UNIVERSITY OF NAIROBI
SCHOOL OF COMPUTING AND INFORMATICS

SIGN LANGUAGE GESTURE RECOGNITION USING MACHINE LEARNING ON
THE EDGE

By
Eliud Ngigi NGARUIYA
P52/33754/2019

Supervisor
Dr. Wanjiku Ng’ang’a

RESEARCH PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS OF THE AWARD OF MASTER OF SCIENCE IN COMPUTATIONAL

INTELLIGENCE AT THE SCHOOL OF COMPUTING AND INFORMATICS, UNIVERSITY
OF NAIROBI

August 17, 2021.

(r

DECLARATION

Researcher’s Declaration

This project is my original work and has not been presented in any other institution for the purpose
of academic award. All sources, references, literature used or excerpted during elaboration of this
work are properly cited and listed in reference to the respective sources.

e He (
SIGNATURE "d‘)\ DATE |¥ @»QV a0a|

Eliud Ngigi NGARUIYA

Registration Number: P52/33754/2019

Supervisor’s Approval

This project report has been submitted in partial fulfilment for the requirements of the award of
the Degree of Master of Science in Computational Intelligence in the University of Nairobi with
my approval as the University Supervisor.

/ -
SIGNATURE Uw“’& o) pate (7 0% =2
Dr. Wanjiku Ng’ang’a

School of Computing and Informatics

University of Nairobi

ACKNOWLEDGEMENTS

| would like to acknowledge and thank my parents, without their help, moral and financial support,
pursuing this study would not have been possible for me. Many thanks to my supervisor, Dr. Wanjiku
Ng’ang’a who’s insights and guidance I had through every step from developing a proposal through to
finalizing the project.

ABSTRACT

There are approximately over 360 million people globally living with a hearing disability; partially or
completely deaf. In order to communicate, these people use sign language. Like any spoken language, sign
language has its own grammar rules and can be translated from signed language to spoken language by a
sign language interpreter. However, unlike translating spoken languages, translating sign language is a
challenging task. Humans have been doing the translation. But with recent advancement in machine
learning and artificial intelligence algorithms, these translation tasks are being taken up by machines.
Despite the progress, machine translation of sign language is still faced with challenges since it requires
data that is largely unavailable of hand and finger movements for words and phrases signing. Furthermore,
the approaches adopted such as computer vision are resource intensive.

Embedded systems have evolved from simple transistor circuits to complex microprocessor and
microcontroller systems. Though still resource constrained in terms of the processing power, memory and
power consumption, these embedded systems can now perform tasks previously not possible on earlier
versions. Recently, we have had machine learning algorithms that can run on resource-constrained
embedded systems like TensorFlow Lite for Microcontrollers. With these algorithms, we can now perform
machine learning inferences locally on-device.

In this study, a machine learning on the edge algorithm was used to translate sign language gestures to
spoken language by developing an Embedded Intelligent System that uses sensors to track finger curvatures
and hand movement. The device is first designed and built using open-source hardware. Then used to create
a dataset by collecting data. Data is collected by performing the signing of various sign language gestures.
The data collected is curated and used to provide examples for various classes to the k-nearest neighbour.
This algorithm is then used to perform on-device inferencing to classify new gestures as they are signed.
Arduino nano BLE sense is used together with flex sensors. As flex sensor bends with signing of different
letters and numbers, the data is collected and logged in a file. This data is then used to train a model using
a K-nearest neighbour (KNN) algorithm. New signed numbers are translated and displayed on the serial
monitor.

The main contribution of the paper is a new machine learning on the edge approach using open-source
resources to create a sign language translating device that works on resource constrained devices without
the reliance of external inference engines

Table of Contents

DECLARATION. ...ttt sttt ettt e ht et bt et e st e she et e ebe e st e bt eatebesbe et e sbeeaeenbesaeeneenne i
A B ST R A CT ettt ettt e b e s bt e s h e e st e s bt e bt e ehe e eh e e s a b e e bt e bt e beeeheeeheesateeate e beesbeesaeesateea ii
ACKNOWLEDGEMENTS ...ttt ettt et st st st be e bt e s st e sateeateeteenbeens iii
LIST OF FIGURESottt et a et bt et et sht et e s be e st e bt sae et e sbe et e nbesbeenbe s vi
LIST OF ABBREVIATIONS ...ttt ettt et bt et b st b e st e b b eaeas vii
1. CHAPTER ONE: INTRODUCTION ..ottt sttt ettt st eaeas 1
1.1, BACKOIOUNG ..ottt s b ettt b b b e 1
1.2, Problem StAtemMENT..... ..ottt 3
IR T O oY1= 1Y OO USRURI 4
1.4, JUSTITICALION ..ottt sttt ettt 4
2. CHAPTER TWO: LITERATURE REVIEWcooiiiiiiiieieeeeetente ettt 5
2.1, INEFOTUCTION ...ttt b e sb bttt b e bbbt e e e e et e st ebesbenbentens 5
2.2, REIAIEA WOTKS ...ttt sttt besbe bt 5
2.3, CONCIUSION ..ottt ettt ettt b et b et bbb e bt nsebenneneas 8
3. CHAPTER THREE: RESEARCH DEISGN AND METHODOLOGYcccccevitinienienieeeesieene 9
3.1, RESEAICH DESION ..ttt sttt sb e sttt ettt b ettt e et b b bt 9
3.2, SYSTEIM DESIGN ..ttt ettt b ettt a bt bbbttt aeeae b e na e be st 10
3.3, ATCRITECTUIAl DESIGNviiieiiiiceee ettt ettt st a et e et e s beebesbeeaaenbesasensesreennas 11
34, SYSEEM ANAIYSIS ...ciiceieiiciece ettt ettt ettt et et e et et e s be e besteeaa e beeaeentearaennas 12
3.4.1. SYSTEM REQUITEIMENTSeotiitieieitieiecie ettt ete et ste et e st e s e etesteere e besrsesesbeessestesssensesssessesseensas 12
OVEIVIBW ...ttt bbbt b e bt a bbbt b et b et bbb e bt s 12

L@ o] [0 =T3RS 13
POCESS. ...ttt e et e e s bR e n e sae e neeanes 13
SYSTEM FEOUITEMENTS.eeuiuiiiiieiieirirer sttt ettt ettt s ettt et et ss et et es et et etesesesesenenenenenens 14
342, SION LANQUAGE ..ottt ettt ettt be st e s be et e beeaa e besbeenbesteesbebeeanentenreennas 14
3.4.3. Hardware Requirements and ANAIYSIScccvceeieriiierereeeeic sttt 15
FIEX SBNISOT ...cuviiiitetttt ettt b e bbbttt sn et 15
MICEOCONTIONIEY ...ttt b n e 16
3.4.4. Software Requirements and ANAIYSIS........coceririeiererierieeeese et 18
EMDedded SOFIWAIE.......c.cceiiiiieiice ettt 18
Machine Learning & Deep Learning Algorithm...........ccvooivieiiiieeseceeceeee e 18
K-Nearest Neighbour (KNIN)ccoiiiiiieeeees ettt sre e te et e ae e esesreensesreeseens 19

TR T 1] o[TSRS 20

3.5.1. HardWare DESIGN.........ovuiiveeieeieeeereee ettt te et st se et e ste e b e stessaebesraesaesreessestesseens 20
Hardware ArchiteCtural DESIGNc..ccoviiiririeieieieee ettt 20
3.5.2. SOTEWAIE DESIGN.c..etitiiiieieieeiert ettt sttt eae e saenes 22
Embedded SOfIWAre DESIGNcocvieieieiieese ettt ettt sbe e s teeraeaesraenresreeanas 22
KINN AIGOTItRM DESIGN ..ottt sttt ettt e e e stesbe e beste e s esseeraesesreessesreesaens 24

3.6 IMPIEMENTALION ..c.oviiieiiiiie ettt sttt et b e b nenae s 26
3.6.1. Hardware Implementation..........c..ccoieieirenineeeeeeee e 26
3.6.2. Embedded Software Implementation.............coovevereiiieeneneneeeeeeeeee e 27

4. CHAPTER FOUR: RESULTS AND DISCUSSIONccciiiiiiiiieeenieenie ettt 33
AL, INEFOAUCTION ...ttt ettt b et b et b et b e b s st nnenen 33
4.2, AChIiEVEMENTS & DISCUSSION......ceuiitirtirtiriiieieieit ettt ettt sttt ettt sbe b st sttt e e eaesbesaesnenaens 33
4.3, CONCIUSIONS ...ttt sttt ettt b e bt b e s b st b et et et e st sbesbennenten 33
4.4. Recommendations & FUTUIE WOTKccooueieiiiiinireseeee et 34
RETEIEICES ...ttt b e bt b et b et b et ettt bbb 35

LIST OF FIGURES

FIQUIE 1: RESEAICH DIBSIGN ...tttk b b b ettt b b nenn e 9
Figure 2: V - model design methodology adopted for embedded software developmentccove.e.e. 10
Figure 3: System Architecture BIOCK diagramcccovviiiiiieiiiese e 11
Figure 4: Data Collection and Model Training BIOCK Diagramcccoceirininineneiescsesese e 12
Figure 5: American Sign Language for nUMBErs 010 9.......ccovviiiii i e 14
FIQUIE BIFIEX SENSOT ...ttt b bt bbbt s e bbbt r e nnen e eneas 15
Figure 7: Flex Sensor Working prinCiple.........oo oo 15
Figure 8: Flex Sensor - Voltage divider configurationcccooviiiieiieie i 16
Figure 9: System Data FIOW DIAGIAM..........ccorviriiiiieiiisesese e 20
Figure 10: Hardware Conceptual Architecture block diagram for data collectionccccccevvivenennnnn, 20
Figure 11: System Hardware ArCITECIUIE.ccveiiiiiiiiireie e e 21
Figure 12: System Hardware logical architecture block diagramc.coovviiiiiinineiiiiins e 21
Figure 13: System software block diagram for data collection..............cccccevveiiiiii i 22
Figure 14: Data collection algorithm deSIGN.........cc.ciiiiiiiiiie e 23
Figure 15: Data ManagemMENT PIOCESSciveieeireiteeresteareestesseessestesseesresteesesseessestesssessessesssessessssssessesssessenns 24
Figure 16: Machine Learning Model Creation PrOCESScccvieiiieieieeie ettt s 24
Figure 17: Machine learning workflow for sign language gesture recognition glovecc.ccocevevenienne 25
Figure 18: High Level end-to-end gesture classification process block diagramc..cccoceevveiiiiienennnn, 25
Figure 19: SL Glove IMPIEMENTALIONc.oiviiiiiiiiicess e 26
Figure 20: MCU - Voltage-divider - Flex Sensor INterface.........ccccvvveveiiiiecieiiiiec e 27
Figure 21: MIcroCONTIOHEr WIFING ...cc.eoviiiiiie ettt s te et st sbe e te et s re e e e 27
Figure 22: TeStING FIEX SENSOISoiiiiiiiiiiie ettt 27
Figure 23: Logging data from Serial Communication line to file..........cccccovvveiiiiiiii e, 28
Figure 24: Starting the sensor data 10gging t0 fIle ..o 29
Figure 25: Serial OULPUL ON PULLY.ouviiiiiiiiteieei ettt 29
Figure 26: Dataset created from Logged output On file ... 30

Vi

https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782625
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782627
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782628
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782629
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782630
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782631
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782633
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782634
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782635
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782636
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782637
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782638
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782641
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782642
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782643
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782644
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782645
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782650

LIST OF ABBREVIATIONS

Al
ASL
BLE
Ccv
DNN
EIS
IMU
loT
KNN
LCD
ML
SL

TFLite :
W.H.O.:

WSN

Acrtificial Intelligence
American Sign Language
Bluetooth Low Energy
Computer Vision

Deep Neural Network
Embedded Intelligent System
Inertia Measurement Unit
Internet of Things
K-Nearest Neighbour
Liquid Crystal Display
Machine Learning

Sign Language
TensorFlow Lite

World Health Organization

Wireless Sensor Networks

Vii

1. CHAPTER ONE: INTRODUCTION

1.1. Background

Hearing or auditory perception is defined by (Plack, 2014) as the ability to perceive sounds by
detecting vibrations, the changes in air pressure surrounding a medium through time, through
an organ such as the ear. The loss of ability to perceive sound in humans is known as hearing
loss. Hearing loss may be categorized as mild, moderate, severe or profound and may affect
one or both ears. A person is classified as having hearing loss if they are not able to hear sound
in the normal hearing threshold of 20dB or better in both ears. Factors leading to hearing loss
are several as indicated by (World Health Organisation, 2021) and may occur in different
period in one’s lifetime. These includes Prenatal period with factors such as genetic factors
and intrauterine infections. Other periods are Perinatal period, childhood and adolescence,
adulthood and old age.

According to (World Health Organisation, 2021), over 5% of the world population requires
rehabilitation to address their disabling hearing loss. They further estimate that by 2050, over
700 million people — or a tenth of the world population will have a disabling hearing loss.
Unaddressed hearing loss has impact on the daily living for the people involved both to the
deaf person and the people they have to interact with on daily basis. The impact could be
classified as individual impact or social impact which ranges from loneliness, social isolation
and stigma. W.H.O estimates that unaddressed hearing loss poses an annual global cost of US
$980 Billion in health sector costs, educational support, productivity loss and societal cost. The
cost does not include hearing aid device costs.

People with hearing loss or hearing disability are considered as deaf. These people have
profound hearing problem with very little to no hearing at all. The method often used by these
people to communicate is the sign language. Also known as signed languages, these languages
use visual-manual modality to convey meaning. (Sandler, 2006) says sign languages are full-
fledged natural languages with their own grammar and lexicon.

In Kenya, a Kenyan Sign Language dictionary was published in 1991. More recently an online
dictionary and a mobile application have been published since 2014 (Dictionary, 2015). In
1990s, Kenya National Association of the Deaf spearheaded a government program to train
and employ teachers based in Machakos Teachers College to increase literacy in English and
Swabhili among the deaf community which was largely lacking despite the schools being
established as early as 1960s.

The advancement in technology in recent times is a great enabler in achieving tasks that
previously were difficult and near impossible. In particular machine learning technology,
which is a part of artificial intelligence based on the idea that machines can learn from large
amounts of data, identify patterns and make decisions independently or semi-independently
with minimal human intervention. Embedding this kind of capability on embedded devices
makes it possible to achieve what traditional embedded devices were unable to achieve.
Embedded Systems have been around and been used in various industries for control and
automation of processes and for monitoring (Peckol, 2019). With rise of Wireless Sensor

1

Networks (WSN) (Akyildiz, I.F., Su, Sankarasubramaniam, & Cayirci, 2002), these embedded
systems were able to connect and communicate with each other remotely and consequently,
this have given rise to the now ubiquitous technology of Internet of Things (IoT) (Presser,
2016) whereby large numbers of such embedded systems (ES) interconnects and connects to
the worldwide web. Furthermore, the development of light-weight machine learning
algorithms that can run on resource-constrained embedded devices have seen rise of what is
now called Embedded Intelligent Systems (EIS) as a result of embedding intelligent behavior
into the traditional embedded devices using these Machine Learning (ML) algorithms such as
Deep Neural Networks (DNN), referred to as Edge Al or Machine Learning on the Edge (Lee,
2018).

Despite the advancement on these technologies, their application on assistive technology
applications remains limited. There are notable applications in other assistive technologies
including Microsoft’s Soundscape (Microsoft, 2017) and GesturePod (Shishir G. Patil, 2019).
The availability of Open-Source hardware and Software in recent times has also accelerated
the development of hardware and software solutions in timely and cost-effective manner.
Using these technologies, the problem of sign language sign recognition can be tackled with
relative ease. The process would require collecting sufficient data on sign language gestures,
training machine learning algorithms with this data and running the models in embedded
device which performs inference and determine what the gesture made means.

In this study, Arduino Nano 33 BLE Sense -an open-source hardware platform from Arduino
and TensorFlow Lite for Microcontrollers from Google is used to develop a device that will be
able to detect and accurately categorize gestures made in sign language. The microcontroller
chip is the nRF52840 running at 64MHz, has IMB Flash Memory and 256KB SRAM. The
nano 33 BLE Sense has several on-board sensors including a 9 axis Inertia measurement Unit
(IMU). Other sensors to be used is 10 flex sensors, one for each finger. The TensorFlow Lite
is an open-source framework that enable creating quantized machine learning models efficient
and small enough to run on low-resourced platforms such as microcontrollers.

1.2. Problem Statement

Humans are social being and as so there is a lot of interaction amongst each other. Communication is one
such interaction and arguably one of the most basic human need. For effective communication to occur, the
people involved need to understand each other. The problem arises when one person or both in an
interaction have a hearing difficulty or are deaf. We have invented Sign Language for such occasions
whereby one signs using hands and the deaf can understand and sign back thus allowing effective
communication without depending on hearing. With projected 1 in every 10 people being deaf by 2050,
there is a need to develop a means of interpreting the hand signals to be able to communicate with people
who do not understand the sign language. Moreover, 80% of the projected number coming from low-and
middle-income countries, and over 25% being 60 years and older (World Health Organisation, 2021), the
solution need be practical, low-cost for affordability, light-weight and scalable.

This study follows and is limited to using the American Sign Language (ASL) Numbers

The main objective of this study is to develop a sign language translation device and answer the following
guestions:

i) Is it possible to develop a machine learning model for sign language gesture recognition for
numbers 0 — 9 using a cheap hardware microcontroller, flex sensors and a machine learning
algorithm?

i) What accuracy can be achieved by a machine learning model using sensor data from flex
sensors?

1.3. Objectives

The goal of this research is to develop a power-efficient, light-weight and low-cost sign language gesture
recognition using open-source hardware, specifically the Arduino nano 33 Ble Sense and flex sensors. In
particular, the study has the following sub-objectives:

1. Assess the accuracy of using Machine Learning Frameworks in specific TinyML ArduinoKNN are
suited for sign language gesture recognition on embedded device

2. Develop a sign language gesture recognition device for numbers 0 to 9 based on on-device
inferencing

Further, the study focuses and is limited to gestures that represents numbers (0 to 9) which form a basis for
counting. The outcome of this research will be of great value to software and hardware developers interested
in developing Assistive Technology applications for the Deaf people. Moreover, it will form a basis for
further research work on translating other sign language gestures by running on-device inference and can
be extended to translate alphabets, words and phrases that require full hand movement and two hands
signing. For the deaf user the device will be an efficient means of communication with other people
including those who do not understand the sign language.

1.4. Justification

This study focuses on performing machine learning on edge devices. Most of the edge devices
are low-resource with tight time constraints, low-power and small amount of memory. Due to
these limitations, it has been very difficult to have machine learning models that can run on
them and therefore most embedded devices have always relied on rule-based programs. With
introduction of TinyML and TensorFlow Lite for Microcontrollers, machine learning
capability, however limited, has been brought to these low-resourced devices. Having these
abilities on microcontrollers means inferencing can be done right there on the device without
having to rely on a network connection to a cloud service. This in turn translates to having
better data security and privacy since no data ever leaves the device. Therefore, worth
experimenting for this particular application of gesture recognition, being able to recognize
gestures on tiny embedded devices using the power of machine learning without depending on
hefty hardware and fast network connections.

2. CHAPTER TWO: LITERATURE REVIEW

2.1. Introduction
Communication is a two-way process for sharing information. It is an essential part of getting
along with others and getting things done. The communication modes can take different forms
including writing, verbal and body language. It is simply straight forward when people involved
can talk and both understand the language being used.

Sign language is the language used by the mute and the deaf. People who have lost their ability to
hear uses signs to communicate amongst themselves and to communicate to people who can hear
normally. Sign language is the basic means of communication for these people. However, majority
of the population do not understand sign language and therefore needs a translator (Dabre &
Dholay, 2014).

2.2. Related Works
Many solutions have been proposed and explored for sign language translation. There are two
major approaches to this problem. Glove-based solutions and using the computer vision approach.

)} Computer Vision (CV) approach

Computer vision is defined as a field of artificial intelligence (Al) that trains computers to interpret
visual world using digital images and videos, deep learning algorithms (SAS, 2021).

In their study (Dabre & Dholay, 2014), uses a camera system to capture images which are then
used to train a model to translate the gestures. A similar study by (Bantupalli & Xie, 2019) uses
the ASL dataset together with CV techniques to extract temporal and spatial features from video
sequences using a Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN)
respectively. These approaches achieve high accuracy on the training data for example (Kartik,
Sumanth, Ram, & Prakash, 2020) achieved an accuracy of 98.67% from a dataset of 87,002 images
trained on 78,300 images and test size of 8,700 images. Despite the high accuracy, CV approaches
rely on expensive and cumbersome hardware. A computer is always required to run inference
making it impractical to use.

i) Glove Approach.

The Oxford dictionary defines a glove as a covering worn on the hand having separate parts for
each finger and thumb. Sign-language gloves have been explored since 1980s when researches
started to explore ways humans can interact with computers using gestures. In a study carried out
in 1988, Stanford University researchers (Kramer & Leifer, 1988) proposed to develop “the talking
glove” a device that could analyse a non-vocal person’s finger spelling and hand formation and
output the spelled word with synthesized voice. Further, using a voice recognition equipment, the
deaf user could read an incoming text on a miniatured LCD screen on a modified wrist watch and
deaf-blind could read on a portable braille display. The complete system was cumbersome and
very expensive. The system cost without the CyberGlove itself was US $3,500. (David J & Zeltzer,

1994). Several other translation gloves have been proposed over the years and some won awards
like Ryan Patterson in 2001, a high school student from Colorado that used a leather glove with
10 sensors that monitored each finger position, relayed that information to a computer for display
as text. In 2015, two Mexican researchers at Mexico’s National Polytechnic Institute developed a
similar glove that used a Bluetooth module to communicate with an Android phone.

The most recent publication by (Zhou, et al., 2020) translation glove published in June 2020 uses
assisted stretchable sensor arrays and achieved an accuracy of 98.63% with a recognition time of
less than 1s. In their study, (Zhou, et al., 2020) used proprietary technology including integrated
wearable sensor arrays and nanotechnology.

Another glove approach as explored by (Vutinuntakasame, Jaijongrak, & Thiemjarus, 2011) was
using Hall Effect Magnetic Sensors (HEMS) to detect applied magnetic field determining voltage
variations in an electrical conductor. The approach places the HEMS at the tip of the fingers and
a magnet at the palm of the hand. It generates a voltage of between 0.1v and 0.4v that is then
passed on to a microcontroller. This approach however depends on an external hardware, the
Odroid XU4 minicomputer for gesture recognition and classification making it quite a large device
that is bulky, impractical and is power inefficient to power bot the minicomputer and the Arduino.

For the training datasets, most of the literature that exist has used a sample size of between 80
samples to as many as 1400 samples. The following table covers some of the details about the
devices, gestures and samples per gesture when signing for American Sign Language.

Gestures Components Size of the | Author
sample
4 gestures 5 flex sensors (Praveen,
Karant, & Mega,
2014)
Alphabets A -H | 5 flex sensors 80 samples (10 | (Sharma, Verma,
Accelerometer samples each | & Khetarpal,
Contact sensor letter 2015)
26 Alphabets 5DT Glove 234 samples (3 | (lwasako, Soga,
for each letter) & Taki, 2014)
Alphabets A-Z | 8 touch sensors | 1080 samples | (Fu & Ho, 2008)
and numbers 0 -9 (30 for each)
Alphabets A —Z | 5 flex sensors 260 samples (10 | (Elmahgiubi,
Accelerometer entries for each | Ennajar, Drawin,
Contact Sensors | alphabet) & Elbuni, 2015)
120 static | Flex sensor 3600 samples | (Ahmed, S.M.B.,
gestures Contact sensor (100 for each) & Quireshi,
2010)

29 letters 10 flex sensors 1450 samples (Vijayalakshmi
3-axis & Aarthi, 2016)
accelerometer

All the listed studies have been conducted using different sample sizes. The larger the sample sizes
are used since classification is done off the device using an extra hardware device, minicomputers.
The larger the sample size, the more memory is used up. For the low memory microcontrollers
this would be a problem and thus the need to have an efficient system that classifies gestures using
a small sample size of less than 10 for each gesture without compromise on the accuracy.

According to (Ahmed, Z., Aws, Mahmood, & Muammad, 2018), the SLR systems have been
plagued with low accuracy, not able to keep up with real-time recognition and unable to track the
human hand that has multiple degrees of freedom. In their study, (Abdulla, Abdulla, & Manaf,
2016) highlights the challenges in obtaining a high precision for fast movements when signing
naturally like in an actual conversation. Also lack of quality datasets (Arif, Rizvi, Jawaid, Waleed,
& Shakeel, 2016) for sign language is another problem facing gesture recognition systems. This is
critical problem especially for machine learning applications that often needs large datasets to learn
from.

To develop a sign language translating device, there are considerations to make for the various
stakeholders. The researcher could put an emphasis on creating quality datasets, analyse the
various sign language variations in use, the sensor types and numbers and also put an emphasis on
hybrid systems that includes body movements, facial expressions and two hands signing (Ahmed,
Z., Aws, Mahmood, & Muammad, 2018). The developer should focus on developing an
inexpensive system that is affordable to the people most afflicted by hearing disability. According
to (Bajpai, Porov, Srivastav, & Sanchan, 2015) most people afflicted by this disability are poor
and live below the poverty level and thus affordability should be one of the top considerations
while developing the solution (Vijay, Suhas, Chandrashekhar, & Dhananjay, 2012). Another
critical consideration according to the study by (Gupta, Singh, Pandey, & Solanki, 2015) and
(Bajpai, Porov, Srivastav, & Sanchan, 2015) is real-time recognition, this is to ensure the gestures
are being recognized and interpreted as they happen for a natural and fluid communication.
Portability is another thing to consider as the solution needs to be moved around by the user in
order to be usable even when not connected to external hardware like personal computers. In
several studies, notably by (Tanyawiwat & Thiemjarus, 2012), (Vijayalakshmi & Aarthi, 2016)
and (Trottier-Lapointe, et al., 2012) have listed portability as one of the features to consider for a
practical sign language translation device.

From the Literature review, most of the work on sign language translation is either based on
computer vision approach, that is computing resources intensive or the glove approach which relies
on classic programming paradigm or using mobile phones for running the inference. Further,
considering the highlighted considerations by (Ahmed, Z., Aws, Mahmood, & Muammad, 2018)

on device costs, accuracy and portability, most of the reviewed work falls short in one property or
the other. Research on running inference on the edge, on the glove itself without relying on PC or
Mobile phones is still scarce.

2.3. Conclusion

The mainstream approaches to sign language translation are using the resource intensive Computer
Vision approach or the network dependent glove approach. In order to achieve ubiquitous, low-
cost, low-resource machine translation of signed language, there is a need to shift from the
traditional approaches of using resource intensive techniques like CV that requires model
development, training and running inference to be performed on the PC. With recent development
of Machine Learning on the Edge, like the release of Machine Learning Frameworks like TinyML
and TensorFlow Lite for Microcontrollers, it is essential to explore the possibilities of running
inference for machine translation right there on the device without relying on any additional
hardware. Moreover, exploring open-source, low-cost hardware and software, will make it
possible for relatively fast and easy development and affordable solutions. This will also ensure
that the most critical properties of cost considerations, accuracy, real-time and portability
highlighted in the study are met.

3. CHAPTER THREE: RESEARCH DEISGN AND METHODOLOGY

3.1. Research Design
This study adopts design and creation strategy whereby an artefact will be developed and analysed.
According to (Saltuk & Kosan, 2014) design science research ““creates new interesting knowledge,
demonstrates academic qualities and focuses on improvement, invention and exaptation” using an

[System Analysis] Data Collection]

System Design .
Dataset Creation

A

ML Model Evaluation ML Model Training 1

System Integration &
System Development
Testing

Figure 1: Research Design

artifact. Furthermore, the device is an embedded intelligent device and therefore will include the
phases of embedded systems development. The development will follow process in figure 1.

Knowledge Process Outputs
Flows Steps
Awareness of | proposal :
Problem ' l
Suggestion ! Tentative Design :
Circumscription ﬂ ----------------------
—— Development Artifact
Operational ﬂ . Performance
Principles” and € Evaluation
Design Theories ﬂ MEES“rES

I— Conclusion Results

Figure 2: Design Science Research Process Model as adopted from Saltuks' Design
and Creation

This study adopts the Design Science Research Process model by (Saltuk & Kosan, 2014). The

figure 2 outlines the design and creation process.

3.2. System Design
Design goals are:

)] Arduino nano 33 BLE Sense and Flex Sensor based Sign Language Gesture recognition

device
i) Scan and analyse Flex sensors inputs
i) Output data in csv format

iv) Basic Hardware (Arduino Nano 33 BLE Sense with 64MHz clock, 1IMB Flash

memory, 256kB SRAM, ADC/DAC and 12C, SPI, USB, 12S and UART Interfaces.

In this study, the V-Model development methodology is adopted. The V-model is a software
development life cycle (SDLC) model where the process executes in a sequential manner in V-
shape (Forsberg & Mooz, 1991). It is also known as the Verification and Validation model. In this
method, each development stage is associated with a testing phase. Each phase must be completed
before moving on to the next phase. The figure 2 below illustrates the various steps undertaken for

development, verification and validation.

Safety functions

specification Safety-related

software
specification

Validation

Validation

~N

g

System | Integration
design testing
I

Module L Module
design testing
1
H[Coding]7

Figure 3: V - model design methodology adopted for embedded software development

— Result
——-» Verification

Validated
software

10

3.3. Architectural Design

System design is broken down further into modules taking up different functionalities. The data
transfer and communication between internal modules with other systems is understood (Kumar,
2019).

The following block diagram shows the system architecture. This architecture is used for both data
collection and for running inference on the embedded device.

[Flex Sensor Array] > Output on Serial

Microcontroller

Monitor

Figure 4: System Architecture block diagram

Coding

Coding is the process of writing embedded software for the components used to build the system or
embedded device. For a larger system it is known as software development.

The platform used for the purpose of this development is the Arduino platform which is an integrated
development platform with many libraries for most of the sensors existing in the market. Using this library
in the development process saves on time and overall development cost of an embedded system.

There are 3 program files for the 3 development phases:

1) Data collection phase program that uses the sensors to collect and log data in csv format

2) Machine learning phase where the data is used to train a model that is used as a classifier and

3) The classifier program that is uploaded to the embedded device to capture new data and use the
loaded model to classify it.

11

Data Collection

Data collection to form a dataset that will be used to train the classifier instead of using a ready-
made dataset. The following diagram shows the overall system design for data collection.

Flex Sensor 1 Run inference on Output on Serial

Microcontroller Monitor

Flex Sensor 2
T

Give examples on

Flex Sensor 5 Microcontroller

T

[Train ML Model (KNN)]

A

i i Store Sensor
Microcontroller Unit >

Data

Figure 5: Data Collection and Model Training Block Diagram

Training and Testing data used in this study will be obtained from the 5 flex sensors.

Model will be created using TensorFlow Lite for Microcontrollers framework on PC. Testing and
Validation will be done on PC before being converted and uploaded to the Microcontroller Unit
(MCU). Once the model is uploaded into the MCU, the inference will be performed on the device
itself without relying on the PC.

3.4.System Analysis
3.4.1. System Requirements

Overview
In the analysis phase, the requirements and constraints -the limits within which the system must
operate- of the proposed system are explored. The requirements are the specific parameters that

12

the system must satisfy. These requirements are outlined below and further translated into a more
detailed specification.

Objectives

The main objective of this project is to develop a Sign-Glove (SG) that captures the gestures, finger
movement of the person signing using sign language. The SG will be worn by the person doing
the signing, the gestures are captured and translated appropriately. Specifically, this study will deal
with interpreting numbers 0 to 9 signed using the American Sign Language (ASL)

Process
To develop this system, several factors are considered, the hardware and software requirements
are discussed in-depth in the following subsections.

In this development project, several factors are considered. This device needs to be light weight,
use less power (less than 200mW) and be accurate while recognizing and translating gestures.
These measures considered for analysis are listed below.

)} Accuracy
It is the difference between the expected values and the actual recorded values. The
accuracy of the device should be above 80%

i) Precision
This is the number of distinguishable measurements. For the purpose of this project,
only ten distinguishable measurements are required. Each measurement for each
number.

iii) Size and Weight
These qualities represent the physical space occupied by the device. Since it’s a hand
worn device, the package should be small so as to fit comfortably behind the glove.
The physical dimensions should not exceed 50mm by 60mm

iv) Power
Power is the total amount of energy required to run a system. This is a crucial
requirement since the device is to be used as a wearable and therefore running on
battery power. This requirement however, is not strictly followed for this prototype
development since it will be running on USB power from the PC.

V) Time-to-prototype

13

This is the total time required to design, build and test a prototype system. For this
project, the device should be complete within the duration stipulated for the purpose of
research project (March to July).

System requirements
The system should be able to
i) Track the finger movements as numbers are signed
i) Accurately recognize the number signed
iii) Accurately categorize the number signed using a machine learning algorithm

3.4.2. Sign Language

Sign Language is different and distinct from other spoken languages like English. It contains its
own fundamental rules on pronunciation, word formation and expressions. However, just like other
languages, sign language, specific ways of expressing ideas vary from one region to another and
just as spoken languages, expression can change depending on other factors such as age variation
and context.

Only signing numbers has been selected to reduce complexity of the design given the limited time
I have to work with. Moreover, the more gestures | incorporate, the larger the ML model will be
generated and therefore running the risk of not fitting on the limited flash space and RAM on the
nano board. To prevent this, and to demonstrate that ML on the edge is possible for gesture
translation, only numbers have been chosen for the proof of concept. Further, the ASL has been
chosen since it signs numbers using only one hand unlike Kenyan Sign Language that uses both
hands to sign numbers. The diagram below illustrates how to sign numbers using ASL. These are
the gestures we will be looking to translate using a machine learning model running on Arduino

pdd Y YR EEY

O 1 2 3 4 5 6 7 8 9

Last Updated Date: May 8, 2019

Figure 6: American Sign Language for numbers 0 to 9

In embedded system, design and development is divided into two major categories,
Hardware and embedded software. These two must work in tandem, with the development
of embedded software being informed by the choice of hardware, i.e., processing unit and
Sensors.

14

3.4.3. Hardware Requirements and Analysis

This section goes into details on the different hardware used for the purpose of capturing gestures,
converting them into electrical signals and interpreting them. Hardware and specifically sensors
and the microcontroller in this project plays a crucial role of capturing analog data that will be
used for both training a machine learning algorithm and testing the resulting model to evaluate
metrics such as accuracy levels, precision and resolution.

The hardware required, both sensors and microcontroller unit are discussed in the following
subsections.

Flex Sensor

In order to capture finger movement during signing, to capture the gesture made by the hand and
the fingers, an electromechanical sensor is required. Folding and straightening of fingers is the
action required to gesture numbers; unlike other gestures that may require whole arm movement,
therefore a flexible sensor that translates these physical movements into electrical signals is

required.

A flex sensor, also called a bend sensor. It measures the amount of deflection of the surface on
which it is stuck. The working principle of a flex sensor is based on resistivity as material is bent
since there is a direct proportionality between bending and resistance. These sensors are used in
many applications and areas of research from Human Machine Interface devices (Saggio &
Giovanni, 2014) to Rehabilitation research (Sreejan & Yeole, 2017). Flex sensors come in various
form like Fibre optic flex sensor, capacitive flex sensor and velostat flex sensor.

Working principle

Velostat flex sensor is made up of polymeric foil that has been impregnated with carbon black.
This carbon makes it electrically conductive. It is inexpensive and its ability to change resistance
as it bends makes it suitable for our gesture sensing application. The figure below shows a flex

sensor

3
FLEX SENSOR OFFERS VARIABLE RESISTANCE READINGS:
AT REST
| B nominaL
_ RESISTANCE
VALUE
45" BEND
INCREASED
RESISTANCE
VALUE
90" BEND
RESISTANCE
VALUE
FURTHER
INCREASED
Figure 8: Flex Sensor working principle Figure 7:Flex Sensor

15

The sensor has a nominal resistance when held straight. When the substrate is bent, however, there
is a corresponding proportional increase in resistance to the bend radius, the farther you bend the
sensor, the higher the resistance values. In order to take advantage of this property, the flex sensor
is used as a variable resistor or a potentiometer together with another resistor in a voltage divider
configuration as shown in the circuit diagram below.

Vin
Flex Sensor
Ri
Voltage B
Divider

Figure 9: Flex Sensor - Voltage divider configuration

R1: Flex Sensor

R2: Resistor

Vin: Input voltage (3.3v)

Vout: Output voltage from the voltage divider

The output voltage is calculated using the following equation:

R1

Vout = Vin (m

)
The output voltage (Vout) is an analog voltage that is fed into an analog input pin of our
microcontroller.

Microcontroller

The microcontroller is the brain of the whole device. It contains the processing unit, flash memory
and RAM. Since for this project we need an MCU capable of running inference of TensorFlow
Lite for Microcontrollers machine learning model, a 32-bit processor is required. Therefore, the
choice of Arduino nano 33 Ble sense. The Nano 33 BLE Sense is Arduinos 3.3V, small form factor
(45mm x 18mm) Al enabled development board. It’s a recently released and is loaded with a
number of embedded sensors. The board features a relatively powerful low power processor,
nNRF52840 from Nordic Semiconductor. This processor is a 32-Bit ARM Cortex M4 CPU running

16

at 64MHz, 128MB of RAM. Further, the processor features a Bluetooth pairing with Near Field
Connectivity (NFC) and Bluetooth Low Energy (BLE) to pair and send data to external devices

These sensors include:

e Humidity & Temperature sensor

e 9 -—axis IMU sensor for motion, vibration and orientation sensing
e Barometric sensor

e Digital Microphone

e Gesture, proximity, light color and light intensity.

Technical Specifications

Microcontroller NRF52840

Operating Voltage 3.3V

Clock Speed 64MHz

Flash Memory 1MB

SRAM 256KB

Digital 1/0 14

Analog Inputs 8 (ADC bit 200ksamples)

The possibility of running Edge Al on this tiny, low power device and the array of onboard sensors
included is what is appealing and informed its selection among other embedded development
boards in the market today.

The diagram below shows the nano 33 board and all its onboard sensors (eTechnophiles, 2019).

LSM9DSI1- 9-Axis IMU
HTS221 (Accelerometer, Gyroscope,
(Temperature and Magnetometer) RGB Programmable
Humidity Sensor)

Power LED
(Green)

Nordic nRF 52840
Processor with NINA
B306 Bluetooth
Module

Micro USB Port e

Programmable
LED (Orange)

APDS9960(Proximity, LPS22HB MP34DTO05-A
Light, Color, Gesture) (Pressure Sensor) Microphone

Figure 10: Arduino nano 33 Ble sense development board

17

The analog voltage (Vout) from flex sensor — resistor voltage divider is fed directly to 5 of the 8
analog inputs of the nano 33. These pins are directly connected to a 12-bit analog-to-digital
convertor that quantizes and samples the voltage and converts it into a digital signal for processing
by the CPU.

3.4.4. Software Requirements and Analysis
The software is defined by (Rosencrance, 2019) as a set of instructions, data or programs used to
operate computers and execute specific tasks.

This section analyses the software required for data acquisition, machine learning algorithm and
embedded software to run on-device inference.

Embedded Software

Embedded systems are not typical computers since they are highly specialized, resource
constrained devices both in time, processing power and memory. These requires embedded
software to control these devices. The term embedded software is sometimes used interchangeably
with firmware (Emilio, 2014).

There are two categories of embedded software that is required. That is, first, the software that
captures data from our sign glove for all the ten gestures. Each gesture is unique and therefore each
of the sensor on each of the five fingers will have a sensor voltage value. The data capture
embedded software needs to capture these values and output them to a file in a specified format
shown below.

Table 1: Data capture format

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Number

Each column header for sensor represents the corresponding finger. E.g., Sensor 1 corresponds to
Finger 1 which is the small finger, all the way to Sensor 5 on the thumb finger. Finally, on the last
column we have the number (0 — 9) represented by the data entries on the same row.

The first program needs to read the ADC and from those values calculate the voltage and
resistance. These resistances for each of the five sensors is then tabulated on the table above to
create a dataset. The dataset created is then used for ML model development.

Machine Learning & Deep Learning Algorithm

Machine learning algorithm is defined by (Brownlee, 2020) as a procedure that is run on data to
create a machine learning model. These algorithms perform pattern recognition by learning from
data. ML algorithms can be put into three distinct classes; supervised, unsupervised and
reinforcement learning. They can be further classified as classification, regression or clustering
algorithms.

18

A model is “the output of a machine learning algorithm run on data” and represents what was
learnt by the ML algorithm (Brownlee, 2020).

Deep Learning (DL) is defined by (Deng & Yu, 2014) as a class of machine learning algorithms
that uses multiple layers to progressively extract higher level features from raw input. The simplest
has three layers that is input layer, representational layer and an output layer.

In the case of supervised learning, whereby we have labelled data, deep learning removes
redundancy in representation by translating data into compact intermediate representations (IR)
similar to Principal Components and thus eliminates the need for feature engineering. The “deep”
in deep learning simply means the number of layers that data is to be transformed through from
input through the hidden layers all the way to the output. This chain of transformation from input
to output is known as credit assignment path (CAP) and describes the causal connection between
the input and the output. According to (Shigeki, 2019) CAP of depth 2 has been shown to be a
universal approximator since it can emulate any function.

TensorFlow

TensorFlow is an end-to-end, open-source machine learning platform (TensorFlow, 2021).
TensorFlow Lite for microcontrollers is a light weight TensorFlow Library designed and optimized
to run on resource constrained devices. It does not require an Operating System to run, dynamic
memory allocation nor standard C/C++ libraries. TF is available as TFLite for Microcontrollers
for Arduino platform making it suitable to use for this particular application. Arduino nano BLE
is the only supported Arduino boards as the time of this study. We shall use TFL.ite to create and
run a 30kB Neural Net (NN) to recognize and identify gestures using flex sensors and IMU.

Limitations of TFLite for Microcontrollers

TensorFlow Lite for Microcontrollers is specifically designed to run on specific resource
constrained microcontroller development unlike the standard TensorFlow Lite that runs on more
powerful Linux based embedded devices like NVidia’s Jetson Nano and Raspberry Pi.

Working with TensorFlow Lite for Microcontrollers has the following specific limitations:

i) Supports a limited subset of TensorFlow operations, this affects the number of
architectures that is possible to run on.

i) Currently only a limited number of devices are supported.

iii) Requires manual memory management since it uses Low-level C++ API

iv) Does not support on-device training and therefore training needs to be done on a more
powerful environment, and load the trained model.

K-Nearest Neighbour (KNN)

kNN algorithm uses distance between datapoints to classify the current data point. It is a supervised
machine learning algorithm that is simple to implement and works well with structured data that
is dependent on distance measure between the values read from .

19

For this particular project, an implementation of KNN is more suitable because it makes highly
accurate predictions. Furthermore, the quality of predictions is dependent on distance measures.
Moreover, it does not require additional tools to implement unlike TFLite that requires training
and model creation done on a separate platform. Using kNN in Arduino platform requires only to
provide data examples and class, therefore all implementation is done within the same platform.

3.5. Design
In this section the conceptual model of the hardware and software is built. In order to simplify the
process, the project is broken down into modules and subcomponents. Also, during this phase, the
cost, schedule and expected performance of the system are determined. The data flow diagram
below shows the major components of the system and how data moves from one module to the
other.

Position Analog ADC ADC Sample
Sensor Circuit Hardware Driver 0-1023

A4

Display /

Position straight Resistance Voltage Terminal
—fully curved 0 to 80+ KQ 0-3.3v Inference
. Characters
Rouitine
0-9

Number
0-9

Figure 11: System Data Flow Diagram

In order to build the hardware prototype, we design it first, outlining its architecture using a high-
level block diagram. The following subsections will focus on conceptual and logical architectures.

Hardware Architectural Design
i) Conceptual Architecture
The conceptual architecture focuses on identification and allocation of responsibilities
to the components.
Data collection hardware conceptual architecture is shown in the figure below

Process Store/Display

Sense Gesture >
> Gesture Values

A4

Figure 12: Hardware Conceptual Architecture block diagram for data collection

20

Flex .
Sensor 1 Serial Output

Flex
Sensor 2 "

ADC MCU

Flex
Sensor 5

Figure 13: System Hardware Architecture

i) Logical Architecture

This architecture focuses on components interaction, connection mechanisms and
protocols, interface design and specification.

[
-
Flex —

Sensor

l A0

by

A ADC [mMcu

GND
21

Figure 14: System Hardware logical architecture block diagram

For data collection and for inferencing purposes, the hardware configuration is similar. The only
difference is the embedded program. For the purposes of data collection, the source program is
purely rule based using the traditional programming practice to read from the sensors. The
complete prototype however, uses both rule -based and machine learning model running with
classification performed purely using machine learning model.

3.5.2. Software Design

Software design is defined by (Ralph, 2009) as “the process by which an agent creates a
specification of a software artifact intended to accomplish goals, using a set primitive component
and subject to constraints.” The software for the project is divided into two categories. Category 1
is the embedded software that will run on the microcontroller and category 2 is the Python program
that will create an ML model using google colaboratory in order to take advantage of the high
processing capability offered by Google Colab.

Category 1, the embedded software is further divided into two, first the program for data collection,
and second the program that performs gesture classification.

Embedded Software Design
Embedded Software is the program that runs on the nano 33. The figure 13 is a block diagram
showing the data collection to build a dataset program logic.

Finger 1 — Finger 5
sensor readings

Output to terminal

MCU .
in *.csv format

\4

Figure 15: System software block diagram for data collection

22

Input Divider Resistor Value: R_DIV;
Input VVoltage: Vcc;

Input Nominal Resistance: R_FLEX
Input 90 deg bend resistance: R_BEND
Read Sensor 1: s1

Read Sensor 2: s2

Read Sensor 3: s3

Read Sensor 4: s4

Read Sensor 5: s5

VFLEX =sX * Vcc/1023

RFLEX =R_DIV * (Vcc/VFLEX - 1.0)
Output: RFLEX1, RFLEX 2, RFLEX 3, RFLEX 4, RFLEX 5

Figure 16: Data collection algorithm design

To collect data, each of the 10 gestures are repeated starting with 0. Every time capture the sensor
reading of all the 5 sensors. This data is stored in comma separated files (CSV) in the format shown
in table 2 below.

Table 2: Comma Separated Files format for data collected

File-1 File-2 File-3 File-4 File-5 File-6 File-7 File-8 File-9 File-10

Files File-1 to File-10 are the *.csv files (e.g., File-1.csv) holding data for the five fingers for each
number represented by each of the 10 gestures. Each files row contains gesture data for each
number with the format shown in the table below.

Table 3: Data format inside each file

Finger-1 Finger-2 Finger-3 Finger-4 Finger-5
RFLEX1 RFLEX2 RFLEX3 RFLEX4 RFLEX5

Row 1 of the table 3 above represents gesture representing number 0 in ASL.

The ten *.csv files holding data with five columns each makes up our dataset with which we later
train our ML algorithm to create a model for gesture classification.

The whole process of collecting data and managing it can be describe using a simple block diagram
shown below

23

Data Data Summary Data
Collection Inspection Statistics Visualizations

Figure 17: Data management process

KNN Algorithm Design

A machine learning algorithm is a generic program that is made task specific when trained with
particular data, thus ML algorithm is a framework used to solve different problems depending on
the data the algorithm will be trained with. Model creation is an iterative process that begins with
defining the problem as shown in the block diagram below

Build dataset Evaluate model

o |f satisfactory
results, use the

eTrain our
algorithm with

*We clearly
define the
problem we
need a model

¢ Evaluate the
performance of

*We build an

appropriate model

dataset

dataset the model

fo

created

Define the
problem

Train model

Use the model

Figure 18: Machine Learning Model Creation Process

This project implements a kNN algorithm to classify gestures. This algorithm is a simple, easy to
implement supervised machine learning algorithm. It can be used for both regression and
classification problems. In this study, KNN is used for a gesture classification task.

kNN Algorithm Breakdown
a) Specify data examples with each their respective category
b) Initialize the k value, we have chosen 5 examples and therefore we can specify k value as <=5
c) For each example in the data
a. Calculate the Euclidean distance between the current sensor data (query) and the current
example
b. On the ordered collection, add the distance and the index of the given example.
d) Sort the ordered collection of distance and indices in ascending order.

24

e) Select the first k entries from the sorted list
f) Return the mode of the k labels

The gesture is classified into the class label that has the highest number of entries.

ML Workflow.
The workflow outlines in details the process undertaken in developing the Sign-Glove ML model
starting from data collection through to uploading the created model and running inference on the
device’s onboard microcontroller. These steps are:
Collecting Data
Cleaning Data

Input data examples and their class
Pass the examples to the classifier

Run Inference on device

1.

abrwn

)

1

l Collect Data

3 | Pass examples to
L classifier

|

2

[Input the examples]

4

L Run on-device inference]

Figure 19: Machine learning workflow for sign language gesture recognition glove

The completed system is shown in a high-level diagram, figure 18 below. The Gestures from flex
sensors representing each fingers position, that sensor data is passed on to the KNN algorithm. The
algorithm uses the provided examples for each class, calculates the nearest neighbor, and classifies
the recognized gesture into one of the 10 classes. The output is a number (0-9) and the confidence
level between the lowest confidence of 0.0 and highest confidence level of 1.0.

.

/GESTURE

Finger_1
Finger_2

Finger_5

\

)

-

/ NUMBER\

Model

1
(Examples -> kNN ‘

Algorithm)

Figure 20: High Level end-to-end gesture classification process block diagram

25

3.6. Implementation

In this step, the system is implemented by building a prototype. It includes simulation and/or
building a prototype with physical components. During this phase both hardware and software
debugging was carried out. Due to the limitations of embedded devices, the debugging process is
not as straight forward as debugging in computer systems. The lack of keyboard and mouse and
also the fact that hardware is working concurrently with embedded software in real time which
means it’s not possible to do the usual single-stepping and print statements debugging. To make
the process easier, a cross- compiler and assembler was used to convert source code into object
code for our target system, the nano 33.

In this project, a top-down implementation was adopted since it has an advantage of having the
possibility of implementing the system sub-components simultaneously.

3.6.1. Hardware Implementation
i) Control Circuit: The control circuitry is made up of a microcontroller, the nano 33
BLE development board and an interface circuit. The connection is as shown in the
diagram below.

ii) Glove: The Signing Glove hardware is made of a glove to hold on to the flex
sensors, flex sensors in a voltage divider configuration using 47k resistors with
the output from the divide connected to analog pins of the Arduino nano. The
diagram below shows a photo of the SG

Figure 21: SL Glove Implementation

26

'
\,
)
5
\
|
L
|
|
L

Figure 22: MCU - Voltage-divider
- Flex Sensor Interface

Figure 23: Microcontroller Wiring

This hardware implementation is used for both dataset creation and gesture classification.

3.6.2. Embedded Software Implementation
The project has two embedded software implementations. First used to collect data is shown
below. The snippet is for a single flex sensor. The complete program for all sensors is on Appendix.

i) Program for Data Collection

e Read from flex sensors
e Format the sensor data into a csv format i.e. (s1, s2, s3, s4, sb)
e Log the sensor data from serial communication line to a file.

To test the flex sensors, program output is displayed on the Serial Communication port. The image
below shows the test results of flex sensor 1.
As the flex sensor is bent, the resistance value increases and is logged as shown.

& COM3

Senscr Value: O
Senscor Value: 5
Senscr Value: O
Sensor Value: 2
Senscr Value: O
Jensor Valus: 42
Senscr Value: O
Jensor Values: 21
Senscor Value: 333
Senscor Value: 243
Senscor Value: 233
Senscor Values: 1587
Senscr Value: 330
Senscr Value: O
Senscr Walues: 0

Figure 24: Testing Flex Sensors

27

To create a dataset from all the 5 sensors, the following line of code is used. First, we print the
column headers followed by sensor values separated by commas to Serial output. This output is
then captured using putty as printable output and saved as a comma separated values (*.csv) file.

i) Logging Serial Data to File
In order to log Serial data being output by nano 33, Putty — a telnet and ssh client — is used. The
procedure is as follows

a) On the Category section, select Session
b) Fill in the COM details under “options controlling local serial lines” as shown in the
image below. In COMX: x is the nano 33 com port.

iR PuTTY Configuration

Category:

=] Session Options controlling local seral lines

Select a serial line 2

=~ Terminal
- Keyboard Serial line to connect to COomM3 |
- Bell

- Features
=~ Window Speed (baud) | 5600 |
- Appearance
- Behaviour
- Translation Stop bits | 1 |

[+~ Selection]
. Colours Parity None w

= Connection Flaw control HONSHOFF “
- Data

- Proxy
- Telnet
- Rlogin 1
[t 55H

Corfigure the seral line

Data bits E |

Figure 25: Logging data from Serial Communication line to file

c) On the Category section, select Logging
d) On Session logging select printable output radio button
e) Specify the log file name as shown in the figure below

28

% PuTTY Cenfiguration

Categony:

=]~ Session

1 I
Cptions controling session logging

=Tz
- Keyboard

- Features

=1 Window

- Appearance
- Behaviour
- Translation
+- Selection

‘... Colours

= Connection

.. Data

About

Help

Session logging: 2
() Mone I (®) Printable output |
() Al session output i_) 55H packets

(") 55H packets and raw data

Log file name:

CilUsers \NGARUIYA Biud'\OneDrve D | | Browse...

(Log file name can contain &Y, &M, &0 for date, &T for
time, &H for host name, and &P faor port number)

What to do if the log file already exists:

() Mlways overwrite it

() Always append to the end of it

(®) Ask the user every time

Flush log file frequenthy

Include header

Options specific to S5H packet logging
Omit known password fields
[] Omit zession data

4

Open Cancel

Figure 26: Starting the sensor data logging to file

f) Click Open. This starts the logging session capturing serial data and printing it to a file.

This is our dataset.
COM3 - PuTTY

Figure 27: Serial output on putty.

iii) Data Curation & Dataset Creation
The sensor data is logged in multiple *.csv files, one for each number. This translates to 10 files.
To create a dataset, the files were consolidated into a single file.

The diagram below shows a snippet of the csv file for numbers 0 & 1 and the curated file.

29

finger 1 finger 2 finger 3 finger 4 finger 5 Class

GDDDU‘I

912
916
920
916
929

562
545
524
459
4351

564
589
507
542
494

396
a7
465
425
456

oo o o o

finger 1 finger 2 finger_3 finger 4 finger 5 Class

114

Figure 28: Dataset created from Logged output on file

Program for Gesture Recognition & Classification

391
467
360
472
547

731
684
624
629
222

409
468
474
470
355

309
424
443
439
307

il =t = =]

finger_1 finger_2 finger_3 finger 4 finger_5 Class

1

EERGEHoocow

219

69
241

13
219
267
276
286
303
188
347
364

e Pass the examples to the classifier and the number class

example_1[] = {84,467,684,468,424};
example_2[] = {219,360,624,474,443}%;

e Pass the examples to the classifier and the number class

gestureClassifier.addExample(example_1, 1);
gestureClassifier.addExample(example_2, 1);

912
916
920
916
929
569
630
391
467
360
472
547
556
670
503
477
329
402
461
382

58

562
545

624

(=T =T = I = TR SRR I =]

ey
o

564
589
507
542
434
202
305
409
468
474
470
355
128
122
437
543
436
524
530
455
262
148

396
470
465
425
456
367
379
309
424

439
307
304
269
312
245
315
333
331
365
315
262

WowW MMM RMRNRMN NN RER RO oOoooo

e New sensor data is then passed on to the classifier and classified according to the nearest
neighbors by the KNN algorithm.
Full Source code on Appendix

)} ML Software Implementation
Since this project uses a relatively simple dataset, TinyML using classical machine learning
algorithm k nearest neighbor (kNN) is implemented as compared to the more powerful deep

learning frameworks like TFLite for Microcontrollers. This has the advantage of being lightweight

for embedded devices, easy to understand and employs no off-device training nor additional tools.

30

Testing and Results

To test the completed sign language gesture recognition device developed, two users were
requested to wear the glove and sign random numbers between 0 and 9. And repeat for 20 times
to capture each class at least twice. The testing was split into two experiments. Experiment 1 and
Experiment 2 that was necessitated by the relatively low confidence levels while classifying
numbers 3, 4 and 5.

)] Experiment 1 whereby the KNN algorithm is provided with 5 examples of each class
and parameter k = 5.

i) Experiment 2 whereby the KNN algorithm was provided with 10 examples of each
class while maintaining k = 5.

First, the classifier was provided with only five examples of each class, for example, we provided
the algorithm with 5 samples of sensor data while signing the number “4”. The results from the
first experiment.

Number signed | KNN Prediction | Confidence
4 4 0.8
7 7 1.0
3 3 0.6
9 9 1.0
5 5 0.8
5 5 0.6
1 1 1.0
6 6 1.0
2 2 0.8
8 8 1.0
0 0 1.0
7 7 0.8
5 4 0.6
2 2 1.0
6 6 1.0
3 4 0.6
1 1 0.8
0 0 1.0
4 5 0.3
9 9 1.0

The algorithm correctly classified 17 out of 20 gestures correctly albeit with lower confidence on
numbers 4 and 5. That is an accuracy of 85%. This can be attributed to the low sensitivity on the
flex sensor attached to the thumb therefore giving out almost similar sensor values.

To test whether providing more examples will increase the accuracy, we doubled the examples
from 5 to 10 for each class and conducted the second experiment.

31

Classes 3, 4 and 5 have the lowest confidence of 0.6, which means 3 out of 5 examples or 60% of
the falls within the nearest neighbor with 2 falling out of the range. Classes 0, 6, 8 and 9 have the
highest confidence of 1.0.

During experiment 2, the KNN algorithm was provided with more examples. Increased from 5 to
10.

The signed numbers are shown in the table below.

Number Signed KNN Prediction Confidence
2 2 1.0
7 7 1.0
4 4 1.0
9 9 1.0
8 8 1.0
6 6 1.0
1 1 1.0
4 4 0.8
9 9 1.0
5 5 1.0
1 1 1.0
3 3 1.0
0 0 1.0
7 7 1.0
3 3 1.0
6 6 1.0
8 8 1.0
5 5 1.0
0 0 1.0
2 2 1.0

When the examples provided to the KNN was increased from 5 to 10 and the k=5 maintained,
the accuracy increased from the 85% achieved on experiment 1 to 100% classifying accurately
all the classes of the signed numbers. The confidence level also increased for all classes to 1.0
with only a single 0.8 for number 4.

32

4. CHAPTER FOUR: RESULTS AND DISCUSSION

4.1. Introduction
In this chapter we evaluate the outcome of the project as outlined in chapter one and how the
outcome relates to the main objectives of the study, that is developing a sign language gesture
recognition device using open-source resources that accurately identifies and classifies numbers
signed in American Sign Language.

4.2. Achievements & Discussion

The project successfully achieves all the main objectives of the study. The sign language gesture
recognition glove has been developed based on the Arduino open-source platform. Edge
computing aspect of the device has been achieved by running the machine learning algorithm,
kNN, on the resource constrained Arduino nano board. By providing 5 examples of each class of
the numbers (0-9), confidence of up to 1.0 and accuracy of 100% have been achieved. By providing
more examples (increased the examples to 10 from 5) increased the algorithms accuracy and
confidence to 100% and 1 respectively for all number classes

From system testing, the sign language gesture classifier classifies all 8 & 9 categories of numbers
correctly with an accuracy of 100% with highest confidence on signing number 9 and lowest
confidence on number 4 (0.6) using 5 examples. Increasing the number of examples to 10 while
retaining k at K=>5, the accuracy increased to 100% and confidence 1 for all classes.

With low number of examples, despite the low confidence on signing numbers 3, 4 and 5 is due to
almost similar position of the thumb in signing those numbers, the accuracy remains relatively
high at over 85% for all the three classes. With a more sensitive sensors to track the fingers, the
accuracy of the kNN algorithm would increase even with fewer examples, this is informed by the
high confidence and accuracy on signing numbers 6 to 9 due to their distinctive fingers positioning.

4.3. Conclusions

Considering all the population living with hearing disability and the projected numbers rise by
2050 to about 1 person in 10, there is a need to use technology in order to address the
communication challenge posed. Despite the progress made in addressing the use of technology
for the communication challenge, the existing solutions are either too naive and not scalable such
as rule-based gloves or too complex and dependent on robust hardware resources like in computer
vision approach. Therefore, more practical inexpensive solution that depend on machine learning
on the edge, small in size and more power efficient is needed.

This study has successfully demonstrated one such solution using glove approach, affordable
sensors and open-source hardware. Moreover, it has met the two main objectives of the study. That
IS to assess the accuracy of using Machine Learning Frameworks in specific TinyML ArduinoKNN
are suited for sign language gesture recognition on embedded device and to develop a sign
language gesture recognition device for numbers 0 to 9 based on on-device inferencing. In
addition, the device achieves the properties considerations from the literature review. It is real-
time, accurate, low-cost and portable.

33

4.4. Recommendations & Future Work

This study was solely focused on and limited to identifying and classifying numbers 0 to 9 due to
the project time constraints. Due to this reason, only one machine learning algorithm was explored,
the KNN algorithm. For more complex sign language gestures like phrases that require whole arm
movement in conjunction with finger movement, a more robust machine learning algorithm like
convolutional neural networks (CNN) would be required. For microcontrollers such as one used
in this project, implementing a CNN algorithm is possible. Platforms such as TensorFlow are open-
source and have algorithms customized to run on low resourced devices in form of TensorFlow
Lite for Microcontrollers.

This glove can be extended to classify letters and phrases using the onboard IMU sensor which
has a 3-axis gyroscope, an accelerometer and a magnetometer that would track the whole hand
movement in addition to fingers. This would require much more data from multiple sensors and
thus would require a more robust and scalable ML algorithm like TensorFlow Lite for
Microcontrollers while maintaining the same hardware configuration.

34

References

Abdulla, D., Abdulla, S., & Manaf, R. (2016, December). Design and Implemetation of a sign-to-
speec/text system for deaf and dumb people. In Proceedings of the 2016 5th International
Conference on Electronic Devices, Systems and Applications, 1-4.

Ahmed, M. A, Z,, B. B., Aws, A. Z., Mahmood, M., & Muammad, M. (2018). A Review on Systems-
Based Sensory Gloves for Sign Language Recognition State of the Art between 2007 and 2017.
Sensors.

Ahmed, S., S.M.B., & Qureshi, S. (2010, November). Electronic speaking glove for speechless patients, a
tongue to a dumb. In Proceedings of the 2010 IEEE Conference on Sustainable Utilization and
Development in ENgineering and Technology (STUDENT), 56-60.

Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a
survey. Computer networks, pp.393-422.

Arif, A., Rizvi, S., Jawaid, ., Waleed, M., & Shakeel, M. (2016, April). Techno-Talk: An American Sign
Language (ASL) Translator. In Proceedings of the 2016 International Conference on Control,
Decision and Information Technologies (CoDIT),, 665-670.

Bajpai, D., Porov, U., Srivastav, G., & Sanchan, N. (2015, April). Two Way Wireless Data
Communication and American Sign Language Translator Glove for Images Text and Speech
Dispaly on Mobile Phone. In Proceedings of the 2015 Fift Internatiunal Conference on
Communication Systems and Network Technologies (CSNT), 578-585.

Bantupalli, K., & Xie, Y. (2019). American Sign Langugae Recognition Using Machine Learning and
Computer Vision. Retrieved from Researchgate.

Brownlee, J. (2020, August 19). Difference Between Algorithm and Model in Machine Learning.
Retrieved from Machine Learning Mastery: https://machinelearningmastery.com/difference-
between-algorithm-and-model-in-machine-learning/

Dabre, K., & Dholay, S. (2014). Machine Learning Model for Sign Language Interpretation using
webcam images. International Conference on Circuits, Systems, Communication and Information
Technology Applications (CSCITA), pp 317-321. d0i:10.1109/CSCITA.2014.6839279

David J, S., & Zeltzer, D. (1994). A Survey of Glove-based Input. pp 30 - 39. d0i:10.1109/38.250916

Deng, L., & Yu, D. (2014). Deep Learning: Methods and Applications. Foundation and Trends in Signal
Processing, pp 199 - 200.

Dictionary, K. (2015). KSL Dictionary. Retrieved April 2021, from https://www:.ksldictionary.com

Elmahgiubi, M., Ennajar, M., Drawin, N., & Elbuni, M. (2015, June). Sign Language translator and
gesture recognition. In Proceedings of the 2015 Global Summit on Computer & Information
Technology (GSCIT), 1-6.

Emilio, M. D. (2014). Embedded Systems Design for High Speed Data Acquisition and Control. Springer.
Retrieved June 2021

35

eTechnophiles. (2019). etechnophiles. Retrieved from Arduino Nano 33 BLE Sense Pinout, Introduction
& Specifications: https://www.etechnophiles.com/arduino-nano-33-ble-sense-pinout-
introduction-specifications/

Forsberg, K., & Mooz, H. (1991). The relationship of System Engineering to the Project Cycle. In
Proceedings of the First Annual Symposium of National Council on System Engineering, 57-65.

Fu, Y., & Ho, C. (2008). Development of a programmable digital glove. Smart Mater. Struct, 526-533.

Gupta, D., Singh, P., Pandey, K., & Solanki, J. (2015, March). Design and development of a low-cost
Electronic Hand Glove for deaf and blind. In Proceedings of the 2015 2nd International
Conference on Computing for Sustainable Global Development, 1607 - 1611.

Iwasako, K., Soga, M., & Taki, H. (2014). Development of finger motion skill learning support system
based on data gloves. Procedia Comput. Sci, 1307-1314.

Kartik, P., Sumanth, K., Ram, V., & Prakash, P. (2020). Sign Language to Text Conversion Using Deep
Learning. In book: Inventive communication and Computational Technologies, Proceedings of
ICICCT, pp 219 - 227.

Kramer, J., & Leifer, L. (1988, April). The Talking Glove. ACM SIGCAPH Computers and the physically
Handicapped(39). doi:10.1145/47938

Kumar, D. (2019, April 21). Software Engineering (SDLC) V-Model. Retrieved October 30, 2020, from
https://www.geeksforgeeks.org/software-engineering-sdic-v-model/

Lee, Y. T. (2018). Techology trend of edge Al. International Symposium on VLSI Design, Automation
and Test (VLSI-DAT), (pp. 1-2). IEEE.

Microsoft. (2017). Microsoft Soundscape. Retrieved from Microsoft: https://www.microsoft.com/en-
us/research/product/soundscape

Peckol, J. (2019). Embedded systems: a contemporary design tool. John Wiley & Sons.
Plack, C. J. (2014). The Sense of Hearing. Hove: Psychology Press Limited.

Praveen, N., Karant, N., & Mega, M. (2014, October). Sign Language interpreter using a smart glove. In
Proceedings of the 2014 International Conference on Advances in Electronics, Computers and
Communications (ICAECC), 1 - 5.

Presser, M. (2016). The rise of loT-why today.

Ralph, P. a. (2009). A proposal for a formal definition of the design concept. Design Requirements
Workshop (LNBIP 14), pp 103 - 136.

Rosencrance, L. (2019). Tech Target. Retrieved from Software:
https://searchapparchitecture.techtarget.com/definition/software

Saggio, & Giovanni. (2014). A novel array of flex sensors for a goniometric glove. Sensors and Actuators
A: Pysical, pp 119 - 125.

Saltuk, O., & Kosan, I. (2014, May 7). Design and Creation - Motivation. Design and Creation, p. 4.

36

Sandler, W. &.-M. (2006). Sign Language and Linguistics Universals. Cambridge: Cambridge University
Press.

SAS. (2021). SAS Insights. Retrieved from Analytics Insights:
https://www.sas.com/en_us/insights/analytics/computer-vision.html

Sharma, D., Verma, D., & Khetarpal, P. (2015, December). Labview based sign language trainer cum
portable display uit for the speech impaired. In Proceedings of the 2015 Annual IEEE India
Conference (INDICON), 1-6.

Shigeki, S. (2019). Human Behavior and Another Kind in Conciousness:Emerging Research and
Opportunities. IGI Global.

Shishir G. Patil, D. K. (2019). GesturePod: Enabling On-device Gesture-based Interaction for White Cane
Users. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology (UIST '19)., pp 403 - 415. doi:https://doi.org/10.1145/3332165.3347881

Sreejan, A., & Yeole, S. (2017). A Review on Applications of Flex Sensors. International Journal of
Emerging Technology and Advanced Engineering, pp 97 - 100.

Tanyawiwat, N., & Thiemjarus, S. (2012, May). Design of an assistive communication glove using
combined sensory channels. In Proceedings of the 2012 9th International Conference on
Wearable and Implantable Body Sensor Networks (BSN), 34-39.

TensorFlow. (2021). TensorFlow. Retrieved from An end-to-end open source machine learning platform:
https://www.tensorflow.org/

Trottier-Lapointe, W., Majeau, L., El-Iraki, Y., Loranger, S., Chabot-Nobert, G., Bordaus, J., . . .
Lapointe, J. (2012, July). Signal Procesing for low cost optical data glove. In Proceedings of the
2012 11th International Conference of Information Science, Signal Processing and teir
Applications (ISSPA), 501-504.

Vijay, P., Suhas, N., Chandrashekhar, C., & Dhananjay, D. (2012). Recent Developments in sign
language recognition: A review. International Journal of Advance Computing, Engineering,
Communication Technology, 21-26.

Vijayalakshmi, P., & Aarthi, M. (2016, April). Sign Language to speech conversion. In Proceedings of
the 2016 International Conference on Recent Trends in Information Technology, 1-6.

Vutinuntakasame, S., Jaijongrak, V., & Thiemjarus, S. (2011, May). An assistive body sensor network
glove for speech-and-hearing-impaired disabilities. In Proceedings of the 2011 International
Conference on Body Sensor Networks (BSN), 7-12.

World Health Organisation. (2021, 04 01). Deafness and Hearing Loss. Retrieved from World Health
Organization: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss

Zhou, Z., Chen, K., Li, X., Zhang, S., Wu, Y., Zhou, Y., . .. Chen, J. (2020, September). Sign-to-Speech
translation using machine-learning-assisted stretchable sensor arrays. Nature Electronics.
d0i:10.1038/541928-020-0428-6

37

