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Abstract

In this project we focus on the construction of partially duplicated fractional factorial
designs. Factors involved in these designs are at two levels. In the first part of this work
we discuss partially duplicated fractional factorial designs that permit estimation of main
effects and two factor interactions only. In part two of this work, we construct partially
duplicated fractional factorial designs that permit estimation of main effects, two-factor
and three-factor interactions only assuming high order interactions to be absent. Designs
presented in this project have as many as ten factors. The method of construction,
analysis, test procedure and block designs is illustrated and can be used in any of the
designs presented in this work.
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1.1

Introduction

Concept of Factorial Designs

Factorial designs, sometimes referred to as Industrial designs were and are still widely
used in experiments to study the effect of factors, that is, the significant factors. They
also allow one to study the effect of their interactions. For Instance, in clinical trials, one
would like to determine if the combination(Interaction) of different type of drugs is
efficient in curing a disease.Factorial designs are also used in product development,
designing processes and quality improvement of products.

Factorial designs are economical and saves on time as compared to experiments done
factor by factor popularly known as one-factor-at-a-time (OFAT) experiments. Such
experiments involve alternating the level of one factor at a time while adjusting for the
other factor levels. Consequently, one will require additional resources and time. It is
important to note that this type of experiment does not allow one to study for
interactions. Complete factorials can be considered when the number of factors is
sufficiently small. Full factorials contain all possible combination of levels for the factors
involved.

In the case of an experiment involving large number of factors and/or limited resources
to perform a full factorial, under reasonable assumption the experimenter can adopt to
run a fraction of the complete factorial design. Consider a a” Factorial design where a
implies the number of levels and p the number of factors. These factors can be at two
or more levels. Throughout we shall only discuss designs with factors at two levels. To
illustrate the usefulness of a fractional factorial design, consider a 2° factorial design. A
complete factorial will involve 512 runs which in real life may not be “practical”
considering resources like money and time. However, one can adopt a fraction of the
above design, say 2% of the 2° factorial to get 16 runs which is much practical. Such
designs are referred to as Fractional Factorial Designs and are much more economical
and time-saving. Fractional factorial experiments are widely used in screening designs-
designs meant to help identify significant or rather active factors from a number of
factors.

Running an unreplicated complete or fractional factorial design with the focus of
identifying significant effects only as a way of miminising on cost could lead to biased
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results while making inference during analysis. This is as a result of not obtaining an
estimate for the pure error. Again, assumption made on high-order interactions to be
considered as negligible so as to obtain an estimate for the experimental error could be
misleading as some of the assumed interactions may not be negligible or absent.
Disregarding some of these interactions could lead to an experimental error variance that
is biased. One proposed method of obtaining a better estimate for the error variance is
duplicating some of the treatment combinations in the design.

Certainly, complete duplication provides a better estimate for the error variance.
However, it is not cost effective due to the additional runs and thus partial duplication
is a good alternative. Partial duplication provides for an unbiased estimate of the error
variance and estimates of effects which are more specific and reliable.

Literature review

The concept of factorial design was first presented by Fisher (1935) in his book “The
Designs of Experiments”.

Yates (1935) contributed to the concept of factorial design introduced by Fisher (1935) by
suggesting an algorithm which could be used to estimate the effects involved in a
particular factorial design. This algorithm is now widely used and is known as the Yate’s
algorithm.

An experiment can either be symmetrical factorial or asymmetrical factorial. Bose and
Kishen (1940) studied in detail symmetrical factorial designs and addressed the problem
of confounding in such designs highlighting the usefulness of partial confounding. Only
symmetrical factorials will be addressed in this project, that is, experiments whose
factors occur at the same number of levels.

Bose (1947) extended the work by Bose and Kishen (1940) on symmetrical factorial
experiments giving the mathematical theory behind symmetric factorial designs.

Running a complete factorial experiment with many factors requires many observations(runs).

To obtain the error d.f. we shall need to replicate the experiment. Fractional factorial de-
signs have become extremely popular and have been explored widely by researchers such
as Plackett and Burman, 1946; Dykstra, 1959; Patel, 1961 and Montgomery, 2001 among
many others.



Plackett and Burman (1946) obtained orthogonal fractional factorial designs that could
be used to estimate main effects only assuming that all other interactions were absent.
These designs were used extensively by researchers like Ottieno (1984), Odhiambo (1985)
and Manene (1987) among others for computing optimum expected number of runs in
Group Screening Designs (GSD) when we have error in observations.

Daniel (1957) during the convocation of the American Society for Quality Control,
proposed an error estimation method of partially duplicating a subset of the treatment
combinations.

Later on Dykstra (1959) extended the conversation by giving an experimental plan and
method of analysis of designs with factors at two levels with partial duplication involved.

Dykstra (1960) extended his work done in 1959 to partial duplication of Response Surface
Designs to clear the uncertainty of whether variability remains constant or increases
away from a center point resulting to a biased estimate of the error. Dykstra showed
that obtaining duplicates over the experimental area could solve that uncertainty or the
fear of variance increasing away from the center point.

Patel (1963) extended Dykstra’s work (1959) giving the experimental plan, test
procedures and block design for 27 designs that had been duplicated partially. Patel’s
designs provided for fewer runs than the corresponding Dykstra’s designs. Both Patel
and Dykstra duplicated partially in their designs so as to allow for estimation of the error
variance.

Pigeon and McAllister (1989) discussed how it was possible to have partial duplication
without interfering with the orthogonality of main effects.

Liau (2008) extended the work by Pigeon and McAllister (1989) by presenting construction
techniques on how to get the orthogonal main effect plan with some set of duplicated
points.

Liau and Chai (2009) re-examined the é fraction of 27 design by Snee (1985) where 2 refers
to the number of levels and 7 the number of factors. Snee’s design had four points
duplicated. After Liau and Chai re-analysed the design they found out that had the
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points not been duplicated, the significant effects would have been different. They also
concluded that partially duplicated designs are more robust and efficient in screening
experiments.

Tsai and Liao (2011) extended the proposed 27 symmetrical factorial by Liau and Chai
(2009) to obtain optimality in partially replicated mixed factorial experiments.

Patel (1963) and Dykstra (1959) studied designs that allowed for estimation up to
two-factor interactions. Plackett-Burman designs assumed no interaction in effects. In
this project, we are going to include partial duplication in the proposed fractional factorial
designs that allow for estimation of effects up to three-factor interaction as some of these
interactions assumed to be absent could be actually active.

Statement of The Problem

It is a commonly accepted practice to obtain an estimate of the error by regarding high
order interactions absent and pooling their d.f. and Sum of Squares to be for error.
However, some of these interactions may actually be present leading to a biased estimate
of the error. Moreover, we may not understand the extent to which the error term is
biased (Dykstra,1959).

Here we are going to show how estimation of effects was done in Patel’s work- estimation
of effects up-to two-factor interactions using matrix approach- and extend to designs that
estimate up to three factor interactions.

Objectives of the Study

The main aim of this project is to construct partially duplicated fractional factorial
designs with as fewer runs as possible.

The specific objectives of the study are are:

i) To construct partially duplicated fractional factorial designs which allow for estimation
up-to two factor interactions.

ii) To construct partially duplicated fractional factorial designs which allow for estimation
up-to three factor interactions.



1.5

Methodology
1.5.1 Definition of Effects

Consider a factorial experiment with p factors Fy, ..., F), each at two levels and factors
that appearatxj,...,x, levels. Let x; the level of the i'" factor be coded as 0, 1for 1 <i < p.
Thatis,x;=0,1fori=1,....p

Let the combination of levels of the p factors, that is, the treatment combinations be
denoted by

lx',...,f;p or (x1,...,xp) (1.1)

The design described above is a 27 factorial design. Consider a 2 design. The treatment
combinations are (1), f1, f2, fif>. The same treatments can be represented as (0,0),
(1,0), (0,1) and (1,1). In a 23 design the eight treatments are (1), f1, f2, fifa, f3, fifs
, f2f3 and fi f2f3 also presented as (0,0,0), (1,0,0), (0,1,0), (1,1,0), (0,0,1), (1,0,1),
(0,1,1) and (1,1,1).

The parameters in a 22 design are U, Fy , F> , F1F, and their estimates are denoted by [i,
Fy , F> and F{F> respectively. They are given by the following equations:-

il = % = %[(1) +fi+ 2t f1fo]
A=y h e as) (1.2

A=) hnan)

Fr="E 0y f )

where [u], [F1], [F>] and [F]F>] are contrasts in the actual observation values of the above
treatments.



The parameters in a 3 factor experiment are u, Fi ,F5 , F3 , i F> , F1F3 , FoF3 and Fi > F3.
Their estimates are defined by the following eight equations:-

éKU+ﬂ+ﬁ+ﬂh+ﬁ+ﬂﬁ+&ﬁ+ﬂﬁﬁ]

A= [0t fim ot fis— fst fifs—ffs 4 fifof

i

5=%N4%Jﬁﬁfhh—ﬁ—ﬂﬁ+ﬁﬁ+ﬂﬁﬂ
@Z%K*U—ﬁ—ﬁ—ﬁh+ﬁ+ﬁﬁ+ﬁﬁ+ﬁﬁﬁ] (1.3)
FFa = S[() = fi~ ot it fs— fifs— fofst oS
FiF; = é[(l) —fit = fifa= B+ NS L+ fif]
HEZ%KU+ﬁ—ﬁ—ﬁﬁ—ﬁ—ﬁﬁ+ﬁﬁ+ﬁﬁﬁ]

REF = g[(-)+ i+ f=fif+fs— Ay fofs + fifafi

From equations (1.2) we can see that {I + F} is the average of the observations at high
level of factor Fi and fl — Fj is the average of observations corresponding to the low level
of Fj. The same is true for F,. Using the same logic we can reason for equations (1.3).

i} + F|F, is the average of the observations at the low level of both factors and at the high
level of both factors whereas I — F{F> is the average of observations at high level of F;
and high level of F,. The same argument can be used in equations (1.3).

1
Let B= and B??) = B B be the direct product of matrix B.
1 1

Equation (1.2) can be derived as

1 1 I I
()@ (1) =g @ (1.4)

fi f F %)

where (1)(1) = (1), (1)f1 :f1 :fl.(l),I.I:I,I.Fl =F=n. andI:u



Solving for equation (1.4) we get

(1) u
1 —1 1 —1 F
S = ©® ! (1.5)
f2 1 1 1 1 F
| f1./2] | F1F2 |
Now,
[1x1 Ix—1 —1x1 —Ix—=1] [1 =1 =1 1]
1 -1 o I -1 Ix1 Ix1 —1x1 —=1xI I 1 -1 -1
1 1 1 1 Ixl 1x—-1 1x1 1x-1 I -1 1 -1
[Ix1T Ix1 1x1 Ix1 ] 1 1 1 1 ]
(1.6)
Replace equation (1.6) in equation (1.5) to get
] [t -1 -1 1] [ ]
1 1 -1 -1 F
A : (1.7)
f I -1 1 -1 123
| f1.2] 11 1 1] |[FAf]

Getting the inverse of the above matrix in (1.7) gives us the equation of the estimates as

[ o] 11 1 1| ]

F 1|-1 1 =1 1]|]| A

A = (1.8)
b 411 =1 1 1| A

FlAFz_ i I -1 -1 1_ _f1f2_

Note these equations are similar to those given in equation (1.2).

Similarly, for the 3-factor experiment we can proceed as follows.

Let B= and B®) = B& B B be the direct product of matrix B.

1 1



1 1 1 1 1 1
Wl | W] e [ W] Zpe o B (1.9)
h 2 VE! F 19 F3
Solving the left-hand side of equation (1.9) to get
(1) u
h F
12 19
1 —1 1 —1 1 —1 R FE
£ fifz _ o o 1 (110)
f 11 11 11 A
fif3 F;
f2f3 FKhF;
| f12/3 ] | FiF>F3 |
Equation (1.10) reduces to
IS0 T T T T T R IR T I B!
fi 11 -1 -1 -1 -1 1 1 Fi
b 1 -1 1 -1 -1 1 -1 1 )
1 1 1 1 -1 -1 -1 -1 FF
£ N | _ 152 @)
f3 1 -1 -1 1 1 -1 -1 1 F;
fifs 1 1 -1 -1 1 1 -1 -1 FF;
fs 1 -1 1 -1 1 -1 1 -1 hE;
fiaf3 1 1 1 1 1 1 1 1 EE;




Getting the inverse of the matrix in (1.11), the equations below follow

B R R T B T T | N AV
F -1 1 -1 1 -1 1 —-11 fi
)23 -1 -1 1 1 -1 -1 1 1 f
FiF 1l1 -1 -1 1 1 -1 =1 1|]| fifr
) _ (1.12)
B 81-1 -1 -1 =1 1 1 1 1 f
F{F; 1 -1 1 -1 -1 1 —1 1|| fifs
FyF;3 1 1 -1 —1 =1 =1 1 1|| Af
FIBF; -1 1 1 -1 1 =1 =1 1| |fAffs

The corresponding equations in (1.12) above are the same as those in equations (1.3).

Therefore, we can write the expectation equations in (1.4) and (1.9) in a more generalized
form for more than two factors as

W) 1M (@ (1)

E @ @ @D — BP) P ® BB (1.13)
il ) 3 Ip F F F3 F,

1.5.2 Construction of The Design

We are going to consider linear equations of the form L = fix; + foxo +---+ f,x, where
fi=0,1fori=1,2,...,p.

The number of non-zero co-efficients of the levels x1,...,x, is known as the weight of the
linear form L.

Consider a set of k linearly independent equations
Ly = fuxi+fioxo +--+ fipxp = by
Ly = fo1x1+faox2+ -+ fapxp = by
Ly = fuxi+fioxa +- -+ fipxp = by
where fr;;T=1,2,...,kand j=1,2,...,p.

The L;’s in this project are chosen such that each linear function is of weight > 3. All
linear combinations of L;’s gives 2% — 1 linear forms
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ML+ Lo+ ...+ MLy

where A =0,1; 7= 1,2,...,kand (A41,...,4) # (0,...,0).
The number of treatments which when written as column vectors constitute an
orthogonal array of strength 2 is 27~ given by the 2F — 1 linear forms.

In treatment combinations each level of every factor appears the same number of times.
Also, any combination of levels corresponding to a pair of factors occurs equally (Rao,
1950). Ly = b; (mod 2) generates the combination of levels denoted by (xi,...,xp) given
in (1.1) where by = 0,1 for T = 1,2,...,k. It therefore follows that L; for t =1,2,...,k
are the generators of the design giving the fractional design.

Now let B = (bz,) be a non-singular matrix with entries 0, 1 (mod 2) for 7 =1,...,k

and m =1,... k. Then the treatment combinations given by the k linearly independent
equations

Ly =0,b11,b12,...,b1x
Ly =0,b21,b22,...,bo (1.14)

(mod 2)
Lx = 0,b1,bi2,. .., by

gives the fraction of the design. The total number of treatment combination given by

equation (1.14) is (k+ 1)2P7%,

We are going to repeat any of the k+ 1 set of k equations in (1.14) so as to construct a
partially duplicated fractional factorial design.



11

2.1

2.2

Partially Duplicated Fractional Factorial Designs
which allow for Estimation up to Two-Factor
Interactions

Introduction
In this chapter, fractional factorial designs which allow for estimation of effects up to
two-fator interactions are presented. We consider experiments involving five factors up

to ten factors. The construction plan, test method of significance and the block design is
illustrated. The matrix method is used to obtain estimates for effects under consideration.

Five Factors Experiment involving 24+8 = 32 Runs
2.2.1 Constuction of the Design

Consider a design with treatment combinations (x1,x2,x3,x4,X5) which satisfy the
simultaneous equations

X1 +x+x3=0,1,0
X1 +x4+x5=0,0,1

mod 2. The first set of treatment combination to the equations

X1+x+x3=0
X1+x4+x5=0

mod 2 are (0,0,0,0,0), (0,0,0,1,1), (1,1,0,1,0), (1,1,0,0,1), (1,0,1,1,0), (1,0,1,0, 1),
(0,1,1,0,0) and (0,1,1,1,1).

The second set of treatment combinations satisfying the equations

X1+x+x3=1
X1 +x44+x5=0
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mod 2 are (0,1,0,0,0), (0,0,1,0,0), (0,0,1,1,1), (0,1,0,1,1), (1,0,0,0,1), (1,1,1,0,1),
(1,1,1,1,0) and (1,0,0,1,0). Similarly, for the third set the treatment combinations are
(0,0,0,1,0), (0,0,0,0,1), (1,1,0,1,1), (1,1,0,0,0), (1,0,1,1,1), (1,0,1,0,0), (0, 1,1,1,0)
and (0,1,1,0,1) which satisfy the equations

X1+x+x3=0
X1+x4+x5=1 (mod 2)

The defining relation is

[ = FiRF; = F\FyFs = F,F3FyFs

The aliased sets are

(F, F3, FyFs), (B2, F1F3), (F3,F1F2), (Fy, F\Fs), (F5, F1Fy), (F2Fs, F3Fy), (FaFy, F3Fs)
Listing only up to two factor interactions.



2.2.2 Method of Analysis

Expected responses @(x|,xy,x3,%4,%5) expressed as a linear function of the grand
average, main and two-factor interaction effects

uw Fh BE FFs BB R, B, FB FE FFs Fs FiFy BF FBF BE FBFs

0000 1 —1 1 1 —1 1 —1 1 —1 1 —1 1 1 1 1 1
00O0T1°1 1 -1 1 1 —1 1 —1 1 1 -1 1 -1 -1 -1 -1 -1
11010 1 1 -1 -1 -1 1 1 —1 1 -1 -1 1 -1 -1 1 1
1 1001 1 1 -1 -1 -1 1 1 -1 -1 1 1 —1 1 1 -1 -1
1 0110 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 1 -1 -1
1 0101 1 1 -1 -1 1 -1 -1 1 —1 1 1 -1 -1 -1 1 1
01100 1 -1 1 1 1 -1 1 -1 -1 1 —1 1 -1 -1 -1 -1
01111 1 -1 1 1 1 -1 1 -1 1 -1 1 —1 1 1 1 1
00O0O00O0 1 -1 1 1 —1 1 —1 1 —1 1 —1 1 1 1 1 1
00O0T11 1 —1 1 1 —1 1 —1 1 1 -1 1 -1 -1 -1 -1 -1
1 1010 1 1 -1 -1 -1 1 1 -1 1 -1 -1 1 -1 -1 1 1
11001 1 1 -1 -1 -1 1 1 =1 -1 1 1 =1 1 1 -1 -1
10110 1 1 -1 -1 1 =1 -1 1 1 =1 =1 1 1 1 -1 -1
10101 1 1 -1 =1 1 =1 -1 1 =1 1 1 -1 =1 =1 1 1
01100 1 -1 1 1 1 -1 1 =1 -1 1 =1 1 =1 =1 =1 -1
o1 1 11| |1 -1 1 1 1 -1 1 =1 1 =1 1 =1 1 1 1 1

¢ 01 00O B 1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 —1 1 -1 1
00100 1 -1 -1 1 1 1 -1 -1 -1 1 -1 1 1 -1 1 -1
00111 1 -1 -1 1 1 1 -1 -1 1 -1 1 -1 -1 1 -1 1
01011 1 -1 -1 1 -1 -1 1 1 1 -1 1 -1 1 —1 1 -1
1 0001 1 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1
1 1101 1 1 1 -1 1 1 1 1 —1 1 1 —1 1 -1 -1 1
11110 1 1 1 -1 1 1 1 1 1 -1 -1 1 —1 1 1 —1
10010 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 1 1 -1 -1 1
000T1O0 1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 1 -1 -1 1
00O0O0°1 1 -1 1 -1 -1 1 —1 1 -1 -1 1 1 —1 1 1 -1
1 1011 1 1 —1 1 —1 1 1 -1 1 1 1 1 1 —1 1 —1
11000 1 1 —1 1 —1 1 1 -1 -1 -1 -1 -1 -1 1 -1 1
1 0111 1 1 —1 1 1 -1 -1 1 1 1 1 1 —1 1 -1 1
1 0100 1 1 —1 1 1 -1 -1 1 -1 -1 -1 -1 1 —1 1 —1
01110 1 -1 1 —1 1 -1 1 -1 1 1 -1 -1 -1 1 1 -1
ot1o01] [t -1 1 -1 1 -1 1 -1 -1 -1 1 1 1 -1 -1 1|

where

y' = [u,F,F>Fs, FyFs, Fs, F1F>, F>, FyF3, Fy, F\ Fs, Fs, F1 Fy, F> s, Fs Fy, Fo Fy, F3 F)
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The first linear equation follows

(P[0,0,0,0,0] =u—-—mn-bB-FB-F-F+FFRh+HB+-REF

(2.1)
+EFs+ FyFs+ b Fy+ FoFs + F3Fy+ F3Fs + FyFs

The other equations can be written in a similar manner.

Consider the model given in (1.13). Performing the Kronecker Product on the Left-hand
and Right-hand side of the model we obtain

P
Ql,.xp) =+ Y p)E+ Y, pla)p () 22)

i=1 Lil=12,....p
i<if

(for up to two-factor interaction)

p
Qlxt,....xp)=u+Y px)Fi+ Y, p)pinNFEF+ Y. px)p(xir)p(xir) FEF
i=1 Lir=12,....p Lini=1.2,....p
i<it i<ir<in
(2.3)
(for up to three-factor effects)

where
Ely(xi,....xp)] = @lx1,...,xp]
forp(x;))=—Lx;=0and p(x;) =1;x;, = 1.

Using equation (2.2) one is able to obtain equation (2.1). The column vector of expected
response is given by ¢. Then from either equation (2.2) or (2.3) it follows

» =Xy

where X is the matrix of constants and 7y the column vector of factors. Let the estimate
of ¥ be . Then 7 is obtained as follows

7=xTx)"1(xTy) (2.4)
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The X matrix of co-efficients in our 2° design is

ELF, FFs F;, R, F, FF, Fy FFs Fs FFE FBEFs BE BF FFs

uw R
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Thus

v F BF K F R F, FRFE F FFs F5 EFF B BF FRFE BFs

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 32 —-16 —16 O 0 0 0 0 0 0 0 0 0 0 0
0 —16 32 0 0 0 0 0 0 0 0 0 0 0 0 0
0 —-16 O 32 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 32 —-16 0 0 0 0 0 0 0 0 0 0
0 0 0 0 —-16 32 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 32 —-16 0 0 0 0 0 0 0 0
Ty — 0 0 0 0 0 0 -—-16 32 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 32 —-16 0 0 0 0 0 0
0 0 0 0 0 0 0 0 —-16 32 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 32 —-16 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -—-16 32 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0
i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 |
[ ]
[F1]

i1y [I2F

[F4Fs)]

[[F3F5]

where

YT = [:u“7F17F2F37F4F57F37F]F27F27F1F3,F47F1F57F57F1F47F2F57F3F47F2F47F3F5]

We now have all the parts defined in (2.4), that is, X7 X and X’y matrices.
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Finding the inverse of the corresponding matrices in X7 X matrix, we get estimates for
the effects as shown below

-1
£ 32 —16 —16 [F1] 4 2 2| | [A]
. 1
F2F3 =1|-16 32 0 [F2F3] :6_4 2 31 [F2F3]
FyFs -16 0 32 [FyFs] 2 1 3| |[F4F5]

Effects FoF3 and F4F5 are estimated with the same efficiency which is higher than the
efficiency used to estimate the main effect Fj.

- -1

B 32 -16 [F3] 1|2 1] [F]
FiF —16 32 AR |1 2| |[FR)
Bl el 5 | R
|- . |-] . | areestimated by the matrix g5 .
FiF5| |FiFs| |FiFs 1 2

The correlated effects in sets (Fa, Fi1F3), (F3,FiFy), (Fa, F1Fs), (F5,F1Fy) are estimated
with the same efficiency.

It is clear that the effects above are estimable and thus we can term them as correlated
effects as opposed to aliased effects.
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Estimate of effects

| N 1
p=55u FiFy = (B3] +2[Fi ]
A 1 ~ 1
F = a[[‘l-[F]] —|—2[F2F3] —|—2[F4F5H FiFs= EHFZ] —|—2[F]F3]]
. 1 N 1
by = 2R+ R FiFy = o [[Fs] +2[Fi )]
. 1 ~ 1
By = 2 [2IB]+ [FiF]) FiFs = o [[Fa] + 2[R F5]
A 1 N 1
Fy = —||2|F. F1F: bhFs = — || F-
4= ggll2lF] + [FiFs]] 2Fs = 5 [[F2F5]]
N 1 A 1
F5s = —||2|F: FFE BFy = — ||
5= ;g l21F5] + [FiFy]] 2Fs = 35 [IP2F]]
FFy = 1[FF] FFy = 1[FF]
34—3234 34—3235
N 1
FyFs = —|F4F-
4Fs = 5 [FaFs]
Significance Test
The error sum of squares is given by
Liv () (e
SSe= {047 =)}
i=1
and
E(SSe) = 867
Here yy,...,ys are the duplicated treatments whereas (.) and (..) denote the two
observations. The test statistic say for F> is given as
- 2[B]+[Fi F3)
F i Sl R Sl St P
t = 2| = 43 > tg @.5)
var(F») Ei

which is said to be significant at & level of significance and non-significant otherwise.
te is the value of ¢ distribution with eight degrees of freedom. The t-distribution is used
when the sample size is small say p < 30.

Block Design

There are two ways in which to obtain the block design. We can decide to have three
blocks with unequal number of treatments. One of the blocks can be allocated 16
treatments that arise as a result of the 8 duplicated treatments while the other two blocks
each get 8 treatment combinations.
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2.3

Four blocks could also be considered in this design. Each block will have an equal number
of treatments. One of the four blocks could result wholly from the repeated treatments,
that is, the duplicates are put in one separate block from the others.

Six Factor Experiment involving 32+8 = 40 Runs

Consider a design with treatment combinations (x1,x2,x3,X4,X5,Xs) which satisfy the
simultaneous equations

X1 +x+x3=0,1,0,0
x1+x4+x5=0,0,1,0
x| +x4+x=0,0,0,1

(mod 2)

2.3.1 Constuction of the Design

We first get the treatment combinations satisfying the equations

X1 +x04+x3=0
X1 +x4+x5=0
X1+x4+x6=0 (mod 2)

which give the first set of treatment combinations that are duplicated. From this first set
we can easily obtain the second, the third and the fourth set of treatment
combinations satisfying the corresponding set of simultaneous equations.

Adding 1 (mod 2) in the x1, x4 and xg position of the first set we obtain the second set.
Adding 1 (mod 2) in the x1, x, and xg position of the first set we obtain the third set.
Adding 1 (mod 2) in the x1, x and x5 position of the first set we obtain the fourth set.
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Below follows the treatment combinations in each set.

sti sty sty sty
(0,0,0,0,0,0)  (1,0,0,1,0,1)  (1,1,0,0,0,1)  (1,1,0,0,1,0)
(1,0,1,1,0,1)  (0,0,1,0,0,0)  (0,1,1,1,0,0)  (0,1,1,1,1,1)
(1,1,0,0,1,1)  (0,1,0,1,1,0)  (0,0,0,0,1,0)  (0,0,0,0,0,1)
(0,1,1,1,1,0)  (1,1,1,0,1,1)  (1,0,1,1,1,1)  (1,0,1,1,0,0)
(1,1,0,1,0,0)  (0,1,0,0,0,1)  (0,0,0,1,0,1)  (0,0,0,1,1,0)
(1,0,1,0,1,0)  (0,0,1,1,1,1)  (0,1,1,0,1,1)  (0,1,1,0,0,0)
(0,1,1,0,0,1)  (1,1,1,1,0,0)  (1,0,1,0,0,0)  (1,0,1,0,1,1)
(0,0,0,1,1,1)  (1,0,0,0,1,0)  (1,1,0,1,1,0)  (1,1,0,1,0,1)

The defining relation is

[ = FiKF; = F{FyFs = FF,Fs = F3FsFs = BFsFyFs = Fi F3FyFg = FyF>FsFy

The correlated sets of factors are

(F\,FaF3, FyFs), (Fo, F\F3, FuF), (F3, Fi o, FsFs), (Fa, F1 Fs, Fo Fg), (Fs, Fi Fy, F3Fg), (Fo, FaFy, F3Fs),
(F\Fs, F3Fy, F>F5).

2.3.2 Method of Analysis

Using equation (2.4),we have the X matrix of co-efficients, X’ X and X7y matrices as
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u F RF RFs B R FF P
TS T S TS T RS
1 1 —1 -1 -1 1 1 1
1 1 -1 -1 1 -1 -1 -1

1 1 1 -1 1 1 -1 1
1 1 1 -1 -1 -1 1 -1
1 1 -1 1 1 -1 -1 -1
1 -1 1 —1 I -1 -1 1
1 -1 1 -1 -1 1 1 -1

F\Fs

FFg
1

F
-1

FF

FsFg

Fs
-1

FiFy

FFg

Fs
-1

kF, FFs FRF FBFy BFs
1111 1]
—1 —1 1 1 1
-1 -1 1 1 1

1 —1 1 —1 1
1 -1 1 -1 1
-1 1 1 -1 1
-1 1 -1 1 -1
—1 1 -1 1 -1
1 -1 -1 1 -1
1 -1 -1 1 -1
-1 1 1 1 -1
1 -1 1 1 -1
1 -1 1 1 -1
-1 1 1 1 -1
-1 1 -1 -1 1
—1 1 -1 -1 1
1 -1 -1 -1 1
1 -1 -1 -1 1
-1 -1 -1 1 1
1 1 -1 1 1
1 1 -1 1 1

-1 -1 1 -1 -1
1 1 1 -1 -1
1 1 1 -1 -1
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u  F RF Fiks
[40 0 0o 0

0 40 -—24 -24
0 —-24 40 8
0 -24 8 40
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
wrx_ |0 0 0 o0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

B FF
0 0
0 0
0 0
0 0

40 —24

—24 40

—24 8
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

FyFs

o o o o

—24

&
5 o«

S O O O O O o o o o o o o o <

F FFs BF F

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
40 24 24 O
—24 40 8 0
-24 8 40 0
0 0 0 40

0 0 0 —24
0 0 0 8
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
(1]
[F1]

XTy— [F2F3]

[F4Fs]

| [F3F5]

FF

S O O o o o o o o o

SO O O O O O O O O o

F5Fg
0

E ©®x ® ©o o o o o o o o o

S O O o o o o o <

Fs  FF
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

40 24

24 40
8 8
0 0
0 0
0 0
0 0
0 0
0 0

FyFs
0

® X O O O O O O O o o o o <

o
(=]

S o o o o o

FFy, FBFs FF, FBF FFs

Fe
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
40 24
24 40
8 8
0 0
0 0
0 0

0

X X O O O O O O O O O o o o o o o

B
S

0

S O O O O O O O O O o o o o o <o o <

I
o oo B

0

o O O O O O O O O O O o o o o o o o o<

S
® S

0

0w W OO O O O O O O O O O O o o o o o o

S
<)

y' = u, Fi, F2Fs, FyFs, B>, F\ Fs, FyFs, F3, F\ Fa, FsFg, Fy, Fi Fs, F>Fg, Fs, Fi Fy, FsFg, Fs, Fo Fy, F3Fs, Fy Fg, Fs Fy, F> Fs]

We have now defined all the matrices as per equation (2.4). Finding the inverse of the

subsequent matrices in X7 X we can estimate the effects as shown below

6 3 3
3 41
314

40 —-24 8
3 —24 40 8
8 8 40

—1

-1
—1

2
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and
~1
40 8 8 6 -1 -1
1
8 40 8 = oam 1 6 -1
8 8 40 -1 -1 6
The matrix:
6 -1 —1 FiFs
1 : :
1 —1 6 —1]| gives estimates for | F[3F

-1 -1 6 F)Fs

The correlated effects in set (Fi Fg, F3Fy, F>Fs) are estimated with the same efficiency.

6 3 3 F 2 Fy
1
% 3 4 1| givesestimates for | bR |, |FF|, |FFs
31 4 FuFs| |FuFs| |[F2Fe

The efficiency used to estimate the interactions FoF3, FyFs, FiF3, FuFg, FiF5 and F>Fg
is higher than the efficiency used to estimate the main effects Fj, > and Fs. The main
effects F1, F> and Fj are estimated with the same efficiency.

3 2 -1 F3 F5 Fe
1
o 2 3 —1| givesestimates for | F\F, |, |FiFs|, | >F,
-1 -1 2 Fs5Fg F3Fg F3Fs

The main effects F3, F5, Fg and the interactions F| F5, Fi Fy and F>Fj are all estimated with
the same efficiency which is lower than the efficiency attained for effects F5Fg, F3Fg and
F5Fs.

Using equation (2.4) we obtain the estimates of the effects as

A

F 6 3 3 [F1]

N 1
F2F3 :% 3 41 [F2F3]

F4Fs 3 1 4] |[FyFs)
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A

) 6 3 3 [Fz]
N 1

F1F3 :% 3 41 [F2F3]
FyFs 31 4| |[FF)

2 32 —1| | [F]
. 1

FR| =12 3 —1| |[AR]
FsFgs —1 —1 2| |[FsF]

[F5]

[F1Fy]
[F3F]
[Fe]

[F2Fa]
[F3F5]
FiFs 6 —1 —1| |[FiF)
F3F4 = L —1 6 —1 [F3F4]

244
F>Fs ~1 -1 6| |[RF
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Estimate of effects

L= %[ﬂ] FiFs = 2411 7 O1F1 o] — [F3Fy] — [F2F5]]
Fi = 916 [6[F1] + 3[F2F3] + 3[F4F5]] FF; = 9%[3[1’1] +4[F2F3) + [FaF5]]
) = 916 [6[F>] + 3[F1 F3] + 3[F4Fg)] FrFy = é [2[Fs] + 3[F>Fy] — [F3F5]]
5= 614 BIF3]+2[FiF2] — [FsF)] FyFs = 2 2ag F1F6] — [F3Fa] + 6[ 2 F5 ]
Fy= [6 [Fa] + 3[F1 F5] + 3[ P2 F FyFs = % [3[Fu4] + [F1 F5] + 4[F2 Fg ]
Fs = 614 BUFs] +2[Fi Fa] — [F3 K] F3Fy = 2;4[ [FiFs] + 6[F3F4) — [F>F5]]
Fo= g BIF]+ 203 - (5] FFs = o (1)~ [BR) + 2R F]
FF = 61—4[2[F3] +3[F B — [FsFy)] FFy = 6i4 —[Fs] — [FyFa] + 2[F5Fe]
FFy = 91 [31F] 415+ [ FiFs = 916 BIF] + [FaF5] + 4[FFs]]
FFy = 614 [2[Fs] + 3[F1 Fy] — [F3Fg)] FyFs = 9i6 [3[F>] + [FL F3) + 4[Fy Fg)]
F{FS 916 [3 [F4] + 4[F1 Fs] + [F2F6]] FSAF6 = 614[ [F3] [Fl Fz] + 2[F5F6H

2.4 Seven Factor Experiment involving 40+8 = 48 Runs

Consider a design with treatment combinations (x,x,x3,x4,Xs,X6,X7) Which satisfy the
simultaneous equations

X1 +x4+x5=0,0,1,1,1
x1+x3+x7=0,1,0,1,1
X1 +x04+x=0,1,1,0,1
xp+x3+x4=0,1,1,1,0

(mod 2)

2.4.1 Constuction of the Design

We first get the treatment combinations satisfying the equations

X1 +x4+x5=0



26

X1+x3+x7=0
X1+xX+x5=0
Xo+x34+x4=0

(mod 2)

which give the first set of treatment combinations that are then duplicated. From this
first set we can easily obtain the second, third, fourth and fifth set of treatment

combinations satisfying the corresponding set of simultaneous equations.

Adding 1 (mod 2) in x| and x4 position of the first set we obtain the second set. Adding 1
(mod 2) in the x; and x3 position of the first set we obtain the third set. Adding 1 (mod 2)
in the x; and x; position of the first set we obtain the fourth set. Adding 1 (mod 2) in x;

position of the first set we obtain the fifth set. Below follows the treatment combinations

for each set.

sty st2 st3 Sty st5
(0,0,0,0,0,0,0) (1,0,0,1,0,0,0) (1,0,1,0,0,0,0) (1,1,0,0,0,0,0) (1,0,0,0,0,0,0)
(0,0,1,1,1,0,1) (1,0,1,0,1,0,1) (1,0,0,1,1,0,1) (1,1,1,1,1,0,1) (1,0,1,1,1,0,1)
(0,1,0,1,1,1,0) (1,1,0,0,1,1,0) (1,1,1,1,1,1,0) (1,0,0,1,1,1,0) (1,1,0,1,1,1,0)
(0,1,1,0,0,1,1) (1,1,1,1,0,1,1) (1,1,0,0,0,1,1) (1,0,1,0,0,1,1) (1,1,1,0,0,1,1)
(1,0,0,0,1,1,1) (0,0,0,1,1,1,1) (0,0,1,0,1,1,1) (0,1,0,0,1,1,1) (0,0,0,0,1,1,1)
(1,0,1,1,0,1,0) (0,0,1,0,0,1,0) (0,0,0,1,0,1,0) (0,1,1,1,0,1,0) (0,0,1,1,0,1,0)
(1,1,0,1,0,0,1) (0,1,0,0,0,0,1) (0,1,1,1,0,0,1) (0,0,0,1,0,0,1) (0,1,0,1,0,0,1)
(1,1,1,0,1,0,0) (0,1,1,1,1,0,0) (0,1,0,0,1,0,0) (0,0,1,0,1,0,0) (0,1,1,0,1,0,0)
The defining relation is

I =F\FyFs = i3 = FiFo Fs = B F3Fy = FoFsFy = F3FsFg = FaFgFy = F3FaFsF;
—F2FyFsFy = FI >y FsFs = B F3FsFy = FiF>yFyFy = FiF3FyFg = FiFsFsFy

The correlated sets of factors are

(F1,F4Fs,FoFo, F3F7), (Fa, F3Fy, Fi Fo, FsFr), (F3, FaFy, FiFr, FsFe), (Fy, Fo 3, Fi Fs FoF7), (Fs, FiFy, F3Fg, Fo Fr),
(Fo, FiF>, F3Fs5,FyFy), (Fp,F1 F3, FyFg, Fo Fs).
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Using equation (2.4),we have the X matrix of constants, X7 X and X”'y matrices as

2.4.2 Method of Analysis

7 13 46 25

35 47

6 12

36 27

15 67 5 14

23

17 56

24

26 37 2 34 16 57

45
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46 25

13

35 47

12

36 27

14

15 67

23

17 56

24

34 16 57

2

45 26 37

1

U
48

0

0 48 0
0

0
0

0
0
0

0 48 16 16
16

0
0

16 48

16

0

16 48

16
—16

16
48

48

48

16
16

0
-32

—16

0

0

48

16
-16

16
48

—16

48

16
16

0
-32

48

0

48

16
~16
48

16
48

48

16
16

0
-32

—16

0

0 -32 -32
48

48

16
16
48

16
48

—-32 16
—-32 16

0
0

16

—32

—-32
16
48

0
48

48

16
16
48

16

16

—-32
-32

0
0

16

0 -32 -3
48

48

16
16
48

16
48
16

16

-32
-32

0
0

16
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[F2F5] |

Y' = U, R\, F4Fs, FoFg, F3Fy, Fy, FsFy, Fi Fg, FsFy Py, o By Fy Fy FsFo, Fy, P Fs, Fy s FoFy, Fs, Fi Fy, Fs F,
ByFFs, F1 Py, F3Fs, FyF, Fr, FI F3, F4F, Fr  FI F3, FyFg, F) Fs|

We have now defined the X7 X and XT'y matrices as per equation (2.4). Finding the inverse
of the corresponding matrices in X7 X we estimate for effects as

- -4 —1 - -

1 48 0 0 32 4 =2 2 4
48 16 16 4 -1 -1
o a1 o | 0O 48 16 16 1 |-2 3 -2 -3
160 ’ 0 16 48 —16 6412 —2 3 3
16 16 48 -1 -1 4
|—32 16 —16 48 | 4 -3 3 6|
and
_ - —1 _ -
40 0 —-32 -32 10 -4 6 6
0 48 16 16 1 |-4 4 -3 -3
32 16 48 16 %6 3 6 3
|32 16 16 48 | 6 -3 3 6|
The matrix:
4 —1 —1 FyFs
% —1 4 —1] gives estimates for | > Fg

1 -1 4 BE

The correlated effects in set (F4Fs, F>Fg, F3F7) are estimated with the same efficiency.
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2.5

4 -2 2 4 P F Fy
1 |-2 3 -2 -3 . . FF; FF, KhEF;
— gives estimates for , ,
6412 2 3 3 FF| |RF| |FFs
4 -3 3 6| FsF| |FsFs| |FoFr]

The effects F3Fy, F1Fg, FoFy, F1F7, F2F3 and F1Fs are estimated with a higher efficiency
than the corresponding effects in the same set. Factors Fs5F7, F5Fg and FgF7 are estimated
with a lower efficiency. Main effects F», F3 and Fy are estimated with a higher efficiency
than F5F;, FsFg and FgF7 but a lower efficiency than the efficiency attained for F3Fy, Fi Fg,
FFy, FiF7, F>F3 and F| Fs.

(10 -4 6 6] EAREARE:E
1 |-4 4 -3 -3| . . RFy| |FiF2 | | RF3
— gives estimates for ; ) 5
%16 3 6 3 F3Fg | | F3Fs| | FaFe
i 6 -3 3 6 ] _F2F7_ _F4F7_ _F2F5_

Effects F1Fy, F1 F> and F| F3 are estimated with a higher efficiency than the corresponding
effects in the same set. Effects F3Fgs, F>F7, F3F5, F4F7, F4Fg and F>Fsare estimated with
a higher efficiency than the main effects Fs, Fg and F7 but a lower efficiency than the
efficiency attained for effects F|Fy, F1F> and F F.

1= L[] Fi= LA
H=g* DTS

Eight Factor Experiment involving 48+16 = 64 Runs

Consider a design with treatments (x1,x2,x3,X4,X5,X¢,%7,xg) Which satisfy the simulta-
neous equations

x| +x3+x6=0,0,1
x2+xs5+x7=0,0,1
X4 +x6+x7=0,1,0
x3+xs+xg=0,1,1

(mod 2)
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2.5.1 Construction of The Design

The B matrix obtained here is dissimilar to that described in equation (1.14) that gives
the construction plan. We are going to get a B matrix that is non-singular for a subset
of the linear equations given. For example, linear equations x; + x5 +x7 and x4 4+ xg +x7
infer aliasing of F7, F>Fs5 and F4Fg effects. Clearly, the B matrix in equations

x2+xs5+x7=0,0,1
X4 +x6+x7=0,1,0

is non-singular, thus the effects under consideration are said to be estimable.

The treatment combinations satisfying

X1+x3+x6=0
xX)+x5+x7=0
X4+x6+x7=0
x3+xs+x3=0

(mod 2)

are given in set one denoted as st. The treatments in st are repeated and thus 16 d.f are
used to estimate the error variance.

If we add 1 (mod2) in x1, x¢ and xg position of the first set, we get the second set. If we
add 1 (mod2) in x¢, x7 and xg position of the first set, we get the third set.
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Treatment combinations

sty sty sty
(0,0,0,0,0,0,0,0) (1,0,0,0,0,1,0,1) (0,0,0,0,0,1,1,1)
(0,0,0,1,1,0,1,1) (1,0,0,1,1,1,1,0) (0,0,0,1,1,1,0,0)
(0,0,1,0,1,1,1,0) (1,0,1,0,1,0,1,1) (0,0,1,0,1,0,0,1)
(0,0,1,1,0,1,0,1) (1,0,1,1,0,0,0,0) (0,0,1,1,0,0,1,0)
(0,1,0,0,1,0,0,1) (1,1,0,0,1,1,0,0) (0,1,0,0,1,1,1,0)
(0,1,0,1,0,0,1,0) (1,1,0,1,0,1,1,1) (0,1,0,1,0,1,0,1)
(0,1,1,0,0,1,1,1) (1,1,1,0,0,0,1,0) (0,1,1,0,0,0,0,0)
(0,1,1,1,1,1,0,0) (1,1,1,1,1,0,0,1) (0,1,1,1,1,0,1,1)
(1,0,0,0,1,1,1,1) (0,0,0,0,1,0,1,0) (1,0,0,0,1,0,0,0)
(1,0,0,1,0,1,0,0) (0,0,0,1,0,0,0,1) (1,0,0,1,0,0,1,1)
(1,0,1,0,0,0,0,1) (0,0,1,0,0,1,0,0) (1,0,1,0,0,1,1,0)
(1,0,1,1,1,0,1,0) (0,0,1,1,1,1,1,1) (1,0,1,1,1,1,0,1)
(1,1,0,0,0,1,1,0) (0,1,0,0,0,0,1,1) (1,1,0,0,0,0,0,1)
(1,1,0,1,1,1,0,1) (0,1,0,1,1,0,0,0) (1,1,0,1,1,0,1,0)
(1,1,1,0,1,0,0,0) (0,1,1,0,1,1,0,1) (1,1,1,0,1,1,1,1)
(1,1,1,1,0,0,1,1) (0,1,1,1,0,1,1,0) (1,1,1,1,0,1,0,0)

The defining relation is

[ = F\F3F; = FyFsFy = F,FoFy = F3FsFy = FF3FyFy = FFsFgFy = FyFyFsFy
—F,F3Fy Fy = FyFyFyFyF

The correlated sets of factors are

(F,F3Fs), (F2, FsF7), (F3, F1Fs, FsFg), (Fy, FsFy) (Fs, FaFr, F3FR), (F, F1 3, FuF7), (F7, FoFs, FyFg),
(P Fy, Fi\Fy, F3F7), (F1Fy, FsFg, o Fy), (FI Fs, Folg), (F1 F, F5 1), (B F3, F7 ), (F1F, FuF).

The factorial effects Fg, F3Fs, F1F; and F3Fy are estimated orthogonally.

2.5.2 Method of Analysis

We define our matrices as per equation (2.4).
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8 35 17 34

15 68 23 78 12 48

14 37 18 56 24 2 57 67 36

46 28

25

47

13

38

27

58

16

64

-32 0 0

64
—-32

32
64

64

32

=32 0 0

64
—32

32
64

32

64 32 -32

-32
-32

64

64

32 =32 0 0
64

64
-32
-32

64

0

0
0

64 32 32

0
0
0

32 64 0

0

32 0 64 0

0
0
0
64
-32

0 64 32 32
0 32 64 0
0 32 0 64

0
0
0

0

-32
64

-32

64
)

64

-32 0 0

64
32

64
0
0

0
0

64 32 0

32 64 0

0 32 64 0 O

0

0
0

0 64 32 0
0

0
0

32 64 0

0

0 64 0 O

0

0 64 0 O

0

0 64 0

64

xTx
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From our X7 X matrix we get the inverse of the matrices as follows

—1 —1

64 32 0 3 2 -1 64 32 -32 4 2 2
1
—32 648 32 =13 2 4 -2/, -32 64 O =123 2 31
0 32 o4 -1 -2 3 -32 0 64 213
-1
64 32 32 4 -2 =2 -1
0 64 0 1 5 3 64 32 1 (21
128 ’ 32 64 9% |1 2|’
32 0 64 -2 1 3
and
-1
64 32 112 -1
32 64 % 1-1 2
The matrix:
32 -1 F3 Is
1
28 2 4 2| givesestimates for | F|Fy|, | KhF
-1 -2 3 FsFy| | F3Fg

Effects F3, Fs, F5sFg and F3Fg are estimated with the same efficiency which is higher than
the efficiency attained for FiFg and F,F;. FiFg and F>F; are estimated with the same
efficiency.

4 2 2 Fs F;
1
28 2 3 1| gives estimates for | {F3 | , | F>oF5
213 EF| | FiFg

The effects FiF3, F4F7, FoFs and FiFg are estimated with the same efficiency which is
higher than the efficiency attained for Fg and F7. Fg and F; are estimated with the same
lower efficiency.

b
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4 -2 =2 RE| |FiFg

1

8 -2 3 1 | gives estimates for | F{F, | , | F5Fgs
-2 1 3 FF| P2y

The effects FiFy, F3F;, F5Fg and F>Fy are estimated with the same efficiency which is
higher than the efficiency attained by F>Fg and F F3. Effects F,Fg and Fi Fg are estimated
with the same efficiency.

1 (2 1 . . F Fy F
— gives estimates for , ,
% |1 2 FsF7 | |FelF7| | F3Fg
1 A ) ) F1F5s FFg FF; FiF,
— gives estimates for ; ; )
9% |_1 2 FeFy | |FsFs| |FFg| |FuFg

The sets of correlated effects, (Fi,F3Fs), (Fa,FsF7), (Fy, FoFy), (FiFa2, F4Fg), (F1Fs, FeFy),
(F\Fs, FsF3) and (F>F3, F7Fg) are estimated with the same efficiency.

. 1
f 64[“] 3F5 64[35]
FF I[FF] FAF—l[FF]
17—6417 35—6435
1
F3Fy = a[F3F4]

2.6 Nine Factor Experiment involving 64+16 = 80 Runs

Consider a design with treatments (xy,x2,x3,X4,Xs,X6,%7,X8,X9) Which satisfy the
simultaneous equations

X1 +x0+x3=0,0,1,1
x1+x4+x5=0,1,0,1
x1+x6+x7=0,1,1,0
Xy +x4+x3=0,0,0,1
X4 +x6+x9=0,1,1,1

(mod 2)
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2.6.1 Constuction of The Design

The B matrix is obtained using the same procedure described in the eight

factor experiment.

We first get the treatment combinations belonging to the first set. If we add 1 (mod2) in

X4, x7 and xg position of the first set, we get the second set. If we add 1 (mod2) in x1, x4

and xg position of the first set, we get the third set. If we add 1 (mod2) in x1, xg and xg

position of the first set, we obtain the fourth set.

Treatment combinations

Ea
~
._.

0.0,0.0.0,0.0,0,0)
0,1,1,0,0,0,0,1,0
0,1,1,0,0,1,1,1,1
0,1,1,1,1,0,0,0,1
0,1,1,1,1,1,1,0,0
0,0,0,0,0,1,1,0, 1
0,0,0,1,1,0,0,1,1
0,0,0,1,1,1,1,1,0
1,1,0,1,0,1,0,0,0
1,1,0,0,1,0,1,1,0
1,1,0,1,0,0,1,0, 1
1,1,0,0,1,1,0,1,1
1,0,1,1,0,1,0,1,0
1,0,1,1,0,0,1,1,1
1,0,1,0,1,0,1,0,0
1,0,1,0,1,1,0,0, 1

o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~~~ —~
S N N T T T T T T T T N N N N

IS
[\S}

(0,0,0,1,0,0,1,1,0
(0,1,1,1,0,0,1,0,0
(0,1,1,1,0,1,0,0, 1
(0,1,1,0,1,0,1,1,1
(0,1,1,0,1,1,0,1,0
(0,0,0,1,0,1,0,1,1
(0,0,0,0,1,0,1,0,1
(0,0,0,0,1,1,0,0,0
(1,1,0,0,0,1,1,1,0
(1,1,0,1,1,0,0,0,0
(1,1,0,0,0,0,0,1, 1
(1,1,0,1,1,1,1,0,1
(1,0,1,0,0,1,1,0,0
(1,0,1,0,0,0,0,0, 1
(1,0,1,1,1,0,0,1,0
(1,0,1,1,1,1,1,1,1

N N N T e T T T T N T N N N N

The defining relation for the fraction is

h
=
u.)

(IOQLOOQLO
(1,1,1,1,0,0,0,0,0
(1,1,1,1,0,1,1,0, 1
(1,1,1,0,1,0,0,1,1
(1,1,1,0,1,1,1,1,0
(1,0,0,1,0,1,1,1,1
(1,0,0,0,1,0,0,0,1
(1,0,0,0,1,1,1,0,0
(0,1,0,0,0,1,0,1,0
(0,1,0,1,1,0,1,0,0
(0,1,0,0,0,0,1,1,1
(0,1,0,1,1,1,0,0, 1
(0,0,1,0,0,1,0,0,0
(0,0,1,0,0,0,1,0, 1
(0,0,1,1,1,0,1,1,0
(0,0,1,1,1,1,0,1,1

N N e e e e T T N T N N N N N

sty
(1,0,0,0,0,1,0,1,0)
(1,1,1,0,0,1,0,0,0)
(1,1,1,0,0,0,1,0,1)
(1,1,1,1,1,1,0,1,1)
(1,1,1,1,1,0,1,1,0)
(1,0,0,0,0,0,1,1,1)
(1,0,0,1,1,1,0,0,1)
(1,0,0,1,1,0,1,0,0)
(0,1,0,1,0,0,0,1,0)
(0,1,0,0,1,1,1,0,0)
(0,1,0,1,0,1,1,1,1)
(0,1,0,0,1,0,0,0,1)
(0,0,1,1,0,0,0,0,0)
(0,0,1,1,0,1,1,0,1)
(0,0,1,0,1,1,1,1,0)
(0,0,1,0,1,0,0,1,1)

[ = F\F>Fy = F\FyFs = F\FoFy = F,FyFy = FyFgFy = F3FsFy
—FsFiFy = FFFyFs = By FsFsFy = FyFsFoFy = FIF3FyFy
—F\F,FsFy = F\FsFsFy = FI FyF;Fy = B>y FsFyFoy = FysFr FyFy



37

The correlated sets of factors are

(F1,B2F3, FyFs, FoFr), (B, B3, Fu ), (F3, F1 P>, FsFR), (Fa, Fi Fs, o R, Fg Fy) (Fs, F1 Fy, FrFy, F3FR),
(Fo, F1F1, 4 Fy), (F7,F1Fs, F5Fy), (F3, FoFy, F3Fs), (Fo, FsFp, FuFe), (F1F3, F3Fy, X Fs), (Fi1 Fy, FsFs, FAFy),
(FyFs, F3F, RFy), (FaFy, F3Fg), (FaFy, FoFy), (F3Fy, F7FR).

2.6.2 Method of Analysis

We define our matrices as per equation (2.4). The inverse of the sub-matrices in X7 X

matrix are used to obtain estimates for the corresponding effects as shown below;

The matrix:
[ 80 —16 —16 —16]
—16 80 16 16
—16 16 80 16
—16 16 16 80

T 512

is used to estimate

The effects in equation (2.6) are estimated using the same efficiency.

In a similar way, the matrix

80 —16
~16 80
—48 48
—16 48

—48
48
80
16

16

- —1

[ 3

1 |o
~18 |,
-1

0 2
4 -2
—2 4
2 0

1]
-2

is used to estimate

Fy

F\ Fs
FFg

(2.6)

Fs
i Fy
FFy

| F3F3
(2.7)

In equation (2.7), the effects Fy, F5, FgFo and F3Fg are estimated with a higher efficiency
than the efﬁciency attained for F\F5, F>Fg, F1F4 and FrFy . Effects Fi F5, F>Fg, F1F4 and
F7Fy are estimated with the same efficiency.
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39 78

37 89 27 36 29 68

19 56 47 26

46 18 34 25

57

35

24

58

12

49

17

59

16

45 67

23

80

—16 —16

—16

80

16
16
80

16
80

80
16
16

—16
—16
—16

16

16
48

—16 —48

80
48

48

—16
48

16
80

80
16

48

16

16
48

—16 —48

80
48

48

—16
—48

16
80

80
16

48

16

_48
48

—16

80
—16

—48

80
48

80

—48

~16
80
48

80
—16

—48

48

80

—16 16
80 48
48

80
—16

80

16

0

16 16
80 48
48

80
—-16

16

80

16
16
80

—48
80
16

80
48

16

0

16
16
80

80 —48

—48
16

80
16
0
0
0

0

0 80 48 48 0
0 48 80
0 48

16

0

16 80 0

0
0

0

80 48 48 0

0

0 48 80
0 48

0
16

16 80 0

16

80

0
0
0

16 80 16

16

0

16 80 O

0
0

0

16

80

16 80 0 0
0 16

0

0

80

0

16 80 0
0
0

0

16

80

16 80

0

XX =
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Similarly the matrix

-1
80 —16 —48 4 -1 3 F F
1
—16 80 48 =193 —1 4 —3|isusedtoestimate |F{F;|, |FFs
—48 48 80 3 -3 6 FiFRR| | FsFy
(2.8)

In equation (2.8), the effects F», F7, F1F3 and F| Fg are estimated with a higher efficiency
than the efficiency attained for effects F4Fg and F5Fy . Effects FyFg and F5Fy are estimated

with the same efficiency.

The other matrices used for estimating the effects follow below;

-1
80 —16 16 2 1 -1 Fe F;
1
—16 80 48 =13 1 3 —2|isusedtoestimate |F{F |, |FF| (29
16 48 80 -1 -2 3 FuFy F5Fg

In equation (2.9), effects F| F7, F4Fy, F1F; and F5Fg are estimated with the same efficiency
which is lower than the efficiency attained for Fg and F3.

~1
80 —48 16 3 2 -1 F Fy
1
—48 80 16 =128 2 3 —1|isusedtoestimate |/F, |, |FsF;
16 16 80 -1 -1 2 F3Fs| | FaFs
(2.10)

In equation (2.10), effects F3F5 and FyFg are estimated with the same efficiency. The
effects Fg, Fo, F2F4 and F5F7 are estimated with a lower efficiency than the one attained

for F3F5 and FyFg.

-1
80 48 48 6 -3 -3 FiFg FiFy

1
48 80 16 =102 —3 4 1 |isusedtoestimate |[3F, |, | F5Fg (2.11)
48 16 80 -3 1 4 F,)Fs FyF;
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2.7

In equation (2.11), the effects F3Fy, FoFs, F5Fg and FyF7 are estimated with a higher
efficiency than the efficiency attained for FiFg and Fi Fy. Effects F1Fg and Fi Fy are
estimated with same efficiency which is lower compared to the efficiency attained for
other effects in the same set.

80 16 16| 6 —1 —1 FoF

1
16 80 16 =3 —1 6 —1]isusedtoestimate | F53F; (2.12)
16 16 80 -1 -1 6 FyFy

Effects in equation (2.12) are estimated using the same efficiency.

—1
80 16 1 5 —1|. ) P F)Fq F3Fg
=— is used to estimate , , (2.13)
16 80 38411 5 BF| |FF| |FF

The effects in equation (2.13) are estimated using the same efficiency.

Ten Factor Experiment involving 64+16 = 80 Runs

Consider a design with treatments (x1,x2,x3,X4,Xs,X6,X7,X8,X9,X10) Which satisfy the
simultaneous equations

X1 +x+x3=0,0,1,1
X1+ x4 +x5=0,1,0,1
x1+x6+x7=0,1,1,0
Xy +x4+x3=0,0,0,1
X4+x6+x9=0,1,1,1
xXp+x7+x10=0,1,1,1

(mod 2)
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2.71

Construction of The Design

The B matrix is obtained using the same procedure described in the eight factor

experiment.

We get the treatment combinations belonging to the first set that we then duplicate. If

we add 1 (mod2) in x5, x5 and x1¢ position of the first set, we get the second set. If we add

1 (mod2) in x3, x7 and xg position of the first set, we get the third set. If we add 1 (mod2)

in x3, x4 and xo position of the first set, we obtain the fourth set.

Treatment combinations

sty
0,0,0,0,0,0,0,0,0,0)
0,0,0,0,0,1,1,0,1,1)
0,0,0,1,1,0,0,1,1,0)
0,0,0,1,1,1,1,1,0,1)
0,1,1,0,0,0,0,1,0,1)
0,1,1,0,0,1,1,1,1,0)
0,1,1,1,1,0,0,0,1,1)
0,1,1,1,1,1,1,0,0,0)
1,1,0,0,1,0,1,1,0,0)
1,1,0,0,1,1,0,1,1,1)
1,1,0,1,0,0,1,0,1,0)
1,1,0,1,0,1,0,0,0,1)
1,0,1,0,1,0,1,0,0,1)
1,0,1,0,1,1,0,0,1,0)
1,0,1,1,0,0,1,1,1,1)

)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(1,0,1,1,0,1,0,1,0,0

| ]
<
[\S)

0,0,0,0,1,1,0,0,0,1
0,0,0,0,1,0,1,0,1,0
0,0,0,1,0,1,0,1,1,1
0,0,0,1,0,0,1,1,0,0
0,1,1,0,1,1,0,1,0,0
0,1,1,0,1,0,1,1,1,1
0,1,1,1,0,1,0,0,1,0
0,1,1,1,0,0,1,0,0,1
1,1,0,0,0,1,1,1,0,1
1,1,0,0,0,0,0,1,1,0
1,1,0,1,1,1,1,0,1,1
1,1,0,1,1,0,0,0,0,0
1,0,1,0,0,1,1,0,0,0
1,0,1,0,0,0,0,0,1, 1
1,0,1,1,1,1,1,1,1,0

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(1,0,1,1,1,0,0,1,0,1

~— — — — — e —  —  — YO e O O~ —

The defining relation for the fraction is

I =FFF;=FFF5=
=FyF3FsF7 = FyFsFoF
=F3F7Fgky =

F\FsFy = BFyFy =
= IR R

FyFsFo
= F\FhFs5kg =
K F o= F3FsF o= F1F3F Py = Fi>FeFo = FuFpFgFy g = FsFgFgFyg

sty
(0,0,1,0,0,0,1,0,1,0)
(0,0,1,0,0,1,0,0,0,1)
(0,0,1,1,1,0,1,1,0,0)
(0,0,1,1,1,1,0,1,1,1)
(0,1,0,0,0,0,1,1,1,1)
(0,1,0,0,0,1,0,1,0,0)
(0,1,0,1,1,0,1,0,0,1)
(0,1,0,1,1,1,0,0,1,0)
(1,1,1,0,1,0,0,1,1,0)
(1,1,1,0,1,1,1,1,0,1)
(1,1,1,1,0,0,0,0,0,0)
(1,1,1,1,0,1,1,0,1,1)
(1,0,0,0,1,0,0,0,1,1)
(1,0,0,0,1,1,1,0,0,0)
(1,0,0,1,0,0,0,1,0,1)
(1,0,0,1,0,1,1,1,1,0)

= F3F5Fg =
FiFsFgFy =

FsFyFy

=F3F4FoF1o = F1FgFoFio = F>2F5FoF

FE,FoFy

Sty
0,0,1,1,0,0,0,0,0,1)
0,0,1,1,0,1,1,0,1,0)
0,0,1,0,1,0,0,1,1,1)
0,0,1,0,1,1,1,1,0,0)
0,1,0,1,0,0,0,1,0,0)
0,1,0,1,0,1,1,1,1,1)
0,1,0,0,1,0,0,0,1,0)
0,1,0,0,1,1,1,0,0,1)
1,1,1,1,1,0,1,1,0,1)
1,1,1,1,1,1,0,1,1,0)
1,1,1,0,0,0,1,0,1,1)
1,1,1,0,0,1,0,0,0,0)
1,0,0,1,1,0,1,0,0,0)
1,0,0,1,1,1,0,0,1,1)
1,0,0,0,0,0,1,1,1,0)

)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(1,0,0,0,0,1,0,1,0,1

— FyF3F,Fs
= FhFeFgko
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The correlated sets of factors are

F\,F,F3,FyFs5, FoF7), (Fa, FiF3, FuF3, FiF), (F3,F1Fs, FsFio, F5FR), (Fy, F1Fs,FaFg, FoFy)

Fio,F3Fs, FoFy), (F1Fs, F3F4, F>Fs, FoFyo), (FiFo, FsFs, FaF7, FyF1o), (FiFio, F3F7, FaFo, FRFy),
FyFy, FoFy, F5Fg), (F3Fy, F1Fg, F4Fyp).

(
(Fs,FiFy, F;Fy, F3F), (Fo, F1F7, F3Fi0, FuFy), (F7, FiFo, FsFy, Fo Fro), (Fy, FoFy, F3Fs), (Fy, FsFr, FyF),
(
(

2.7.2 Method of Analysis

The effects in this design are estimated using the following equations.

The set of effects in (Fy, F,F3, F4Fs, FgF7) are estimated using equation (2.6). The set of
effectsin (F2, F1F3, FuFg, F1 F1o), (F3, F1F2, FsFro, s Fg), (Fy, F1 Fs, Fo By, FoFy) (Fs, Fi Fy, Fr Fo, F3 1),
(Fs,F1Fy,F3Fi, F4Fy) and (Fy, F1 Fg, F5sFy, F>Fg) are estimated using equation (2.7).

Effects in (Fg,F2F4,F3F5), (F9,F5F7,F4F6) and (Flo,F3F6,F2F7) are estimated using

equation (2.10). The effects (F>Fy, FsF3, FsF1o) and (F3Fy, F7Fg, F4F) are estimated using

(2.12).

The matrix
[ 80 48
48 80
48 16
| —16 16

48
16
80
16

—16
16
16
80

T 128

7 —4
—4 4
—4 2
3 -2

gives estimates for

_ Fi i}
FiF,
Fy)F5

| FoFio |

e
FsFg
FiFy

| F3Fio |

The effects FoFjo, F3F19 and FgFy are estimated with the same efficiency which is higher
than the efficiency attained for other effects in similar sets. Effects F3Fy, F> F5, F5Fg, FoF7,
F3F; and F>Fg are estimated with the same efficiency which higher than the efficiency
attained for effects F1F3, F1Fy and FiFjo but lower than the efficiency attained for the
effects FoFo, F3F\9 and FgFy. Effects F| Fg, F1 Fy and F; Fj( are estimated with the lowest
efficiency in comparison to the efficiency attained for other effects in similar sets.

and

FiFio
K
FyFg

- F8F9 -
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3.1

Partially Duplicated Fractional Factorial Designs
which allow for Estimation up to Three-Factor
Interactions

Six Factor Experiment involving 48+16 = 64 Runs

Consider a design with treatment combinations (x1,x2,x3,x4,X5,X5) which satisfy the

simultaneous equations

X1+x+x3+x=0,1,0
X1 +x2+x5+x6=0,0,1
(mod 2)

3.1.1 Constuction of the Design

We first get the treatment combinations satisfying the equations

X1+x2+x34+x4=0
X1+x+x54+x=0
(mod 2)

which give the first set of treatment combinations that are then repeated. From this first
set we can easily obtain the second and third set of treatment combinations satisfying
the corresponding set of simultaneous equations.

If we add 1 (mod2) in x3 or x4 position of the first set, we get the second set. If we add
1 (mod2) in x5 or x¢ position of the first set, we get the third set. Below follows the

treatment combinations that are obtained.
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sti sty st3
(0,0,0,0,0,0)  (0,0,0,1,0,0)  (0,0,0,0,0,1)
(0,0,0,0,1,1)  (0,0,0,1,1,1)  (0,0,0,0,1,0)
(0,0,1,1,1,1)  (0,0,1,0,1,1)  (0,0,1,1,1,0)
(0,0,1,1,0,0)  (0,0,1,0,0,0)  (0,0,1,1,0,1)
(0,1,1,0,1,0)  (0,1,1,1,1,0)  (0,1,1,0,1,1)
(0,1,1,0,0,1)  (0,1,1,1,0,1)  (0,1,1,0,0,0)
(0,1,0,1,1,0)  (0,1,0,0,1,0)  (0,1,0,1,1,1)
(0,1,0,1,0,1)  (0,1,0,0,0,1)  (0,1,0,1,0,0)
(1,1,0,0,0,0)  (1,1,0,1,0,0)  (1,1,0,0,0,1)
(1,1,0,0,1,1)  (1,1,0,1,1,1)  (1,1,0,0,1,0)
(1,1,1,1,0,0)  (1,1,1,0,0,0)  (1,1,1,1,0,1)
(1,0,1,0,0,1)  (1,0,1,1,0,1)  (1,0,1,0,0,0)
(1,0,1,0,1,0)  (1,0,1,1,1,0)  (1,0,1,0,1,1)
(1,0,0,1,1,0)  (1,0,0,0,1,0)  (1,0,0,1,1,1)
(1,0,0,1,0,1)  (1,0,0,0,0,1)  (1,0,0,1,0,0)
(1,1,1,1,1,1)  (1,1,1,0,1,1)  (1,1,1,1,1,0)

The defining relation is

[ = F\/FFy = FFyFsFs = F3F,FsFg

The correlated sets of factors are

(F1,FaF3Fy, B F5Fs), (Fr, FIF3Fy, F1FsF), (F3, Fi o Fy, FyFsF), (Fa, Fi Fo F3, F3FsFg), (Fs, F1 FaFs, F3FuFe),
(Fo, 2 Fs, (3FyFs), (F1Fy, F3F4, F5F), (F1F3, > Fy), (FiFs, P> F3), (F1Fs, B> Fg), (Fi Fo, F>Fs),
(F3Fs, FyFg), (F3Fs, FuFs), (R, F3Fs, F{FyFs, F1 F3Fs, IR FoFg), (F{F3Fs, F{ FyFg, Fo F3 Fo, Fo Fu Fs).

3.1.2 Method of Analysis

Using equation (2.4), we partition our X7 X matrix and find the inverse of each sub-matrix
so as to obtain the estimates of the effects.
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146 236 245

145 135

136

16 25 35 46 36 45 235 246

14 23 15 26

12 34 56 13 24

123 356 5 126 346 6 125 345

124 456 4

2 134 156 3

234 256

1

n
64

0

0
0

0 64 32 32

0

0

32 64

32

64 32

0
0

32 64 0
64

32

0
32

64

&)
64
32

0

64 32

0
0

32
64

32 64

32

32

64

32

32 64

0

64

32

0
32
64

64 32

0
0

32 64

32

0

64 32 32 0
32 64 0

0
0
0

0

32 0 64 0

0
0

0 64 32 0

0
0

0 32 64 O

0
0

0 64 32 0

0
0

32 64 0

0

0
0

0 64 32 0

0
0

0 32 64 0

0
0

0 64 32 0
0

0
0

32 64 0

0

0

0 64 0

0

0

0 64 0

0

0

0 64 0

64

32

)
64

64
32
32

32

64

32

32
32

32
32
64

64

64
32
32

32
32

64

XTx =
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The matrix:
-1
64 32 32 4 -2 =2 F P e
32 64 0 = 8 -2 3 1 | gives estimates for | ER3Fy |, |FIBF| . | F3Fy
32 0 o4 -2 1 3 FF5Fg F\ F5F Fs5Fy

Factors FoF3Fy, Fo F5Fg, FiF3Fy, F1FsFg, F3F4 and FsFg are estimated with the same
efficiency. Factors Fi, F> and F1F, are also estimated with the same efficiency.

However, factors (F, F», F1F») are estimated with a lower efficiency than the efficiency
attained for <F2F3F4,F2F5F6,F1F3F4,F1F5F6,F3F4,F5F6>.

-1

64 32 0 3 -2 1 A A Fs Fi
1

32 64 32 :ﬁ -2 4 2| estimates hWRhFy, |FFKRF)|, |FiFFg |, | FiF)Fs

0 32 64 1 -2 3 FiFsFs| |BFsFs| |FFiFs| | FEyFs

Factors F3, FyFsFg, Fy, F3F5Fg, Fs, F3F4Fg, Fg and F3F,F5 are estimated with the same
efficiency. Factors F1FoFy, F1F,F3, F1F>Fg and F1F>F5 are also estimated with the same
efficiency.

Factors (F3, FyFsFg, Fy, F3FsFg, Fs, F3FyFg, Fg, F3F4F5) are estimated with a higher
efficiency than the efficiency attained by factors (F\ o Fy, F1 FoF3, Fi Fo Fo, FI F> Fs).

~1
64 32 1 2 —1]. . FF; FiFy F1F5 FiFq
=— is used to estimate , , ,
32 64 %11 2 BF| |BF| |BF| |FFs

The factors (Fng,F2F4,F1F4,F2F3,F1F5,F2F6,F1F6,F2F5> above are estimated with the
same efficiency.

The matrix:
_ -1 _ o - -
64 0 32 32 FFFs F\F3Fs
0 64 32 32| . EFEF;| | FiFyF;s
is used to estimate ,
32 32 64 0 Fi1F3F F,FsF
32 32 0 64 | F1FaF5 | | FaFyks |
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However, factors (F> F3Fs, F, F4Fg) are only estimable with the assumption of factors (Fy F3Fg, Fi F4F5s)
being absent. Similarly, factors (FiF3Fgs, FiF4Fs) are estimable with the assumption of
factors (F>F3Fs, F>FyFg) being absent. That is,

The matrix
~1
64 0 1 |10 . 3 Fs . FiF3F4 . .
=— estimates assuming to be absent. The vice versa is true.
0 64 6410 1 P FyFg FiFyFs

The factors involved in this matrix are estimated with the same efficiency.

Seven Factor Experiment involving 64+16 = 80 Runs

Consider a design with treatment combinations (x1,x2,x3,x4,X5,X¢) Which satisfy the

simultaneous equations

X1 +x+x3+x4=0,1,0,0
X1 +x+x5+x7=0,0,1,0
X1 +x3+x5+x6 =0,0,0,1
(mod 2)

3.2.1 Constuction of the Design

We first get the treatment combinations satisfying the equations

X1+x2+x3+x4=0
xX1+x2+x54+x7=0
X1+x3+x5+x5=0

(mod 2)

which give the first set of treatment combinations that are then repeated. From this first
set we can easily obtain the second, third and fourth set of treatment combinations
satisfying the corresponding set of simultaneous equations.



If we add 1 (mod2) in x4 position of the first set, we get the second set. If we add 1 (mod2)
in x7 position of the first set, we get the third set. If we add 1 (mod2) in x¢ position of the
first set, we get the fourth set. Below follows the sets of treatment combinations.

St

T
~
—_
%)
~
)
w
| <l
N

The defining relation is

0,0,0,0,0,0,
0,0,0,0,1,1,1
0,0,1,1,0,1,0
0,0,1,1,1,0,1
0,1,0,1,0,0, 1
0,1,0,1,1,1,0
0,1,1,0,0,1,1
0,1,1,0,1,0,0
1,1,0,0,0,1,0
1,1,0,0,1,0,1
1,0,1,0,0,0, 1
1,0,1,0,1,1,0
1,0,0,1,0,1,1
1,0,0,1,1,0,0
1,1,1,1,0,0,0

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(1,1,1,1,1,1,1

N N N e e e T e T N T N N N N

| = FiFFFy = FIFFsF; = FiFsFsFy = FyFyFsFy = FyFyFsFg = FyFsFFy = FiFyFgF;

0,0,0,1,0,0,
0,0,0,1,1,1,1
0,0,1,0,0,1,0
0,0,1,0,1,0, 1
0,1,0,0,0,0,1
0,1,0,0,1,1,0
0,1,1,1,0,1,1
0,1,1,1,1,0,0
1,1,0,1,0,1,0
1,1,0,1,1,0,1
1,0,1,1,0,0, 1
1,0,1,1,1,1,0
1,0,0,0,0,1,1
1,0,0,0,1,0,0
1,1,1,0,0,0,0
1,1,1,0,1,1,1

o N N N N N N N N N N N N N N N
—_— — — — — Y O — O Y — Y — — Y~ —

The correlated sets of factors are

o~~~ o~~~

(0,0,0,0,0,0,1)
(0,0,0,0,1,1,0)
(0,0,1,1,0,1,1)
(0,0,1,1,1,0,0)
(0,1,0,1,0,0,0)
(0,1,0,1,1,1,1)
(0,1,1,0,0,1,0)
(0,1,1,0,1,0,1)
(1,1,0,0,0,1,1)
(1,1,0,0,1,0,0)
(1,0,1,0,0,0,0)
(1,0,1,0,1,1,1)
(1,0,0,1,0,1,0)
(1,0,0,1,1,0,1)
(1,1,1,1,0,0,1)
(1,1,1,1,1,1,0)

0,0,0,0,0,1,0
0,0,0,0,1,0, 1
0,0,1,1,0,0,0
0,0,1,1,1,1,1
0,1,0,1,0,1,1
0,1,0,1,1,0,0
0,1,1,0,0,0,1
0,1,1,0,1,1,0
1,1,0,0,0,0,0
1,1,0,0,1,1,1
1,0,1,0,0,1,1
1,0,1,0,1,0,0
1,0,0,1,0,0, 1
1,0,0,1,1,1,0
1,1,1,1,0,1,0
1,1,1,1,1,0,1

o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~
N N N T e v T T T N T N N N N

F\,F,F3Fy, B FsFy, F3FsFg, FaFsFr), (B, FIF3Fs, FIFsFr, FyFsF, F3FFy),

F3,F\Fy by, FiFsFg, FuFs5F;, Fo Foly

), (
), (Fs, FiF>F3, F3F5F;, Fo FsFo, F1 FoFy, ),
)

F5, N\ F;, FIF3Fs, F3F4F;, Fo FyFg), (Fo, F1F3Fs, I FyFs, Fo F3Fr, FLFuFy ),

(
F;,FiBFs, FyFs, b F3Fs, FiFuFy), (F1Fa, F3Fy, FsFr), (FF3, FoFy, FsFg), (FLFy, Fo F3, FoFy ),

F\Fs,F>Fy, F3Fg), (FiFo, F3Fs, FuFy), (FIF7, > Fs, FuFg), (FaFe, FyFs, F3F7),
F\FoFs, F3FFs, FsFsFr, F F3Fs, F{FAFs, FI 3 Fr > FuFr)
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3.2.2 Method of Analysis
This design involves both singular and non-singular matrices used to obtain estimates of
the effects. In the case of singular matrices, that is, non-invertible matrices, we are going
to use Moore-Penrose inverse.
Let x € R™*" and y € R™ be given. We find x € R" that solves the linear equation
Ax=y
Suppose m = n and A is an invertible matrix, then the unique solution is
_ a1
XxX=A""y
Now we consider a case where the solution does not exists. A possible alternative is

getting the set of all vectors x’ that minimise ||[Ax — y||, that is,

!
i
min [|Ax —y|

Moore-Penrose inverse gives the set x € R” that minimize ||Ax' —y||. It can be shown
minycpe |[Ax — y|| always has a solution.

Therefore, if the linear equation Ax = y has solutions, then x = ATy is an exact solution
and has the least possible value where AT € R"*" is the Moore-Penrose pseudoinverse
of A.

The matrix AT is called the pseudoinverse of matrix A if it satisfies the following
conditions:

1. AATA=A
2. ATAAT = AT
3. (AAT)T =AAT

4. (ATA)T =ATA

Moore-Penrose inverse is used in equations that lack solutions like those involving
singular matrices.
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For

For

For

For

80 48 48 48
48 80 16 16
48 16 80 16
48 16 16 80
—16 16 16 16
(80 48 48
48 80 16
48 16 80
16 48 —16
16 —16 48
80 48 16 16
48 80 48 48
16 48 80 16
16 48 16 80
|16 16 48 48
180 48 48
48 80 16
48 16 80
48 16 16
16 48 —16
16 —16 48
—16 16 16

—16 48

—16
16
16
16
80

16
48

16
—16

80 16

16 80

—16
16
48
48
80

48 16
16 48
16 —16
80 48
48 80
48 16
16 48

28
10
10

. . 1
, the pseudoinverse is g755 | 14

0
0
—22

. . 1
, the pseudoinverse is 756

16
—16
48
48
16
80
48

10
47
15
—27
10
—22
15

16
16
16
16
48
48

80 |

10
15
47
—27
—22
10
15

, the pseudoinverse is

14
—27
—27
55
14
14
—27

L

8192

. . 1
, the pseudoinverse is 555

10
—22
14
28

10

—4

~22
10
14

28
10

10

—22
15
15

—27
10
10
47

10
-33
95
—33
9

(3.49)

10
-33
-33

95

9

—26

9
79

3.1)

0 B2

(3.3)
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The effects in (F1, >, F3Fy, F, FsFy, F3FsFg, FyFgF7) are estimated using equation (3.1). Fj is
estimated using a higher efficiency compared to the other effects. Effects F>o F3Fy, Fo F5F;
and F3FsFg are estimated with the same efficiency which is lower compared to the
efficiency attained by effects in the same set.

Effectsin the following sets (Fz, F1F3F4,F1F5F7,F4F5F6,F3F6F7), (F3,F1F2F4,F1F5F6,F4F5F7,F2F6F7)
and (F5,F1F2F7,F1F3F6,F3F4F7,F2F4F6) are estimated using equation (3.2). The main

effects F,, F3 and Fs are estimated with the lowest efficiency. The interations FyFsFg,

F3FoF7, FaFsF, FoFgFy, F3FuF7 and FoFyFg are estimated with the same efficiency.

Effects F| F5Fy, F1 F5Fg and F1 F3Fg are estimated with the highest efficieny in comparison

to the other effects in the same set.

The correlated effects in sets (Fy, Fi Fo F3, FsFsFy, FyFsFg, F\ Fg 7, ), (Fo, F1 F3Fs, FaFyFs, Fo F3Fr, FiFyFr)
and (F7,F1F2F5,F3F4F5,F2F3F6,F1F4F6), are estimated using equation (3.3). The main

effects Fy, Fg and F7 are estimated with the lowest efficiency. The three-factor

interactions F3Fs5Fy, F>FsFg, F>FuFs, F>F3F;, F3F4Fs, and F,F3Fg are estimated with the

same efficiency which is higher compared to the efficiency attained by effects in the same

set.

The effects in the set (Fy F>Fg, F3FyFy, FsFoFr, F F3Fs, F\FyFs, F1 F3F, F> Fy F7) are estimated
using equation (3.4). The factors Fi F>Fg, F1F4Fs, F1F3F; are estimated with a higher
efficiency compared to the other effects in the same set. Effects F3F4Fg, FsFgF7 and Fo FyF
are estimated with the same efficiency. F>F3F5 is estimated with the lowest efficiency
among the effects in the same set.

The matrix:
~1
80 48 48 6 -3 -3 FF FF; F\Fs
48 80 16 =102 —3 4 1 |givesestimates for | 3F, |, |BFy |, |FBF
48 16 80 -3 1 4 F5F; FsFg F5F

Factors F1F>, F1F3 and F Fs are estimated with the same efficiency. Factors F3Fy, F5F7,
FyFy, FsFg, FoF7 and F3Fg are estimated with same efficiency which is higher than the
efficiency attained for F\F>, F1F3 and F|Fs.

The matrix:
—1
80 48 —16 3 -2 1 rE| [RE| [RB
1
48 80 16 =18 -2 3 —1]| gives estimates for | HbF; |, | 3Fs5| , | F>Fs

—16 16 80 1 -1 2 FF| |EF| |FiF
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3.3

Factors FsFy, F4F7 and FiFg are estimated with the same efficiency. The efficiency used
is higher than the efficiency attained for the corresponding effects in the same set.

Factors F1Fy, FoF3, Fi Fg, F3Fs, F1F7 and F>Fs are estimated with the lowest efficiency.

The matrix:
-1
80 16 16 6 —1 —1 FFs
16 80 16 = ﬁ —1 6 —1]| gives estimates for | FyF5
16 16 80 -1 -1 6 F3Fy

Effects F>Fg, F4F5 and F3F; are estimated with the same efficiency.

Eight Factor Experiment involving 96+32 = 128 Runs

Consider a design with treatments (x1,x2,x3,X4, s, X6, X7,Xxg) Which satisfy the
simultaneous equations

x1+x2+x3+x=0,0,1
X)+x4+x6+x3=0,1,0
X1+x+x5+x7=0,1,1

(mod 2)

3.3.1 Construction of The Design

The B matrix is obtained using the same procedure described in the eight factor
experiment in the Two-Factor Interactions Designs.

For example, the linear equations x| 4+ x; 4+ x3 4+ xg and x| 4+ x» 4+ x5 + x7 infer aliasing in
the effects F1 F>, F3Fg and F5F5.

Clearly, the B matrix in equations
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x1+x2+x3+x6=0,0,1
x1+x2+xs+x7=0,1,1

is non-singular.

We first get the treatment combinations belonging to the first set that we then duplicate.
If we add 1 (mod2) in x5 or x7 and x4 or xg position of the first set, we get the second set.
If we add 1 (mod2) in x| position of the first set or 1 (mod2) in x3 and x5 or x7 position of

the first set, we obtain the third set.
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Treatment combinations

st
(0,0,0,0,0,0,0,0)
(0,0,1,0,0,1,0,1)
(0,0,1,0,1,1,1,1)
(0,0,1,1,0,1,0,0)
(0,0,1,1,1,1,1,0)
(0,0,0,1,0,0,0,1)
(0,0,0,1,1,0,1,1)
(0,0,0,0,1,0,1,0)
(0,1,0,0,0,1,1,0)
(0,1,0,0,1,1,0,0)
(0,1,0,1,0,1,1,1)
(0,1,0,1,1,1,0,1)
(0,1,1,1,1,0,0,0)
(0,1,1,0,0,0,1,1)
(0,1,1,0,1,0,0,1)
(0,1,1,1,0,0,1,0)
(1,1,0,1,0,0,0,0)
(1,1,0,1,1,0,1,0)
(1,1,0,0,0,0,0,1)
(1,1,0,0,1,0,1,1)
(1,1,1,1,0,1,0,1)
(1,1,1,1,1,1,1,1)
(1,1,1,0,0,1,0,0)
(1,1,1,0,1,1,1,0)
(1,0,1,0,0,0,1,0)
(1,0,1,0,1,0,0,0)
(1,0,1,1,1,0,0,1)
(1,0,1,1,0,0,1,1)
(1,0,0,0,0,1,1,1)
(1,0,0,0,1,1,0,1)
(1,0,0,1,0,1,1,0)
(1,0,0,1,1,1,0,0)

sty
(0,0,0,0,0,0,1,1)
(0,0,1,0,0,1,1,0)
(0,0,1,0,1,1,0,0)
(0,0,1,1,0,1,1,1)
(0,0,1,1,1,1,0,1)
(0,0,0,1,0,0,1,0)
(0,0,0,1,1,0,0,0)
(0,0,0,0,1,0,0,1)
(0,1,0,0,0,1,0,1)
(0,1,0,0,1,1,1,1)
(0,1,0,1,0,1,0,0)
(0,1,0,1,1,1,1,0)
(0,1,1,1,1,0,1,1)
(0,1,1,0,0,0,0,0)
(0,1,1,0,1,0,1,0)
(0,1,1,1,0,0,0,1)
(1,1,0,1,0,0,1,1)
(1,1,0,1,1,0,0,1)
(1,1,0,0,0,0,1,0)
(1,1,0,0,1,0,0,0)
(1,1,1,1,0,1,1,0)
(1,1,1,1,1,1,0,0)
(1,1,1,0,0,1,1,1)
(1,1,1,0,1,1,0,1)
(1,0,1,0,0,0,0,1)
(1,0,1,0,1,0,1,1)
(1,0,1,1,1,0,1,0)
(1,0,1,1,0,0,0,0)
(1,0,0,0,0,1,0,0)
(1,0,0,0,1,1,1,0)
(1,0,0,1,0,1,0,1)
(1,0,0,1,1,1,1,1)

sty
(0,0,0,0,0,0,0,0)
(1,0,1,0,0,1,0,1)
(1,0,1,0,1,1,1,1)
(1,0,1,1,0,1,0,0)
(1,0,1,1,1,1,1,0)
(1,0,0,1,0,0,0,1)
(1,0,0,1,1,0,1,1)
(1,0,0,0,1,0,1,0)
(1,1,0,0,0,1,1,0)
(1,1,0,0,1,1,0,0)
(1,1,0,1,0,1,1,1)
(1,1,0,1,1,1,0,1)
(1,1,1,1,1,0,0,0)
(1,1,1,0,0,0,1,1)
(1,1,1,0,1,0,0,1)
(1,1,1,1,0,0,1,0)
(0,1,0,1,0,0,0,0)
(0,1,0,1,1,0,1,0)
(0,1,0,0,0,0,0,1)
(0,1,0,0,1,0,1,1)
(0,1,1,1,0,1,0,1)
(0,1,1,1,1,1,1,1)
(0,1,1,0,0,1,0,0)
(0,1,1,0,1,1,1,0)
(0,0,1,0,0,0,1,0)
(0,0,1,0,1,0,0,0)
(0,0,1,1,1,0,0,1)
(0,0,1,1,0,0,1,1)
(0,0,0,0,0,1,1,1)
(0,0,0,0,1,1,0,1)
(0,0,0,1,0,1,1,0)
(0,0,0,1,1,1,0,0)
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The defining relation for the fraction is

| = FiREFy = BFE,FsFy = FIBFsF, = BFsFgFy = FiFFyFy = FIFyFsFyFy Fy
—F,FsFyFsFFy

The correlated sets of factors are

(F1, EFsFs, I FsFr, SRR, (Fo, F1F3Fs, FyFsFy, FI F5F7), (F3, Fi 2 Fg, FsFgFr, F1 FAF),

(Fa, EFsF, FIF3Fg) (F5, {5 Fp, F3FgF), (Fs, F1 2 F3, I, FuFy F3F5Fr), (F, F1 P> Fs, F3Fs F),

(F3, hFuFg, FIF3Fy), (FL B, F3Fg, F5Fr), (F1 F3, > Fs, 4 Fy), (Fi Fs, b F3), (X Fy, Fely), (> Fy, FuFg),
(F3F5,FsF;), (F3F7, FsFg), (F1F2Fy, FsFyFs, F1 FFg, F4FsFp, F, F3Fg),

(PR Fy, 3FsFy, F1FuFg, FsF Fy, > FaFy), (FiF3Fs, > FsFs, P> F3Fr, Fi FgFy FyFsFg),

(R B3 F;, B FsF, R F3Fs Fi FsFe, FyF7Fg), (F1FAFs, > FyF, F3FsFg, FgFr Fy),
(F1F4F7,F2F4F5,F3F7F8,F5F6Fg), (FlFng,F2F7F8,F3F4F5,F4F6F7), (F1F7F8,F2F5F8,F3F4F7,F4F5F6).

3.3.2 Method of Analysis

Effects F1 F4, F3Fg, F1F5, F2F7, F1F7, F2F5, F1 Fg, F3F4, F4F5, F4F7, F5F8 and F7F8 are
orthogonally estimated.

(128 64 0 O] (12 -8 2 2]
64 128 64 64 . |-8 16 —4 —4
For , the pseudoinverse is 1551 (3.5)
0 64 128 128 2 4 3 3
| 0 64 128 128] |2 -4 3 3]
(128 64 64 O ] s 1 1 -3]
64 128 0 o4 ) o 1 5 -3 1
For , the pseudoinverse is 1551 (3.6)
64 0 128 64 1 -3 5 1
| 0 64 64 128] -3 1 I 5]
(128 64 64 64 ] 16 -8 —4 —4]
64 128 O 0 |8 122 2
For , the pseudoinverse is 1551 3.7)
64 0 128 128 -4 2 3 3
| 64 0 128 128] -4 2 3 3]




56

128
64
For | 64

For | O

For

64

64
128
0
64
64

64
128
64
0
64

128
128
64

64
0
128
64
64

64
128
64
128

128
128
64

0 O
64 64
64 64 | ,the pseudoinverse is
128 128

128 128
64 0 |
0 64

64 128/ , the pseudoinverse is
128 64

64 128]

64 |

64 th doi is L
, epseu olnverse IS 757

64 1024

128

(52 18 18 -—16
18 59 -39 0

1

|18 =39 59 0
16 0 0 20
-16 0 0 20
(52 18 —16 18
18 59 0 -39

1

19544 —16 0 20 0
18 -39 0 59
16 0 20 0

(12 2 2 —g§]

2 3 3 —4

(3.10)
2 3 3 —4
-8 —4 —4 16

The effects in sets (F, FaF3Fg, FaFsFr, F3F4Fg) are estimated using equation (3.5). Effects
F>)Fs5F; and F3F,Fg are estimated with the same efficiency which is the highest in that

set. FoF3Fg is estimated with the lowest efficiency among the effects in the same set.

The effects in set (F», F1F3Fs, FaFgFg, FiF5Fy) and (F3, Fi F>Fg, FsFoFy, F1 FAFg) are
estimated using equation (3.6). Effects in these sets are estimated with the same

efficiency.

The effects in set (Fg,F1F>F3, FFyFg, F3F5F;) are estimated using equation (3.7). The
main effect Fg is estimated with the lowest efficiency. Effects FoF4Fg and F3F5F; are
estimated with the same efficiency which is the highest in that set.

—16

20
20

—16

20

20

(3.8)

(3.9)

Effectsin set <F1F2F4,F3F4F6,F1F6F8,F4F5F7,F2F3Fg) and (FleFg,F3F6Fg,F1F4F6,F5F7F8,F2F3F4)
are estimated using equation (3.8). The effects F3FyFg, F1FsFg, F3FgFg and FiF4Fg are
estimated with the lowest efficiency. Effects FyF5F7, F, F3Fg, FsF7Fg, F>F3Fy are estimated
with the same efficiency which is higher compared to the efficiency attained for other

effects in the same set.

Effectsin set (F] F3F5,F2F5F6,F2F3F7,F1F6F7,F4F5F8) and (F1F3F7,F2F6F7,F2F3F5,F1F5F6,F4F7Fg)
are estimated using equation (3.9). The effects F; Fs5Fg, FiFsF7, FoFgF7 and FFsFg are
estimated with the lowest efficiency. Effects FoF3Fy, FuFsFg, FoF3Fs and FyF7Fg are
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estimated with the same efficiency which is higher compared to the efficiency attained
for other effects in the same set.

Factors in the set (F1F4F5,F2F4F7,F3F5F8,F6F7Fg), (F1F4F7,F2F4F5,F3F7F8,F5F6F8),
(F1F5Fg,F2F7F8,F3F4F5,F4F6F7) and (F1F7F8,F2F5F8,F3F4F7,F4F5F6) are estimated
using equation (3.10). Factors Fo FuF7, F3FsFg, Fo FuFs, F3F7Fg, FoFrFg, F3FyFs, F>FsFg and
F3F4F7 are estimated with the same efficiency which is much higher compared to the
efficiency attained for the remaining factors in similar sets. FgF7Fg, FsFgF3, FiFgF; and
F4F5Fg are estimated with the same efficiency. The efficiency used is lower in comparison
to the efficiency attained for other factors in the same set.

The matrix:
~1
128 0 64 3 1 =2 Fs F
0 128 64 = 72¢ 1 3 —2|givesestimates for | F{F>F; |, | FiF>F;5
64 64 128 -2 -2 4 F3FgF F3FsFg

Effects Fs, Fy7, F1F,F7 and F1F,F5 are estimated using the same efficiency that is higher
than the efficiency attained for F3FsF; and F3FsFg.

The matrix:
-1
128 64 O 3 =2 1 F3 P F1F;
1
64 128 64 =556 |72 4 2 gives estimates for | LFyFg | , | B3Fg | 5 | FoFg
0 64 128 1 -2 3 FFFE| |FF| |FRF

Effects F3,F1F3Fy, F1F>, FsF;, FIF3 and FyFg are estimated using the same efficiency that
is higher than the efficiency attained for F>FyFg, F3Fs and F Fg.

The matrix:
—1
128 64 1 2 -1 . . FiFg KhFy F)Fg FF5 K
= — gives estimates , , , ,
64 128 19211 2 BF| |FF| |FiFs| |FF| |FsFg

The effects here are estimated using the same efficiency.

1 ~ 1 ~ 1 N 1 ~ 1
E[HL FiFy=—FF|, BFR=—|RE|, FFs=—[FF|, FERF=—[RF],

H= ~ 128 128 128 128



58

34

N 1 N 1 N 1 n 1 n
FiF=—[FF|, FFi=—[RF|, FR=—[FAkK| FRF=—<|FF], FF5=

128 128 128 128

N 1 N 1 N 1
P = — Iy F FsFy = — | F5F; FrFy = — |7 F;

Nine Factor Experiment involving 96+32 = 128 Runs

Consider a design with treatments (x1,x2,x3,X4,Xs,X6,%7,X8,X9) Which satisfy the
simultaneous equations

X1 +x3+x6+x9=0,0,1
Xy +x5+x7+x9=0,0,1
X4+x6+x7+x=0,1,0
xX3+x5+xg3+x9=0,1,1

(mod 2)

3.4.1 Construction of The Design

The B matrix is obtained using the same procedure described in the eight factor
experiment in the Two-Factor Interactions Designs.

We first get the treatment combinations belonging to the first set which we then repeat.
If we add 1 (mod2) in x4 and xg position of the first set, we obtain the second set. If we
add 1 (mod2) in x| and x5 position of the first set, we obtain the third set.

128

1
[F4F5]7
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Treatment combinations

st
(0,0,0,0,0,0,0,0,0)
(0,0,0,0,1,1,0,0,1)
(0,0,0,1,0,1,1,1,1)
(0,0,0,1,1,0,1,1,0)
(0,0,1,1,0,1,0,1,0)
(0,0,1,1,1,0,0,1,1)
(0,0,1,0,0,0,1,0,1)
(0,0,1,0,1,1,1,0,0)
(0,1,0,0,0,1,0,1,1)
(0,1,0,0,1,0,0,1,0)
(0,1,0,1,0,0,1,0,0)
(0,1,0,1,1,1,1,0,1)
(0,1,1,1,0,0,0,0,1)
(0,1,1,1,1,0,0,0,0)
(0,1,1,0,0,1,1,1,0)
(0,1,1,0,1,0,1,1,1)
(1,1,0,1,0,0,0,1,1)
(1,1,0,1,1,1,0,1,0)
(1,1,0,0,0,1,1,0,0)
(1,1,0,0,1,0,1,0,1)
(1,1,1,1,0,0,1,1,0)
(1,1,1,1,1,1,1,1,1)
(1,1,1,0,0,1,0,0,1)
(1,1,1,0,1,0,0,0,0)
(1,0,1,0,0,0,0,1,0)
(1,0,1,0,1,1,0,1,1)
(1,0,1,1,0,1,1,0,1)
(1,0,1,1,1,0,1,0,0)
(1,0,0,0,0,0,1,1,1)
(1,0,0,0,1,1,1,1,0)
(1,0,0,1,0,1,0,0,0)
(1,0,0,1,1,0,0,0,1)

sty
(0,0,0,1,0,0,0,1,0)
(0,0,0,1,1,1,0,1,1)
(0,0,0,0,0,1,1,0,1)
(0,0,0,0,1,0,1,0,0)
(0,0,1,0,0,1,0,0,0)
(0,0,1,0,1,0,0,0,1)
(0,0,1,1,0,0,1,1,1)
(0,0,1,1,1,1,1,1,0)
(0,1,0,1,0,1,0,0,1)
(0,1,0,1,1,0,0,0,0)
(0,1,0,0,0,0,1,1,0)
(0,1,0,0,1,1,1,1,1)
(0,1,1,0,0,0,0,1,1)
(0,1,1,0,1,0,0,1,0)
(0,1,1,1,0,1,1,0,0)
(0,1,1,1,1,0,1,0,1)
(1,1,0,0,0,0,0,0,1)
(1,1,0,0,1,1,0,0,0)
(1,1,0,1,0,1,1,1,0)
(1,1,0,1,1,0,1,1,1)
(1,1,1,0,0,0,1,0,0)
(1,1,1,0,1,1,1,0,1)
(1,1,1,1,0,1,0,1,1)
(1,1,1,1,1,0,0,1,0)
(1,0,1,1,0,0,0,0,0)
(1,0,1,1,1,1,0,0,1)
(1,0,1,0,0,1,1,1,1)
(1,0,1,0,1,0,1,1,0)
(1,0,0,1,0,0,1,0,1)
(1,0,0,1,1,1,1,0,0)
(1,0,0,0,0,1,0,1,0)
(1,0,0,0,1,0,0,1,1)

st3
(1,0,0,0,1,0,0,0,0)
(1,0,0,0,0,1,0,0,1)
(1,0,0,1,1,1,1,1,1)
(1,0,0,1,0,0,1,1,0)
(1,0,1,1,1,1,0,1,0)
(1,0,1,1,0,0,0,1,1)
(1,0,1,0,1,0,1,0,1)
(1,0,1,0,0,1,1,0,0)
(1,1,0,0,1,1,0,1,1)
(1,1,0,0,0,0,0,1,0)
(1,1,0,1,1,0,1,0,0)
(1,1,0,1,0,1,1,0,1)
(1,1,1,1,1,0,0,0,1)
(1,1,1,1,0,0,0,0,0)
(1,1,1,0,1,1,1,1,0)
(1,1,1,0,0,0,1,1,1)
(0,1,0,1,1,0,0,1,1)
(0,1,0,1,0,1,0,1,0)
(0,1,0,0,1,1,1,0,0)
(0,1,0,0,0,0,1,0,1)
(0,1,1,1,1,0,1,1,0)
(0,1,1,1,0,1,1,1,1)
(0,1,1,0,1,1,0,0,1)
(0,1,1,0,0,0,0,0,0)
(0,0,1,0,1,0,0,1,0)
(0,0,1,0,0,1,0,1,1)
(0,0,1,1,1,1,1,0,1)
(0,0,1,1,0,0,1,0,0)
(0,0,0,0,1,0,1,1,1)
(0,0,0,0,0,1,1,1,0)
(0,0,0,1,1,1,0,0,0)
(0,0,0,1,0,0,0,0,1)
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The defining relation for the fraction is

[ = F\F3FsFy = FyFsFrFy = F,FyFyFy = FsFsFyFy = FIFyF3FsFgFy = F B FuFy
—F|FsFsFy = FyFyFsFy = B FsF Fy = F3FyFsFoFy Fy = F\F>FsFyFsFy = FiFoFgF, Fy Fy
=F1F4F5F7F8F9 = F2F3F4F6F8F9 = F1FhF Fy

The correlated sets of factors are

JFs5FeFg, F3FFo, F FuFg, F3F4F7),
F3,F1Fsky, FsFsFo, FiFuF7, FoFrFy

Py, F3FFR, FsFrFy, FiF,Fg, F4FsFy),
Fy,FsFFy, Fi F3F;, Fo FsFg, F1 Fo Fy)
Fg, F\F3Fo, FyF7Fo, FIFsFg, > FyFs),

(F )
( )
(F F2F7F9,F3F8F9,F2F4F6,F1F6F8),
(F F2F5F9,F4F6F9,F2F3F8,F1F3F4),
(Fo, FuFgF7, F1F3Fg, FoFsFr, F3F5FR), (F1Fy, Fulg), (FF3, FsFo, FuFy), (F1 Fy, F>Fy, F3F7),

(F1F5,F6Fg) (F3F9,F1F6,F5Fg), (F1F7,F3F4), (F5F6,F1F8,F2F4), (F1F9,F3F6), (F2F3,F7Fg),
(F2F6,F4F5) (F5F9,F2F7,F3Fg), (F2F9,F5F7), (F3F5,F8F9), (F4F6,F7F9,F2F5), (F4F9,F6F7)
(
(
(
(
(
(
(

~~ N /N

Fy,F1F>Fy, FiF5Fs, FF3Fp F3FsFy),

i BF, B FsFy, FsFgF;, > FuF;, FiFrFy, FyFsFy, F3FyFg),
FiB)Fs,F\F;Fy, F3FgFr, X FsFy, F FyFg, F3F4Fo, FyF5Fg),
B, F\FsFy, B3 FsEg, Fo 3 Fy Fi1 3 Fg, FgFgFo, F4F7Fg),
F1F3F5, FsFsFy, F1FgFo, > FsF, FyFsFr, F3FsFy, Fo FyFy),
FiFyFy, F3FyFy, F1FFp, F3FrFo, Fo F3 Fs  FsFr g, R Fy Fy).

FiF>2Fy, F>F3Fs, FIFsFp, F3FyFs, FsFr Fy  Fy Ry Fy).

FI\FFs, hbF3Fy, 3FsFy, FoFsFy, FiFyFs, FiFyFy, FAyFoFg).

3.4.2 Method of Analysis

Effects F1F7, F3Fy, FoFg, F4Fs, F3Fs and FgFy are orthogonally estimated.

(128 64 64 64 0O 59 18 0 0 -39

64 128 O 0 o4 18 52 —-16 —16 18

For| 64 0 128 128 64 |,the pseudoinverse is ﬁ 0O —-16 20 20 0
64 0 128 128 64 0 —-16 20 20 0

| 0 64 64 64 128] -39 18 0 0 59

(3.11)
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(128 64 0 0 64] (52 18 —16 —16 18
64 128 64 64 O 18 59 0 0 -39
For| 0 64 128 128 64 |,the pseudoinverse is ﬁ —-16 0 20 20 0 | @3B.12)
0 64 128 128 64 16 0 20 20 0
(64 0 64 64 128] (18 -39 0 0 59|
Rl )] Bl B[R]

FsFsFy F3FsFy FiIFFy | |BFsFy| |FIFRFy| | FiFsF;
Equation (3.11) estimates effects | 3FgFy | , | FsFFy |, | FaFoFy |, | FaFsFy |, | FiFsFs | » | FiF3F;
FFyFg FiFyFg FiFsFy| | [hF3Fg BFF FFsF;
B3Ry | |Fabsks| | R2FaFs| |FiBF|  |[BFsFy| | F3Fskg|

The main effects estimated using equation (3.11) are estimated with the lowest efficiency
efﬁciency. The effects F3F6F9, F2F4F8, F5F7F9, F]F4Fg, F4F7F9, F1F5F8, F4F6F9, F2F3F8,
F\FsFg, F>F3F7, F1F3Fg and F>FsF; are estimated with the highest efficiency.

F3 Fy Fs
FiFsky | |Fel7Fo | | FaF7Fy
Equation (3.12) is used to estimate the effects | FsRyFy |, | FIBF |, | BFsFy

FRF| |BFsF| | BEF
\BFF| |RRF| |FFF

The main effects estimated using equation (3.12) are estimated with the same efficiency.
The effects F5FgFy, Fi\F4F;, Fi1F3F;, FoFsFg, F3F3Fy and F>F4Fg are estimated with the
highest efficiency. Effects F| FgFy, FoF7Fg, FoF7Fy, F1FoFg, FoF7Fy and FiFgFg are
estimated with the lowest efficiency.

The matrix:
~1
128 64 O 3 -2 1 FiF3 FyFg FiFy F3Fy FsFg
1

64 128 64 :ﬁ -2 4 2| estimates Ry, |FFFRy)|, |FRFs |, |FiFg| > | F1Fg
0 64 128 1 -2 3 EF FF5 B F Fs5Fg FFy

F5Fy

and | /b Fy

FFg
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Effects F1F3,F4F7, F4F6, F2F5, F1F4, F3F7, F3F9, F5F8, F5F6, F2F4, F5F9 and F3F8 are
estimated with a higher efficiency than the efficiency attained for effects FgFy, F7Fy, F> Fg,
F1F6, Fng and F2F7.

The matrix:
~1
128 64 1 2 -1 . FF, F1F5 FiFy FF; FFy FiFg
= — estimates ) ) ) ) )
64 128 19211 2 RF| |FF| |BF| |BR| |BF| |FF

The effects here are estimated using the same efficiency.

128 64 128 0 64 64 64
64 128 64 64 0 0 128
128 64 128 0 64 64 64
Forl 0 64 0 128 64 64 64
64 0 64 64 128 128 O
64 0 64 64 128 128 O
64 128 64 64 0 0 128

(8 0 8 -8 0 0 0]
o 7 0 4 -3 -3 7
8§ 0O 8 -8 0 O O
, the pseudoinverse is ﬁ -8 4 -8 16 4 4 4613
o -3 0 4 7 7 =3
o -3 0 4 7 7 =3
07 0 4 -3 -3 7

The matrix in equation (3.13) estimates effects in set 2. Effects FoFgFy, F1F7Fg, F4Fs5Fy
F3FuFg, FiF7Fy, FoFoks FiFuFy, FuFskg, FIF F7, FoF3Fy, FoFgFo, F3Fskg, FiF3Fs, FiFgko,
FiFsF; B FoFr, F3FyFg, FiFoF7, FF3Fs and F>FgFy are estimated with the highest
efficiency compared to any other effect in the corresponding sets. Effects F> FyF7, F5FgFo,
F3F7Fy F1FaFs and F1 F3Fg are estimated with the lowest efficiency. Effects F1 F> F3, FsFoF7,
F\FFs F3FgF7, FiFsFy, FuF7Fg F3FoFg, F>FyFy, FiF4Fy and FsF7Fg are estimated with the
same efficiency.
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For

. . 1
, the pseudoinverse is zzger

128 64
64 128
0 0
64 0
0 64
0 64

64 128

0
0
128

o o o O

64
0
0

128

64

64
0

0 0

64

64

0 O

64
128
128
64

140
0
0

76

-50
-50
0

64

64
128 64
128 64
128

59
0
—50
0
0
59

128

64 |

0

288

o o o O

76
-50
0
140
0
0
-50

-50

0

59

59
0

-50

59
59

0
59
0
-50
0
0

59

(3.14)

The matrix in equation (3.14) estimates effects in set 4. Effect F3F5F7 is estimated with
the lowest efficiency. Effects F>F3Fy, F1FyFs, F7FgFy and FyFgFg are estimated with the
highest efficiency. F1F>Fs and F>F5Fg are estimated with the same efficiency.

For

, the pseudoinverse is

64 128
64 128
64 0
0 64

64 128

128
128
0
64
128

128 64 64 64

0
0
128
64
0

1
1280

0 64]

64 128

64 128

64 0

128 64

64 128]

6 0 0 2
0o 1 1 -1
o 1 1 -1
2 -1 -1 5
4 0 0 2
o 1 1 -1

S N D O O

(3.15)
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3.5

The matrix in equation (3.15) estimates effects in set 3. Effects FiF,Fy and FgF7Fg are
estimated with the lowest efficiency. Effects F>F3Fg, F1FsF; and F4FgFy are estimated
with the highest efficiency.

1 N 1 N 1 N 1 N 1
(1 =— FFHh=—|FF FrFy=—|FF. s =—|FF FiFs = —|F4 F
Q 128[“]’ 1\ Fy 128[17]’ 3Fy 128[34]’ 2Fe 128[26]» 4Fs 128[45]’
FFy = [F3F5), FgFy= ! 12323
3Fs = 5glBEs), BFy = o [RE.

Ten Factor Experiment involving 96+32 = 128 Runs

Consider a design with treatments (x;,x2,x3,X4,Xs,X6,X7,X8,X9,X10) Which satisfy the
simultaneous equations

x1+x3+x6+x10=0,1,0
Xy +x5+x7+x9=0,0,1
X4+x6+x7+x=0,1,0
x3+x5+x3+x10=0,0,1
x| +x5+x9+x10=0,1,1

(mod 2)

3.5.1 Construction of The Design

The B matrix is obtained using the same procedure described in the eight factor
experiment in the Two-Factor Interactions Designs.

We first get the treatment combinations belonging to the first set which we then repeat.
If we add 1 (mod2) in x; and x4 position of the first set, we obtain the second set. If we
add 1 (mod2) in the x5 position of the first set, we obtain the third set.
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Treatment combinations

st
(0,0,0,0,0,0,0,0,0,0)
(0,0,0,0,1,1,1,0,0,1)
(0,0,0,1,0,1,1,1,1,1)
(0,0,0,1,1,0,0,1,1,0)
(0,0,1,1,0,1,0,1,0,0)
(0,0,1,1,1,0,1,1,0,1)
(0,0,1,0,0,0,1,0,1,1)
(0,0,1,0,1,1,0,0,1,0)
(0,1,0,0,0,1,0,1,1,1)
(0,1,0,0,1,0,1,1,1,0)
(0,1,0,1,0,0,1,0,0,0)
(0,1,0,1,1,1,0,0,0,1)
(0,1,1,1,0,0,0,0,1,1)
(0,1,1,1,1,1,1,0,1,0)
(0,1,1,0,0,1,1,1,0,0)
(0,1,1,0,1,0,0,1,0,1)
(1,1,0,1,0,0,1,1,0,1)
(1,1,0,1,1,1,0,1,0,0)
(1,1,0,0,0,1,0,0,1,0)
(1,1,0,0,1,0,1,0,1,1)
(1,1,1,1,0,0,0,1,1,0)
(1,1,1,1,1,1,1,1,1,1)
(1,1,1,0,0,1,1,0,0,1)
(1,1,1,0,1,0,0,0,0,0)
(1,0,1,0,0,0,1,1,1,0)
(1,0,1,0,1,1,0,1,1,1)
(1,0,1,1,0,1,0,0,0,1)
(1,0,1,1,1,0,1,0,0,0)
(1,0,0,0,0,0,0,1,0,1)
(1,0,0,0,1,1,1,1,0,0)
(1,0,0,1,0,1,1,0,1,0)
(1,0,0,1,1,0,0,0,1,1)

st
(1,0,0,1,0,0,0,0,0,0)
(1,0,0,1,1,1,1,0,0,1)
(1,0,0,0,0,1,1,1,1,1)
(1,0,0,0,1,0,0,1,1,0)
(1,0,1,0,0,1,0,1,0,0)
(1,0,1,0,1,0,1,1,0,1)
(1,0,1,1,0,0,1,0,1,1)
(1,0,1,1,1,1,0,0,1,0)
(1,1,0,1,0,1,0,1,1,1)
(1,1,0,1,1,0,1,1,1,0)
(1,1,0,0,0,0,1,0,0,0)
(1,1,0,0,1,1,0,0,0,1)
(1,1,1,0,0,0,0,0,1,1)
(1,1,1,0,1,1,1,0,1,0)
(1,1,1,1,0,1,1,1,0,0)
(1,1,1,1,1,0,0,1,0,1)
(0,1,0,0,0,0,1,1,0,1)
(0,1,0,0,1,1,0,1,0,0)
(0,1,0,1,0,1,0,0,1,0)
(0,1,0,1,1,0,1,0,1,1)
(0,1,1,0,0,0,0,1,1,0)
(0,1,1,0,1,1,1,1,1,1)
(0,1,1,1,0,1,1,0,0,1)
(0,1,1,1,1,0,0,0,0,0)
(0,0,1,1,0,0,1,1,1,0)
(0,0,1,1,1,1,0,1,1,1)
(0,0,1,0,0,1,0,0,0,1)
(0,0,1,0,1,0,1,0,0,0)
(0,0,0,1,0,0,0,1,0,1)
(0,0,0,1,1,1,1,1,0,0)
(0,0,0,0,0,1,1,0,1,0)
(0,0,0,0,1,0,0,0,1,1)

sty
(0,0,0,0,1,0,0,0,0,0)
(0,0,0,0,0,1,1,0,0,1)
(0,0,0,1,1,1,1,1,1,1)
(0,0,0,1,0,0,0,1,1,0)
(0,0,1,1,1,1,0,1,0,0)
(0,0,1,1,0,0,1,1,0,1)
(0,0,1,0,1,0,1,0,1,1)
(0,0,1,0,0,1,0,0,1,0)
(0,1,0,0,1,1,0,1,1,1)
(0,1,0,0,0,0,1,1,1,0)
(0,1,0,1,1,0,1,0,0,0)
(0,1,0,1,0,1,0,0,0,1)
(0,1,1,1,1,0,0,0,1,1)
(0,1,1,1,0,1,1,0,1,0)
(0,1,1,0,1,1,1,1,0,0)
(0,1,1,0,0,0,0,1,0,1)
(1,1,0,1,1,0,1,1,0,1)
(1,1,0,1,0,1,0,1,0,0)
(1,1,0,0,1,1,0,0,1,0)
(1,1,0,0,0,0,1,0,1,1)
(1,1,1,1,1,0,0,1,1,0)
(1,1,1,1,0,1,1,1,1,1)
(1,1,1,0,1,1,1,0,0,1)
(1,1,1,0,0,0,0,0,0,0)
(1,0,1,0,1,0,1,1,1,0)
(1,0,1,0,0,1,0,1,1,1)
(1,0,1,1,1,1,0,0,0,1)
(1,0,1,1,0,0,1,0,0,0)
(1,0,0,0,1,0,0,1,0,1)
(1,0,0,0,0,1,1,1,0,0)
(1,0,0,1,1,1,1,0,1,0)
(1,0,0,1,0,0,0,0,1,1)
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The defining relation for the fraction is

I = F1F3FeFi0 = FFs5F7Fy = FaFoFr by = F3FsFgFio = F1FsFoFig = FiF3FaF7FoFyg
=F1FsFoFy = F3FsEoby = o FyFskg = B F3FrFgFoFig = FiF, FrFyo = FiFaFsFoFrFho

=F1F3F3Fy = F1F F3FyFsFyg = FiFXFoFrFsFo = By FsFoFp = FiFyFsFrFgFy = F3FyFsF

=FeFgFoFi10 = IR F3FaFsF3Fio = FiFyFaFsFoFyg = FiFo F3FsFrFy = FiFaFaFeFrFy
=F1 [ FyFg = B F3FyFy = B FsFoF7FgFiog = FuF7FgFio = FoFyFsFgFoFg

The correlated set of factors are

10.

11.

12.

13.

14.

15.

F\,FFsFy, K, FrFy, F3FsFro, F3FsFy, FsFoFy, FsFo Fyg),
Fy, IRy, FF3Fy, FsFrFy, F1FyFo, FaFsFg, F3F5Fy)

(
(
(B, FiFyFy, F\F1 F1o, F3FyFo, F3Fg Py, FyFsFg, FsFr Fy),
(F7, FRFsFy, FyFsFo, Fi > Fro, Fa F3 Fe, F3FuFs, FuFg Fyp),
(Fg, F3FsFyo, F1FsFs, F1F3Fy, FsFoFio, F1 X Fy, FuFrFyp),
(Fio, i > F;, FiF3Fs, F1 FsFy, F3FsFy, FuFr By, Fg R ).

(

(

B3, F1FsFro, FiFsFy, [, FyFo, Fa F Py, FuFsFy, FsFs Fo, Fs FgFyp),

Fg, F1F3F0, FaF7Fy, F1FsFy, FsFsFo, IR FyFs, >, Fs Fr Fy FoFyg).

Fs,F\FsF3, FiFyF\o, X, FyFg, F FrFy, F3FyFr, F3FgFy, F3FyF).

Fy, F\F3F3, FFsF\o, >, F3Fy, F,FsFy, F3FsFg, FyFgFr, FoFgFp).

FiFFs, FyFyFy, Fi FsFr, Fa FgFro, FaFy Fo, F3FyFg, F3 Fr Fro, FuFsFio, FsFrFg).
P\ Fs, F{FyFg, F1 7 Fo, R FeFy, Fa FoFro, F3FyFio, F3Fr By, FuFsFy, FsFr Fyp).
FiF3Fs, F{FyFy, F FeFo, F1 FgFyo, o FuFro, Fa Fr By, F3 F s, FsFo Fro, Fs FeFro, FsFg o).
F\F, FyFg, FrFy), (FFi0, FsFy, FiF3), (FaF3, FoFr, FaFy).

Fj F6,F3F10,F5F8) (F]Fg,FgFg,F5F10), (F2F5,F7F9,F4F6), (F3F4,F2F9,F5F7).
FFg,F2F4,F3F9,F5F6)

FiFo, F2F7, F3F, FsFy), (F3Fs, FsFo, FsFio, FuF7).

FiFy, ), (FsFy, FyFio).

FFy, B> Fo), (FaFio, FrFg).

(
(
(
(
(
(
(
(
(
(
(
(

F>Fg, F3F7, F4Fs).
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3.5.2 Method of Analysis

Effects F1 F7, F3Fy, FoFg, FuFs, F3Fs and FgFy are orthogonally estimated.

128 128 64 64 64
128 128 64 64 64
64 64 128 128 128
For [ 64 64 128 128 128
64 64 128 128 128
0 0 64 64 o4
0 0 64 64 64

303 -1 -1 -1
303 -1 -1 —1
1 -1 2 2 2
o -1 -1 2 2 2
-1 -1 2 2 2
11 -1 -1 -1
11 -1 -1 -1

1
1

0
0
64
64
64

128

128 128

—1
—1
—1

3
3

1
1
—1
—1
—1
3
3

0
0
64
64
64
128

, the pseudoinverse is

(3.16)

The matrix in equation (3.16) estimates effects in set 1. Effects FoF7 fo, F3FoF10, F3FgFo,
B Fy, FsFrFy and F7F3F)( are estimated with a higher efficiency than the efficiency
attained for corresponding effects in the same sets. Factors Fy, FoFyF3, F5FoFg, FsFoFo,
Fy, FiF>Fg, F, F5Fg and F3F5F; are estimated with the same efficiency which is lower than
the efﬁciency attained for F2F7f10,F3F6F10, F3F8F9, F2F3F9, F6F7F9 and F7F8F10

_128 128 64 64 128
128 128 64 64 128
64 64 128 128 64
For | 64 64 128 128 64
128 128 64 64 128
0 0 64 64 O
64 64 O 0 o4

0 o4

0 o4
64 O
64 0

0 o4
128 64
64 128

, the pseudoinverse is
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1
73984

59
59
0
0
59
—61
0

59 0
59 0
0 120
0 120
59 0
—61 0
0 —100

120
120
0
0
—100

59
59
0
0
59
—61
0

—61
—61
0
0
—61
259
166

—100

—100| (3.17)

276

0
166

The matrix in equation (3.17) is used to estimate effects in set 2. The effects F;, Fi F4Fg,
F%be%,Iﬁf@fﬁo,Fhf%ﬁb,fhi%fﬁo,ﬁé,f}f}ﬁh,}%}b}qo,qubf%,]qul% and Fhf%}% are
estimated with the highest efficiency. Effects F5F7Fy, F3F4F5,F3F5F19 and F1FsFg are
estimated with the lowest efficiency. Effects F4F5Fg, Fo FsFy,Fi F5Fg and F3FsFg are
estimated with the same efficiency.

For

0
0
0

45

—46
0
0

(128 64 64 64
64
64
64
128
0

128 128 128
128 128 128
128 128 128
64 64 064
64 64 064

0 0 O
20 20 20
20 20 20
20 20 20

0 0 O
0 0 O
0 0 O
0 0 O

128
64
64
64
128
0
64
64

45
0
0
0

45

—46
0
0

64 64

0

64 0 0
64 0 0
64 0 0
0 64 64
128 64 64
64 128 128
64 128 128
46 0 0]
0 0 0
0 0 0
0 0 0
46 0 ol
84 26 26
26 37 37
26 37 37|

, the pseudoinverse is

3.18)

The matrix in equation (3.18) is used to estimate effects in set 3. The effects FjFsFio,
FiF3Fy, FoFyFy, Fg, F3FoF1o and F>F3F7 are estimated with the highest efficiency com-
pared to the efficiency attained for other effects in corresponding sets. Effects F5FgFo,
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F5sF3Fyo, 2 FuFs and Fi F5Fg are estimated with the same efficiency. The effects F3, Fo FgF7,
F1F3F1o and FyF;Fy are estimated with the same efficiency. Effects F3F5Fg and FyF5F7 are
estimated with the lowest efficiency.

(128 0

0 128

128

- |0 28
64 64

0 128

64 64
64 64

[ 48 4

4 3

4 3
VR
R PR
4 3

11 -3
11 -3

128
128
128
64
128
64
64

W W W

128
128
128
64
128
64
64

64
64
64
64
128
64
128
128

128
128
128
64

128

64
64
64
64
128
64
128
128

64
64
64
64
128
64
128
128

, the pseudoinverse is

(3.19)

The matrix in equation (3.19) is used to estimate effects in set 4. The effects FjFgFg,
FiFyFo, FoF4Fg and F3F4F; are estimated with the highest efficiency compared to the
efficiency attained for other effects in the same set. Effects FoF7Fy, F3FgFy and F3FgFig
are estimated with the same efficiency. The main effect F5s is estimated with the lowest

efficiency compared to the efficiency attained for other effects in the same set.



70

64
0
64
64
64
64
0

For

1
73984

The matrix in equation (3.20) is used to estimate effects in set 5. The effects F{ F3Fg, FoF3F;
and FyFgF7 are estimated with the highest efficiency compared to the efficiency attained
for other effects in the same set. Effects F>F5F; and F3F5Fg are estimated with the same
efficiency. Effects Fy and F|F5F)( are estimated with the same efficiency. Effect FgFgFig
is estimated with the lowest efficiency in comparison to the efficiency attained for other

315

0

0

38
38

0
0

128 64 O

128 64

64 64
128 0

64 128 64 o4

128 64
0 o4
0 o4

128 64
0 0

128 0

64 64

0

128

64 64

0

128

0 128 128 O
0 128 128 O

128 0
0 0

0 —-263 O

52

—-263 0

52
0
0

52
0

0 52
315 0
0 52

0
0

38
0
38
0

38 0 100
38 0 100

0 52
0 0

effects in the same set.

(128 64 128 64 0

64 128 64 128 0

128 64 128 64 0

64 128 64 128 0

For | 0 0 0 0 128
128 64 128 64 0

64 128 64 128 0

64 0 64 0 0

0 64 0 64 0

0
0

128
0

38 0
0 52
38 0
0 52
100 O
100 O
0 52

0 0 578

128 64
64 128
128 64
64 128
0 0
128 64
64 128
64 0
0 o4

S o O o o o o

128

0
0
0
0
0
0

0

64
0
64
0
0
64
0
128
64

, the pseudoinverse is

0
64
0
64
0
0
64
64
128

(3.20)

, the pseudoinverse is
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5.0 5 0 0 5 0 0 -5

0O 5 0 5 0 0 5 -5 0

5.0 5 0 0 5 0 0 -5

O 5 0 5 0 0 5 -5 0
aml0 0 0 0 48 0 0 0 0|@2)

5.0 5 0 0 5 0 5

O 5 0 5 0 0 5 -5 0

0 -5 0 -5 0 0 -5 21 15

-5 0 -5 0 0 -5 0 15 21

The matrix in equation (3.21) is used to estimate effects in set 6. The effects Fi F>F3,
FiFyFy, FiFgF;, F>FoFio, F3F4Fy and F3F7F) are estimated with the highest efficiency
compared to the efficiency attained for other effects in the same set. Effects FiF5Fig
and Fs5F;Fg are estimated with the same efficiency. F,F3Fy is estimated with the lowest
efficiency in comparison to the efficiency attained for other effects in the same set.

2 0 64 0O O 64 0 128 o4
0 128 64 128 128 64 128 0 64
64 64 128 64 64 128 64 64 O
0 128 64 128 128 64 128 0 o4
For | 0 128 64 128 128 64 128 0 64 | ,the pseudoinverse is
64 64 128 64 64 128 64 64 O
0 128 64 128 128 64 128 0 o4
1286 0 64 0O O 64 0 128 o4
64 64 0 64 64 0 64 64 128
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(104 0 0

00 0 0 104 80
00 0 00 O 0 0 O
0 0 131 00 131 0 0 —134
O 0 0 00 O 0 0 O

@l 0 0 0 00 0 0 0 0 |G2
0 0 131 00 131 0 0 —134
00 0 00 O 0 0 O
1040 0 00 0 0 104 80
80 0 —134 0 0 —134 0 80 236 |

The matrix in equation (3.22) is used to estimate effects in set 7. The effects FiFiFg,
FrFoFg, FFyF g and F3F7Fg are estimated with the highest efficiency compared to the
efficiency attained for other effects in the same set. Effects F1F,Fs and FyFsFg are esti-
mated with the same efficiency. F>FgFy is estimated with the lowest efficiency. Effects
F1F7Fy and F3FF)( are estimated with the same efficiency. F5F7Fjq is estimated with the
lowest efficiency in comparison to the efficiency attained for other effects in the same set.

-128 128 0 64 0 128 128 64 64
128 128 0 64 0 128 128 64 64
0 0 128 64 128 O 0 64 64
64 64 64 128 64 64 64 128 128
For | 0 0 128 64 128 O 0 64 64 | ,the pseudoinverse is
128 128 0 64 0 128 128 64 o4
128 128 0 64 0 128 128 64 64
64 64 64 128 64 64 64 128 128
64 64 64 128 64 64 64 128 128
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3 3 0 -3 0 3 3 -3 -3
3 3 0 -3 0 3 3 -3 -3
0 0 12 -5 12 0 0 -5 -5
3 -3 -5 7 -5 -3 -3 7 7
e 0 0 12 =5 12 0 0 -5 —5|G23)
3 3 0 -3 0 3 3 -3 -3
3 3 0 -3 0 3 3 -3 -3
3 -3 -5 7 -5 -3 -3 7 7
3 -3 -5 7 -5 -3 -3 7 7

The set (F1F2F6,F1F3F7,F1F4F5,F2F3F10,F2F5F8,F4F6Fg,F4F9F10,F6F7F10,F7F8F9) is
estimated using equation (3.23). The effects FiFoFg, F1 F3F7, F1F>Fg and FiF3F7 are
estimated with a higher efficiency compared to the efficiency attained for other effects
in the same set. Effects F>F3Fj(, FgF7F1o and F;FgFy are estimated with the same
efficiency. F1F4F5 and F,F5Fg are estimated with the same efficiency which is lower than
the efficiency attained for other effects in the same set.

1286 0 64 64 64 O 0 0 64 64
0 128 64 64 64 128 128 128 64 64
64 64 128 128 128 64 64 64 O 0
64 64 128 128 128 64 64 64 O 0
For 64 64 128 128 128 64 64 64 O 0 the pseudoinverse is
0 128 64 64 64 128 128 128 64 64
0 128 64 64 64 128 128 128 64 64
0 128 64 64 64 128 128 128 64 64
64 64 O 0 0 64 64 64 128 128

64 64 O 0 0 64 64 64 128 128
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(288 —88 64 64 64 —88 —88 —88 136 136
8 0 0 0 0 0 0O 0 0 0
64 0 92929 0 0 0 0 0
64 0 9299 0 0 0 0 0
e 0 e 000 0 0
8 0 0 0 0 0 0O 0 0 o0
8 0 0 0 0 0 0O 0 0 0
8 0 0 0 0 0 0O 0 0 0
36 0 0 0 0 0 0 0 167 167
36 0 0 0 0 0 0 0 167 167

The matrix in equation (3.24) is used to estimate effects in set 8. The effects FjF4F7,
B F3, F3FgFg and F3FoFyq are estimated with a higher efficiency in comparison to the
efficiency attained for other effects in the same set. Effects FyFsFo, F1F3F19 and FFuFig
are estimated with th same efficiency. F5FgFig and F5FgFg are estimated with the same
efficiency. The effect F1F3Fs is estimated with a lower efficiency compared to the
efficiency atttained for other effects in the same set.

128 128 o4 1 1 -1
For [128 128 64 | , the pseudoinverse is 3]@ 1 1 —1](3.25)
64 64 128 -1 -1 4

The matrix in equation (3.25) is used to estimate effects in set 9. The effects F1F3, FiF3,
FsF10, FgFy, F>F3 and FgF7 are estimated with a higher efficiency than the efficiency
attained for F5Fyg, F1F3 and F4Fy. Effects FrFo, F1F3 and F4Fy are estimated with the
same efficiency.

(128 128 64 O | (3 3 -4 2]
128 128 64 O | 3 3 —4 2
For , the pseudoinverse is 1551 (3.26)
64 64 128 64 -4 —4 16 -8
| 0 0 64 128] |2 2 -8 12}

Equation (3.26) is used to estimate effects in set 11. Effects Fi Fg and F>F, are estimated
with a higher efficiency than the efficiency attained for other effects in the same set. F3Fy
is estimated with a lower efficiency compared to the efficiency attained for other effects
in the same set.
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(128 64 64 O ] (3 1 -1 1]
64 128 128 64 -1l 1 -1
For , the pseudoinverse is 53¢ (3.27)
64 128 128 64 -1 1 1 -1
| 0 64 64 128] 1 -1 -1 3]

Equation (3.27) is used to estimate effects in set 12. Effects FoF7, F3Fg, FgFy and FgFg are
estimated with a higher efficiency than the efficiency attained for FyFyo, F5Fy, F3F5 and
Fu1F;. The effects Fi Fo, F5Fy, F3F5 and F4F;7 are estimated with the same efficiency.

128 128 O 1 10
For {128 128 0 | ,the pseudoinverse is % I 1 0] @328
0 0 128 0 0 4

The matrix in equation (3.28) is used to estimate effects in set 15. The effects F>Fg and
F3F7 are estimated with a higher efficiency than the efficiency attained for F4Fs.

128 128 ) o |11
For , the pseudoinverse is 15 (3.29)
11

128 128

The matrix in equation (3.29) is used to estimate effects in set 13. The effects here are
estimated using the same efficiency.

The matrix:
-1
128 64 O 3 =2 1 FiFg FiFy FyFs FFy
64 128 64 :2;_6 —2 4 2| gives estimates for | 3Fyo |, | F3Fg | » | FiFy | » | FaFy
0 64 128 1 -2 3 FEsFs | |FsFo| |RFs| |FF

Effects F1F3,F4F7, F4F6, F2F5, F1F4, F3F7, F3F9, F5F8, F5F6, F2F4, F5F9 and F3F8 are
estimated with a higher efficiency. Effects FgFo, F7Fy, F2Fg, F1Fg, F1Fg and F>F7 are
estimated with a lower efficiency.

The matrix:
—1
128 64 1 2 —1| ) RF FyFo
- gives estimates for and
64 128 19211 2 BF FFy

The effects here are estimated using the same efficiency.
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4.1

Conclusions and Recommendations

Conclusions

This current study extends Patel’s designs that permit estimation of factors up to
two-factor interactions only to designs that permit estimation of factors up to
three-factor interactions assuming higher order interactions to be absent.

The method of construction and analysis of these designs is given. The linear forms are
chosen such that each is of weight > 4. By the weight of a linear form we mean the
number of non-zero co-efficients. The linear equations provided are arbitrary selected.
Consequently, correlated effects will depend on the fraction (defining contrast) used for
the duplicated designs. The motivation to choose equations of weight > 4 is to allow
estimation of the grand mean, main effects, two-factor and three-factor interactions.

In the construction of designs involving estimation of factors up to three factor
interactions, some matrices involved tend to be singular. In such a case, we make use of
Moore-Penrose inverse to estimate effects in that particular matrix. We also check on a
universal construction method of fractional designs that enable estimation up to m factor
interactions (m < p).

The method of obtaining blocks and the test procedure discussed in subsection 2.2.2 on
"Method of Analysis" can be applied to all designs in this study. Similar method of
construction can be used to obtain designs involving more than ten factors.

Two ways of obtaining the block designs are provided. The test procedure on how to
estimate 62 and how to test for the significance of an effect is shown. The efficiency
used to estimate for each factor is discussed in the designs presented.

These type of designs can be used in screening experiments where there errors in
observations to identify active factors. They can also be used in mixture experiments-
experiments that involve mixing the proportion of two or more components to make an
end product.
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4.2

Recommendations

In this study, we consider designs whose factors occur only at two levels. One can
extend these designs to fractional factorial designs whose factors occur at three levels and
that allow estimation of factors up to three-factor interactions with partial duplication

considered.

This work involves symmetrical factorial designs- designs whose factors occur at the same
number of levels. It would be interesting to study asymmetrical factorial designs also
known as mixed factorials- designs whose factors are not at the same number of levels-
that are partially duplicated and that permit estimation of factors up to three-factor

interactions.
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