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ABSTRACT

There is an urgent need for accurate, non-destructive, rapid, and affordable techniques for
screening pesticide residues in fresh fruits to assess whether regulatory standards are met
by not surpassing the allowed maximum residue limits (MRL). Although conventional
methods such as chromatography and mass spectroscopy are accurate, they are expensive,
destructive, and require tedious wet lab sample preparations. This study aimed to assess
the utility of machine learning techniques for rapid and non-destructive assessment of
residues in fruits based on diffuse reflectance spectroscopy (DRS) measurements in the
near-infrared region. Towards this goal, tree tomatoes fruits were spiked with Mancozeb
and thiocyclam hydrogen oxalate (THO) in varying concentrations, and near-infrared
spectra data (900-2500nm) were collected in DRS geometry. Another dataset was collected
from the field in the 200 nm to 1050 nm range on control and treated tree tomatoes for
11 consecutive days for qualitative analysis. All the measurements were transformed into
absorbance using log10(1/R) before preprocessing using the smoothing, normalization,
and multiplicative scatter correction techniques. Principal component analysis of the field
data showed distinct clusters for the control and treated fruits in the 800 nm to 850 nm
third overtone region with PC1 and PC2 accounting for 82% and 5.9% of the variance,
respectively. The combination region (1900-2500 nm) was optimal in discriminating the
samples with varying pesticide concentrations for the laboratory data, with PC1 and
PC2 accounting for 93% and 3.8% of the variance, respectively. The first four PCs,
which explained 98% of the cumulative variation of the data, were extracted from the
laboratory data and used as inputs to the support vector machine (SVM), artificial neural
networks (ANN), and Random forest (RF) machine learning models. All the developed
models had R2 values greater than 92% and RMSEP values of less than 0.06 ppm for
Mancozeb models and not more than 0.08 ppm for THO models. Limits of detection
and quantification were also determined using a pseudo-univariate approach. The models
were tested on a new dataset of samples collected from four local markets. From the
results obtained, all predicted values were below the acceptable MRL values (0.5 ppm and
0.3 ppm for Mancozeb and THO, respectively). One-way Tukey ANOVA analysis of the
predictions of the market samples showed that ANN and SVR models were more reliable
than the RF model. Therefore, it was concluded that the combination of diffuse reflectance
spectroscopy with machine learning techniques has potential for rapid, non-destructive,
in-situ assessment of pesticide residues in fruits and vegetables.
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CHAPTER ONE

INTRODUCTION

1.1 Background to the Study

Organic synthetic pesticides (i.e., insecticides, herbicides, fungicides, and ne-

maticides) are widely used in modern agriculture to protect crops from diseases,

weeds, and pests such as insects and rodents (Chen et al., 2011). Kenya is

heavily reliant on agriculture, accounting for approximately 24 percent of its

GDP, and employs an estimated 75 percent of the population. Food security

is a top priority in Kenya’s Vision 2030 and the agriculture revitalization pol-

icy with the government designating it as one of its four deliverables (GOK,

2018). More food production is required due to her growing population which

translates into greater use of chemicals in the production of food. In 2018,

Kenya imported 17,803 tonnes of pesticides worth 128 million dollars. In-

secticides, fungicides, and herbicides accounted for approximately 87 percent

in volume and 88 percent of total import costs. As a result, Kenya’s pesti-

cides market is relatively big and growing steadily. This has resulted in the

environmental pollution in bodies of water, foodstuffs, and soil (Salami et al., 2017).

Regardless of their value in increasing crop yields, the widespread use of

pesticides during the production, processing, storage, transportation, or mar-

keting of agricultural commodities can result in increases in residues in foods,

making it risky for consumers (Lv et al., 2018). Food is only considered safe if

there is a reasonable certainty that eating it will not cause harm (Oloo, 2010).

Following public outrage and media attention in Kenya, there has been an in-
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crease in concern about chemical residues in food products, particularly fruits and

vegetables. Chemical residue traces in food should be kept to a minimum other-

wise they can result in the most serious food safety concerns (Lv et al., 2018).

These contaminants in foods have carcinogenic, mutagenic, teratogenic, allergic,

and sometimes fatal health effects on consumers (Toldrá and Reig, 2006; Tsimbiri

et al., 2015; Wang et al., 2009), necessitating regular residue monitoring (Kun-

yanga et al., 2018).

Concerns about pesticide toxicity, both real and perceived, have pushed

for rigorous regulation to safeguard customers leading to the establishment of

Maximum Residue Limit (MRL) permitted in food materials. If acceptable agri-

cultural practices are followed (Liu et al., 2015), these residues should be below

the MRL. According to many reports, these residues are found more frequently in

fruits than in vegetables (Mebdoua, 2019). The high levels of residues in fruits

and vegetables can be explained by repeated and high doses of chemical applica-

tions to combat the numerous and chronic pests and diseases due to the lack of

rapid and early disease diagnosis methods.

Most common used control and residues detection measures use conventional

analysis methods such as gas chromatography-mass spectrometry (Anastassiades

et al., 2003), high-performance liquid chromatography (Papadopoulou-Mourkidou

and Patsias, 1996), enzyme inhibition method (Campanella et al., 2005), enzyme-

linked immunosorbent assay (Qian et al., 2009), and electrochemistry (Hart et al.,

1997). These methods are time-consuming, costly, complicated, destructive, and

require many samples to detect results despite being highly adopted. This com-

pels the adoption of non-destructive, fast, and cheaper detection techniques

2



such as Diffuse Reflectance Spectroscopy (DRS) for qualitative and quantitative

analysis of chemical residues on fruits and vegetables.

1.1.1 Diffuse Reflectance Spectroscopy for Residues As-

sessment

Diffuse reflectance spectroscopy, also known as elastic scattering spectroscopy,

deals with diffusely reflected photons whose angular distribution is unrelated

to the incident angle. Light encounters scattering and absorption as it travels

through tissue. The light that escapes the tissue becomes virtually isotropic after

a series of scattering events and is thus classified as diffusely reflected light.

The path taken by diffusely reflected light as it propagates through tis-

sue is determined by the optical characteristics of the tissue. As a result, a diffuse

reflectance spectrum contains information about the optical characteristics of the

tissue, which are intrinsically linked to the makeup of the tissue.

The fundamental tenet of DRS is that a sample is irradiated with a broadband

wavelength light source ranging from UV to NIR. The scattered light is scanned

across the sample as a function of wavelength using a spectrometer. The optical

properties of the sample can then be derived from the reflected light from tissue

using multivariate Machine Learning (ML) model-based techniques.

DRS has been used in the quantitative examination of residues on fruit

and vegetables based on Mid Infrared (MIR) spectroscopy, which according to

Beć et al. (2019) is less sensitive and requires sample preparations or Fourier

transform approaches compared to Near Infrared (NIR) spectroscopy. Hiroaki
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et al. (2002) used Fourier Transform Mid-Infrared DRS (FT-MIR-DRS) in the

3571.43 nm to 12500 nm range to measure the concentration of residues on let-

tuce samples using partial least square regression. Makio et al. (2007) also used

FT-MIR-DRS in the 5714.29 nm to 10526.32 nm range for detecting fungicide on

strawberries and developed a classification model of the spectra using soft inde-

pendent modeling of class analogy (SIMCA).

This study was centered on the NIR region of the spectrum as it is cheaper

compared to MIR, requires little to no sample preparations, provides useful infor-

mation on molecular structure, interactions, dynamics, and anharmonicity (Beć

et al., 2019). However, compared with MIR, NIR spectroscopy suffers from poor

chemical specificity, weaker bands, and broad overtones. This is particularly sig-

nificant in biophysics applications, where complex spectra of biological samples

are analyzed. This complexity of NIR spectra is a considerable barrier to practi-

cal applications of NIR spectroscopy. Classical methods of data analysis in the

NIR region have considerable limitations. Hence, the use of multivariate ML

model-based techniques to overcome these challenges (Fernández et al., 2016).

1.1.2 Machine Learning in Spectroscopy

Machine learning algorithms are computational tools used in predictive modeling of

complex data such as the spectral data obtained in this work (Michie et al., 1994).

ML can overcome challenges associated with classical data analysis techniques.

These methods use specific peaks that correspond to the spectrum of particular

elements or molecules (Villmann et al., 2008). This entails comparing how one

spectrum varies from another using existing spectral libraries. This approach

works best for univariate data analysis, using well-defined peaks. However, DRS

4



spectra of fruits samples are broad and overlapping in nature, thereby limiting the

use of these methods. The DRS of tree tomatoes treated with varying doses of

pesticides formulation was investigated to establish the validity of autonomously

identifying residues on vegetables based on the produced spectral data using

Random Forest (RF) (Breiman et al., 2017), Artificial Neural Networks (ANN)

(Bishop et al., 1995) and Support Vector Machines (SVM) (Boser et al., 1992).

1.2 Statement of the Problem

The critical nature of the consumption of safe foods necessitates the develop-

ment of rapid, non-destructive, cost-effective, and field-deployable screening tech-

niques. Currently, used methods for detecting residues are laboratory-based,

time-consuming, costly, and destructive. Diffuse reflectance spectroscopy can com-

pensate for these shortcomings. However, the spectra are multivariate in nature

and cannot be directly decoded for meaningful information. Conventional spec-

tral data analysis techniques are univariate in nature and are therefore unsuitable

for analysis of multivariate spectral data sets such as the ones obtained in this

study. Additionally, instrumental noise, matrix effects, and multi-dimensionality

all contribute to further complicating the analysis. This implies that the DRS

technique is insufficient on its own. By utilizing data from the entire wave range

with minimal pre-processing, machine learning techniques provide alternatives

to the conventional approach. The machine learning assisted diffuse reflectance

spectroscopy technique was developed as a substitute or complementary method

for screening residues in fruits and vegetables with high accuracy. This novel

method is field-deployable and has the potential to simultaneously measure several

residues in fruits and vegetables without sample preparations.
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1.3 Research Objectives

1.3.1 Main Objective

The goal of this work was to develop a machine learning-assisted diffuse reflectance

spectroscopy technique for rapid and reliable pesticide residues detection in fruits

and vegetables.

1.3.2 Specific Objectives

(i) To design and optimize a pesticide residues assessment method for rapid

DRS measurements in fruits and vegetables.

(ii) To perform pre-processing and exploratory analysis of the DRS measurements

obtained from specific objective (i) above using the multiplicative scatter

correction, Savitzky-Golay filter, and PCA techniques for spectral noise and

dimensionality reduction.

(iii) To develop and test calibration models for quantitative analysis of the data

obtained from specific objective (ii) above using the ANN, SVR, and RF

machine learning techniques.

(iv) To evaluate the viability of the developed models from specific objective (iii)

above using market samples.

1.4 Justification and Significance

Food safety is linked to chemical and physical risks that can result in both short

and long-term health complications. Numerous studies have established that

pesticide residues are carcinogenic, mutagenic, genotoxic, and have endocrine-

disrupting properties. As public awareness of the importance of a healthy diet
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grows, the demand for rapid residue assessment systems increases. Not only can

such systems identify foods above the MRL, but they can also provide informa-

tion about the food’s safety. Due to the inherent limitations of conventional

methods for determining residues, rapid, sensitive, non-destructive, and field-

deployable analytical techniques are required.

The DRS technique has been widely applied in molecular studies. However, the

technique is susceptible to background noise, scattering effects, baseline drifts,

and the chemical information hidden in the spectra cannot be decoded directly.

Traditionally used data analysis techniques are univariate in nature and work by

assigning specific peaks or comparing spectra to identify molecules of interest. Due

to the highly correlated and redundant features in the spectra of biological sam-

ples such as fruits and vegetables, these approaches are inapplicable for analyzing

complex multivariate data. In this context, ML techniques can handle multi-

ple parameters and noisy data, allowing for rapid and accurate residues evaluation.

This work, therefore, aimed at analyzing fruits and vegetables with vary-

ing concentrations of pesticide residues using diffuse reflectance spectroscopy to

develop a method for rapid, accurate, and reliable screening of residues. The

developed method can be of great utility in analyzing sample in-situ since its

portable, non-destructive, and no sample preparations are required for analysis.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Overview

This section reviews the literature on conventional residue screening methods, the

concerns of residues in foods, non-destructive techniques for determining residues

in food, and the utility of machine learning in these studies.

2.2 Pesticide Residues in fruit and vegetable samples

There is an increasing concern about chemical residues in food products, particu-

larly fruit and vegetables. A study conducted by Kunyanga et al. (2018) sheds

light on the prevalence and chemical levels of certain fruits and vegetables com-

monly consumed in Kenya. Various vegetable samples were tested for residues

using standard methods. For each commodity and pesticide, the results were

compared to national and global standards for MRL. The study revealed pesti-

cide contamination of fruit and vegetable samples, some of which were above the

prescribed limit. Kenya Plant Health Inspectorate Service (KEPHIS) reported

residues in vegetable samples across the country in its 2018 annual report. The

most severely affected crops were kale (94%), peas (76%), and capsicum (59%).

10% of the samples exceeded the maximum allowable residue levels (Kabano, 2018).

Data on pesticide use or quantity in water, soil, and food, as well as the

associated consequences, are not available in Kenya (Abong’o et al., 2018). In

Kenya, there are no regular surveillance and safety reports on the levels of these

chemical residues. KEPHIS inspects food samples for residue traces but, the spe-
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cific amounts of residues are undisclosed to the public. This study can close the

gap by developing a less expensive screening method and making the data avail-

able to the public.

The presence of residues in food is a global issue that is addressed by

numerous studies. In Poland, for example, 144 samples of fruits and vegetables

were tested for 60 pesticides. Residues of 15 pesticides were found in 32% of the

samples. The percentage of residue in samples that exceeded the MRL was 15%,

with multi-residues accounting for 9% (Kaczyński et al., 2013). Another study in

the UK found residues in 79 percent of fruit and vegetable samples; the most

common chemical traces were fungicides (Mebdoua, 2019). Pesticide residues

were detected in 160 samples of 13 different types of fresh fruits and vegetables

from both domestic and imported sources in Algeria using Gas Chromatography

Mass Spectrometry (GC-MS) (Mebdoua et al., 2017).

The proportion of fruit with residues was higher than vegetables in most

studies conducted by various countries. Brazilian testing systems discovered that

residues were present in 59% of fruit samples but only in 36% of vegetable sam-

ples. Similar findings are documented in surveillance programs in the United

States and the European Union (Mebdoua, 2018).

2.3 Analytical Methods for Residue Assessment in Fruits

and Vegetables

Assessment of pesticide residue levels needs precise analytical methods. The

residues, on the other hand, are generally found at low concentrations (Parts per

Million (ppm) and Parts per Billion (ppb)), are numerous, and have different
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chemical structures. The study and quantification of these residues is a scientific

challenge that necessitates the use of sensitive and accurate multi-residue analysis

methods (LeDoux, 2011). Several analytical methods are available whose choice

is determined by the pesticide under investigation or the matrices being tested.

The following sections provide a brief overview of some of the most commonly

used techniques.

2.3.1 Conventional Techniques of Residue Detection in

Fruits and Vegetables

The earliest analytical techniques were established in the 1960s, utilizing an initial

acetone extraction followed by a partitioning phase involving non-polar solvents

and salts. Sophisticated and solvent-intensive cleaning techniques were required.

There was also a lack of selectivity and sensitivity in the equipment used to evalu-

ate the target chemicals. Pressurized liquid and supercritical fluid extraction and

were developed in the 1990s as a result of technological advances and a desire to

eliminate user interference and speed up sample preparation procedures. Though

initially very promising, these techniques have failed in the field of pesticide anal-

ysis for a variety of reasons, including the instruments’ high cost and unreliability,

and the inability to extract different pesticide residues from foods with equal

efficiency, frequently necessitating separate optimization for different analytes

(Cunha et al., 2011).

Lehotay and coworkers simplified conventional sample preparation proce-

dures by introducing QuEChERS (rapid, easy, cheap, effective, rugged, and safe)

(Anastassiades et al., 2003). A simple extraction or partition utilizing acetoni-

trile and salts, as well as a basic dispersive cleaning procedure, are used in the
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approach (Cunha et al., 2012). Unfortunately, GC-MS analysis of QuEChERS ex-

tracts in acetonitrile is not without complications. Numerous phenomena may

occur, including column deterioration by the polar solvent, vapor overload due

to high thermal expansion coefficient, system contamination by co-extractives

(Rashid et al., 2010), and decreased enrichment factors.

GC-MS and High performance liquid chromatography (HPLC) are the

gold standard and the most widely used analytical tools (Stachniuk and Fornal,

2016; Tsagkaris et al., 2019). Food samples provide an immense challenge to an-

alytical wet chemistry methods for residues at trace levels. The diverse range

of food matrices, from liquids to solids, necessitates the use of varying sample

preparation procedures to get reliable and repeatable findings. Chromatographic

methods can enable such analysis at trace levels to meet the MRL required by

food safety standards. However, reproducible and reliable results depend on the

sample preparation procedures used.

Food sample preparations for GC and HPLC analysis involve homoge-

nization, extraction using solvents, cleanup, extraction of analytes, and

concentration and reconstitution of the eluent in a suitable solvent. Sample

preparation is the limiting step in achieving acceptable performance parameters

accounting for roughly 60% to 70% of the overall analysis time. The use of several

sample preparation procedures to account for the variety of pesticides targeted

and the type of food matrices are often needed. These procedures must be capa-

ble of producing analytically precise findings while being economically viable for

routine analysis. Additionally, they must be simplistic and safe.
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Conventional pesticide detection techniques are the gold standard and

the most widely used analytical tools. Although they produce highly accurate

results, they can be time-consuming. For example, Khandekar et al. (1982)

used HPLC to measure 313 specimens of 14 different vegetables from 5 dif-

ferent markets in India for five residues of organochlorines over three years.

They discovered residues individually or in various combinations. Vegetable

residues were higher in leafy vegetables than in other types of vegetables. The

most common pollutants were Dichloro-Diphenyl-Trichloroethane (DDT), lin-

dane, and Benzene Hexachloride (BHC), with aldrin and endrin being less common.

Mattern et al. (1990) detected and quantified 20 pesticide residues in

fruits and vegetables using HPLC and mass spectrometry. The sample prepa-

ration procedures were time-consuming and involved the use of more than 13

hazardous chemicals and reagents. Stafford and Lin (1992) determined oxamyl

and methomyl insecticides in fruits and river water using HPLC. They measured

recovery levels ranging from 20 to 1000 ng/mg for raw agricultural commodities

and 5 to 50 ng/ml for river water. The method used numerous reagents and wet

digestion of the fruits before the time-consuming detection process. Nakamura

et al. (1994) minced and blend vegetables and fruits samples before the addition

of reagents to detect organophosphorus, organochlorines, organo-nitrogen, and

pyrethroid pesticides.

GC-MS has also been used extensively in fruits and vegetable residues

studies. Podhorniak et al. (2001) found organophosphorus pesticide and their

metabolites in fruit and vegetable. Yoshii et al. (2001) also identified residues of

pesticide in tea, broccoli, cod, tomato, eggplant, cucumber, and Japanese radish
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using liquid chromatography. In 150 orange fruit samples, benzoyl phenylurea

insecticide residues, carboxamides, acaricides, and carbamate insecticides were

detected and reported in 74.6% of the samples. The residues of the pesticide

were below the detection limits of 0.002 to 0.05 mg/kg (Valenzuela et al., 2001).

Blasco et al. (2002) also reported that 54% of the samples contained 0.005 to

3.34 mg/kg of o-phenyl phenol. The residues exceeded the permissible limit in

only 4% of the samples. Michel and Buszewski (2002) determined ten different

residues in fruits, vegetables, and cereals. The residue limits varied between 0.02

and 0.25 ng/g. In apples, green beans, and carrots, Lehotay (2002) detected

and quantified 89 pesticides in fortified spinach, tomatoes, apples, and strawberries.

Gupta (2004) reported that 15% vegetables in India were contaminated

with pesticide residues. Of these, 20% exceeded the recommended MRL. Rand-

hawa et al. (2007) detected chlorpyrifos and TCPy traces in vegetables. The

maximum quantity of chlorpyrifos residue was established in Spinach at the

bare stage (1.87 mg/kg−1), followed by okra (1.41 mg/kg−1) and eggplant

(1.25 mg/kg−1 ). The residues were reduced in samples to 15% from 33% after

washing, to 65% from 85% due to post peeling, and to 12% from 48% after Cooking.

González et al. (2008) reported 23 residues in 75 leafy vegetables. The

highest fungicide concentrations were reported in lettuce (procymidone 12 mg/kg)

and the lowest traces in Swisschards (cypermethrin 6 mg/kg). The group also re-

ported that residue levels were higher in lettuce than in the other leafy greens.

Hernández-Borges et al. (2009) quantified 11 pesticides collected from 57 banana

samples from Spain’s local markets. Although the amounts of residues were be-

low the MRL, the study revealed that bananas peels and pulp had the highest
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residues levels.

In 2017, 160 samples of fruit and vegetables were analyzed by Hadian

et al. (2019) using GC-MS who found that 12% of the samples tested were above

recommended MLRs. Moreover, 57.5% of the samples contained at least one

residue. In a similar study, Islam et al. (2019) determined four major organophos-

phorus residues in cabbage samples collected from 5 markets in Senegal using

GC-MS coupled with flame thermionic detection. They reported that 12% of the

samples contained residue above recommended MLRs.

Traditional methods, such as GC-MS and HPLC, produce consistent re-

sults. However, they have numerous limitations, including their destructive

nature, time-consuming sample preparations, the need to transport and store

samples, time-consuming analysis, the need for skilled chemists and advanced lab-

oratories, the use of hazardous, expensive reagents, the lack of real-time detection

capabilities, and the technique’s non-portability (Hu et al., 2020). non-portability

leads to collection, transportation, and storage of samples leading to increased

costs Roy et al. (1997).

Alternative methods with sufficient detectability, cost-effectiveness, simplicity,

non-invasiveness, and portability are thus required. Optical spectroscopy-based

methods are safe, non-destructive, quick, reliable, and low-cost alternatives for

assessing residues and eliminating operator exposure to harmful compounds.
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2.3.2 Non-Destructive Techniques in Residues Monitor-

ing

In research involving pesticide and their derivatives, vibrational spectroscopy is a

frequently used tool. It combines high sensitivity, selectivity, structural speci-

ficity, and non-destructive sample probing into a single instrument. Not only can

molecules be studied in the gas phase, solution, solid-state, or matrices, but they

can also be studied in biological samples (Stuart, 2006). This study can shed light

on the pesticides’ intermolecular interactions, base pairing, and tautomerization.

Optical imaging and spectroscopy involve analysis of spectra or images

acquired from samples (dubbed as direct or forward approach) in the reflection or

transmittance mode under a particular geometry, such as diffuse, specular, or

both. The direct approach is simpler, faster, and easier to execute than conven-

tional methods for online or offline applications.

Conventional NIR spectroscopy uses a direct/forward approach to deter-

mine the total amount of light reflected from or transmitted through a sample as

a result of photon absorption and scattering by the tissues. Acquired spectral

data are processed mathematically to build quantitative or qualitative predictive

models. Additionally, chemometric approaches progressed from linear modeling

to non-linear modeling. As a result of these advancements, NIR spectroscopy has

expanded into a variety of applications, such as food, pharmaceutical, and chemi-

cal (Nicola et al., 2007).

Meurens introduced the Dry Extract System Near-Infrared (DESIR) in
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1987 (Mattern et al., 1990). In this method, a liquid containing the residue

is applied to a low-absorptive substrate, followed by drying to allow ana-

lyte concentration and solvent removal. Saranwong and Kawano (2005) was

the first to use DESIR to detect residues on fruits. They rinsed 95 tomato

samples with acetone before drying the solution on glass fiber filters which

were subjected to reflectance measurements. The RMSECV for pure solutions

was 6.6 ppm, 7.9 ppm for tomato wash, and 1.6 ppm for Limit of Detection (LOD).

Umesh et al. (2012) also implemented DESIR in NIR reflectance spec-

troscopy in the detection of a contact pesticides residue on various fruits. Partial

Least Squares Regression (PLSR) was used for quantification models with an

RMSECV of between 0.003 - 0.06 mg. However, they reported that the model

performance was poor across different fruits. Chen et al. (2011) explains the

creation of a DESIR-based PLSR model using pure pesticides solutions and FT-

MIR-DRS spectrum acquisition. Pre-processing was done using Multiplicative

Scatter Correction (MSC) and first-order derivative of absorbance. The group uti-

lized SVM for a classification model with over-fitting due to the low number of

samples in the study. Also, they did not consider issues of matrix and model ro-

bustness. DESIR is only relevant for contacts pesticide, which remain on the

surface of the samples. Detection of residues scattered throughout the tissue may

require sample digestion.

DESIR requires washing samples in acetone/water, and the wash solvent

loaded onto a glass filter and allowed to dry. As a result, the technique is unsuit-

able for in-situ measurements and is time-consuming due to sample preparation.
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Hyper-spectral imaging is another non-invasive, non-polluting method

that requires little or no sample preparation. The novelty of this method is that

it obtains both spectral and spatial information from the samples under inves-

tigation at the same time. Several authors, as discussed below, have reviewed

the versatility of this method in residue detection and analysis. By detecting

internal changes in chlorella pyrenoidosa, Shao et al. (2016) demonstrated the

feasibility of using hyperspectral VIS/NIR imaging to detect a variety of pesticides.

Sun et al. (2015) detected residues on mulberry using the Adaboost-SVM algo-

rithm in conjunction with hyper-spectral imaging. Furthermore, Sun et al. (2015)

employed hyper-spectral imaging in conjunction with chlorophyll fluorescence

spectra of 150 different lettuce leaf samples containing five different concentrations

of dimethoate. The spectral data were pre-processed with the Savitsky Golay

(SG) and Standard Normal Variate (SNV) algorithms. Principal Component

Analysis (PCA), Successive Projection Algorithm (SPA), and wavelet transforms

were used in conjunction with the Mahalanobis distance multi-modeling of the

Monte Carlo cross-validation algorithm to identify optimal wavelengths from raw

spectra. SVM was used to create a predictive model based on selected wave-

lengths, with the best model predicting R2 = 0.987 and RMSEP = 0.005.

Zhan-qi et al. (2018) used hyper-spectral imaging and ML algorithms to

determine various dimethoate concentrations on spinach leaves. MSC was used for

spectral pre-processing. For clustering samples based on concentrations, PCA was

used. The selection of chi-square test features combined with SVM, K-Nearest

Neighbors (KNN), RF and Linear Discriminant Analysis (LDA) was used for clas-
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sification. The prediction accuracy was evaluated using ten-fold cross-validation,

average, and Standard Deviation (SD). The Chi-square test combined with LDA

produced the best results, with an accuracy of 0.997 and a SD of 0.008. Hyper-

spectral imaging provides both spatial and spectral data. The rich information

also causes data processing difficulties, making in-situ, field deployable, or online

measurement applications challenging.

Among non-destructive analysis techniques, NIR spectroscopy is preferred be-

cause of its non-invasive nature, low cost, and high sensitivity (Armenta et al.,

2007). Visible and near-infrared spectroscopy in various acquisition modes has

proven to be an effective tool for checking and regulating product quality and

safety in the food industry (Cortés et al., 2019) in recent years. These methods

are faster than traditional detection methods, require little to no sample prepara-

tion, and are usable for in-situ measurements.

Data can be collected in reflectance mode, transmittance mode, or ab-

sorbance mode to provide data linked to C–H, O–H and N–H molecular bonds

(Türker-Kaya and Huck, 2017). Table 2.1 displays some studies that used various

spectroscopic methods to assess pesticides. All of these studies have demon-

strated the possibility of determining residues using the NIR, Visible (VIS) and

Ultra Violent (UV) wavelength region of the Electromagnetic Spectrum (EMS).
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Table 2.1: Studies using VIS/NIR spectroscopy for pesticide assessment

Method Determination attribute Reference
NIR Pesticide residues Shen et al. (2009)
NIR Classification of pesticide in Agri-

culture products
Makio et al. (2007)

NIR Detecting of Chlorpyrifos content
in spinach

LIU et al. (2008)

Mid and NIR Metribuzin in pesticide Khanmohammadi
et al. (2008)

NIR Pesticide determination in com-
mercial formulation

Armenta et al. (2007)

NIR Determination of soil content in
chlordecore

Brunet et al. (2009)

NIR Detecting of active ingredients in
pesticide

XIONG et al. (2010)

Fourier transform IR Propamocarb in emulsifiable pes-
ticide

Quintás et al. (2008)

NIR Pesticide residues in Peppers Sánchez et al. (2010)
VIS/NIR Pesticide residues on agricultural

produces
Jamshidi et al. (2016)

Hyperspectral Pesticide residue on lettuce Sun et al. (2018)
NIR Pesticide concentration on fruits Acharya et al. (2012)
NIR Chemical residues in food Teye et al. (2013)

2.4 Challenges of Diffuse Reflectance Spectral Measure-

ments

Spectral measurements must be precise and accurate representations of samples

properties. However, a variety of factors influence measurement performance.

They include optical diffusion as well as environmental or experimental problems

that may affect the quality of spectral tests (Schaepman et al., 2015). The chal-

lenges related to on-site spectral measurements include; atmosphere properties

(e.g. wind direction and speed, cloud cover and form, humidity, aerosols, tempera-
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ture), measuring space, measurement height, measurement orientation, the Field

of View (FOV) and calibrations (Shaw and Burke, 2003).

These challenges were taken into account because they affected the preci-

sion of spectral measurements. The experimental design minimized inaccurate

results due to poor geometry of illumination and transition conditions, the timing

of data collection (integration time), and calibration procedures to reduce spec-

tral response variance, such as using a reference standard (Spectralon) (Shepherd

and Walsh, 2002).

Diffuse reflectance spectra are prone to background noise, scattering ef-

fects, and baseline drifts even after careful experiment design. Molecular overtones

and combination bands are expansive in the NIR range for diffuse reflectance

measurements, making it arduous to do molecular attributions. Conventional

data analysis techniques in spectroscopy are univariate and hence are not satisfac-

tory for multivariate DRS data. ML models were used to solve the limitations of

classical data analysis approaches.

2.5 Utility of PCA Scores as Inputs to ML Models

The development of spectroscopic techniques in food safety have necessitated

the use of chemometrics and ML techniques in the analysis to help deal with

the large amount of data generated in the measurement processes. When the

input features are non-linear, more than the predictors, or large, ML tech-

niques are better suited for analysis than statistical methods such as logistic

regression and discriminant analysis (Rodriguez-Galiano et al., 2015). The

vast number of complex non-linear correlations between features can be identi-
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fied, modeled, and handled using ML. However, more input features in most

cases result in complex models and more model parameters thus requiring

more computational resources (Rodriguez-Galiano et al., 2015). Additionally,

a significant number of spectral features are duplicated and highly correlated,

lowering prediction accuracy. This challenge necessitates the employment of fea-

ture selection or dimensionality reduction techniques such as PCA (Wold et al.,

1987), which allow for the elimination of superfluous data. However, even after

feature selection, more often than not, the resultant data is not orthogonal, im-

plying that the training period will be lengthy, an issue can be resolved using PCA.

PCA allows for data reduction and orthogonalization by transforming

features into a new set of uncorrelated features known as Principal Components

(PC)s. This is advantageous when handling multidimensional data such as highly

redundant and correlated spectral data (Priyadarshini et al., 2019). Direct model-

ing of such data can be challenging because of over-fitting and high computational

resources requirements (Howley et al., 2005).

Using PCs scores as input to the model rather than the original vari-

ables have been found to reduce the number of features and accelerate the

training period. Kachrimanis et al. (2010) reduced the dimensionality of the in-

put space with PCA before modeling a feed-forward back-propagation ANN for

quantitative analysis of powder mixtures. He et al. (2007) classified various tea

samples by integrating wavelet extraction for feature extraction and PCA for vi-

sualizing the extracted features. The first eight PCs were used as the inputs to a

back-propagation ANN with two hundred samples of eight tea varieties to build

the model. The built model was then used to predict 40 new samples with an ac-
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curacy of 100%. Additionally, Li and He (2006) used the first nine PCs (85.3% of

the data variance) to classify three peach assortments using a back-propagation

ANN. The model was used to predict 15 unknown samples with 100% accuracy.

Sigurdsson et al. (2004) used ANN for skin cancer diagnosis using Ra-

man data reduced using singular value decomposition (SVD) PCA, which

simultaneously extracts the PCs Wu et al. (1997), but they did not provide any

comparisons of models using raw data. Additionally, Zhou et al. (2015) developed

three ANNs models for predicting Chlorophyll-a concentrations using three differ-

ent datasets. Model built on PCs data were found to have the highest accuracy

(R2 = 0.918 and RMSE = 5.88) when compared to models built on raw data and

raw data combined with water quality parameters. Wu and Massart (1996) used

back-error propagation ANN to classify nine NIR spectra data sets of drugs to

explore the outcome of various data pretreatment methods on the ANN input se-

lection. They selected univariate features (Fisher transformation) and then used

PCA to orthogonalize the selected features. This approach reduced the struc-

tural complexity of the ANN models. The above-cited studies were limited to the

ANN model for prediction. However, the ”no free lunch theorem” (Wolpert and

Macready, 1997) connotes that there is no single best model. The performance of

a model is determined by the problem at hand (Caruana and Niculescu-Mizil,

2006). Thus, it makes sense to use a variety of models to seek one that matches

the information better (Ho and Pepyne, 2002).

Few studies have been undertaken on the effectiveness of using PCA scores as

inputs to various machine learning algorithms. The impact of eigenvector decom-

position (EVD) PCA, which extracts the PCs simultaneously (Wu et al., 1997), on
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three ML methods was investigated by Popeĺınskỳ (2000). In this study, the PCs

were combined with the raw data, and the error rate was reduced but the used

datasets used were not high dimensional. Howley et al. (2005) used non-iterative

partial least squares (NIPALS) PCA, which calculates PCs factors sequentially

(Wu et al., 1997), to enhance the classification accuracy of several ML methods

that utilized Raman spectra. They reported improved models performance and

low error rates. Li et al. (2016) investigated the spectral characteristics of blood

serum from four groups using surface-enhanced Raman spectroscopy. The dimen-

sionality of the spectral data was reduced using PCA, and the PCA scores were

used as inputs to develop SVM, linear discriminant analysis, classification, and

regression tree with accuracies of 96.5%, 88.8%, and 87.1% respectively.

2.6 Application of Machine Learning in Spectroscopy

For quantitative spectroscopic methods, a variety of analytical techniques have

been developed. Despite numerous benefits, there are some drawbacks. These

include broad, highly overlapping bands that are typical of multi-component

mixtures such as biological samples. Such issues present unique challenges for

exploratory research and the study of unknown structures. In this case, chemo-

metrics and closely related methods such as ML may provide a solution. ML can

help discover new possibilities in data-intensive fields like spectroscopy, where it

can identify patterns or trends in data that the traditional data analysis process

cannot. ML enables the algorithm to learn from training data and validate on the

test set without having to be explicitly programmed (Liakos et al., 2018).

Román et al. (2011) predicted more than 70% of wine fermentation prob-

lems and reported that ANN could detect complex nonlinear patterns between
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inputs and outputs after training with known data. Cheng et al. (2010) used

FT-MIR-DRS coupled with ML to classify Chinese medicinal products in cancer

diagnosis using back-propagation ANN and SVM. Bai et al. (2011) also utilized

Fourier transform spectroscopy and identified normal gastric tissues, early cancer,

and advanced cancer using clustering of C-means and wavelets. Also, Ghosh et al.

(2019) reported that deep neural networks could learn spectra to 97% accuracy

and peak positions to an accuracy of 0.19 eV. The group also demonstrated that

ANN could infer the spectra directly from the molecular structure and do not re-

quire auxiliary input. Extended-wavelength DRS was used by Dahlstrand et al.

(2019) to differentiate and identify different skin and tissue types in pigs with a

total accuracy of 98.2%. SVM was able to classify the skin type and tissue. Speci-

ficity and sensitivity for all skin and tissue forms ranged from 96.4% to 100.0%.

The importance of multivariate calibration methods in spectroscopy is

undeniable based on the literature review. These studies have shown that ma-

chine learning can be used to classify and predict spectral data, which justifies its

importance and applicability in this study. In conclusion, despite accurate and re-

liable results, conventional methods require time-consuming sample preparation

and the use of chemical reagents to prepare standard solutions. According to

Holmes et al. (2012), there is a high risk of sample swapping or mislabeling in the

laboratory setting because once the sample has been processed for analysis with

conventional techniques, it can be indistinguishable by eye. Confusion like this

can result in the destruction of large amounts of samples or pesticide-polluted

samples reaching the consumer.

According to Gritti et al. (2010) and Teye et al. (2013), conventional
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methods are time-consuming, expensive, and require competent staff and a spe-

cialized laboratory for product monitoring. These difficulties are the driving force

behind this research. We used a simple, fast, and dependable method to deter-

mine residues in fruits and vegetables using spectroscopy. The analysis was based

on the decomposition of NIR spectra acquired in diffuse reflectance geometry

from treated and control samples using machine learning tools.

The vast majority of the reviewed literature uses PLSR modeling, which

is best suited for linear data analysis. PLSR does not include feature selection,

which is used to screen for the best subset of features or to optimize models. Due

to the redundant latent variables inherent in a given dataset, such models are

prone to over-fitting and may likely model the noise. This harms the predictive

capacity of models with future data sets. This study made use of more robust

models, such as ANN, SVM, and RF, which can easily model non-linear data.

When dealing with multidimensional data, the calculation of the regres-

sion coefficients in convectional statistical analysis methods has the advantage

of partially reflecting the relationship between features. For data containing ir-

relevant and redundant features, feature selection is critical; in this case, the

possibility of model optimization and improved regression accuracy is increased.

As a result of the multi-collinearity of DRS data, as well as the issue of irrelevant

and redundant information, PCA was used to remove obsolete and redundant

features from the original dataset to overcome collinearity and aid in the develop-

ment of more reliable machine learning models.

Many studies have found that using average spectra rather than the full
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spectrum standard results in more accurate calibration models. In conventional

spectroscopy, a mean value representing a homogeneous sample and matched to a

single sample spectrum is commonly used. This method is limited because it does

not account for sample variation in the calibration model by including all spectra

from a variety of test samples. In contrast to univariate approaches, this study

presents the use of the entire wavelength from the Region of Interest (ROI) to

create more robust prediction models. Furthermore, to account for sample varia-

tions, the entire data from the samples were used without averaging. Instead of

averaging the redundant information, PCA was used to transform the original

DRS data into a new axis, and the PC that explained more than 98 percent of

the cumulative variation in the data was extracted and used as input in the devel-

opment of the ANN, RF and SVM ML models. The novelty of DRS combined

with ML is the method’s direct, quick, low-cost sample preparation, and field

deployability to assess or screen for pesticide residues.
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CHAPTER THREE

THEORETICAL BACKGROUND

3.1 Overview

This chapter discusses the theoretical aspects of this work that are necessary for a

thorough understanding of the subsequent chapters. The fundamental interactions

between light and the plant cuticle are explained first, followed by the theory of

the NIR region in molecular vibrations. Finally, data analysis is discussed within

the context of multivariate machine learning models.

3.2 Propagation of Light Through Plant Cuticle

The cuticle is the outermost, continuous, heterogeneous, and spatially distributed

composite membrane covering cells of leaves, fruits, petals, and non-lignified

stems (Figure 3.1). The matrix comprises a long-chain and an insoluble polymer

formed by hydroxylated and epoxy-hydroxyl groups called cutin. Other cuticle

components are mixtures of homologous series of long-chain aliphatics, such as

alkanes, alcohols, aldehydes, fatty acids, esters, and cyclic compounds (Heredia-

Guerrero et al., 2014).

The plant cuticle is a dynamic system that interacts with light and pesti-

cides particles and, hence, its properties change. The spectral variability caused

by these changes can be characterized using DRS analysis and form the backbone

of this study. The measurement of the treated fruit cuticle’s chemical information

for this study is based on diffuse reflectance. When this cuticle light interaction

occurs, 4% of the incident light is scattered by the cuticle as reflected light. The
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remaining 96% penetrates the cuticle into the cellular components where it is

scattered or absorbed. While absorption is due to interactions with chemical

components, scattering is due to sudden changes in the refractive index due to

irregular cuticle surface or cell wall interfaces (Fernández et al., 2016).

Figure 3.1: This illustration depicts the structure of the plant cuticle between
two epidermal cells. The top layer is made of cutin and epicuticular waxes,
while the layer below is mainly composed of polysaccharides from the cell wall.
The phenolics and intra-cuticular waxes are spread evenly through the cuticle
(source: Heredia-Guerrero et al. (2014)).

Due to their sophisticated structure, fruits and vegetable cuticles are optically

dense, making it hard for light to penetrate. Hence, only a small distance is

penetrated by incident radiation before it almost exits immediately near the entry

point. However, some light can penetrate a bit (a few millimeters) into the tissue,

where its wavelength is altered through the cuticle matrix’s interactions. Some
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of this light manages to find its way and exits through the cuticle. This light

contains useful chemical information and is known as diffuse reflectance (Abbott,

1999).

3.3 Diffuse Reflectance Spectroscopy

The radiation reflected from a fruit cuticle is a superposition of two components,

Specular and diffuse reflection. Specular reflections, where the incident angle

is equal to the reflected angle, occurs at the fruit surface, and hence Fresnel

equations can be applied. For a simple case of perpendicular incident radiation,

the specular reflectivity is described by equation 3.1.

Sf = (n − 1)2 + k2
o

(n + 1)2 + k2
0 (3.1)

where Sf is the specular reflectance, n is the refractive index of the cuticle and

ko = n2k2 is the absorption index defined through the Lambert law (equation 3.2).

I = Io exp [−4πkod
λ

] = Io exp[−θd] (3.2)

d is the distance traversed in the sample where Io radiation is reduced to I, and

θ = −4πko/λ is the absorption coefficient.

Diffuse reflection comes from the radiation that penetrates the cuticle

and is scattered or absorbed by the cuticle matrix. A small portion of this radia-

tion finds its way to the surface and emerges as diffuse reflection. This radiation

contains variable chemical information because it interacts with sample particles

and is attenuated along its path (Stenberg et al., 2010). Equation 3.2 can describe

the diffuse component where it is termed as the mean absorbance coefficient of
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the sample, and d is the cuticle thickness penetrated. Fruit samples reflect a

composite of specular and diffuse reflectance in unknown proportions, and ei-

ther can be used to determine and examine the absorbance properties of a medium.

From Equation 3.1, specular reflectivity is directly proportional to the

absorption. However, as the radiation penetrates the sample, it gets exponen-

tially attenuated (Equation 3.2). The increased absorbance of the sample lowers

the scattering, consequently lowering the diffuse component spectral structure de-

tails. Since specular and diffuse reflection always superimposes, depending on the

type of spectroscopic analysis, one component must be minimized. The diffuse

component was the main focus of this investigation and the specular component

was reduced by setting the collection optics at a 45°angle.

3.4 NIR Spectroscopy

NIR is a non-destructive technology that provides a responsive, reliable, and accu-

rate scheme for evaluation of chemical properties of food samples (Ozaki et al.,

2006). The technique has matured since Friedrich Wilhelm Herschel discovered it

in the year 1800 (Davies, 2000) and has been implemented in fields such as clini-

cal, food, materials, and pharmaceuticals.

When photons with a frequency equal to molecular vibration frequency

interact with a molecule, they absorb the radiation and get excited to a higher en-

ergy level causing a peak to appear on the NIR spectrum. The atoms may shift

in various ways; moving closer or apart from each other, or in a bending motion,

or wag symmetrical or anti-symmetrical in and out from the central atom (Zude,

2008). Since each vibrational mode corresponds to a bond within the molecule,
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its structure can be determined. An essential part of NIR spectroscopy is that a

molecule must experience a dipole moment change. If this is not present, the

molecule is not NIR active, and thus an NIR spectrum cannot be collected.

Spectrum vibrations are the product of transitions between quantified vi-

brational energy states. These motions may vary from a diatomic molecule’s

basic coupled motion to the complicated motion of a poly-functional molecule.

Molecules of N atoms have 3N degrees of freedom, three of which reflect transla-

tional motion in mutually perpendicular directions, i.e., x−, y− and z− axes, and

the other three reflect the rotational motion of x−, y− and z− axes. The remain-

ing 3N − 6 degree of freedom provides the number of potential vibrational modes.

Each mode involves the harmonic displacement of atoms from their equilibrium

points; for each mode, i, all atoms vibrate with a unique frequency, vi. The poten-

tial energy, V(r) of a harmonic oscillator as a function of the distance between

atoms, r, is shown as the dashed line in Figure 3.2.
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Figure 3.2: Potential energy of a diatomic molecule as a result of atomic displace-
ment during vibration for an anharmonic oscillator (solid line) and anharmonic
oscillator (dashed line) (source: Chalmers and Griffiths (2002)).

The motion of atoms is described using the normal coordinate (Φ). During a vi-

bration provided that ∂µ/∂Φ � 0, a molecule gets excited and changes its dipole

moment u. For symmetrical molecules, the degeneracy of vibrations can occur,

such that more than one mode has a certain vibrational frequency, while others

may be completely forbidden. As a consequence of this degeneracy, the number of

fundamental absorption bands that can be detected is sometimes less than 3N − 6.

Rotation of a linear molecule and its bond axis results in the loss of one degree of

freedom since there is no displacement of atoms. Thus, a linear molecule has

3N − 5 modes.
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When atoms vibrate harmonically, i.e., in compliance with Hooke’s law,

they vibrate with the least amount of energy allowed by quantum mechanics.

For a diatomic molecule, the vibrational frequency ν can be calculated (equa-

tion 3.3) (Afara, 2012), Where κ is the force constant, ν is the vibrational

frequency, m1 m2 are vibrating atoms masses.

ν =
1

2π

�
k
(m1 + m2)
(m1 × m2) (3.3)

According to Blanco and Villarroya (2002), the harmonic oscillator model can

only describe molecular vibrations when there is the assumption that the different

energy levels Evib are equally spaced and satisfies equation 3.4.

Evib = (ν + 1
2 )

h
2π

�
k
µ

(3.4)

ν is the vibrational quantum number, h is the Planck constant, κ is the force

constant, and µ is the reduced mass of the bonding atoms. Only those transitions

between consecutive energy levels (Δv = ±1) that cause a change in dipole moment

are possible. Thus, Evib can be rearranged as follow (equation 3.5): where ν is the

fundamental vibrational frequency of the bond that yields an absorption band.

ΔEvib = ΔErad = hν (3.5)

Figure 3.2, the shift in the potential energy as a function of the atoms’ displacement

from their equilibrium positions is shown as a solid line. This curve means that

equation 3.3 is valid only for low vibrational quantum values and is not correct for

high vi values. The harmonic oscillator model accounts for the Coulombic forces,

which are attractive at large distances but repulsive at short inter-atomic distances
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(Blanco and Villarroya, 2002). Since most molecules do not have equally spaced

energy levels, their behavior can be closely modeled by the anharmonic oscillator.

In fact, a potential anharmonic (Morse-type) function must be used to characterize

Viu (solid line in Figure 3.2). By approximating equation 3.6, potential energy

can be calculated where the dimensionless anharmonicity constant is xi.

Viu = hvi(ui +
1
2 ) + hvi xi(ui +

1
2 )

2 (3.6)

No transformation of vi by more than ±1 will be allowed if all vibration modes are

purely harmonic. The anharmonicity is used to allow bands affected by | �ui |> 1

to be permitted.

Anharmonicity causes overtones (first and second overtones), which are

integral multiples of the fundamental frequencies (Afara, 2012), to be generated

between 780-2000 nm, and combination bands which occur between 1900-2500

nm (Blanco and Villarroya, 2002). These frequencies are unique to NIR and are

far less probable than fundamental transitions. With hydrogen being the lightest

atom, it exhibits the largest vibrations and deviations from harmonic behavior.

The main bands typically observed in the NIR region result from weak, broad

overtones and combination bands of fundamental vibrations associated with C–H,

N–H, O–H, and, S–H functional groups (Tripathi and Mishra, 2009).

Only a few atoms are forcibly displaced in many vibrational modes, and

the remaining molecules are almost stationary. The frequency of these modes is

unique to a function group where the motion is centered, and the nature of the

other atoms in the molecule is minimally affected. Therefore, spectral character-

istics in a specific spectral area often indicate a particular functional chemical

34



group in the molecule.

Concerning the principles discussed above, it is clear that residues on

fruits can be determined using the chemical information-rich diffuse spectroscopy

in the NIR region. Thus, absorption spectra with functional groups’ information

in fruits and vegetable samples can be obtained using a spectrometer. The NIR

spectrum of biological materials contains information primarily from overtones

and combinations associated with C–H, N–H, O–H functional groups. Figure

3.3 summarizes the major functional groups from the first, second, and third over-

tone regions and the combination band region in the NIR region. The position of

these bands is also affected by the chemical environment, such as temperature.

The NIR spectrum has very few functional groups; however, its interpre-

tation is not straightforward because the bands are broad and they overlap.

Water prevalence (>80%) in raw vegetable samples such as fruit dominates the

NIR absorption spectrum, affecting the evaluation of other components. ML

methods are thus required to extract useful information from the spectrum.

3.5 Utility of Machine Learning in DRS Analysis

In spectroscopy, conventional data interpretation techniques rely on specific peaks

that correspond to specific elements or molecules (Villmann et al., 2008). This en-

tails comparing the differences in spectra using existing spectral libraries. This

approach is most effective with data that has well-defined peaks. However, the

DRS spectra of fruits samples are broad and overlapping in nature, limiting the

use of these univariate data analysis methods.
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As previously noted, water present in the cellular matrix dominates fruit

spectra, making the spectrum complicated due to tissue heterogeneity, instru-

ment noise, scattering effects, temperature, and other sources of noise (Nicoläı

et al., 2008). This work obtained such data sets, which were then processed us-

ing machine learning. Exploratory and multivariate calibration of data obtained

from treated and control fruit samples were performed using supervised and unsu-

pervised ML algorithms. Before performing multivariate data analysis, various

spectral pre-processing techniques were used to ensure a ’clean’ dataset.
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Figure 3.3: NIR spectra bands assignment chart (source: Metrohm (2021)).
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3.6 Pre-processing Spectra Using the Multiplicative Scat-

ter Correction

Pre-processing of DRS spectral data was discovered to be critical for producing

a clean dataset. It is now widely accepted that quantitative and classification

models that utilize pre-processed spectra always outperform models that utilize

unprocessed spectra. Preprocessing data aims to eliminate superfluous spectral

variations in order to model only the relevant features (Wu et al., 2010). The fol-

lowing section discusses briefly the primary processing techniques used in this

study.

For each sample, MSC corrects for light dispersion or path length change, cal-

culated relative to the ideal sample. Theoretically, this measurement should be

made on a portion of the spectrum that does not contain any chemical informa-

tion, i.e., only influenced by light dispersion. However, spectrum areas that do

not include any chemical details often have a spectral background where Signal

to Noise Ratio (SNR) may be weak. Frequently, the spectrum is used in prac-

tice. This can be done as long as the same degree of dispersion exists as the ideal

chemical difference between samples. For example, we can use the calibration set

average as an approximation of the perfect sample. If the offset correction is done

first, MSC will perform best (Sila et al., 2016). For each of the samples:

δi = y + aδ̄ j + ε (3.7)

Where δi is the NIR spectrum of the sample, and δ̄ j is the mean spectrum. For each

sample a and y are estimated by ordinary least-squares regression of spectrum δi

versus δ̄ j spectrum over the available wavelengths. Each values δi j of the corrected
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spectrum δi (MSC) is calculated as

δi j(msc) = δi j − y

a
; j = 1, 2, 3, 4, . . . , κ (3.8)

3.7 Supervised Versus Unsupervised Learning

ML models either use supervised or unsupervised approaches to generate insights

from data. The unsupervised model is data-driven and does not need prior

training (Seeger, 2000). Unsupervised models are mainly used for exploratory

analysis, cluster detection, pattern detection, outliers detection, and qualitative

research. On the other hand, for supervised models, the data is split into two sets:

one for training and another for validation. The model is first subjected to the

training data set with known labels. Afterward, the model is then subjected to

the validation/testing data set, which it had not yet seen (Hastie et al., 2009). Its

performance is gauged using selected figures of merit to avoid under or overtraining

of the models.

3.7.1 Unsupervised Learning Using the Principal Compo-

nent Analysis

PCA is a statistical approach for reducing a dataset’s dimension and collinearity

while maintaining as much variability as possible (Jolliffe, 2005; Kjeldahl and Bro,

2010). The general form of a PCA is:

X = TPT + E (3.9)

where the data matrix X ∈ RN×K is approximated by the product of two matrices;

scores (T ∈ RN×A) and loadings (P ∈ RK×A). The matrix E ∈ RN×K is regarded to
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as noise.

3.7.1.1 Number of PCA Components

The variances of the PCA scores are given as a per cent of the total variance

(Jolliffe, 2002). The optimal number of PCs can be determined using the cumulative

variances of the PCA scores. The Scree plot exhibits a sharp decline after a few PCs

since the initial PCs account for the majority of the variance. PCA components

with low variances reflect data noise. As a general guideline, the number of PCA

components evaluated should account for at least 80%, if not 90%, of the overall

variance (Worley et al., 2013; Worley and Powers, 2015).

3.7.1.2 Outliers and Data Distribution

PCA works best for normally distributed data and is not heavily skewed. PCs are

biased to the directions of maximum variance which, is increased by outliers in

an otherwise uninformative direction. It is common practice to eliminate outlier

observations to guarantee that only important information is extracted. To detect

outliers in a multivariate dataset, the sample mean vector x̄ ∈ RK and the sample

variance-covariance matrix S ∈ RK×K of the matrix X ∈ RN×K are computed:

x̄ = N−1
N�

n=1
xn (3.10)

S = (N − 1)−1XTX (3.11)

where xn is the n-th observation row vector in X. The set of squared Mahalanobis

distances may then be computed as follows (De Maesschalck et al., 2000):

d2
n = (xn − x̄)S−1(xn − x̄)T ∀n ∈ 1N (3.12)
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Each squared distance is compared to a critical value from a T2-distribution.

Because the covariance matrix is highly rank-deficient and consequently non-

invertible (i.e. N � K), the above technique fails in practice. The data matrix

can be approximated using PCA (i.e. X ≈ TPT), to ensure a stable inversion of

the covariance matrix, where the number of PCs is smaller than the rank of the

data matrix. Squared Mahalanobis distances can be calculated from PCA scores

using the orthonormality condition of PCA loadings:

d2
n = tn

�
TTT
N − 1

�−1
tT

n ∀n ∈ 1N (3.13)

where tn is the n-th row of the scores matrix T. Because the matrix TTT is diagonal,

it is inverted and calculation of each d2
n is greatly simplified. Mahalanobis distances

calculated with PCA scores are close approximations of their true values in the

original high-dimensional space (De Maesschalck et al., 2000), and can be used to

discover outliers. Scatter plots of PCA scores or diagnostics plots of Mahalanobis

distances can be used to visually identify outliers (Hotelling, 1931; Worley et al.,

2013).

3.7.2 Supervised Machine Learning Models

3.7.2.1 Artificial Neural Networks

ANN (Bishop et al., 1995; Ripley, 2007) replicate the way the human brains work.

The prediction result is determined by hidden layers, which are linear combinations

of the original predictors. However, this linear combination is typically adjusted

with a nonlinear function β(·), like the sigmoidal (Kuhn et al., 2013):

hη(X) = β(βoκ +
P�

i=1
xαβαη), where β(u) = 1

1 + e−u (3.14)
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The influence of the αth predictor on the ηth hidden unit is represented by the

coefficient βoκ. An ANN model must use hidden layers to model the outcome.

However, no rule specifies how to configure these hidden layers (Mirjalili et al.,

2014). Following the determination of the number of hidden units, each one must

be related to the outcome in the following manner:

f (X) = γo +
µ�
η=1
γηhη (3.15)

There are a total of µ(ψ + 1) + µ + 1 parameters to estimate for a simple model

with ψ predictors, which swiftly grows as ψ increases. Typically, the parameters

are set to random values and subsequently solved using specialized methods. The

back-propagation algorithm (Rumelhart et al., 1985) is an exceptionally way for

determining optimal parameters using derivatives. The solution, however, is not a

global solution; the resulting collection of parameters is no better than any other

set. Furthermore, due to a large number of coefficients, ANN has a propensity to

over-fit (Atkinson and Tatnall, 1997).

Iterative methods that can prematurely halt Wang et al. (1994) the opti-

mization when some estimate of the error rate begins to increase (early stopping)

are employed to address this issue. The error rate can be overly optimistic, and

further partition of the training set is precarious. Because the measured error

rate is subject to ambiguity, we cannot tell if it is rising. Another strategy for

reducing over-fitting is the employment of weight decay, where high-value coeffi-

cients are penalized to considerable tolerance on model errors. The optimization
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process attempts to minimize the sum of the squared errors for λ:

n�
i=1

(yi − fi(X))2 + λ
H�
η=1

P�
α=0
+λ

H�
η=0
γ2
η (3.16)

As the regularization parameter increases, the fitted model becomes smoother and

less prone to over-fit. The regularization parameter and the number of hidden

units must be specified to tune the model. Between 0 and 0.1 is a reasonable

λ value. Furthermore, the coefficients must be on the same scale; hence, the

predictors must be centered and scaled before modeling.

3.7.2.2 Random Forest

As its name implies, the RF comprises many de-correlated decision-making trees

that function as a set. In this tree, every non-leaf node is a decision-maker. These

nodes are referred to as decision nodes that conduct a common test to deter-

mine where to go next, depending on the result. Either it goes to this node’s left

branch or right branch. The process continues until a leaf node has been reached.

For classification purposes, each leaf node is a class (Hssina et al., 2014). To con-

struct an optimal tree, the Gini index is used as the cost function to assess the

splits in the dataset by minimizing its index, as shown in equation 3.17. The split

in the dataset involves one input attribute and one value for that attribute and

can be used to divide training patterns into two groups of rows.

Gini (t) = 1 −
c−1�
i=0

[ p (i | t ) ]2 (3.17)

p is a probability, t is the dataset, and c is the number of classes in the dataset.

A Gini score indicates how well a split is done. A perfect separation results in a
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Gini score of 0, whereas the worst-case split results in a score of 1. The Gini score

is calculated from every row and splits the data according to the binary tree. The

structure of a decision tree is shown in Figure 3.4

Figure 3.4: A decision tree showing the internal nodes and leaf nodes
(source: Rokach and Maimon (2005)).

A decision tree is a predictor, h : X −→ Y, that predicts the label associated with

an instance x by traveling from a root node of a tree to a leaf. The focus on the

binary classification setting, namely , Y = 0, 1. The successor child is chosen based

on splitting the input space at each node on the root-to-leaf path. Usually, the

splitting is based on one of the features of x or a predefined set of splitting rules.

A leaf contains a specific label. In this study, RF was used for regression.

3.7.2.3 Support Vector Machines

SVM is an algorithm that can differentiate between various groups using hyper-

planes to maximize the gap between the classes for classification or regression.
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Discrimination can be created for two or more data classes by an ideal identifying

a hyperplane or a decision boundary that divides all data classes. The hyperplane

maximizes the margin or space between the boundary and the points nearest to

the decision line (also called support vectors). Support vectors are data points

nearest to the hyperplane (Varmuza and Filzmoser, 2009). Support vectors can

be described as equation 3.18.

f x − k = 0 (3.18)

This gap is referred to as the margin and can be seen in Figure 3.5. The margin

is the distance of 3.19 and 3.20 for two perpendicular hyperplanes.

f x − k = −1 (3.19)

f x − k = 1 (3.20)

And is from 2/| | f | |. Minimizing | | f | | leads to maximizing the margin as shown in

equation 3.21. Ci is either -1 or 1, depending on the class label. The SVM model

is illustrated on Figure 3.5.

ci( f xi) ≤ 1 (3.21)
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Figure 3.5: The SVM model: the hyperplane serves to maximize the margin.
The striped lines are support vectors (source: Papadonikolakis and Bouganis
(2012)).

Since there are hundreds or thousands of columns in spectral data, the information

can be transformed efficiently into a higher-dimensional space by adding a correct

kernel function. Basic segregation can be achieved in this high-dimensional space.

Because of the dual representation, the exact transformation is performed using

kernel functions such as Gaussian, linear, polynomial, radial kernels.

3.8 Multi Target Model Development

In supervised learning, Single-Target Model (STM) predicts the value of a single

response. However, most real-world data has more than one target response. This

problem can be solved by predicting these multiple outputs concurrently and is

known as Multi-Target Regression (MTR). MTR is a difficult task in which the

difficulties stem from capturing and exploiting potential correlations among tar-

get responses during training, at the expense of increasing the computational
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complexity of model training (Melki et al., 2017).

Two general methods have been proposed for solving MTR tasks. The

first method is called the local or problem transformation method where the prob-

lem is transformed into multiple STM problems where each regression model is

solved separately. The second is known as the global or algorithm adaptation

methods. Global methods use existing STM to predict all the target responses at

the same time (Borchani et al., 2015).

In this study, local problem transformation was adopted because of its

simplicity in implementation. Consequentially, two machine learning models were

constructed, each predicting a STM response (Mancozeb and THO concentra-

tions). Prediction for validation or new samples was obtained using each separate

model and concatenating their results. Conversely, when using global methods for

the same two responses, only one model would need to be constructed, which

would output all predictions (Melki et al., 2017).

3.9 Figures of Merit in Model performance Evaluation

The predictive performance of the built machine learning models was assessed using

statistical parameters. The coefficient of multiple determination (R2) calculates

the proportion of the total variance accounted for by the model, and the errors are

due to the remaining variance. The optimum model was based on the calculation

of Root Mean Square Error (RMSE). This value is a measure of how well the

model fits the known and the predicted value. Ci is the actual value, while Ĉi is
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the predicted value and n number of validation samples.

RMSE =

�
Σn

i=1(Ci − Ĉi)2
n

(3.22)

3.9.1 Cross-validation

External cross-validation is the partition of N observations (i.e. X and Y) into a

training set (Xt and Yt) with Nt observations and a validation set (Xv and Yv) with

Nv observations. The training data set is used independently for model generation,

while the validation dataset is for testing. Due to the limited observations in

most studies, external cross-validation is uncommon, and training uses all the

observations. Internal cross-validation, where N observations are partitioned into

G groups, is usually used. Each group is excluded in turn during training. Its

response is approximated using the model trained on the remaining data.

3.9.2 Evaluation of Limits of Detection and Limits of

Quantification

The LOD and the Limit of Quantification (LOQ) were evaluated to assess the least

concentration of residues that could be detected and quantified by the proposed

method. The LOD refers to the minimum analyte concentration that is observable

with any given analytical technique and can be assumed to be present with any

degree of certainty (UhrovÄŊÃŋk, 2014). In comparison, LOQ corresponds to the

minimal concentration of analytes that can be quantified with acceptable reliability.

The two metrics are easily extracted from uni-variate calibration meth-

ods. However, DRS spectra are highly multivariate, and the spectra are highly
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overlapped and redundant. Hence, uni-variate approaches, which do not ade-

quately consider the different spectral responses for multivariate data, cannot be

used. However, from the models calibration curves, if the response is linearly re-

lated to the predicted values, and the model can be expressed as a linear equation

y = a + bc, the LOD and LOQ can be calculated from equations 3.23 and 3.24

respectively (Shrivastava et al., 2011).

LOD =
3σ
S

(3.23)

LOQ =
10σ

S
(3.24)

where σ is the standard deviation of the response which can be estimated by the

standard deviation the y-intercepts of the regression lines and S is the slope of

the calibration curve.

49



CHAPTER FOUR

MATERIALS AND METHODS

4.1 Overview

This chapter discusses the methodology used. The operating conditions for the NIR

system used in the analysis are presented. Additionally, the sample preparation

procedure is discussed, as well as the spectral pre-processing techniques and the

machine learning models used.

4.2 Samples and Pesticides used

The tree tomatoes (Cyphomandra betacea) is a vital fruit of the family Solanaceae

(Tomato family) (Thakur et al., 1996). Botanically, the tree tomato is a fruit

(Harlan, 1928). Nevertheless, it can be cooked as vegetables making it an essen-

tial ingredient in the human diet that provides important nutrients (Klunklin and

Savage, 2017). The tree tomato was chosen as case study because it acts as both

a vegetable and a fruit. The fruits are low in fat, calories, and cholesterol. Addi-

tionally, they are rich in vitamins A and C, lycopene, β-carotene (Mangels et al.,

1993) and other antioxidants (Davies et al., 1981). The tree tomato is often used

for food directly, either as a raw or cooked vegetable, making it a perfect case

study. The fruits were harvested in May 2020 from an organic orchard in Kikuyu

(Kenya) and immediately packed in cartons and transported within an hour to

the laboratory for analysis.

The two pesticides used in this study were zinc; manganese(2+); N-[2-

(sulfidocarbothioylamino)ethyl] carbamodithioate (mancozeb) and N,N-
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dimethyltrithian-5-amine;oxalic acid (THO). The chemicals were manufactured in

2020 with a shelf life of two years. Their metadata are as shown in Table 4.1.

These two pesticides were chosen because they are commonly used by farmers in

Kenya and due to their availability.

The pesticides’ compatibility was determined by measuring a small amount of wa-

ter in a glass jar. The pesticides were then added to the water and vigorously

agitated for one minute before allowing the solution to stand for fifteen minutes

before re-stirring and recording the results. The solutions combined well, forming

a smooth mixture with no separation clumps or grainy appearance, demonstrating

that the two pesticides can be mixed (Montana State University, 2020).

Table 4.1: Metadata on the pesticides used in this study

Formulation Category Active Ingredients MRL
Wettable granules Fungicide Mancozeb 640g/Kg 0.3 ppm

Wettable powder Insecticide THO 500g/Kg 0.5 ppm

Pesticide exposure causes cephalea, dizziness, vomiting, skin irritation, and long-

term health consequences (Loha et al., 2018). Poisoning has been documented

as a result of a lack of protective measures when handling pesticides (Dasgupta

et al., 2007). To this end, protective clothing such as gloves and face masks were

worn during chemicals handling. Additionally, the experiments were conducted in

a well-ventilated room to avoid the risk of inhalation. Personal hygiene practices

such as handwashing were followed (Dasgupta et al., 2007).

Due to the empirical nature of residues analysis, it is necessary to estab-

lish sample-specific calibrations for practical implementation. The comparative
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nature of the method also necessitates the quantitative evaluation of treated and

control samples.

4.2.1 Samples Preparations

4.2.1.1 Field Samples Preparations and Spectral Measurements

In an organic orchard, three mature tree tomatoes plants bearing ripe fruits were

identified and labeled as A, B, and C, respectively. The trees were spaced five

meters apart to avoid unintentional pesticide contamination during spraying.

Tree A was set as the control and was not sprayed with any pesticides. Trees B

and C were sprayed with a mixture of Mancozeb and THO in the ratios recom-

mended by the manufacturer of 2.5g/liter for Mancozeb and 0.75g/liter for THO

(Greenlife, 2020; Syngenta, 2020). Adequate coverage was ensured on the fruits

and foliage but excessive runoff was avoided during spraying. The fruits were

then allowed to dry completely for one hour.

The fruits were then subjected to spectroscopic measurements using Flame

USB4000 spectrometer from Ocean Optics (200-1050 nm) for eleven consecutive

days with a day interval. The farm was located in Kikuyu (1°15� S, 36°40� E)

along the equator. When the zenith angle was 90 degrees, the sun was over-

head and the irradiance was at its peak. Data were collected around midday.

Calibrations with a 99.9% reflectance standard were always performed before

each measurement to account for irradiance variability. All measurements

were done in February 2020, during the dry season. Pictures are attached in

Appendix B and the optimized data collection metrics used are shown in Table 4.2.
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Table 4.2: Specifications of the Parameters Used for Data Acquisition in the
Field

Parameter Description Values
Integration times Time duration of each measurement -
Auto-optimize If active, integration time is ignored

and rather adjusted before each mea-
surement to account for illumination
conditions

Yes

Acquisition frequency Measurement repeat interval 30 s
Acquisition period Window when measurements occurred Midday
Scans to average Number of spectra averaged for each

recorded spectra
10

Boxscar width Width of an averaging window that can
be used for smoothing spectra to reduce
noise

10

Non-linearity correc-
tion

Option for correcting for non-linearity
response of the detector

Yes

Electric dark correc-
tion

Option for subtracting optically dark
detectors to remove the baseline noise
from spectra

Yes

Flame USB4000 is a miniature spectrometer from Ocean Insight with a 16-bit

A/D resolution, an enhanced electric dark-signal correction, and an extended

range from 200 nm to 1025 nm. The spectrometer required 250 mill-amperes at 5

volts to operate and was powered from the laptop USB port. The module only

weighs around 0.3 kilograms and contains no moving parts making it portable

and ruggedized for field measurements. Ocean view software was used for parame-

ter settings and data acquisition. Additional technical specifications are available

in Table 4.3.
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Table 4.3: Specification of the USB Flame 4000 S-XR1 Utilized in the field
Study

USB Flame 4000 S-XR1
Detector Linear Silicon CCD array
Weight 0.265 kg
Pixels 2048
Detector Range 200-1025 nm
Entrance Aperture Size 25µm

Dynamic range 3.4 × 106: 1300:1 single acquisition

Optical Resolution 1.69 nm FWHM
SNR At Full Signal 300:1 (at full signal)
Size 89.1 × 63.3 × 34.4 mm

Reflectance spectroscopy compares the relative level of light (in %) reflected off a

sample relative to a reference. A reflectance standard (Spectralon) was used to

set the reference level of 100%. Diffuse reflectance uses a fiber optic probe fixed

at a 45°angle, a light source and a spectrometer (Figure: 4.1).

Figure 4.1: Diffuse reflectance set up with fiber optic cable, reflectance standard
and fruit samples.
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4.2.1.2 Laboratory Samples Preparation Procedures and Spectral

Measurements

The range of the prepared calibrations samples concentrations was influenced

by the MRL set by the EU for the two pesticides. The MRL for Mancozeb

and THO is 0.3 and 0.5 ppm respectively. Randomized concentration ranges

within the MRL ranges of the two pesticides were generated using R software.

Utilizing the randomized concentrations, the respective volumes required to get

the concentrations were calculated using the serial dilution equation (4.1) where

C1 and C2 are initial and final concentration respectively, and V1 and V2 are the

initial and final volumes respectively (Diabaté et al., 2014).

C1V1 = C2V2 (4.1)

The prepared solutions were vigorously shaken as recommended by the manufac-

turer to maximize sample homogenization. Each of the samples was then labeled

as A, B, C, . . . up to H. A detailed report can be seen in Table 4.4 and pictures in

Appendix A.

Table 4.4: Prepared pesticides concentrations that were sprayed on fruits

THO Mancozeb
Label Prepared

Conc ppm
Mass of Solute in
Grams in 100ml of
Solution

Prepared
Conc ppm

Mass of Solute in
Grams in 100ml of
Solution

Stock 500 0.075 2500 0.25
A Blank 0 Blank 0
B 0.01 1.5 × 10−6 0.01 1 × 10−6

C 0.03 4.5 × 10−6 0.04 4 × 10−6

D 0.06 9 × 10−6 0.07 7 × 10−6

E 0.15 2.25 × 10−5 0.21 2.1 × 10−5

F 0.18 2.7 × 10−5 0.25 2.5 × 10−5

G 0.5 7.5 × 10−5 0.3 3 × 10−5

H 1 1.5 × 10−4 0.5 5 × 10−5
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NIRQuest 512-2.5 spectrometer from Ocean Insight was used for the laboratory-

based data acquisition. The spectrometer is small and light, weighing only 1.2 kg

with a diode array technology with no moving parts making the detector rugged

even for field applications. Sample excitation was done using DR diffuse reflectance

probe from ocean optics with a fixed 45° angle and an integrated halogen tungsten

light source. The probe also houses the collection optics. Table 4.5 lists all the

specifications of the equipment used for the laboratory-based experiment. Fiber

optics cables were used to connect the spectrometer and the probe, and data

acquisition was through the Oceanview software.

Table 4.5: Specification of NIRQuest 512-2.5 and the diffuse reflectance probe
utilized for the laboratory based study

NIRQuest 512-2.5
Detector Hamamatsu G9208-512w in GaAs

linear array
Weight 1.2 kg
Pixel Size 25µm × 250µm
Detector Range 900 − 2500 nm
Entrance Aperture Size 25µm
Standard Grating NIR1
Collimating and Focusing Mirrors Gold Plated for Enhanced NIR

Reflectivity
Optical Resolution 6.3 nm with 25µm slit
SNR At Full Signal 10000:1 at 100ms integration
Temperature Limits 10-35℃
TEC Range 30-50℃ below ambient
Filter Second Order filter

TC-DR-Probe
Collection Spot Size ≈ 12mm
Illumination Spot Size ≈ 15mm
Focal Length 40 mm (Standard)
Light Source 6 Watts Tungsten Halogen
Measurement Angle 45°

Since the diffuse reflectance collection optics had a reasonably small collection
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field (12mm) and an illumination spot size of approximately 15mm, fruit cuti-

cles were sliced into small sizes. The prepared different concentrations were then

sprayed on tree tomatoes cuticles and the pesticides were allowed to dry com-

pletely before being subjected to spectroscopic measurements.

Data acquisition for the lab-based approach was much easier due to the

use of an external tungsten halogen lamp whose intensity was almost constant. To

create more robust models, fruit samples with different ripening degrees were used.

Also, to minimize the effects of temperature on NIR measurements, the data ac-

quisition was carried out in a controlled room with an average temperature of 24℃.

The spectra were acquired in diffuse reflectance geometry mode on sev-

eral spots of the sample’s surface (see Figure 4.1). The detector used a 25 µm

entrance slit, and three diffraction grating covering the NIR ranges from 900-2500

nm. The TC-DR probe provided measurements at a fixed 45°angle to minimize

the specular component from the fruit surface. Spectralon (99% white reflective

reference standard) was used for calibration before each measurement. This was

done to ensure that the maximum reflectance of the spectralon over the entire

spectrum was more than 99% the saturation value. A computer with Ocean view

software was used to set the spectra collection parameters for the spectrometer.

The best integration time was set automatically by the software. Each spectrum

was collected as an average of ten scans on different spots for a more represen-

tative spectrum and to minimize the detector’s thermal noise (Nicoläı et al.,

2008). To smoothen the spectra, a boxcar width of five scans produced the op-

timal results. The optimized data collection metrics used are shown in ref Table 4.6.
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Table 4.6: Specifications of the Parameters Used for Data Acquisition in the
Laboratory

Parameter Description Values
Integration times Time duration of each measurement 3s
Auto-optimize If active, integration time is ignored

and rather adjusted before each mea-
surement to account for illumination
conditions

Yes

Acquisition frequency Measurement repeat interval 30 s
Scans to average Number of spectra averaged for each

recorded spectra
10

Boxscar width Width of an averaging window that can
be used for smoothing spectra to reduce
noise

5

Non-linearity correc-
tion

Option for correcting for non-linearity
response of the detector

Yes

Electric dark correc-
tion

Option for subtracting optically dark
detectors to remove the baseline noise
from spectra

Yes

4.2.1.3 Market Samples Preparation Procedures and Spectral Mea-

surements

Tree tomatoes samples (see details in Table 4.7) were purchased from five different

local markets to assess the developed models’ performance. The samples were

measured using DRS, and the resulting spectra were preprocessed in the same

manner as the calibration samples before PCA. The four PCs with the most

variation in the data were extracted and used for modeling.
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Table 4.7: Market Samples Acquired for Testing the Developed Models

Location Vendor Number of Samples

Gikomba

A 11
B 25
C 13
D 26
E 17

Limuru

F 28
G 25
H 20
I 25

Wangige

J 20
K 22
L 31
M 25

Ngara
N 9
O 10

KL P 8
Q 9

4.3 Optimization of the DRS Measurements for rapid pes-

ticide residues assessment

The field-based data acquisition approach was challenging due to uncontrollable

factors such as the varying weather conditions on different days as already dis-

cussed in chapter two section 2.4. Because the main source of excitation light

used in the field approach was from the sun, factors such as cloud cover, humidity,

temperature, wind direction, and, speed were taken into consideration. Experi-

mental issues such as measuring space, measuring height, measuring orientation,

and, the field of view was also taken into account because they affect the preci-
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sion of field DRS measurements.

To standardize the experiment, the data was collected at around the same time of

the day when the weather conditions were almost similar. Calibration with a 99%

reflectance standard was done before every measurement to account for the vary-

ing irradiance and weather conditions. The diffuse reflectance measurements were

performed on different spots of the selected fruits in a random manner and on

fruits with varying degrees of ripeness.

Several factors were taken into account when configuring the system for

the operation of the NIRQuest spectrometer out to 2500nm in a laboratory set-

ting. The integration times were kept short to enable the detector to be sensitive

up to 2500 nm. This is because the detector bandgap energy must be small, but

unfortunately, this also raises the dark detector signal’s absolute level. For maxi-

mum signal intensity, this study used fluoride fibers from Ocean Insight optics

that do not attenuate the signals above 2200 nm.

If the optical spectrometer bench is not well designed, temperature fluc-

tuations increase thermal noise and sensitivity by disrupting the silicon detector’s

photo-response. This is caused by the thermal expansion of optical components,

causing misalignment. This effect manifests itself as a bias offset in the spectra.

Another factor that can affect NIR measurements is light source fluctuation due

to aging (Acharya et al., 2014). The position of the O–H bond and, therefore,

all molecules containing this hydroxyl group are affected by variations in tem-

peratures. This effect is more pronounced in fruits and vegetables, which are

high in moisture and manifested as offset or bias. This bias can compromise the
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prediction performance of the ML model utilizing these wavelengths (Guthrie

et al., 2006). Global models were developed to compensate for this undesired ef-

fect. Global modeling is the inclusion of samples at different temperatures in the

calibration models (Peirs et al., 2003).

Before taking the measurement, another critical consideration was to al-

low the spectrometer and the light source to warm for 30 minutes (for Lab-based

experiment) to stabilize the detector response. The light source employed has a

wide spectrum output, with greater output energy in the NIR than in the other

EMS regions. The angle was fixed at 45° to collect only the diffuse component

and minimize the specular component. A constant focal length of 40 mm was

used to reduce measurement errors as the optical geometry remains fixed from

sample to sample. Besides, before every measurement, the system was calibrated

with a spectralon reflectance standard from Ocean Insight.

Utilizing the relationship in equation 4.2, the mean reflectance values (S)

were transformed to relative reflectance (R) in relation to the standard (W) and

dark measurements’ reflectance (D). The dark measurement was acquired by ei-

ther covering the entire tip of the reflectance probe or turning off the light source

(Cortés López, 2018).

R =
S − D
W − D

(4.2)

4.4 Exploratory Analysis and Modelling of DRS Measure-

ments

Machine learning algorithms are computational tools that aid in predictive model-

ing of complex data such as DRS spectral data that was obtained in this work
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(Michie et al., 1994). Multivariate ML techniques were used to overcome problems

associated with the classical analysis of spectral data. Supervised and unsuper-

vised methods were used for performing exploratory and multivariate calibration

of acquired spectral data. All data analysis and machine learning models were

developed and implemented in open-source software R version 3.6.3 (2020-02-29)

using the caret package (Kuhn, 2008).

4.4.1 Pre-Processing of DRS Spectral Measurements

DRS analytical results are multivariate. The spectra were influenced by back-

ground noise, light scattering, and temperature changes. These variations can

negatively impact the creation of the calibration model and result in partisan re-

sults. Spectral data pre-processing techniques, namely: PCA for outlier detection,

pattern recognition and features reduction, MSC for scatter correction and nor-

malization to de-noise the spectra.

Normalization removes scatter effects from the individual spectra and put all vari-

ables on the same scale. Such variables with high and low intensities assume equal

significance. Additionally, these spectral pre-processing techniques were useful in

removing outliers, reducing variability in the data, and redundant information

while retaining the most significant spectra features to be used during subse-

quent multivariate ML modeling to improve the accuracy and robustness of models.

A total of 329 spectra were collected from the field for the various days

from the treated and the control groups. The data was a first-order tensor of

N × K dimensions, where N are the rows that represent the number of sam-

ples. The columns (K) are the X variables or predictors which are the spectral
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signals from the USB4000 detector in the 350 to 900 nm range with 1 nm resolu-

tion. Using log10(1/R), the X variables were converted to apparent absorbance

to linearise the correlations (Stenberg et al., 2010). As discussed in chapter

three section 3.5, the spectrum of fruits in the NIR is highly complicated due

to the dominance of fruit moisture, tissue discrepancies, wavelength-dependent

scattering effects, instrumental noise, environmental effects (temperature and

light), and, other variability sources (Nicoläı et al., 2008). Thus, various

spectral pre-processing techniques were employed to clean data before imple-

menting the unsupervised machine learning technique PCA for qualitative analysis.

A two-degree polynomial and a seven-point window size SG were applied

to the normalized spectra to improve the SNR ratio to reduce the effects of sam-

ple physiological variability (Cortés López, 2018). Because of the light scattering

in the samples cuticle, the light propagation path was not the same before it was

captured. This manifested as scattering effects on the spectra and was corrected

by the use of MSC. The spectra were finally normalized (Bakeev, 2010) by scaling

to a maximum value of one and a minimum of zero to ensure spectral intensities

in a data tensor were directly comparable across each observation.

The data collected from the laboratory was also a first-order tensor of

N × K dimensions, where N = 126 samples are the rows. The columns (K) are

the X and Y variables. X variable or predictors are spectral signals from the

NIRQuest detector in the range of 900-2500 nm with 1 nm resolution. In con-

trast, Y variables or responses were two different columns of concentrations of

the pesticides to be discriminated against. After the X variables were converted

to apparent absorbance by using a log(1/X) transform, they were corrected for
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MSC and smoothed using a SG filter with a second-degree polynomial and a five-

point window size. The data was also normalized in a similar way to the field data.

Finally, an unsupervised eigenvector decomposition PCA was done on

both the field and lab-based data using chemospec package in R (Hanson, 2016)

to reduce dimensionality, detect outliers, visualize the clustering of the data, and,

as a data mining technique before ML multivariate analysis. Since each PC con-

sists of a score and a loading vector, PC1 has the highest explained variance,

while PC2 which is orthogonal to PC1 has the next highest possible variance and

so on for subsequent components (Kara and Dirgenali, 2007). The PCs with the

highest explained cumulative variance (99%) were extracted from the PCA results

and used as the input dataset for subsequent ML modeling to save processing

time, computer memory, and increase model accuracy.

4.4.2 Machine Learning Modeling of DRS Spectra

This section details the use of three ML models; ANN, RF, and SVM to quan-

tify residues on fruits. The inspiration for using multiple models derives from

David Wolpert’s and William Macready’s ”No Free Lunch Theorem (NFLT)” ar-

guing that no model can be said to be consistently better than the other in the

absence of any information about the prediction problem. Thus, it makes sense

to use a variety of models to seek one that matches the information better (Ho

and Pepyne, 2002).

Since the problem was a multi-target regression (MTR), the local prob-

lem transformation approach was adopted due to its simplicity in implementation.

Consequently, two separate regression models were developed for each response
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variable (Mancozeb and THO concentration). The reduced PC data (N=126,

K(X=4, Y=2)) from the identified ROI was used in this section. The PC data

was split into a training set (60 %) for the development of a calibration model

and a test set (40 %) for model performance evaluation (Soares et al., 2013). The

performance of ML models from transformed spectra was cross-validated and

only results with the best prediction performance metrics were selected.

4.4.3 Artificial Neural Network Models

ANN was employed in regression modeling of PCs scores data against the various

concentrations of pesticides used in this study. Several models were developed

with various cross-validation parameters, activation functions, algorithms, and ar-

chitectures. Using Root Mean Square Error of Calibration (RMSEC) and R2 as

the accuracy metrics, the model with the lowest RMSEC and highest R2 were

adopted for this study. The models were tested using a validation data set to

determine whether they were under or over-fitting. Since the regression was a

multi-target regression, the local transformation problem was used where two

different models for each pesticide (Mancozeb and THO) were developed separately.

A list of cross-validation settings was used to develop the ANN model

for Mancozeb to optimize for the best models. The comprehensive code is at-

tached to the appendices. The training set had 83 samples and four predictors,

which corresponds to the four PCs used. The data were centered and scaled be-

fore a five-fold cross-validation re-sampling with sample sizes of 67, 65, 66, 67,

and 67 across the tuning parameters. The final architecture had 26 hidden neu-

rons in the first hidden layer, four neurons for the second hidden layer, and finally

three hidden neurons for the third hidden layer. This model was able to achieve
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an RMSEC of 0.0212 ppm and R2 of 0.9784. The resilient back-propagation with

a weight backtracking algorithm with 50 training repetitions produced the best

results with 1 × 105 maximum steps for calibration and a 0.01 threshold for the

partial derivatives of the error function as stopping criteria. The prediction set

with 43 samples achieved the lowest Root Mean Square Error of Prediction (RM-

SEP) of 0.0451 ppm and an R2 of 0.9321.

The final THO model was also a fivefold cross-validated model with 83

samples in the calibration set and four predictors. The re-sampling sizes were 67,

65, 66, 67, 67 across several tuning parameters. The data was also scaled and cen-

tered. The resilient back-propagation with weight backtracking algorithm with 50

training repetitions produced the best results with 1 × 105 maximum steps for cal-

ibration and a 0.01 threshold for the partial derivatives of the error function as

stopping criteria. The final values used for the model were layer1 = 40, layer2 =

4 and layer3 = 3. The best calibration model had an RMSEC of 0.0307 and an

R2 value of 0.9846 and an RMSEP of 0.0658 and an R2 of 0.9645 on the test set.

4.4.4 Random Forest Models

The RF uses a decision tree to model linear or non-linear data. This study

utilized the development of regression models for predicting the varying concen-

trations of the two pesticides. Consequently, independent models were developed;

one for Mancozeb and the other for THO. Different cross-validation parameters,

number of trees, split (mtry), and, train control parameters were used in model

development to prevent overfitting. RMSEC and R2 were the used figures of

merit for model accuracy.
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The training data-set was centered and scaled before a leave-one-out cross-

validation (LOOCV) re-sampling with sample sizes of 82, 82, 82, 82, 82, and 82

across the tuning parameters. The best Mancozeb model had 83 samples for

training with and four predictors corresponding to the uncorrelated PC data used

for modeling. The number of variables randomly sampled at each split (mtry)

was three for the optimum model with 20 trees. The model had an RMSEC of

0.0229 and an R2 of 0.9719 on the calibration and RMSEP of 0.0418 and an R2 of

0.9651 on the test set.

The training data set used for training had 83 samples and four predic-

tors. A five-fold cross-validation re-sampling with a single repeat with sample

sizes of 67, 65, 66, 67, 67 were found to produce the best THO model based on

the model evaluations metrics. The optimum model had 50 trees and the number

of variables tried at each split (mtry) was two. This model had the lowest RM-

SEC of 0.0499 and R2 of 0.9780 for calibration while for the test set, an RMSEP

of 0.0837 and an R2 of 0.9763 were achieved.

4.4.5 Support Vector Regression Models

In this study, Support Vector Regression (SVR) was used to quantitatively model

for predicting the varying pesticides concentrations for both Mancozeb and THO.

The models were cross-validated across a range of parameters such as the cost,

gamma, and kernels to determine the optimum number of hyper-planes to use.

RMSEC (for both calibration and validation) and R2 were used as the figures of

merit for assessing model accuracy.

Support Vector Machine with a radial basis kernel function was found to
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give the best performance. The Mancozeb model was trained with a dataset of 83

samples and four predictors. The data were centered and scaled before a three-

fold cross-validation re-sampling with sample sizes of 57, 55, and 54 across the

tuning parameters. The final values used for the model were sigma of 0.05, cost

of 1, epsilon of 0.1, and 51 support vectors. The best model achieved an RM-

SEC of 0.0434 and R2 of 0.9194. The model had an RMSEP of 0.0689 and an R2

0.9167 on the test dataset.

The best THO model also used a radial kernel basis with 83 samples

and four predictors. The data were centered and scaled before a three-fold

cross-validation re-sampling with sample sizes of 57, 55, 54 across the tuning pa-

rameters. The final values used for the model were; sigma equal to 0.5, cost (C)

of 16, epsilon of 0.1, and 32 support vectors. The training model achieved the

best RMSEC value of 0.0437 and an R2 of 0.9810. On the test set, the model pro-

duced an RMSEP of 0.0646 and R2 of 0.9809. Figure 4.2 summarizes the data

methodology used in this study.
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Figure 4.2: Flowchart of the methodology summary employed in this study for
supervised and unsupervised machine learning.
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CHAPTER FIVE

RESULTS AND DISCUSSION

5.1 Overview

This chapter discusses the results of application of machine learning models to

DRS spectral data obtained from residue analyses on tree tomatoes fruits.

5.2 Pre-Processing and PCA of DRS Spectra

5.2.1 Field Based DRS Measurements

The field data were collected for eleven days with a one-day interval. Fig-

ure 5.1a depicts the raw spectra after it was converted to absorbance using

log(1/R) and then MSC treated (Figure 5.1b). The number of days is repre-

sented by NOD. The scatter or offset in the spectra can be attributed to the

sun’s varying irradiance, as it was the primary source of excitation light in the field.

Because fruits have a high moisture content, spectra above 850 nm were

discarded to avoid low SNR due to 2v1 + v3 (v1: symmetric stretching; v3: anti-

symmetric stretching) water vibrations, which dominate the raw spectra. In the

visible region (400 to 700 nm), the spectra show a decreasing trend with some dis-

cernible absorption peaks. This absorption in the visible region was primarily

related to the color of the fruits, which varied with ripeness. These peaks are due

to chlorophyll A (685 nm) and B absorption, respectively.

The short wave NIR region between 700-900 nm shows an increasing

70



trend, which can be attributed to either the third overtone of C–H, second

overtone stretching of O–H, or, CH3 third overtone stretching (Jamshidi et al.,

2016). Because it was unaffected by color, the region between 800-850nm

produced the best PCA results. The data were divided into two groups for eas-

ier, more general comparisons. One for the treated samples over the course

of eleven days, and the other for all of the control groups over the course of

the eleven days. The data was then plotted with a 0.1 offset, as shown in Figure 5.2.

To evaluate possible classes among the samples, PCA was performed on

the data in the frequency range of the pretreated spectra between 800 and 850

nm. The scores plot revealed two distinct clusters that corresponded to the two

broad groups (Figure 5.3). PC1 accounted for 82 percent of the observed vari-

ance, while PC2 contributed 5.6 percent. PC1 was able to clearly distinguish

between the two clusters representing the control and treated groups (Figure 5.3).

Positive PC1 can be used to distinguish the control group, whereas the negative

portion can be used as a ROI for samples treated with Mancozeb and THO mixture.

Based on the PCA loadings weights, sensitive bands for residues analysis

in fruits from field data were proposed (Figure 5.4). Wavelengths ranging from

825 to 850 nm influenced the treated group to cluster on negative PC1, whereas

wavelengths ranging from 800 to 825 nm influenced the control group to cluster.

The 800-850 nm third overtone region is very narrow and primarily composed of

the N–H and C–H stretch regions. The region between 800-825 nm is associated

with the primary (RNH2) and secondary amines (RNHR), whereas the region

between 825-850 is associated with the aromatics (ArCH) third overtone C–H

stretching vibration (Workman Jr, 2000).

71



(a)

(b)

Figure 5.1: An illustration of the raw absorbance spectra for treated and control
groups from the field data before (Figure 5.1a) and after MSC correction (Figure
5.1b), NOD denotes number of days
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Figure 5.2: Absorbance spectra of the field data for the control and treated
groups plotted with a 0.1 offset.

Figure 5.4: Field data PCA loadings plot for the shortwave NIR region between
800-850 nm
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Figure 5.3: The illustration shows that the two groups are easily distinguishable
along PC1. The different clusters from each group imply that the method is
sensitive enough to distinguish between the different days of the experiment.

5.2.2 Laboratory Based DRS Measurements

The raw and MSC treated spectra (Figure 5.6) show an increasing trend between

1000-1375 nm. The absorption peak between 1500 and 1750 nm could be due

to bands in CSNHR structures that can be used to identify Mancozeb. The

second overtone absorption band, with a peak between 2000 and 2250 nm, is

caused by NH stretching plus amide II. These bands could also be associated

with CH groups, which are also found in the Mancozeb formula (Arias et al.,

2013; Moros et al., 2007; Osborne, 2006). The combination region between 1900

and 2500 nm (Figure 5.7) shows the spectra of different residue concentrations used.
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The PCA analysis was used to remove redundant information and sum-

marize the high-dimensional data into a lower-dimensional dataset with a

smaller number of variables known as PCs, which are uncorrelated and relevant

(Rodriguez-Campos et al., 2011), as opposed to using the highly correlated wave-

lengths directly. The correlation plot for the first four PCs is shown in5.5a. The

fact that the coefficients for the various components are all zero implies that there

is no relationship between them. The same plot is shown in Sub-Figure b, but for

the first five wavelengths in the data matrix. A dark blue color on the diagram

scale indicates that the wavelengths are highly correlated.

(a) (b)

Figure 5.5: Using PCA, a completely new data set with uncorrelated features
is created. Figure 5.5a depicts the correlation plot of the first four PC. The
components are completely unrelated. Figure 5.5b is a correlation plot of the first
five wavelengths in the data matrix. Their correlation coefficient is one.

The data set was also unbalanced with 1600 predictors and 126 samples. The

number of samples in the training set in ML models must be greater than the

number of variables in the model, necessitating a variable selection reduction

technique (Cortés López, 2018). Furthermore, only truly relevant variables should

be included during modeling, further justifying the use of PCA.
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(a)

(b)

Figure 5.6: A depiction of the raw absorbance spectra (Figure 5.6a) before and
after MSC treatment (Figure 5.6b)
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Figure 5.7: The log (1/R) transformed spectra recorded from tree tomatoes
fruits samples at various ripening stages treated with two different pesticides,
Mancozeb and THO. The absorption features in DRS spectral features are broad
and overlapped hence require processing.

The concentrations, as well as the number of samples, are shown in table 5.1.

PCA was performed on pre-processed spectra using different wavelength ranges

to identify the most optimal ROI for discrimination of pesticide concentrations.

Table 5.1: Table displaying the pesticide concentrations used in this study.

Label Mancozeb Concentration (ppm) THO Concentration (ppm)
A Control Control
B 0.01 0.01
C 0.03 0.04
D 0.06 0.07
E 0.15 0.21
F 0.18 0.25
G 0.50 0.3
H 1 0.5

ThePCA of 1900-2500 nm range produced the best results, with PC1 accounting
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for 93% of the variance and PC2 accounting for 3.8%. Figure 5.8 shows eight pat-

terns in ascending order from the lowest (A) to the highest (H) concentrations

matching to the concentration used (Table 5.1). Based on the scores plot (Fig-

ure 5.8), PC1 explained the fluctuation in concentrations. It’s worth noticing that

the concentration steadily rose from negative PC1 to positive PC1, or from B to

H. PC2 could differentiate between control and treated samples. The loading plot

(Figure 5.9) was utilized to better comprehend this grouping.

Figure 5.8: Plots of PCA scores for the various pesticide concentrations used in
this study. The mean value of the cluster is represented by the center of the lines.

Positive PC1 can be attributed to wavelengths between 1900-2150 nm, while

negative PC2 can be attributed to wavelengths between 2200-2500 nm, according
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to the loadings plot (Figure 5.9). Conversely, for PC2, which accounts for 3.8

percent of the total variance, the positive portion is attributed to vibrations in

the region between 2200-2400 nm, while the negative portion is attributed to

vibrations in the region between 1900-2150 nm and the peak between 2410-2490

nm.

Figure 5.9: The Loadings plot of the region between 1900-2500 nm with all the
major peaks observed in the Spectra.
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The chemical structure of the two pesticides used was discussed to understand and

explain the attribution of the functional groups involved using the loadings plots.

THO is a 1,2,3-trithiane hydride with dimethyl (CH3) amino group replacing one

of the oxygen positions. Six aliphatic saturated organosulphur heterocycles with

three carbon atoms make up the structure. The oxalate is a dicarboxylic acid

obtained by the deprotonation of both carboxy groups of oxalic acid.

Figure 5.10: Thiocyclam hydrogen oxalate’s chemical structure.

Mancozeb (C4H6N2Mn ·C4H6N2S4Zn) (Figure ??) is a Maneb and Zineb mix-

ture; a Manganese (Mn) and Zinc (Zn) mixture with the ethylene (H2C––CH2)

bis(dithiocarbamate) anionic ligand. Fruit cuticular waxes, which are made up of

long-chain aliphatics (LCA) and pentacyclic triterpenoids, were another important

component that was also the base matrix. LCA is made up of fatty acid deriva-

tives of C16 and C18, alcohols, aldehydes, and alkanes with long chain lengths

ranging from C16 and C35.
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Figure 5.11: Chemical structure of Mancozeb.

The observed peaks (Figure 5.9) were assigned to their respective vibrations (over-

tones or combination bands). The carboxy group (C––O) second overtone, O–H

first overtone stretch, and C–O second stretch were assigned broadband between

1900-1950 nm with a peak around 1910 nm. Cutin was regarded as the band’s

main contributor. Another influential band at approximately 2010-2070 nm,

with a maximum peak at 2030, was assigned to the O–H combinations, N–H

asymmetrical stretching plus amide II, second O–H deformation, and C–O defor-

mation. Stretching and combinations of C–O and O–H between 2070-2140 nm,

with a peak at 2090 nm, were attributed to alcohols in the cuticle. The NH com-

bination region between 2140-2190 nm with a peak at 2150 nm, the band was

caused by C–C , C–O, O–H stretching and combinations. This region was also

linked to NH deformation and combination, amide I and amide II

The peak at 2200 nm, located between 2190 and 2250 nm, was in the

NH+OH combination region. This region was associated with CH3, C–C, C–O,

O–H stretch and deformation, NH deformations, amide I and amide II. The satu-

rated aliphatic bonds were responsible for the CH3 combination, CH2 and CH

stretch, and second overtone deformation, which were accompanied by the C–C

stretch at around 2320 nm and 2340 nm. The peak at 2380 nm was linked to a
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C–H second overtone deformation. Combination stretching vibration of C––C

functional groups from phenolic compounds, ––C–H, and combinations of NH

stretching and bending were assigned to the 2470 nm peak. Table 5.2 summarizes

the functional groups assigned from (Workman Jr, 2000).

Table 5.2: Summary of NIR active functional groups in the DRS spectra. The
bands were assigned from Workman Jr (2000)

Band Region (nm) Peak
(nm)

Functional Group Assigned

1900-1950 1910 C––O 2α, OH 1α, C–O α
2010-2070 2030 NH Bα, Amide II, 2αO–H ψ,

C–O ψ
2070-2140 2090 ROH, CONH2(R), C–O, O–Hα
2140-2190 2150 NH Comb, C–C, C–O, O–H α,

NH ψ Comb, 2α Amide I and
Amide II

2190-2250 2200 NH + OH Comb, CH3, CC, CHO,
RNH2, NH ψ, O–H α, O–H ψ
and 2α Amide I, Amide II

2300-2360 2320 CH + CH Comb, CH3, CH2

2340 CH Comb, C–H + C–C α, C–H
2ψ

2360-2430 2380 C–H 2ψ, CH3, CH2, CH
2430-2500 2470 CH + CC Comb α of C––C,

––C–H, N–H α and β

Key: Comb (combination region), 1α (first overtone of stretching fundamental

vibration), 2α (second overtone of stretching fundamental vibration), 2β (second

overtone of bending fundamental vibration), Aα (antisymmetric stretching), Bα

(symmetric stretching), α (stretching), β (bending), ψ (deformation), 2ψ (Second

Overtone deformation) (Zapata et al., 2018).
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5.2.3 Variable Selection in DRS Spectral Multivariate

Modeling

When using data from the entire spectra for multivariate calibration, the practice

resulted in ML models with poor prediction ability and general reliability. As a

result, only the variables containing the most relevant information for the modeling

were used. To that end, PCA was used to remove redundant features as well

as noise. The inputs were the results from the region of interest between 1900

and 2500. The first four PCs were required to explain 98 percent of the data’s

cumulative variance. As a result, they were extracted from the result matrix and

fed into machine learning models. The Scree plot (Figure 5.12) was used to obtain

the number of PCs to use. The data was modeled using the local transformation

method, which solved multiple (STM) separately to model Mancozeb and THO

responses.
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Figure 5.12: The most important components are depicted in a PCA scree
plot. The first four PCs, which explained more than 98 percent of the cumulative
variance, were extracted and used in the development of all ML models.

5.3 Multivariate Modeling of DRS Spectra

The relationship between pesticide concentrations and PCs data was quantified

usingANN, SVM and RF for Mancozeb and THO. The same PCA dataset was

used on all models to compare their performance.

5.3.1 Quantification Models for Predicting Mancozeb

Residues

The pesticides residues were predicted using the developed ANN, RF and SVR

models within the range of experimentally prepared concentrations. The obtained
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results confirm that ML models can accurately predict values that are nearly iden-

tical to those obtained from laboratory prepared concentrations. To validate the

predictive ability of the developed multivariate calibration models, the predictions

were evaluated using RMSE and R2. The performance comparison of the three

models used in this work based on these parameters is shown in Table 5.3.

Table 5.3: Mancozeb models performance based on RMSE, R2, LOD and LOQ
figures of merit.

Calibration Set Testing Set
Model RMSEC(ppm) R2 RMSEP(ppm) R2

ANN 0.02 0.98 0.05 0.93
RF 0.02 0.97 0.04 0.95
SVR 0.04 0.92 0.07 0.92

These findings indicate that employing PCA to remove redundant and noisy data

can improve the speed, accuracy, and reliability of the developed models. The

goal of developing three ML models was to determine which model performed

best during the training and testing phases. The prediction performance of these

models is compared in Table 5.3. With a R2 of 0.98 and a RMSEC value of 0.02

ppm, ANN performed best for the calibration set. With a RMSEP value of 0.04

ppm and a R2 value of 0.95, the glsrf model was the best on the testing set. This

RF performance can be attributed to the fact that it can handle multiple classes

well, with the number of trees being the only hyper-parameter to tune. However,

these models require more data to learn and may be prone to over-fitting. It is

worth noting that, in contrast to RF, ANN and SVR have a plethora of tuning

parameters that must be tweaked to achieve the best results.

As the No Free Lunch Theorem implies, there is no single best model.
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The problem at hand determines the performance of the models (Caruana and

Niculescu-Mizil, 2006). This emphasizes that the three models differ not only

mathematically, but also in how they learn from the same dataset. This means

that each model captures a different aspect of the underlying complex relation-

ship between the DRS spectra and the various pesticide concentrations used. As

a result, they can be viewed as complementary models. The correlation curves of

the models for predicting Mancozeb residues in tree tomatoes are depicted in

Figure 5.13. On the model calibration plots, the y-intercept standard error and

slope were calculated using a pseudo univariate approach. LOD and LOQ were

computed using these values, and the results are shown in Table 5.4.

Table 5.4: Mancozeb models LOD and LOQ values calculated from the calibration
curves using a pseudo-univariate approach

Model Slope Y-intercept error LOD(ppm) LOQ(ppm)
ANN 0.955 0.036 0.011 0.037
RF 1.008 0.004 0.011 0.037
SVR 1.024 0.004 0.039 0.012
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Figure 5.13: ANN, RF and SVR Mancozebs models correlation plots between
actual and predicted residues concentrations values for the PCA training and
testing data sets from the NIR combination region between 1900-2500 nm.
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5.3.2 Quantification Models for Predicting THO Residues

Three ML models (ANN, RF and SVR) were developed to correlate THO concen-

trations and DRS spectra from tree tomatoes. Figure (5.14) depicts the linear

relationships between laboratory prepared concentrations and predicted results

for the three models. The predictive performance of the developed multivariate

calibration models was evaluated using RMSE and R2. The results are shown in

Table 5.5. On the calibration set, all of the models had a R2 value of 0.98, with

the RMSEC of 0.03 ppm for the ANN model model. On the test set, the SVR

model had the lowest RMSEP value of 0.06 ppm, while the RF model had the

highest R2 value of 0.98.

The RMSEC results show that the ANN model for THO outperformed

the other two models. This is most likely due to the non-linear activation function

used in model development, which allows ANN to resolve linear and non-linear re-

lationships in the DRS spectra (Chen and Ramaswamy, 2000). The LOD and

LOQ were calculated from the slopes and y-intercept standard errors of the

calibration curves using a pseudo univariate approach. Table 5.6 presents the

results.

Table 5.5: THO models performance based on RMSE and R2

Calibration Set Testing Set
Model RMSEC(ppm) R2 RMSEP(ppm) R2

ANN 0.03 0.98 0.07 0.96
RF 0.05 0.98 0.08 0.98
SVR 0.04 0.98 0.06 0.97
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Table 5.6: THO models LOD and LOQ values calculated from the calibration
curves using a pseudo-univariate approach

Model Slope Y-intercept error LOD(ppm) LOQ(ppm)
ANN 1.021 0.004 0.013 0.043
RF 1.042 0.004 0.012 0.042
SVR 0.978 0.006 0.019 0.012
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Figure 5.14: ANN, RF and SVR THO models correlation plots between actual
and predicted residues concentrations values for the PCA training and testing
data sets from the NIR combination region between 1900-2500 nm.

90



5.4 Performance of the Models Based on Market Samples

One of the study’s goals was to see how well the developed models performed

on real-world fruit samples from local markets. As a result tree tomatoes fruits

were purchased from five different local markets. The market samples were sub-

jected to DRS measurements, and the resulting spectra were preprocessed in the

same manner as the calibration samples. The preprocessed spectra were then

subjected to a PCA. Four PCs were extracted as they accounted for the great-

est amount of variation in the data. Due to the skewed nature of the predicted

data, descriptive statistics revealed a discrepancy between the samples’ mean

and median. As a result, the medium and Mean Absolute Deviation (MAD)

metrics were chosen as the best fit for representing the data. Table 5.7 and

Figure 5.15 provide a detailed description of the results. The dotted red lines

represent the MRL, which is 0.5 and 0.3 ppm for Mancozeb and THO, respectively.

The THO models predicted that the Gikomba samples had residues lev-

els below the MRL. According to the three THO prediction models, Limuru

samples, represented by the color green, had THO levels below the MRL. The

ANN model predicted samples from Vendor J from Wangige to be 0.38 ppm

and the RF model predicted samples to be 0.41 ppm, both of which are above

the allowed limits. However, the SVR TM predicted that the levels in sample J

would be 0.26 ppm, which is less than the MRL. These model discrepancies can

be attributed to the fact that each model had different tuning parameters. Fur-

thermore, each model learns from the data uniquely. The three THO Models

predicted that THO concentrations in samples K, L, and M were less than 0.3

ppm. All three models predicted that Ngara samples (N) fell below the red line.

According to the RF model, however, sample O had 0.45 ppm.
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Two samples (KL) with known residue concentrations were used to evalu-

ate the performance of our models. Sample P contained 0.24 ppm THO and 0.3

ppm Mancozeb, whereas sample Q contained 0.16 ppm THO and 0.10 ppm Man-

cozeb. Based on this benchmark, the ANN model was the best for THO and

Mancozeb prediction, while the RF model was the worst. This is not surprising

given that ANN and SVR are more flexible models in terms of parameter tunabil-

ity than RF. As a result, they should theoretically be better at learning complex

data sets like DRS data.

All of the Gikomba fruits were predicted to be below the 0.5 ppm MRL

level by the three Mancozeb models. The highest prediction from this location

came from vendor C, with the RF model predicting 0.24 ppm. The models

predicted that all Limuru samples would be below the red line. The highest

prediction (0.24 ppm) came from Limuru vendor F, and the RF model pre-

dicted the same way. The SVR models predicted 0.36 ppm for the Wangige

samples, closely followed by the ANN model, which predicted 0.35 ppm. The

three models predicted the Ngara samples to be within a narrow range of 0.24

ppm to 0.17 ppm. The ANN model was the most accurate for the known samples

group KL, with predictions of 0.13 and 0.27 ppm for samples P and Q, respectively.

A one-way analysis of variance (ANOVA) was performed on the market

samples’ predictions to find the best models for residues prediction on fruits.

A null hypothesis (H0) was assumed, implying that the mean of the ANN

model (µANN), the mean of the RF model (µRF), and the mean of the SVR

model (µSV R) were all equal. However, based on the descriptive statistics
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of the models, non-equality in the means of the groups led to the rejection

of the null hypothesis. To avoid type one errors, a posthoc one-way Tukey

Kramer ANOVA test, which is only performed after the null hypothesis has

been rejected, was used as a pairwise comparison between Mancozeb and

THO’s models. Given that Tukey’s test is a posthoc test, a linear regres-

sion model was fitted for each sample data set based on the vendor, followed

by ANOVA. For Mancozeb and THO, mean comparisons were performed be-

tween µANN−µRF , µANN−µSV R and µRF−µSV R . The results are shown in Table 5.8.

The results were presented using statistical tests, specifically the t-test

and the p-test, with a 95 percent confidence interval of the difference between

means. The T-test compares the means of independent samples by dividing the

difference between groups’ means by the standard error of the difference be-

tween groups’ means. A higher t-test value indicates that the means are unequal,

whereas a lower value indicates that the means are similar. The sign of the t-test

is determined by whether the difference in means between groups is greater than

the standard error of the difference between groups (positive) or vice versa (nega-

tive) (negative). A negative t-test value indicates a shift in model directionality

and has no bearing or significance on the difference between groups.

The P-value (P) is a metric that indicates how closely an observation

agrees with the null hypothesis (H0). For low P values, the (H0) is rejected, while

for high (P) values, it is accepted. The (P) value has a level of significance (α),

which determines whether a value is high or low. When P < α, it is assumed that

there is statistical significance between groups. P > α, on the other hand, in-

dicates that the observed difference between the two groups is not statistically
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significant. From consensus, the α value is usually 5% (0.05). A statistically

significant difference is assumed if P < 5%, whereas there is no statistically signifi-

cant difference between groups if P > 5%. Based on the results of the post hoc

one-way ANOVA Tukey test (Table 5.8), the µANN − µSV R had no statistically sig-

nificant differences in mean in the majority of market sample predictions for both

pesticides and are thus best suited for analysis of residues on fruits.
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Table 5.7: Predicted values from machine learning models from the market samples

Mancozeb Models THO Models
ANN RF SVR ANN RF SVR

Vendor Location Conc (ppm) Conc (ppm) Conc (ppm) Conc (ppm) Conc (ppm) Conc (ppm)
A

Gikomba

0.10 ± 0.06 0.02 ± 0.00 0.12 ± 0.03 0.05 ± 0.04 0.16 ± 0.07 0.13 ± 0.04
B 0.19 ± 0.04 0.03 ± 0.01 0.17 ± 0.04 0.09 ± 0.05 0.10 ± 0.05 0.15 ± 0.04
C 0.18 ± 0.01 0.24 ± 0.03 0.18 ± 0.02 0.13 ± 0.01 0.14 ± 0.01 0.07 ± 0.08
D 0.13 ± 0.07 0.02 ± 0.01 0.13 ± 0.03 0.11 ± 0.06 0.10 ± 0.04 0.10 ± 0.04
E 0.12 ± 0.05 0.02 ± 0.00 0.12 ± 0.02 0.11 ± 0.03 0.07 ± 0.01 0.11 ± 0.01

F

Limuru

0.18 ± 0.04 0.24 ± 0.06 0.16 ± 0.03 0.10 ± 0.07 0.16 ± 0.07 0.17 ± 0.07
G 0.05 ± 0.01 0.05 ± 0.03 0.09 ± 0.01 0.05 ± 0.01 0.10 ± 0.04 0.08 ± 0.04
H 0.08 ± 0.07 0.05 ± 0.00 0.09 ± 0.04 0.03 ± 0.04 0.07 ± 0.00 0.13 ± 0.09
I 0.13 ± 0.06 0.02 ± 0.00 0.14 ± 0.03 0.10 ± 0.04 0.05 ± 0.01 0.11 ± 0.03

J

Wangige

0.35 ± 0.01 0.24 ± 0.00 0.36 ± 0.01 0.38 ± 0.09 0.41 ± 0.00 0.26 ± 0.04
K 0.07 ± 0.03 0.02 ± 0.01 0.08 ± 0.03 0.01 ± 0.00 0.08 ± 0.04 0.17 ± 0.04
L 0.12 ± 0.01 0.24 ± 0.01 0.12 ± 0.01 0.09 ± 0.03 0.10 ± 0.01 0.16 ± 0.02
M 0.06 ± 0.01 0.06 ± 0.01 0.09 ± 0.03 0.02 ± 0.01 0.06 ± 0.01 0.15 ± 0.04

N Ngara 0.17 ± 0.00 0.24 ± 0.00 0.21 ± 0.01 0.14 ± 0.02 0.15 ± 0.00 0.17 ± 0.03
O 0.20 ± 0.03 0.25 ± 0.00 0.24 ± 0.00 0.18 ± 0.01 0.45 ± 0.01 0.18 ± 0.01

P KL 0.27 ± 0.01 0.39 ± 0.00 0.39 ± 0.01 0.24 ± 0.03 0.61 ± 0.01 0.28 ± 0.05
Q 0.13 ± 0.01 0.24 ± 0.00 0.14 ± 0.01 0.11 ± 0.01 0.10 ± 0.00 0.14 ± 0.01

95



Figure 5.15: The machine learning models that were created were used to predict market samples from five different
markets in nearby urban areas. Various fruit batches from various locations were used. Specifically, five came from the
Gikomba market, four from Limuru and Wangige, and two from Ngara. To evaluate the model’s performance, samples (KL)
had known pesticide concentrations. The MRL values of the two pesticides are denoted by the dotted red lines.

96



Table 5.8: The results of the one-way ANOVA Tukey test for predicted values
derived from market samples.

Mancozeb THO
Location Sample Models T Value P Value T Value P Value

Gikomba

A
RF − ANN −6.6020 < 0.0004 ∗ ∗∗ 3.5520 0.0036 ∗ ∗
SV R − ANN 0.890 0.651 4.059 < 0.001 ∗ ∗∗
SV R − RF 7.492 < 0.0001 ∗ ∗∗ 0.507 0.86833

B
RF − ANN −5.072 < 0.0001 ∗ ∗∗ 2.084 0.10064
SV R − ANN −1.005 0.57607 5.264 < 0.0001 ∗ ∗∗
SV R − RF 4.067 0.00035 ∗ ∗∗ 3.180 0.0062 ∗ ∗

C
RF − ANN 3.604 0.0029 ∗ ∗ 0.646 0.7960
SV R − ANN 0.291 0.9546 −3.644 0.0027 ∗ ∗
SV R − RF −3.314 0.00624 ∗ ∗ −4.290 < 0.001 ∗ ∗∗

D
RF − ANN −5.712 < 0.00001 ∗ ∗∗ 2.524 0.0363∗
SV R − ANN 0.121 0.992 1.133 0.4973
SV R − RF 5.833 < 0.00001 ∗ ∗∗ −1.392 0.3506

E
RF − ANN −8.053 < 0.0001 ∗ ∗∗ −1.367 0.3665
SV R − ANN 0.597 0.823 0.894 0.6470
SV R − RF 8.650 < 0.0001 ∗ ∗∗ 2.261 0.0722

Limuru

F
RF − ANN 2.976 0.0107∗ 3.702 0.0011 ∗ ∗
SV R − ANN −0.290 0.9546 4.716 < 0.0001 ∗ ∗∗
SV R − RF −3.266 0.0045 ∗ ∗ 1.014 0.5705

G
RF − ANN −0.558 0.84281 5.864 < 0.0001 ∗ ∗∗
SV R − ANN 3.132 0.0070 ∗ ∗ 3.277 0.0047 ∗ ∗
SV R − RF 3.690 0.0013 ∗ ∗ −2.587 0.03119∗

H
RF − ANN −2.867 0.0160∗ 2.163 0.0868
SV R − ANN −0.349 0.9352 5.058 < 0.0001 ∗ ∗∗
SV R − RF 2.519 0.0386∗ 2.895 0.0148∗

I
RF − ANN −14.331 0.0001 ∗ ∗∗ −3.871 0.0007 ∗ ∗∗
SV R − ANN −0.962 0.603 3.822 0.0008 ∗ ∗∗
SV R − RF 13.369 < 0.0001 ∗ ∗∗ 7.693 < 0.0001 ∗ ∗∗

Wangige

J
RF − ANN −7.938 < 1e − 05 ∗ ∗∗ 0.671 0.7813
SV R − ANN 0.244 0.968 −4.192 0.0003 ∗ ∗∗
SV R − RF 8.182 < 0.00001 ∗ ∗∗ −4.863 < 0.0001 ∗ ∗∗

K
RF − ANN −0.692 0.769 5.156 < 0.00001 ∗ ∗∗
SV R − ANN 0.7721 0.721 12.141 < 0.00001 ∗ ∗∗
SV R − RF 1.465 0.315 6.985 < 0.00001 ∗ ∗∗

L
RF − ANN 7.346 < 0.000001 ∗ ∗∗ 2.709 0.0219∗
SV R − ANN −0.124 0.992 6.757 < 0.001 ∗ ∗∗
SV R − RF −7.470 < 0.000001 ∗ ∗∗ 4.048 < 0.001 ∗ ∗∗

M
RF − ANN 0.914 0.633 2.709 0.0219∗
SV R − ANN 1.719 0.205 6.757 < 0.001 ∗ ∗∗
SV R − RF 0.805 0.701 4.048 < 0.001 ∗ ∗∗

Ngara

N
RF − ANN 0.914 0.633 2.709 0.021890∗
SV R − ANN 1.719 0.205 6.757 < 0.0001 ∗ ∗∗
SV R − RF 0.805 0.701 4.048 0.0003 ∗ ∗∗

O
RF − ANN 0.914 0.633 2.709 0.022∗
SV R − ANN 1.719 0.205 6.757 < 0.001 ∗ ∗∗
SV R − RF 0.805 0.701 4.048 < 0.001 ∗ ∗∗

KL

P
RF − ANN 18.38 < 0.00001 ∗ ∗∗ 24.452 < 0.0001 ∗ ∗∗
SV R − ANN 18.58 < 0.00001 ∗ ∗∗ 2.453 0.0571
SV R − RF 0.20 0.978 −21.999 < 0.0001 ∗ ∗∗

Q
RF − ANN 31.20 < 0.0001 ∗ ∗∗ −0.919 0.634
SV R − ANN 1.93 0.152 0.836 0.685
SV R − RF −29.27 < 0.0001 ∗ ∗∗ 1.755 0.206

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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CHAPTER SIX

CONCLUSION AND RECOMMENDATIONS

6.1 Summary and Conclusions

In summary, this work has encompassed the development of DRS assisted with

ML as an alternative or complementary method for screening of pesticides

residues in fruits and vegetables. The developed method is rapid, affordable, and

non-invasive. Data was acquired from tree tomatoes samples treated with vary-

ing Mancozeb and THO concentrations using NIRQuest 512-2.5 and USB4000

spectrometers in diffuse reflectance geometry. The data was de-noised using

multiplicative scatter correction and smoothened with a Savitzky-Golay filter.

Principal component analysis was performed on the cleaned data and the PCs

with more than 98% of the cumulative variation, was used in the development

of ML models. The developed ANN, SVR and RF regression models predicted

Mancozeb and THO residues with high accuracies (R2 value greater than 92%).

The models were tested on a new dataset from market samples. One-way Tukey

ANOVA analysis of the predicted values from the market data showed ANN and

SVR models to be superior to RF. Therefore, the combination of exploratory

techniques such as PCA and machine learning techniques such as PCA, ANN,

RF, and SVM with DRS can successfully assess pesticide residues in fruit cuticles.

The approach demonstrated high sensitivity and enabled quick analysis.

The method does not require any specific sample preparation procedure

resulting in decreased time and costs associated with sample preparation, less

time requirement to learn the processes, and reduced errors. These savings in
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time and money can allow for the simultaneous analysis of several residues with

improved performance and adaptability to many classes of pesticides. As a result,

the method is relevant for various foods and would be excellent for regulatory

measurements.

6.2 Recommendations and Future Prospects

This study was limited to four machine learning techniques, but more can be

incorporated into future work to improve the robustness, efficiency, and repeata-

bility of the results. Consideration for the future could be the use of fruits from

various geographical locations into the development phase of the models. The de-

velopment of an open-source database of residues could be implemented using this

method to enhance this work’s usability. New portable sensor technologies are

likely to be used for residue screening, including Raman spectroscopy, Terahertz

radiation, X-ray, hyper-spectral imaging, and magnetic resonance. The developed

method was used for screening pesticide residues on the cuticles. However, it can

have a spin-off to correlate the measurements on the skin and the flesh. Also, con-

ventional techniques can be used to verify the predictions made by the method to

compare specificity, sensitivity, and LOD levels.
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APPENDIX ONE
Images of Laboratory Based Methodology

Figure A.1: Picture (a) shows the prepared pesticides concentrations in vials
and the tree tomatoes samples. Figure (b) shows the samples labeling before
being sprayed with varying concentrations of the pesticides.
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APPENDIX TWO
Images of Field Based Methodology

Figure B.1: The tree tomato plants utilized for field analysis are shown in image
(a). The system is calibrated using a white reflectance reference, as shown in
image (b). Images (c) and (d) show pesticide-sprayed tree tomatoes one hour
later. The experimental setup is depicted in the image (e).
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APPENDIX THREE
Machine Learning Models Descriptive Statistics
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APPENDIX FOUR
Models Performance on Training Sets

Table D.1: Models performance on training sets

Mancozeb Training Results THO Training Results

Actual ANN Predicted Actual SVR Predicted Actual RF Predicted Actual ANN Predicted Actual SVR Predicted Actual RF Predicted

0.0600 0.0714 0.0700 0.0921 0.0000 0.0035 0.0600 0.0714 0.0300 0.0251 0.0000 0.0005

0.0600 0.0621 0.0100 -0.0146 0.0000 0.0030 0.0600 0.0621 0.0600 0.0305 0.0000 0.0030

0.0300 0.0349 0.0000 0.0066 0.0000 0.0015 0.0300 0.0349 0.0000 0.0617 0.0000 0.0030

0.0100 0.0229 0.0000 -0.0015 0.0400 0.0400 0.0100 0.0229 0.0000 0.0540 0.0300 0.0300

0.0100 0.0124 0.0100 0.0336 0.0000 0.0221 0.0100 0.0124 0.0100 -0.1327 0.0300 0.0300

0.1500 0.1539 0.2100 0.1931 0.0400 0.0400 0.1500 0.1539 0.0100 -0.0117 0.0000 0.0000

Continued on Next Page. . .
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Continuation of Table D.1

Mancozeb Training Results THO Training Results

Actual ANN Predicted Actual SVR Predicted Actual RF Predicted Actual ANN Predicted Actual SVR Predicted Actual RF Predicted

0.5000 0.4985 0.0400 0.0337 0.0400 0.0400 0.5000 0.4985 0.1500 0.0921 0.0300 0.0300

0.1800 0.1816 0.0400 0.0407 0.0000 0.0175 0.1800 0.1816 0.0300 0.0568 0.0300 0.0300

0.5000 0.4123 0.0400 0.0305 0.0400 0.0400 0.5000 0.4123 0.0300 0.0548 0.0000 0.0000

0.5000 0.4767 0.0400 0.0420 0.0400 0.0400 0.5000 0.4767 0.0300 0.0373 0.0300 0.0300

0.0300 0.0322 0.0400 0.0406 0.0000 0.0292 0.0300 0.0322 0.0300 0.0582 0.0300 0.0300

0.1800 0.1722 0.0400 0.0261 0.0700 0.2495 0.1800 0.1722 0.0300 0.0625 0.0000 0.0090

0.5000 0.5294 0.2500 0.2498 0.0400 0.0415 0.5000 0.5294 0.0600 0.0752 0.0600 0.1750

Continued on Next Page. . .
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Continuation of Table D.1

Mancozeb Training Results THO Training Results

Actual ANN Predicted Actual SVR Predicted Actual RF Predicted Actual ANN Predicted Actual SVR Predicted Actual RF Predicted

0.5000 0.5050 0.2500 0.2186 0.0100 0.0100 0.5000 0.5050 0.0600 0.0704 0.0300 0.0315

1.0000 0.9140 0.0700 0.0717 0.0700 0.0815 1.0000 0.9140 1.0000 0.9212 0.0100 0.0100

0.1500 0.1463 0.0700 0.0261 0.0400 0.0400 0.1500 0.1463 0.1500 0.1512 0.0600 0.0600

0.1500 0.1519 0.0700 0.0609 0.0100 0.0100 0.1500 0.1519 0.1500 0.1482 0.0300 0.0315

0.1800 0.1668 0.0700 0.0948 0.0700 0.0700 0.1800 0.1668 0.1500 0.1400 0.0100 0.0165

0.0600 0.0438 0.2100 0.2053 0.0400 0.0400 0.0600 0.0438 0.1500 0.1838 0.0600 0.0600

0.0600 0.0749 0.2100 0.1859 0.0100 0.0100 0.0600 0.0749 0.0000 -0.0506 0.0300 0.0300

Continued on Next Page. . .
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Continuation of Table D.1

Mancozeb Training Results THO Training Results

Actual ANN Predicted Actual SVR Predicted Actual RF Predicted Actual ANN Predicted Actual SVR Predicted Actual RF Predicted

0.1500 0.1572 0.2100 0.2244 0.0700 0.0730 0.1500 0.1572 0.0100 -0.0361 0.0100 0.0100

0.1500 0.1440 0.2100 0.2079 0.0400 0.0390 0.1500 0.1440 0.0100 0.0125 0.0600 0.0600

0.1800 0.2135 0.2500 0.2292 0.0100 0.0100 0.1800 0.2135 0.0100 -0.0205 0.0300 0.0300

0.1800 0.2032 0.2500 0.2645 0.0700 0.0670 0.1800 0.2032 0.0100 -0.0261 0.0100 0.0100

0.1800 0.1468 0.2500 0.2523 0.0400 0.0390 0.1800 0.1468 0.0100 0.0348 0.0600 0.0600

0.5000 0.6720 0.3000 0.3804 0.0100 0.0100 0.5000 0.6720 0.0300 0.0369 0.0300 0.0300

1.0000 0.9810 0.3000 0.3127 0.0700 0.0700 1.0000 0.9810 0.0300 0.0142 0.0100 0.0095

Continued on Next Page. . .
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Continuation of Table D.1

Mancozeb Training Results THO Training Results

Actual ANN Predicted Actual SVR Predicted Actual RF Predicted Actual ANN Predicted Actual SVR Predicted Actual RF Predicted

1.0000 0.9514 0.3000 0.2782 0.0400 0.0400 1.0000 0.9514 0.0300 0.0123 0.0600 0.0600

0.0100 0.0086 0.5000 0.4668 0.0100 0.0100 0.0100 0.0086 0.0300 0.0326 0.0300 0.0300

0.0100 0.0157 0.2100 0.2017 0.0700 0.0675 0.0100 0.0157 0.0300 0.0265 0.0100 0.0100

0.0300 0.0349 0.2100 0.2079 0.0400 0.0408 0.0300 0.0349 0.0600 0.0882 0.0600 0.0645

0.0300 0.0238 0.0000 -0.0158 0.0100 0.0160 0.0300 0.0238 0.0600 0.0458 0.0300 0.0300

0.0300 0.0215 0.0100 -0.0016 0.0700 0.0670 0.0300 0.0215 0.0600 0.0774 0.0100 0.0095

0.0600 0.0899 0.0100 0.0193 0.0400 0.0400 0.0600 0.0899 0.1500 0.1405 0.0600 0.0600

Continued on Next Page. . .
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Continuation of Table D.1

Mancozeb Training Results THO Training Results

Actual ANN Predicted Actual SVR Predicted Actual RF Predicted Actual ANN Predicted Actual SVR Predicted Actual RF Predicted

0.0600 0.0365 0.0100 0.0143 0.0100 0.0100 0.0600 0.0365 0.1500 0.1347 0.0300 0.0300

0.1500 0.1554 0.0100 -0.0060 0.0700 0.0700 0.1500 0.1554 0.1500 0.1664 0.0100 0.0045

0.1500 0.1619 0.0100 0.0234 0.0400 0.0420 0.1500 0.1619 0.1500 0.1680 0.0600 0.0600

0.1500 0.1488 0.0400 0.0593 0.0100 0.0095 0.1500 0.1488 0.1800 0.1632 0.0300 0.0345

0.1800 0.1768 0.0400 0.0511 0.0700 0.0700 0.1800 0.1768 0.1800 0.2640 0.0100 0.0085

0.1800 0.1745 0.0400 0.0468 0.0400 0.0380 0.1800 0.1745 0.1800 0.2247 0.0600 0.0600

0.5000 0.4759 0.0400 0.0404 0.0100 0.0100 0.5000 0.4759 0.1800 0.1748 0.0300 0.0300

Continued on Next Page. . .
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Continuation of Table D.1

Mancozeb Training Results THO Training Results

Actual ANN Predicted Actual SVR Predicted Actual RF Predicted Actual ANN Predicted Actual SVR Predicted Actual RF Predicted

0.5000 0.4812 0.0400 0.0402 0.2100 0.2100 0.5000 0.4812 0.1800 0.1518 0.0100 0.0100

1.0000 0.9288 0.0700 0.0800 0.0400 0.0380 1.0000 0.9288 0.5000 0.5431 0.1500 0.1500

0.1500 0.1350 0.2100 0.2145 0.2500 0.2170 0.1500 0.1350 0.5000 0.5344 0.5000 0.5000

0.1800 0.1562 0.2500 0.2461 0.2100 0.2100 0.1800 0.1562 0.5000 0.5332 0.1800 0.1655

0.1800 0.2323 0.2500 0.2513 0.3000 0.3100 0.1800 0.2323 0.5000 0.6065 0.1500 0.1500

0.1800 0.1851 0.2500 0.2433 0.2500 0.2500 0.1800 0.1851 1.0000 1.0527 0.5000 0.5300

0.1800 0.1498 0.2500 0.2531 0.2100 0.2120 0.1800 0.1498 0.1800 0.1832 0.1800 0.1800

Continued on Next Page. . .
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Continuation of Table D.1

Mancozeb Training Results THO Training Results

Actual ANN Predicted Actual SVR Predicted Actual RF Predicted Actual ANN Predicted Actual SVR Predicted Actual RF Predicted

0.1800 0.1772 0.2500 0.2458 0.3000 0.2975 0.1800 0.1772 0.1800 0.1508 0.1500 0.1500

0.5000 0.4475 0.3000 0.2975 0.2500 0.2500 0.5000 0.4475 0.1800 0.1374 0.5000 0.5750

0.5000 0.5046 0.3000 0.2664 0.2100 0.2173 0.5000 0.5046 0.5000 0.4853 0.1800 0.1800

0.5000 0.6067 0.3000 0.2833 0.3000 0.3000 0.5000 0.6067 0.5000 0.6402 0.1500 0.1545

0.0000 -0.0050 0.5000 0.4541 0.2500 0.2500 0.0000 -0.0050 0.5000 0.5019 0.5000 0.5063

0.0000 -0.0023 0.5000 0.4260 0.2100 0.2120 0.0000 -0.0023 0.5000 0.5002 0.1800 0.1800

0.0000 -0.0031 0.3000 0.3581 0.3000 0.3000 0.0000 -0.0031 0.0000 0.1674 0.1500 0.1440

Continued on Next Page. . .
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Continuation of Table D.1

Mancozeb Training Results THO Training Results

Actual ANN Predicted Actual SVR Predicted Actual RF Predicted Actual ANN Predicted Actual SVR Predicted Actual RF Predicted

0.0100 0.0165 0.3000 0.3382 0.2500 0.2500 0.0100 0.0165 0.0000 -0.0656 0.5000 0.5000

0.0300 0.0359 0.3000 0.2988 0.2100 0.2100 0.0300 0.0359 0.0000 -0.0249 0.1800 0.1800

0.0300 0.0445 0.3000 0.3413 0.3000 0.3000 0.0300 0.0445 0.0100 0.0427 0.1500 0.1500

0.0600 0.0721 0.5000 0.5015 0.2500 0.2480 0.0600 0.0721 0.0100 0.0459 0.5000 0.5500

0.0600 0.0460 0.2100 0.2140 0.2100 0.2100 0.0600 0.0460 0.0100 0.0824 0.1800 0.1770

0.1500 0.1467 0.2100 0.1817 0.3000 0.3000 0.1500 0.1467 0.0300 0.0313 0.1500 0.1500

0.1500 0.1551 0.2500 0.2667 0.2500 0.2500 0.1500 0.1551 0.0300 0.0894 0.5000 0.5000

Continued on Next Page. . .
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Continuation of Table D.1

Mancozeb Training Results THO Training Results

Actual ANN Predicted Actual SVR Predicted Actual RF Predicted Actual ANN Predicted Actual SVR Predicted Actual RF Predicted

0.1500 0.1355 0.2500 0.2477 0.2100 0.2265 0.1500 0.1355 0.0300 0.0617 0.1800 0.1800

0.1500 0.1246 0.2500 0.2174 0.3000 0.2740 0.1500 0.1246 0.0300 0.0366 0.1500 0.1295

0.0000 0.0264 0.3000 0.2918 0.2500 0.2480 0.0000 0.0264 0.0300 0.0310 0.5000 0.5000

0.0100 0.0243 0.0000 0.0645 0.2100 0.2100 0.0100 0.0243 0.0600 0.0293 0.1800 0.1785

0.0100 0.0052 0.0000 0.0081 0.3000 0.3100 0.0100 0.0052 0.0600 0.0432 0.1500 0.1500

0.0300 0.0353 0.0000 0.0282 0.2500 0.2612 0.0300 0.0353 0.0600 0.0853 0.5000 0.5100

0.0000 0.0093 0.0100 0.0457 0.2100 0.2100 0.0000 0.0093 0.0600 0.0709 0.1800 0.1800
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Continuation of Table D.1

Mancozeb Training Results THO Training Results

Actual ANN Predicted Actual SVR Predicted Actual RF Predicted Actual ANN Predicted Actual SVR Predicted Actual RF Predicted

0.0100 0.0451 0.0100 0.0218 0.3000 0.3200 0.0100 0.0451 0.1500 0.2226 0.1500 0.1500

0.0100 0.0154 0.0100 0.0526 0.2500 0.2500 0.0100 0.0154 0.1500 0.1479 0.5000 0.5000

0.0300 0.0403 0.0400 0.0473 0.2100 0.2100 0.0300 0.0403 0.1500 0.1477 0.1800 0.1800

0.0300 0.0412 0.0400 0.0628 0.5000 0.4750 0.0300 0.0412 0.1500 0.1557 0.1500 0.1500

0.0300 0.0357 0.0400 0.0458 0.2500 0.2500 0.0300 0.0357 0.1800 0.2031 1.0000 0.9000

0.0000 -0.0135 0.0400 0.0437 0.2100 0.2030 0.0000 -0.0135 0.1800 0.1739 0.1800 0.1740

0.0100 0.0249 0.0400 0.0471 0.5000 0.4800 0.0100 0.0249 0.1800 0.1561 0.1500 0.1500

Continued on Next Page. . .
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Continuation of Table D.1

Mancozeb Training Results THO Training Results

Actual ANN Predicted Actual SVR Predicted Actual RF Predicted Actual ANN Predicted Actual SVR Predicted Actual RF Predicted

0.0300 0.0310 0.0700 0.0890 0.2500 0.2550 0.0300 0.0310 0.1800 0.1660 1.0000 1.0000

0.0300 0.0411 0.0700 0.0830 0.2100 0.2120 0.0300 0.0411 0.1800 0.1644 0.1800 0.1780

0.0300 0.0393 0.0700 0.0702 0.5000 0.5000 0.0300 0.0393 0.5000 0.4862 0.1500 0.1500

0.0300 0.0260 0.0700 0.0824 0.3000 0.2805 0.0300 0.0260 0.5000 0.4441 1.0000 0.9500

0.0300 0.0253 0.2100 0.2074 0.2500 0.2340 0.0300 0.0253 0.5000 0.4551 0.5000 0.5000

0.0600 0.0792 0.2100 0.2139 0.5000 0.4900 0.0600 0.0792 1.0000 0.9902 0.1800 0.1665

Continued on Next Page. . .
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Continuation of Table D.1

Mancozeb Training Results THO Training Results

Actual ANN Predicted Actual SVR Predicted Actual RF Predicted Actual ANN Predicted Actual SVR Predicted Actual RF Predicted

0.0600 0.0552 0.2100 0.2048 0.3000 0.3000 0.0600 0.0552 1.0000 0.9171 1.0000 0.7750
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APPENDIX FIVE
Models Performance on Testing Sets

Table E.1: Models performance on testing sets

Mancozeb Testing Results THO Testing Results

Actual ANN Predicted SVR Predicted RF Predicted Actual ANN Predicted SVR Predicted RF Predicted

0.0000 0.0016 0.0146 0.0015 0.0000 0.0045 0.0179 0.0015

0.0000 0.0018 -0.0146 0.0005 0.0000 0.0045 -0.0333 0.0000

0.0000 0.0007 -0.0106 0.0000 0.0000 0.0047 -0.0110 0.0000

0.0000 0.0068 0.0021 0.0020 0.0000 0.0062 -0.0078 0.0005

0.0000 -0.0006 0.0202 0.0035 0.0000 0.0044 0.0342 0.0025

0.0100 0.0093 0.0106 0.0100 0.0100 0.0051 0.0235 0.0095

0.0100 0.0053 0.0133 0.0100 0.0100 0.0055 0.0480 0.0095
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Continuation of Table E.1

Mancozeb Testing Results THO Testing Results

Actual ANN Predicted SVR Predicted RF Predicted Actual ANN Predicted SVR Predicted RF Predicted

0.0100 0.0092 0.0114 0.0100 0.0100 0.0062 0.0264 0.0100

0.0100 0.0132 0.0211 0.0100 0.0100 0.0070 0.0419 0.0100

0.0100 0.0269 0.0235 0.0110 0.0100 0.0298 0.0205 0.0075

0.0100 0.0260 0.0246 0.0115 0.0100 0.0127 0.0279 0.0095

0.0100 0.0122 0.0159 0.0390 0.0100 0.0061 0.0354 0.0170

0.0100 0.0159 0.0086 0.0115 0.0100 0.0090 0.0179 0.0100

0.0100 0.0167 -0.0018 0.0115 0.0100 0.0143 -0.0158 0.0100

0.0100 0.0135 0.0141 0.0115 0.0100 0.0063 0.0070 0.0100

0.0400 0.0372 0.0482 0.0400 0.0300 0.0291 0.0501 0.0300

Continued on Next Page. . .
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Continuation of Table E.1

Mancozeb Testing Results THO Testing Results

Actual ANN Predicted SVR Predicted RF Predicted Actual ANN Predicted SVR Predicted RF Predicted

0.0400 0.0362 0.0445 0.0400 0.0300 0.0297 0.0440 0.0300

0.0400 0.0362 0.0456 0.0400 0.0300 0.0273 0.0521 0.0300

0.0400 0.0431 0.0440 0.0400 0.0300 0.0332 0.0267 0.0300

0.0400 0.0373 0.0433 0.0400 0.0300 0.0314 0.0358 0.0300

0.0700 0.0773 0.0917 0.1405 0.0600 0.0627 0.0667 0.1120

0.0700 0.0598 0.0647 0.0700 0.0600 0.0522 0.0717 0.0600

0.0700 0.0674 0.0706 0.0700 0.0600 0.0552 0.0798 0.0600

0.0700 0.0973 0.0937 0.0640 0.0600 0.0503 0.1171 0.0600

0.0700 0.0759 0.0707 0.0815 0.0600 0.0634 0.0439 0.0600

Continued on Next Page. . .
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Continuation of Table E.1

Mancozeb Testing Results THO Testing Results

Actual ANN Predicted SVR Predicted RF Predicted Actual ANN Predicted SVR Predicted RF Predicted

0.0700 0.0651 0.0606 0.0700 0.0600 0.0625 0.0442 0.0600

0.0700 0.0590 0.0583 0.0721 0.0600 0.0493 0.0444 0.0600

0.0700 0.0680 0.0705 0.0700 0.0600 0.0572 0.0726 0.0600

0.0700 0.1195 0.1027 0.0640 0.0600 0.0816 0.0940 0.0600

0.0700 0.0927 0.0828 0.0640 0.0600 0.0763 0.0724 0.0600

0.0700 0.1180 0.0980 0.0760 0.0600 0.0801 0.0919 0.0600

0.2100 0.2194 0.2147 0.2100 0.1500 0.1485 0.1661 0.1500

0.2100 0.2041 0.2150 0.2100 0.1500 0.1514 0.1512 0.1500

0.2100 0.2088 0.2036 0.2100 0.1500 0.1485 0.1413 0.1500

Continued on Next Page. . .
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Continuation of Table E.1

Mancozeb Testing Results THO Testing Results

Actual ANN Predicted SVR Predicted RF Predicted Actual ANN Predicted SVR Predicted RF Predicted

0.2100 0.2040 0.1919 0.2100 0.1500 0.1477 0.1210 0.1500

0.2100 0.2091 0.2230 0.2185 0.1500 0.1543 0.1537 0.1515

0.2100 0.2135 0.2185 0.2100 0.1500 0.1508 0.1573 0.1500

0.2100 0.2105 0.2054 0.2100 0.1500 0.1453 0.1564 0.1500

0.2500 0.2292 0.2237 0.2500 0.1800 0.1737 0.1324 0.1680

0.2500 0.2381 0.2474 0.2375 0.1800 0.1745 0.1557 0.1800

0.2500 0.2493 0.2550 0.2500 0.1800 0.1785 0.1750 0.1800

0.2500 0.2519 0.2382 0.2500 0.1800 0.1715 0.1511 0.1800

0.2500 0.2739 0.2700 0.2500 0.1800 0.1933 0.2253 0.1800

Continued on Next Page. . .
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Continuation of Table E.1

Mancozeb Testing Results THO Testing Results

Actual ANN Predicted SVR Predicted RF Predicted Actual ANN Predicted SVR Predicted RF Predicted

0.2500 0.2863 0.2902 0.2500 0.1800 0.1826 0.2359 0.1800

0.2500 0.2411 0.2519 0.2500 0.1800 0.1832 0.1664 0.1800

0.2500 0.2036 0.1980 0.1410 0.1800 0.1590 0.1038 0.1190

0.2500 0.1976 0.1835 0.1410 0.1800 0.1586 0.0925 0.0980

0.3000 0.2881 0.2884 0.3000 0.5000 0.4904 0.4535 0.5000

0.3000 0.3333 0.3394 0.3100 0.5000 0.6247 0.5391 0.5000

0.3000 0.2724 0.2603 0.2861 0.5000 0.4121 0.4130 0.5000

0.5000 0.3314 0.4215 0.4306 1.0000 0.8293 0.8414 1.0000

0.5000 0.2843 0.3716 0.4306 1.0000 0.6124 0.7190 1.0000

Continued on Next Page. . .
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Continuation of Table E.1

Mancozeb Testing Results THO Testing Results

Actual ANN Predicted SVR Predicted RF Predicted Actual ANN Predicted SVR Predicted RF Predicted

0.5000 0.5454 0.5713 0.3600 1.0000 1.0481 1.3974 1.0000

0.5000 0.4795 0.4795 0.3896 1.0000 1.0342 0.9789 1.0000

0.5000 0.5326 0.5265 0.4550 1.0000 1.1347 1.0901 1.0000

0.5000 0.5103 0.5011 0.4250 1.0000 0.9898 1.0065 1.0000

0.5000 0.4348 0.4805 0.4250 1.0000 0.9213 0.9835 1.0000

0.5000 0.5477 0.5291 0.4300 1.0000 1.0025 1.0942 1.0000

0.5000 0.3646 0.4128 0.3846 1.0000 0.8549 0.8118 1.0000
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APPENDIX SIX
R Machine Learning Code Used

# simple function for plotting and pre-processing DRS spectra

# Author: Ndung’u Ndegwa Charles

rm(list = ls())

library(squash)

library(Hmisc)

par(mfrow=c(1,1))

#Create a plot function:

ndungu_plot<-function(mydata, wavelengths, xlim, ylim,main,ylab){

#Create color map:

map <- makecmap(as.numeric(mydata$label),n = 2, breaks = pretty,

symm = FALSE, base = NA,

colFn = colorRampPalette(c(’red’,’green’,’blue’)),

col.na = NA,

right = FALSE, include.lowest = FALSE)

mycol <- cmap(mydata$label, map = map)

par(font=2,las=1,mar = c(5,4,4,10) + 0.1)

#Plot spectra:

matplot(wavelengths,t(mydata$DRS),font.axis=2,

col=mycol,lty=1, xlab="",ylab="",type="l",lwd=3,

xlim=xlim, ylim=ylim,main=main)
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minor.tick(nx=2, ny=2,tick.ratio=0.75)

par(mar = c(5,4,4,6) + 0.1)

title(xlab="Wavelength␣(nm)",ylab=ylab,font.lab=2)

#Plot color map:

vkey(map, title = "Key",stretch=2.4, side=2, skip=2,

x=1100,y=min(ylim))

}

#Define plot limits:

xlim<-c(400,900)

ylim<-c(0,1)

main<- ""

ylab<- ""

## Some EDA ON the RAW Spectra

#setwd("˜/data ")

## we need to normalise the data to get rid of the negative

�→ reflectance

# values before converting to apparent absorbance.

#Flatten or squash a list of lists into a simpler vector

#dealing with negative values and normalizing absorbance spectra
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library(pavo)

set.seed(12345)

spec <- read.csv("˜␣data/spectra.csv")

#spec<- t(spec)

#write.csv(spec,"spectra.csv")

### Now we interpolate the data in 1-nm bins and

### convert the data to an rspec object

spec <- as.rspec(spec)

# wavelengths found in column 1

# The spectral data contain 3961 negative value(s),

# which may produce unexpected results if used in models.

# Consider using procspec() to correct them.

is.rspec(spec)

par(mfrow=c(1,1))

plot(spec)

testspecs1 <- spec

###### We need to get rid of the

###### low SNR areas of spectra

par(mfrow=c(1,1))

plot(testspecs1, select = 2, ylim = c(-10, 60))

abline(h = 0, lty = 3)
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## Looks much better now by using the range between

# 400-900 nm

testspecs <- as.rspec(testspecs1, lim = c(400, 900))

plot(testspecs, select = 2, ylim = c(-10, 50))

abline(h = 0, lty = 3)

#testspecs1 <-t(testspecs)

#write.csv(testspecs1,"trans_binned_spectra.csv")

## we can now convert the data to absorbance

spectra<- read.csv("spectra.csv",

sep=",",dec=".",header=TRUE)

spectra[1:10,1:5]

spectra$label<-spectra$wl

mydata <- data.frame(label=I(spectra$label),

#samples=I(spectra$samples),

DRS = I(spectra[2:ncol(spectra)]))

#Retrieve wavelength numbers from colomn names:

wavelengths<-substring(colnames(mydata$DRS),2,7)
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wavelengths<-as.numeric(wavelengths)

#Sort the data by decreasing SN values:

mydata<-mydata[order(mydata$label, decreasing = TRUE),]

#plot the raw data

ndungu_plot(mydata, wavelengths, xlim, ylim =c(0,60),

main = "Raw␣DRS␣spectra",ylab = "Reflectance␣(%)")

# Function to convert reflectance to absorbance using log10(1/R)

Absorb<-function(spectra){

spectra<-as.matrix(spectra)

spect_Absorb <- log10(1/spectra)

return(spect_Absorb)}

#Perform conversion

newspectra<-Absorb(mydata$DRS)

mydataAbsorb <- data.frame(label=I(mydata$label),

DRS = I(newspectra))

#Plot new spectra:
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ndungu_plot(mydataAbsorb, wavelengths, xlim, ylim = c(-2,-0.6),

main = "Absorbance␣from␣reflectance",ylab = "Log10␣(1/R)")

#mydataAbsorb <- as.data.frame(t(mydataAbsorb))

#write.csv(mydataAbsorb,"Absorb_trans_data.csv")

rm(newspectra)

# Start preprocessing the new absorbance spectra

# start by converting it to pavo object

library(pavo)

spec <- read.csv("data.csv")

spec <- as.rspec(spec)

# wavelengths found in column 1

# The spectral data contain 284067 negative value(s),

# which may produce unexpected results if used in models.

# Consider using procspec() to correct them.

is.rspec(spec)

par(mfrow=c(1,1))

plot(spec)
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testspecs <- spec

par(mfrow=c(1,1))

# Now we can Apply two different processing options

testspecs.fix1 <- procspec(testspecs, fixneg = "addmin")

testspecs.fix2 <- procspec(testspecs, fixneg = "zero")

# Plot it

par(mfrow=c(1,1))

par(mar = c(2, 2, 2, 2), oma = c(3, 3, 0, 0))

layout(cbind(c(1, 1), c(2, 3)), widths = c(2, 1, 1))

plot(testspecs, select = 2, ylim = c(-1.7, -1))

abline(h = 0, lty = 3)

plot(testspecs.fix1, select = 2, ylim = c(-0.1, .6))

abline(h = 0, lty = 3)

plot(testspecs.fix2, select = 2, ylim = c(-0.1, .6))

abline(h = 0, lty = 3)

mtext("Wavelength␣(nm)", side = 1, outer = TRUE, line = 1)

mtext("Log10(1/R)", side = 2, outer = TRUE, line = 1)

par(mfrow=c(1,1))
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# Normalizing and Smoothing Spectra

# use the plotsmooth() function to determine a suitable smoothing

�→ parameter (span). This function

# allows you to set a minimum and maximum smoothing parameter to

�→ try and plots the resulting curves against

# the unsmoothed (raw) data in a convenient multipanel figure.-

sppspec <- testspecs.fix1

plotsmooth(sppspec, minsmooth = 0.01, maxsmooth = 0.07,

curves = 5,specnum = "5",ask = FALSE)

##From the resulting plot, we can see that span = 0.07 is the

�→ minimum amount of smoothing to remove spectral noise

# while preserving the original spectral shape. Based on this

�→ value, we will now use the opt argument in procspec()

# to smooth data for further plotting and analysis.

par(mfrow=c(1,1))

spec.sm <- procspec(sppspec, opt = "smooth", span = 0.07)

plot(sppspec[, 5] ˜ sppspec[, 1],

type = "l",

lwd = 10,

col = "grey",xlab = "Wavelength␣(nm)",ylab = "Log10(1/R)",

main="Smoothing␣with␣0.07␣pan")
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mtext("Wavelength␣(nm)", side = 1, outer = TRUE, line = 1)

mtext("Log10(1/R)", side = 2, outer = TRUE, line = 1)

par(mfrow=c(1,1))

lines(spec.sm[, 5] ˜ sppspec[, 1], col = "red",lwd = 2)

##We can also try different normalisations. Options include

�→ subtracting the minimum Log (1/R) of a spectrum at

# all wavelengths (effectively making the minimum Log (1/R) equal

�→ to zero, opt = "min", left panel, below) and

# making the Log (1/R) at all wavelength proportional to the

�→ maximum Log (1/R) (i.e. setting maximum Log (1/R)

# to 1; opt = "max", centre panel, below). Note that the user can

�→ specify multiple processing options that will be

# applied sequentially to the spectral data by procspec() (right

�→ panel, below).

# Run some different normalisations

specs.max <- procspec(spec.sm, opt = "max")

specs.min <- procspec(spec.sm, opt = "min")

specs.str <- procspec(spec.sm, opt = c("min", "max")) # multiple

�→ options
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# Plot results

par(mfrow = c(1, 3), mar = c(2, 2, 2, 2), oma = c(3, 3, 0, 0))

plot(specs.min[, 5] ˜ c(400:900), xlab = "", ylab = "", type = "l"

�→ )

abline(h = 0, lty = 2)

plot(specs.max[, 5] ˜ c(400:900), ylim = c(0, 1),

xlab = "", ylab = "", type = "l")

abline(h = c(0, 1), lty = 2)

plot(specs.str[, 4] ˜ c(400:900), type = "l", xlab = "", ylab = ""

�→ )

abline(h = c(0, 1), lty = 2)

mtext("Wavelength␣(nm)", side = 1, outer = TRUE, line = 1)

mtext("Normalised␣Log␣(1/R)", side = 2, outer = TRUE, line = 1)

par(mfrow=c(1,1))

# write.csv(specs.str,"cleaned_drs_absorbance_data.csv")

# specs.str1<-t(specs.str)

# write.csv(specs.str1,"cleaned_trans_drs_absorbance_data.csv")
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## more preprocessing of absorbance spectra

spectra<- read.csv("cleaned_trans_drs_absorbance_data.csv",

sep=",",dec=".",header=TRUE)

spectra[1:10,1:5]

spectra$label<-spectra$wl

mydata <- data.frame(label=I(spectra$label),

#samples=I(spectra$samples),

DRS = I(spectra[2:ncol(spectra)]))

#Retrieve wavelength numbers from colomn names:

wavelengths<-substring(colnames(mydata$DRS),2,7)

wavelengths<-as.numeric(wavelengths)

#Sort the data by decreasing SN values:

mydata<-mydata[order(mydata$label, decreasing = FALSE),]

#plot the raw data

ndungu_plot(mydata, wavelengths, xlim, ylim =c(-0.05,1.1),

main = "DRS␣Absorbance␣Spectra",ylab = "Log10␣(1/R)␣␣a.u.")

#Create smoothing function:
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SmoothFast<-function(Spectra,windowsize){

#Create smoothing matrix:

Mat<-matrix(0,length((windowsize+1):(ncol(Spectra)-windowsize)),2*

�→ windowsize+1)

for(j in 1:nrow(Mat)){Mat[j,]<-seq(j,j+2*windowsize,1)}

#Smoothing spectra using matrix operations:

newspectra<-matrix(0,nrow(Spectra),

length((windowsize+1):(ncol(Spectra)-windowsize)))

for(i in 1:nrow(Mat)){newspectra[,i]<-apply(Spectra[,Mat[i,]],1,

�→ mean)}

#Add front and end tails (not smoothed):

fronttail<-newspectra[,1]

endtail<-newspectra[,ncol(newspectra)]

for(k in 1:(windowsize-1)){fronttail<-data.frame(fronttail,

�→ newspectra[,1])

endtail<-data.frame(endtail,newspectra[,ncol(newspectra)])}

newspectra<-data.frame(fronttail,newspectra,endtail)

return(newspectra)}

#Apply smoothing function:

newspectra<-SmoothFast(mydata$DRS,windowsize=3)
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mydataSmooth <- data.frame(label=I(mydata$label),

DRS = I(newspectra))

rm(newspectra)

#Plot smoothed spectra:

ndungu_plot(mydataSmooth, wavelengths, xlim, ylim =c(-0.05,1.1),

main = "Moving␣Average",ylab = "Log␣(1/R)␣␣a.u")

library(signal)

#Apply Savitzky-Golay smoothing to all spectra:

newspectra<-apply(mydata$DRS,1,

FUN=sgolayfilt,

p = 2,

n = 3,

m = 0,

ts = 1)

#Create new data frame:

mydataSmoothSG<-data.frame(label=I(mydata$label),

DRS = I(t(newspectra)))

rm(newspectra)

#Plot spectra:
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ndungu_plot(mydataSmoothSG, wavelengths, xlim, ylim =c(-0.2,1.1),

main = "Savitzky-Golay",ylab = "Log␣(1/R)␣␣a.u")

#Create SNV function:

SNV<-function(spectra){

spectra<-as.matrix(spectra)

spectrat<-t(spectra)

spectrat_snv<-scale(spectrat,center=TRUE,scale=TRUE)

spectra_snv<-t(spectrat_snv)

return(spectra_snv)}

#Perform SNV:

newspectra<-SNV(mydata$DRS)

mydataSNV<-data.frame(label=I(mydata$label), DRS = I(newspectra))

rm(newspectra)

#Plot new spectra:

ndungu_plot(mydataSNV, wavelengths, xlim, ylim = c(-2,2),

main = "SNV␣detrend",ylab = "")

# Baseline removal

library(hyperSpec)
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#Convert mydata to an hyperSpec S4 object:

mydataHS<-new("hyperSpec", spc = as.matrix(mydata$DRS))

#,

#wavelength = wavelengths)

#Compute baselines using order 2 polynomials:

baseline<-spc.fit.poly.below(fit.to = mydataHS, poly.order = 3)

mybaseline<-data.frame(label=I(mydata$label),

DRS = I(baseline@data$spc))

#Plot baseline:

ndungu_plot(mybaseline, wavelengths, xlim, ylim = c(-0.1,1),

main = "Baselines",ylab = "")

#Baseline removal:

newspectra<-mydataHS@data$spc-baseline@data$spc

mydataBSL<-data.frame(label=I(mydata$label),

DRS = I(newspectra))

rm(newspectra)

#Plot new spectra:

ndungu_plot(mydataBSL, wavelengths, xlim, ylim = c(0,.6),
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main = "Baseline␣Removal",ylab = "Log␣(1/R)␣␣a.u")

# Perform MSC correction:

library(pls)

newspectra<-msc(as.matrix(mydata$DRS))

mydataMSC<-data.frame(label=I(mydata$label),

DRS = I(newspectra))

rm(newspectra)

#Plot new spectra:

ndungu_plot(mydataMSC, wavelengths, xlim, ylim = c(-0.2,1.1),

main = "MSC",ylab = "Log␣10␣(1/R)␣␣a.u")

#Compute the first derivative for all spectra:

newspectra<-apply(mydata$DRS, 1,

FUN=sgolayfilt,

p = 2,

n = 5,

m = 1,

ts = 1)
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mydataDERIV1<-data.frame(label=I(mydata$label),

DRS = I(t(newspectra)))

rm(newspectra)

#Plot new spectra:

ndungu_plot(mydataDERIV1, wavelengths, xlim, ylim = c(-0.02,.02),

main = "First␣derivative",ylab = "A.U")

#Compute the second derivative for all spectra:

newspectra<-apply(mydata$DRS, 1,

FUN=sgolayfilt,

p = 2,

n = 5,

m = 2,

ts = 1)

mydataDERIV2<-data.frame(label=I(mydata$label),

DRS = I(t(newspectra)))

rm(newspectra)

#Plot new spectra:

ndungu_plot(mydataDERIV2, wavelengths, xlim, ylim = c(-0.002,.002),

�→
main = "Second␣derivative",ylab = "")
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### pca using chemospec

rm(list = ls())

suppressMessages(library(ChemoSpec))

#

#MSCdata <- as.data.frame(t(t(mydataMSC)))

#MSCdata<-t(mydataMSC)

#str(MSCdata)

#write.csv(MSCdata,"msc_data.csv")

setwd("pca␣2021")

spec <- matrix2SpectraObject(gr.crit = c("cs","bf","m72"),

gr.cols = c(’green’,’red’,’blue’),

freq.unit = "Wavelength␣[nm]",

int.unit = "Log10␣(1/R)␣a.u",

descrip = "drs␣Spectra",

in.file = "msc_data.csv",

out.file = "",

chk = TRUE, sep = ",", dec = ".")

# Summarizing the data

sumSpectra(spec)
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# Plotting the full EDXRF spectra

plotSpectra(spec,

main = "MSC␣Spectra",

which = c(1:547),

yrange = c(-0.05,1.25),

offset = 0.0001,

lab.pos = 9000,

showGrid = F,

leg.loc = "topright")

# Feature selections

# VIS spectra #

VISspec <- removeFreq(spec,

rem.freq = spec$freq > 600| spec$freq < 500)

# Plotting the spectra

plotSpectra(VISspec,

main = "VIS␣MSC␣Spectra",

which = c(1:547),

yrange = c(0,1.2),

offset = 0,

lab.pos = 5000,

showGrid = F,

leg.loc = "topright")

# NIR spectra #
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NIRspec <- removeFreq(spec,

rem.freq = spec$freq > 900| spec$freq < 750)

# Plotting the spectra

plotSpectra(NIRspec,

main = "NIR␣MSC␣Spectra",

which = c(1:547),

yrange = c(-0.01,0.1),

offset = 0,

lab.pos = 10,

showGrid = F,

leg.loc = "topleft")

# NORMALIZING THE SPECTRA #

VISspec<-normSpectra(VISspec)

NIRspec<-normSpectra(NIRspec)

# PCA analysis of the VIS spectras #

VISpca<-c_pcaSpectra(VISspec,

choice = "autoscale",

cent = T)
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plotScores(VISspec,

VISpca,

main ="VIS␣Spectra",

pcs = c(1,2),

ellipse = "none",

tol = "none",

leg.loc ="right")

# tol = 0.05)

abline(v=0,h=0)

cv_pcaSpectra(VISspec,

pcs = 5)

plotLoadings(VISspec,

VISpca,

main = "VIS␣Spectra",

loads = c(1, 2),

ref = 91,

tol = "none")

plot2Loadings(VISspec,

VISpca,

main = "VIS␣Spectra",

loads = c(1, 2),

ref = 91,

tol = "none")
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sPlotSpectra( VISspec,

VISpca,

pc = 1,

tol = 0.001,

main = "VIS␣Spectra")

# To check pca outliers

diagnostics <- pcaDiag(VISspec,

VISpca,

pcs = 3,

quantile = 0.916,

plot = "SD")

# Scree plot

plot(VISpca, type = "l")

plotScree(VISpca, style = "alt",

main = "VIS␣Spectra")

# PCA analysis of the NIR spectras ##

NIRpca<-c_pcaSpectra(NIRspec,

choice = "autoscale")

#cent = T)
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plotScores(NIRspec,

NIRpca,

main ="NIR␣Spectra",

pcs = c(1,2),

ellipse = "none",

tol = "none",

leg.loc ="topright")

# tol = 0.05)

abline(v=0,h=0)

cv_pcaSpectra(NIRspec,

pcs = 5)

plotLoadings(NIRspec,

NIRpca,

main = "NIR␣Spectra",

loads = c(1, 2),

ref = 91,

tol = "none")

plot2Loadings(NIRspec,

NIRpca,

main = "NIR␣Spectra",

loads = c(1, 2),

ref = 91,
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tol = "none")

sPlotSpectra( NIRspec,

NIRpca,

pc = 1,

tol = 0.001,

main = "NIR␣Spectra")

# To check pca outliers

diagnostics <- pcaDiag(NIRspec,

NIRpca,

pcs = 1,

quantile = 0.999,

plot = "SD",

use.sym = F)

diagnostics <- pcaDiag(NIRspec,

NIRpca,

pcs = 1,

quantile = .999,

plot = "OD",

use.sym = F)

#$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

#$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

#$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

########## find outliers based on Sdist##############
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x<- as.data.frame(diagnostics[["SDist"]])

y<-as.data.frame(as.factor(spec[["names"]]))

library(dplyr)

s<-bind_cols(x,y)

#write.csv(s,"/home/ndungu/Desktop/pca journal data analysis/s.

�→ csv")

# Scree plot

plot(NIRpca, type = "l")

plotScree(NIRpca, style = "alt",

main = "VIS␣Spectra")

#### Extract the first 10 PC scores for modeling

# PCA_scores1<-as.data.frame(NIRpca[["x"]])

# PCA_scores<-as.data.frame(PCA_scores1[,1:10])

# data_labels <-as.data.frame(spec[["groups"]])

#

#

#

# library(dplyr)
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# PCA_data <- bind_cols(groups=data_labels,PCA_scores)

# write.csv(PCA_data,"pcadata.csv")

# #--------------------- machine learning using pca data

�→ --------------------------

rm(list = ls())

# import data

pcadata <- read.csv("pcadata.csv")

# use mlbench, caret and DT library, please make sure they are

�→ already installed

require(mlbench)

require(caret)

require(DT)

m<-c("nnet","svmLinear","rf")

length(m); m;

# pre-load all packages (does not really work due to other

�→ dependencies)
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suppressPackageStartupMessages(ll <-lapply(m, require, character.

�→ only = TRUE))

# show which libraries were loaded

sessionInfo()

# load X and Y (this will be transferred to to train function)

X <- pcadata[,2:4]

Y <-pcadata$spec...groups...

# register parallel front-end

library(doParallel); cl <- makeCluster(detectCores());

�→ registerDoParallel(cl)

# this is required otherwise the first method is benchmarked

�→ wrong

warmup <-train(y=Y, x=X, "rf",

trControl = trainControl(method = "boot632"))

# this setup actually calls the caret::train function, in order

�→ to provide

# minimal error handling this type of construct is needed.

trainCall <- function(i)

{

cat("----------------------------------------------------","\n");
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set.seed(123); cat(i,"␣<-␣loaded\n");

return(tryCatch(

t2 <- train(y=Y, x=X, (i), trControl = trainControl(method = "

�→ boot632")),

error=function(e) NULL))

}

# use lapply/loop to run everything, required for try/catch error

�→ function to work

system.time(t2 <- lapply(m, trainCall))

#remove NULL values, we only allow succesful methods, provenance

�→ is deleted.

t2 <- t2[!sapply(t2, is.null)]

# extract the neural net model

t2[[1]]

mod1<-t2[[1]]$finalModel

mod1

# print confusion matrix example

caret::confusionMatrix(t2[[1]])

a<-varImp(t2[[1]], scale = FALSE)
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a$importance[1:3,]

## calculate the ROC for each class

nnet_imp <- filterVarImp(x = pcadata[,2:6], y=pcadata$spec...

�→ groups...)

head(nnet_imp)

plot(nnet_imp, top = 5,

main = "neural␣net␣model␣-␣Variable␣Importance")

# extract the Support Vector Machines with Linear Kernel

t2[[2]]

mod2<-t2[[2]]$finalModel

mod2

# print confusion matrix example

caret::confusionMatrix(t2[[2]],"none")

a<-varImp(t2[[2]], scale = FALSE)
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a$importance[1:3,]

## calculate the ROC for each class

svm_imp <- varImp(t2[[2]], scale = FALSE)

svm_imp

plot(svm_imp, top = 3,

main = "SVM␣model␣-␣Variable␣Importance")

# extract the Random Forest

t2[[3]]

mod3<-t2[[3]]$finalModel

mod3

# print confusion matrix example

caret::confusionMatrix(t2[[3]],"none")

#### calculate the ROC for each class

rf_imp <- varImp(t2[[3]], scale = FALSE)

rf_imp
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plot(rf_imp, top = 3,

main = "RF␣model␣-␣Variable␣Importance")

# this setup extracts the results with minimal error handling

printCall <- function(i)

{

return(tryCatch(

{

cat(sprintf("%-22s",(m[i])))

cat(round(getTrainPerf(t2[[i]])$TrainAccuracy,4),"\t")

cat(round(getTrainPerf(t2[[i]])$TrainKappa,4),"\t")

cat(t2[[i]]$times$everything[3],"\n")},

error=function(e) NULL))

}

r2 <- lapply(1:length(t2), printCall)

# stop cluster and register sequntial front end

stopCluster(cl); registerDoSEQ();
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# preallocate data types

i = 1; MAX = length(t2);

x1 <- character() # Name

x2 <- numeric() # R2

x3 <- numeric() # RMSE

x4 <- numeric() # time [s]

x5 <- character() # long model name

# fill data and check indexes and NA with loop/lapply

for (i in 1:length(t2)) {

x1[i] <- t2[[i]]$method

x2[i] <- as.numeric(round(getTrainPerf(t2[[i]])$TrainAccuracy,4))

x3[i] <- as.numeric(round(getTrainPerf(t2[[i]])$TrainKappa,4))

x4[i] <- as.numeric(t2[[i]]$times$everything[3])

x5[i] <- t2[[i]]$modelInfo$label

}

# coerce to data frame

df1 <- data.frame(x1,x2,x3,x4,x5, stringsAsFactors=FALSE)

# print all results to R-GUI

df1

# plot models, just as example

# ggplot(t2[[1]])

# ggplot(t2[[1]])
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# call web output with correct column names

DT::datatable(df1, options = list(

columnDefs = list(list(className = ’dt-left’, targets = c

�→ (0,1,2,3,4,5))),

pageLength = MAX,

order = list(list(3, ’desc’))), # sort according to kappa value

colnames = c(’Num’, ’Name’, ’Accuracy’, ’Kappa’, ’time␣[s]’, ’

�→ Model␣name’),

caption = paste(’Classification␣results␣from␣caret␣models’,Sys.

�→ time()),

class = ’cell-border␣stripe’) %>%

formatRound(’x2’, 3) %>%

formatRound(’x3’, 3) %>%

formatRound(’x4’, 3) %>%

formatStyle(2,

background = styleColorBar(x2, ’steelblue’),

backgroundSize = ’100%␣90%’,

backgroundRepeat = ’no-repeat’,

backgroundPosition = ’center’

)

# compile models and compare perfomance if we use "ctrl1" or "

�→ ctrl2" in "tlabelontrol" parametres
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model_list <- list(ANN = t2[[1]],

SVM =t2[[2]],

RF = t2[[3]])

results <- resamples(model_list)

summary(results)

# boxplot comparing results

bwplot(results,

layout = c(3, 1)) # RMSE, MSE and R-squared

bwplot(results,

metric = "Accuracy",

main = "Comparing␣Algorithms␣accuracy␣")

bwplot(results,

metric = "Accuracy",

main = "Algorithms␣accuracy␣comparing",

xlim = c(0.7,1))

bwplot(results,

metric = "Kappa",

main = "Algorithms␣accuracy␣comparing",

xlim = c(0.75,.93))

169



registerDoSEQ()

### END

# ########################################

# # machine learning using raw data

rm(list = ls())

# import data

rawdata<-read.csv("msc_data1.csv")

# use mlbench, caret and DT library, please make sure they are

�→ already installed

require(mlbench)

require(caret)

require(DT)
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m<-c("nnet","svmLinear","rf")

length(m); m;

# pre-load all packages (does not really work due to other

�→ dependencies)

suppressPackageStartupMessages(ll <-lapply(m, require, character.

�→ only = TRUE))

# show which libraries were loaded

sessionInfo()

# load X and Y (this will be transferred to to train function)

X = rawdata[,2:152]

Y = rawdata$label

# register parallel front-end

library(doParallel); cl <- makeCluster(detectCores());

�→ registerDoParallel(cl)

# this is required otherwise the first method is benchmarked

�→ wrong
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warmup <-train(y=Y,

x=X,

"rf",

trControl = trainControl(method = "boot632"))

# this setup actually calls the caret::train function, in order

�→ to provide

# minimal error handling this type of construct is needed.

trainCall <- function(i)

{

cat("----------------------------------------------------","\n");

set.seed(123); cat(i,"␣<-␣loaded\n");

return(tryCatch(

t2 <- train(y=Y, x=X, (i), trControl = trainControl(method = "

�→ boot632")),

error=function(e) NULL))

}

# use lapply/loop to run everything, required for try/catch error

�→ function to work

system.time(t2 <- lapply(m, trainCall))

#remove NULL values, we only allow succesful methods, provenance

�→ is deleted.

t2 <- t2[!sapply(t2, is.null)]

172



# extract the neural net model

t2[[1]]

mod1<-t2[[1]]$finalModel

mod1

# print confusion matrix example

caret::confusionMatrix(t2[[1]])

a<-varImp(t2[[1]], scale = FALSE)

a$importance[1:20,]

## calculate the ROC for each class

nnet_imp <- filterVarImp(x = rawdata[,2:152], y=rawdata$label)

head(nnet_imp)

plot(nnet_imp, top = 10,

main = "neural␣net␣model␣-␣Variable␣Importance")

# extract the Support Vector Machines with Linear Kernel

t2[[2]]

mod2<-t2[[2]]$finalModel

mod2
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# print confusion matrix example

caret::confusionMatrix(t2[[2]],"none")

a<-varImp(t2[[2]], scale = FALSE)

a$importance[1:20,]

## calculate the ROC for each class

svm_imp <- varImp(t2[[2]], scale = FALSE)

svm_imp

plot(svm_imp, top = 10,

main = "SVM␣model␣-␣Variable␣Importance")

# extract the Random Forest

t2[[3]]

mod3<-t2[[3]]$finalModel
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mod3

# print confusion matrix example

caret::confusionMatrix(t2[[3]],"none")

## calculate the ROC for each class

rf_imp <- varImp(t2[[3]], scale = FALSE)

rf_imp

plot(rf_imp, top = 10,

main = "RF␣model␣-␣Variable␣Importance")

# this setup extracts the results with minimal error handling

printCall <- function(i)

{

return(tryCatch(

{

cat(sprintf("%-22s",(m[i])))

cat(round(getTrainPerf(t2[[i]])$TrainAccuracy,4),"\t")
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cat(round(getTrainPerf(t2[[i]])$TrainKappa,4),"\t")

cat(t2[[i]]$times$everything[3],"\n")},

error=function(e) NULL))

}

r2 <- lapply(1:length(t2), printCall)

# stop cluster and register sequntial front end

stopCluster(cl); registerDoSEQ();

# preallocate data types

i = 1; MAX = length(t2);

x1 <- character() # Name

x2 <- numeric() # R2

x3 <- numeric() # RMSE

x4 <- numeric() # time [s]

x5 <- character() # long model name

# fill data and check indexes and NA with loop/lapply

for (i in 1:length(t2)) {

x1[i] <- t2[[i]]$method

x2[i] <- as.numeric(round(getTrainPerf(t2[[i]])$TrainAccuracy,4))

x3[i] <- as.numeric(round(getTrainPerf(t2[[i]])$TrainKappa,4))

x4[i] <- as.numeric(t2[[i]]$times$everything[3])

x5[i] <- t2[[i]]$modelInfo$label

}
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# coerce to data frame

df1 <- data.frame(x1,x2,x3,x4,x5, stringsAsFactors=FALSE)

# print all results to R-GUI

df1

# plot models, just as example

# ggplot(t2[[1]])

# ggplot(t2[[1]])

# call web output with correct column names

DT::datatable(df1, options = list(

columnDefs = list(list(className = ’dt-left’, targets = c

�→ (0,1,2,3,4,5))),

pageLength = MAX,

order = list(list(3, ’desc’))), # sort according to kappa value

colnames = c(’Num’, ’Name’, ’Accuracy’, ’Kappa’, ’time␣[s]’, ’

�→ Model␣name’),

caption = paste(’Classification␣results␣from␣caret␣models’,Sys.

�→ time()),

class = ’cell-border␣stripe’) %>%

formatRound(’x2’, 3) %>%

formatRound(’x3’, 3) %>%

formatRound(’x4’, 3) %>%

formatStyle(2,
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background = styleColorBar(x2, ’steelblue’),

backgroundSize = ’100%␣90%’,

backgroundRepeat = ’no-repeat’,

backgroundPosition = ’center’

)

# compile models and compare perfomance if we use "ctrl1" or "

�→ ctrl2" in "tlabelontrol" parametres

model_list <- list(ANN = t2[[1]],

SVM =t2[[2]],

RF = t2[[3]])

results <- resamples(model_list)

summary(results)

# boxplot comparing results

bwplot(results,

layout = c(3, 1)) # RMSE, MSE and R-squared

bwplot(results,

metric = "Accuracy",

main = "Comparing␣Algorithms␣accuracy␣")
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bwplot(results,

metric = "Accuracy",

main = "Algorithms␣accuracy␣comparing",

xlim = c(0.7,1))

bwplot(results,

metric = "Kappa",

main = "Algorithms␣accuracy␣comparing",

xlim = c(0.75,.93))

registerDoSEQ()

### END

rm(list = ls())

# machine learning using Raw absorbance data without

�→ preprocessing

# import data

spec <- read.csv("Absorbance␣spectra.csv")
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# use mlbench, caret and DT library, please make sure they are

�→ already installed

require(mlbench)

require(caret)

require(DT)

m<-c("nnet","svmLinear","rf")

length(m); m;

# pre-load all packages (does not really work due to other

�→ dependencies)

suppressPackageStartupMessages(ll <-lapply(m, require, character.

�→ only = TRUE))

# show which libraries were loaded

sessionInfo()

# load X and Y (this will be transferred to to train function)

X = spec[,2:152]

Y=spec$label
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# register parallel front-end

library(doParallel); cl <- makeCluster(detectCores());

�→ registerDoParallel(cl)

# this is required otherwise the first method is benchmarked

�→ wrong

warmup <-train(y=Y,

x=X,

"rf",

trControl = trainControl(method = "boot632"))

# this setup actually calls the caret::train function, in order

�→ to provide

# minimal error handling this type of construct is needed.

trainCall <- function(i)

{

cat("----------------------------------------------------","\n");

set.seed(123); cat(i,"␣<-␣loaded\n");

return(tryCatch(

t2 <- train(y=Y, x=X, (i), trControl = trainControl(method = "

�→ boot632")),

error=function(e) NULL))

}
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# use lapply/loop to run everything, required for try/catch error

�→ function to work

system.time(t2 <- lapply(m, trainCall))

#remove NULL values, we only allow succesful methods, provenance

�→ is deleted.

t2 <- t2[!sapply(t2, is.null)]

t2

# extract the neural net model

t2[[1]]

mod1<-t2[[1]]$finalModel

mod1

# print confusion matrix example

caret::confusionMatrix(t2[[1]])

a<-varImp(t2[[1]], scale = FALSE)

a$importance[1:20,]

########## calculate the ROC for each class

nnet_imp <- filterVarImp(x = spec[,2:152], y=spec$label)

head(nnet_imp)
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plot(nnet_imp, top = 10,

main = "neural␣net␣model␣-␣Variable␣Importance")

# extract the Support Vector Machines with Linear Kernel

t2[[2]]

mod2<-t2[[2]]$finalModel

mod2

# print confusion matrix example

caret::confusionMatrix(t2[[2]],"none")

a<-varImp(t2[[2]], scale = FALSE)

a$importance[1:20,]

## calculate the ROC for each class

svm_imp <- varImp(t2[[2]], scale = FALSE)

svm_imp
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plot(svm_imp, top = 10,

main = "SVM␣model␣-␣Variable␣Importance")

# extract the Random Forest

t2[[3]]

mod3<-t2[[3]]$finalModel

mod3

# print confusion matrix example

caret::confusionMatrix(t2[[3]],"none")

### calculate the ROC for each class

rf_imp <- varImp(t2[[3]], scale = FALSE)

rf_imp

plot(rf_imp, top = 10,

main = "RF␣model␣-␣Variable␣Importance")
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# this setup extracts the results with minimal error handling

printCall <- function(i)

{

return(tryCatch(

{

cat(sprintf("%-22s",(m[i])))

cat(round(getTrainPerf(t2[[i]])$TrainAccuracy,4),"\t")

cat(round(getTrainPerf(t2[[i]])$TrainKappa,4),"\t")

cat(t2[[i]]$times$everything[3],"\n")},

error=function(e) NULL))

}

r2 <- lapply(1:length(t2), printCall)

# stop cluster and register sequntial front end

stopCluster(cl); registerDoSEQ();

# preallocate data types

i = 1; MAX = length(t2);

x1 <- character() # Name

x2 <- numeric() # R2

x3 <- numeric() # RMSE

x4 <- numeric() # time [s]
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x5 <- character() # long model name

# fill data and check indexes and NA with loop/lapply

for (i in 1:length(t2)) {

x1[i] <- t2[[i]]$method

x2[i] <- as.numeric(round(getTrainPerf(t2[[i]])$TrainAccuracy,4))

x3[i] <- as.numeric(round(getTrainPerf(t2[[i]])$TrainKappa,4))

x4[i] <- as.numeric(t2[[i]]$times$everything[3])

x5[i] <- t2[[i]]$modelInfo$label

}

# coerce to data frame

df1 <- data.frame(x1,x2,x3,x4,x5, stringsAsFactors=FALSE)

# print all results to R-GUI

df1

# plot models, just as example

#ggplot(t2[[1]])

#ggplot(t2[[2]])

# call web output with correct column names

DT::datatable(df1, options = list(

columnDefs = list(list(className = ’dt-left’,

targets = c(0,1,2,3,4,5))),

pageLength = MAX,
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order = list(list(3, ’desc’))), # sort according to kappa value

colnames = c(’Num’, ’Name’, ’Accuracy’, ’Kappa’, ’time␣[s]’, ’

�→ Model␣name’),

caption = paste(’Classification␣results␣from␣caret␣models’,Sys.

�→ time()),

class = ’cell-border␣stripe’) %>%

formatRound(’x2’, 3) %>%

formatRound(’x3’, 3) %>%

formatRound(’x4’, 3) %>%

formatStyle(2,

background = styleColorBar(x2, ’steelblue’),

backgroundSize = ’100%␣90%’,

backgroundRepeat = ’no-repeat’,

backgroundPosition = ’center’

)

# compile models and compare perfomance if we use "ctrl1" or "

�→ ctrl2" in "tlabelontrol" parametres

model_list <- list(ANN = t2[[1]],

SVM =t2[[2]],

RF = t2[[3]])

results <- resamples(model_list)

summary(results)
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# boxplot comparing results

bwplot(results,

layout = c(3, 1)) # RMSE, MSE and R-squared

bwplot(results,

metric = "Accuracy",

main = "Comparing␣Algorithms␣accuracy␣")

bwplot(results,

metric = "Accuracy",

main = "Algorithms␣accuracy␣comparing",

xlim = c(0.7,1))

bwplot(results,

metric = "Kappa",

main = "Algorithms␣accuracy␣comparing",

xlim = c(0.75,.93))

registerDoSEQ()

#

�→ ------------------------------------------------------------------------------------------

�→

# require(gridExtra)
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# grid.arrange(plot(varImp(object = mod1), # main = "_ - Variable

�→ Importance (_ spectra)"

# top = 5,

# ylab = "Variable",

# xlab = "Relevance"),

# plot(varImp(object = mod7), # main = "_ - Variable Importance (

�→ _ spectra)"

# top = 5,

# ylab = "Variable",

# xlab = "Relevance"),

#

# plot(varImp(object = mod5), # main = "_ - Variable Importance (

�→ _ spectra)"

# top = 5,

# ylab = "Variable",

# xlab = "Relevance"),

#

# plot(varImp(object = mod4), # main = "_ - Variable Importance (

�→ _ spectra)"

# top = 5,

# ylab = "Variable",

# xlab = "Relevance"),

#

# plot(varImp(object = mod6), # main = "_ - Variable Importance (

�→ _ spectra)"

# top = 5,
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# ylab = "Variable",

# xlab = "Relevance"),

# ncol = 5,

# nrow = 1)

#

# png("_.png",

# width = 3200,

# height = 1800,

# units = ’px’,

# res = 300)

#

# dev.off()

### END

#

# library(caret)

# library(doParallel)

#

#

# cluster <- makeCluster(detectCores() - 1) # convention to leave

�→ 1 core for OS

# registerDoParallel(cluster)

# set.seed(12)

# #

# # # compile cross-validation settings
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# #

# ctrl <- trainControl(method = "LOOCV",

# returnResamp = "final")

#

# ctrl1 <- trainControl(method = "repeatedcv",

# number = 5,

# repeats = 10,

# allowParallel = TRUE)

#

# ctrl2 <- trainControl(method = "cv",

# number = 5)

#

#

�→ #-----------------------------------------------------------------------------------------

�→
# # train Neural net model model

#

# set.seed(1234)

#

# mod1 <- train(groups˜.,

# data = pcadata,

# method = "nnet",

# metric = "Accuracy",

# tlabelontrol = ctrl1,

# preProcess = c("center", "scale"))

#
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# plot(varImp(object = mod1),

# main = "ANN Variable Importance",

# top = 10,

# ylab = "Variable")

#

# # Ridge or lasso regression

# # note, that if "alpha" is set to 0 this process runs a ridge

�→ model,

# # if itâĂŹs set to 1 it runs a LASSO model and an "alpha"

�→ between 0 and 1

# # results in an elastic net model

#

# set.seed(1234)

#

# mod4 <- train(groups˜.,

# data = pcadata,

# method = "glmnet",

# metric = "Accuracy",

# tlabelontrol = ctrl1,

# preProcess = c("center", "scale"))

#

# plot(varImp(object = mod4),

# main = "Lasso/Ridge - Variable Importance",

# top = 10, ylab = "Variable")

#
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# png(".png", width = 1920,

# height = 1080,

# units = ’px’, res = 300)

#

# # RF

#

# rftg <- data.frame(mtry = seq(2, 55, by = 2)) # take a lot of

�→ time to compute

#

# # can change parametres or

#

# mtry <- as.integer(sqrt(ncol(pcadata[, 1:10])))

#

# rf.tuneGrid <- expand.grid(.mtry = mtry)

#

# set.seed(12)

#

# mod5 <- train(groups˜.,

# data = pcadata,

# method = "rf",

# tuneGrid = rf.tuneGrid, # or rftg

# tlabelontrol = ctrl1,

# importance = TRUE)

#

# plot(varImp(object = mod5),
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# main = "Random Forest - Variable Importance",

# top = 10,

# ylab = "Variable")

#

# #-------------------------------------------

# # XGBoost

#

# gb.tuneGrid <- expand.grid(eta = c(0.3,0.4,0.5,0.6),

# nrounds = c(5,10,15),

# max_depth = 2:3, gamma = 0,

# colsample_bytree = 0.8,

# min_child_weight = 1,

# subsample = 1)

# set.seed(12)

#

# mod6 <- train(groups˜.,

# data = pcadata,

# method = "xgbTree",

# tuneGrid = gb.tuneGrid,

# tlabelontrol = ctrl1)

#

# plot(varImp(object = mod6),

# main = "XGBoost - Variable Importance",

# top = 10,

# ylab = "Variable")

#
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# # SVM

#

# svmRadialTuneGrid <- expand.grid(sigma = c(0.05,0.0456,0.0577),

# C = c(1.5,1.596,1.65,1.89,1.95,2,2.2,2.44))

# set.seed(12)

#

# mod7 <- train(groups˜.,

# data = pcadata,

# method = "svmRadial",

# tuneGrid = svmRadialTuneGrid,

# preProcess = c("center", "scale"),

# tlabelontrol = ctrl1)

#

# plot(varImp(object = mod7),

# main = "SVM - Variable Importance",

# top = 10,

# ylab = "Variable")

# # compile models and compare perfomance if we use "ctrl1" or "

�→ ctrl2" in "tlabelontrol" parametres

#

# model_list <- list(PLSR = mod1,

# GLMNET = mod4,

# RF = mod5,

# XGBoost = mod6,

195



# SVM=mod7)

#

# results <- resamples(model_list)

#

# summary(results)

#

# # boxplot comparing results

#

# bwplot(results,

# layout = c(3, 1)) # RMSE, MSE and R-squared

#

# bwplot(results,

# metric = "Accuracy",

# main = "Comparing Algorithms accuracy ")

#

# bwplot(results,

# metric = "Accuracy",

# main = "Algorithms accuracy comparing",

# xlim = c(0,2))

#

# stopCluster(cluster)

# registerDoSEQ()

#

#

# require(gridExtra)
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# grid.arrange(plot(varImp(object = mod1), # main = "_ - Variable

�→ Importance (_ spectra)"

# top = 5,

# ylab = "Variable",

# xlab = "Relevance"),

# plot(varImp(object = mod7), # main = "_ - Variable Importance (

�→ _ spectra)"

# top = 5,

# ylab = "Variable",

# xlab = "Relevance"),

#

# plot(varImp(object = mod5), # main = "_ - Variable Importance (

�→ _ spectra)"

# top = 5,

# ylab = "Variable",

# xlab = "Relevance"),

#

# plot(varImp(object = mod4), # main = "_ - Variable Importance (

�→ _ spectra)"

# top = 5,

# ylab = "Variable",

# xlab = "Relevance"),

#

# plot(varImp(object = mod6), # main = "_ - Variable Importance (

�→ _ spectra)"

# top = 5,
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# ylab = "Variable",

# xlab = "Relevance"),

# ncol = 5,

# nrow = 1)

#

# png("_.png",

# width = 3200,

# height = 1800,

# units = ’px’,

# res = 300)

#

# dev.off()

## REgression

# # load all libraries

# library(doParallel)

# library(caret)

# library(dplyr)

# library(DT)

#

# models <- c("glmnet", "knn","nnet","rf",

# "pls", "svmRadial", "svmLinear")

#

#

# cl <- makeCluster(detectCores())

# registerDoParallel(cl)
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#

# # compile cross-validation settings

# ctrl1 <- trainControl(method = "repeatedcv", number = 5,

# repeats = 10, allowParallel = TRUE)

#

# # use lapply/loop to run everything

# l <- lapply(models, function(i)

# {cat("----------------------------------------------------","\n

�→ ");

# set.seed(1234); cat(i," <- done\n");

# t <- train(groups˜.,

# data = pcadata

# , (i), trControl = ctrl1,

# preProcess = c("center", "scale"),

# metric = "Accuracy")

# }

# )

#

# # use lapply to print the results

# results <- lapply(1:length(l), function(i)

# {cat(sprintf("%-20s",(models[i])));

# cat(round(l[[i]]$results$Rsquared[which.min(l[[i]]$results$RMSE

�→ )],4),"\t");

# cat(round(l[[i]]$results$RMSE[which.min(l[[i]]$results$RMSE)

�→ ],4),"\t")

# cat(l[[i]]$times$everything[3],"\n")

199



# }

# )

#

# # stop the parallel processing and register sequential front-

�→ end

# stopCluster(cl)

# registerDoSEQ()

#

# # preallocate data types

# i = 1; MAX = length(l);

# x1 <- character() # Name

# x2 <- numeric() # R2

# x3 <- numeric() # RMSE

# x4 <- numeric() # time [s]

# x5 <- character() # long model name

#

# # fill data and check indexes and NA

# for (i in 1:length(l)) {

# x1[i] <- l[[i]]$method

# x2[i] <- as.numeric(l[[i]]$results$Rsquared[which.min(l[[i]]$

�→ results$RMSE)])

# x3[i] <- as.numeric(l[[i]]$results$RMSE[which.min(l[[i]]$

�→ results$RMSE)])

# x4[i] <- as.numeric(l[[i]]$times$everything[3])

# x5[i] <- l[[i]]$modelInfo$label

# }
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#

# # coerce to data frame

# df <- data.frame(x1,x2,x3,x4,x5, stringsAsFactors = FALSE)

#

# # print all results to R-GUI

# df

#

# # call web browser output with sortable column names

# datatable(df, options = list(

# columnDefs = list(list(className = ’dt-left’, targets = c

�→ (0,1,2,3,4,5))),

# pageLength = MAX,

# order = list(list(3, ’desc’))),

# colnames = c(’âĎŰ’, ’Name’, ’R2’, ’RMSE’, ’time [s]’, ’Model

�→ name’),

# caption = paste(’Regression results from "caret" list models’),

# class = ’cell-border stripe’) %>%

# formatRound(’x2’, 3) %>%

# formatRound(’x3’, 3) %>%

# formatRound(’x4’, 3) %>%

# formatStyle(3,

# background = styleColorBar(x3, ’steelblue’),

# backgroundSize = ’100% 90%’,

# backgroundRepeat = ’no-repeat’,

# backgroundPosition = ’center’,

# fontWeight = ’bold’
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# )

# # compile models and compare perfomance

# model_list <- list(GLMNET = l[[1]], KNN = l[[2]], neuralnet = l

�→ [[3]],nnet = l[[4]], RF = l[[5]],

# pcaNNet = l[[6]],PCR = l[[7]],pls = l[[8]], svmRadial = l[[9]],

# svmLinear = l[[10]])

# results <- resamples(model_list)

# summary(results)

# # boxplot comparing results

# bwplot(results, layout = c(3, 1)) # RMSE, MSE and R-squared

#-------------------------------------#

# # Run a list cross-validation methods with PCR method

# cl <- makeCluster(detectCores())

# registerDoParallel(cl)

#

# # define all cross-validation methods

# cvMethods <- c("boot", # bootstrap

# "boot632", # 0.632 bootstrap

# "LGOCV", # leave-one-group cross validation, variant of LOOCV

�→ for hierarchical data

# "LOOCV", # leave-one-out cross validation, also known as

�→ jacknife

# "cv", # cross validation

# "repeatedcv" # repeated n-fold cross validation

# )

#
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# # use R lapply function to loop through all CV methos with qrf

# all <- lapply(cvMethods, function(x)

# {set.seed(1234); print(x); tc <- trainControl(method=(x))

# fit1 <- train(C˜., data = RAW.spectra,

# preProcess = c("center", "scale"),

# trControl = tc,

# method ="neuralnet") # may choose any of possible regression

�→ models

# #,"nnet","rf","pcaNNet", "svmRadial", "svmLinear"

# }

# )

#

# # stop cluster

# stopCluster(cl)

# registerDoSEQ()

#

# # extract the used cvMethods

# myNames <- lapply(1:6, function(x) all[[x]]$control$method)

#

# # save results

# results <- sapply(all, getTrainPerf)

#

# # change column Names to cv methods

# colnames(results) <- myNames

#

# # get the results
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# results

# library(xtable)

#

#

# xtable(results, auto = TRUE)

# xtable(mtcars, auto = TRUE)

#

# # Learning curve plots for R caret classifications and

�→ regressions in parallel

# # (ROC vs training size, RMSE vs training size)

# # Source: Max Kuhn (topepo); https://github.com/topepo/caret/

�→ issues/278

# # https://github.com/tobigithub/caret-machine-learning

# # Tobias Kind (2015)

#

# #-------------------------------------

# # Library parallel() is a native R library, no CRAN required

# library(parallel)

# nCores <- detectCores(logical = FALSE)

# nThreads <- detectCores(logical = TRUE)

# cat("CPU with",nCores,"cores and",nThreads,"threads detected.\n

�→ ")

#

# # load the doParallel/doSNOW library for caret cluster use

# library(doParallel)
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# cl <- makeCluster(nThreads)

# registerDoParallel(cl)

#

# #------------------------------------------

# ## function: learning_curve_dat plots training-size vs RMSE or

�→ ROC

# ## dat: entire data set used for modling

# ## y: character stirng for the outcome column name

# ## proportion: proportion of data used to train the model

# ## test_prop: proportion of data used initially set aside for

�→ testing

# ## verbose: write out a log of training milestones

# ## ...: arguments to pass to ‘train‘

# #-----------------------------------

# learning_curve_dat <- function(dat,

# outcome = colnames(dat)[1],

# proportion = (1:10)/10, test_prop = 0,

# verbose = TRUE, ...) {

#

# proportion <- sort(unique(proportion))

# n_size <- length(proportion)

#

# if(test_prop > 0) {

# for_model <- createDataPartition(dat[, outcome], p = 1 - test_

�→ prop, list = FALSE)

# } else for_model <- 1:nrow(dat)
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#

# n <- length(for_model)

#

# resampled <- vector(mode = "list", length = n_size)

# tested <- if(test_prop > 0) resampled else NULL

# apparent <- resampled

# for(i in seq(along = proportion)) {

# if(verbose) cat("Training for ", round(proportion[i]*100, 1),

# "% (n = ", floor(n*proportion[i]), ")\n", sep = "")

# in_mod <- if(proportion[i] < 1) sample(for_model, size = floor(

�→ n*proportion[i])) else for_model

# mod <- train(x = dat[in_mod, colnames(dat) != outcome, drop =

�→ FALSE],

# y = dat[in_mod, outcome],

# ...)

# if(i == 1) perf_names <- mod$perfNames

# resampled[[i]] <- merge(mod$resample, mod$bestTune)

# resampled[[i]]$Training_Size <- length(in_mod)

#

# if(test_prop > 0) {

# if(!mod$control$classProbs) {

# test_preds <- extractPrediction(list(model = mod),

# testX = dat[-for_model, colnames(dat) != outcome, drop = FALSE

�→ ],

# testY = dat[-for_model, outcome])

# } else {
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# test_preds <- extractProb(list(model = mod),

# testX = dat[-for_model, colnames(dat) != outcome, drop = FALSE

�→ ],

# testY = dat[-for_model, outcome])

# }

# test_perf <- mod$control$summaryFunction(test_preds, lev = mod$

�→ finalModel$obsLevels)

# test_perf <- as.data.frame(t(test_perf))

# test_perf$Training_Size <- length(in_mod)

# tested[[i]] <- test_perf

# try(rm(test_preds, test_perf), silent = TRUE)

# }

#

# if(!mod$control$classProbs) {

# app_preds <- extractPrediction(list(model = mod),

# testX = dat[in_mod, colnames(dat) != outcome, drop = FALSE],

# testY = dat[in_mod, outcome])

# } else {

# app_preds <- extractProb(list(model = mod),

# testX = dat[in_mod, colnames(dat) != outcome, drop = FALSE],

# testY = dat[in_mod, outcome])

# }

# app_perf <- mod$control$summaryFunction(app_preds, lev = mod$

�→ finalModel$obsLevels)

# app_perf <- as.data.frame(t(app_perf))

# app_perf$Training_Size <- length(in_mod)
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# apparent[[i]] <- app_perf

#

# try(rm(mod, in_mod, app_preds, app_perf), silent = TRUE)

# }

#

# resampled <- do.call("rbind", resampled)

# resampled <- resampled[, c(perf_names, "Training_Size")]

# resampled$Data <- "Resampling"

# apparent <- do.call("rbind", apparent)

# apparent <- apparent[, c(perf_names, "Training_Size")]

# apparent$Data <- "Training"

# out <- rbind(resampled, apparent)

# if(test_prop > 0) {

# tested <- do.call("rbind", tested)

# tested <- tested[, c(perf_names, "Training_Size")]

# tested$Data <- "Testing"

# out <- rbind(out, tested)

# }

# out

# }

#

# #----------------------------------------------

# # multiplot for plotting multiple ggplots

# # Example: multiplot(p1,p2,p3,p4,p5,p6,cols=3)

# # Source: http://www.peterhaschke.com/r/2013/04/24/MultiPlot.

�→ html
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#

# multiplot <- function(..., plotlist = NULL, file, cols = 1,

�→ layout = NULL) {

# require(grid)

#

# plots <- c(list(...), plotlist)

#

# numPlots = length(plots)

#

# if (is.null(layout)) {

# layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),

# ncol = cols, nrow = ceiling(numPlots/cols))

# }

#

# if (numPlots == 1) {

# print(plots[[1]])

#

# } else {

# grid.newpage()

# pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(

�→ layout))))

#

# for (i in 1:numPlots) {

# matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))

#
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# print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,

# layout.pos.col = matchidx$col))

# }

# }

# }

#

# ## Classification example

#

# library(caret)

# library(xgboost)

#

# # set plot to 2x3

# par(mfrow=c(2,3))

#

# set.seed(1412)

# class_dat <- twoClassSim(2000)

#

# set.seed(29510)

# lda_data <- learning_curve_dat(dat = class_dat, outcome = "

�→ Class",

# test_prop = 1/4,

# ## ‘train‘ arguments

# method = "lda",

# metric = "ROC",

# trControl = trainControl(classProbs = TRUE,
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# method = "boot632",

# summaryFunction = twoClassSummary))

#

# p1 <- ggplot(lda_data, aes(x = Training_Size, y = ROC, color =

�→ Data)) +

# geom_smooth(method = loess, span = .8) +

# ggtitle("LDA classification with boot632 CV") +

# theme_bw()

# p1

# set.seed(29510)

# rf_data <- learning_curve_dat(dat = class_dat, outcome = "Class

�→ ",

# test_prop = 1/4,

# ## ‘train‘ arguments

# method = "rf",

# metric = "ROC",

# tuneLength = 4,

# trControl = trainControl(classProbs = TRUE,

# method = "boot632",

# summaryFunction = twoClassSummary))

#

# p2 <- ggplot(rf_data, aes(x = Training_Size, y = ROC, color =

�→ Data)) +

# geom_smooth(method = loess, span = .8) +

# ggtitle("rf classification with boot632 CV") +
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# theme_bw()

# p2

# #----------------------------------

# set.seed(29510)

# rf_data <- learning_curve_dat(dat = class_dat, outcome = "Class

�→ ",

# test_prop = 1/4,

# ## ‘train‘ arguments

# method = "parRF",

# metric = "ROC",

# tuneLength = 4,

# trControl = trainControl(classProbs = TRUE,

# method = "boot632",

# summaryFunction = twoClassSummary))

#

# p3 <- ggplot(rf_data, aes(x = Training_Size, y = ROC, color =

�→ Data)) +

# geom_smooth(method = loess, span = .8) +

# ggtitle("parRF classification with boot632 CV") +

# theme_bw()

# p3

#

# ## Regression example

#

#

# set.seed(19135)
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# reg_dat <- SLC14_1(2000)

#

# set.seed(31535)

# bag_data <- learning_curve_dat(dat = reg_dat, outcome = "y",

# test_prop = 1/4,

# ## ‘train‘ arguments

# method = "treebag",

# trControl = trainControl(method = "boot632"),

# ## ‘bagging‘ arguments

# nbagg = 100)

#

# p4 <- ggplot(bag_data, aes(x = Training_Size, y = RMSE, color =

�→ Data)) +

# geom_smooth(method = loess, span = .8) +

# ggtitle("treebag regression with boot632 CV") +

# theme_bw()

# p4

#

# set.seed(31535)

# svm_data <- learning_curve_dat(dat = reg_dat, outcome = "y",

# test_prop = 0,

# ## ‘train‘ arguments

# method = "svmRadial",

# preProc = c("center", "scale"),

# tuneGrid = data.frame(sigma = 0.03, C = 2ˆ10),
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# trControl = trainControl(method = "boot632"))

#

# p5 <- ggplot(svm_data, aes(x = Training_Size, y = RMSE, color =

�→ Data)) +

# geom_smooth(method = loess, span = .8) +

# ggtitle("svmRadial regression with boot632 CV") +

# theme_bw()

# p5

# set.seed(31535)

# svm_no_test <- learning_curve_dat(dat = reg_dat, outcome = "y",

# test_prop = 1/4,

# ## ‘train‘ arguments

# method = "svmRadial",

# preProc = c("center", "scale"),

# tuneGrid = data.frame(sigma = 0.03, C = 2ˆ10),

# trControl = trainControl(method = "boot632"))

#

# p6 <- ggplot(svm_no_test, aes(x = Training_Size, y = RMSE,

�→ color = Data)) +

# geom_smooth(method = loess, span = .8) +

# ggtitle("svmRadial regression with boot632 CV") +

# theme_bw()

# p6

#

#
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# multiplot(p1,p2,p3,p4,p5,p6,cols=3)

#

# stopCluster(cl)

# registerDoSEQ()

# ### END
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