C
�
�R[x]. SinceR[x]/I ∼=C is a �eld, we have that I is maximal

so that not all maximal ideals of R[x] are of the form proposed in Theorem 2.1.5 .
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Lemma 2.1.7. [Hilbert Basis Theorem]
The polynomial ring R = k[x1, . . . ,xn] is a Noetherian Ring. That is

(i) Every ideal I of R is �nitely generated. That is

I = � f1, . . . , fm�=
�

m

∑
i=1

ri fi : ri ∈ R and �nitely many generators fi ∈ R

�

(ii) Ascending Chain Condition on Ideals (ACC): Every Ascending chain of ideals I1 ⊂ I2 ⊂
. . . terminates. That is, eventually IN = IN+1 = . . .

That R = k[x1, . . . ,xn] is Noetherian is very convenient for us since consequently

• every quotient R/I is Noetherian where I �R is an ideal of R, hence every finitely
generated k-algebra is Noetherian and

• every ideal I �R is contained in a maximal ideal thanks to ACC condition on ideals of
R.

2.1.2 The Zariski Topology on A�ine Varieties

Proposition 2.1.8. [Basic Properties of Vanishing Sets]
It is easy to show that

(i) V is inclusion reversing. That is, for ideals I ⊂ J =⇒ V(I)⊃ V(J).

(ii) Finite union of varieties is a variety. That is,

V(I)∪V(J) = V(I.J) = V(I ∩ J)

and by induction on n that

n�

i=1

V(Ii) = V

�
n�

i=1

Ii

�
.

(iii) Arbitrary Intersection of varieties is a variety. That is, let {Iα |α ∈ Ω}⊂ R be an arbi-
trary collection of ideals then

�

α∈Ω
V(Iα) = V

��
�

α∈Ω
Iα

��
= V

�
∑

α∈Ω
Iα

�
.
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(iv) V (I)∩V(J) = V(�IUJ�) = V(1+ J) = /0 ⇐⇒ I and J are coprime I + J = (1).

Lemma 2.1.9. Zariski Topology on An
k is de�ned by setting the a�ne varieties V(I) ⊆ An

k
as its closed sets.

Proof. This is a consequence of Proposition 2.1.8 .

We note that the open sets of this topology look like this:

UI = kn \V(I)
= kn \ (V( f1)∩ . . .∩V( fm)) ; Theorem 2.1.7 and Proposition 2.1.8 (iii)

= (kn \ (V( f1))∪ . . .∪ (kn \ (V( fm)); De Morgan set law

= D f1 ∪ . . .∪D fm ,

where
D f = kn \ (V( f ) = {(a1, . . . ,an) = a ∈ kn : f (a) �= 0}

is a (very large) basic open set.

We formally define a�ine n-space as the topological space An
k := (kn, Zariski Topology)

whereas an a�ine variety X =V(I) �→An
k is equipped with Zariski topology induced from

An
k . The closed subsets V(J) =Y of X =V (I)⊂An

k corresponds to ideals J containing I.

Example 2.1.10.

1. Let k be algebraically closed �eld. Since k[x] is a PID, we have that the Zariski closed
subsets of A1

k are /0,V( f ) = {m roots a1, . . . ,am of fm = f ∈ [x]} and A1
k .

2. On A2
k the Zariski closed subsets are /0, hypersurfaces V( f ), �nite set of points

V

�
m

∏
i=1

(xi −ai,yi −bi)

�
= {(a1,b1), . . . ,(an,bn)}

and the union of hypersurfaces and �nite points. There are no others and this is why:
Take polynomials f ,g with no common factor in a PID k[x][y] (respectively in a PID
k[y][x]). By Bezout’s Theorem followed by rescaling by c ∈ k[x] of some degree m, one
can write f p + gq = c for some p,q ∈ k[x] (respectively p,q ∈ k[y]). We then have
thatV ( f ,g)⊂V(c) = {(a1,0), . . . ,(am,0)} �nite choice of points on x-axis (respectively
V ( f ,g)⊂ V(c) = {(0,b1), . . . ,(0,bm)} �nite choice of points on y-axis) of the k2 plane.
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2.1.3 The Ideal I -Variety V Correspondence

De�nition 2.1.11. [Vanishing Ideal]
The vanishing ideal I(X) of a subset X ⊂ An

k consists of functions

I(X) = { f ∈ R : f (a) = 0 for all a ∈ X}

on An
k that vanish on X .

Example 2.1.12.

1. I(An
k) = R.

2. I({a}) =ma.

3. I(V(x2)) = (x), hence I(V(I)) �= I in general.

4. f m ∈ I(X) =⇒ f ∈ I(X) so that I(X) is a radical ideal.

Proposition 2.1.13. [Properties of Vanishing ideals]

1. I is inclusion reversing. That is, X ⊂ Y =⇒ I(X)⊃ I(Y ).

2. I ⊂ I(V(I)), for example (x2)⊂ I(V((x2))).

3. V(I(V(I))) = V(I) and consequently V(I(X)) = X for any a�ne variety X .

Theorem 2.1.14. [Hilbert’s Nullstellensatz]
Let k be algenraically closed �eld. For any ideal I �R = k[x1, . . . ,xn], we have

I(V(I)) =
√

I = { f ∈ R : f m ∈ I for all m ≥ 1}.

In particular, I(V(I)) = I if R/I has no nilpotents elements.

De�nition 2.1.15. [Coordinate Ring k[X] of a�ne variety X]
Let X ⊂ An

k and R = k[x1, . . . ,xn]. Coordinate ring of X is the quotient

k[X ] = R/I(X)

representing polynomial functions on An
k that vanish on X .

Remark 2.1.16. Coordinate ring k[X ] has the properties

1. it is �nitely generated (Noetherian) reduced k-algebra.

2. it is an integral domain if and only if X is irreducible.
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3. if k is algebraically closed then k[{a}]∼= k and it is the only case when coordinate ring is
a �eld.

4. k[An
k ] = R/I(0)∼= R whereas k[V( f )] = R/( f )∼=

�
1̄, f̄ , . . . , f̄ deg f−1� .

De�nition 2.1.17. [Irreducibility]
An a�ne variety X is said to be reducible if X = X2 ∪X2 for proper closed subsets Xi � X .

Otherwise, X is irreducible in which case

• I(X)�R is a prime ideal on condition that X �= /0.

• any nonempty open subset U �= /0 of X is dense.

• any two nonempty open subsets U,V ⊂ X intersect U ∩V �= /0.

• it is necessary and su�cient that k[X ] is an integral domain.

Example 2.1.18.

1. X = V(xy) = V(x)∪V(y)⊂ A1
k is reducible as it can be expressed as union of two coor-

dinate axes in k2.

V(y) x axis

V(x) y axis

Figure 1. The reducible variety X = V(xy).

2. X = V(< xy,xz >) = V(x)∪V(y,z) is reducible as it can be expressed as union of yz-
plane and x-axes. We know that R/(y,z) ∼= k[x] is an integral domain hence V(y,z) is
irreducible.

V(y,z) x axis

V(x) yz−plane

Figure 2. The reducible variety X = V(xy,xz).
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Corollary 2.1.19. [The I - V Correspondence]
There are order-reversing bijections between ideals I �R and a�ne varieties X . That is

{varieties}←→ {radical ideals}
{irreducible varieties}←→ {prime ideals p� k[X ]}= Spec(R)

{points}←→ {maximal ideals ma � k[X ]}= Specm(R)

X �→ I(X)

V(I) �→I.

2.1.4 Nonsingularity of Algebraic Varieties

De�nition 2.1.20. Let q be a point in a projective variety X then the tangent space to X
at q is the projective variety

TqX :=
�

f∈I(V )

V

�
n

∑
i=0

∂ f
∂xi

(q).xi

�

When f is homogeneous polynomial of degree d −1 then each ∂ f
∂xi

will be either 0 of an
homogeneous of degree d −1.
Taking a di�erent representation of q as (bq0 : . . . : bqn) will scale each term of

�
n

∑
i=0

∂ f
∂xi

(q).xi

�

by a constant term bd−1 that is it will scale

�
n

∑
i=0

∂ f
∂xi

(q).xi

�

by a constant and hence not a�ecting it is zero set.

Example 2.1.21. Aprojective line � is it is own tangent space at any point of �, for a change of
coordinates ,any �∈Pn is simply a variety cut out by the (n−1) polynomials (x2, . . . ,xn) that
is � := V(x2, . . . ,xn) := V((x2, . . . ,xn)),here the last quantity denote the variety associated
to the ideal generated by (x2, . . . ,xn)

Observe that I(�) := I(V((x2, . . . ,xn)) := (x2, . . . ,xn) by homogeneous Nullstellensatz hence

Tq� :=
�

f∈(x2,...,xn)

V

�
n

∑
i=0

∂ f
∂xi

(q).xi

�
:=

n�

j=2

V(x j) := V(x2, . . . ,xn) := �
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De�nition 2.1.22. The tangent plane TqX , of X = V( f1, . . . , fm)⊂ Pn at q is given by

TqX = V

�
∂ f1

∂x0

����
q
, . . . ,

∂ f1

∂xn

����
q
, . . . ,

∂ fm

∂x0

����
q
, . . . ,

∂ fm

∂xn

����
q

�
.

The points q is called smoothwhen the tangent plane at q is de�ned while the points is called
is singular when the tangent plane at q is not de�ned.

Neatly and alternatively, we have the following definition.

De�nition 2.1.23. A point q ∈ X := V( f1, . . . , fm)⊂ Pn is nonsingular if the Jacobian

J(X)P :=




∂ f1
∂x0

��
q . . . ∂ f1

∂xn

��
q

... . . . ...
∂ fm
∂x0

��
q . . . ∂ fm

∂xn

��
q




m×(n+1)

of X at q if the rank of J(X)q := m. Otherwise q is singular. X is nonsingular (smooth) if it
has no singular points.

An isolated singularity is a singularity for which there exists a small real number δ such
that there are no other singularity within a neighborhood of radius δ centered about the
singularity also known as conic double points.
The simple singularities is the ordinary double point where double point occurs at the
point q = (0,0,1) on quadratic cone X given by the equation f (x,y,z) = x2+y2− z2. The
union of all generating lines meeting in the singular point q is quadratic cone. The surface
becomes cylinder by taking a blow up of X at q with disjoint union of lines of X as it is
underlying set hence q is blown up to a circle on the cylinder which is exceptional divisor
of the blow up.

Example 2.1.24.

i. Fermat cubic X3 := V(x3
0 + x3

1 + x3
2 + x3

3)⊂ P3 is nonsingular.

ii. Nodal cubic X3 = V(x3 + x2 − y2)⊂ A2 is singular at (0,0).

iii. The double cone V(x2 + y2 − z2) ⊂ A3 is singular point at (0,0,0), a point where the
tangent plane is not de�ned.
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2.2 Blowup of Algbraic Varieties at Points

De�nition 2.2.1. The blowup of B = B�0An at the origin 0 = (0, . . . ,0) ∈An of An is a the
variety de�ned by

B = {(p,�)|p ∈ �}⊆ An ×Pn−1

together with the projection
π : B −→ An

which is one-to-one over An \{0}. In coordinates, we have that

B =



((x1, · · · ,xn); [y1, · · · ,yn])

����rnk


x1 · · ·xn

y1 · · ·yn


≤ 1





=V


2×2 minors of


x1 · · ·xn

y1 · · ·yn






=V({xiy j − x jyi|i ≤ i < j ≤ n})⊂ An
(xi)

×Pn−1
[yi]

Remark 2.2.2. The projection map π is a birational map,that is to say π is rational

map with a rational inverse

π−1 : An ��� B ⊆ An ×Pn−1

(x1, . . . ,xn) �−→ ((x1, . . . ,xn) : [x1 : · · · : xn]).

i.ii. The blowup B is the graph of the rational map

ρ : An ��� Pn−1

(x1, . . . ,xn) �−→ [x1 : . . .xn].

We then have, from the composition
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B π−→ An ρ−→ Pn−1

of projection to An with the graph, that intuitively; the blowup B = B�0An is like An

except at the origin 0 where in B, the origin 0 is replace by the set of all directions
approaching the origin.

Proposition 2.2.3. B is a smooth (irreducible) variety of the dimension n.

Proof. We have
B ⊆ An ×Pn−1 ⊇ (An ×Ui),

where
Ui = An−1

is a standard a�ne chart. It su�ces to check that each

B∩ (An ×Ui)

is smooth.

For simplicity, we do the case i = n

Proposition 2.2.4. B∩ (An ×An−1)∼= An

Sketch Proof. Observe that

B∩ (An ×An−1) = {(x1, · · · ,xn); [y1 : · · · : yn]|yn �= 0,xiy j = x jyi}

=

�
(x1, · · · ,xn);

�
y1

yn
: · · · :

yn −1
yn

: 1
�����x j = xn(

y j

yn
)

�
.

We have an isomorphism
ρ : B∩U −→ An

de�ned by

�
(x1, · · · ,xn);

�
y1

yn
: · · · :

yn −1
yn

: 1
��

�−→
�

y1

yn
: · · · :

yn −1
yn

: xn

�

with inverse
ρ−1 : An −→ B∩U

de�ned by

((tnt1, · · · , tntn−1tn, tn); [t1 : · · · : tn−1 : 1]←− (t1, · · · , tn−1, tn).
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De�nition 2.2.5. Blowup of a variety X ⊂ An at a point p ∈ X is the the closure of the
inverse image of X \ {p} under the projection π : B�pAn ��� An with projective dimension
n−1 exceptional locus Ep(X) = π−1(p)⊂ B�pAn.

Example 2.2.6. We consider the blowup a point

p := (0,0,0) ∈ X := V(x2 + y2 − z2)⊆ C3
(x,y,z)

π−1(X \{p}) :=
�
(x̄ = (x,y,z),�) ∈ C3

(x,y,z)×P2
[u:v:w]

����x̄ ∈ �,x2 + y2 − z2 = 0
�

Using projective coordinates [u : v : w] and blowing up along the chart w �= 0 We obtain
z2(u2 + v2 −1) = 0 ∼= z2(x2 + y2 −1) = 0 thus the closure π−1(X \{p})⊂ Bl0C3 given by
V(x2 + y2 −1) is a circle.

∼=

XB�0(X)S1 ×P1

π

Figure 3. Blowup of a double cone at the origin is a cylinder
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3 The Geometry of Lines on Smooth Cubics in P3

3.1 The Grassmannian Gr(2,4) of lines in P3 and Some Useful
Enumerative Lemmas

De�nition 3.1.1. As a set, the Grassmannian of d− planes in Kn is

Gr(d,n) = {d −dimensional vector spaces U ⊂Kn}

Example 3.1.2.

1. Gr(1,n) = P(kn)∼= Pn−1

2. Gr(n−1,n) = P((kn)∗)∼= Pn−1

3. Projective duality more generally says

Gr(d,n)∼= Gr(n−d,n)

The above examples suggest that the Grassmannian Gr(d,n)may always have the struc-
ture of a projective variety. We will shortly demonstrate this and work out some equa-
tions, at least in the simple case Gr(2,4).

Proposition 3.1.3. There is a one-to-one correspondence

Gr(d,n)←→Max(d,n)/GL(d)

where Max(d,n)⊂ Mk(d,n) is the subset of matrices of maximal rand d.

Example 3.1.4. When d = 1, this says

Gr(1,n)←→Max(1,n)/GL(1).

Here Max(1,n) is row vectors except the zero vector so

Max(1,n) = kn\0.
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Also
GL(1) = k∗.

We recover
Pn−1 ←→ (kn\0)/k∗.

3.1.1 The Plűcker embedding

Theorem 3.1.5. Associating to a subspace U the collection d ×d minors of its representing
matrix AU gives a closed embedding

Gr(d,n) �→ P(
n
d)−1,

whose image is a projective subvariety of P(
n
d)−1. In particular, Gr(d,n) is projective.

We will not discuss the general proof. Instead, we will look at the simplest nontrivial
example.

If n ≤ 3, all Grassmannian are either points or projective spaces. So the first interesting
case when n = 4 and d = 2.

Example 3.1.6. Let d = 2, n = 4. The Plűcker map is Gr(2,4)→ P5 given in matrix form
by




a b c d

e f g h




 �−→ [a f −be : ag− ce : ah−de : bg− c f : bh−d f : ch−dg]

Lemma 3.1.7. The plűcker map is an embedding

Gr(2,4) �→ P5

with image
V(y0y5 − y1y4 + y2y3)⊂ P5.

Proof. It is easy to check that the image of the plucker map satisfy this quadratic
relation, the Plűcker relation. To complete the proof, we consider a�ne charts.

The Plűcker map of Gr(2,4) has image contained in

V(y0y5 − y1y4 + y2y3)⊂ P5.
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Let us consider the a�ne open set.

Gr(2,4)0 ⊂ V(y0y5 − y1y4 + y2y3)∩{y0 �= 0}⊂ {y0 �= 0}= A5 ⊂ P5.

In the matrix coordinates used before, this means a f − be �= 0. So for the correspond-
ing 2-dimensional subspace U ⊂ k4, the �rst two columns of the matrix AU are linear
independent. This means that we can pre-multiply the matrix AU by a unique change
of basis matrix P so that the �rst two columns become the standard basis vectors of a
2-dimensional vector space.

We get an equivalence of matrices


a b c d

e f g h


∼


1 0 C D

0 1 G H




For U ∈ Gr(2,4)0, we have the representing matrix,


1 0 C D

0 1 G H




we can then read o� the a�ne Plucker coordinates of this subspace U as

U �−→ (G,H,−C,−D,CH −DG).

We deduce the following

1. The a�ne plűcker relation

y5 − y1y4 + y2y3 = 0

indeed holds.

2. There are no further equations involving the plűcker coordinates.

3. In this open set, we recover the subspace U uniquely from its plűcker image.
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Considering all such a�ne charts, we deduce that over the whole Grassmannian Gr(2,4),
the plűcker map is an embedding, and its image equals

V(y0y5 − y1y4 + y2y3)⊂ P5.

3.1.2 Irreducibility

Theorem 3.1.8. The Grassmannian Gr(d,n) is an irreducible variety.

We need a lemma.

Lemma 3.1.9. Let GLn(k)⊂ An2
be the space of invertible linear matrices inside the a�ne

space of all (n×n) matrices over k. Then GLn(k) is an irreducible a�ne variety.

Proof. Let�∈ k[An2
] be the determinant polynomial on the space of matrices. Then

GLn(k) = D�,

the principal open subset de�ned by the non-vanishing of �. The �rst statement is then
a general instance of the phenomenon that a basic open set is an a�ne variety is a�ne.

Also GLn(k) = D� ⊂ An2 i.e dense, as a�ne space An2 is irreducible. A dense subset of
an irreducible variety must itself be irreducible. This concludes the proof.

Proof. (Proof of theorem 3.1.8) We de�ne a surjective polynomial

ρ : GLn(k)−→ Gr(d,n).

A surjective image of an irreducible variety must be irreducible, so the existence of the
map ρ proves the irreducibility of Gr(d,n).

Inside the vector space kn with �xed basis {e1, · · · ,en}. LetW = �e1, · · · ,ed� be a reference
d−dimensional subspace.

Suppose thatV ⊂ kn is an arbitrary d−dimension linear subspace. Choose a basis {v1, · · · ,vd}
for it, and complete to a basis {v1, · · · ,vn} of kn.
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Then A ∈ GLn(k) with column vi will mapW to V. This de�nes the surjective polynomial
map ρ. This concludes the proof.

Lemma 3.1.10. Let �1,�2 be two distinct lines in P3 then they intersect at a unique point.And
if Π is a projective plane such that � �� Π then � intersects Π at a unique point.

Proof. We suppose that the projective plane Π is P2 by change of coordinates and
since �1 �= �2, by another change of coordinates we let �1 = V(x2) and �2 = V(x1).

Therefore we get the unique point in �1∩�2 to be (1 : 0 : 0).On the other hand consider,� ��
Π then by suitable change of coordinates we take Π := V(x3) and � = V (x1,x2), thus
(1 : 0 : 0 : 0) is a unique point on �∩Π.

Lemma3.1.11. Consider a quadratic form f inK[x,y,z, t] passing through quadratic surface
Q ∈ P3 then there exist a matrix N = NT in N4(K) such that f (x) = XT NX for each x ∈ K4.
And Q is singular whenever N is singular.

Proof. Let

f (x,y,z, t) = Ax2 +By2 +Cz2 +Dt2 +Exy+Fxz+Gxt +Hyz+ Iyt + Jzt.

Then any matrix (ai j) ∈ N4(K), (x,y,z, t) ∈ K4 we have

�
x, y, z, t

�




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44







x

y

z

t



=
�
x, y, z, t

�




a11x a12y a13z a14t

a21x a22y a23z a24t

a31x a32y a33z a34t

a41x a42y a43z a44t




:= x(a11x+a12y+a13z+a14t)+ y(a21x+a22y+a23z+a24t)

+z(a31x+a32y+a33z+a34t)+ t(a41x+a42y+a43z+a44t).

Rearranging them we get,

= a11x2 +a12y2 +a13z2 +a14t2 +(a12 +a21)xy+(a13 +a31)xz.

+(a14 +a41)xt +(a23 +a32)yz+(a24 +a42)yt +(a34 +a43)zt

Observe that
a11 = A,a22 = B,a33 =C,a44 = D.
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Also
a12 = a21 =

E
2
,

a13 = a31 =
F
2
,

a14 = a41 =
G
2
,

a23 = a32 =
H
2
,

a24 = a42 =
I
2
,

a34 = a43 =
J
2
.

Thus giving us a symmetric matrix by taking N = (ai j) hence f (x) = XT NX . Finally, Q is
singular whenever x1,y1,z1, t1 ∈ K are not all zero such that,




∂ f
∂x (x1,y1,z1, t1)
∂ f
∂y (x1,y1,z1, t1)
∂ f
∂ z (x1,y1,z1, t1)
∂ f
∂ t (x1,y1,z1, t1)



=




0

0

0

0




and only happens when there exist (x1,y1,z1, t1) ∈ K not all zeros such that




2(a11x1 +a12y1 +a13z1 +a14t1)

2(a21x1 +a22y1 +a23z1 +a24t1)

2(a31x1 +a32y1 +a33z1 +a34t1)

2(a41x1 +a42y1 +a43z1 +a44t1)



=




0

0

0

0




implying that there are some trivial vector(x1,y1,z1, t1)∈K4 such that 2N(x1,y1,z1, t1)T =

0 indicating that N has nullity atleat 1 and hence it is singular.
Therefore we conclude that Q singular whenever N is singular.

Corollary 3.1.12. Let f ∈ K[x,y,z, t] be homogeneous polynomial of degree 2 and let Q =

V( f ) where Q is a quadratic surface in P3 and let � ∈ P3 be a line then � ∈ Q and �⊂ Q if
and only if �∩Q contains three points of P3.

Lemma 3.1.13. Let �i ∈ P3, i = 1,2,3 be lines which are pairwise disjoint. Then there exist
nonsingular quadratic surface Q subset of P3 which contains �i, i = 1,2,3.
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Proof. Suppose the three distinct points on �i are qi,q�i,q
��
i for i ∈ {1,2,3} then,

q1,q2,q3,q�1,q
�
2,q

�
3,q

��
1,q

��
2,q

��
3

are 9 distinct points. since �1,�2,�3 are disjoint
writing these points as,

(x1 : y1 : z1, t1), . . . ,(x9 : y9 : z9, t9)

then we say that there exist 9 quadratic surface surface consisting of these points and
since by the fact that quadratic surface are de�ned f ∈ K[x,y,z, t] of these form

f (x,y,z, t) = Ax2 +By2 +Cz2 +Dt2 +Exy+Fxz+Gxt +Hyz+ Iyt + Jzt.

Therefore there is a quadratic surface containing all these 9 points if and only if there are
some coe�cients A,B,C, . . . ,J not all zero in such a way that all the 9 equations below
hold,

Ax2
1 +By2

1 +Cz2
1 +Dt2

1 +Ex1y1 +Fx1z1 +Gx1t1 +Hy1z1 + Iy1t1 + Jz1t1 = 0

Ax2
2 +By2

2 +Cz2
2 +Dt2

2 +Ex2y1 +Fx2z1 +Gx2t1 +Hy2z2 + Iy2t2 + Jz2t2 = 0
...

Ax2
9 +By2

9 +Cz2
9 +Dt2

9 +Ex9y9 +Fx9z9 +Gx9t9 +Hy9z9 + Iy9t9 + Jz9t9 = 0.

This shows that there is nontrivial solution to this system of 9 homogeneous linear equa-
tions where A,B,C, . . . ,J are not all zero and hence there is a quadratic surface Q consist-
ing of 9 points.

Now Q contain the the three lines �1,�2,�3 for i= {1,2,3} having that Q contain 3 distinct
points of �i and implies �i ⊆ Q by 3.1.12. Consequently,we note that Q cannot contain any
projective plane and thus it is irreducible.

Suppose by contradiction that Q contains a plane Π then we observe that f factors into
two possibly equal linear planes in P3, Π1 and Π2 . without loss of generality assume that
either �1,�2 ⊆ Π1 and �3 ⊆ Π2 or �1,�2,�3 ⊆ Π1 sice �1,�2,�3 ⊆ Q and we �nd a projec-
tive plane containing at least two of the lines �1,�2,�3 in either case but these lines are
pairwise disjoint implying that we found a projective plane containing two disjoint lines,
a contradiction.

Finally to show that Q is nonsingular by contradiction, we now suppose that Q is singu-
lar then there exist a matrix N ∈ N4(K) such that for each x ∈ K4 we have f (x) = XT Nx
by 3.1.11 that is there exist y �= 0 ∈ K4 such that Ny = 0 then yT N = 0 since N is sym-
metric and hence for each x ∈ K4 we have xT Ny = yT Nx = 0 note that there must exist
i = {1,2,3} such that y /∈ �i because �1,�2,�3 are disjoint.
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Now assume y /∈ �i then for each x ∈ K4 whose corresponding point in A3 is �1 and for
each u,v �= 0 ∈ K we have

f (ux+ vy) = (ux+ vy)T N(ux+ vy) = uxT Nux+uxT Nvy+ vyT Nux+ vyT Nvy.

f (ux+ vy) = 0 = f (ux).

Because any scalar multiple of x satisfy f since the corresponding point in P3 of x is
in �1 and the remaining terms are zero hence by suitable change of coordinates we see
that the set of all corresponding point in P3 of the form ux+ vy is a unique projective
plane containing y and �1 implying that f is zero hence a contradiction and therefore Q
is singular.

3.2 Smooth Cubic is birational to P1 ×P1 or to P2

Proposition 3.2.1. Any smooth cubic surface is birational to P2

Proof. Consider two disjoint lines �1,�2 ⊂ X . The following mutually inverse rational
map X ��� �1 × �2 and �1 × �2 ��� X show that X is a birational to �1 × �2 ∼= P1 ×P1 and
hence P2.

X ��� �1×�2 for every point a not on �1 and �2 there is a unique line � in P3 through �1,�2

and a.

Take the rational map from X to �1 × �2 sending a to (a1,a2) := (�1 ∩ �,�2 ∩ �), which is
obviously well de�ned away from �1 ∪ �2

On the other hand �1 × �2 ��� X map any pair of points (a1,a2) ∈ �1 × �2 to the third
intersection point of X with the line � through a1 and a2. This is well de�ned whenever �
is not contained in X .

Remark 3.2.2. There are two disjoint lines on X such that there are exactly 10 lines on X
meeting any given one and exactly 5 lines on X meeting any two disjoint given onces,whereas
in P2 any two curves intersect hence X is birational to P2 and that is infact isomorphic to
blowup of P2 at 6 points.

3.3 Blowup of P2 at 6 Points in General Position

Proposition 3.3.1. Any smooth cubic surface is isomorphic to P2 blown up in 6(suitable
chosen) points.

Proof. We only sketch the proof. Let X be a smooth cubic surface and consider a
rational map f : X ��� �1×�2 ∼=P1×P1. First of all we claim that f is actually amorphism.
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To see this, note that there is a di�erent description for f . If a ∈ X \ �, let it be the unique
plane in P3 that contains �1 and a and set f2(a) = H∩�2. If one de�nes f1(a) analogously,
then f (a) = ( f1(a), f2(a)). Now if the point a lies on �1, let H be the tangent plane to X
at a and again set f2(a) = H ∩ �2. Extending f1 similarly, one can show that this extends
f := ( f1, f2) to a well de�ned morphism X −→ P1 ×P1 on all of X .

Now let us investigate the inverse map P1 ×P1 ��� X is not well de�ned. As already
mentioned in the proof of 3.2.1 this is the case if the point (a1,a2) ∈ �1 × �2 is chosen so
that a1a2 ⊂ X . In this case the whole line a1a2 will be mapped to (a1,a2) by f , and it can
be checked that f is actually locally the blow up of this point. By remark 3.2.2 there are
exactly 5 such lines a1a2 on X . Hence X is the blow up of P1 ×P1 in 5 points i.e the blow
up of P2 in 6 suitable chosen points.
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4 The 17+10 or the 6+15+6 Lines on Smooth Cubic

De�nition 4.0.1. [Smooth cubic surface]

Let X ⊂ P3 be a cubic surface.Then X is said to be smooth cubic when it has no singulari-
ties.This means that there will be no point q = (x : y : z : t) for which all the �rst order partial
derivatives are zero at the point q that is no point q such that

�
∂ f
∂x

(q) :=
∂ f
∂y

(q) :=
∂ f
∂ z

(q) :=
∂ f
∂ t

(p) := 0
�
.

Proposition 4.0.2. Let � be a line and q be a point of X then the number of lines contained
in X and contain q is 3. Also TqX is a plane containing the three lines

Proof. Let �⊆ X and we know that �= Tq� by 2.1.21 then I(X)⊆ I(�) thus,

Tq� :=
�

g∈I(�)
V

�
3

∑
i=0

∂g
∂xi

(q).xi

�
⊆

�

f∈I(X)

V

�
3

∑
i=0

∂ f
∂xi

(q).xi

�
:= TqX

by homogeneous Nullstellensatz we have I(X) := ( f ) since X := V( f ) :=V (( f )) that is

TqX := V

�
3

∑
i=0

∂ f
∂xi

(q).xi

�

to wrap up �⊆ Tq�⊆ TqX ,� is the line line through q⊆ TqX .Also �⊆ X so that �⊆ TqX ∩X
meaning any line � through q and contained in X must be contained in TqX ∩X . and hence
there are 3 lines through q which are contained in X .

We will henceforth demonstrate that there are exactly 27 lines on any smooth cubic sur-
face X ⊆ P3 which contains at least one line.

Theorem 4.0.3. Let X be a smooth cubic surface in P3 then X contains exactly 27 lines.

The following is a proof by Reids [AM69].

Proposition 4.0.4. Through any point q ∈ X there exist atmost 3 lines of X and coplanar
if there are 2 or 3 as shown below.
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��1

�

�1

or

��1

�

�1

Figure 4. The pictures of lines through the point q.

Proof. Let q be a point, then at most three lines of X go through the point q and every
intersection between the plane and the surface X will not give a multiple lines.

Consider a line � ⊂ X on X through the point q then the tangent plane at the point q
denoted as TqX will contain line �. Since X is cubic TqX ∩X will consist of at most 3 lines
giving maximum of 3 lines through the point q. The intersection of the plane Π and X
will give a double line and will be singular.

Proposition 4.0.5. Let Π ∈ P3 be a plane. Then Π∩X in one of the following,

1. An irreducible cubic curve

2. an irreducible conic and a line

3. three distinct lines

Proof. Assume that Π is the plane Z(t) under the change of coordinates, and let g be
a homogeneous polynomial of degree 3 then X is cut out from P3 therefore X ∩Π is a
cubic plane with de�ning polynomial h ∈ k[x,y,z] which is either irreducible or factors as
a product of an irreducible quadratic form and a linear form or it factors as a product of
three linear forms.

We want to show that h ∈ k[x,y,z] factors into three distinct linear forms.

For consider � ∈ X ∩Π, then we show that the linear form in k[x,y,z] de�ning � factor out
of the cube h only once.

Take � := V(z, t) to be another change of coordinates such that linear form de�ning � in
Π is z
by contradiction assume that,

h(x,y,z, t) := z2.a(x,y,z)
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where a is a linear form and by reversing the process from which we got h from g, then
we see that g can be expressed as,

g(x,y,z, t) := z2.p(x,y,z, t)+ t.r (x,y,z, t) .

Also p is a linear form and r is a quadratic form. Now by �nding partial derivatives of g
we see that,

∂g
∂x

�
z2.p(x,y,z, t)+ t.r(x,y,z, t)

�
:= z2 px + trx

∂g
∂y

�
z2.p(x,y,z, t)+ t.r(x,y,z, t

�
:= z2 py + try

∂g
∂ z

�
z2.p(x,y,z, t)+ t.r(x,y,z, t

�
:= 2zpz + z2 pz + trz

∂g
∂ t

�
z2.p(x,y,z, t)+ t.r(x,y,z, t

�
:= z2 pt + r+ trt

thus V(g) is singular at any point (x : y : z : t) where z = t = 0 and r(x,y,z, t) = 0. To
restrict to the line � in the plane Π we substituting z = t = 0 in r we get a polynomial r1,

where r1 is identically zero or an homogeneous quadratic in x,y.

That is any point (x : y) is a root of r1 or r1 has at least one root (x : y) showing that r
has some root (x : y : 0 : 0) along �. Therefore V(r1) �= /0 hence X has singular point, a
contradiction.

Proposition 4.0.6. Any smooth cubic surface X contains at least one line �.

Proof. Consider any arbitrary point q on the surface X . Taking the intersection of X
and the tangent plane at the point q denoted as TqX ,that is

TqX ∩X :=C

where C is the curve with a nodal or cuspidal singularity at the point q when the curve
C is irreducible or the curve C is reducible and contains a line which lie on X . Therefore
there exist a linear change of cooordinates where by q := (0 : 0 : 1 : 0) and TqX := (t = 0).
Then the curve C := xyz = x3 +y3 if the point q is nodal or the curve C := x2z = y3 when
the point q is cuspidal. They are similar cases.

Now lets consider the cuspidal case,

f := x2z− y3 +g2(x,y,z, t)t.

Where g2 is homogeneous of degree two and in the coordinates (x,y,z, t). It follows that
g2(0 : 0 : 1 : 0) �= 0 by nonsingularity at the point q.

Now assume g2(0 : 0 : 1 : 0) := 1 then every line � through the point qλ := (1 : λ : λ 3 : 0)
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on the curve C goes through the point r := (0,y,z, t) on the plane X := 0. A line through
qλ and r,qλ r can be parametrized by writing out,

f (αq+µr) := A(y,z, t)+B(y,z, t)+C(y,z, t) := 0.

Where gi ∈ k(λ ) is homogeneous of degree i in the variables (y,z, t). Then

qλ r ⊂ X ⇐⇒ A(y,z, t) := B(y,z, t) :=C(y,z, t) := 0.

Where A is a form of degree one, B is a form of degree two andC is a form of degree three
in (y,z, t) with coe�cients involving λ .

Claim:
There is some resultant polynomial X27(λ ) such that X27(λ ) := 0 ⇐⇒ A,B,C have a
common zero (ξ ,η ,ζ ) in P2.

We now de�ne the polar form of f as the form in two variables (x,y,z, t) and (x�,y�,z�, t �)
as

f1
�
x,y,z, t : x�,y�,z�, t �

�
:=
�

∂ f
∂x

x�+
∂ f
∂y

y�+
∂ f
∂ z

z�+
∂ f
∂ t

t �
�

since for q(x,y,z, t) elements of X and q �= r := (x�,y�,z�, t �) an element of P3 by the de�-
nition of the tangent space we have f1(q,r) := 0 if and only if the line qr is tangent to X
at a point q.

Precisely,

f (αq+µr) := α3 f (q)+α2
µ f1(q,r)+αµ

2 f1(r,q)+µ
3 f (r).

So that q �= r ∈ P3.

The following four conditions are the equations for the line qr to be contained in X : ( f =
0) so that f (r) := f1(r,q) := f1(q,r) := f (q).

Geometry line qr is tangent to X at both q and r, hence f |qr has double roots at the point
q and r, therefore qr ∈ X .

The polar of f := x2z− y3 +g2 (x,y,z, t) t is,

f1 = 2xzx� −3yy�+ x2z+g2(x,y,z, t)t �+ tg1(x,y,z, t;x�,y�,z�, t �)

is the polar form of g shown in the same way as above, here g is quadratic, g1 is symmetric
billinear form such that g1(q1q) := 2g(q).

Given,

A := z−3α2y+g(1,α,α3,0)t



27

B :=−3αy2 +g1(1,α,α3,0 : 0,y,z, t)t

C :=−y3 +g(0,y,z, t)t.

And substituting qλ = (1,λ ,λ 3,0),r = (0,y,z, t) then it give rise to the equation qλ r ∈ S
as A = B =C = 0.

Finally, we now eliminate y,z, t from the equations above considering the highest power
of α .

Therefore it shows that g(1,α,α3,0) := α6+ ...= a6 because g(0,0,1,0) = 1 hence a6 is
a polynomial whose leading coe�cient is one with degree 6.

Then A := 0
⇒ A := z−3α2y+g(1,α,α3,0)t.

0 := z−3α2y+a6t.

Therefore
z := 3α2y−a6t.

Also by substituting z in B and then using the bilinearity of g1, we get

B :=−3αy2 +g1(1,α,α3,0;0,1,3α2y−a6t, t)t

= b0y2 +b1yt +b2t2,

where
b0 :=−3α

b1 := g1(1,α,α3,0;0,1,3α2,o) := 6a5 + ...

b2 := g1(1,α,α3,0;0,0,−a6,1) :=−2a9 + ...

And by similar process of substituting z in C and expanding the quadratic form g results
to

C :=−y3 +g(0,y,3α2y−a6t)t

= c0y3 + c1y2t + c2yt2 + c3t3

where ,
C0 :=−1

c1 = g(0,1,3α2,0 := 9α4 + ...
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c2 := g(0,1,3α2,0;0,0,−a6,1) :=−6a8 + ...

c3 := g(0,0,−a6,1) := α12 + ...

Hence we see that B� andC� have common zero (η ,τ) as stated by Sylvester’s determinant
formula.

Theorem 4.0.7. [Sylvester’s determinant formular]

Let k be algebraic closed�eld and suppose given a quadratic and cubic formU,V as, b(U,V ) :=
b0U2 +b1UV +b2V 2, c(U,V ) := c0U3 +c1U2V +c2UV 2 +c3V 3. Then b and c have com-
mon zero (η ,τ) ∈ P if and only if,

det

��������������

a0 a1 a2

a0 a1 a2

a0 a1 a2

b0 b1 b2 b3

b0 b1 b2 b3

��������������

:= 0.

Therefore from our result we have that B� and C� have common zero (η ,τ) if and only if,

det

��������������

b0 b1 b2

b0 b1 b2

b0 b1 b2

c0 c1 c2 c3

c0 c1 c2 c3

��������������

:= 0

which shows that the determinant is a polynomial in α and it is easy to see the leading
terms is coming from taking leading terms in the each entry of the determinant and hence

b0 :=−3a,b1 := 6a5,b2 :=−2a9

c0 :=−1,c1 := 9a4,c2 :=−6a8,c3 := a12.

Therefore,
��������������

−3α 6α5 −2α9

−3α 6α5 −2α9

−3α 6α5 −2α9

−1 9α4 −6α8 α12

−1 9α4 −6α8 α12

��������������

:= α27.det

��������������

−3 6 −2

−3 6 −2

−3 6 −2

−1 9 −6 1

−1 9 −6 1

��������������

:= α27.
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Then there are atmost 27 roots if the roots are unique therefore giving a maximum of 27
lines on a smooth cubic surface.

4.1 17+10 Lines on a Smooth Cubic in P3

Proposition 4.1.1. Let � be a line on X . Then there exist exactly �ve pairs of lines (�i,�
�
i)

such that every pair of lines (�i,�
�
i) is coplanar with the line � and (�i∪��i)∩(� j∪��j)= /0∀i �= j

Proof. Consider the given line � on X and the plane Π such that � ⊂ Π. Then the
intersection Π∩X is a conic and a line. If Π∩X the intersection is singular, then it consist
of 3 lines as shown,

�

Figure 5. Intersection of a conic and a
straight line.

��1

�

�1

Figure 6. Intersection of three straight
line.

In order to show that there are exactly 5 distinct planes � ⊂ Πλ for a singular case we
suppose that � := (z = t = 0) this is two linear equations z = 0 and t = 0. This de�nes two
planes so when i set both to 0.

That is the intersection of planes equal to a � and so i get this line � by change of coordi-
nates.

Therefore, the equation for the plane containing � only contains z and t ,(this is an homo-
geneous equation in two variables) and they have to be of the form Π : µz := λ t, when
µ := 0.

Now suppose µ �= 0 and assume µ := 1. Then it implies that z := λ t. By expressing it in
terms of homogeneous coordinates (x,y, t) on the plane Π, and rewriting the equation

f (x,y,z, t) = A(z, t)x2 +B(z, t)xy+C(z, t)y2 +D(z, t)x+E(z, t)y+F(z, t). (1)
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Where A,B,C are linear forms in (z, t), D,E are quadratic in (z, t) and F is cubic form in
(z, t).

Replacing z with λ t we get;

A(λ t, t) = tA(λ ,1),B(λ t, t) = tB(λ ,1),C(λ t, t) = tC(λ ,1);

D(λ t, t) = t2D(λ ,1),E(λ t, t) = t2E(λ ,1)

And
F(λ t, t) = t3F(λ ,1).

Hence we have restricted this equation to a plane Π. Substituting everything in 1 above
and dividing out by t we get an equation say g, where

g := Ax2 +Bxy+Cy2 +Dtx+Ety+Ft2. (2)

By taking this equation as the conic in x and y then it becomes singular when the discrim-
inant is zero and we will get the rest of intersection which is now exact the conic which
degenerate into two lines when the conic is not smooth.

Therefore, we check degeneracy by checking the smoothness gx,gy and gz;




gx

gy

z


 :=




2A B D

B 2C E

D E 2F







x

y

t




The discriminant denoted by Δ is a polynomial g of degree 5 in (z, t),

Δ(z, t) := 4ACF +BDE −AE2 −B2F −CD2 := 0 (3)

It has zero exactly 5 times with multiplicity.

To prove the claim, it su�ces to show that this has simple roots. Thus every such root λ

will give the plane Πλ through the line � such that Πλ ∩X consist of three lines.

By the simpleness of the roots of g, 5 such planes exist and hence every line � onX intersect
with exactly 10 lines.

Proposition 4.1.2. There are atleat 5 disjoint pairs of lines (�i,�
�
i) which intersects with the

line � and any other line n ⊂ X will meet exactly one of �i and ��i for i := 1,2,3,4,5. A line n
will intersect the plane Π in P3, Πi∩X := �∪ �i∪ ��i showing that n intersect one of the lines
and it cannot intersect all since the lines which intersect � are found, therefore n intersect �i

or ��i and it cannot intersect both because it will lie on the plane Πi and the intersection of Πi

and X will give four lines.
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Proposition 4.1.3. If there are 4 disjoint lines �1,�2,�3,�4 inP3 then they lie on the quadratic
and have an in�nite number of lines intersecting all lines or they do not lie on a quadric and
have one or two.

Proof. Let �1,�2,�3 be disjoint lines then through them there always passes a smooth
quadric Q. The quadric has two set of lines J1,J2, since �1,�2,�3 are disjoint they belong
to one set of lines J1 and every line which intersects all the three lines on Q and belong
to J2 hence �4 is disjoint and lie on Q and it belongs to J1 and the in�nite family of lines
J2 will all intersect the four lines. When �4 does not lie on Q then the line �4 intersects
the Q in one or two points and the lines from J2 passing through these points intersect all
the four lines.

Finally, let � and m be two disjoint lines on X then every pair (�i,�
�
i), i = 1,2,3,4,5 which

intersects � and one of them intersects m. Now let �i intersect both � and m then m inter-
sects with the pairs (�i,�

��
i ),l = 1,2,3,4,5. Thus gives 17 lines on X that is �,m, the 5 lines

intersecting both, 5 lines which intersect only l and 5 lines which intersect only m of the
pair as shown below,

�1

��1

���1

�

. . .

m

�5

��5

���5
Figure 7. Configuration of lines on X3 ⊂ P3.

Any line �∈X not included in the 17 lines as abovewill intersect 3 of the lines �1,�2,�3,�4,�5.

Here, there are no 4 of the lines that will lie on a quadric because then X would be re-
ducible.

Line n cannot meet more than 3 of the lines �i since it will be � or m by proposition 4.1.3.

If it intersect with less than 3 of the lines �i then it will intersect with 3 or more of �i.
Therefore,it means either ��2,�

�
3�

�
4,�

�
5 or �1,�

�
3,�

�
4,�

�
5 but then � and ���1 intersect these four

and through the same argument in proposition 4.1.3, n can not intersect all four lines.
Therefore n intersect 3 of lines.

The combination of all the tree lines of �i gives a line not contained in the 17 found lines.
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There are 10 lines intersecting �1 by proposition 4.1.3, Only four lines �,��1,�
��
1,m are found

showing that there are 6more by above, each one of themwill intersect 2 lines �2,�3,�4,�5.

Hence there are only 6 possibilities therefore they all occur.

Now by adding all the lines found it gives line � and line m the 15 lines �i,�
�
i,�

��
i for

i = 1,2,3,4,5 and
�5

2

�
:= 10 of the intersecting �i,� j,�k lines where i �= j �= k where

i, j,k = 1,2,3,4,5. Thus gives 27 lines of a maximum 27 and hence all the lines are found.

4.2 6+15+6 Lines on a Smooth Cubic in P3

In this section, we give an alternative enumeration of the 27 lines on a smooth cubic
surface by counting strict transforms in the blow-up map

B�{p1,...,p6} : B�{p1,...,p6}P
2 ��� P2.

Proposition 4.2.1. The space of smooth cubics surfaces in P3is a dense open U ⊂ P19.

Sketch Proof. The vector subspace

C
�
P3
[xi]

�
3
=�x3

0, x3
1, x3

2, x3
3, x2

0x1, x2
0x2, x2

0x3, x0x2
1, x0x2

2, x0x2
3, x2

1x2, x2
1x3, x1x2

2, x1x2
3, x2

2x3, x2x2
3, x0x1x2,

x0x1x3, x0x2x3, x1x2x3� ∼= C20
(ui)

is spanned by 20 degree 3 monomials in C
�
P3
[xi]

�
= C[x0,x1,x2,x3]. Now the projective

space of the vector subspace

P
�
C
�
P3
[xi]

�
3

�
= C

�
P3
[xi]

�
3
\{0}/C∗ ∼= P19

[ui]
= C19��u0

u0
,

u1
u0
,...,

u20
u0

�∪ P18
[ �u0,u1,...,un]

.

By setting U = C19��u0
u0
,

u1
u0
,...,

u20
u0

�, the result follows from the embedding U �→ P19
[ui]

.

Remark 4.2.2. Let U be as in Proposition 4.2.1 and a subset M ⊂U ×G(2,4) consisting of
pairs (X ,�) of a smooth cubic X and a Line � on it. We would like to understand the incidence
correspondence from the projection

π : M
(X ,�)→�−−−−−→U

The goal of the thesis is equivalent to counting the number of inverse images of π, that is,
showing that π is a 27 : 1 map, 27-sheeted covering map.

Theorem 4.2.3. There are 27 lines on a smooth complex cubic surface.
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Proof. It is interesting to see the lines on a cubic surfaceX in a picture of 3.3.1. Inwhich
we think of X as a blow up of P2 in 6 points. It turns out that the 27 lines correspond to
the following curves that we already (and that are all isomorphic to P1).

• the 6 exceptional hypersurfaces.

• the strict transforms of the


6

2


 := 15 lines through two of the blown up points.

• the strict transforms of the


6

2


 := 6 conics through �ve of the blown up points.

In fact; it is easy to check by the above explicit description of the isomorphism of X with
the blow up of P2 that these curves on the blow-up actually correspond to lines on the
cubic surface.

It is also interesting to see again in this picture that every such line meets 10 of the other
lines as mentioned in Remark 3.2.2.

Every exceptional hypersurface intersects the 5 lines and the 5 conics that pass through
this blown-up point.

Every line through two of the blown-up points meet.

• the 2 exceptional hypersurface of the blown up points.

• the


4

2


 := 6 lines through two of the four remaining points.

• the 2 conics through the four remaining points and one of the blown up points.

Every conic through �ve of the blown up points meet the 5 exceptional hypersurface at
these points, as well as the 5 lines through one of these �ve points and the remaining
point.
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