

UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS

SIGN LANGUAGE GESTURE RECOGNITION USING MACHINE LEARNING ON

THE EDGE

By

Eliud Ngigi NGARUIYA

P52/33754/2019

Supervisor

Dr. Wanjiku Ng’ang’a

RESEARCH PROJECT REPORT SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS OF THE AWARD OF MASTER OF SCIENCE IN COMPUTATIONAL

INTELLIGENCE AT THE SCHOOL OF COMPUTING AND INFORMATICS, UNIVERSITY

OF NAIROBI

August 17, 2021.

ACKNOWLEDGEMENTS
I would like to acknowledge and thank my parents, without their help, moral and financial support,

pursuing this study would not have been possible for me. Many thanks to my supervisor, Dr. Wanjiku

Ng’ang’a who’s insights and guidance I had through every step from developing a proposal through to

finalizing the project.

ii

ABSTRACT
There are approximately over 360 million people globally living with a hearing disability; partially or

completely deaf. In order to communicate, these people use sign language. Like any spoken language, sign

language has its own grammar rules and can be translated from signed language to spoken language by a

sign language interpreter. However, unlike translating spoken languages, translating sign language is a

challenging task. Humans have been doing the translation. But with recent advancement in machine

learning and artificial intelligence algorithms, these translation tasks are being taken up by machines.

Despite the progress, machine translation of sign language is still faced with challenges since it requires

data that is largely unavailable of hand and finger movements for words and phrases signing. Furthermore,

the approaches adopted such as computer vision are resource intensive.

Embedded systems have evolved from simple transistor circuits to complex microprocessor and

microcontroller systems. Though still resource constrained in terms of the processing power, memory and

power consumption, these embedded systems can now perform tasks previously not possible on earlier

versions. Recently, we have had machine learning algorithms that can run on resource-constrained

embedded systems like TensorFlow Lite for Microcontrollers. With these algorithms, we can now perform

machine learning inferences locally on-device.

In this study, a machine learning on the edge algorithm was used to translate sign language gestures to

spoken language by developing an Embedded Intelligent System that uses sensors to track finger curvatures

and hand movement. The device is first designed and built using open-source hardware. Then used to create

a dataset by collecting data. Data is collected by performing the signing of various sign language gestures.

The data collected is curated and used to provide examples for various classes to the k-nearest neighbour.

This algorithm is then used to perform on-device inferencing to classify new gestures as they are signed.

Arduino nano BLE sense is used together with flex sensors. As flex sensor bends with signing of different

letters and numbers, the data is collected and logged in a file. This data is then used to train a model using

a K-nearest neighbour (KNN) algorithm. New signed numbers are translated and displayed on the serial

monitor.

The main contribution of the paper is a new machine learning on the edge approach using open-source

resources to create a sign language translating device that works on resource constrained devices without

the reliance of external inference engines

iii

iv

Table of Contents
DECLARATION.. i

ABSTRACT ... ii

ACKNOWLEDGEMENTS .. iii

LIST OF FIGURES ... vi

LIST OF ABBREVIATIONS .. vii

1. CHAPTER ONE: INTRODUCTION ... 1

1.1. Background ... 1

1.2. Problem Statement .. 3

1.3. Objectives ... 4

1.4. Justification ... 4

2. CHAPTER TWO: LITERATURE REVIEW .. 5

2.1. Introduction ... 5

2.2. Related Works ... 5

2.3. Conclusion ... 8

3. CHAPTER THREE: RESEARCH DEISGN AND METHODOLOGY .. 9

3.1. Research Design .. 9

3.2. System Design .. 10

3.3. Architectural Design ... 11

3.4. System Analysis ... 12

3.4.1. System Requirements ... 12

Overview .. 12

Objectives ... 13

Process .. 13

System requirements... 14

3.4.2. Sign Language ... 14

3.4.3. Hardware Requirements and Analysis ... 15

Flex Sensor ... 15

Microcontroller ... 16

3.4.4. Software Requirements and Analysis.. 18

Embedded Software .. 18

Machine Learning & Deep Learning Algorithm.. 18

K-Nearest Neighbour (kNN) .. 19

v

3.5. Design ... 20

3.5.1. Hardware Design... 20

Hardware Architectural Design .. 20

3.5.2. Software Design ... 22

Embedded Software Design ... 22

KNN Algorithm Design .. 24

3.6. Implementation ... 26

3.6.1. Hardware Implementation ... 26

3.6.2. Embedded Software Implementation .. 27

4. CHAPTER FOUR: RESULTS AND DISCUSSION ... 33

4.1. Introduction ... 33

4.2. Achievements & Discussion.. 33

4.3. Conclusions .. 33

4.4. Recommendations & Future Work ... 34

References .. 35

vi

LIST OF FIGURES
Figure 1: Research Design .. 9

Figure 2: V - model design methodology adopted for embedded software development 10

Figure 3: System Architecture block diagram .. 11

Figure 4: Data Collection and Model Training Block Diagram ... 12

Figure 5: American Sign Language for numbers 0 to 9 .. 14

Figure 6:Flex Sensor ... 15

Figure 7: Flex Sensor working principle ... 15

Figure 8: Flex Sensor - Voltage divider configuration ... 16

Figure 9: System Data Flow Diagram... 20

Figure 10: Hardware Conceptual Architecture block diagram for data collection 20

Figure 11: System Hardware Architecture .. 21

Figure 12: System Hardware logical architecture block diagram ... 21

Figure 13: System software block diagram for data collection ... 22

Figure 14: Data collection algorithm design ... 23

Figure 15: Data management process ... 24

Figure 16: Machine Learning Model Creation Process .. 24

Figure 17: Machine learning workflow for sign language gesture recognition glove 25

Figure 18: High Level end-to-end gesture classification process block diagram 25

Figure 19: SL Glove Implementation ... 26

Figure 20: MCU - Voltage-divider - Flex Sensor Interface .. 27

Figure 21: Microcontroller Wiring ... 27

Figure 22: Testing Flex Sensors ... 27

Figure 23: Logging data from Serial Communication line to file ... 28

Figure 24: Starting the sensor data logging to file .. 29

Figure 25: Serial output on putty. ... 29

Figure 26: Dataset created from Logged output on file .. 30

https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782625
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782627
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782628
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782629
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782630
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782631
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782633
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782634
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782635
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782636
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782637
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782638
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782641
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782642
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782643
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782644
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782645
https://d.docs.live.net/31f2a576a3e38db7/MSc%20CI%20M3/P52-33754-2019-Sign%20Language%20Gesture%20Recognition%20using%20Machine%20Learning%20on%20the%20Edge.docx#_Toc78782650

vii

LIST OF ABBREVIATIONS
AI : Artificial Intelligence

ASL : American Sign Language

BLE : Bluetooth Low Energy

CV : Computer Vision

DNN : Deep Neural Network

EIS : Embedded Intelligent System

IMU : Inertia Measurement Unit

IoT : Internet of Things

KNN : K-Nearest Neighbour

LCD : Liquid Crystal Display

ML : Machine Learning

SL : Sign Language

TFLite : TensorFlow Lite

W.H.O. : World Health Organization

WSN : Wireless Sensor Networks

1

1. CHAPTER ONE: INTRODUCTION

1.1. Background

Hearing or auditory perception is defined by (Plack, 2014) as the ability to perceive sounds by

detecting vibrations, the changes in air pressure surrounding a medium through time, through

an organ such as the ear. The loss of ability to perceive sound in humans is known as hearing

loss. Hearing loss may be categorized as mild, moderate, severe or profound and may affect

one or both ears. A person is classified as having hearing loss if they are not able to hear sound

in the normal hearing threshold of 20dB or better in both ears. Factors leading to hearing loss

are several as indicated by (World Health Organisation, 2021) and may occur in different

period in one’s lifetime. These includes Prenatal period with factors such as genetic factors

and intrauterine infections. Other periods are Perinatal period, childhood and adolescence,

adulthood and old age.

According to (World Health Organisation, 2021), over 5% of the world population requires

rehabilitation to address their disabling hearing loss. They further estimate that by 2050, over

700 million people – or a tenth of the world population will have a disabling hearing loss.

Unaddressed hearing loss has impact on the daily living for the people involved both to the

deaf person and the people they have to interact with on daily basis. The impact could be

classified as individual impact or social impact which ranges from loneliness, social isolation

and stigma. W.H.O estimates that unaddressed hearing loss poses an annual global cost of US

$980 Billion in health sector costs, educational support, productivity loss and societal cost. The

cost does not include hearing aid device costs.

People with hearing loss or hearing disability are considered as deaf. These people have

profound hearing problem with very little to no hearing at all. The method often used by these

people to communicate is the sign language. Also known as signed languages, these languages

use visual-manual modality to convey meaning. (Sandler, 2006) says sign languages are full-

fledged natural languages with their own grammar and lexicon.

In Kenya, a Kenyan Sign Language dictionary was published in 1991. More recently an online

dictionary and a mobile application have been published since 2014 (Dictionary, 2015). In

1990s, Kenya National Association of the Deaf spearheaded a government program to train

and employ teachers based in Machakos Teachers College to increase literacy in English and

Swahili among the deaf community which was largely lacking despite the schools being

established as early as 1960s.

The advancement in technology in recent times is a great enabler in achieving tasks that

previously were difficult and near impossible. In particular machine learning technology,

which is a part of artificial intelligence based on the idea that machines can learn from large

amounts of data, identify patterns and make decisions independently or semi-independently

with minimal human intervention. Embedding this kind of capability on embedded devices

makes it possible to achieve what traditional embedded devices were unable to achieve.

Embedded Systems have been around and been used in various industries for control and

automation of processes and for monitoring (Peckol, 2019). With rise of Wireless Sensor

2

Networks (WSN) (Akyildiz, I.F., Su, Sankarasubramaniam, & Cayirci, 2002), these embedded

systems were able to connect and communicate with each other remotely and consequently,

this have given rise to the now ubiquitous technology of Internet of Things (IoT) (Presser,

2016) whereby large numbers of such embedded systems (ES) interconnects and connects to

the worldwide web. Furthermore, the development of light-weight machine learning

algorithms that can run on resource-constrained embedded devices have seen rise of what is

now called Embedded Intelligent Systems (EIS) as a result of embedding intelligent behavior

into the traditional embedded devices using these Machine Learning (ML) algorithms such as

Deep Neural Networks (DNN), referred to as Edge AI or Machine Learning on the Edge (Lee,

2018).

Despite the advancement on these technologies, their application on assistive technology

applications remains limited. There are notable applications in other assistive technologies

including Microsoft’s Soundscape (Microsoft, 2017) and GesturePod (Shishir G. Patil, 2019).

The availability of Open-Source hardware and Software in recent times has also accelerated

the development of hardware and software solutions in timely and cost-effective manner.

Using these technologies, the problem of sign language sign recognition can be tackled with

relative ease. The process would require collecting sufficient data on sign language gestures,

training machine learning algorithms with this data and running the models in embedded

device which performs inference and determine what the gesture made means.

In this study, Arduino Nano 33 BLE Sense -an open-source hardware platform from Arduino

and TensorFlow Lite for Microcontrollers from Google is used to develop a device that will be

able to detect and accurately categorize gestures made in sign language. The microcontroller

chip is the nRF52840 running at 64MHz, has 1MB Flash Memory and 256KB SRAM. The

nano 33 BLE Sense has several on-board sensors including a 9 axis Inertia measurement Unit

(IMU). Other sensors to be used is 10 flex sensors, one for each finger. The TensorFlow Lite

is an open-source framework that enable creating quantized machine learning models efficient

and small enough to run on low-resourced platforms such as microcontrollers.

3

1.2. Problem Statement

Humans are social being and as so there is a lot of interaction amongst each other. Communication is one

such interaction and arguably one of the most basic human need. For effective communication to occur, the

people involved need to understand each other. The problem arises when one person or both in an

interaction have a hearing difficulty or are deaf. We have invented Sign Language for such occasions

whereby one signs using hands and the deaf can understand and sign back thus allowing effective

communication without depending on hearing. With projected 1 in every 10 people being deaf by 2050,

there is a need to develop a means of interpreting the hand signals to be able to communicate with people

who do not understand the sign language. Moreover, 80% of the projected number coming from low-and

middle-income countries, and over 25% being 60 years and older (World Health Organisation, 2021), the

solution need be practical, low-cost for affordability, light-weight and scalable.

This study follows and is limited to using the American Sign Language (ASL) Numbers

The main objective of this study is to develop a sign language translation device and answer the following

questions:

i) Is it possible to develop a machine learning model for sign language gesture recognition for

numbers 0 – 9 using a cheap hardware microcontroller, flex sensors and a machine learning

algorithm?

ii) What accuracy can be achieved by a machine learning model using sensor data from flex

sensors?

4

1.3. Objectives

The goal of this research is to develop a power-efficient, light-weight and low-cost sign language gesture

recognition using open-source hardware, specifically the Arduino nano 33 Ble Sense and flex sensors. In

particular, the study has the following sub-objectives:

1. Assess the accuracy of using Machine Learning Frameworks in specific TinyML ArduinoKNN are

suited for sign language gesture recognition on embedded device

2. Develop a sign language gesture recognition device for numbers 0 to 9 based on on-device

inferencing

Further, the study focuses and is limited to gestures that represents numbers (0 to 9) which form a basis for

counting. The outcome of this research will be of great value to software and hardware developers interested

in developing Assistive Technology applications for the Deaf people. Moreover, it will form a basis for

further research work on translating other sign language gestures by running on-device inference and can

be extended to translate alphabets, words and phrases that require full hand movement and two hands

signing. For the deaf user the device will be an efficient means of communication with other people

including those who do not understand the sign language.

1.4. Justification

This study focuses on performing machine learning on edge devices. Most of the edge devices

are low-resource with tight time constraints, low-power and small amount of memory. Due to

these limitations, it has been very difficult to have machine learning models that can run on

them and therefore most embedded devices have always relied on rule-based programs. With

introduction of TinyML and TensorFlow Lite for Microcontrollers, machine learning

capability, however limited, has been brought to these low-resourced devices. Having these

abilities on microcontrollers means inferencing can be done right there on the device without

having to rely on a network connection to a cloud service. This in turn translates to having

better data security and privacy since no data ever leaves the device. Therefore, worth

experimenting for this particular application of gesture recognition, being able to recognize

gestures on tiny embedded devices using the power of machine learning without depending on

hefty hardware and fast network connections.

5

2. CHAPTER TWO: LITERATURE REVIEW

2.1. Introduction

Communication is a two-way process for sharing information. It is an essential part of getting

along with others and getting things done. The communication modes can take different forms

including writing, verbal and body language. It is simply straight forward when people involved

can talk and both understand the language being used.

Sign language is the language used by the mute and the deaf. People who have lost their ability to

hear uses signs to communicate amongst themselves and to communicate to people who can hear

normally. Sign language is the basic means of communication for these people. However, majority

of the population do not understand sign language and therefore needs a translator (Dabre &

Dholay, 2014).

2.2. Related Works

Many solutions have been proposed and explored for sign language translation. There are two

major approaches to this problem. Glove-based solutions and using the computer vision approach.

i) Computer Vision (CV) approach

Computer vision is defined as a field of artificial intelligence (AI) that trains computers to interpret

visual world using digital images and videos, deep learning algorithms (SAS, 2021).

In their study (Dabre & Dholay, 2014), uses a camera system to capture images which are then

used to train a model to translate the gestures. A similar study by (Bantupalli & Xie, 2019) uses

the ASL dataset together with CV techniques to extract temporal and spatial features from video

sequences using a Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN)

respectively. These approaches achieve high accuracy on the training data for example (Kartik,

Sumanth, Ram, & Prakash, 2020) achieved an accuracy of 98.67% from a dataset of 87,002 images

trained on 78,300 images and test size of 8,700 images. Despite the high accuracy, CV approaches

rely on expensive and cumbersome hardware. A computer is always required to run inference

making it impractical to use.

ii) Glove Approach.

The Oxford dictionary defines a glove as a covering worn on the hand having separate parts for

each finger and thumb. Sign-language gloves have been explored since 1980s when researches

started to explore ways humans can interact with computers using gestures. In a study carried out

in 1988, Stanford University researchers (Kramer & Leifer, 1988) proposed to develop “the talking

glove” a device that could analyse a non-vocal person’s finger spelling and hand formation and

output the spelled word with synthesized voice. Further, using a voice recognition equipment, the

deaf user could read an incoming text on a miniatured LCD screen on a modified wrist watch and

deaf-blind could read on a portable braille display. The complete system was cumbersome and

very expensive. The system cost without the CyberGlove itself was US $3,500. (David J & Zeltzer,

6

1994). Several other translation gloves have been proposed over the years and some won awards

like Ryan Patterson in 2001, a high school student from Colorado that used a leather glove with

10 sensors that monitored each finger position, relayed that information to a computer for display

as text. In 2015, two Mexican researchers at Mexico’s National Polytechnic Institute developed a

similar glove that used a Bluetooth module to communicate with an Android phone.

The most recent publication by (Zhou, et al., 2020) translation glove published in June 2020 uses

assisted stretchable sensor arrays and achieved an accuracy of 98.63% with a recognition time of

less than 1s. In their study, (Zhou, et al., 2020) used proprietary technology including integrated

wearable sensor arrays and nanotechnology.

Another glove approach as explored by (Vutinuntakasame, Jaijongrak, & Thiemjarus, 2011) was

using Hall Effect Magnetic Sensors (HEMS) to detect applied magnetic field determining voltage

variations in an electrical conductor. The approach places the HEMS at the tip of the fingers and

a magnet at the palm of the hand. It generates a voltage of between 0.1v and 0.4v that is then

passed on to a microcontroller. This approach however depends on an external hardware, the

Odroid XU4 minicomputer for gesture recognition and classification making it quite a large device

that is bulky, impractical and is power inefficient to power bot the minicomputer and the Arduino.

For the training datasets, most of the literature that exist has used a sample size of between 80

samples to as many as 1400 samples. The following table covers some of the details about the

devices, gestures and samples per gesture when signing for American Sign Language.

Gestures Components Size of the

sample

Author

4 gestures 5 flex sensors (Praveen,

Karant, & Mega,

2014)

Alphabets A -H 5 flex sensors

Accelerometer

Contact sensor

80 samples (10

samples each

letter

(Sharma, Verma,

& Khetarpal,

2015)

26 Alphabets 5DT Glove 234 samples (3

for each letter)

(Iwasako, Soga,

& Taki, 2014)

Alphabets A-Z

and numbers 0 -9

8 touch sensors 1080 samples

(30 for each)

(Fu & Ho, 2008)

Alphabets A – Z 5 flex sensors

Accelerometer

Contact Sensors

260 samples (10

entries for each

alphabet)

(Elmahgiubi,

Ennajar, Drawin,

& Elbuni, 2015)

120 static

gestures

Flex sensor

Contact sensor

3600 samples

(100 for each)

(Ahmed, S.M.B.,

& Qureshi,

2010)

7

29 letters 10 flex sensors

3-axis

accelerometer

1450 samples (Vijayalakshmi

& Aarthi, 2016)

All the listed studies have been conducted using different sample sizes. The larger the sample sizes

are used since classification is done off the device using an extra hardware device, minicomputers.

The larger the sample size, the more memory is used up. For the low memory microcontrollers

this would be a problem and thus the need to have an efficient system that classifies gestures using

a small sample size of less than 10 for each gesture without compromise on the accuracy.

According to (Ahmed, Z., Aws, Mahmood, & Muammad, 2018), the SLR systems have been

plagued with low accuracy, not able to keep up with real-time recognition and unable to track the

human hand that has multiple degrees of freedom. In their study, (Abdulla, Abdulla, & Manaf,

2016) highlights the challenges in obtaining a high precision for fast movements when signing

naturally like in an actual conversation. Also lack of quality datasets (Arif, Rizvi, Jawaid, Waleed,

& Shakeel, 2016) for sign language is another problem facing gesture recognition systems. This is

critical problem especially for machine learning applications that often needs large datasets to learn

from.

To develop a sign language translating device, there are considerations to make for the various

stakeholders. The researcher could put an emphasis on creating quality datasets, analyse the

various sign language variations in use, the sensor types and numbers and also put an emphasis on

hybrid systems that includes body movements, facial expressions and two hands signing (Ahmed,

Z., Aws, Mahmood, & Muammad, 2018). The developer should focus on developing an

inexpensive system that is affordable to the people most afflicted by hearing disability. According

to (Bajpai, Porov, Srivastav, & Sanchan, 2015) most people afflicted by this disability are poor

and live below the poverty level and thus affordability should be one of the top considerations

while developing the solution (Vijay, Suhas, Chandrashekhar, & Dhananjay, 2012). Another

critical consideration according to the study by (Gupta, Singh, Pandey, & Solanki, 2015) and

(Bajpai, Porov, Srivastav, & Sanchan, 2015) is real-time recognition, this is to ensure the gestures

are being recognized and interpreted as they happen for a natural and fluid communication.

Portability is another thing to consider as the solution needs to be moved around by the user in

order to be usable even when not connected to external hardware like personal computers. In

several studies, notably by (Tanyawiwat & Thiemjarus, 2012), (Vijayalakshmi & Aarthi, 2016)

and (Trottier-Lapointe, et al., 2012) have listed portability as one of the features to consider for a

practical sign language translation device.

From the Literature review, most of the work on sign language translation is either based on

computer vision approach, that is computing resources intensive or the glove approach which relies

on classic programming paradigm or using mobile phones for running the inference. Further,

considering the highlighted considerations by (Ahmed, Z., Aws, Mahmood, & Muammad, 2018)

8

on device costs, accuracy and portability, most of the reviewed work falls short in one property or

the other. Research on running inference on the edge, on the glove itself without relying on PC or

Mobile phones is still scarce.

2.3. Conclusion

The mainstream approaches to sign language translation are using the resource intensive Computer

Vision approach or the network dependent glove approach. In order to achieve ubiquitous, low-

cost, low-resource machine translation of signed language, there is a need to shift from the

traditional approaches of using resource intensive techniques like CV that requires model

development, training and running inference to be performed on the PC. With recent development

of Machine Learning on the Edge, like the release of Machine Learning Frameworks like TinyML

and TensorFlow Lite for Microcontrollers, it is essential to explore the possibilities of running

inference for machine translation right there on the device without relying on any additional

hardware. Moreover, exploring open-source, low-cost hardware and software, will make it

possible for relatively fast and easy development and affordable solutions. This will also ensure

that the most critical properties of cost considerations, accuracy, real-time and portability

highlighted in the study are met.

9

3. CHAPTER THREE: RESEARCH DEISGN AND METHODOLOGY

3.1. Research Design

This study adopts design and creation strategy whereby an artefact will be developed and analysed.

According to (Saltuk & Kosan, 2014) design science research “creates new interesting knowledge,

demonstrates academic qualities and focuses on improvement, invention and exaptation” using an

artifact. Furthermore, the device is an embedded intelligent device and therefore will include the

phases of embedded systems development. The development will follow process in figure 1.

Data Collection

ML Model Evaluation

System Design

ML Model Training

Dataset Creation

System Integration &

Testing

Figure 1: Research Design

System Analysis

System Development

Figure 2: Design Science Research Process Model as adopted from Saltuks' Design
and Creation

10

This study adopts the Design Science Research Process model by (Saltuk & Kosan, 2014). The

figure 2 outlines the design and creation process.

3.2. System Design

Design goals are:

i) Arduino nano 33 BLE Sense and Flex Sensor based Sign Language Gesture recognition

device

ii) Scan and analyse Flex sensors inputs

iii) Output data in csv format

iv) Basic Hardware (Arduino Nano 33 BLE Sense with 64MHz clock, 1MB Flash

memory, 256kB SRAM, ADC/DAC and I2C, SPI, USB, I2S and UART Interfaces.

In this study, the V-Model development methodology is adopted. The V-model is a software

development life cycle (SDLC) model where the process executes in a sequential manner in V-

shape (Forsberg & Mooz, 1991). It is also known as the Verification and Validation model. In this

method, each development stage is associated with a testing phase. Each phase must be completed

before moving on to the next phase. The figure 2 below illustrates the various steps undertaken for

development, verification and validation.

Figure 3: V - model design methodology adopted for embedded software development

11

3.3. Architectural Design

System design is broken down further into modules taking up different functionalities. The data

transfer and communication between internal modules with other systems is understood (Kumar,

2019).

The following block diagram shows the system architecture. This architecture is used for both data

collection and for running inference on the embedded device.

Coding

Coding is the process of writing embedded software for the components used to build the system or

embedded device. For a larger system it is known as software development.

The platform used for the purpose of this development is the Arduino platform which is an integrated

development platform with many libraries for most of the sensors existing in the market. Using this library

in the development process saves on time and overall development cost of an embedded system.

There are 3 program files for the 3 development phases:

1) Data collection phase program that uses the sensors to collect and log data in csv format

2) Machine learning phase where the data is used to train a model that is used as a classifier and

3) The classifier program that is uploaded to the embedded device to capture new data and use the

loaded model to classify it.

Flex Sensor Array
Microcontroller Output on Serial

Monitor

Figure 4: System Architecture block diagram

12

Data Collection

Data collection to form a dataset that will be used to train the classifier instead of using a ready-

made dataset. The following diagram shows the overall system design for data collection.

Training and Testing data used in this study will be obtained from the 5 flex sensors.

Model will be created using TensorFlow Lite for Microcontrollers framework on PC. Testing and

Validation will be done on PC before being converted and uploaded to the Microcontroller Unit

(MCU). Once the model is uploaded into the MCU, the inference will be performed on the device

itself without relying on the PC.

3.4. System Analysis

3.4.1. System Requirements

Overview

In the analysis phase, the requirements and constraints -the limits within which the system must

operate- of the proposed system are explored. The requirements are the specific parameters that

Figure 5: Data Collection and Model Training Block Diagram

Train ML Model (KNN)

Give examples on

Microcontroller

Run inference on

Microcontroller

Output on Serial

Monitor
Flex Sensor 1

Flex Sensor 2

Flex Sensor 5

Store Sensor

Data

Microcontroller Unit

13

the system must satisfy. These requirements are outlined below and further translated into a more

detailed specification.

Objectives

The main objective of this project is to develop a Sign-Glove (SG) that captures the gestures, finger

movement of the person signing using sign language. The SG will be worn by the person doing

the signing, the gestures are captured and translated appropriately. Specifically, this study will deal

with interpreting numbers 0 to 9 signed using the American Sign Language (ASL)

Process

To develop this system, several factors are considered, the hardware and software requirements

are discussed in-depth in the following subsections.

In this development project, several factors are considered. This device needs to be light weight,

use less power (less than 200mW) and be accurate while recognizing and translating gestures.

These measures considered for analysis are listed below.

i) Accuracy

It is the difference between the expected values and the actual recorded values. The

accuracy of the device should be above 80%

ii) Precision

This is the number of distinguishable measurements. For the purpose of this project,

only ten distinguishable measurements are required. Each measurement for each

number.

iii) Size and Weight

These qualities represent the physical space occupied by the device. Since it’s a hand

worn device, the package should be small so as to fit comfortably behind the glove.

The physical dimensions should not exceed 50mm by 60mm

iv) Power

Power is the total amount of energy required to run a system. This is a crucial

requirement since the device is to be used as a wearable and therefore running on

battery power. This requirement however, is not strictly followed for this prototype

development since it will be running on USB power from the PC.

v) Time-to-prototype

14

This is the total time required to design, build and test a prototype system. For this

project, the device should be complete within the duration stipulated for the purpose of

research project (March to July).

System requirements

The system should be able to

i) Track the finger movements as numbers are signed

ii) Accurately recognize the number signed

iii) Accurately categorize the number signed using a machine learning algorithm

3.4.2. Sign Language

Sign Language is different and distinct from other spoken languages like English. It contains its

own fundamental rules on pronunciation, word formation and expressions. However, just like other

languages, sign language, specific ways of expressing ideas vary from one region to another and

just as spoken languages, expression can change depending on other factors such as age variation

and context.

Only signing numbers has been selected to reduce complexity of the design given the limited time

I have to work with. Moreover, the more gestures I incorporate, the larger the ML model will be

generated and therefore running the risk of not fitting on the limited flash space and RAM on the

nano board. To prevent this, and to demonstrate that ML on the edge is possible for gesture

translation, only numbers have been chosen for the proof of concept. Further, the ASL has been

chosen since it signs numbers using only one hand unlike Kenyan Sign Language that uses both

hands to sign numbers. The diagram below illustrates how to sign numbers using ASL. These are

the gestures we will be looking to translate using a machine learning model running on Arduino

nano.

In embedded system, design and development is divided into two major categories,

Hardware and embedded software. These two must work in tandem, with the development

of embedded software being informed by the choice of hardware, i.e., processing unit and

sensors.

Figure 6: American Sign Language for numbers 0 to 9

15

3.4.3. Hardware Requirements and Analysis

This section goes into details on the different hardware used for the purpose of capturing gestures,

converting them into electrical signals and interpreting them. Hardware and specifically sensors

and the microcontroller in this project plays a crucial role of capturing analog data that will be

used for both training a machine learning algorithm and testing the resulting model to evaluate

metrics such as accuracy levels, precision and resolution.

The hardware required, both sensors and microcontroller unit are discussed in the following

subsections.

Flex Sensor

In order to capture finger movement during signing, to capture the gesture made by the hand and

the fingers, an electromechanical sensor is required. Folding and straightening of fingers is the

action required to gesture numbers; unlike other gestures that may require whole arm movement,

therefore a flexible sensor that translates these physical movements into electrical signals is

required.

A flex sensor, also called a bend sensor. It measures the amount of deflection of the surface on

which it is stuck. The working principle of a flex sensor is based on resistivity as material is bent

since there is a direct proportionality between bending and resistance. These sensors are used in

many applications and areas of research from Human Machine Interface devices (Saggio &

Giovanni, 2014) to Rehabilitation research (Sreejan & Yeole, 2017). Flex sensors come in various

form like Fibre optic flex sensor, capacitive flex sensor and velostat flex sensor.

Working principle

Velostat flex sensor is made up of polymeric foil that has been impregnated with carbon black.

This carbon makes it electrically conductive. It is inexpensive and its ability to change resistance

as it bends makes it suitable for our gesture sensing application. The figure below shows a flex

sensor

Figure 8: Flex Sensor working principle Figure 7:Flex Sensor

16

The sensor has a nominal resistance when held straight. When the substrate is bent, however, there

is a corresponding proportional increase in resistance to the bend radius, the farther you bend the

sensor, the higher the resistance values. In order to take advantage of this property, the flex sensor

is used as a variable resistor or a potentiometer together with another resistor in a voltage divider

configuration as shown in the circuit diagram below.

Figure 9: Flex Sensor - Voltage divider configuration

R1: Flex Sensor

R2: Resistor

Vin: Input voltage (3.3v)

Vout: Output voltage from the voltage divider

The output voltage is calculated using the following equation:

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛(
𝑅1

𝑅1 + 𝑅2
)

The output voltage (Vout) is an analog voltage that is fed into an analog input pin of our

microcontroller.

Microcontroller

The microcontroller is the brain of the whole device. It contains the processing unit, flash memory

and RAM. Since for this project we need an MCU capable of running inference of TensorFlow

Lite for Microcontrollers machine learning model, a 32-bit processor is required. Therefore, the

choice of Arduino nano 33 Ble sense. The Nano 33 BLE Sense is Arduinos 3.3V, small form factor

(45mm x 18mm) AI enabled development board. It’s a recently released and is loaded with a

number of embedded sensors. The board features a relatively powerful low power processor,

nRF52840 from Nordic Semiconductor. This processor is a 32-Bit ARM Cortex M4 CPU running

17

at 64MHz, 128MB of RAM. Further, the processor features a Bluetooth pairing with Near Field

Connectivity (NFC) and Bluetooth Low Energy (BLE) to pair and send data to external devices

These sensors include:

• Humidity & Temperature sensor

• 9 – axis IMU sensor for motion, vibration and orientation sensing

• Barometric sensor

• Digital Microphone

• Gesture, proximity, light color and light intensity.

Technical Specifications

Microcontroller nRF52840

Operating Voltage 3.3V

Clock Speed 64MHz

Flash Memory 1MB

SRAM 256KB

Digital I/O 14

Analog Inputs 8 (ADC bit 200ksamples)

The possibility of running Edge AI on this tiny, low power device and the array of onboard sensors

included is what is appealing and informed its selection among other embedded development

boards in the market today.

The diagram below shows the nano 33 board and all its onboard sensors (eTechnophiles, 2019).

Figure 10: Arduino nano 33 Ble sense development board

18

The analog voltage (Vout) from flex sensor – resistor voltage divider is fed directly to 5 of the 8

analog inputs of the nano 33. These pins are directly connected to a 12-bit analog-to-digital

convertor that quantizes and samples the voltage and converts it into a digital signal for processing

by the CPU.

3.4.4. Software Requirements and Analysis

The software is defined by (Rosencrance, 2019) as a set of instructions, data or programs used to

operate computers and execute specific tasks.

This section analyses the software required for data acquisition, machine learning algorithm and

embedded software to run on-device inference.

Embedded Software

Embedded systems are not typical computers since they are highly specialized, resource

constrained devices both in time, processing power and memory. These requires embedded

software to control these devices. The term embedded software is sometimes used interchangeably

with firmware (Emilio, 2014).

There are two categories of embedded software that is required. That is, first, the software that

captures data from our sign glove for all the ten gestures. Each gesture is unique and therefore each

of the sensor on each of the five fingers will have a sensor voltage value. The data capture

embedded software needs to capture these values and output them to a file in a specified format

shown below.

Table 1: Data capture format

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Number

Each column header for sensor represents the corresponding finger. E.g., Sensor 1 corresponds to

Finger 1 which is the small finger, all the way to Sensor 5 on the thumb finger. Finally, on the last

column we have the number (0 – 9) represented by the data entries on the same row.

The first program needs to read the ADC and from those values calculate the voltage and

resistance. These resistances for each of the five sensors is then tabulated on the table above to

create a dataset. The dataset created is then used for ML model development.

Machine Learning & Deep Learning Algorithm

Machine learning algorithm is defined by (Brownlee, 2020) as a procedure that is run on data to

create a machine learning model. These algorithms perform pattern recognition by learning from

data. ML algorithms can be put into three distinct classes; supervised, unsupervised and

reinforcement learning. They can be further classified as classification, regression or clustering

algorithms.

19

A model is “the output of a machine learning algorithm run on data” and represents what was

learnt by the ML algorithm (Brownlee, 2020).

Deep Learning (DL) is defined by (Deng & Yu, 2014) as a class of machine learning algorithms

that uses multiple layers to progressively extract higher level features from raw input. The simplest

has three layers that is input layer, representational layer and an output layer.

In the case of supervised learning, whereby we have labelled data, deep learning removes

redundancy in representation by translating data into compact intermediate representations (IR)

similar to Principal Components and thus eliminates the need for feature engineering. The “deep”

in deep learning simply means the number of layers that data is to be transformed through from

input through the hidden layers all the way to the output. This chain of transformation from input

to output is known as credit assignment path (CAP) and describes the causal connection between

the input and the output. According to (Shigeki, 2019) CAP of depth 2 has been shown to be a

universal approximator since it can emulate any function.

TensorFlow

TensorFlow is an end-to-end, open-source machine learning platform (TensorFlow, 2021).

TensorFlow Lite for microcontrollers is a light weight TensorFlow Library designed and optimized

to run on resource constrained devices. It does not require an Operating System to run, dynamic

memory allocation nor standard C/C++ libraries. TF is available as TFLite for Microcontrollers

for Arduino platform making it suitable to use for this particular application. Arduino nano BLE

is the only supported Arduino boards as the time of this study. We shall use TFLite to create and

run a 30kB Neural Net (NN) to recognize and identify gestures using flex sensors and IMU.

Limitations of TFLite for Microcontrollers

TensorFlow Lite for Microcontrollers is specifically designed to run on specific resource

constrained microcontroller development unlike the standard TensorFlow Lite that runs on more

powerful Linux based embedded devices like NVidia’s Jetson Nano and Raspberry Pi.

Working with TensorFlow Lite for Microcontrollers has the following specific limitations:

i) Supports a limited subset of TensorFlow operations, this affects the number of

architectures that is possible to run on.

ii) Currently only a limited number of devices are supported.

iii) Requires manual memory management since it uses Low-level C++ API

iv) Does not support on-device training and therefore training needs to be done on a more

powerful environment, and load the trained model.

K-Nearest Neighbour (kNN)

kNN algorithm uses distance between datapoints to classify the current data point. It is a supervised

machine learning algorithm that is simple to implement and works well with structured data that

is dependent on distance measure between the values read from .

20

For this particular project, an implementation of kNN is more suitable because it makes highly

accurate predictions. Furthermore, the quality of predictions is dependent on distance measures.

Moreover, it does not require additional tools to implement unlike TFLite that requires training

and model creation done on a separate platform. Using kNN in Arduino platform requires only to

provide data examples and class, therefore all implementation is done within the same platform.

3.5. Design

In this section the conceptual model of the hardware and software is built. In order to simplify the

process, the project is broken down into modules and subcomponents. Also, during this phase, the

cost, schedule and expected performance of the system are determined. The data flow diagram

below shows the major components of the system and how data moves from one module to the

other.

3.5.1. Hardware Design

In order to build the hardware prototype, we design it first, outlining its architecture using a high-

level block diagram. The following subsections will focus on conceptual and logical architectures.

Hardware Architectural Design

i) Conceptual Architecture

The conceptual architecture focuses on identification and allocation of responsibilities

to the components.

Data collection hardware conceptual architecture is shown in the figure below

Position

Sensor

Display /

Terminal

ADC

Hardware

Analog

Circuit

ADC

Driver

Inference

Routine

Position straight

– fully curved
Resistance

0 to 80+ KΩ

Voltage

0 – 3.3v

Sample

0 -1023

Number

0 - 9

Characters

0 - 9

Sense Gesture
Process

Gesture

Store/Display

Values

Figure 11: System Data Flow Diagram

Figure 12: Hardware Conceptual Architecture block diagram for data collection

21

ii) Logical Architecture

This architecture focuses on components interaction, connection mechanisms and

protocols, interface design and specification.

ADC

MCU

Flex

Sensor 1

Flex

Sensor 2

ADC

Flex

Sensor 5

Serial Output

Flex

Sensor

4
7

K

MCU

A0

GND

3.3V

Figure 13: System Hardware Architecture

Figure 14: System Hardware logical architecture block diagram

22

For data collection and for inferencing purposes, the hardware configuration is similar. The only

difference is the embedded program. For the purposes of data collection, the source program is

purely rule based using the traditional programming practice to read from the sensors. The

complete prototype however, uses both rule -based and machine learning model running with

classification performed purely using machine learning model.

3.5.2. Software Design

Software design is defined by (Ralph, 2009) as “the process by which an agent creates a

specification of a software artifact intended to accomplish goals, using a set primitive component

and subject to constraints.” The software for the project is divided into two categories. Category 1

is the embedded software that will run on the microcontroller and category 2 is the Python program

that will create an ML model using google colaboratory in order to take advantage of the high

processing capability offered by Google Colab.

Category 1, the embedded software is further divided into two, first the program for data collection,

and second the program that performs gesture classification.

Embedded Software Design

Embedded Software is the program that runs on the nano 33. The figure 13 is a block diagram

showing the data collection to build a dataset program logic.

Finger 1 – Finger 5

sensor readings
MCU

Output to terminal

in *.csv format

Figure 15: System software block diagram for data collection

23

To collect data, each of the 10 gestures are repeated starting with 0. Every time capture the sensor

reading of all the 5 sensors. This data is stored in comma separated files (CSV) in the format shown

in table 2 below.

Table 2: Comma Separated Files format for data collected

File-1 File-2 File-3 File-4 File-5 File-6 File-7 File-8 File-9 File-10

Files File-1 to File-10 are the *.csv files (e.g., File-1.csv) holding data for the five fingers for each

number represented by each of the 10 gestures. Each files row contains gesture data for each

number with the format shown in the table below.

Table 3: Data format inside each file

Finger-1 Finger-2 Finger-3 Finger-4 Finger-5

RFLEX1 RFLEX2 RFLEX3 RFLEX4 RFLEX5

Row 1 of the table 3 above represents gesture representing number 0 in ASL.

The ten *.csv files holding data with five columns each makes up our dataset with which we later

train our ML algorithm to create a model for gesture classification.

The whole process of collecting data and managing it can be describe using a simple block diagram

shown below

Input Divider Resistor Value: R_DIV;

Input Voltage: Vcc;

Input Nominal Resistance: R_FLEX

Input 90 deg bend resistance: R_BEND

Read Sensor 1: s1

Read Sensor 2: s2

Read Sensor 3: s3

Read Sensor 4: s4

Read Sensor 5: s5

VFLEX = sX * Vcc/1023

RFLEX = R_DIV * (Vcc/VFLEX – 1.0)

Output: RFLEX1, RFLEX 2, RFLEX 3, RFLEX 4, RFLEX 5

Figure 16: Data collection algorithm design

24

Figure 17: Data management process

KNN Algorithm Design

A machine learning algorithm is a generic program that is made task specific when trained with

particular data, thus ML algorithm is a framework used to solve different problems depending on

the data the algorithm will be trained with. Model creation is an iterative process that begins with

defining the problem as shown in the block diagram below

Figure 18: Machine Learning Model Creation Process

This project implements a kNN algorithm to classify gestures. This algorithm is a simple, easy to

implement supervised machine learning algorithm. It can be used for both regression and

classification problems. In this study, KNN is used for a gesture classification task.

kNN Algorithm Breakdown

a) Specify data examples with each their respective category

b) Initialize the k value, we have chosen 5 examples and therefore we can specify k value as <=5

c) For each example in the data

a. Calculate the Euclidean distance between the current sensor data (query) and the current

example

b. On the ordered collection, add the distance and the index of the given example.

d) Sort the ordered collection of distance and indices in ascending order.

Data
Collection

Data
Inspection

Summary
Statistics

Data
Visualizations

•We clearly
define the
problem we
need a model
for

Define the
problem

•We build an
appropriate
dataset

Build dataset
•Train our

algorithm with
dataset

Train model

•Evaluate the
performance of
the model
created

Evaluate model
•If satisfactory

results, use the
model

Use the model

25

e) Select the first k entries from the sorted list

f) Return the mode of the k labels

The gesture is classified into the class label that has the highest number of entries.

ML Workflow.

The workflow outlines in details the process undertaken in developing the Sign-Glove ML model

starting from data collection through to uploading the created model and running inference on the

device’s onboard microcontroller. These steps are:

1. Collecting Data

2. Cleaning Data

3. Input data examples and their class

4. Pass the examples to the classifier

5. Run Inference on device

The completed system is shown in a high-level diagram, figure 18 below. The Gestures from flex

sensors representing each fingers position, that sensor data is passed on to the kNN algorithm. The

algorithm uses the provided examples for each class, calculates the nearest neighbor, and classifies

the recognized gesture into one of the 10 classes. The output is a number (0-9) and the confidence

level between the lowest confidence of 0.0 and highest confidence level of 1.0.

Collect Data

Pass examples to

classifier
Run on-device inference

Input the examples
1

3 4

2

GESTURE

Finger_1

Finger_2

.

.

Finger_5

Model

(Examples -> kNN

Algorithm)

NUMBER

0

1

.

.

9

Figure 19: Machine learning workflow for sign language gesture recognition glove

Figure 20: High Level end-to-end gesture classification process block diagram

26

3.6. Implementation

In this step, the system is implemented by building a prototype. It includes simulation and/or

building a prototype with physical components. During this phase both hardware and software

debugging was carried out. Due to the limitations of embedded devices, the debugging process is

not as straight forward as debugging in computer systems. The lack of keyboard and mouse and

also the fact that hardware is working concurrently with embedded software in real time which

means it’s not possible to do the usual single-stepping and print statements debugging. To make

the process easier, a cross- compiler and assembler was used to convert source code into object

code for our target system, the nano 33.

In this project, a top-down implementation was adopted since it has an advantage of having the

possibility of implementing the system sub-components simultaneously.

3.6.1. Hardware Implementation

i) Control Circuit: The control circuitry is made up of a microcontroller, the nano 33

BLE development board and an interface circuit. The connection is as shown in the

diagram below.

ii) Glove: The Signing Glove hardware is made of a glove to hold on to the flex

sensors, flex sensors in a voltage divider configuration using 47kΩ resistors with

the output from the divide connected to analog pins of the Arduino nano. The

diagram below shows a photo of the SG

 Figure 21: SL Glove Implementation

27

This hardware implementation is used for both dataset creation and gesture classification.

3.6.2. Embedded Software Implementation

The project has two embedded software implementations. First used to collect data is shown

below. The snippet is for a single flex sensor. The complete program for all sensors is on Appendix.

i) Program for Data Collection

• Read from flex sensors

• Format the sensor data into a csv format i.e. (s1, s2, s3, s4, s5)

• Log the sensor data from serial communication line to a file.

To test the flex sensors, program output is displayed on the Serial Communication port. The image

below shows the test results of flex sensor 1.

As the flex sensor is bent, the resistance value increases and is logged as shown.

Figure 24: Testing Flex Sensors

Figure 22: MCU - Voltage-divider
- Flex Sensor Interface

Figure 23: Microcontroller Wiring

28

To create a dataset from all the 5 sensors, the following line of code is used. First, we print the

column headers followed by sensor values separated by commas to Serial output. This output is

then captured using putty as printable output and saved as a comma separated values (*.csv) file.

ii) Logging Serial Data to File

In order to log Serial data being output by nano 33, Putty – a telnet and ssh client – is used. The

procedure is as follows

a) On the Category section, select Session

b) Fill in the COM details under “options controlling local serial lines” as shown in the

image below. In COMx: x is the nano 33 com port.

Figure 25: Logging data from Serial Communication line to file

c) On the Category section, select Logging

d) On Session logging select printable output radio button

e) Specify the log file name as shown in the figure below

3

2

1

29

Figure 26: Starting the sensor data logging to file

f) Click Open. This starts the logging session capturing serial data and printing it to a file.

This is our dataset.

Figure 27: Serial output on putty.

iii) Data Curation & Dataset Creation

The sensor data is logged in multiple *.csv files, one for each number. This translates to 10 files.

To create a dataset, the files were consolidated into a single file.

The diagram below shows a snippet of the csv file for numbers 0 & 1 and the curated file.

3

2

4

1

30

Program for Gesture Recognition & Classification

• Pass the examples to the classifier and the number class

 example_1[] = {84,467,684,468,424};

 example_2[] = {219,360,624,474,443};

• Pass the examples to the classifier and the number class

 gestureClassifier.addExample(example_1, 1);

 gestureClassifier.addExample(example_2, 1);

• New sensor data is then passed on to the classifier and classified according to the nearest

neighbors by the KNN algorithm.

Full Source code on Appendix

i) ML Software Implementation

Since this project uses a relatively simple dataset, TinyML using classical machine learning

algorithm k nearest neighbor (kNN) is implemented as compared to the more powerful deep

learning frameworks like TFLite for Microcontrollers. This has the advantage of being lightweight

for embedded devices, easy to understand and employs no off-device training nor additional tools.

Figure 28: Dataset created from Logged output on file

31

Testing and Results
To test the completed sign language gesture recognition device developed, two users were

requested to wear the glove and sign random numbers between 0 and 9. And repeat for 20 times

to capture each class at least twice. The testing was split into two experiments. Experiment 1 and

Experiment 2 that was necessitated by the relatively low confidence levels while classifying

numbers 3, 4 and 5.

i) Experiment 1 whereby the KNN algorithm is provided with 5 examples of each class

and parameter k = 5.

ii) Experiment 2 whereby the KNN algorithm was provided with 10 examples of each

class while maintaining k = 5.

First, the classifier was provided with only five examples of each class, for example, we provided

the algorithm with 5 samples of sensor data while signing the number “4”. The results from the

first experiment.

The algorithm correctly classified 17 out of 20 gestures correctly albeit with lower confidence on

numbers 4 and 5. That is an accuracy of 85%. This can be attributed to the low sensitivity on the

flex sensor attached to the thumb therefore giving out almost similar sensor values.

To test whether providing more examples will increase the accuracy, we doubled the examples

from 5 to 10 for each class and conducted the second experiment.

Number signed KNN Prediction Confidence

4 4 0.8

7 7 1.0

3 3 0.6

9 9 1.0

5 5 0.8

5 5 0.6

1 1 1.0

6 6 1.0

2 2 0.8

8 8 1.0

0 0 1.0

7 7 0.8

5 4 0.6

2 2 1.0

6 6 1.0

3 4 0.6

1 1 0.8

0 0 1.0

4 5 0.3

9 9 1.0

32

Classes 3, 4 and 5 have the lowest confidence of 0.6, which means 3 out of 5 examples or 60% of

the falls within the nearest neighbor with 2 falling out of the range. Classes 0, 6, 8 and 9 have the

highest confidence of 1.0.

During experiment 2, the KNN algorithm was provided with more examples. Increased from 5 to

10.

The signed numbers are shown in the table below.

Number Signed KNN Prediction Confidence

2 2 1.0

7 7 1.0

4 4 1.0

9 9 1.0

8 8 1.0

6 6 1.0

1 1 1.0

4 4 0.8

9 9 1.0

5 5 1.0

1 1 1.0

3 3 1.0

0 0 1.0

7 7 1.0

3 3 1.0

6 6 1.0

8 8 1.0

5 5 1.0

0 0 1.0

2 2 1.0

When the examples provided to the KNN was increased from 5 to 10 and the k=5 maintained,

the accuracy increased from the 85% achieved on experiment 1 to 100% classifying accurately

all the classes of the signed numbers. The confidence level also increased for all classes to 1.0

with only a single 0.8 for number 4.

33

4. CHAPTER FOUR: RESULTS AND DISCUSSION

4.1. Introduction

In this chapter we evaluate the outcome of the project as outlined in chapter one and how the

outcome relates to the main objectives of the study, that is developing a sign language gesture

recognition device using open-source resources that accurately identifies and classifies numbers

signed in American Sign Language.

4.2. Achievements & Discussion

The project successfully achieves all the main objectives of the study. The sign language gesture

recognition glove has been developed based on the Arduino open-source platform. Edge

computing aspect of the device has been achieved by running the machine learning algorithm,

kNN, on the resource constrained Arduino nano board. By providing 5 examples of each class of

the numbers (0-9), confidence of up to 1.0 and accuracy of 100% have been achieved. By providing

more examples (increased the examples to 10 from 5) increased the algorithms accuracy and

confidence to 100% and 1 respectively for all number classes

From system testing, the sign language gesture classifier classifies all 8 & 9 categories of numbers

correctly with an accuracy of 100% with highest confidence on signing number 9 and lowest

confidence on number 4 (0.6) using 5 examples. Increasing the number of examples to 10 while

retaining k at K=5, the accuracy increased to 100% and confidence 1 for all classes.

With low number of examples, despite the low confidence on signing numbers 3, 4 and 5 is due to

almost similar position of the thumb in signing those numbers, the accuracy remains relatively

high at over 85% for all the three classes. With a more sensitive sensors to track the fingers, the

accuracy of the kNN algorithm would increase even with fewer examples, this is informed by the

high confidence and accuracy on signing numbers 6 to 9 due to their distinctive fingers positioning.

4.3. Conclusions

Considering all the population living with hearing disability and the projected numbers rise by

2050 to about 1 person in 10, there is a need to use technology in order to address the

communication challenge posed. Despite the progress made in addressing the use of technology

for the communication challenge, the existing solutions are either too naïve and not scalable such

as rule-based gloves or too complex and dependent on robust hardware resources like in computer

vision approach. Therefore, more practical inexpensive solution that depend on machine learning

on the edge, small in size and more power efficient is needed.

This study has successfully demonstrated one such solution using glove approach, affordable

sensors and open-source hardware. Moreover, it has met the two main objectives of the study. That

is to assess the accuracy of using Machine Learning Frameworks in specific TinyML ArduinoKNN

are suited for sign language gesture recognition on embedded device and to develop a sign

language gesture recognition device for numbers 0 to 9 based on on-device inferencing. In

addition, the device achieves the properties considerations from the literature review. It is real-

time, accurate, low-cost and portable.

34

4.4. Recommendations & Future Work

This study was solely focused on and limited to identifying and classifying numbers 0 to 9 due to

the project time constraints. Due to this reason, only one machine learning algorithm was explored,

the KNN algorithm. For more complex sign language gestures like phrases that require whole arm

movement in conjunction with finger movement, a more robust machine learning algorithm like

convolutional neural networks (CNN) would be required. For microcontrollers such as one used

in this project, implementing a CNN algorithm is possible. Platforms such as TensorFlow are open-

source and have algorithms customized to run on low resourced devices in form of TensorFlow

Lite for Microcontrollers.

This glove can be extended to classify letters and phrases using the onboard IMU sensor which

has a 3-axis gyroscope, an accelerometer and a magnetometer that would track the whole hand

movement in addition to fingers. This would require much more data from multiple sensors and

thus would require a more robust and scalable ML algorithm like TensorFlow Lite for

Microcontrollers while maintaining the same hardware configuration.

35

References
Abdulla, D., Abdulla, S., & Manaf, R. (2016, December). Design and Implemetation of a sign-to-

speec/text system for deaf and dumb people. In Proceedings of the 2016 5th International

Conference on Electronic Devices, Systems and Applications, 1-4.

Ahmed, M. A., Z., B. B., Aws, A. Z., Mahmood, M., & Muammad, M. (2018). A Review on Systems-

Based Sensory Gloves for Sign Language Recognition State of the Art between 2007 and 2017.

Sensors.

Ahmed, S., S.M.B., & Qureshi, S. (2010, November). Electronic speaking glove for speechless patients, a

tongue to a dumb. In Proceedings of the 2010 IEEE Conference on Sustainable Utilization and

Development in ENgineering and Technology (STUDENT), 56-60.

Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a

survey. Computer networks, pp.393-422.

Arif, A., Rizvi, S., Jawaid, I., Waleed, M., & Shakeel, M. (2016, April). Techno-Talk: An American Sign

Language (ASL) Translator. In Proceedings of the 2016 International Conference on Control,

Decision and Information Technologies (CoDIT),, 665-670.

Bajpai, D., Porov, U., Srivastav, G., & Sanchan, N. (2015, April). Two Way Wireless Data

Communication and American Sign Language Translator Glove for Images Text and Speech

Dispaly on Mobile Phone. In Proceedings of the 2015 Fift Internatiunal Conference on

Communication Systems and Network Technologies (CSNT), 578-585.

Bantupalli, K., & Xie, Y. (2019). American Sign Langugae Recognition Using Machine Learning and

Computer Vision. Retrieved from Researchgate.

Brownlee, J. (2020, August 19). Difference Between Algorithm and Model in Machine Learning.

Retrieved from Machine Learning Mastery: https://machinelearningmastery.com/difference-

between-algorithm-and-model-in-machine-learning/

Dabre, K., & Dholay, S. (2014). Machine Learning Model for Sign Language Interpretation using

webcam images. International Conference on Circuits, Systems, Communication and Information

Technology Applications (CSCITA), pp 317-321. doi:10.1109/CSCITA.2014.6839279

David J, S., & Zeltzer, D. (1994). A Survey of Glove-based Input. pp 30 - 39. doi:10.1109/38.250916

Deng, L., & Yu, D. (2014). Deep Learning: Methods and Applications. Foundation and Trends in Signal

Processing, pp 199 - 200.

Dictionary, K. (2015). KSL Dictionary. Retrieved April 2021, from https://www.ksldictionary.com

Elmahgiubi, M., Ennajar, M., Drawin, N., & Elbuni, M. (2015, June). Sign Language translator and

gesture recognition. In Proceedings of the 2015 Global Summit on Computer & Information

Technology (GSCIT), 1-6.

Emilio, M. D. (2014). Embedded Systems Design for High Speed Data Acquisition and Control. Springer.

Retrieved June 2021

36

eTechnophiles. (2019). etechnophiles. Retrieved from Arduino Nano 33 BLE Sense Pinout, Introduction

& Specifications: https://www.etechnophiles.com/arduino-nano-33-ble-sense-pinout-

introduction-specifications/

Forsberg, K., & Mooz, H. (1991). The relationship of System Engineering to the Project Cycle. In

Proceedings of the First Annual Symposium of National Council on System Engineering, 57-65.

Fu, Y., & Ho, C. (2008). Development of a programmable digital glove. Smart Mater. Struct, 526-533.

Gupta, D., Singh, P., Pandey, K., & Solanki, J. (2015, March). Design and development of a low-cost

Electronic Hand Glove for deaf and blind. In Proceedings of the 2015 2nd International

Conference on Computing for Sustainable Global Development, 1607 - 1611.

Iwasako, K., Soga, M., & Taki, H. (2014). Development of finger motion skill learning support system

based on data gloves. Procedia Comput. Sci, 1307-1314.

Kartik, P., Sumanth, K., Ram, V., & Prakash, P. (2020). Sign Language to Text Conversion Using Deep

Learning. In book: Inventive communication and Computational Technologies, Proceedings of

ICICCT, pp 219 - 227.

Kramer, J., & Leifer, L. (1988, April). The Talking Glove. ACM SIGCAPH Computers and the physically

Handicapped(39). doi:10.1145/47938

Kumar, D. (2019, April 21). Software Engineering (SDLC) V-Model. Retrieved October 30, 2020, from

https://www.geeksforgeeks.org/software-engineering-sdlc-v-model/

Lee, Y. T. (2018). Techology trend of edge AI. International Symposium on VLSI Design, Automation

and Test (VLSI-DAT), (pp. 1-2). IEEE.

Microsoft. (2017). Microsoft Soundscape. Retrieved from Microsoft: https://www.microsoft.com/en-

us/research/product/soundscape

Peckol, J. (2019). Embedded systems: a contemporary design tool. John Wiley & Sons.

Plack, C. J. (2014). The Sense of Hearing. Hove: Psychology Press Limited.

Praveen, N., Karant, N., & Mega, M. (2014, October). Sign Language interpreter using a smart glove. In

Proceedings of the 2014 International Conference on Advances in Electronics, Computers and

Communications (ICAECC), 1 - 5.

Presser, M. (2016). The rise of IoT–why today.

Ralph, P. a. (2009). A proposal for a formal definition of the design concept. Design Requirements

Workshop (LNBIP 14), pp 103 - 136.

Rosencrance, L. (2019). Tech Target. Retrieved from Software:

https://searchapparchitecture.techtarget.com/definition/software

Saggio, & Giovanni. (2014). A novel array of flex sensors for a goniometric glove. Sensors and Actuators

A: Pysical, pp 119 - 125.

Saltuk, O., & Kosan, I. (2014, May 7). Design and Creation - Motivation. Design and Creation, p. 4.

37

Sandler, W. &.-M. (2006). Sign Language and Linguistics Universals. Cambridge: Cambridge University

Press.

SAS. (2021). SAS Insights. Retrieved from Analytics Insights:

https://www.sas.com/en_us/insights/analytics/computer-vision.html

Sharma, D., Verma, D., & Khetarpal, P. (2015, December). Labview based sign language trainer cum

portable display uit for the speech impaired. In Proceedings of the 2015 Annual IEEE India

Conference (INDICON), 1-6.

Shigeki, S. (2019). Human Behavior and Another Kind in Conciousness:Emerging Research and

Opportunities. IGI Global.

Shishir G. Patil, D. K. (2019). GesturePod: Enabling On-device Gesture-based Interaction for White Cane

Users. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and

Technology (UIST '19)., pp 403 - 415. doi:https://doi.org/10.1145/3332165.3347881

Sreejan, A., & Yeole, S. (2017). A Review on Applications of Flex Sensors. International Journal of

Emerging Technology and Advanced Engineering, pp 97 - 100.

Tanyawiwat, N., & Thiemjarus, S. (2012, May). Design of an assistive communication glove using

combined sensory channels. In Proceedings of the 2012 9th International Conference on

Wearable and Implantable Body Sensor Networks (BSN), 34-39.

TensorFlow. (2021). TensorFlow. Retrieved from An end-to-end open source machine learning platform:

https://www.tensorflow.org/

Trottier-Lapointe, W., Majeau, L., El-Iraki, Y., Loranger, S., Chabot-Nobert, G., Bordaus, J., . . .

Lapointe, J. (2012, July). Signal Procesing for low cost optical data glove. In Proceedings of the

2012 11th International Conference of Information Science, Signal Processing and teir

Applications (ISSPA), 501-504.

Vijay, P., Suhas, N., Chandrashekhar, C., & Dhananjay, D. (2012). Recent Developments in sign

language recognition: A review. International Journal of Advance Computing, Engineering,

Communication Technology, 21-26.

Vijayalakshmi, P., & Aarthi, M. (2016, April). Sign Language to speech conversion. In Proceedings of

the 2016 International Conference on Recent Trends in Information Technology, 1-6.

Vutinuntakasame, S., Jaijongrak, V., & Thiemjarus, S. (2011, May). An assistive body sensor network

glove for speech-and-hearing-impaired disabilities. In Proceedings of the 2011 International

Conference on Body Sensor Networks (BSN), 7-12.

World Health Organisation. (2021, 04 01). Deafness and Hearing Loss. Retrieved from World Health

Organization: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss

Zhou, Z., Chen, K., Li, X., Zhang, S., Wu, Y., Zhou, Y., . . . Chen, J. (2020, September). Sign-to-Speech

translation using machine-learning-assisted stretchable sensor arrays. Nature Electronics.

doi:10.1038/s41928-020-0428-6

