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Abstract

The goal of this project, is to study using Mathematical Modelling, the impact of im-
munization with a partially effective vaccine on the transmission dynamics of influenza
infection. To determine condition under which an epidemic occur. If it occur, what frac-
tion of a even-mixed population get infected. To predict future spread of disease. To come
up with plan for containment and eradication.

Master Thesis in Mathematics at the University of Nairobi, Kenya.
ISSN 2410-1397: Research Report in Mathematics
©Antony Murimi, 2021
DISTRIBUTOR: School of Mathematics, University of Nairobi, Kenya





iv

Declaration and Approval

I the undersigned declare that this dissertation is my original work and to the best of my
knowledge, it has not been submitted in support of an award of a degree in any other
university or institution of learning.

25/July/2021

Signature Date

Antony Murimi
Reg No. I56/11463/2018

Inmy capacity as a supervisor of the candidate’s dissertation, I certify that this dissertation
has my approval for submission.

Signature Date

Dr Victor Juma
School of Mathematics,
University of Nairobi,
Box 30197, 00100 Nairobi, Kenya.
E-mail: vjuma23@uonbi.ac.ke

04/08/2021







vii

Dedication

This project is dedicated to me. My dear brother Gedion (Kanunga High). My students,
colleagues and friends in the field of Mathematics.



viii

Contents

Abstract ................................................................................................................................ ii

Declaration and Approval..................................................................................................... iv

Dedication .......................................................................................................................... vii

Acknowledgments ................................................................................................................ x

1 Introduction ................................................................................................................... 1

1.1 Influenza ............................................................................................................................ 1
1.1.1 Definition and meaning of INFLUENZA .......................................................................... 1
1.1.2 Signs and Symptoms ................................................................................................... 1
1.1.3 The Pathogen (Causes and Types) .................................................................................. 1
1.1.4 Global effect of influenza .............................................................................................. 2

1.2 Influenza pandemics ........................................................................................................... 2
1.2.1 Case Study ................................................................................................................ 3

1.3 Vaccination......................................................................................................................... 4
1.3.1 Meaning .................................................................................................................... 4
1.3.2 Types of vaccines ........................................................................................................ 4

1.4 Epidemiology and Target Group .......................................................................................... 4
1.4.1 Expectant mothers ...................................................................................................... 4
1.4.2 Children .................................................................................................................... 4
1.4.3 Elderly People ............................................................................................................ 5
1.4.4 People with special health conditions.............................................................................. 5
1.4.5 HealthCare Workers .................................................................................................... 5

1.5 Aim of the Project/objectives ............................................................................................... 5

2 LITERATURE REVIEW .................................................................................................... 7

2.1 LITERATURE REVIEW ........................................................................................................ 7
2.1.1 The SI Model .............................................................................................................. 8
2.1.2 The SIR Model ............................................................................................................ 8
2.1.3 A SEIQR MODEL FOR PANDEMIC INFLUENZA .............................................................. 8
2.1.4 The SIRV model. ......................................................................................................... 9
2.1.5 The SEIRD Model ...................................................................................................... 10

3 DISCUSSION OF MODEL AND ASSUMPTION ............................................................... 13

3.1 FORMATION OF MODEL ................................................................................................. 13

4 MATHEMATICAL MODEL ANALYSIS ............................................................................ 18

4.1 Non-dimensionalization .................................................................................................... 18
4.2 The Positive Invariant Compact Set ................................................................................... 20
4.3 The Basic Reproductive Number ........................................................................................ 20

4.3.1 The Disease Free Equilibrium ...................................................................................... 22



ix

4.3.2 THE GLOBAL DYNAMICS .......................................................................................... 24
4.3.3 ENDEMIC EQUILIBRIUM GLOBAL STABILITY .............................................................. 24

5 NUMERICAL SIMULATION AND DISCUSSION.............................................................. 29

5.1 Numerical Simulation ....................................................................................................... 29

6 DISCUSSION AND RECOMMENDATION....................................................................... 34

6.1 Discussion ........................................................................................................................ 34
6.2 Recommendation .............................................................................................................. 34

Bibliography....................................................................................................................... 36



x

Acknowledgments

First, I thank my supervisor Dr. Victor Ogesa Juma for being there for me in any help and
support I needed. I want to recognize Dr. Were for his professional teaching methodol-
ogy to deliver content and thoroughly covering the syllabus. I want to acknowledge Dr.
Nyandwi for professional and parental advice, and more so supporting Mathematics as
a career to be respected and recognized. I want also to salute Professor Pokharial with
his commitment and support on matters relating to studies. I want to acknowledge our
former director Professor Weke with his humor, undiscriminating and encouragement to
us as a department. . . . .

Antony Murimi

Nairobi, 2020.



1

1 Introduction

1.1 Influenza

1.1.1 Definition and meaning of INFLUENZA

Influenza, also called flu or grippe, an acute viral infection of the upper or lower res-
piratory track that is marked by fever, chills, and a generalized feeling of weakness and
pain in the muscles, together with varying degrees of soreness in the head and abdomen.
The most common symptoms include: high fever, runny nose, sore throat, muscle and
joint pain, headache, coughing, and feeling tired[5]. These symptoms typically manifest
two days after exposure to the virus and at most last less than a week. The cough, how-
ever, may last for more than two weeks[5]. In children, there may be diarrhea and vom-
iting, but not common in adults[6]. Diarrhea and vomiting occur commonly in gastroen-
teritis, which is an unrelated disease and sometimes inaccurately referred to as "stomach
flu" or the "24-hour flu"[6].

1.1.2 Signs and Symptoms

Seasonal influenza is manifested by a sudden fever, headache, dry coughing, muscle and
joint pain, severe malaise, sore throat and a runny nose. The cough can last at least 14
days. Majority recuperate within seven days without requiring medical attention. This
disease can lead to illness or death especially in people at high risk. Illnesses range from
mild to severe and to even death. High risk groups has high chance of getting infected
and die. The annual epidemics are approximated to result about 3 to 5 million cases of
severe illness, and about 290 000 to 650 000 respiratory deaths. Most deaths caused by
influenza happens among people age 65 or older[5]. Epidemics leads to worker/school
absenteeism and loss in productivity. Health facilities are overwhelmed greatly.
Research conduct estimated 99% of fatality is among the children under 5 years with
influenza related lower respiratory tract infections are found in developing countries[7].
The effects of seasonal influenza epidemics in developing countries are not fully known

1.1.3 The Pathogen (Causes and Types)

Influenza is caused by viruses and transmitted through air.Influenza A and B viruses
circulate and are responsible for seasonal epidemics of disease.[7], [8]
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Figure 1. FLU VIRUS

• Influenza A viruses are classified into subtypes on the basis of two surface antigens
(foreign proteins) combinations — hemagglutinin (HA) and the neuraminidase (NA),
the proteins on the surface of the virus. Currently circulating in humans are subtype
A(H1N1) and A(H3N2) influenza viruses known to have caused pandemics. Influenza
A virus can be transmitted from wild birds to other species. This causes outbreaks in
domestic poultry which spread into human influenza pandemic.

• Influenza B viruses are not classified into subtypes, but can be broken down into
lineages. Currently circulating influenza type B viruses belong to either B/Yamagata
or B/Victoria lineage.

• Influenza D viruses primarily affect cattle and are not known to infect or cause illness
in people.

1.1.4 Global effect of influenza

Social impacts include intangible costs such as, domestic violence, behavoiral change,
social interaction, pain, depression, suffering and impaired quality of life. Locally, mis-
diagnosis of influenza viruses and other respiratory viruses contributes to misuse of an-
timalarial and an, behavoiral change, social interaction, pain, depression, suffering and
impaired quality of life. Locally, misdiagnosis of influenza viruses and other respiratory
viruses contributes to misuse of antimalarial and antibiotic drugs. Europe and America
research shows that if immunization programs target children under two years and the
elderly over 65 years, the cost of influenza infection could be reduced by over 50%.

1.2 Influenza pandemics

Influenza pandemics are approximated to occur in intervals of half milenium. Epidemics
are more frequent, and occurs in most parts of the world per year. Pandemic affecting
the world can happen within a matter of months due to an antigenic shift. The influenza
virus has led to repeated epidemics of great febrile syndrome every 1 to 4 years during the
recent centuries. The initial epidemic report of an influenza-like illness was experienced
in 1173–74, [?] but the first definite epidemic was reported in 1694 [9].
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1.2.1 Case Study

The following list discussed but not least, shows some of the pandemics experienced in
history.

The Spanish flu pandemic of 1918 – 19.

This was themost severe outbreak of the 20th centurywith greatest numbers ofmortality,
among the devastating pandemics in human history. This affected mostly children and
elderly with low immunity. This killed approximate 40–50 million deaths according to
recent research.

The Asian flu pandemic of 1957

This outbreak of influenza was first identified in February 1957 in East Asia and that in
sequence spread to countries worldwide. It was the second major influenza pandemic to
occur in the 20th century. The 1957 outbreak was caused by influenza A subtype H2N2,
or Asian flu virus [1, 3]. Research has indicated that this virus was a reassortant strain,
originating from strains of avian influenza and human influenza viruses. In the 1960s
the human H2N2 strain underwent a series of minor genetic modifications, a process
known as antigenic drift. The little alterations produced occasional epidemics. Months
later, several cases of infection were reported, especially in young children, the elderly,
and pregnant women as a results of second pandemic wave of illness that struck the
Northern Hemisphere in November 1957 and was also already widespread in the United
Kingdom. By December a total of some 3,550 deaths had been reported in England and
Wales. The second wave was particularly devastating, and by March 1958 an estimated
69,800 deaths had occurred in the United States[1, 2, 4].

Table 1 refers to the AntigenShift and the Pandemics involved.

Year Designation Viral Strain Death Toll

1189 H3N2 —

1918 Spanish flu Pandemic H1N1 (A/Brevig Mission/1/18; A/South Carolina/1/18; and A/New York/1/18) 50 - 100 million

1957 Asian flu Pandemic H2N2 (A/Singapore/1/57) 1 million

1968 Hong Kong flu Pandemic H3N2 H3N2 (A/NT/60/68; and A/Hong Kong/1/68) 1 million

1977 Pandemic in children and young adults (Russian flu) H1N1 (A/USSR/90/77) –

2001-2002 USA, Canada, Singapore, Malaysia, Egypt, Europe. H1N2 (A/New Caledonia/20/99 H1 and A/Moscow/10/99 N2) –

2001-2002 Northern Italy Influenza B (B/Victoria/2/87) —

2001-2002 St. Elisabeth Hospital, Tilburg H3N2 (A/Sydney/5/97) –

2003 Poultry Farm in Netherlands H7N7 (Avian Influenza A) –

2003-2004 USA, Canada, Europe, Japan H3N2 (A/Fujian/411/2002) –

Table 1. Antigen Shift and Pandemics
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1.3 Vaccination

1.3.1 Meaning

This is the vaccine inoculation to protect from a particular strain of disease. It is de-
pendent on the immune status of the recipient. The ideal way to protect people from
influenza is to administer vaccinations annually.

1.3.2 Types of vaccines

Each is designed to train the immune system how to combat certain types of germs —
and the serious effects they cause. Depending on a list of factors, researchers chose the
kind of vaccine they will produce. The main types of vaccines:

• Live-attenuated vaccines.

• Inactivated vaccines.

• Subunit, recombinant, polysaccharide, and conjugate vaccines.

• Toxoid vaccines 2.

1.4 Epidemiology and Target Group

Influenza is easily spread, mainly in areas with many people including institutions and
nursing places. Frequent hand washing, covering mouth and nose with face masks can
prevent transmission. Seasonal epidemics spread mainly during winter in temperate
climate, and throughout the year in tropical regions, leading to irregular outbreaks.

1.4.1 Expectant mothers

This is the group with high risk of contaminating with the disease. They require immu-
nization to avoid the negative impact to the unborn. They are also very weak at this
season hence exposing them into high risk of getting sick. Conclusion: Expectant moth-
ers should be frequently checked and immunized regularly. This is to protect the mother
and the infants.

1.4.2 Children

Young children are susceptible to disease infections leading to burden associated with
influenza with frequent clinic visits, hospitalizations and deaths compared to non-elderly
adults. The vaccine effectiveness among children varies. Inactivated vaccines are the best
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vaccination programs below two years old. Those older than two years, best suit for either
inactivated vaccine (IV) or live-attenuated vaccine (LAIV).

1.4.3 Elderly People

Influenza is a primary cause to high deaths among the elderly. High income countries
have lower risk for elderly deaths than low income countries. The risk of morbidity and
mortality in the elderly can be reduced with the use of inactivated vaccines. However the
effectiveness reduces with ageing and among those with underlying medical conditions.

1.4.4 People with special health conditions

People with unhealthy conditions, such as cardiac disease, morbid obesity, chronic respi-
ratory and compromised immune status, are more prone to develop fatal sickness due to
influenza infection than healthy people of the same age group. Influenza vaccine effec-
tiveness has been demonstrated among individuals with underlying health conditions in
a number of settings. This group has been targeted for influenza vaccination, and con-
tinue to be an appropriate targeted group for vaccination. Identification of individuals is
difficult due to stigma related issues.

1.4.5 HealthCare Workers

This group suffers high risk due to exposure, compared to the general population. Vacci-
nating this group is ideal and effective and increases work attendance. Healthcare work-
ers vaccination not only protects the individual, but also sustain healthcare services dur-
ing epidemics and protection of vulnerable patients.

1.5 Aim of the Project/objectives

Vaccination being as an effective strategy against infection, does not guarantee due to
different immune status of individual. Seasonal drift in the viral genome, annual vac-
cination against the influenza virus strains anticipated to be in circulation during the
upcoming season is necessary to prevent new infections and subsequent outbreaks. Fail-
ures: present influenza vaccine to protect all vaccine recipient warrant the determination.
Aim

• To unveil through Mathematical Modelling, the influence of a partially effective vac-
cine on the influenza infection transmission dynamics.

• To determine condition under which an epidemic happen.

• If it occur, what fraction of a uniform population get ill.
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• Disease spreading forecasting.

• For strategic development to control and elimination.

This address questionwhether such vaccine can permanently terminate the disease spread.
WhileMathematical Model establish the strength of imperfect vaccine to tame influenza,
having several models suggested for transmission dynamics of influenza, the impact of
an imperfect vaccine hasn’t been fully analyzed. The model aim to recruit susceptible
individuals and infected individuals into the population.
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2 LITERATURE REVIEW

2.1 LITERATURE REVIEW

The probability of recurrent flu pandemic has emerged. This will be a result of high
pathogenic avian influenza A (HPAI) subtype H5N1 virus in Southeast Asia, the Middle
East of Africa and other countries around the world [13] Currently it’s still in question
whether there is human-to-human transmission of H5N1. If it really occurs and there is
no preparedness against the pandemic, H5N1would spreadworldwide through the global
transportation network. Due to the fear that amutant avian influenzamay occur, interest
in the study of pandemic H5N1 flu has increased significantly. Thus in many nations,
preparedness against the pandemic H5N1 flu has become a high priority public health
issue. To have the pandemic preparedness plans that maximize realism, generality and
precision, the design of such plans and the effects of different intervention strategies, such
as quarantine and vaccination, need to be investigated. To curb the outbreak of H5N1 in
the beginning it was to isolate humans infected with mutant avian influenza, in order to
reduce transmission to susceptible group. Once the disease has occurred, vaccine can be
developed. To curb the spread of H5N1 effectively, understanding the behavioral patterns
of the disease spreading is paramount. Recently, epidemicmodels plays an important role
for the pandemic readness plans because it allows one to predict and compare the effects
of different intervention strategies. However, it has been recognized that the uncertainty
in predictions of the epidemicmodel cause the uncertainty in prediction of disease spread
and public health responses.

Over the last two decades, a number of epidemic models for predicting the spread of
influenza through human population have been proposed based on either the classical
susceptible-infected-removed (SIR) model [14, 15, 16] developed by Kermack and McK-
endrick [23] or the classical susceptible-exposed-infected-removed (SEIR) model [17, 18,
19, 20, 21] developed by Rvachev and Longini [22]. It has long been recognized that using
any epidemic model having inaccurate values of the parameters in the model will lead
to wrong predictions of the spread of the disease and therefore to inappropriate public
health responses.

Many disease modelings make assumption of constant or asymptotically constant total
population. The following are the examples of models used before.
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2.1.1 The SI Model

This categorize people as either susceptible or infective (SI). Assumption in the model is
that people under the study are well mixed up, with equal probability of contacting with
every other person. The transfer diagram and its differential equation is as follow;

dI
dt

= β SI (1)

where β is the probability that an infective person infect a random susceptible person.

2.1.2 The SIR Model

The SIR model developed by Kermack and McKendrick is more general and include a
closed population, without considering immigrants during the plague. The assumption
made was constant population with exemption to demographic process. By extending
the model of ordinary differential equations [23] to fluctuating population (with birth
and death) Anderson and May (1979) [24] brought the Kermack-McKendrick model back
to prominence after decades of neglect.

The SIR Model is comprised of three groups:
Susceptible (S),
Infected (I) and
recovered (usually) with lifelong immunity (R) Model Assumptions.

The differential equations are;

s′ =−β si (2a)

d′ =β si− vi (2b)

r′ =vi (2c)

where, s = S
N , i =

I
N ,r =

R
N

β effective contact rate.

2.1.3 A SEIQR MODEL FOR PANDEMIC INFLUENZA

In this research, first proposes a pandemic influenza susceptible (S), exposed(E),infected(I),
quarantined (Q) and recovered (R) (SEIQR) model and analyze the model properties.
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Mathematical model.

S′ =A− βS(E + I)
N

−dS (3a)

E ′ =
βS(E + I)

N
− (d +α +κ)E (3b)

I′ =αE − (d +δ + γ)I (3c)

Q′ =δ I − (d + ε)Q (3d)

R′ =κE + γI + εQ−dR (3e)

The recruitment-death demographic structure in model (1) is such that;

N′ = A−dN(t) (4)

2.1.4 The SIRV model.

The practical strategies in disease models is important for public health authority in-
tervention accessibility. The two major types of control curtails the infectious diseases
extends: Pharmaceutical intervention (drugs, vaccine) and non-pharmaceutical interven-
tions (social distancing, quarantine).

In this model SIRV stand for S-Susceptible, I-Infected and R is the number of individual
who have recovered.

The system of differential equations derived are;

S′ =bN − β IS
N

− (d +φ)S+θV (5a)

I′ =
β IS
N

+
σβ IV

N
− (γ +µ +d)I (5b)

V ′ =φS− δβ IV
N

− (d +θ)V (5c)

R′ =γI −dR (5d)

The entire population N=S+I+R+V is ruled by

N′ = (b−d)N −µI (6)

this is obtained on adding equations (5).
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According to Murray Alexander of The University of Winnipeg, Arthur Randolph Sum-
mers of National Research Council Canada and Abba B. Gumel of Arizona State Univer-
sity, USA, the SIRV model recognizes that the recruitment is from a common population
with some being Susceptible and others already infected individuals ( ∏ - Recruitment
rate of individuals).
The general transfer diagram is shown below:

Their system of differential equations are:

S̃′ =(1− ε)Π+ ω̃ Ṽ + δ̃ R̃− β̃ S̃Ĩ − ξ̃ S̃−µ S̃ (7a)

Ṽ ′ =ξ̃ S̃ − (1−σ )β̃Ṽ Ĩ − (ω̃ +µ)Ṽ (7b)

Ĩ′ =εΠ+ β̃ S̃Ĩ +(1−σ)β̃ Ṽ Ĩ − (α̃ +µ)Ĩ (7c)

R̃′ =α̃ Ĩ − (µ + δ̃ )R̃ (7d)

2.1.5 The SEIRD Model

This was developed by Chowell et al. [11, 12] and use the idea of variable transmission
rate from the model formulated by Chong et al.[10]. The total population is divided
into five groups namely: Susceptible (S), Exposed (E), Infectious (I), Recovered (R) and
those who die from the disease (D). We assume a homogeneous mixing. We also assume
a constant population with no natural births or deaths; this is because the influenza
parameters occurs in days while death and birth parameters occurs in years hence they
have little effect on the disease and can be ignored.

The system of differential equations are:

S′(t) =− β 1SI
N

− βDSD
N

(8a)

E ′(t) =
β 1SI

N
+

βDSD
N

− E
T E

(8b)

I′(t) =
E
T E

− I
T I

(8c)

R′(t) =(1− f )
I

T I
(8d)

D′(t) = f
I

T I
− D

TD
(8e)
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Figure 2. SEIRD
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Chapter 3
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3 DISCUSSION OF MODEL AND ASSUMPTION

3.1 FORMATION OF MODEL

To derive mathematical modeling equations, let total population be N. We partition the
total population N into four compartments based on individual epidemiological status:

The Susceptible individuals are drawn or recruited from the closed populationwithin a ge-
ographical region through immigration or by birth. These are individuals who have never
been sick from Influenza before. The group can also increase from vaccinated group.This
group declines through vaccination and then enters to vaccinated group. It also reduce
through infection hence entering the infected one, and by normal death.

The vaccinated group is recruited through vaccination of susceptible one at the rate of
ω . This group can decline in number as a result of vaccine losing efficacy and therefore
enters infected stage or group. The vaccinated individual however, get infected at a lower
rate ξ η

V I
N due to vaccine induced immunity. Also reduces through natural death dV. It

declines through members entering the susceptible group.

The infected group accumulates from susceptible who get infected by the influenza virus
ξ

SI
N . Also it gains from vaccinated people whose immune has wane strength at a lower

rate. The population decline through natural death dI and death due to infections δ I.
This group can also reduce through recovery of infected at the rate of γ . Hence transiting
to group R.

The recovered group increases from infected individuals as a result of gaining natural
immunity and at the same time decline through natural death dR.

The individuals recruited are from a closed population. The newly recruited susceptible
individuals is either by birth or/and immigration A= bS0, where b represent natural birth
and S0 represent the initial susceptible value. The identified susceptible must undergo
testing to isolate for treatment as infected individuals (I) or group them for vaccination
class (V). Therefore, all recruited individuals are considered susceptible until after testing
anybody can be considered infected.

The vaccination class gains through testing of susceptible who turns out negative. The
group reduces by moving to infected class due to waning of vaccine and also as a results
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of natural death and emigration dV. The vaccinated individual as their vaccine induced
immunity fails may pass to susceptible class .

The number of infected individuals is gained through testing of individuals from suscep-
tible class and vaccinated individuals at a low rate due to waning of vaccine. The individ-
uals are treated and moved to recovery (R) class as they’ve acquired natural immunity
through infection. This group can also reduce through natural death dI or death due to
influenza infection δ I. The parameter d represent emigration and natural death due to
age, accidents or other infections while δ represent the rate of death due to influenza.

Individual contaminate an average of ψ other individuals per unit time.

The total number of people contacted by effective per unit time is ψI. Proportion ν of
contacts are effective in transmitting disease. The recovery group is gained from treated
infected individuals. It reduces through natural death dR.

Induced immunity by infection is assumed to confer total cross immunity in all strains.
The vaccine protects against a fraction of infections of other strains, but at much lower
infection.

The total population N change as a results of natural birth in addition to disease induced
death or other deaths. This creates instability in the increase and reduction of a specified
population and it will vary with time.

The susceptible or vaccinated rate of infection is ξ
IS
N (ξ IV

N ) where the transmission
coefficient is ξ = V Ψ

Susceptible are vaccinated at the rate of ω Vaccinated become infected at low rate of η

ξ and 1-η ε [0, 1] describe the efficacy of the vaccine.

When η=0 the vaccine is effective perfectly. When η=1 the vaccine is not effective.

Vaccination effectiveness is assumed to decline at the rate of α Vaccinated individuals
are protected at the average of 1

α
time units. λ is decrease recovery rate from infected.
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Figure 3. SVIR model showing the transfer of individuals from one group to another in a
clossed population.

The system of differential equations are:

dS
dt

=bN +αV −ξ
IS
N

−ωS−dS (9a)

dI
dt

=ξ
IS
N

+ξ η
V I
N

−δ I −λ I −dI (9b)

dV
dt

=ωS−αV −dV −ξ η
V I
N

(9c)

dR
dt

=λ I −dR (9d)

The total population N is N=I + S + V + R

dN
dt

= bN +αV −ξ
IS
N

−ωS−dS+ξ
IS
N

+ξ η
V I
N

−δ I −λ I

−dI +ωS−αV −dV −ξ η
V I
N

+λ I −dR
(10)

dN
dt

= bN −dS−δ I −dI −dV −dR (11)
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dN
dt

= bN −d(S+ I +V +R)−δ I (12)

dN
dt

= (b−d)N −δ I (13)

Table 2 refers to the parameters used, symbols, units and their meaning.

Parameters Units Meaning

ξ Time Rate at which Susceptible get infected

η Time Rate of infection as a result of loosing immunity

δ Time Rate of death caused by infection

ω Time Vaccination Rate of susceptible

α Time Rate at which vaccinated loose immunity and enter into susceptible class

λ Time Rate at which infected recover as a result of developing and acquiring natural immunity
Table 2. Parameters and their respective symbols.
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Chapter 4
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4 MATHEMATICAL MODEL ANALYSIS

4.1 Non-dimensionalization

From previous topic, I am going to analyze the system we normalize by defining new
variable or parameters through dimensionless transformation.

S+V + I +R = N (14)

Dividing all terms by N we see that;

S
N
+

V
N
+

I
N
+

R
N

= 1 (15)

Let S
N = s, V

N = v, I
N = i, R

N = r, it shows that s + v + i + r=1
that is the total population N = 1.
The total birth is equal to deaths due to infection and natural death.

bN = dS+dV +dI +dR+δ I (16)

But N=S+V+I+R

b = d +δ i (17)

Consider S
N=s or S=sN equation(9) becomes;

N
ds
dt

= bN +αV −ξ
IS
N

−ωS−dS (18)

Dividing each term by N we obtain;

ds
dt

= b+αv−ξ is−ωs−ds (19)

But since d=b-δ i we substitute d for b above.

ds
dt

= b+αv−ξ si− (ω +b)s+δ is (20)

Similarly, I=iN, taking derivative on both sides we can non-dimensionlize equation (9) to
obtain;

N
di
dt

=
dI
dt

(21a)
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N
di
dt

= ξ
IS
N

+ξ η
V I
N

−δ I −λ I −dI (21b)

Dividing each term by N, we obtain:

di
dt

= ξ is+ξ ηvi−δ i−λ i−di (22)

But d=b-δ i, therefore the above expression will become

di
dt

= ξ is+ξ ηvi−δ i−λ i− (b−δ i)i (23a)

di
dt

= ξ is+ξ ηvi− (δ +b+λ )i+δ i2 (23b)

We now non-dimensionalize equation (9) by considering V=vN.

N
dv
dt

=
dV
dt

(24a)

N
dv
dt

= ωS−αV −dV −ξ η
V I
N

(24b)

We divide all terms by N and at the same time substitute d for b in (4.1) to obtain;

dv
dt

= ωs−αv−dv−ξ ηvi (25a)

dv
dt

= ωs−αv− (b−δ i)v−ξ ηvi (25b)

We now non-dimensionalize equation (9)
Since, Nr=R, then;

N
dr
dt

=
dR
dt

(26a)

N
dr
dt

= λ I −dR (26b)

Dividing all terms by N, we obtain;

dr
dt

= λ i−dr (27a)

dr
dt

= λ i− (b−δ i)r (27b)
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Hence, the s, v, i and r satisfies the normalized system below;

ds
dt

=b+αv−ξ si− (ω +b)s+δ is (28a)

di
dt

=ξ is+ξ ηvi− (δ +b+λ )i+δ i2 (28b)

dv
dt

=ωs−ξ ηvi− (α +b)v+δ iv (28c)

dr
dt

=λ i−br+δ ir (28d)

In the next section we analyse the asymptotic behavior of model (28)

4.2 The Positive Invariant Compact Set

Theorem 4.2.1. The compact positive invariant set is given by Ω = {(s,v,i) ∈ R3
+ | 0 ≤ s + v

+ i ≤ 1, s ≥ 0 , v ≥ 0 , i ≥ 0 }

Where R3
+ is non-negative with the variable.

We can substitute r from the equation to study the remaining system.
That is dr

dt =λ i - br + δ ir
r=1-s-i-v

The parameter ∂Ω is the boundary and Ω̊ the interior of Ω in R3
+ respectively.

The set Ω is positively invariant with respect to the model system;

ds
dt

= b−ξ si− (b+ω)s+αv+δ si (29a)

di
dt

= ξ si+ηξ iv− (b+δ +λ )i+δ i2 (29b)

dv
dt

= ωs−ηξ iv− (b+α)v+δ iv (29c)

4.3 The Basic Reproductive Number

This is the mean number of secondary infections produced by a typical primary infective
individual into a completely susceptible population. This measures potential for the dis-
ease spread within the population. It is denoted by Ro. It is computed from the equation
of next generation.

We define the dynamics of the model using equation (29) by obtaining the vector valued
function f as the appearance rate of new infection in the disease groups.

di
dt

= ξ si+ηξ iv− (b+δ +λ )i+δ i2
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dv
dt

= ωs−ηξ iv− (b+α)v+δ iv

f =

 In

Vn

 (30)

f =

ξ si+ηξ iv− (b+δ +λ )i+δ i2

ωs−ηξ iv− (b+α)v+δ iv

 (31)

At the disease free equilibrium, the computation of Jacobian matrix F is obtained as:

F = J f =

∂ f
∂ i

∂ f
∂v

∂ f
∂ i

∂ f
∂v

 (32)

F = J f =

ξ s+ηξ v+2δ i ηξ i

δv δ i

 (33)

This jacobian matrix of f is at disease free equilibrium.

We now determine the transition vector V, given by;

v =

 (b+δ +λ )i

(b+α)v+ηξ iv−ωs

 (34)

V = Jv =

∂v
∂ i

∂v
∂v

∂v
∂ i

∂v
∂v

 (35)

V =

b+δ +λ 0

ξ ηv (b+α)+ηξ i

 (36)

The next step is to determine th inverse of V i.e V−1
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V−1 =
1

[(b+α)+ηξ ][b+δ +λ ]

(b+α)+ηξ i 0

−ηξ v b+δ +λ



V−1 =

 (b+α)+ηξ i
[(b+α)+ηξ ][b+δ+λ ]

0
−ηξ v

[(b+α)+ηξ ][b+δ+λ ]
b+δ+λ

[(b+α)+ηξ ][b+δ+λ ]

 (37)

The next generation operator is given by FV−1.

FV−1 =

ξ s+ηξ v+2δ i ηξ i

δv δ i

 (b+α)+ηξ i
[(b+α)+ηξ ][b+δ+λ ]

0
−ηξ v

[(b+α)+ηξ ][b+δ+λ ]
b+δ+λ

[(b+α)+ηξ ][b+δ+λ ]

 (38)

Thus Ro=J(FV−1) and its;

Ro = J

ξ s+ηξ v+2δ i ηξ i

δv δ i

 (b+α)+ηξ i
[(b+α)+ηξ ][b+δ+λ ]

0
−ηξ v

[(b+α)+ηξ ][b+δ+λ ]
b+δ+λ

[(b+α)+ηξ ][b+δ+λ ]



Ro =
ξ so +ηξ vo

b+λ +δ
=

ξ (b+α +ηω)

(b+α +δ )(b+α +ω)
(39)

If Ro > 1, the endemic will occur, that is if an infected individual in an otherwise sus-
ceptible population will be in average infect more than one person. If Ro<1, there is no
endemic and the disease is suppressed.

The Ro is the Threshold Parameter.

b−ξ si− (b+ω)s+αv+δ si = 0 (40a)

ξ si+ηξ iv− (b+δ +λ )i+δ i2 = 0 (40b)

ωs−ηξ iv− (b+α)v+δ iv = 0 (40c)

4.3.1 The Disease Free Equilibrium

Linearizing system at the equilibrium point eo, we can determine the local stability .
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Jo =


∂ f1
∂ s

∂ f1
∂ i

∂ f1
∂v

∂ f2
∂ s

∂ f2
∂ i

∂ f2
∂v

∂ f3
∂ s

∂ f3
∂ i

∂ f3
∂v

=


−(ξ −δ )i− (b+ω) −ξ s+δ s α

ξ i
ξ s+ηξ v+2δ i

−(b+δ +λ )+δ i
ηξ i

ω −ηξ +δv −ηξ i− (b+α)+δ i



The cases of infections to be zero means the stabilty is;

J(eo) =


−(b+ω) −ξ s+δ s α

0 ξ s+ηξ v− (b+δ +λ ) 0

ω −ηξ +δv −(b+α)


When i=0 for free equilibrium for the disease is e0 and it’s given by;

e0 := (s0, i0,v0,) = (
b+α

b+α +ω
,0,

ω

b+α +ω
) (41)

This denote the disease free population, i=0. If en :=(sn, vn, in ) is endemic equilibrium .

Therefore,
dr
dt

=λ i - (b - δ i ) r ; dr
dt =0 ; λ in = r(b-δ in ) > 0

This shows that 0<in<min {1, b
δ
}

Solving equations (29) gives;

sn =
b[(ηξ −δ )in +b+α]

[(ηξ −δ )in +b+α][(ξ −δ )in +b+ω]−ωα
(42)

vn =
bω

[(ηξ −δ )in +b+α][(ξ −δ )in +b+ω]−ωα
(43)

Therefore, in is a positive solution of the equation. The critical vaccination rate ωc can be
derived when Ro=1 in terms of ω

ωc =
(b+α)[ξ − (b+δ +λ )]

(b+δ +λ )−ξ η
(44)
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4.3.2 THE GLOBAL DYNAMICS

The stability of desease free equilibrium globally jacobian matrix eo is

J(eo) =


−(b+ω) −ξ so +δ so α

0 ξ so +ηξ vo − (b+ ε −δ ) 0

ω −ηξ vo +δvo −(b+α)

 (45)

IfRo>1, there exist one eigen value (Ro - 1) and eo is unstable. If againω>ωc all eigenvalues
will be negative, implying that eo is locally asymptotically stable. The solution of the set
Ω is attracted to eo when Ro<1

If ξ ≤ δ or η ξ ≥ δ , i(t) converge at zero globally. The system for asymptotical for v(t),
s(t) ;

ds
dt

= b− (b+ω)s+αv ▷
= h1(s,v) (46)

dv
dt

= ωs− (b+α)v ▷
= h2(s,v) (47)

Therefore, limt→∞ s(t) = b+α

b+α+ω
limt→∞ v(t) = ω

b+α+ω

Entire solution in Ω are attracted to eo to get the following outcomes.

If Ro <1, the disease free equilibrium eo is locally stable in Ω, if ξ ≤ δ or η ξ ≥ δ , then
eo is globally asymptotically stable in Ω

4.3.3 ENDEMIC EQUILIBRIUM GLOBAL STABILITY

For the case en>1, the unique endemic equilibrium for global asymptotic stability can be
determined. The Jacobian matrix for the system (29), at any point is;

J =


∂ s′
∂ s

∂ s′
∂ i

∂ s′
∂v

∂ i′
∂ s

∂ i′
∂ i

∂ i′
∂v

∂v′
∂ s

∂v′
∂ i

∂v′
∂v

=


−(ξ −δ )i−b−ω −(ξ −δ )s α

ξ i ξ s+ηξ v+2δ i−b−δ −λ ηξ i

ω −(ηξ −δ )v −ηξ )+δ i


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J(2) =



ξ s+ηξ v−ξ i

−(2b+δ + ε +ω)+3δ i
ηξ i −α

−(ηξ −δ )v
−ξ i−ηξ i+2δ i

−(2b+α +ω)
−(ξ −δ )s

−ω ξ i
ξ s+ηξ v−ηξ i

−(2b+δ +λ +α)+3δ i



We therefore, take M=1
i I3, and M f M−1=[(b+δ+λ )-ξ s-ηξv-δ i]I3. I3 is identity matrix of

3 by 3 and M f is the directional vector of the system(29).

N =M f M−1+MJ(2)M−1 =



−ξ i− (b+ω)

+2δ i
ηξ i −α

−ηξ v+δv
−ξ i−ηξ i+δ i−ξ s−ηξ v

−(b+α +ω)+δ +λ

−ξ s+δ s

−ω ξ i
ηξ i− (b+α)

+2δ i



If the linear homogeneous system dΣ

dt =NΣ , where Σ=(Σ1, Σ2, Σ3) is the solution.

dΣ1

dt
=−ξ i+2δ i− (b+ω)Σ1 +ηξ iΣ2 −αΣ3 (48)

dΣ2

dt
= [−ξ i−ηξ i+δ i−ξ sηξV +δ +λ − (b+α +ω)]Σ2

+(−ηξV +δV )Σ1 +(−ξ s+δ s)Σ3

(49)

dΣ3

dt
=−ωΣ1 +ξ iΣ2 +[−ηξ i+2δ i− (b+α)]Σ3 (50)

Hence from equation (28) it proves that
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s′(t)
s

=
b
s
+

αv
s

−ξ i− (ω +b)+δ i (51a)

i′(t)
i

=ξ s+ξ ηv− (δ +b+λ )+δ i (51b)

v′(t)
v

=
ωs
v

−ξ η i− (α +b)+δ i (51c)

r′(t)
r

=
λ i
r
−br+δ i (51d)

δ i−b =
r′
r
− λ i

r
ξ s−ηξ v =

−i′
i

+δ i− (b+λ +δ )

Thus ηξ⩾δ and ξ > b+δ+λ , to obtain

D+∥Z∥⩽ [−(b+λ )i+
r′
r
− λ i

r
]|Z1|+(

r′
r
− λ i

r
)|Z3|+[

−i′
i

−2(
r′
r
− λ i

r
)− (α +ω)]|Z2|

⩽ max{ −(b+λ )i+
r′
r
− λ i

r
,
r′
r
− λ i

r
− i′

i
+2(

r′
r
− λ i

r
)− (α +ω)} ∥Z∥

If ϕ is a sample closed orbit in Ω we have∫
ϕ

[−(b+λ )i+
r′
r
− λ i

r
]dl ≤−ϖ

∫
ϕ

(
r′
r
− λ i

r
)dl ≤−ϖ

∫
ϕ

(
−i′

i
+2(

r′
r
− λ i

r
)− (α +ω)]dl ≤−2ϖ −A

where

ϖ =
∫

ϕ

λ i
r
)dl > 0

and
A =

∫
ϕ

(α +ω)dl > 0
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Thus
∫

ϕ
D+ ∥ Z ∥ dl ≤ -λ ϖ<0

This proves existence of closed curve in Ω as a solution system of differential equation
among periodic orbits, hormoclonic orbits and also heteroclinic cycle.
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Chapter 5
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5 NUMERICAL SIMULATION AND DISCUSSION

5.1 Numerical Simulation

The simulation of variables and numerical parameters of the systems of ODE’s from chap-
ter 3, indicates that the pandemic vanisheswhen themodified vaccination rateωi is below
the normal vaccination rate ωi<ω and the disease persist at an endemic state when ωi>ω

as the condition δ+λ<b+α is satisfied.

The δ>min{ λ , b+ω ,b+α-λ } when the modified vaccination rate is greater than general
vaccination ω .

The varied initial conditions for s,i and v indicates that numerically the disease can be
still be endemic.

The global asymptotic stability at e2 has a weaken conditions. When modified ω<ωi the
system of ODE’s results different dynamics.

The disease free equilibrium for global asymptotic stability doesn’t acertain disease elim-
ination. For global stabily ω<ωi a unique endemic equilibrium the diseasenmay vanish.
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Figure 4. b=2 ξ=0.004, ω=0.300, α=1.00, λ=1.00, δ=0.500, η=0.100
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Figure 5. b=2 ξ=0.008, ω=0.100, α=0.300, λ=0.400, δ=1.500, η=0.500
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Figure 6. b=2 ξ=0.004, ω=0.300, α=1.00, λ=0.400, δ=0.500, η=0.100
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Figure 7. b=2 ξ=0.004, ω=0.300, α=1.00, λ=0.400, δ=0.500, η=0.100
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6 DISCUSSION AND RECOMMENDATION

6.1 Discussion

The mathematical model was used to asses the relation between group parameters and
influenza infections. The model of influenza as a 4-dimensional system of ordinary dif-
ferential equations. The rate of infections reduces during hot seasons.

This study shows the dependency of influenza seasonality in Kenya to meteorological
parameters. Influenza infection becomes high in the winter and during rainy season. An
accurate data can help officials to facilitate best control measures for influenza epidemics,
such as vaccination activities prior to the cold seasons and rainy seasons. Further studies
are required to validate and justify the associations between influenza infections with
rainfall and temperature in laboratory and epidemiology.

Thus confirming that the endemic equilibrium is globally asymptotically stable. Due to
varyingmeteorological parameters, that is different average temperature and rainfall val-
ues. Therefore under same initial conditions, the influenza peak depend on temperature
and rainfall of the region under consideration but this does not affect the point at which
the endemic equilibrium is attained.

The reproduction number and influenza appear to increase or decrease simultaneously.
This is a sure way of predicting for future climate change and rate of infections. The
increase in Reproductive number indicate the increase in influenza infection. Also the
infection reduces with reducing reproduction number.

Seasons can be used to predict the future infections and also helps in the preparedness
for immunization. This helps the health workers and healthy facilities to be equipped in
advance for control measure.

6.2 Recommendation

Seasons can be used to predict future infections. This can be used to plan and budget for
the control measures and eradication of influenza.

The disease “fades out” for the reduced proportionate system when the vaccination rate
exceeds critical point. Eradication of the disease needs increases effort in vaccination, else
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the disease persist and spreading sporadically. Else, the flu will rapidly spread beyond
the control in the long run.

Mathematical models should be applied to observe future outbreak and also for predic-
tion of approximate number of infections for planning purposes.

These models can also be used to predict other disease outbreak in Kenya and Globally.
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