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ABSTRACT 
The adoption of enterprise resource planning systems in both the public and private sectors aims 

at having business transactions effectively captured, processed and stored. However, for most 

businesses, running real-time models on transactional and historical data is time-consuming, often 

happening overnight to prevent system contention. In order to gain a competitive edge, instant 

information is key to organizations. It empowers decision-making and improves the quality of the 

decisions made. This research implemented an analytics dashboard prototype that that uses in-

memory computing in the cloud foundry environment to leverage the parallel computing offered 

by the cloud environment. The prototype was simulated in a multicore environment with 16 and 

32 core processing unit cores. The response times for 1, 2, 4, 16, 64 and 128 cores were calculated 

using Amdahl's law of response times. A survey on the effectiveness of the IMC-based analytics 

dashboard in the business context was conducted with 20 key business users. The research findings 

revealed that save for when concurrent load is required and the CPU bandwidth to the memory bus 

notwithstanding, organizations intending to use in-memory computing technology such as HANA 

do not need to spend in core processing units acquisition of more than 16 cores. This research also 

established that real-time analytics and reporting is realized by in-memory technology’s high-end 

computing performance. Real time information ensures continuous business transparency. It also 

empowers decision-making at strategic and operational levels as well as improves the quality of 

the decisions made. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

The adoption of ERP Systems in both the public and private sectors aims at having business 

transactions effectively captured, processed and stored. A number of Enterprise Resource Planning 

systems have emerged to automate business or organizational processes such as Financials, Sales 

& Distribution, Procurement, Human Capital Management, Enterprise Asset Management, 

Production Planning, Quality Management and Project Systems. Properly implemented ERPs have 

been effective as far as driving the business operations are concerned. Since the beginning of the 

century, there has been an explosion in the volume of data from business operations. This has 

birthed two types of Information Systems namely, Online Transaction Processing (OLTP) and 

Online Analytical Processing (OLAP).  

 

OLTP is effectively delivered with traditional ERPs. As part of the project cutover, all the data 

from legacy systems are migrated for system Go-Live preparations. Post system Go-Live, more 

data continues to be captured in the form of business transactions. Over time, this creates a huge 

but significant data warehouse necessary for providing business intelligence. The need to have 

real-time data analytics and the never-ending demand for better and faster performance has been 

limited by the architectural designs of the ERP systems. The most recent designs of the traditional 

ERPs comprises either a 2-tier architecture or a 3-tier architecture. Both architectures have the 

application layer separate from the database layer, and the code (business logic) resides in the 

application server but interfaces with the database server through I/O processing. Most of the 

database servers used in these architectures are disk-based and row-oriented (Farber et al., 

2012).This leads to slow performance especially with the need to ingest millions of records in less 

than a second required for action and/or decision-making. The solution to such reporting and query 

requirements is the OLAP. 

 

 

In OLAP, analytical processes mostly run overnight to prevent system contention hence getting 

analytical report is a process that can take more than a day. Moreover, much as data warehouse 



systems are an established component of the information systems landscape in most companies, 

many have failed due to architectural concepts and data modeling. OLAP has been deployed and 

applied in many industries such as manufacturing (for order shipment and customer support), retail 

(for user profiling and inventory management), financial services (for claims analysis, risk 

analysis, credit card analysis, and fraud detection), transportation (for fleet management), 

telecommunications (for call analysis and fraud detection), utilities (for power usage analysis), and 

healthcare (for outcomes analysis) (Reddy et al., 2010).  

 

In recent developments in OLAP, column-stores have become more popular leading to In-Memory 

Computing (IMC) as is the case with Hyper System and SAP High Performance Analytic 

Appliance (HANA) database.IMC’s capability to execute the business logic inside the database 

kernel as opposed to inside the application server is what makes it more powerful in handling data 

analytics with lower latency. Leveraging cloud computing and mobile technologies provides even 

a more powerful user experience by offering faster data analytics irrespective of device or 

operating system platform. The advent of cloud computing and mobile technologies has prompted 

for access to real-time, actionable and relevant insights from mobile devices. Real-time analytics 

is an enabler to revenue growth and operational efficiencies (Agostino, 2004).This research is 

relevant for businesses running ERPs especially with Sales & Distribution modules and in 

particular for Chief Commercial Officers, Chief Information Officers, Chief Technology Officers, 

as well as Head of Information and Communications Technology. It is also important for System 

Analysts ,System Developers, and  Solution Architects who have an interest in code-to-data 

paradigm, where data intensive operations are pushed down to the database instead of to the 

application server. 

 

1.2 Problem Statement 

With the steady growth of e-commerce, there is need for real-time analytics on data especially in 

sales performance management. For most businesses, running real-time models on transactional 

and historical data is time-consuming, often happening overnight to prevent system contention. It 

is a significant concern for organizations to get real-time queries at lower latency. 

 

 



1.3 Objectives 

a) To examine the capabilities of In-Memory Computing 

b) To design and develop a prototype dashboard that leverages an IMC for real-time analytics 

c) To experiment the application of code-to-data paradigm 

d) To evaluate the latency in data processing from the prototype in the business context 
 
1.4 Research Questions 

a) What are the capabilities of In-Memory Computing? 

b) How much of a paradigm shift does In-Memory Computing has on traditional computer 

programming? 

c) What is the CPU core requirement for real-time data visualization in In-Memory 

Computing? 

d) How applicable is the In-Memory Computing in the business context? 

 

1.5 Significance 

In order to gain a competitive edge, instant information is key to organizations. It empowers 

decision-making at operational levels and improves the quality of the decisions made. It also 

strengthens the relationship between the organization and its customers, suppliers, partners and 

shareholders.  

  



CHAPTER TWO 
LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews relevant literature on ERP designs in the context of Online Transaction 

Processing (OLTP) vs Online Analytical Transaction Processing (OLAP), the capabilities of In-

Memory Computing with both OLTP and OLAP capabilities, and the new Code-to-Data 

programming paradigm brought about by In-Memory Computing. 

 

2.2 OLTP vs OLAP in ERP Design 

Online operational systems are used for transaction and querying processing. They are therefore 

termed as Online Transaction Processing (OLTP) Systems. Data warehouse systems are used for 

data analysis and decision-making, organizing and presenting data in various formats. They are 

therefore termed as Online Analytical Processing (OLAP) Systems. OLAP is a combination of 

analytical processing procedures and graphic presentation (the user’s interface). OLAP 

instruments enable complex computations, provide users with the possibility to access, and analyze 

large data volumes, the relations among them, and to present the data from various views (a 

multidimensional outlook of data) (Reddy et al., 2010) (Butuza et al., 2011).Reddy et al. (2010) 

highlight the following as the major distinguishing features between OLTP and OLAP: User and 

system orientation: While OLTP is used for transaction and query processing, OLAP is used for 

data analysis. Data content: OLTP system manages current data to a detailed format. OLAP 

manages a huge amount of historical data with summarization and aggregation. Database design: 

The OLTP database design has an entity- relationship data model and is application-oriented, 

whereas OLAP database design has a star or snowflake model and is subject-oriented. Access: 

access to OLTP systems is in short and atomic transactions whereas access to OLAP systems are 

read-only operations. 

 

The need for OLAP despite OLTP 

OLTP is the prerequisite for OLAP. While centralized warehouses also handle the integration of 

data from many sources, it is still desirable to have OLTP and OLAP capabilities in one system, 

which could make both components more valuable to their users.  



Seres & Medacovic (2014) observes that an operational database is designed and tuned from 

known tasks and workloads, such as indexing using primary keys, searching for particular records 

and optimizing ‘canned queries’.  

As data warehouse queries are often complex, they involve the computation of large groups of data 

at summarized levels and may require the use of special data organization, access and 

implementation methods based on multidimensional views. Processing OLAP queries in 

operational databases would substantially degrade the performance of operational tasks (Seres & 

Medacovic, 2014). While an OLAP query often needs read-only access of data records for 

summarization and aggregation, an operational database supports the concurrent processing of 

multiple transactions (Seres & Medacovic, 2014). Concurrency control and recovery mechanisms, 

such as locking and logging are required to ensure the consistency and robustness of transactions 

(Seres & Medacovic, 2014). 

 

Execution of concurrent transactions may be adversely affected if recovery mechanisms and 

concurrency control were to be applied for OLAP operations (Seres & Medacovic, 2014). Whereas 

historical data is needed for decision support, it is not usually maintained in the operational 

databases. Therefore, the information from operational databases is incomplete for decision-

making, which requires consolidation of information from heterogeneous sources (Seres & 

Medacovic, 2014). Keith Gile of Giga confirms that, “Enterprise wide data dissemination 

requirements are increasing significantly: analytic functions are no longer the domain of a few 

elite power-users. Companies need to deliver analytic functionality to a broad user community, 

targeted at the specific business needs of users via dashboards, key performance indicators, 

dynamic reporting, and real-time analytics.” All the aforementioned relevant literature are based 

on architectural designs where the database server is separate from the application servers. This 

kind of ERP design leads to significant latency during analytics occasioned by I/O processing 

between the database layer and the business logic layer. In a bid to improve the speed of business 

analytics with lower latency, the In-Memory Computing technology is revolutionizing the design 

of ERP systems. 

 

 

 



2.3 The Capabilities of In-Memory Computing 

Generally, the traditional data warehousing used for ERP reporting extracts, transforms and loads 

data from OLTP systems into OLAP systems at specified time intervals (Baboo et al., 2013). This 

delay of a day or less is not helpful for businesses especially with the current changing market 

environments. There is a need to analyze the business as it happens, with real-time information. 

Some organizations today cannot even afford an hour’s delay to remain competitive. The question 

has always been whether it is possible to have both OLTP and OLAP in the same system, 

leveraging In-Memory technology to enable real-time analytics on transactional data. Baboo et al. 

(2013) correctly observes that tuples in OLTP are stored in blocks (arranged in rows) which reside 

in the disk and are cached in the main memory in the database server. Even though indexing allows 

faster access to single tuples, the access becomes slower as the number of requested tuples 

increases. OLAP, on the other hand, has data organized in star schemas, where the attributes 

(columns) are compressed with the help of dictionaries to provide for optimization. Faster 

processing is realized after the attributes are converted into integers. Optimization of the hardware, 

particularly the main memory is the antidote to having real-time analytics (on millions of records) 

on transactional data. This has been made more feasible by the fact that main memory is becoming 

cheaper and growing larger (Baboo et al., 2013).The traditional ERP systems store the data in the 

disk drives. When it comes to analysis, accessing the data from the disk has a significant impact 

on performance. Accessing data from the Random Access Memory (RAM) improves the 

performance of analytics. Having all the data required for analytics residing in RAM is the game 

changer that many businesses need to actualize real-time data visualization.  

Moreover, modern CPUs (Central Processing Units) have emerged with tremendous computing 

power at an average of 8 CPUs with each CPU having about 16 cores. That results in 128 units of 

computing power with about 500 GB of main memory. Such CPU multicore architecture together 

with comparatively huge main memory is also a significant enabler to in-memory computing. 

Baboo et al. (2013) describe the key features of OLTP and OLAP in terms of memory storage of 

data tables.OLTP mainly uses row-store to store rows consecutively in the memory. It is 

recommended in cases where: a) the table has a small number of rows, for example, the 

configuration tables in ERP systems b) there is need to process a single record at a time c) there is 

need to fetch a complete set of a record like all the details of a customer master d) aggregation and 

fast searching are not required. 



OLAP mainly uses column-store where columns are stored consecutively in the memory. It is 

optimal for attribute-focused access with aggregations like SUM, GROUP BY. It is recommended 

in cases where: a) there is need to fetch any single column based on any descriptive value b) an 

application has many tables and there is a requirement to search the table based on the values of 

only a few columns c) the table has more columns than rows d) there is need to aggregate values 

in the columns.  

Baboo et al. (2013) suggest two advantages of column-store databases for OLTP. Firstly, since in 

column stores a compression factor of 10 can be realized compared to the traditional row-oriented 

database. Compressed data can be loaded into the CPU cache more quickly. Secondly, dictionary 

coding enables columns to be stored as sequences of bit-coded integers. During scans or join 

operations, checks for equality can be done on integers making it faster than comparing string 

values. With in-memory columnar storage, the column scanning speed and the dictionary 

compression allows read operations with tremendous performance. With this, no additional index 

structures are required as is the case with row-oriented storage where an effort for maintaining 

metadata is needed.  

We look at two cases of in-memory databases capable of mixed OLTP and OLAP workloads 

namely, the Hyper System and SAP HANA. These two next-generation database systems offer 

OLAP capabilities operating directly on transaction data thus enabling real-time business 

intelligence.  

 

2.3.1 The HyPer System  
Hyper allows queries to be run in parallel to transactions with very low overhead. It has a separate 

process forked from the OLTP process and which constitutes a transaction-consistent snapshot of 

the OLTP data. Queries are then executed in this separate process as shown below: 



 
Figure 1: Transaction-consistent snapshot of the OLTP data (Funke et al., 2012). 

The Operating System, with the help of the Memory Management Unit (MMU), keeps the 

snapshot consistent.  

In order to maintain the memory state from the time of the snapshot creation, the original page is 

replicated for OLAP process before the OLTP process updates a page. This is the power of the 

HyPer’s high performance, allowing the fastest dedicated online transactional systems and the 

fastest online analytics even if both workloads run in parallel on the same data. This is a hardware-

based snapshotting, which has proven superior to the traditional software-based snapshotting. 

HyPer writes transactions as stored procedures, which are compiled to native code by leveraging 

the Low-Level Virtual Machine (LLVM) compiler back-end. This allows for super-fast 

transactions in the order of thousands of transactions per second. HyPer’s query engine built on 

Query Compilation Technique together with its sophisticated query optimizer, enables Hyper to 

realize milli-second query response times on common business intelligence queries like top items, 

top sales etc. 

 

 Funke et al. (2012) observe a number of compression characteristics about Hyper. Firstly, the 

small portion of data that is accessed frequently remains uncompressed to remain accessible for 

transactions. Dictionary stores and run-length encoding, which is favorable for columnar storage, 

is used for data that is rarely read or updated (cold data). Another reason for compressing cold data 

is that it allows for the use of a single dictionary, with smaller memory footprint, for all partitions 

of a relation thereby eliminating lock contention with OLTP processes.  



This enables for greater compression rates and faster query execution because for every table scan 

there is a single dictionary scan. 

 

Run-length encoding, in addition to dictionary compression, reduces the size of the dictionary-key 

columns and increases the scan performance (Funke et al., 2012). 

Ordered-preserving dictionary compression found in the traditional analytical databases speeds up 

execution but is very difficult to maintain. Because the HyPer DBMS has to enable high-frequency 

updates and inserts, it uses a secondary index on the compressed attribute that consumes less 

memory than the traditional indexes on string attributes. Ordered dictionaries are powerful for 

range and prefix filter conditions e.g. attribute LIKE ‘prefix%’. For equality filter conditions e.g. 

attribute = ‘value’, the scan operator directly uses the secondary index to establish the qualified 

tuples hence preventing a full table scan. Filter conditions other than prefixes or equality, are 

evaluated by scanning the dictionary and selecting the qualifying keys into a hash table.  

Hash table is usually small for many queries allowing it to fit into cache making an efficient hash 

join (Funke et al., 2012). 

 

In conclusion, the Hyper DBMS has demonstrated that compression can be embedded on OLTP 

systems by compressing tuples that are rarely updated without affecting the transaction processing. 

This is realized by hardware improvements and achieving compression at lower overheads. Cold 

data can be easily compressed and optimized for effective and efficient query processing by 

relocating them to bigger memory pages. The DBMS, however, does not demonstrate how it can 

be used for ERPs, which is why it is important to have a look at another in-memory database, 

namely the SAP HANA. 

 

2.3.2 The HANA Database 
The innovation of the SAP’s High Performance Analytic Appliance (HANA) system was inspired 

by the increasing main memory capacity and the advent of multi-core systems that combines 

columnar storage and row-based query engine. HANA has evolved from HANA for analytical 

workloads in 2009, to HANA for transactional workload in 2012, to HANA for mixed workloads 

(i.e. both OLAP and OLTP) in 2015 (May et al., 2017). 

 



Firstly, we look at the HANA for analytical workloads, which was informed by the inefficiencies 

in the Business Warehouse around architectural choices, aggregation queries and concurrency 

handling. To address these challenges, parallelization at all levels, from hardware to query 

execution formed the main design principle of HANA. The ever-growing number of CPUs in the 

market motivated this. Just like the HyPer database, HANA uses dictionary compression. Unlike 

Hyper, however, ordered dictionaries are used in HANA and buffers operations that update the 

database in a delta index which keeps the main table static. The buffered entries and the static 

portion of the main table are fused in an explicit merge operation to create a new version of the 

main part. Dynamic Tiering is a technique of HANA for analytical workloads that enables 

transparent aging of data where the main memory keeps the hot data (i.e. actuals) while the data 

warehouse keeps the cold data (i.e. historical data) (May et al., 2017). 

 

Secondly, in order to support SAP ERP product, which is built on Advanced Business Application 

Programming (ABAP) language, HANA for OLTP was born. Column-store technique is 

optimized for workloads that leverages OLTP for thousands of statements per second, consisting 

of queries and concurrent updates. Since ERP systems have thousands of transactional tables, it is 

costly to replicate transactional data it increases the memory. Column store-based approach, 

therefore, has to be utilized to cater for the insert, update and delete operations. To avoid 

compilation of queries for OLTP, HANA employs a plan cache to store optimize SQL statements 

by linking the compiled query execution to the SQL statement. This prevents the parsing of the 

SQL (May et al., 2017). May et al. (2017) further illustrate the plan caching with a survey. Figure 

2 shows a plotting of top 100 statements against the execution count. Only a fraction of the main 

memory was consumed by the plan cache in these systems to guarantee 99% hit ratio. Meaning 

that only about 1% of all the queries required compilation. 

  
Figure 2: The count of queries executed in two sets of ERP systems (May et al., 2017). 



Fast Data Access (FDA) and Native For All Entries (NFAE) are the two main features that have 

optimized the Application Server – DBMS co-design. FDA enables direct read/write from/into a 

special internal data representation shareable between the database system and the application 

server. This bypasses the SQL connectivity stack traditionally required for data transfer resulting 

in a 20% increase in speed as shown in Figure 3. NFAE, on the other hand, converts disjunctions 

and conjunctions into a semi-join from the modification of the ABAP runtime which is optimized 

for effective execution by the database system (May et al., 2017). 

The following ABAP statement extracts customer information for all customers with active sales 

order and the specific customer numbers given within the run time table it_vbak residing in the 

application server: 

SELECT c.kunnr , c.name1, c.ktokd , c.stceg FROM kna1 c INTO CORRESPONDING 

FIELDS OF TABLE it_data FOR ALL ENTRIES IN it_vbak s WHERE s.kunnr = s.kunnr.  

 

NFAE passes the runtime table of the application server,  it_vbak ,to HANA and then does a semi-

join between the table kunnr and the previous runtime object it_vbak.This is done by leveraging 

the FDA. Without changing a single line in the business logic, higher speed in the order of a 

magnitude can be realized. 

 
Figure 3: NFAE and FDA optimizations in (May et al., 2017). 

From the above discussion, it is evident that HANA provides admirable throughput for OLTP 

workloads for ERP scenarios.Finally, in discussing the evolution of HANA, there is need to 

analyze the capability of HANA for mixed workloads. 

 

 



SAP HANA for OLTP and OLAP Workloads 

Motivated by the need to have a tight coupling of OLAP and OLTP under a common data 

management system and the need to overcome the costs of maintaining and operating two separate 

systems, HANA extended its capability to handle mixed workloads under the same database. May 

et al. (2017) presents a number of optimization techniques in the HANA for mixed workloads: 

 

Resource Management: Owing to the fact that the analytical queries demand significant memory 

and CPU usage in order to deliver real-time reporting, thousands of concurrent transactional 

queries, which ordinarily require low response times, are bound to suffer resource starvation (May 

et al., 2017). Real-time OLAP should not be realized at the expense of real-time OLTP needed for 

critical business transacting. HANA overcomes this by resource pooling whereby instead of 

resource overprovisioning, it discerns instances of where the memory is heavily consumed and 

terminates the subject OLAP statements. At the same time, HANA uses NUMA (Non Uniform 

Memory Access) architecture to establish concurrency with respect to the latest utilization of the 

CPU. If the server has less load, the OLAP query uses in full the CPU resource at its disposal, 

otherwise there is no parallelization with a huge workload(May et al., 2017). HANA also 

prioritizes the OLTP-style statements to achieve guaranteed response times required for interactive 

ERP modules. This is realized by classifying statements during compilation phase into either 

OLTP or OLAP by getting hints from the application server (May et al., 2017). 

 

Heavy on-the-fly aggregation: A big number of aggregate redundant tables are maintained in the 

traditional ERP which corresponds the business objects like ‘customers per country’ due to limited 

database performance. This, however, makes the application more complex by maintaining both 

the aggregates and the actual business logic leading to high maintenance overhead especially with 

large tables. HANA for mixed workloads replaces the aggregate redundant tables with database 

views on the parent tables. This reduces the business logic in the code significantly because the 

views do not have to be maintained during write transactions. As a result, OLAP-based ERP 

System can now compute the aggregated values on-the-fly. HANA employs Dynamic and Static 

Caching strategies. The former keeps the static parent version of a database view, then calculates 

the delta regarding the parent version then consolidates it into a snapshot which is transaction-

consistent.  



The application code designer is also able to pass hints of caching opportunities to the database by 

using declarative specification of cached views. The latter, on the other hand, uses a retention time 

to refresh the cache. It is meant for requests that can bear with data that is a couple of minutes old 

(May et al., 2017). 

 

Complex Analytics on Technical, Normalized Schemas: Executing both OLTP and OLAP 

transactions on the same physical database schema implies that there is no data warehousing. 

Especially with the elimination of aggregates in the business logic in the application server, a 

layered architecture of database views is necessary. Here database views are built on top of lower-

level views representing higher-level business objects upon which SQL queries are executed for 

OLAP systems.  

The reporting queries work on the technical, normalized database schema. The layered architecture 

of views is referred to as Core Data Services views (May et al., 2017). Figure 4 shows the layered 

architecture of CDS views as nodes and relationship associations and relationships as edges (May 

et al., 2017). 

  
Figure 4: Nested CDS views relationship (May et al., 2017). 

May et al. (2017) argue that in order to overcome the challenge of performing analytical queries 

on highly complex CDS views where hundreds of base tables have been referenced, applying 

caching strategy as already discussed in this paper optimizes and efficiently evaluates the queries. 

The main challenge with the complex queries that seems to remain unresolved is how to 

characterize complex views and analyze the performance issues. Relying only on the number of 

tables accessed may be misleading because it does not take into account the size of the accessed 

table. 

 

Data Aging: Data accessed through SQL queries reside in memory and are usually loaded therein 

by default upon first access ( in full columns).Because keeping data that is rarely accessed in the 

main memory is expensive, the HANA database classify data as either warm or cold data in what 

is known as aging run in order to optimize storage.  



Cold data is stored in disk and loaded into memory on demand. To detect historical data and 

prevent it loaded into main memory, HANA employs table partitions with page-loaded columns, 

relying on application hints indicating which queries need hot data and pruning partitions informed 

by the runtime statistics of the parameters in the query and columns accessed (May et al., 2017). 

 

2.4 The New Programming Model with IMC 

In order to get the full benefits of In-Memory database systems such as HANA, there has to be a 

paradigm shift in programming, from the traditional application code (Data-to-Code) to the new 

Code-to-Data model as shown in Figure 5. HANA realizes this by the availability of SQL Script 

interface. It includes SELECT queries, Data Definition Language (DDL), and Data Manipulation 

Language (DML). Heilman et al. (2013) identify two main reasons for SQL Script as the desire to 

prevent the transfer of huge amounts of data from the database to the application layer and the 

need to perform calculations in the database to leverage HANA’s query optimization, parallel 

execution and fast column operations. Compared to the traditional SQL queries, SQL Script is 

capable of the following capabilities: modular programming by breaking down complex functions 

into smaller ones enabling reuse and functional abstraction, returning multiple results, availability 

of control logic for instance if/else as well as support for local variables for intermediate results. 

 

 
Figure 5: Traditional Data-to-Code model vs New Code-to-Data model (Heilman et al., 2013). 

SAP ABAP, the main programming language for SAP ERP, has been optimized for HANA to 

ensure maximum benefits are reaped from the new Code-to-Data model. SAP ABAP code (needed 

for data processing) is pushed down to HANA and less data is transferred between HANA and 

ABAP. Figure 6 shows the scenario in comparison classic databases. 



 
Figure 6: Code Pushdown with Application Server ABAP (Heilman et al., 2013). 

 

2.5 Literature Summary 

With the advent of multicore CPUs and prices of main memory increasingly dropping, 

organizations using ERP systems have to adopt these technologies if they want to perform real-

time analytics on transactional data. A number of in-memory databases have emerged in the last 

few years reducing the current problem of higher response times with the disk I/O processing. We 

have analyzed Hyper and HANA in-memory databases, which both use columnar storage to enable 

OLAP queries without compromising the OLTP queries. They both employ data tiering, 

classifying data into clusters of hot, warm and cold in order to manage the memory resources. 

Owing to the fact that Hyper’s case has not been proven to work efficiently with ERP systems, 

this paper took a deeper look at HANA developed by SAP. Since SAP is the world’s leader in ERP 

solutions, HANA comes as a big relief for its global customers who have had the perennial problem 

working with stale information with the classical databases. The HANA innovation has also 

introduced a new programming paradigm, namely the Code-to-Data model, that allows code 

pushdown to HANA for complex calculations and processing.  

 

 

 

 

 

 



2.6 Overall System Architecture 

The following system design architecture represents the researcher’s view of the problem and the 

solution:

 
Figure 7: Overall System Architecture (Pattanayak, 2017). 

The real-time analytics dashboard is based on the HANA database where database tables reside 

and data is persisted. In the Application Server, Virtual Data Models are created in form of CDS 

views (Pattanayak, 2017). At the lowest level is the Private Views, which interact with the physical 

tables by fetching data directly from the HANA database. On top of the Private Views are the 

Interface Views, which interact with the database through a set of Private Views through database 

Joins or Associations (Pattanayak, 2017). It is also at this point where calculations on the retrieved 

data is done. The ultimate views are the Consumption Views, which are created on top of the 

Interface Views (Pattanayak, 2017). They are used to expose the data to OpenUI5 client.OpenUI5 

is an open source MVC Framework comprising HTML5, JavaScript, CSS and JSON tools. The 

OpenUI5 client represents the prototype analytics dashboard to be developed. OData services are 

then created from the Consumption Views and exposed to the OpenUI5 client through the Secure 

HTTP protocol. 



CHAPTER THREE 
RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter discusses the research design to be used in conducting the study. It gives details on 

research strategy. 

 

3.2 System Development Methodology 

This is a problem solving approach that entails the recognition and articulation of the research 

problem, a suggestion of how the problem might be addressed, and the implementation of the 

prototype. This study engaged the Design-Led Development Process (DLD) methodology. It has 

four main phases – Discover, Design, Develop and Deliver: 

 
Figure 8: Design-Led Development Process (SAP SE.2020.https://experience.sap.com) 

This is the best methodology for prototyping a solution to our problem because it is not necessary 

to fully understand the problem before exploring alternative solutions. It would also give more 

confidence to have a tangible implemented prototype early on. In designing and implementing the 

prototype dashboard, the following iterative steps were followed: Discover, Design, Develop, and 

Deliver. 

Discover 

This stage assumes knowledge of what the business wants and needs. To get relevant insights, an 

onsite visit to the analytical users and everyone involved and observing their typical daily work is 

needed. At the end of this activity, it should be clear what exact dashboard should be developed 

for the prototype. 

 

 

 



Design 

With the findings from the discover phase, this phase requires brainstorming in a team as well as 

designing an initial prototype to be validated with the end users (SAP 

SE.2020.https://experience.sap.com). By the end of this phase, there is a design ready to be 

implemented. At this phase, control flow diagrams, flowcharts and pseudocodes are created. The 

analytics dashboard displays, in various chart layouts, four main sales Key Performance Indicators 

(KPIs) namely: a) Total Sales per Customer in a Column Chart b) Total Sales per Product in a Bar 

Chart c) Total Sales per Country in a Map View and d) Total Sales per Currency in a Pie Chart 

 
Figure 9: The Prototype Dashboard Design 

The real-time analytics dashboard is based on the HANA database where database tables reside 

and data persisted. In the Application Server, Virtual Data Models are created in form of CDS 

views (Pattanayak, 2017). At the lowest level is the Private Views, which interact with the physical 

tables by fetching data directly from the HANA database. On top of the Private Views are the 

Interface Views, which interact with the database through a set of Private Views through database 

Joins or Associations (Pattanayak, 2017).  



It is also at this point where calculations on the retrieved data is done. The ultimate views are the 

Consumption Views, which are created on top of the Interface Views (Pattanayak, 2017). They are 

used to expose the data to OpenUI5 client.OpenUI5 is an open source MVC Framework 

comprising HTML5, JavaScript, CSS and JSON tools. The OpenUI5 client represents the 

prototype analytics dashboard to be developed. OData services are then created from the 

Consumption Views and exposed to the OpenUI5 client through the Secure HTTP protocol. 

The way CDS annotations translates to business semantics in a metadata driven analytics user 

interface is as shown below: 

 
Figure 10: The Proposed Analytics User Interface 

 

Develop 

This phase starts as soon the initial prototype dashboard design is finished and entails the 

development, testing and deployment of the prototype. Some aspects of the design may still need 

to be changed in light of ongoing users’ feedback, to optimize the dashboard or to allow for 

technical constraints. For the delivery of the dashboard, a verification that the final implementation 

and design delivers the intended user experience is carried out.  By the end of this phase, the 

prototype is ready for delivery and evaluation. 

 

Development, Integration & Deployment Tools: The project is developed and tested in Cloud 

Foundry – an Open Source Cloud Platform using the trial version of SAP HANA in-memory 

database. It is developed using the SAP Business Application Studio, a Platform-as-a-Service tool 

that provides a unified multi-cloud environment to develop, test, build, run and deploy the 



prototype. Eclipse IDE (Integrated Development Environment) is used for data modelling as well 

as for the creation of Core Data Services and exposing them through the OData services via the 

gateway. The front-end dashboard is developed using OpenUI5 framework comprising HTML5, 

JavaScript, CSS and JSON. 

The Business Application Studio gives provision for a virtual machine known as a Dev Space. 

This is the development environment. The user interface of the analytics dashboard is developed 

using the UI Development Toolkit for HTML5 (SAPUI5). This is an extensible JavaScript-based 

HTML5 control rendering library for business applications that run in the browser (SAP 

SE.2020.https://experience.sap.com). Web and Eclipse-based tools are available to support 

SAPUI5 development.SAPUI5 is optimized to make use of SAP metadata exposed in the OData 

stream. It provides an implementation of the MVC design pattern. The Model manages the 

application data, the View defines and render the UI and the Controller modifies the view and 

model. 

The database CDS views are rendered through OData. This is an Open Data Protocol based on 

HTTP, Atom Pub format, and JSON. It enables provision of data services-based REST principles 

and defines data queries using URLs constructed with specific rules (SAP 

SE.2020.https://experience.sap.com). It was released under “open specification promises” by 

Microsoft. 

 

OData URL structure: 

http://services.odata.org/OData/OData.svc/Category(1)/Customers?$top=2 

Service Document: 

The service document (returned at the OData service root) gives the titles and URLs for each 

service feed: 

http://services.odata.org/V3/OData/OData.svc/$metadata 

The $metadata entry for an OData service returns an EDMX file (Entity Data Model XML) that 

contains a complete description of the feeds, types, properties, and relationships exposed by the 

OData service. 

 

 

 



OData - System Query Options: 

$orderby - order entries by the entity supplied, example: /Products?$orderby=Rating,desc 

$top - selects only the first n items in a collection, example: /Products?$top=5 

$skip - selects entries starting with n+1, example:  /Products?$skip=2 

$filter - filters entries based on the criteria, example:  /Suppliers?$filter=Address/City eq 'Redmond' 

$expand - expanded entries are loaded quickly and presented inline, /Categories?$expand=Products 

$format - defines the format that the server must return, example:   /Products?$format=json 

$select - returns the subset of the specified properties, example:   /Products?$select=Price,Name 

The dashboard web application runs on all the major web browsers as well as all mobile devices 

irrespective of the underlying operating systems. 

 

Testing Techniques: In order to establish whether the prototype is capable of functioning in a 

real-life context, white box and black box testing techniques is carried out.  

White box testing checks for the correctness of code and the OData APIs as well as adherence to 

best practices. Black box on the other hand, tests the data input and output including the response 

times, CPU utilization and the usability of the user interface. The prototype is tested for its latency 

in providing real time analytics. The performance metrics to be used for this experiment are 

Average Response Time , Average Throughput and the CPU Time of SQL statements execution. 

 

Deployment: The prototype dashboard is deployed in the Cloud Foundry – an Open Source Cloud 

Application Platform using the trial SAP HANA in-memory database. It is deployed as Software 

as a Service (SaaS) in form of a web application, accessible through mobile, laptop and desktop 

devices. 

 

 

 
Figure 11: Development and Deployment Process Steps 



Deliver 

This phase makes the dashboard available to the end-users. It also involves an observation and 

investigation of how the dashboard makes analytical faster and easier, if it is user friendly and if 

there are any functions and features missing. The outcome of this observation and investigation 

feeds back into the Design-Led Development process and informs the next iteration of the solution. 

 

3.3 Evaluation & Analysis 

Evaluating the prototype involves a case study and a survey within the chosen case. 

 

3.3.1 Sampling Procedure and Sampling Size 

Of the businesses that run ERPs and with the need for real-time analytics, Janus Continental Group 

has been selected for this research project. The choice of Janus Continental Group as a case study 

is based on convenience because the company has agreed to give us access and is convenient as 

far as time and resources are concerned. The sales department has confirmed willingness and 

contribution of data for use in this project. This case is, however, typical of other organizations 

that run enterprise resource planning systems with a sales & distribution module. Therefore, the 

findings here are generalized to other similar organizations. 

 

3.3.2 A Case Study of Janus Continental Group 

The final prototype is evaluated in a real-world context in form of a short-term case study at the 

Janus Continental Group, within the sales department with 20 users. These are users mandated to 

conduct sales planning and performance management. 

 

3.3.3 Data Generation Methods 

This study uses the secondary data in the form of the sales data already captured in the ERP Test 

system through the Sales and Distribution OLTP module. The data include customer master data, 

sales orders, and delivery particulars. Real-time analytics is done on this data, which is estimated 

at millions of records. The analytics result set is then rendered on the prototype dashboard. Using 

data modeling, the CDS views extract the operational data into analytic cubes from where they can 

be exposed through the OData APIs.The CDS views collect data in three main categories :a) 

Measures: are quantifiable values that can be subjected to mathematical functions.  



For example, sales and sales price b) Dimensions: are qualitative values that do not have aggregate 

requirements. For example, sales country, product name, and customer c) Cubes: are a combination 

of both dimensions and measures. For example, salesperson, sales price, product name, country 

and currency. The CDS views based on the above is used as data sources for real-time analytics. 

User evaluation of twenty potential end-users is conducted to establish the conclusion of the design 

process and to determine if further modification to the prototype is needed. This is done through 

observations, interviews and questionnaires to evaluate functionality, performance, reliability, 

usability, and accessibility. Observations: is used to watch how the sales users work .The 

prototype may then be adjusted accordingly. An observation of how the prototype is used is also 

necessary. Interviewing & structured questionnaires: is used to gather requirement 

specifications as well as for the evaluation of the prototype dashboard. Documents analysis and 

creation: a study of the organization’s standard operating procedures and the job descriptions 

gives insights to what extent the prototype works in the organization. Analysis and design models, 

testing logs, user guides and a personal journal are also created and maintained. 

The evaluation of the developed prototype is carried out in the business context in order to assess 

the effectiveness of the analytics dashboard in the business environment. The evaluation metrics 

focus on the following key areas: the simplicity and ease of use, the adaptability to all the devices 

and web browsers, enrichment of the potential user’s work by providing useful sales insights as 

well as the provision of real-time and actionable sales insights 

 

The methodology for assessing the above is qualitative in nature. Questionnaires is administered 

with the focus of assessing the functional requirements of the prototype.  

The study is conducted for one week. The questionnaire to be used in the interview can be found 

in under Appendix III.  

The responses to the Likert-type survey questions are coded as follows: 

a) Strongly Agree        - 5  

b) Agree                       - 4  

c) Not sure                   - 3  

d) Disagree                  - 2  

e) Strongly Disagree   - 1 



The survey questions are grouped into four main categories: 

a) Simplicity:  evaluates the ease of use 

b) Adaptability: evaluates how adaptable the prototype is to all the devices and web browsers 

c) Delightfulness: assesses how the prototype enriches of the potential users’ work by 

providing useful sales insights 

d) Latency: evaluates the prototype’s response time from the business point of view  

 

3.3.4 Specifications and Analysis 

Requirement specifications collected from face-to-face interviews with the end-users and 

documents analysis informed the iterative design of the prototype. These are analyzed qualitatively 

resulting in sketches and mock-ups that guided the discussions and further design. The responses 

to Likert-typed questions are summarized by use of mean (average) to measure the central 

tendency. 

The HANA Studio is used to analyze the runtime statics of the prototype in evaluating: 

The Average Response Time - database query response time (in milliseconds) and the CPU Time 

of SQL statements execution (in microseconds). The runtime statistics obtained are used as input 

to the mathematical calculation in predicting the response time using Amdahl's law, Response time 

(s) = S + P/N. 

Tables, pie charts and line graphs are used to visually present the responses and results of the 

prototype evaluation.  

 

3.3.5 Target Population 

The target population for this research project is the businesses or organizations running ERPs, 

especially those with Sales & Distribution modules. It is also important for System Architects who 

have an interest in code-to-data paradigm, where data intensive operations are pushed down to the 

database instead of to the application server. 

  



CHAPTER FOUR 

IMPLEMENTATION, RESULTS & DISCUSSION 

4.1 Introduction  

This chapter demonstrates the results and discussion from the dashboard prototype applicable to 

this research project. In order to carry out the evaluation of the In-Memory Computing, the 

following specific objectives were set: 

a) To measure the performance of the IMC by evaluating the average database query response 

time in milliseconds.  

b) To assess the functionality, usability, and accessibility of the dashboard prototype in the 

business context 

 

4.2 Specifications and Analysis  

The specification for the analytical dashboard followed the Design-Led Development 

methodology. The objective was to design and develop an analytical dashboard that leverages 

HANA, an in-memory database. The dashboard was meant for the E-Commerce industry, 

specifically organizations operating on ERPs with a Sales Module. It was designed to improve 

sales planning and performance by providing real-time and actionable sales insights to the Sales 

Team. The potential users of the dashboard were engaged to get more clarity on the business 

reality. Figure 13 is a persona that represents the main stakeholder, his business objectives and the 

tools he uses to achieve the objectives. It guided the design decisions by representing the goals and 

desires of the dashboard users. 

 



 
Figure 12: Persona for the dashboard prototype 

 

4.3 Inputs and Outputs 

The following table represents the data input used for analytics as well as the various dimensions 

and measures of the analytic dashboard: 

 

Table 1: Inputs & Outputs 

Data Type Data Example Particulars Access Frequency 

Master Data Customers 

Products 

Countries 

Address 

 Medium 

Transaction Data Sales Orders  High 

 



4.4 The Design of the Open CDS-based Virtual Data Modelling in HANA  

The standard operational HANA database tables VBAK, VBAP, BUT000, ADR2 and MAKT 

were leveraged in building the virtual data model. VBAK contains all the sales header information, 

VBAP contains all the sales items information, BUT000 contains the customer information, ADR2 

contains the country information and MARA contains the product details.  

 

The CDS-based Virtual Data Model is as shown below:  

 

 
Figure 13: The Design of the CDS-based Virtual Data Model 

ABAP Development Tools (ADT) in Eclipse is used to model the CDS views as well as to connect 

to the ERP system. 

The OData service entity is designed in the S/4 HANA system using the Gateway Service Builder 

tool. This result in four entity sets namely; Total Sales per Customer, Total Sales per Product, 

Total Sales per Country and Total Sales per Currency. These entity sets are populated by data from 

the CDS views created from the physical HANA tables.  



4.5 Runtime Statistics of the Prototype 

The performance tests were implemented using the Google Browser Performance and Network 

Analysis tool in combination with the HANA CPU Cores Sizing tool. Whereas the latter was used 

to size the HANA database into instances of 8 CPU cores and 32 CPU cores, the former was used 

to monitor the performance logs that give specific response times for each sized instance.  

 

Average Response Time 

This is the database query response time in milliseconds. Shorter response time is made possible 

by the IMC’s ability to constantly cache countless amounts of data. Data stored in cached memory 

has lower latency. Response time is analyzed as a distribution as HANA interacts with other 

dynamic systems like the Operating System, the Network as well as the Application Servers. The 

response time is measured on two critical conditions: no other queries are running in parallel and 

the HANA CPU capacity is available to the analytical query being measured at the execution time. 

The query was measured with simulation of 32 and 16 CPU Cores, with the following results: 

 

 
Figure 14: Response time with an IMC on 32 CPU Cores 

 



 
Figure 15: Response time with an IMC on 8 CPU Cores 

Table 2: Response times with an IMC on 8 & 32 CPU Cores 

CPU Cores Measured Response Time 

(ms) 

Measured Response Time 

(s) 

8 758 0.758 

32 337 0.337 

 

Using Amdahl's law, the response times for 1, 2, 4, 16, 64 and 128 CPU Cores can be predicted. 

 

Amdahl's law states that; 

Response time (s) = S + P/N  

Where S is the sequential part of the analytical query execution flow, P is the parallelizable part of 

the analytical query and N is the number of simulated CPU Cores. 

 

Applying the formula to 8 CPU Core gives;    0.758 = S + P/8 

Applying the formula to 32 CPU Core gives;  0.337 = S + P/32 

 

From the equations, 

S = 0.197 

P = 4.488 



With the values of S and P, the calculated estimated response times for 1, 2, 4, 16, 64 and 128 CPU 

cores as shown below: 

 

Table 3: Response times with IMC on CPU Cores between 1 and 128 

CPU Cores Calculated Response Time 

(s ) 

1 4.685 

2 2.441 

4 1.319 

8 0.758 

16 0.478 

32 0.337 

64 0.267 

128 0.232 

 

The results of how response times varies with respect to the number of CPU cores can therefore 

be plotted as follows: 

 
 Figure 16: The Analytics Dashboard’s Average Response Time 



From the results, it is evident that with the CPU Cores of more than 16 the response times do not 

significantly change. Therefore, businesses do not need to spend more in CPU acquisition except 

for when concurrent load is required and the CPU bandwidth to the memory bus notwithstanding. 

 

4.6 Effectiveness of the In-Memory Computing in the organizational context 

The evaluation of the functionality, usability and accessibility of the prototype was done to 

establish its relevance in the business context. A survey was conducted using google forms to 

collect both qualitative and quantitative data. 

 

The evaluation commenced by introduction and making known to the business the overall 

objective of the research project. The prototype was configured and deployed for business use. 

The business units targeted for the survey included Oil & Gas, Real Estate, Hospitality, Energy, 

Construction, Investment as well as Shared Services as shown below: 

 

Figure 17: The Industry Distribution in the Survey on using the IMC-based Analytics Dashboard 

The sales department used the dashboard for a period of 2 weeks after which the survey 

questionnaires were issued out. It took 5 days to have the responses back. 

 

Out of the 33 targeted users, 20 participated in the survey. Over 90% corroborated that the analytics 

dashboard provides real-time & actionable sales insights, that the analytics dashboard enriches 

their work and that the analytics dashboard is easy and simple to use. 80% of the users agreed that 

the dashboard could be accessed on all devices and web browsers. 

 



 
Figure 18: Results of the Effectiveness of the In-Memory Computing in the organizational context  

The highest ranked feature was the dashboard’s simplicity in providing real-time and actionable 

sales insights. The ‘Not Sure’ Likert-type was ranked the lowest in all the categories, pointing to 

a very small number of users who may not have devoted enough time to evaluate the prototype. 

Whereas all the questions that the potential users were asked to respond to are found in the 

appendices section of this report, some of them are as shown in the figure 18 above. 

  



CHAPTER FIVE 
SUMMARY, CONCLUSION AND RECOMMENDATIONS 

5.1 Introduction 

This research project had four objectives. Firstly, to examine the capabilities of In-Memory 

Computing. Secondly, to design and develop a prototype dashboard that leverages an IMC for real-

time analytics. Thirdly, to experiment the application of code-to-data paradigm. Fourthly, to 

evaluate the latency in data processing from the prototype in the business context. 

 

5.2 Linking the Study Findings to Objectives 

Objective 1: To examine the capabilities of In-Memory Computing 

With the advent of multicore CPUs and prices of main memory increasingly dropping, 

organizations using ERP systems have to adopt these technologies if they want to perform real-

time analytics on transactional data. A number of in-memory databases have emerged in the last 

few years reducing the current problem of higher response times with the disk I/O processing. This 

research project has analyzed the HANA in-memory database which uses columnar storage to 

enable OLAP queries without compromising the OLTP queries. Owing to the fact that the 

analytical queries demand significant memory and CPU usage in order to deliver real-time 

reporting, thousands of concurrent transactional queries, which ordinarily require low response 

times, are bound to suffer resource starvation. Real-time OLAP should not be realized at the 

expense of real-time OLTP needed for critical business transacting. HANA overcomes this by 

resource pooling whereby instead of resource overprovisioning, it discerns instances of where the 

memory is heavily consumed and terminates the subject OLAP statements. . If the server has less 

load, the OLAP query uses in full the CPU resource at its disposal, otherwise there is no 

parallelization with a huge workload(May et al., 2017).. HANA also prioritizes the OLTP-style 

statements to achieve guaranteed response times required for interactive ERP modules. This is 

realized by classifying statements during compilation phase into either OLTP or OLAP by getting 

hints from the application server. 

HANA for mixed workloads overcomes maintenance of a big number of aggregate redundant 

tables in the traditional ERP which corresponds the business objects like ‘customers per country’ 

due to limited database performance (May et al., 2017).  



This reduces the application code significantly because the views do not have to be maintained 

during write transactions. As a result, OLAP-based ERP System can now compute the aggregated 

values on-the-fly (May et al., 2017). With the elimination of aggregates in the business logic in 

the application server, a layered architecture of database views is necessary. Here database views 

are built on top of lower-level views representing higher-level business objects upon which SQL 

queries are executed for OLAP systems. The reporting queries work on the technical, normalized 

database schema. The layered architecture of views is referred to as Core Data Services views.  

 

In order to overcome the challenge of performing analytical queries on highly complex CDS views 

where hundreds of base tables have been referenced, applying caching strategy optimizes and 

efficiently evaluates the queries.  

HANA employs Dynamic and Static Caching strategies. The former keeps the static parent version 

of a database view, then calculates the delta regarding the parent version then consolidates it into 

a snapshot which is transaction-consistent. The application code designer is also able to pass hints 

of caching opportunities to the database by using declarative specification of cached views. The 

latter, on the other hand, uses a retention time to refresh the cache. It is meant for requests that can 

bear with data that is a couple of minutes old (May et al., 2017). Data ageing is another capability 

of the HANA IMC.Data accessed through SQL queries reside in memory and are usually loaded 

therein by default upon first access ( in full columns).Because keeping data that is rarely accessed 

in the main memory is expensive, the HANA database classify data as either warm or cold data in 

what is known as aging run in order to optimize storage. Cold data is stored in disk and loaded into 

memory on demand. To detect historical data and prevent it loaded into main memory, HANA 

employs table partitions with page-loaded columns, relying on application hints indicating which 

queries need hot data and pruning partitions informed by the runtime statistics of the parameters 

in the query and columns accessed. In order to get the full benefits of In-Memory database systems 

such as HANA, there has to be a paradigm shift in programming, from the traditional application 

code (Data-to-Code) to the new Code-to-Data model. HANA realizes this by the availability of 

SQL Script interface which includes SELECT queries, Data Definition Language (DDL), and Data 

Manipulation Language (DML). The SQL Script prevents the transfer of huge amounts of data 

from the database to the application layer and the need to perform calculations in the database to 

leverage HANA’s query optimization, parallel execution and fast column operations.  



Compared to the traditional SQL queries, SQL Script is capable of modular programming by 

breaking down complex functions into smaller ones enabling reuse and functional abstraction, 

returning multiple results, availability of control logic for instance if/else as well as support for 

local variables for intermediate results. 

 

Objective 2: To design and develop a prototype dashboard that leverages an IMC for real-

time analytics 

The IMC-based analytics dashboard was designed and developed using the agile-based Design-

Led Development Process (DLD) to ensure it provides a great user experience. The virtual data 

modelling and the algorithms were implemented in Cloud Foundry – an Open Source Cloud 

Platform using the trial version of SAP HANA in-memory database. The development was done 

using the SAP Business Application Studio, a Platform-as-a-Service tool that provides a unified 

multi-cloud environment to develop, test, build, run and deploy the prototype. Eclipse IDE 

(Integrated Development Environment) was used for data modelling as well as for the creation of 

Core Data Services and exposing them through the OData services via the gateway. The front-end 

dashboard is developed using OpenUI5 framework comprising HTML5, JavaScript, CSS and 

JSON. 

 

Objective 3: To experiment the application of code-to-data paradigm 

An experiment was carried out to establish the IMC response time as well as the CPU core 

requirement for real-time data visualization. The average response time was measured on the 

conditions that no other queries were running in parallel and the HANA CPU capacity was 

available to the analytical query being measured at the execution time. The query was measured 

with simulation of 16 and 32 CPU Cores. The response times for 1, 2, 4, 16, 64 and 128 CPU 

Cores were calculated using Amdahl's law of response. Plotting response times against the 

corresponding the number of CPU cores corroborated that the CPU Cores of more than 16 the 

response times do not significantly change. As such, organizations intending to use In-memory 

Computing technology such as HANA do not need to spend more in CPU acquisition except for 

when concurrent load is required and the CPU bandwidth to the memory bus notwithstanding. 

 

 



 

Objective 4: To evaluate the latency in data processing from the prototype in the business 

context 

The IMC-based analytics dashboard was subjected to an evaluation exercise from the sales 

department. The evaluation involved a test of the prototype’s functionality, usability and 

accessibility to establish its relevance in the business context. The prototype was configured and 

deployed for business. The sales department used the dashboard for a period of 2 weeks after which 

the survey questionnaires were issued out. It took 5 days to have the responses back. Out of the 33 

targeted users, 20 participated in the survey. Over 90% corroborated that the analytics dashboard 

provides real-time & actionable sales insights, that the analytics dashboard enriches their work and 

that the analytics dashboard is easy and simple to use. 80% of the users agreed that the dashboard 

could be accessed on all devices and web browsers. The highest ranked feature was the dashboard’s 

simplicity in providing real-time and actionable sales insights. The ‘Not Sure’ Likert-type was 

ranked the lowest in all the categories, pointing to a very small number of users who may not have 

devoted enough time to evaluate the prototype. 

 

5.3 Conclusion 

This research study established that real-time analytics and reporting is realized by in-memory 

technology’s high-end computing performance. With in-memory computing there is one single 

source of data i.e. no separation between the operational and analytical data. Real time information 

ensures continuous business transparency. Except for when concurrent load is required and the 

CPU bandwidth to the memory bus notwithstanding, organizations intending to use in-memory 

computing technology such as HANA do not need to spend in CPU acquisition of more than 16 

CPU cores. The study corroborates that the computing response times do not significantly change 

beyond the aforementioned number of CPU cores. 

 

 

 

 

 

 



5.4 Limitations of the study 

While undertaking this research project, a number of limitations were face. Firstly, the research 

was done using the HANA in-memory technology and as such we did not look at other models 

of in-memory computing. Secondly, the in-memory computing was simulated with only 16 and 

32 CPU cores due to limited resources.  

 

5.5 Recommendations for future research 

Owing to the aforementioned limitations, there are a few recommendations for future research 

from this study. It would be important to evaluate the average response times of the real-time 

analytics based on other models of in-memory computing other than HANA, for instance the 

Hyper System. Another area of interest is the assessment of the average response times of the in-

memory computing in a multicore and parallel computing environment. The main challenge with 

the complex queries that seems to remain unresolved is how to characterize complex views and 

analyze the performance issues. Relying only on the number of tables accessed may be 

misleading because it does not take into account the size of the accessed table. 
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APPENDICES 

Appendix I: Prototype Survey 

 
UNIVERSITY OF NAIROBI 

 
AN EVALUATION OF AN IN-MEMORY COMPUTING-BASED SALES ANALYTICS DASHBOARD 

FOR ORGANIZATIONS RUNNING ERP SYSTEMS 
This survey is being undertaken as part of a research at the University of Nairobi, SCI Department to evaluate how 

using In-Memory Computing can help businesses realize real-time and actionable sales. 
 

1. General Information 
a) Email:                ________________________ 
b) Business Name: ________________________ 
c) Industry: 

 
2. Effectiveness of the IMC-based analytics dashboard in the business context 

a) Simplicity 
Is the dashboard simple and easy to use? 

 
b) Adaptability 

Is the dashboard available on all devices and web browsers? 

 
c) Delightfulness 

Does the dashboard enriches your work by providing useful sales insights? 

 
d) Latency 

Does the dashboard provide real-time and actionable sales insights? 

 
Thank you for your participation! 



Appendix II: The Analytics Dashboard 

Below is the screenshot for the analytics dashboard. It shows in real-time the total sales in four categories; 

Sales per Customer in a column graph, Sales per Product in a bar graph, Sales Per Currency & Country in 

a pie chart. Additionally, it displays Sales per country in an Analytic Map where the amount of sales is 

directly proportional to the intensity of the green color code.  

 

  

 
  



Appendix III: The CDS Views 
 
Customer Master Basic CDS View: 

define view ZI_CUSTOMER 

as select from but000 { 

key partner  as CustomerID, 

    name_org1 as CustomerName, 

    persnumber as AddressNumber 

} where bu_group between 'Z001' and 'Z002'; 

 

Product Master Basic CDS View: 

define view ZI_PRODUCT 

as select from makt { 

key spras as language, 

key matnr as ProductCategory, 

    maktx as ProductName 

} ; 

 

Sales Header Basic CDS View: 

define view ZI_SALESHEADER 

as select from vbak { 

key vbeln as DocumentID, 

    kunnr as CustomerID, 

    netwr as GrossAmount, 

    waerk as CurrencyCode 

} ; 

 

Sales Items Basic CDS View: 

define view ZI_SALESITEM 

as select from vbap { 

key vbeln as DocumentID, 

key posnr as DocumentItem, 

    matnr as ProductCategory, 

    netwr as GrossAmount 

} ; 

 



Sales Per Country Composite View: 

define view ZI_SALESCOUNTRY as select from ZI_AGGRSALESCOUNTRY as _AggrSalesCountry 

 { 

    Country as Country, 

   cast( sum(GrossAmount) as abap.dec( 20, 2 ) ) as GrossAmount  

} group by Country; 

 

Sales Per Customer Composite View: 

define view ZI_SALESCUSTOMER as select from ZI_SALESHEADER as SalesHeader 

association [0..*] to ZI_CUSTOMER as _Customer 

    on SalesHeader.CustomerID = _Customer.CustomerID {     

   _Customer.CustomerID as CustomerID, 

   _Customer.AddressNumber as AddressNumber, 

   _Customer.CustomerName as CustomerName, 

    sum(GrossAmount) as GrossAmount 

} group by _Customer.CustomerID,_Customer.AddressNumber,_Customer.CustomerName; 

 

Sales Per Product Composite View: 

define view ZI_SALESPRODUCT as select from ZI_SALESITEM as SalesItem 

association [1..*] to ZI_PRODUCT as _Product 

    on SalesItem.ProductCategory = _Product.ProductCategory { 

     

   _Product.ProductCategory as ProductCategory, 

   _Product.ProductName as ProductName, 

    sum(GrossAmount) as GrossAmount 

} group by _Product.ProductCategory,_Product.ProductName; 

Sales Per Currency Composite View: 

define view ZI_SALESCURRENCY as select from ZI_SALESHEADER as SalesHeader 

{ 

    CurrencyCode as Currency, 

    sum(GrossAmount) as GrossAmount 

} group by CurrencyCode; 

 

  



Appendix IV: The Business Logic 

UI Controller: 

sap.ui.define([ 

    "sap/ui/core/mvc/Controller", 

    "sap/suite/ui/commons/ChartContainer", 

    "sap/suite/ui/commons/ChartContainerContent", 

    "sap/m/MessageToast"    

], 

    function (Controller, ChartContainer,ChartContainerContent, MessageToast) { 

        "use strict"; 

        return Controller.extend("uon.com.analyticsdashboard.controller.Main", { 

            onInit: function () { 

                var oView = this.getView(); 

                this.adjustMyChartBox(oView,"idVizFrame1","Cell1"); 

                this.adjustMyChartBox(oView,"idVizFrame2","Cell2"); 

                this.adjustMyChartBox(oView,"idVizFrame3","Cell3"); 

                this.adjustMyChartBox(oView,"idVizFrame4","Cell4"); 

                this.getOwnerComponent().getRouter().attachRoutePatternMatched(this.maptheMap,this); 

            }, 

            maptheMap: function () { 

                var oDataModel = this.getView().getModel(); 

                var that = this; 

                oDataModel.read("/SalesCountrySet", { 

                    success: function (data){ 

                        data.results.sort(function (a,b){ 

                            return b.value - a.value; 

                        }); 

                        var green = 255, red = 1; 

                        var aMapData = []; 

                        var facto = 255/data.results.length; 

                        for (var i = 0; i < data.results.length; i++) { 

                            var item = data.results[i]; 

                            var newGreen = green - facto * (i + 1); 

                            var newRed = red + facto * (i + 1); 

                            var color = 'rgb('+parseInt(newRed) + "," + parseInt(newGreen) + ',0)'; 



                            item.color = color; 

                            aMapData.push(item); 

                        } 

                        var oModel = new sap.ui.model.json.JSONModel(); 

                        oModel.setData({ 

                            "mapData" : aMapData 

                        }); 

                        that.getView().setModel(oModel,"viewModel"); 

                    } 

                });            

            }, 

              adjustMyChartBox: function (oView, sChartId,sBlockId) { 

                var oVizFrame = oView.byId(sChartId); 

                var oChartContainerContent = new ChartContainerContent({ 

                    content: [oVizFrame] 

                }); 

                var oChartContainer = new ChartContainer({ 

                    content: [oChartContainerContent] 

                    }); 

                 oChartContainer.setShowFullScreen(true); 

                 oChartContainer.setAutoAdjustHeight(true); 

                 oView.byId(sBlockId).addContent(oChartContainer); 

            } 

        }); 

    }); 

 

 

Configuration File: 
{ 

    "_version": "1.32.0", 

    "sap.app": { 

        "id": "uon.com.analyticsdashboard", 

        "type": "application", 

        "i18n": "i18n/i18n.properties", 

        "applicationVersion": { 



            "version": "1.0.0" 

        }, 

        "title": "{{appTitle}}", 

        "description": "{{appDescription}}", 

        "resources": "resources.json", 

        "ach": "ach", 

        "dataSources": { 

            "mainService": { 

                "uri": "/sap/opu/odata/sap/ZUON_MSC_ITM_SALESANALYTICS_SRV_02", 

                "type": "OData", 

                "settings": { 

                    "odataVersion": "2.0", 

                    "localUri": "localService/metadata.xml" 

                } 

            } 

        } 

    }, 

    "sap.ui": { 

        "technology": "UI5", 

        "icons": { 

            "icon": "sap-icon://task", 

            "favIcon": "", 

            "phone": "", 

            "phone@2": "", 

            "tablet": "", 

            "tablet@2": "" 

        }, 

        "deviceTypes": { 

            "desktop": true, 

            "tablet": true, 

            "phone": true 

        } 

    }, 

    "sap.ui5": { 

        "flexEnabled": false, 

        "rootView": { 



            "viewName": "uon.com.analyticsdashboard.view.App", 

            "type": "XML", 

            "async": true, 

            "id": "App" 

        }, 

        "dependencies": { 

            "minUI5Version": "1.66.0", 

            "libs": { 

                "sap.ui.core": {}, 

                "sap.m": {}, 

                "sap.ui.layout": {} 

            } 

        }, 

        "contentDensities": { 

            "compact": true, 

            "cozy": true 

        }, 

        "models": { 

            "i18n": { 

                "type": "sap.ui.model.resource.ResourceModel", 

                "settings": { 

                    "bundleName": "uon.com.analyticsdashboard.i18n.i18n" 

                } 

            }, 

            "": { 

                "dataSource": "mainService", 

                "preload": true 

            } 

        }, 

        "resources": { 

            "css": [ 

                { 

                    "uri": "css/style.css" 

                } 

            ] 

        }, 



        "routing": { 

            "config": { 

                "routerClass": "sap.m.routing.Router", 

                "viewType": "XML", 

                "async": true, 

                "viewPath": "uon.com.analyticsdashboard.view", 

                "controlAggregation": "pages", 

                "controlId": "app", 

                "clearControlAggregation": false 

            }, 

            "routes": [ 

                { 

                    "name": "RouteApp", 

                    "pattern": "RouteApp", 

                    "target": [ 

                        "TargetApp" 

                    ]  

                }, 

                { 

            "name": "default", 

            "pattern": "", 

            "titleTarget": "", 

            "greedy": false, 

            "target": ["default"] 

        } 

 

            ], 

            "targets": { 

                "TargetApp": { 

                    "viewType": "XML", 

                    "transition": "slide", 

                    "clearControlAggregation": false, 

                    "viewId": "App", 

                    "viewName": "App" 

                }, 

 



           "default": { 

                "viewType": "XML", 

                "transition": "slide", 

                "clearAggregation": "true", 

                "viewName": "Main", 

                "title": "Dashboard", 

                "viewId": "Main", 

                "viewLevel": 1, 

                "controlId": "app", 

                "controlAggregation": "pages" 

            } 

            } 

        } 

    }, 

    "sap.cloud": { 

        "public": true, 

        "service": "uon-com-analyticsdashboard" 

    } 

} 

 

 
  



Appendix V: The OData Project  

 

OData Logic: 

 
 

OData URL & Metadata: 

http://jcgsdx.dalbitpetroleum.com:50100/sap/opu/odata/sap/ZUON_MSC_ITM_SALESANALYTICS_S

RV_02/$metadata 

 

 
 


