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ABSTRACT 
There are approximately over 360 million people globally living with a hearing disability; partially or 

completely deaf. In order to communicate, these people use sign language. Like any spoken language, sign 

language has its own grammar rules and can be translated from signed language to spoken language by a 

sign language interpreter. However, unlike translating spoken languages, translating sign language is a 

challenging task. Humans have been doing the translation. But with recent advancement in machine 

learning and artificial intelligence algorithms, these translation tasks are being taken up by machines. 

Despite the progress, machine translation of sign language is still faced with challenges since it requires 

data that is largely unavailable of hand and finger movements for words and phrases signing. Furthermore, 

the approaches adopted such as computer vision are resource intensive. 

Embedded systems have evolved from simple transistor circuits to complex microprocessor and 

microcontroller systems. Though still resource constrained in terms of the processing power, memory and 

power consumption, these embedded systems can now perform tasks previously not possible on earlier 

versions. Recently, we have had machine learning algorithms that can run on resource-constrained 

embedded systems like TensorFlow Lite for Microcontrollers. With these algorithms, we can now perform 

machine learning inferences locally on-device. 

In this study, a machine learning on the edge algorithm was used to translate sign language gestures to 

spoken language by developing an Embedded Intelligent System that uses sensors to track finger curvatures 

and hand movement. The device is first designed and built using open-source hardware. Then used to create 

a dataset by collecting data. Data is collected by performing the signing of various sign language gestures. 

The data collected is curated and used to provide examples for various classes to the k-nearest neighbour. 

This algorithm is then used to perform on-device inferencing to classify new gestures as they are signed. 

Arduino nano BLE sense is used together with flex sensors. As flex sensor bends with signing of different 

letters and numbers, the data is collected and logged in a file. This data is then used to train a model using 

a K-nearest neighbour (KNN) algorithm. New signed numbers are translated and displayed on the serial 

monitor. 

The main contribution of the paper is a new machine learning on the edge approach using open-source 

resources to create a sign language translating device that works on resource constrained devices without 

the reliance of external inference engines  
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1. CHAPTER ONE: INTRODUCTION 

1.1. Background 

Hearing or auditory perception is defined by (Plack, 2014) as the ability to perceive sounds by 

detecting vibrations, the changes in air pressure surrounding a medium through time, through 

an organ such as the ear. The loss of ability to perceive sound in humans is known as hearing 

loss. Hearing loss may be categorized as mild, moderate, severe or profound and may affect 

one or both ears. A person is classified as having hearing loss if they are not able to hear sound 

in the normal hearing threshold of 20dB or better in both ears. Factors leading to hearing loss 

are several as indicated by (World Health Organisation, 2021) and may occur in different 

period in one’s lifetime. These includes Prenatal period with factors such as genetic factors 

and intrauterine infections. Other periods are Perinatal period, childhood and adolescence, 

adulthood and old age. 

According to (World Health Organisation, 2021), over 5% of the world population requires 

rehabilitation to address their disabling hearing loss. They further estimate that by 2050, over 

700 million people – or a tenth of the world population will have a disabling hearing loss. 

Unaddressed hearing loss has impact on the daily living for the people involved both to the 

deaf person and the people they have to interact with on daily basis. The impact could be 

classified as individual impact or social impact which ranges from loneliness, social isolation 

and stigma. W.H.O estimates that unaddressed hearing loss poses an annual global cost of US 

$980 Billion in health sector costs, educational support, productivity loss and societal cost. The 

cost does not include hearing aid device costs. 

People with hearing loss or hearing disability are considered as deaf. These people have 

profound hearing problem with very little to no hearing at all. The method often used by these 

people to communicate is the sign language. Also known as signed languages, these languages 

use visual-manual modality to convey meaning. (Sandler, 2006) says sign languages are full-

fledged natural languages with their own grammar and lexicon. 

In Kenya, a Kenyan Sign Language dictionary was published in 1991. More recently an online 

dictionary and a mobile application have been published since 2014 (Dictionary, 2015). In 

1990s, Kenya National Association of the Deaf spearheaded a government program to train 

and employ teachers based in Machakos Teachers College to increase literacy in English and 

Swahili among the deaf community which was largely lacking despite the schools being 

established as early as 1960s. 

The advancement in technology in recent times is a great enabler in achieving tasks that 

previously were difficult and near impossible. In particular machine learning technology, 

which is a part of artificial intelligence based on the idea that machines can learn from large 

amounts of data, identify patterns and make decisions independently or semi-independently 

with minimal human intervention. Embedding this kind of capability on embedded devices 

makes it possible to achieve what traditional embedded devices were unable to achieve. 

Embedded Systems have been around and been used in various industries for control and 

automation of processes and for monitoring (Peckol, 2019). With rise of Wireless Sensor 



2 
 

Networks (WSN) (Akyildiz, I.F., Su, Sankarasubramaniam, & Cayirci, 2002), these embedded 

systems were able to connect and communicate with each other remotely and consequently, 

this have given rise to the now ubiquitous technology of Internet of Things (IoT) (Presser, 

2016) whereby large numbers of such embedded systems (ES) interconnects and connects to 

the worldwide web. Furthermore, the development of light-weight machine learning 

algorithms that can run on resource-constrained embedded devices have seen rise of what is 

now called Embedded Intelligent Systems (EIS) as a result of embedding intelligent behavior 

into the traditional embedded devices using these Machine Learning (ML) algorithms such as 

Deep Neural Networks (DNN), referred to as Edge AI or Machine Learning on the Edge (Lee, 

2018). 

Despite the advancement on these technologies, their application on assistive technology 

applications remains limited. There are notable applications in other assistive technologies 

including Microsoft’s Soundscape (Microsoft, 2017) and GesturePod (Shishir G. Patil, 2019).  

The availability of Open-Source hardware and Software in recent times has also accelerated 

the development of hardware and software solutions in timely and cost-effective manner. 

Using these technologies, the problem of sign language sign recognition can be tackled with 

relative ease. The process would require collecting sufficient data on sign language gestures, 

training machine learning algorithms with this data and running the models in embedded 

device which performs inference and determine what the gesture made means. 

In this study, Arduino Nano 33 BLE Sense -an open-source hardware platform from Arduino 

and TensorFlow Lite for Microcontrollers from Google is used to develop a device that will be 

able to detect and accurately categorize gestures made in sign language. The microcontroller 

chip is the nRF52840 running at 64MHz, has 1MB Flash Memory and 256KB SRAM. The 

nano 33 BLE Sense has several on-board sensors including a 9 axis Inertia measurement Unit 

(IMU). Other sensors to be used is 10 flex sensors, one for each finger. The TensorFlow Lite 

is an open-source framework that enable creating quantized machine learning models efficient 

and small enough to run on low-resourced platforms such as microcontrollers. 
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1.2. Problem Statement 

Humans are social being and as so there is a lot of interaction amongst each other. Communication is one 

such interaction and arguably one of the most basic human need. For effective communication to occur, the 

people involved need to understand each other. The problem arises when one person or both in an 

interaction have a hearing difficulty or are deaf. We have invented Sign Language for such occasions 

whereby one signs using hands and the deaf can understand and sign back thus allowing effective 

communication without depending on hearing. With projected 1 in every 10 people being deaf by 2050, 

there is a need to develop a means of interpreting the hand signals to be able to communicate with people 

who do not understand the sign language. Moreover, 80% of the projected number coming from low-and 

middle-income countries, and over 25% being 60 years and older (World Health Organisation, 2021), the 

solution need be practical, low-cost for affordability, light-weight and scalable. 

This study follows and is limited to using the American Sign Language (ASL) Numbers  

The main objective of this study is to develop a sign language translation device and answer the following 

questions: 

i) Is it possible to develop a machine learning model for sign language gesture recognition for 

numbers 0 – 9 using a cheap hardware microcontroller, flex sensors and a machine learning 

algorithm? 

ii) What accuracy can be achieved by a machine learning model using sensor data from flex 

sensors? 
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1.3. Objectives 

The goal of this research is to develop a power-efficient, light-weight and low-cost sign language gesture 

recognition using open-source hardware, specifically the Arduino nano 33 Ble Sense and flex sensors. In 

particular, the study has the following sub-objectives: 

1. Assess the accuracy of using Machine Learning Frameworks in specific TinyML ArduinoKNN are 

suited for sign language gesture recognition on embedded device 

2. Develop a sign language gesture recognition device for numbers 0 to 9 based on on-device 

inferencing 

Further, the study focuses and is limited to gestures that represents numbers (0 to 9) which form a basis for 

counting. The outcome of this research will be of great value to software and hardware developers interested 

in developing Assistive Technology applications for the Deaf people. Moreover, it will form a basis for 

further research work on translating other sign language gestures by running on-device inference and can 

be extended to translate alphabets, words and phrases that require full hand movement and two hands 

signing. For the deaf user the device will be an efficient means of communication with other people 

including those who do not understand the sign language. 

1.4. Justification 

This study focuses on performing machine learning on edge devices. Most of the edge devices 

are low-resource with tight time constraints, low-power and small amount of memory.  Due to 

these limitations, it has been very difficult to have machine learning models that can run on 

them and therefore most embedded devices have always relied on rule-based programs. With 

introduction of TinyML and TensorFlow Lite for Microcontrollers, machine learning 

capability, however limited, has been brought to these low-resourced devices. Having these 

abilities on microcontrollers means inferencing can be done right there on the device without 

having to rely on a network connection to a cloud service. This in turn translates to having 

better data security and privacy since no data ever leaves the device. Therefore, worth 

experimenting for this particular application of gesture recognition, being able to recognize 

gestures on tiny embedded devices using the power of machine learning without depending on 

hefty hardware and fast network connections. 
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2. CHAPTER TWO: LITERATURE REVIEW 

2.1. Introduction 

Communication is a two-way process for sharing information. It is an essential part of getting 

along with others and getting things done. The communication modes can take different forms 

including writing, verbal and body language. It is simply straight forward when people involved 

can talk and both understand the language being used.  

Sign language is the language used by the mute and the deaf. People who have lost their ability to 

hear uses signs to communicate amongst themselves and to communicate to people who can hear 

normally. Sign language is the basic means of communication for these people. However, majority 

of the population do not understand sign language and therefore needs a translator (Dabre & 

Dholay, 2014). 

2.2. Related Works 

Many solutions have been proposed and explored for sign language translation. There are two 

major approaches to this problem. Glove-based solutions and using the computer vision approach.  

i) Computer Vision (CV) approach 

Computer vision is defined as a field of artificial intelligence (AI) that trains computers to interpret 

visual world using digital images and videos, deep learning algorithms (SAS, 2021). 

In their study (Dabre & Dholay, 2014), uses a camera system to capture images which are then 

used to train a model to translate the gestures. A similar study by (Bantupalli & Xie, 2019) uses 

the ASL dataset together with CV techniques to extract temporal and spatial features from video 

sequences using a Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) 

respectively. These approaches achieve high accuracy on the training data for example (Kartik, 

Sumanth, Ram, & Prakash, 2020) achieved an accuracy of 98.67% from a dataset of 87,002 images 

trained on 78,300 images and test size of 8,700 images. Despite the high accuracy, CV approaches 

rely on expensive and cumbersome hardware. A computer is always required to run inference 

making it impractical to use. 

ii) Glove Approach. 

The Oxford dictionary defines a glove as a covering worn on the hand having separate parts for 

each finger and thumb. Sign-language gloves have been explored since 1980s when researches 

started to explore ways humans can interact with computers using gestures. In a study carried out 

in 1988, Stanford University researchers (Kramer & Leifer, 1988) proposed to develop “the talking 

glove” a device that could analyse a non-vocal person’s finger spelling and hand formation and 

output the spelled word with synthesized voice.  Further, using a voice recognition equipment, the 

deaf user could read an incoming text on a miniatured LCD screen on a modified wrist watch and 

deaf-blind could read on a portable braille display. The complete system was cumbersome and 

very expensive. The system cost without the CyberGlove itself was US $3,500. (David J & Zeltzer, 
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1994). Several other translation gloves have been proposed over the years and some won awards 

like Ryan Patterson in 2001, a high school student from Colorado that used a leather glove with 

10 sensors that monitored each finger position, relayed that information to a computer for display 

as text. In 2015, two Mexican researchers at Mexico’s National Polytechnic Institute developed a 

similar glove that used a Bluetooth module to communicate with an Android phone. 

The most recent publication by (Zhou, et al., 2020) translation glove published in June 2020 uses 

assisted stretchable sensor arrays and achieved an accuracy of 98.63% with a recognition time of 

less than 1s. In their study, (Zhou, et al., 2020) used proprietary technology including integrated 

wearable sensor arrays and nanotechnology. 

Another glove approach as explored by (Vutinuntakasame, Jaijongrak, & Thiemjarus, 2011) was 

using Hall Effect Magnetic Sensors (HEMS) to detect applied magnetic field determining voltage 

variations in an electrical conductor. The approach places the HEMS at the tip of the fingers and 

a magnet at the palm of the hand. It generates a voltage of between 0.1v and 0.4v that is then 

passed on to a microcontroller. This approach however depends on an external hardware, the 

Odroid XU4 minicomputer for gesture recognition and classification making it quite a large device 

that is bulky, impractical and is power inefficient to power bot the minicomputer and the Arduino. 

For the training datasets, most of the literature that exist has used a sample size of between 80 

samples to as many as 1400 samples. The following table covers some of the details about the 

devices, gestures and samples per gesture when signing for American Sign Language. 

Gestures Components Size of the 

sample 

Author 

4 gestures 5 flex sensors  (Praveen, 

Karant, & Mega, 

2014) 

Alphabets A -H 5 flex sensors 

Accelerometer 

Contact sensor 

80 samples (10 

samples each 

letter 

(Sharma, Verma, 

& Khetarpal, 

2015) 

26 Alphabets 5DT Glove 234 samples (3 

for each letter) 

(Iwasako, Soga, 

& Taki, 2014) 

Alphabets A-Z 

and numbers 0 -9 

8 touch sensors 1080 samples 

(30 for each) 

(Fu & Ho, 2008) 

Alphabets A – Z 5 flex sensors 

Accelerometer 

Contact Sensors 

260 samples (10 

entries for each 

alphabet) 

(Elmahgiubi, 

Ennajar, Drawin, 

& Elbuni, 2015) 

120 static 

gestures 

Flex sensor 

Contact sensor 

3600 samples 

(100 for each) 

(Ahmed, S.M.B., 

& Qureshi, 

2010) 
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29 letters 10 flex sensors 

3-axis 

accelerometer 

1450 samples (Vijayalakshmi 

& Aarthi, 2016) 

 

All the listed studies have been conducted using different sample sizes. The larger the sample sizes 

are used since classification is done off the device using an extra hardware device, minicomputers. 

The larger the sample size, the more memory is used up. For the low memory microcontrollers 

this would be a problem and thus the need to have an efficient system that classifies gestures using 

a small sample size of less than 10 for each gesture without compromise on the accuracy. 

According to (Ahmed, Z., Aws, Mahmood, & Muammad, 2018), the SLR systems have been 

plagued with low accuracy, not able to keep up with real-time recognition and unable to track the 

human hand that has multiple degrees of freedom. In their study, (Abdulla, Abdulla, & Manaf, 

2016) highlights the challenges in obtaining a high precision for fast movements when signing 

naturally like in an actual conversation. Also lack of quality datasets (Arif, Rizvi, Jawaid, Waleed, 

& Shakeel, 2016) for sign language is another problem facing gesture recognition systems. This is 

critical problem especially for machine learning applications that often needs large datasets to learn 

from. 

To develop a sign language translating device, there are considerations to make for the various 

stakeholders. The researcher could put an emphasis on creating quality datasets, analyse the 

various sign language variations in use, the sensor types and numbers and also put an emphasis on 

hybrid systems that includes body movements, facial expressions and two hands signing (Ahmed, 

Z., Aws, Mahmood, & Muammad, 2018). The developer should focus on developing an 

inexpensive system that is affordable to the people most afflicted by hearing disability. According 

to (Bajpai, Porov, Srivastav, & Sanchan, 2015) most people afflicted by this disability are poor 

and live below the poverty level and thus affordability should be one of the top considerations 

while developing the solution (Vijay, Suhas, Chandrashekhar, & Dhananjay, 2012). Another 

critical consideration according to the study by (Gupta, Singh, Pandey, & Solanki, 2015) and 

(Bajpai, Porov, Srivastav, & Sanchan, 2015) is real-time recognition, this is to ensure the gestures 

are being recognized and interpreted as they happen for a natural and fluid communication. 

Portability is another thing to consider as the solution needs to be moved around by the user in 

order to be usable even when not connected to external hardware like personal computers. In 

several studies, notably by (Tanyawiwat & Thiemjarus, 2012), (Vijayalakshmi & Aarthi, 2016) 

and (Trottier-Lapointe, et al., 2012) have listed portability as one of the features to consider for a 

practical sign language translation device. 

From the Literature review, most of the work on sign language translation is either based on 

computer vision approach, that is computing resources intensive or the glove approach which relies 

on classic programming paradigm or using mobile phones for running the inference. Further, 

considering the highlighted considerations by (Ahmed, Z., Aws, Mahmood, & Muammad, 2018) 
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on device costs, accuracy and portability, most of the reviewed work falls short in one property or 

the other. Research on running inference on the edge, on the glove itself without relying on PC or 

Mobile phones is still scarce. 

2.3. Conclusion 

The mainstream approaches to sign language translation are using the resource intensive Computer 

Vision approach or the network dependent glove approach. In order to achieve ubiquitous, low-

cost, low-resource machine translation of signed language, there is a need to shift from the 

traditional approaches of using resource intensive techniques like CV that requires model 

development, training and running inference to be performed on the PC. With recent development 

of Machine Learning on the Edge, like the release of Machine Learning Frameworks like TinyML 

and TensorFlow Lite for Microcontrollers, it is essential to explore the possibilities of running 

inference for machine translation right there on the device without relying on any additional 

hardware. Moreover, exploring open-source, low-cost hardware and software, will make it 

possible for relatively fast and easy development and affordable solutions. This will also ensure 

that the most critical properties of cost considerations, accuracy, real-time and portability 

highlighted in the study are met. 
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3. CHAPTER THREE: RESEARCH DEISGN AND METHODOLOGY 

3.1. Research Design 

This study adopts design and creation strategy whereby an artefact will be developed and analysed. 

According to (Saltuk & Kosan, 2014) design science research “creates new interesting knowledge, 

demonstrates academic qualities and focuses on improvement, invention and exaptation” using an  

 

artifact.  Furthermore, the device is an embedded intelligent device and therefore will include the 

phases of embedded systems development. The development will follow process in figure 1. 

Data Collection 

ML Model Evaluation 

System Design 

ML Model Training 

Dataset Creation 

System Integration & 

Testing 

Figure 1: Research Design 

System Analysis 

System Development 

Figure 2: Design Science Research Process Model as adopted from Saltuks' Design 
and Creation 
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This study adopts the Design Science Research Process model by (Saltuk & Kosan, 2014). The 

figure 2 outlines the design and creation process. 

 

3.2. System Design 

Design goals are: 

i) Arduino nano 33 BLE Sense and Flex Sensor based Sign Language Gesture recognition 

device 

ii) Scan and analyse Flex sensors inputs 

iii) Output data in csv format 

iv) Basic Hardware (Arduino Nano 33 BLE Sense with 64MHz clock, 1MB Flash 

memory, 256kB SRAM, ADC/DAC and I2C, SPI, USB, I2S and UART Interfaces. 

In this study, the V-Model development methodology is adopted. The V-model is a software 

development life cycle (SDLC) model where the process executes in a sequential manner in V-

shape (Forsberg & Mooz, 1991). It is also known as the Verification and Validation model. In this 

method, each development stage is associated with a testing phase. Each phase must be completed 

before moving on to the next phase. The figure 2 below illustrates the various steps undertaken for 

development, verification and validation. 

 

Figure 3: V - model design methodology adopted for embedded software development 
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3.3. Architectural Design 

System design is broken down further into modules taking up different functionalities. The data 

transfer and communication between internal modules with other systems is understood (Kumar, 

2019). 

The following block diagram shows the system architecture. This architecture is used for both data 

collection and for running inference on the embedded device. 

 

 

 

 

Coding 

Coding is the process of writing embedded software for the components used to build the system or 

embedded device. For a larger system it is known as software development.  

The platform used for the purpose of this development is the Arduino platform which is an integrated 

development platform with many libraries for most of the sensors existing in the market. Using this library 

in the development process saves on time and overall development cost of an embedded system. 

There are 3 program files for the 3 development phases: 

1) Data collection phase program that uses the sensors to collect and log data in csv format 

2) Machine learning phase where the data is used to train a model that is used as a classifier and 

3) The classifier program that is uploaded to the embedded device to capture new data and use the 

loaded model to classify it. 

 

 

 

 

 

 

 

 

 

 

Flex Sensor Array 
Microcontroller Output on Serial 

Monitor 

Figure 4: System Architecture block diagram 
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Data Collection 

Data collection to form a dataset that will be used to train the classifier instead of using a ready-

made dataset. The following diagram shows the overall system design for data collection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Training and Testing data used in this study will be obtained from the 5 flex sensors. 

Model will be created using TensorFlow Lite for Microcontrollers framework on PC. Testing and 

Validation will be done on PC before being converted and uploaded to the Microcontroller Unit 

(MCU). Once the model is uploaded into the MCU, the inference will be performed on the device 

itself without relying on the PC. 

 

 

3.4. System Analysis 

3.4.1. System Requirements  

Overview 

In the analysis phase, the requirements and constraints -the limits within which the system must 

operate- of the proposed system are explored. The requirements are the specific parameters that 

Figure 5: Data Collection and Model Training Block Diagram 

Train ML Model (KNN) 

Give examples on 

Microcontroller 

Run inference on 

Microcontroller 

Output on Serial 

Monitor 
Flex Sensor 1 

Flex Sensor 2 

Flex Sensor 5 

Store Sensor 

Data 

Microcontroller Unit 
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the system must satisfy. These requirements are outlined below and further translated into a more 

detailed specification. 

Objectives 

The main objective of this project is to develop a Sign-Glove (SG) that captures the gestures, finger 

movement of the person signing using sign language. The SG will be worn by the person doing 

the signing, the gestures are captured and translated appropriately. Specifically, this study will deal 

with interpreting numbers 0 to 9 signed using the American Sign Language (ASL) 

Process 

To develop this system, several factors are considered, the hardware and software requirements 

are discussed in-depth in the following subsections. 

In this development project, several factors are considered. This device needs to be light weight, 

use less power (less than 200mW) and be accurate while recognizing and translating gestures. 

These measures considered for analysis are listed below. 

i) Accuracy 

It is the difference between the expected values and the actual recorded values. The 

accuracy of the device should be above 80% 

 

ii) Precision 

This is the number of distinguishable measurements. For the purpose of this project, 

only ten distinguishable measurements are required. Each measurement for each 

number. 

 

iii) Size and Weight 

These qualities represent the physical space occupied by the device. Since it’s a hand 

worn device, the package should be small so as to fit comfortably behind the glove. 

The physical dimensions should not exceed 50mm by 60mm 

 

iv) Power 

Power is the total amount of energy required to run a system. This is a crucial 

requirement since the device is to be used as a wearable and therefore running on 

battery power. This requirement however, is not strictly followed for this prototype 

development since it will be running on USB power from the PC. 

 

 

 

v) Time-to-prototype 
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This is the total time required to design, build and test a prototype system. For this 

project, the device should be complete within the duration stipulated for the purpose of 

research project (March to July). 

 

System requirements 

The system should be able to  

i) Track the finger movements as numbers are signed 

ii) Accurately recognize the number signed 

iii) Accurately categorize the number signed using a machine learning algorithm 

 

3.4.2. Sign Language 

Sign Language is different and distinct from other spoken languages like English. It contains its 

own fundamental rules on pronunciation, word formation and expressions. However, just like other 

languages, sign language, specific ways of expressing ideas vary from one region to another and 

just as spoken languages, expression can change depending on other factors such as age variation 

and context.  

Only signing numbers has been selected to reduce complexity of the design given the limited time 

I have to work with. Moreover, the more gestures I incorporate, the larger the ML model will be 

generated and therefore running the risk of not fitting on the limited flash space and RAM on the 

nano board. To prevent this, and to demonstrate that ML on the edge is possible for gesture 

translation, only numbers have been chosen for the proof of concept. Further, the ASL has been 

chosen since it signs numbers using only one hand unlike Kenyan Sign Language that uses both 

hands to sign numbers. The diagram below illustrates how to sign numbers using ASL. These are 

the gestures we will be looking to translate using a machine learning model running on Arduino 

nano. 

 

In embedded system, design and development is divided into two major categories, 

Hardware and embedded software. These two must work in tandem, with the development 

of embedded software being informed by the choice of hardware, i.e., processing unit and 

sensors. 

Figure 6: American Sign Language for numbers 0 to 9 
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3.4.3. Hardware Requirements and Analysis 

This section goes into details on the different hardware used for the purpose of capturing gestures, 

converting them into electrical signals and interpreting them. Hardware and specifically sensors 

and the microcontroller in this project plays a crucial role of capturing analog data that will be 

used for both training a machine learning algorithm and testing the resulting model to evaluate 

metrics such as accuracy levels, precision and resolution. 

The hardware required, both sensors and microcontroller unit are discussed in the following 

subsections. 

Flex Sensor 

In order to capture finger movement during signing, to capture the gesture made by the hand and 

the fingers, an electromechanical sensor is required. Folding and straightening of fingers is the 

action required to gesture numbers; unlike other gestures that may require whole arm movement, 

therefore a flexible sensor that translates these physical movements into electrical signals is 

required. 

A flex sensor, also called a bend sensor. It measures the amount of deflection of the surface on 

which it is stuck. The working principle of a flex sensor is based on resistivity as material is bent 

since there is a direct proportionality between bending and resistance. These sensors are used in 

many applications and areas of research from Human Machine Interface devices (Saggio & 

Giovanni, 2014) to Rehabilitation research (Sreejan & Yeole, 2017). Flex sensors come in various 

form like Fibre optic flex sensor, capacitive flex sensor and velostat flex sensor. 

Working principle 

Velostat flex sensor is made up of polymeric foil that has been impregnated with carbon black. 

This carbon makes it electrically conductive. It is inexpensive and its ability to change resistance 

as it bends makes it suitable for our gesture sensing application. The figure below shows a flex 

sensor 

 

 

Figure 8: Flex Sensor working principle Figure 7:Flex Sensor 
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The sensor has a nominal resistance when held straight. When the substrate is bent, however, there 

is a corresponding proportional increase in resistance to the bend radius, the farther you bend the 

sensor, the higher the resistance values. In order to take advantage of this property, the flex sensor 

is used as a variable resistor or a potentiometer together with another resistor in a voltage divider 

configuration as shown in the circuit diagram below. 

 

 

Figure 9: Flex Sensor - Voltage divider configuration 

R1: Flex Sensor 

R2: Resistor 

Vin: Input voltage (3.3v) 

Vout: Output voltage from the voltage divider 

The output voltage is calculated using the following equation: 

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛(
𝑅1

𝑅1 + 𝑅2
) 

The output voltage (Vout) is an analog voltage that is fed into an analog input pin of our 

microcontroller.  

 

Microcontroller 

The microcontroller is the brain of the whole device. It contains the processing unit, flash memory 

and RAM. Since for this project we need an MCU capable of running inference of TensorFlow 

Lite for Microcontrollers machine learning model, a 32-bit processor is required. Therefore, the 

choice of Arduino nano 33 Ble sense. The Nano 33 BLE Sense is Arduinos 3.3V, small form factor 

(45mm x 18mm) AI enabled development board. It’s a recently released and is loaded with a 

number of embedded sensors. The board features a relatively powerful low power processor, 

nRF52840 from Nordic Semiconductor. This processor is a 32-Bit ARM Cortex M4 CPU running 
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at 64MHz, 128MB of RAM. Further, the processor features a Bluetooth pairing with Near Field 

Connectivity (NFC) and Bluetooth Low Energy (BLE) to pair and send data to external devices 

These sensors include: 

• Humidity & Temperature sensor 

• 9 – axis IMU sensor for motion, vibration and orientation sensing 

• Barometric sensor 

• Digital Microphone 

• Gesture, proximity, light color and light intensity. 

Technical Specifications 

Microcontroller nRF52840 

Operating Voltage 3.3V 

Clock Speed 64MHz 

Flash Memory 1MB 

SRAM 256KB 

Digital I/O 14 

Analog Inputs 8 (ADC bit 200ksamples) 

The possibility of running Edge AI on this tiny, low power device and the array of onboard sensors 

included is what is appealing and informed its selection among other embedded development 

boards in the market today. 

The diagram below shows the nano 33 board and all its onboard sensors (eTechnophiles, 2019). 

 

Figure 10: Arduino nano 33 Ble sense development board 
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The analog voltage (Vout) from flex sensor – resistor voltage divider is fed directly to 5 of the 8 

analog inputs of the nano 33. These pins are directly connected to a 12-bit analog-to-digital 

convertor that quantizes and samples the voltage and converts it into a digital signal for processing 

by the CPU. 

3.4.4. Software Requirements and Analysis 

The software is defined by (Rosencrance, 2019) as a set of instructions, data or programs used to 

operate computers and execute specific tasks.  

This section analyses the software required for data acquisition, machine learning algorithm and 

embedded software to run on-device inference. 

 

Embedded Software 

Embedded systems are not typical computers since they are highly specialized, resource 

constrained devices both in time, processing power and memory. These requires embedded 

software to control these devices. The term embedded software is sometimes used interchangeably 

with firmware (Emilio, 2014). 

There are two categories of embedded software that is required. That is, first, the software that 

captures data from our sign glove for all the ten gestures. Each gesture is unique and therefore each 

of the sensor on each of the five fingers will have a sensor voltage value. The data capture 

embedded software needs to capture these values and output them to a file in a specified format 

shown below. 

Table 1: Data capture format 

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Number 

      

      

Each column header for sensor represents the corresponding finger. E.g., Sensor 1 corresponds to 

Finger 1 which is the small finger, all the way to Sensor 5 on the thumb finger. Finally, on the last 

column we have the number (0 – 9) represented by the data entries on the same row. 

The first program needs to read the ADC and from those values calculate the voltage and 

resistance. These resistances for each of the five sensors is then tabulated on the table above to 

create a dataset. The dataset created is then used for ML model development. 

Machine Learning & Deep Learning Algorithm 

Machine learning algorithm is defined by (Brownlee, 2020) as a procedure that is run on data to 

create a machine learning model. These algorithms perform pattern recognition by learning from 

data. ML algorithms can be put into three distinct classes; supervised, unsupervised and 

reinforcement learning. They can be further classified as classification, regression or clustering 

algorithms. 
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A model is “the output of a machine learning algorithm run on data” and represents what was 

learnt by the ML algorithm (Brownlee, 2020). 

Deep Learning (DL) is defined by (Deng & Yu, 2014) as a class of machine learning algorithms 

that uses multiple layers to progressively extract higher level features from raw input. The simplest 

has three layers that is input layer, representational layer and an output layer. 

In the case of supervised learning, whereby we have labelled data, deep learning removes 

redundancy in representation by translating data into compact intermediate representations (IR) 

similar to Principal Components and thus eliminates the need for feature engineering. The “deep” 

in deep learning simply means the number of layers that data is to be transformed through from 

input through the hidden layers all the way to the output. This chain of transformation from input 

to output is known as credit assignment path (CAP) and describes the causal connection between 

the input and the output. According to (Shigeki, 2019) CAP of depth 2 has been shown to be a 

universal approximator since it can emulate any function. 

TensorFlow 

TensorFlow is an end-to-end, open-source machine learning platform (TensorFlow, 2021). 

TensorFlow Lite for microcontrollers is a light weight TensorFlow Library designed and optimized 

to run on resource constrained devices. It does not require an Operating System to run, dynamic 

memory allocation nor standard C/C++ libraries. TF is available as TFLite for Microcontrollers 

for Arduino platform making it suitable to use for this particular application. Arduino nano BLE 

is the only supported Arduino boards as the time of this study. We shall use TFLite to create and 

run a 30kB Neural Net (NN) to recognize and identify gestures using flex sensors and IMU. 

Limitations of TFLite for Microcontrollers 

TensorFlow Lite for Microcontrollers is specifically designed to run on specific resource 

constrained microcontroller development unlike the standard TensorFlow Lite that runs on more 

powerful Linux based embedded devices like NVidia’s Jetson Nano and Raspberry Pi. 

Working with TensorFlow Lite for Microcontrollers has the following specific limitations: 

i) Supports a limited subset of TensorFlow operations, this affects the number of 

architectures that is possible to run on. 

ii) Currently only a limited number of devices are supported. 

iii) Requires manual memory management since it uses Low-level C++ API 

iv) Does not support on-device training and therefore training needs to be done on a more 

powerful environment, and load the trained model. 

 

K-Nearest Neighbour (kNN) 

kNN algorithm uses distance between datapoints to classify the current data point. It is a supervised 

machine learning algorithm that is simple to implement and works well with structured data that 

is dependent on distance measure between the values read from .  
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For this particular project, an implementation of kNN is more suitable because it makes highly 

accurate predictions. Furthermore, the quality of predictions is dependent on distance measures. 

Moreover, it does not require additional tools to implement unlike TFLite that requires training 

and model creation done on a separate platform. Using kNN in Arduino platform requires only to 

provide data examples and class, therefore all implementation is done within the same platform. 

 

3.5. Design 

In this section the conceptual model of the hardware and software is built. In order to simplify the 

process, the project is broken down into modules and subcomponents. Also, during this phase, the 

cost, schedule and expected performance of the system are determined. The data flow diagram 

below shows the major components of the system and how data moves from one module to the 

other. 

 

 

 

 

 

 

3.5.1. Hardware Design 

 

In order to build the hardware prototype, we design it first, outlining its architecture using a high-

level block diagram. The following subsections will focus on conceptual and logical architectures. 

Hardware Architectural Design 

i) Conceptual Architecture 

The conceptual architecture focuses on identification and allocation of responsibilities 

to the components. 

Data collection hardware conceptual architecture is shown in the figure below 
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Figure 11: System Data Flow Diagram 

Figure 12: Hardware Conceptual Architecture block diagram for data collection 
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ii) Logical Architecture 

This architecture focuses on components interaction, connection mechanisms and 

protocols, interface design and specification. 
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Figure 13: System Hardware Architecture 

Figure 14: System Hardware logical architecture block diagram 
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For data collection and for inferencing purposes, the hardware configuration is similar. The only 

difference is the embedded program. For the purposes of data collection, the source program is 

purely rule based using the traditional programming practice to read from the sensors. The 

complete prototype however, uses both rule -based and machine learning model running with 

classification performed purely using machine learning model. 

3.5.2. Software Design 

Software design is defined by (Ralph, 2009) as “the process by which an agent creates a 

specification of a software artifact intended to accomplish goals, using a set primitive component 

and subject to constraints.” The software for the project is divided into two categories. Category 1 

is the embedded software that will run on the microcontroller and category 2 is the Python program 

that will create an ML model using google colaboratory in order to take advantage of the high 

processing capability offered by Google Colab. 

Category 1, the embedded software is further divided into two, first the program for data collection, 

and second the program that performs gesture classification. 

Embedded Software Design 

Embedded Software is the program that runs on the nano 33. The figure 13 is a block diagram 

showing the data collection to build a dataset program logic.  

 

 

 

 

 

 

Finger 1 – Finger 5 

sensor readings 
MCU 

Output to terminal 

in *.csv format  

Figure 15: System software block diagram for data collection 
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To collect data, each of the 10 gestures are repeated starting with 0. Every time capture the sensor 

reading of all the 5 sensors. This data is stored in comma separated files (CSV) in the format shown 

in table 2 below. 

Table 2: Comma Separated Files format for data collected 

File-1 File-2 File-3 File-4 File-5 File-6 File-7 File-8 File-9 File-10 

          

          

 

Files File-1 to File-10 are the *.csv files (e.g., File-1.csv) holding data for the five fingers for each 

number represented by each of the 10 gestures. Each files row contains gesture data for each 

number with the format shown in the table below. 

Table 3: Data format inside each file 

Finger-1 Finger-2 Finger-3 Finger-4 Finger-5 

RFLEX1 RFLEX2 RFLEX3 RFLEX4 RFLEX5 

     

Row 1 of the table 3 above represents gesture representing number 0 in ASL. 

The ten *.csv files holding data with five columns each makes up our dataset with which we later 

train our ML algorithm to create a model for gesture classification. 

The whole process of collecting data and managing it can be describe using a simple block diagram 

shown below 

Input Divider Resistor Value: R_DIV; 

Input Voltage:  Vcc; 

Input Nominal Resistance: R_FLEX 

Input 90 deg bend resistance: R_BEND 

Read Sensor 1: s1 

Read Sensor 2: s2 

Read Sensor 3: s3 

Read Sensor 4: s4 

Read Sensor 5: s5 

VFLEX = sX * Vcc/1023 

RFLEX = R_DIV * (Vcc/VFLEX – 1.0) 

Output: RFLEX1, RFLEX 2, RFLEX 3, RFLEX 4, RFLEX 5 

 

Figure 16: Data collection algorithm design 
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Figure 17: Data management process 

 

 

 

KNN Algorithm Design 

A machine learning algorithm is a generic program that is made task specific when trained with 

particular data, thus ML algorithm is a framework used to solve different problems depending on 

the data the algorithm will be trained with. Model creation is an iterative process that begins with 

defining the problem as shown in the block diagram below 

 

Figure 18: Machine Learning Model Creation Process 

 

This project implements a kNN algorithm to classify gestures. This algorithm is a simple, easy to 

implement supervised machine learning algorithm. It can be used for both regression and 

classification problems. In this study, KNN is used for a gesture classification task. 

 

kNN Algorithm Breakdown 

a) Specify data examples with each their respective category 

b) Initialize the k value, we have chosen 5 examples and therefore we can specify k value as <=5 

c) For each example in the data 

a. Calculate the Euclidean distance between the current sensor data (query) and the current 

example  

b. On the ordered collection, add the distance and the index of the given example. 

d) Sort the ordered collection of distance and indices in ascending order. 
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e) Select the first k entries from the sorted list 

f) Return the mode of the k labels 

The gesture is classified into the class label that has the highest number of entries. 

 

ML Workflow. 

The workflow outlines in details the process undertaken in developing the Sign-Glove ML model 

starting from data collection through to uploading the created model and running inference on the 

device’s onboard microcontroller. These steps are: 

1. Collecting Data 

2. Cleaning Data 

3. Input data examples and their class  

4. Pass the examples to the classifier 

5. Run Inference on device 

 

 

 

 

 

 

 

The completed system is shown in a high-level diagram, figure 18 below. The Gestures from flex 

sensors representing each fingers position, that sensor data is passed on to the kNN algorithm. The 

algorithm uses the provided examples for each class, calculates the nearest neighbor, and classifies 

the recognized gesture into one of the 10 classes. The output is a number (0-9) and the confidence 

level between the lowest confidence of 0.0 and highest confidence level of 1.0. 
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Figure 19: Machine learning workflow for sign language gesture recognition glove 

Figure 20: High Level end-to-end gesture classification process block diagram 
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3.6. Implementation 

In this step, the system is implemented by building a prototype. It includes simulation and/or 

building a prototype with physical components. During this phase both hardware and software 

debugging was carried out. Due to the limitations of embedded devices, the debugging process is 

not as straight forward as debugging in computer systems. The lack of keyboard and mouse and 

also the fact that hardware is working concurrently with embedded software in real time which 

means it’s not possible to do the usual single-stepping and print statements debugging. To make 

the process easier, a cross- compiler and assembler was used to convert source code into object 

code for our target system, the nano 33. 

In this project, a top-down implementation was adopted since it has an advantage of having the 

possibility of implementing the system sub-components simultaneously. 

3.6.1. Hardware Implementation 

i) Control Circuit: The control circuitry is made up of a microcontroller, the nano 33 

BLE development board and an interface circuit. The connection is as shown in the 

diagram below. 

 

ii) Glove: The Signing Glove hardware is made of a glove to hold on to the flex 

sensors, flex sensors in a voltage divider configuration using 47kΩ resistors with 

the output from the divide connected to analog pins of the Arduino nano. The 

diagram below shows a photo of the SG 

 

 Figure 21: SL Glove Implementation 
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This hardware implementation is used for both dataset creation and gesture classification. 

3.6.2. Embedded Software Implementation 

The project has two embedded software implementations. First used to collect data is shown 

below. The snippet is for a single flex sensor. The complete program for all sensors is on Appendix. 

i) Program for Data Collection 

 

• Read from flex sensors 

• Format the sensor data into a csv format i.e.  (s1, s2, s3, s4, s5) 

• Log the sensor data from serial communication line to a file. 

 

To test the flex sensors, program output is displayed on the Serial Communication port. The image 

below shows the test results of flex sensor 1.  

As the flex sensor is bent, the resistance value increases and is logged as shown. 

 

Figure 24: Testing Flex Sensors 

Figure 22: MCU - Voltage-divider 
- Flex Sensor Interface 

Figure 23: Microcontroller Wiring 
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To create a dataset from all the 5 sensors, the following line of code is used. First, we print the 

column headers followed by sensor values separated by commas to Serial output. This output is 

then captured using putty as printable output and saved as a comma separated values (*.csv) file. 

ii) Logging Serial Data to File 

In order to log Serial data being output by nano 33, Putty – a telnet and ssh client – is used. The 

procedure is as follows 

a) On the Category section, select Session 

b) Fill in the COM details under “options controlling local serial lines” as shown in the 

image below. In COMx: x is the nano 33 com port. 

 

Figure 25: Logging data from Serial Communication line to file 

c) On the Category section, select Logging 

d) On Session logging select printable output radio button 

e) Specify the log file name as shown in the figure below 

3 

2 

1 
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Figure 26: Starting the sensor data logging to file 

f) Click Open. This starts the logging session capturing serial data and printing it to a file. 

This is our dataset. 

 

Figure 27: Serial output on putty. 

iii) Data Curation & Dataset Creation 

The sensor data is logged in multiple *.csv files, one for each number. This translates to 10 files. 

To create a dataset, the files were consolidated into a single file. 

The diagram below shows a snippet of the csv file for numbers 0 & 1 and the curated file. 
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Program for Gesture Recognition & Classification 

•  Pass the examples to the classifier and the number class  

 example_1[] = {84,467,684,468,424}; 

   example_2[] = {219,360,624,474,443}; 

• Pass the examples to the classifier and the number class 

 gestureClassifier.addExample(example_1, 1); 

   gestureClassifier.addExample(example_2, 1); 

• New sensor data is then passed on to the classifier and classified according to the nearest 

neighbors by the KNN algorithm. 

Full Source code on Appendix 

 

i) ML Software Implementation 

Since this project uses a relatively simple dataset, TinyML using classical machine learning 

algorithm k nearest neighbor (kNN) is implemented as compared to the more powerful deep 

learning frameworks like TFLite for Microcontrollers. This has the advantage of being lightweight 

for embedded devices, easy to understand and employs no off-device training nor additional tools. 

 

 

  

Figure 28: Dataset created from Logged output on file 
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Testing and Results 
To test the completed sign language gesture recognition device developed, two users were 

requested to wear the glove and sign random numbers between 0 and 9. And repeat for 20 times 

to capture each class at least twice. The testing was split into two experiments. Experiment 1 and 

Experiment 2 that was necessitated by the relatively low confidence levels while classifying 

numbers 3, 4 and 5. 

i) Experiment 1 whereby the KNN algorithm is provided with 5 examples of each class 

and parameter k = 5. 

ii) Experiment 2 whereby the KNN algorithm was provided with 10 examples of each 

class while maintaining k = 5. 

First, the classifier was provided with only five examples of each class, for example, we provided 

the algorithm with 5 samples of sensor data while signing the number “4”. The results from the 

first experiment.  

 

 

The algorithm correctly classified 17 out of 20 gestures correctly albeit with lower confidence on 

numbers 4 and 5. That is an accuracy of 85%. This can be attributed to the low sensitivity on the 

flex sensor attached to the thumb therefore giving out almost similar sensor values. 

To test whether providing more examples will increase the accuracy, we doubled the examples 

from 5 to 10 for each class and conducted the second experiment. 

Number signed KNN Prediction Confidence 

4 4 0.8 

7 7 1.0 

3 3 0.6 

9 9 1.0 

5 5 0.8 

5 5 0.6 

1 1 1.0 

6 6 1.0 

2 2 0.8 

8 8 1.0 

0 0 1.0 

7 7 0.8 

5 4 0.6 

2 2 1.0 

6 6 1.0 

3 4 0.6 

1 1 0.8 

0 0 1.0 

4 5 0.3 

9 9 1.0 
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Classes 3, 4 and 5 have the lowest confidence of 0.6, which means 3 out of 5 examples or 60% of 

the falls within the nearest neighbor with 2 falling out of the range. Classes 0, 6, 8 and 9 have the 

highest confidence of 1.0. 

During experiment 2, the KNN algorithm was provided with more examples. Increased from 5 to 

10. 

The signed numbers are shown in the table below. 

Number Signed KNN Prediction Confidence 

2 2 1.0 

7 7 1.0 

4 4 1.0 

9 9 1.0 

8 8 1.0 

6 6 1.0 

1 1 1.0 

4 4 0.8 

9 9 1.0 

5 5 1.0 

1 1 1.0 

3 3 1.0 

0 0 1.0 

7 7 1.0 

3 3 1.0 

6 6 1.0 

8 8 1.0 

5 5 1.0 

0 0 1.0 

2 2 1.0 

 

When the examples provided to the KNN was increased from 5 to 10 and the k=5 maintained, 

the accuracy increased from the 85% achieved on experiment 1 to 100% classifying accurately 

all the classes of the signed numbers. The confidence level also increased for all classes to 1.0 

with only a single 0.8 for number 4.  
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4. CHAPTER FOUR: RESULTS AND DISCUSSION 

4.1. Introduction 

In this chapter we evaluate the outcome of the project as outlined in chapter one and how the 

outcome relates to the main objectives of the study, that is developing a sign language gesture 

recognition device using open-source resources that accurately identifies and classifies numbers 

signed in American Sign Language. 

4.2. Achievements & Discussion 

The project successfully achieves all the main objectives of the study. The sign language gesture 

recognition glove has been developed based on the Arduino open-source platform. Edge 

computing aspect of the device has been achieved by running the machine learning algorithm, 

kNN, on the resource constrained Arduino nano board. By providing 5 examples of each class of 

the numbers (0-9), confidence of up to 1.0 and accuracy of 100% have been achieved. By providing 

more examples (increased the examples to 10 from 5) increased the algorithms accuracy and 

confidence to 100% and 1 respectively for all number classes 

From system testing, the sign language gesture classifier classifies all 8 & 9 categories of numbers 

correctly with an accuracy of 100% with highest confidence on signing number 9 and lowest 

confidence on number 4 (0.6) using 5 examples. Increasing the number of examples to 10 while 

retaining k at K=5, the accuracy increased to 100% and confidence 1 for all classes. 

With low number of examples, despite the low confidence on signing numbers 3, 4 and 5 is due to 

almost similar position of the thumb in signing those numbers, the accuracy remains relatively 

high at over 85% for all the three classes. With a more sensitive sensors to track the fingers, the 

accuracy of the kNN algorithm would increase even with fewer examples, this is informed by the 

high confidence and accuracy on signing numbers 6 to 9 due to their distinctive fingers positioning. 

4.3. Conclusions 

Considering all the population living with hearing disability and the projected numbers rise by 

2050 to about 1 person in 10, there is a need to use technology in order to address the 

communication challenge posed. Despite the progress made in addressing the use of technology 

for the communication challenge, the existing solutions are either too naïve and not scalable such 

as rule-based gloves or too complex and dependent on robust hardware resources like in computer 

vision approach. Therefore, more practical inexpensive solution that depend on machine learning 

on the edge, small in size and more power efficient is needed.  

This study has successfully demonstrated one such solution using glove approach, affordable 

sensors and open-source hardware. Moreover, it has met the two main objectives of the study. That 

is to assess the accuracy of using Machine Learning Frameworks in specific TinyML ArduinoKNN 

are suited for sign language gesture recognition on embedded device and to develop a sign 

language gesture recognition device for numbers 0 to 9 based on on-device inferencing. In 

addition, the device achieves the properties considerations from the literature review. It is real-

time, accurate, low-cost and portable. 
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4.4. Recommendations & Future Work 

This study was solely focused on and limited to identifying and classifying numbers 0 to 9 due to 

the project time constraints. Due to this reason, only one machine learning algorithm was explored, 

the KNN algorithm. For more complex sign language gestures like phrases that require whole arm 

movement in conjunction with finger movement, a more robust machine learning algorithm like 

convolutional neural networks (CNN) would be required. For microcontrollers such as one used 

in this project, implementing a CNN algorithm is possible. Platforms such as TensorFlow are open-

source and have algorithms customized to run on low resourced devices in form of TensorFlow 

Lite for Microcontrollers. 

This glove can be extended to classify letters and phrases using the onboard IMU sensor which 

has a 3-axis gyroscope, an accelerometer and a magnetometer that would track the whole hand 

movement in addition to fingers. This would require much more data from multiple sensors and 

thus would require a more robust and scalable ML algorithm like TensorFlow Lite for 

Microcontrollers while maintaining the same hardware configuration. 
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