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ABSTRACT 

Green gram is one of the legumes considered suitable for cultivation in the Arid and Semi-

Arid Lands (ASALs) of Kenya. However, the area that is currently suitable remains small due 

to inadequate knowledge on the variation of climatic elements in space and time in the 

ASALs. The changing climate may have an effect on the areas presently suitable for green 

gram production. This study purposed to model the suitability of green grams in Kenya under 

the current and projected future climates.  

The CORDEX RCA4 models' ability to simulate the observed rainfall and temperature from 

Climate Research Unit (CRU) datasets were assessed using statistical measures of bias and 

normalised root mean square error (NRMSE). The bias in rainfall was reduced by using an 

ensemble of the models adjusted using the scaling method. The temporal analysis of 

temperature and rainfall were assessed using the Mann Kendall test to determine whether 

there was an increasing or decreasing trend in the datasets. Mapping for different levels of 

green gram suitability in Kenya was done through the use of a weighted overlay of climate, 

soil, and topography parameters. The APSIM model was calibrated for four varieties of green 

gram, namely Biashara, Tosha, N26, and KS20 varieties to evaluate the impact of climate 

change on green gram yield, biomass and days to maturity in a highly suitable region. 

Although the CORDEX models and their ensemble did not replicate the spatial and temporal 

variability of rainfall during the MAM and OND season very well, the models and their 

ensemble captured the temperature pattern well. The rainfall ensemble, despite performing 

better than the individual CORDEX models, still showed notable biases, necessitating bias 

adjustment before further use in green gram crop modelling. The bias-corrected ensemble of 

rainfall and the ensemble of temperature were then used to study the space and time 

variability of rainfall under baseline (1971 to 2000) and future RCP 4.5 and RCP 8.5 

scenarios (2021 to 2050) and their effect on green gram production.  

The temporal trend of rainfall has been increasing at most stations under the baseline scenario 

and the trend is projected to continue under the RCP 4.5 and 8.5 scenarios for the MAM and 

OND seasons with statistical significance for some stations at a P-Value of 0.05. The 

temporal trend of maximum temperature during the MAM season has been increasing and 

statistical significance is noted at most stations under the baseline, RCP 4.5, and 8.5 scenarios 

at a P-Value of 0.05. The temporal trend of minimum temperature shows that minimum 

temperature has been increasing at all stations under the baseline, RCP 4.5 and 8.5 scenarios 
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for the MAM and OND seasons with statistical significance at most stations at a P-Value of 

0.05. The increase in temperature is attributed to global warming due to a rise in the level of 

greenhouse gases.  

Most of Kenya was found moderately suitable for green gram production during the MAM 

and OND seasons under the baseline, RCP 4.5 and RCP 8.5 scenarios. During the MAM 

season, the area currently highly suitable for green gram production (67842.6 km
2
) is 

projected to increase slightly to 68600.4 km
2 

(1.1%) under the RCP 4.5 scenario and reduce 

to 61307.8 km
2 

(-9.6%) under the RCP 8.5 scenario. This decrease could be attributed to 

unfavourable temperature and rainfall above the threshold suitable for green gram production. 

During the OND season the area currently highly suitable (49633.4 km
2
) will increase under 

both RCP 4.5 (22.2%) and RCP 8.5 (58.5%) scenarios. This increase is attributed to good 

rainfall and temperature conditions in the future which are favourable for green gram 

production. 

The calibrated green gram model captured the observed yield, biomass and days to maturity 

of the four varieties of green gram shown by a coefficient of determination (CoD) which 

ranged between 87.0% and 99.0%; bias values which ranged between 1.3 and 25.3 and levels 

of NRMSE which ranged between 4.7% and 45.5%. During the MAM and OND seasons, a 

decline in yield, biomass, and days to maturity is expected under both the RCP 4.5 and RCP 

8.5 scenarios. The increase in rainfall amount under both the RCP 4.5 and RCP 8.5 scenarios 

will translate to a lower yield and increased biomass. The increase in temperature will result 

in reduction of the days to maturity for green gram in Kitui County. 

The maps of green gram suitability indicate that the area suitable for green gram production 

will increase in the future. There is, however, a net decrease in yield of the four green gram 

varieties modelled. Kenya, currently, only produces 460kg/ha of green grams. The study 

found that despite the decrease in yield, potential production under the future climate 

scenarios was still above 460kg/ha. There is, thus, potential to expand on the current 

production of green grams. Therefore, despite the decrease in the future, green gram is still a 

lucrative crop since farmers still stand to increase their current production. 

Policymakers can refer to the developed green gram suitability maps under past and future 

climate scenarios, to determine how suitable their region will be for green gram production. 

Policymakers should also make use of the four green gram varieties developed under the 

APSIM model to mitigate against the possible impacts of climate change on green gram 
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yield. Given that the government aims to revive farming in the ASALs by promoting climate 

smart agriculture through planting drought resistance crops, there is need to develop green 

gram varieties which are more tolerant to the expected increase in rainfall and temperature to 

increase yield and in turn benefit farmers, the society and the country at large. 
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CHAPTER 1: INTRODUCTION 

1.1 Background Information 

Natural resources are the key drivers of economic development and livelihoods in Kenya. 

This dependency means that extremes in climate, particularly in temperature and rainfall, 

may unfavourably affect the physical, biological, and socio-economical arrangements 

ensuing in adversities such as crop failure and loss of livestock in the agricultural sector. 

Upward of 80% of Kenya’s land mass is classified as Arid and Semi-Arid Lands (ASALs) 

and is home to close to 10 million people whose dependence on rain-fed agriculture makes 

them most disposed to climate change (Omoyo et al., 2015; Bobadoye et al., 2016).  It is 

expected that the vast land in the ASALs has the potential to contribute to Kenya’s economy 

through agriculture. However, conflicts, droughts, and food insecurity are the most common 

occurrences. One of the solutions to food insecurity in the ASALs is for the Kenyan 

government to introduce farming in these areas. Practising climate-smart agriculture, either 

by supplementing the available rainfall with irrigation or by growing drought-resistant crops, 

can help the country increase income, create employment opportunities and attain food 

security (NIB, 2014). 

Climatic conditions are changing, and the agricultural sector is likely to be one of the sectors 

most severely affected under future climates. Globally, an increase of the earth’s surface 

temperature by 0.8 °C has been observed in the last hundred years and by 0.6°C in the last 

thirty years (Hansen et al., 2003). The continued rise in greenhouse gas concentration has 

been projected to increase the average worldwide temperatures by between 1.4 °C and 5.8 °C 

by the time the 21
st
 Century ends (IPCC, 2007) making precipitation amount and distribution 

unpredictable.  During the 20
th

 Century a warming trend of roughly 0.7 °C was observed in 

most parts of the African continent, causing increased rainfall over the southeast part of 

Africa and  decreased rainfall over the Sahel; this warming trend is projected to continue, 

possibly leading to a sea-level rise and more recurrent extreme weather events (Thornton et 

al., 2006).  

Subsistence farming in the tropical region is expected to be the most susceptible to the 

changing climate, as smallholder farmers lack enough resources to acclimatize to the 

changing climate conditions (Eriksen et al., 2007). Increased frequency in droughts, which is 

anticipated with the changing climate will worsen the state of food insecurity and deepen 
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poverty in the ASALs of Kenya (Omoyo et al., 2015; Bobadoye et al., 2016). Drought is the 

most destructive natural hazard to people living in Kenya and Africa (Bobadoye et al., 2016).  

Opiyo et al. (2015) have reported possible short term and long term strategies that may be 

adapted for mitigating against the adverse effects of climate variability and change. Some 

adaptation approaches in the short term include water harvesting, development of early 

warning systems and infrastructure, encouraging cooperative societies, and table banking. 

Long term approaches include building schools, child education and livestock diversification 

(Bobadoye et al., 2016). Agriculture is important to the livelihoods of rural communities who 

practice crop and animal production. The coping mechanisms employed by communities 

towards climate shocks inform us of their ability to deal with future variability (Kates, 2000). 

The models used by the Intergovernmental Panel on Climate Change (IPCC), have projected 

that the level of dryness and water stress in the arid regions will intensify; therefore, there is 

need to implement the adaptation policies that cater to the expected changes (El-Beltagy and 

Madkour, 2012). 

Green gram (Vigna radiata L.) has been reported to do well in the arid lands of Kenya and 

has the capacity to lessen poverty and improve food security (SASOL, 2015). Green gram is 

grown for sale to the local and export markets with good returns. Through value addition, the 

seeds are processed into flour, bread, and noodles (Morton et al., 1982). Green gram has 

better returns based on input and output and price per kilogram compared to popular crops 

like maize and beans (ERA, 2013).  

The sub-Saharan Africa region is categorised by high levels of poverty with most farmers 

relying on rain-fed agriculture to produce crops (Cooper et al., 2008) including Kenya. Green 

gram is a short season crop that is well adapted to the warmer and drier conditions of the sub-

tropics and tropics (Morton et al., 1982). Green gram will grow in the range of temperature of 

about 20 to 40 C (Morton et al., 1982). Since green gram is observed to perform well under 

dry conditions, with this dryness anticipated to continue, the green gram crop may be a better 

crop for farmers to survive the projected conditions. This study shall model which zones in 

the ASAL regions of Kenya would be most suitable for green gram production and estimate 

what the expected yields in the high impact areas would be. 

1.2 Statement of the Problem 

Green gram is a legume fit for agriculture in the ASALs of Kenya due to its capacity to do 

well under the dry soil conditions in the semi-arid regions. The production of green gram in 
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Kenya remains low due to inadequate knowledge on the variation of climatic elements in 

space and time in the ASALs and its rich nutritional value is unknown making it difficult to 

exploit its agricultural potential. Mugo et al. (2016) identified some areas in Kitui County, an 

ASAL county in Kenya, as suitable for green gram production in terms of climate, soil and 

topography. There is, however a gap in knowledge on whether there are presently other 

ASAL regions in Kenya suitable for green gram production, and how the projected changes 

in climate will affect these suitable regions.  

The temporal and spatial variability of climate variables is one of the key aspects responsible 

for the agricultural production in an area. A shift in climate variables may have an impact on 

both the high potential and ASAL regions of Kenya making current agricultural practices 

unsuitable. There is, therefore, a need to determine how suitable green gram will be in Kenya 

under future climate conditions. The impact of increased temperature, and changing rainfall 

intensity and pattern has led to reduced agricultural production globally (Adhikari et al., 

2015). 

To develop agricultural policies in the long-term, planners should recognise the possible 

influence that the changing climate may have on the suitability zones of agriculture 

(Holzkämper et al., 2011). Planners need to understand the spatial and temporal changes in 

climatic suitability for the development of appropriate adaptation strategies (Holzkämper et 

al., 2011).  

1.3 Objectives 

The overall objective of this study was to model the suitability of green gram production 

under the current and projected future climates in Kenya. 

The specific objectives were, namely, to: 

i. Determine the temporal and spatial variability of climate parameters in Kenya. 

ii. Identify present and future suitability for green gram production in Kenya. 

iii. Simulate the effects of climate change on green gram yield in Kenya. 

1.4 Research Questions 

The research questions in this study are: 

i. What is the nature of the current and future variability of climate elements in space 

and time over Kenya? 
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ii. Which areas are currently suitable for green gram production in Kenya, and will the 

areas that are currently suitable still be fit for its production in the future? 

iii. How will modified climate elements affect green gram production in Kenya in the 

future? 

1.5 Justification and Significance of the Study 

Second to maize, legumes are the most preferred grain crop in Kenya (Muthomi et al., 2007). 

Legumes are commonly planted together with cereals such as sorghum, maize, millet and 

cassava, where the cereals are the majority crops (Hauggaard-Nielsen et al., 2007). Most 

farmers located in the ASALs prefer to intercrop maize with beans, with drought resistant 

crops such as green gram, finger millet and sorghum not being as preferable (Yvonne et al., 

2016). Green gram is a potential food and cash crop that has been reported to do well as 

opposed to maize which is characterised by frequent crop failure in the arid regions of Kenya 

(SASOL, 2014).  

Green gram has the ability to improve nutrition, enhance soil fertility and benefit the 

economy. Green gram is not only an affordable source of plant protein but also of minerals, 

carbohydrates, and vitamins. It plays an important role in easing undernourishment in 

resource-poor homes who cannot afford animal protein (Tharanathan and Mahadevamma, 

2003; Hanumantharao et al., 2016). Green gram can improve the soil structure and leave a 

residual of between 33 and 37 Kg N/ha for the subsequent crop after sustaining its own need; 

fulfilling nearly 25% of the nitrogen required by the succeeding crop (Ali and Gupta, 2012; 

Kaur et al., 2015; Hanumantharao et al., 2016). By adding nitrogen, into the soil green gram 

can increase agricultural production in soils which are limited by lack of supply of Nitrogen 

fertilizer (Raza et al., 2012).  

Land classified as ASALs in Kenya is considered as most disposed to the effects of  varying 

and changing climate (Opiyo, 2014). The ASAL regions of Kenya which are characterised by 

low rainfall that varies highly in time and space, are also prone to lengthy dry seasons with 

high evapotranspiration amounts (Opiyo, 2014). Given that the temperature and rainfall in the 

ASALs has been postulated to change (IPCC, 2007), it is essential to recognize the degree to 

which these climate elements could change in space and time at a local level.  

Lack of knowledge on climate variability means farmers are not aware of the crops that 

would perform best in their area. Planting green gram in the most suitable area will generate 
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more income to farmers, increase food production, and enhance food security (Kihoro et al., 

2013). Elimination of hunger, improvement of nutrition, and food security, and promotion of 

sustainable agriculture are some of the Sustainable Development Goals (UN, 2015). In order 

to improve the production of green gram, it is essential to develop a land suitability map. 

Analysis of the suitability of crops helps define which regions are presently appropriate for 

the crops and whether those regions will remain suitable in the future, which is important 

when developing policies regarding the future.  

While the valuation of the effects of climate change on green gram production in space is 

important for the identification of areas suitable for its cultivation, it is also essential to 

simulate the potential effects of changing climate on green gram yield in the future. Decision 

support tools such as Agricultural Production Systems sIMulator (APSIM), which have the 

ability to predict yield based on various agronomic scenarios, can be trained to model climate 

change effects on green gram yield. This will help develop policies that improve adaptive 

capabilities of farmers in the future.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 The Spatial and Temporal Variability of Climate Variables in East Africa 

The spatial variability of climate variables, especially rainfall over various regions, exhibits 

high variability in space and time (Indeje et al., 2001; Ongoma and Chen, 2016). Interest is 

growing in studies on rainfall over East Africa following observations that the main seasonal 

rainfall is decreasing (Ongoma and Chen, 2016), and that climate change by the end of the 

21
st
 century period shall adversely affect crop yields, especially due to temperature change 

(Adhikari et al., 2015).  

Shisanya et al. (2011) analysed the variability in rainfall in the ASAL regions of Kenya and 

the impact it had on the normalized difference vegetation index (NDVI). The study found 

climate variability was persistent and had an effect on the production of crops. Correlation 

analysis between rainfall (1961-2003) and NDVI (1981-2003) showed that the March-May 

(MAM) season was not as dependable as the October-December (OND) season. They also 

found that the La Niña and El Niño occurrences in southeast Kenya showed temporal and 

spatial variations, with the El Niño variation intensity being higher.  

Omoyo et al. (2015) analysed the influence of varying climate on the yield of maize in the 

ASALs of Counties located in lower eastern Kenya. They found maize yield had been 

decreasing with the highest levels observed in Machakos, Kitui, Mwingi and Makueni 

Counties in that order. They also found a rainfall decline of close to 3 mm per annum in four 

out of the six weather stations analysed. An upward warming of 0.03 °C per annum was also 

observed. The study concluded that indeed climate variability had an impact on maize yield 

in lower eastern Kenya which in turn impacts food security. 

Ongoma et al. (2015) analysed the climate variability in East Africa during the 2010-2011 

drought experienced over Kenya. During that year most parts of the country experienced 

drought because of the low-level divergence identified in the majority of areas in the eastern 

and western portions of Kenya.  

Ochieng et al. (2016) using a fixed household model estimated the effect that varying and 

changing climate had on the income generated from all crops, tea, and maize. Temperature 

had a positive impact on tea and a negative one on maize incomes; rainfall had a negative 
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effect on tea. They found that climate change would unfavourably affect agriculture in the 

years 2020, 2030 and 2040 and the tea production would bear the greatest impact. 

Sabiiti et al. (2018) determined the future suitability of growing bananas in Uganda under a 

changing climate. The approach involved the identification of the climate thresholds within 

which banana thrives and the development of suitability levels for the production of bananas 

for the four Representative Concentration Pathway (RCP) scenarios and the two Special 

Report on Emissions Scenarios (SRES) scenarios. The results showed that RCPs 2.6 and 6.5 

were inclined to result in higher production of bananas than the RCPs 4.5 and 8.5. Further, 

the expected temperature rise under SRES A1B would support banana growth, while the 

anticipated increases in temperatures under SRES A2 would lead to moisture deficits leading 

to reduced banana growth. 

Ouma et al. (2018) investigated the trend and magnitude of rainfall and temperature extremes 

as pointers of varying and changing climate in the ASALs of Kenya using the gridded climate 

proxy datasets and in-situ measurements and evaluated the trend using the Mann-Kendall and 

Gaussian-Kernel statistics. The results showed that the minimum and maximum temperatures 

are rising, especially during the night. On average the change the in mean minimum and 

maximum seasonal surface air temperature was 0.60 °C and 0.74 °C, correspondingly 

between the periods from 1961 to 1990 and 1991 to 2013. A decreasing statistically 

insignificant trend in seasonal rainfall was also observed, with the highest decrease being 

observed in the MAM rainfall season. 

Owiti and Zhu (2012) analysed the geographical changes of rainfall seasonality during the 

period of 1962-2006 over East Africa using pentad rainfall data at 36 stations. Understanding 

the spatial variation of climate parameters, especially rainfall, and their relationship with 

important crops can help increase the welfare of smallholder farmers by cultivating their 

knowledge on the management of natural assets for improved agricultural production (Kisaka 

et al., 2015).  

2.1.1 Factors Affecting Spatial Variation of Rainfall 

The East African seasonal rainfall patterns are regulated by several factors, some of which 

are discussed below. 

The Inter-Tropical Convergence Zone (ITCZ) is a low pressure region near the equator and 

the convergence zone for the northeast and southeast trade winds (Okoola, 1999). The 
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North-South movement of the ITCZ is the main cause of the seasonality of rainfall in Kenya 

where rainfall occurs during the March April May (MAM) and October November 

December (OND) season (Asnani, 2005). 

The Madden Julian oscillation causes amplified rainfall during MAM and suppressed 

rainfall in the OND season over the East Africa region (Omeny, 2008). Indeje et al. (2000) 

found there was a strong significant correlation between rainfall over some parts of East 

Africa and the equatorial stratospheric lower zonal wind. Okoola and Camberlin (2008) 

found the presence of intra-seasonal oscillations with a periodicity of 40-50 days which 

move across East Africa.  

A monsoon is a seasonal shift in the course of the usual, or strongest, winds of an area. 

Monsoons blow from cold to warm areas and are caused by the annual temperature trends 

over land and sea. They originate from oceans in summer and from land in winter. Kenya 

experiences the Northeast monsoons which transport dry air into the country during the 

December January February (DJF) season and Southeast monsoon which carry cool moist 

air into Kenya during the June July August (JJA) season (Okoola, 1999).  

El-Niño is the cycle of warming and cooling of the eastern and central equatorial Pacific 

Ocean as indicated by Sea Surface Temperature (SST) (Muhati et al., 2007). The changes in 

SST affect climate and weather globally and impact food security, water availability, health 

and energy.  

2.1.2 Climate Studies using Climate Models 

Opijah et al. (2017) assessed the ability of the Regional Spectral Model (RSM) to downscale 

the European Centre Hamburg Model (ECHAM) simulations between 1970 and 1999 in 

Kenya. The results disclosed that the model had poor skill in demonstrating the spatial and 

annual cycle of rainfall and convection in Kenya. The Regional Climate Model (RCM) had 

better certainty of seasonal rainfall over the OND season relative to the MAM season. 

However, seasonal temperature prediction was better during the MAM season than the OND 

season. During the JJA season the RCM predicted rainfall better than temperature. They 

concluded that improving the development of convective systems (through sensitivity 

analysis) that control precipitation in the tropical region may help improve the performance 

of the model. 
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Endris et al. (2013) investigated the skill of ten RCMs from the Coordinated Regional 

Downscaling Experiment (CORDEX) to mimic rainfall characteristics over eastern Africa. 

The study assessed the skill of the RCMs in replicating rainfall climatology and in capturing 

inter-annual rainfall variability and teleconnection signals (El Niño–Southern Oscillation 

(ENSO) and Indian Ocean Dipole (IOD)). The study considered two gauge-based observed 

datasets, the Global Precipitation Climatology Centre (GPCC) and Climate Research Unit 

(CRU) datasets. The GPCC was chosen since in addition to having a long time series it also 

has the same resolution as the CORDEX RCMs. Results indicated most RCMs adequately 

reproduced the key characteristics of rainfall climatology as well as the documented ENSO 

and IOD forcing. It was also noted that individual models exhibited biases based on the sub-

region and season; the ensemble was a better representative of the observed rainfall. They 

concluded that the ensemble adequately simulated rainfall over eastern Africa and could 

subsequently be used to future climate studies over the region. 

Mutayoba and Kashaigili (2017) assessed the ability of four CORDEX RCMs to reproduce 

the patterns of rainfall patterns in the Mbarali river catchment area in Rufiji basin, Tanzania 

from 1979 to 2005 using the observed Era Interim dataset. The individual models although 

fairly representing the inter-annual and annual cycle of rainfall were not as good as the 

ensemble. They concluded that the ensemble average could thus be used for hydrological 

studies over the Mbarali river catchment areas. In addition to this, bias correction is essential 

since it would enhance the results of the impact studies. 

Ogega et al. (2016) sought to determine if smallholder farmers in coastal Kenya were aware 

of the change in climate and experienced its impacts, and if they had taken any adaptation 

measures against climate change. This involved first assessing historical trends in climate 

parameters over the study area. Rainfall in the study area showed a negative trend for the 

period 1961 to 2010. Future rainfall using the Fourth edition of the Rossby Centre (RCA4) 

RCM driven by 8 CORDEX Global Climate Models (GCMs) with special attention on the 

Canadian Center for Climate Modelling and Analysis (CCCma), Norwegian Climate Centre 

(NCC) and Ensemble models showed that rainfall was expected to increase for the period 

2015 to 2045 under both RCP 4.5 and 8.5 scenarios. Many farmers were either unaware or 

unable to implement effective adaptation options. Adaptation measures that linked 

indigenous and scientific knowledge were proposed based on the climate study and responses 

of farmers. 
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Mukhala et al. (2017) analysed the historical, current and future temporal and spatial trends 

in temperature and rainfall in East Africa using the CORDEX RCA4 models. Majority of the 

models were not consistent in their representation of the distribution of rainfall over East 

Africa; the ensemble, however, had a better representation. Temperature was, however, well 

represented by both the individual models and the ensemble of the models. Generally, the 

ensemble was generally a better representation of rainfall and temperature in the study area. 

They concluded a warming trend was expected under both RCP 4.5 and 8.5 scenarios, and 

this would lead to small rainfall gains due to the increased evaporation and in turn moisture 

gains in the atmosphere. 

George et al. (2018) assessed the skill of the European Centre for Medium-Range Weather 

Forecasts (ECMWF) to replicate annual rainfall, inter-annual rainfall variability and seasonal 

mean cycles over the Greater Horn of Africa. The gridded observational datasets were the 

CRU and GPCC. The models had better certainty of mean rainfall during the OND relative to 

the MAM season. The model, however, failed to adequately reproduce the double rainfall 

peak over the equatorial region. The model adequately replicated rainfall in the years 

associated with the ENSO events despite overestimation and underestimation of the rainfall 

peak. The model showed poor skill in the highland regions of the Great Horn of Africa 

(GHA). It was concluded that the ECMWF model would be adequate in providing realistic 

climate information over the GHA when its physics and model dynamics are turned. 

Akhter et al. (2017) evaluated the ability of the Fifth Phase of the Coupled Model 

Intercomparison Project (CMIP5) models’ to replicate the spatial pattern of rainfall for seven 

homogenous zones in India. The results showed that most of the models had poor skill in 

reproducing rainfall over the chosen zones. Therefore, four bias adjustment techniques were 

used, to improve the skill of the GCMs, i.e. Standardized Reconstruction, scaling, Gamma 

Quantile Mapping, and Empirical Quantile Mapping. The scaling method was found to have 

better skill in reproducing the pattern of rainfall when compared to the other three methods.  

Ezéchiel et al. (2016) assessed the ability of seven bias adjustment methods to reduce bias in 

rainfall in three RCMs (SMHI-RCA4, DMI-HIRHAM5, and MPI-REMO) from the 

CORDEX Africa project at the Mekrou catchment, Benin, West Africa using observed data 

from available rain gauges. Three of the seven methods showed satisfactory results, i.e., the 

scaling, Adjusted Quantile Mapping methods, and the Empirical Quantile Mapping. The 

results confirmed that most of the bias correction methods have great difficulty in correcting 
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rainfall in time and space due to its high variability. The models were then used for future 

climatic studies after bias correction where an increase in annual precipitation was noted 

under the RCP 8.5 condition.  

Ayugi et al. (2020) used quantile mapping to adjust the bias in five RCMs of the CORDEX 

RCA4 models over Kenya using various statistical measures of skill. The results show that 

despite the quantile mapping methods performing variously among the models, reasonable 

improvement was noted at seasonal and annual timescales. The bias corrected data performed 

better against the observed CRU data compared to the uncorrected RCM outputs. They 

concluded that the corrected models could now be used in future climate studies. 

2.1.3 Data Quality Control 

Data quality control is an important step taken before data analysis; it consists of several 

checks. Limit checks ensure the physical limits of each parameter are not exceeded. For 

example, under limit checks negative values of precipitation cannot exist (Steinacker et al., 

2011; Musa et al., 2003; Feng et al., 2004).  

Temporal consistency checks determine whether the readings displayed in instruments are 

likely compared to the expected climatological time series (Steinacker et al., 2011; Musa et 

al., 2003). Internal consistency checks investigate whether the expected relationship between 

two weather parameters, e.g. cloud cover and sunshine, exists without much contradiction 

(Musa et al., 2003). Spatial consistency checks confirm that values of the same parameters 

measured at the nearby station do not differ much from each other (Musa et al., 2003; Feng et 

al., 2004).  

2.2 Cropland Suitability Analysis 

Cropland suitability describes the capacity of the land to consent to the production of crops in 

a sustainable mode (Halder, 2013). Land suitability process examines the productivity of 

land. The process involves evaluating different criteria ranging from climate, socio-

economic, infrastructure and market, to soil and terrain for the suitability of a certain type of 

land use (Bunruamkaew and Murayam, 2011).  

Ahamed et al. (2000) endorsed determining crop suitability based on the different levels of 

climate, soil, and terrain of the land.  Decision makers can be engaged to choose which 

parameters they consider the most influential for crop suitability analysis using Multiple 

Criteria Decision Analysis (MCDA) methods; the results are then used in a Geographic 
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Information System (GIS) as weights for the suitability analysis. The Analytical Hierarchy 

Process (AHP) is the most popular method of developing weights for the factors the decision 

makers consider most significant for suitability analysis (Kihoro et al., 2013). 

2.2.1 Past Studies on the Suitability Analysis Process 

Kogo et al. (2019) determined the present and future land suitable for rainfed maize 

production in Kenya using the maximum entropy (MaxENT) model. The study used data 

from two GCMs (Community Climate System Model, version 4 (CCSM4) and Hadley Centre 

Global Environment Model 2 - Earth System (HadGEM2-ES)) for the RCP 4.5 and 8.5 

scenarios from the worldclim database, and maize occurrence location data. Simulation 

results indicated a reduction of the moderately suitable areas by 14.6 to 17.5% and an 

increase of unsuitable lands by 1.9 to 3.9%. Accordingly, the highly suitable areas will 

increase by 9.6% and the suitable areas by 17 to 20%. The study was important to the future 

of maize production in Kenya especially in the development of appropriate adaptation 

strategies.  

Jayasinghe et al. (2019) determined the land suitable for tea production in Sri Lanka using 

climate, soil, and topography as the main factors influencing tea production. The factors were 

given weights using the AHP and used to a generate suitability map. Most of Sri Lanka was 

unsuitable for production. They concluded the study was important in ensuring better 

management of land and tea production in Sri Lanka. 

Wanyama et al. (2019) used the GIS-based AHP to define the land most suitable for maize 

production in Kenya using variables of climate, soil, and topography. The study found most 

of the land (55.6%) was only marginally suitable. The observed change in the rainfall pattern 

was associated with reduced maize yield in the country. Appropriate timing of rainfall, crop 

diversification, better seeds usage, and soil fertility restoration and retention were found as 

the most practical adaptation strategies.  

Mugo et al. (2016) identified areas suitable for the cultivation of green gram in Kitui County, 

Kenya using the GIS-based AHP technique. The first step was a review of the literature to 

develop a suitability table for green gram growth. The maps of climate, soil, and topography 

were divided into four classes of suitability and overlaid on a GIS environment using the 

weights obtained from the AHP.  
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Kamau et al. (2015) identified the land suitable for potato production in Nyandarua County, 

Kenya using the GIS-based AHP technique. Three parameters i.e. climate (rainfall, 

temperature), soil (texture, pH, drainage, and depth) and topography were rated using the 

AHP technique and overlaid over each other in a GIS environment. Results show that the area 

currently under potato farming in Nyandarua is currently low and can be expanded into the 

highly suitable lands. 

Kihoro et al. (2013) generated a rice suitability map using the climatic and physical factors 

affecting rice production using the AHP and GIS approach in central Kenya. A review of 

literature was first conducted to determine the levels of suitability for rice production based 

on climate, soil and topography. The results showed that the area under rice cultivation in the 

Counties is currently low and can be expanded. 

2.2.2 Land Suitability Based on the Agro-climatic Zones of Kenya 

Kenya has two main rainy seasons, the long rains which occur in MAM, and the short rains 

of OND (Sombroek et al., 1982).  By the use of a moisture index, Kenya is alienated into 

seven agro-climatic zones. The moisture index is calculated by dividing the annual rainfall 

with potential evaporation and expressing it as a percentage (Sombroek et al., 1982) (Figure 

2-1and Table 2-1). 
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Figure 2-1: Agro-climatic zones of Kenya where Zone I through to Zone VII represent 

the Humid, Sub-Humid, Semi-Humid, Semi-Humid to Semi-Arid, Semi-Arid, Arid and 

Very Arid areas in Kenya respectively (Source: Sombroek et al., 1982) 

In Figure 2-1, the agricultural climatic zones I–III represent regions of high to medium 

potential land with annual rainfall of above 1100 mm, at least 50% moisture index and mean 

annual temperatures below 18 C, sustainable agriculture under rain-fed environments is only 

considered probable in these agro-climatic zones. The agricultural climatic zones IV-VII 

represent semi-humid to arid lands with an annual total rainfall below 1100 mm, a moisture 

index below 50 % relative humidity, and mean yearly temperatures between 22 C and 40 C 

(Table 2-1).  

Table 2-1: Agricultural Climatic Zones of Kenya 

Zone Classification Mean yearly 

rainfall (mm) 

Vegetation Eo, mean yearly potential 

evaporation (mm) 

R/Eo 

(%) 

I Humid 1,100- 2,700  Moist forest 1,200-2,000 >80 

II Sub-humid 1,000-1,600 Moist and dry 1,300-2,100 65-80 

III Semi-humid 800-1,400 Forest 1,450-2,200 50-65 
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Zone Classification Mean yearly 

rainfall (mm) 

Vegetation Eo, mean yearly potential 

evaporation (mm) 

R/Eo 

(%) 

IV Semi-humid to 

semi-arid 

 600-1,100 Dry forest and 1,550-2,200 40-50 

V Semi-arid 450 – 900 Moist 1,650-2,300 25-40 

VI Arid 300 – 550 woodland 1,900-2,400 15-25 

VII Very arid 150 – 350 Dry woodland 2,100-2,500 <15 

(Source: Sombroek et al., 1982) 

2.2.3 Information on Green Gram for Use in Determining Suitability 

The first step in land suitability is to determine the thresholds within which the crop performs 

best and worst. Sufficient literature review is important in achieving this. 

2.2.3.1 History of Domestication and Cultivation 

Green gram is a fast-maturing (65-90 days) legume (Nair et al., 2012) cultivated on more 

than 6 million hectares globally in the warm regions (Malik, 2006). Green gram originated 

from the Indian subcontinent (HanumanthaRao et al., 2016), but it is also cultivated in the dry 

and hot regions of Eastern Africa, Southern United States, and Southern Europe (SASOL, 

2015; Infonet, 2018). It spread early into northern Africa and other Asian countries. India 

produces and consumes majority of the green gram produced in the world, accounting for 54 

and 65% of the global consumption and acreage respectively. Green gram is a common 

legume in most subtropical and tropical areas (SASOL, 2015).   

2.2.3.2 Climate and Soil Requirements 

Green gram has a rainfall requirement of between 350 and 700 mm per annum (SASOL, 

2015; Infonet, 2018). Heavy rainfall reduces the pod setting and increases vegetative growth 

(SASOL, 2015). Water stress reduces the rate of nutrients uptake, leaf area change, 

flowering, and photosynthesis affecting yield (Malik, 2006). Excess rainfall and high 

humidity late in the green gram season can lead to crop diseases and harvest losses caused by 

delayed pod setting (Mogosti, 2006; Oplinger et al., 1990). 

The growth and development of green gram are associated with temperature requirements at 

different growth stages, i.e. growing degree days (Robertson et al., 2002). The APSIM green 

gram model uses degree days to drive phenological growth and canopy extension. APSIM 

model uses 7.5 C base temperature, 30 C optimal temperatures, and 40 C extreme 
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temperatures as the key values in the calculation of degree days (Carberry, 2007; Chauhan et 

al., 2010).  

Although green gram is a tropical crop and performs best in the ASAL areas, heat is an 

important environmental control obstructing crop production in terms of growth and yield 

(El-Lateffet al., 2018). A temperature of 28 to 30 C is found ideal for seed germination and 

plant growth (Mogosti, 2006; Morton et al., 1982; Kaur et al., 2015) and the temperatures 

should always be above 15 C (Mogosti, 2006). Green gram bears 10 to 20 flowers. Under 

normal conditions, the green gram plan will shed a large number of flowers. Shedding is 

worsened under high temperatures leading to substantial loss of potential pods (Kaur et al., 

2015). High temperatures at the reproductive stages decrease photosynthetic rates, by 

inducing chlorophyll loss and reduced carbon assimilation and fixation (El-Lateff et al., 

2018), reduce pod weights and final yield when compared to an ambient temperature of 27 

°C (Islam, 2015; El-Lateffet al., 2018; Luo, 2011; Hatfield and Prueger, 2015). A change in 

temperature by 8-10°C from the optimum resulted in shorter phenological periods especially 

the vegetative phase leading to earlier maturity (Luo, 2011; Hatfield and Prueger, 2015). Low 

temperatures delay and reduce the germination of green gram and lead to very slow plant 

growth (Hanumantharao et al., 2016). 

Green gram performs best at a height of 0-1600 m above sea level (SASOL, 2015) and not 

exceeding 2,000 m elevation (SASOL, 2015). Grealish et al., (2008) found green gram is 

highly suitable at a slope of 0-10%, moderately suitable at 11-20%, marginally suitable at 21 

to 35% and not suitable at slope above that percentage. 

Green gram is suitable for most soil textures but prefers fertile, deep, well-drained loams or 

sandy loams (Oplinger et al., 1990; Morton et al., 1982; SASOL, 2015; Infonet, 2018, 

Meena, 2013). The legumes are most suitable to clayey soils (SASOL, 2015) but don’t do 

well on heavy clay soils with poor drainage and are somewhat tolerant of saline soils 

(Grealish et al., 2008, Oplinger et al., 1990). For green gram cultivation sandy soils require 

good fertilizer and water supply and organic soils need drainage and raised beds since their 

water tables occur at or near the soil surface (Grealish et al., 2008). 

Green gram is well adapted to a pH range of 5 to 8 (Grealish et al., 2008; SASOL, 2015; 

Infonet, 2018, Meena, 2013; Hanumantharao et al., 2016). The performance of green gram is 

best when the soil has a pH of between 6.2 and 7.2. Otherwise, the plants depict serious iron 
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chlorosis signs and micronutrient deficits on alkaline soils (Morton et al., 1982; Oplinger et 

al., 1990). They require slightly acid soil for the best growth (Morton et al., 1982). 

The soil Cation Exchange Capacity (CEC) has an impact on the acidity and availability of 

nutrients in the soil. Generally, soils with a high CEC do not require much liming as 

compared to those soils with low CEC. However, when high CEC soils become acidic, higher 

lime rates are required to achieve optimum pH (Moore and Blackwell, 1998). Soils with CEC 

greater than 10 meq/100g in general experience little cation leaching making application of 

nitrogen and potassium fertilizer more realistic during the rainy season. Soils with a low CEC 

less than 5 meq/100g are prone to deficits of magnesium, potassium, and other cations 

(CUCE, 2007). 

Green gram can tolerate more saline conditions compared to other legumes. However, high 

salinity levels around the root zone in the ASALs where evaporation exceeds precipitation 

can affect green gram production by causing osmotic stress, ion toxicity and reduced 

nodulation by rhizobia (Hanumantharao et al., 2016). Green gram is most affected by 

moisture stress during the poding and seed development stage. The effect is least during the 

stage from emergence to flowering. Increased moisture increases branch development (Raza 

et al., 2012). However, green gram needs less water compared to other legumes for growth 

(Hanumantharao et al., 2016). 

Robertson et al. (2002) conducted field experiments at various locations in tropical and 

subtropical Australia. The simulated grain yield accounted for 77% of the variance for the 

green gram. Biomass at maturity was simulated less precisely, accounting for 64% of the 

variance.  

2.2.3.3  Food Value of Green Gram 

Green gram, like most legumes, can improve soil fertility via nitrogen fixation 

(HanumanthaRao et al., 2016; Malik, 2006) in synergy with Rhizobium green gram fixes 

atmospheric nitrogen (58-109 kg/ha), which is enough to meet its needs and those of crops to 

be planted later (Ali and Gupta, 2012).  Green grams, provide a less expensive source of 

protein; the stocks and husks are useful as fodder and green manure (Malik, 2006, Meena, 

2013). Its seeds contain 58% carbohydrate, 24% protein and 36% minerals (Nadeem, 2004; 

Malik, 2006). 
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2.2.3.4  Agronomic Aspects 

Green gram is a straight thick plant which attains a height of between 30 and 120 cm. It has a 

green colour, but it can also establish in shacks of yellow and black. The pods are linear, at 

times hairy and curved (Baldev, 1988; SASOL, 2015). Only a few of the many flowers 

produced by the crop are developed into pods; the rest fall off (Sengupta, 2011). Flowering 

normally starts 50 to 60 days after sowing and continues for a few weeks. Finally, the leaves 

dry up, but may not drop off completely. Flowers are also self-fertile and self-pollinated. The 

weight of green gram seeds varies from 15 to 85 milligrams (Baldev, 1988).  Pods normally 

mature approximately 20 days after flowering (Sengupta, 2011). 

2.2.3.5  Green Gram Pests 

Green gram is affected by several pests such as thrips, aphids, pod borers, whiteflies, foliage 

beetles, and weevils. Thrips attack the plant petioles and leaves leaving tiny holes encircled 

by discoursed areas. Thrips have a preference for flowers and feed on pollen decreasing 

pollination and seed set (SASOL, 2015, Infonet, 2018). Aphids feed on the young plants, 

stems, leaflets, and pods; the attacked young leaves normally appear twisted. Further, the 

emission of honeydew by aphids results in the growth of sooty mould (SASOL, 2015; 

Infonet, 2018).  

Pod borers feed by scrapping the tissues of leaves while their young caterpillars dig holes into 

the pods in order to feed on the interior of seeds and can lead to a serious economic loss 

(SASOL, 2015; Infonet, 2018). Whiteflies attack leaves causing them to shrink and suck 

plant sap leading to retarded growth (SASOL, 2015; Infonet, 2018). Foliage beetles are a 

threat when in large numbers and like to feed on young plants (SASOL, 2015; Infonet, 2018). 

Weevils are very common insect pests in grains that are stored, attacking pods in the field and 

seeds in storage when they are nearly mature and dry (SASOL, 2015; Infonet, 2018). 

2.2.3.6  Green Gram Diseases 

Green gram is affected by several diseases such as powdery mildew, rust, and bean blight. 

Powdery mildew is white blotches on leaves which later turns leaves dull after infection 

(SASOL, 2015; Infonet, 2018). Rust is round reddish-brown blisters which commonly 

develop on or underneath the leaves, less plentiful on pods and thinly on stems (Infonet, 

2018). Bacterial blight (bean blight) appears as small patches of water-soaked or light-green 

areas on leaves, which later dry up and turn brown. The spots caused by bean blight may 

affect the leaf surface, ultimately killing the affected leaf (Infonet, 2018). 
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2.2.3.7  Seed Varieties in the Kenyan Market 

There are two popular varieties of green gram in Kenya, KS20 and N26 (SASOL, 2015; 

Infonet, 2018). The KS20 variety also known as Uncle, KVR 2 and N 22 takes 60 to 65 to 

flower, 80 to 90 days to mature and has a yield potential of 1.0-1.3 t/ha. The improved variety 

N26 also known as Nylon, K26, KVR 26 takes 40 to 45 days to produce flowers, 60 to 65 

days to mature and has a yield potential of 0.3-1.5 t/ha. The KS20 seeds are big, dull and 

housed in brown pods while the N26 seeds are small, shiny and housed in dark pods. 

The Kenya Agricultural and Livestock Research Organisation (KALRO) developed and 

released three new varieties in April 2017. The three new varieties mature earlier and produce 

higher yields. Table 2-2 presents a summary of these varieties and their features.  

Table 2-2: The New Green gram Varieties 

Green Gram Variety Characteristics 

KAT 00301 (Ndengu Tosha) Early maturity (60-70 days)  

Potential yield of 1800 to 2300 kg/ha  

Large pod and grain size enabling easier harvest  

Seed weight of 6 to 7 g/100 seeds  

Non-stony seeds 

KAT 00308 (Biashara) Early maturity (65-75 days)  

Potential yield range 1800 – 2100 kg/ha  

Large pod and grain size enabling easier harvest 

Seed weight of 8 to 10 g/100 seeds  

Non-stony seeds 

KAT 00309 (Karembo) Early maturity (65-75 days)  

Potential yield of 1800 to 2100 kg/ha  

Large pod and grain size enabling easier harvest 

Seed weight of 8 to 10 g/100 seeds  

Grain has shiny green Non-stony seeds 

Source (KALRO, 2017) 

2.2.4 Status of Green Gram in Kenya 

Green gram in Kenya is mostly produced in Makueni and Tharaka Nithi, but it is also grown 

in Kitui, Nairobi, Mombasa, Machakos, Uasin Gishu, and Nakuru counties (Kilimo Trust, 

2017). There is a preference to grow local varieties such as Nylon which are characterised by 

long maturity periods (3 to 4 months) and low yields (less than 500kg/ha). Kenya has the 

potential to produce 3MT/ha, but only produces 0.46MT/ha thus there is potential to expand 

on green gram production and a suitability map can help identify these areas. The price of 

green grams can go up to USD 116/MT in Nairobi Kenya (Kilimo Trust, 2017). About 70% 

of the green gram produced in Kenya is marketed and not consumed by farmers. However, 
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domestic trade is highly informal and middlemen play the biggest role in linking exporters to 

farmers hence benefit more than the farmers (Kilimo Trust, 2017).  

Green grams are consumed in Kenya, but are not as popular as other legumes, for instance, 

common beans and peas (Kilimo Trust, 2017). The most marketed varieties in Kenya 

comprise the N26-Nylon and the local variety (Kilimo Trust, 2017; SASOL, 2015; KALRO, 

2017). Some of the challenges facing green gram farming in Kenya include: high variability 

of climate variables, the local variety grown is considered low quality in the export market 

since it has small and stony seeds, poor roads in areas where green gram is produced making 

it hard to market, lack of linkage between producers, traders and exporters, lack of support 

for agricultural value chains from financial institutions, and preference for other legumes 

such as beans (Kilimo Trust, 2017; KALRO, 2017). 

2.3  Climate Change and Crop Production 

Climate models predict that the level of dryness will rise in the future, with the variability in 

rainfall and temperature intensifying in the ASALs (IPCC, 2007). Green gram due to its low 

moisture requirements has the potential to perform well despite the expected climatic changes 

in the ASALs (Yvonne et al., 2016).  Crop models offer a way to measure how different 

soils, climate conditions, and management practices, affect agricultural production output 

(Nain and Kersebaum, 2007).  

2.3.1 Past Studies on Simulation of Crop Production 

Crop simulation tools can work without field trials and are thus cheaper and more time-

saving research tools (Pathak et al., 2005). Nain and Kersebaum (2007) simulated the 

production of barley and wheat with the Crop Environment Resource Synthesis (CERES) 

model in Germany.  

Nyang’au et al. (2014) studied the impact of weather changes such as atmospheric CO2 

concentration, solar radiation and temperature on the yield of grains of the Basmati IR 2793-

80-1 and 370 in Mwea and Western Kenya irrigation schemes using the Ceres rice model 

Delve et al. (2009) simulated the responses of Phosphorus on maize and beans in Kenya on 

different soil types using the APSIM- model. An average coefficient of determination of 0.69 

and 0.79 were reported for biomass and grain yield. The model predicted the growth of maize 

and beans under different Phosphorous treatments as well.  
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Agesa (2014) using the APSIM determined the impact of changing climate on sorghum 

biomass and grain yields in Yatta sub-county, Eastern Kenya. The data showed that changing 

climate in terms of reduced rainfall and increased temperatures had a harmful consequence 

on sorghum biomass and yields. 

2.3.2 Crop Models 

A mathematical model represents processes in an intricate system using a set of equations 

(Kasampalis et al., 2018; Gowda, 2013; Chakrabarti, 2013). In mathematical modelling, it is 

assumed that any complex process can be presented using mathematical statements 

(Chakrabarti, 2013). 

Mathematical crop models mimic how crops associate with their environment; they capture 

the crop’s physiological growth to estimate the expected yield at maturity (Kasampalis et al., 

2018). The model mimics the growth of a real plant by estimating the time needed to develop 

its components, for example grains, leaves, and roots. Crop models, in addition to quantifying 

yield, also give quantifiable information on the major progressions involved in plant 

development (Gowda, 2013). 

Growth is the increase in volume and size which cannot be reversed and is caused by the 

differentiation and distribution happening in the plant (Gowda, 2013).  

2.3.2.1 Categories of Crop Growth Models 

Statistical or correlative models are a type of empirical models conveyed as regression 

equations. They require fewer data compared to dynamic crop models (Kasampalis et al., 

2018). Experiments are used to develop equations that explain the behaviour of the system. 

However, since crop behaviour changes under different weather, soil and crop practices, large 

deviations emerge under different weather patterns between years making predictions 

difficult (Gowda, 2013).  Empirical models may not be able to simulate the outcome of future 

climates on crop production where other controllers of crop yield are projected to alter in 

ways different from what is observed in the past (Kasampalis et al., 2018).  

Dynamic models use differential equations to model crop growth and development. Dynamic 

models require more data compared to the statistical models and require physiological data 

on crops to parameterise and calibrate the model (Kasampalis et al., 2018). Crop growth 

processes such as leaf expansion are normally quantified as a function of environmental 

aspects such as soil properties, temperature, water accessibility and radiation, which give the 
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status of the crop (Gowda, 2013). Unlike empirical models, dynamic models can be used to 

explore crop development under diverse management practices and future climates 

(Kasampalis et al., 2018). Popular crop simulation models are presented in Table 2-3. 

Table 2-3: Common Crop Simulation Models. The Acronyms have been Defined in the 

List of Acronyms   

Crop Model    Characteristics/ application  of the model References  

APSIM  A suite of modules simulating various animal, plant, management, 

climate and soil interactions 

McCown et al., 

1996 

AgrometShell  Software toolbox for assessing the impact of climatic conditions on 

crops, analysing climate risks and performing regional crop forecasting 

using statistical and crop modelling approaches. 

Di Paola et al., 

2016 

Aqua crop Particularly well suited for environments in which water restricts crop 

growth. 

Steduto et al., 

2009 

CERES-wheat  Simulates the yield of wheat under diverse management, weather and 

soil conditions. 

(Lobell and Burke, 

2010) 

CROPGRO-

Soybean  

Simulates the yield of Soybean under diverse management, weather 

and soil conditions. 

Batchelor et al., 

2002 

Cropsyst  Simulates the growth of a variety of crops under diverse management, 

weather and soil conditions. 

Stöckle et al., 

2003 

DAISY  It can follow the fate of energy, water, nitrogen, pesticides, and carbon, 

both below and above the ground. It can calculate crop production and 

environmental impact in terms of change in soil quality and leaching 

over time. 

Palosuo et al., 

2011 

DSSAT  Able to simulate the growth of over 28 crops under different climate, 

management and soil conditions 

Jones et al.,2003 

EPIC  Developed to evaluate crop productivity as affected by soil erosion.  Di Paola et al., 

2016 

Fasse Estimates the impact of changes in prices, subsidies, regulations, and 

management on different indicators of farm sustainability such as farm 

profitability, energy consumption, nitrogen losses, and greenhouse gas 

emissions. 

Palosuo et al., 

2011 

GLAM  It simulates the development of crops and also the impact variable and 

changing climate may have on the crops. 

Challinor et al., 

2004 

HERMES  Describes crop development and nitrogen and water interactions in the 

soil-crop system. 

Palosuo et al., 

2011 

ORYZAv3  Simulates rice development under nitrogen-deficient and drought 

conditions. 

Li et al., 2017 

STICS Simulates growth of crops, soil nitrogen and water balances as driven 

by climatic data. 

Palosuo et al., 

2011 

WOFOST  Simulates the growth of annual field crops Palosuo et al., 

2011 

The least amount of data essential to run a crop growth model is presented in Table 2-4. 
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Table 2-4: Minimum Input Data Required to Successfully Run a Crop Model 

Site - Elevation, latitude, and longitude 

-Aspect and slope 

-Mean annual temperature 

Weather - Minimum and maximum temperatures, precipitation and solar radiation 

Soils  - pH, Organic carbon, soil nitrogen 

-Soil depth, bulk density, root growth factor 

-Soil type 

Initial 

conditions 

-Water, nitrates, and ammonium by layer of soil 

-Crop previously grown, amount of root nodule 

Management -The cultivar, planting date, depth, row spacing, and crop population, water 

management and irrigation (dates, amounts, and methods) 

- Residue  applications(organic fertilizer) (nutrient levels, depth of incorporation 

and amount) 

-Fertilizer (inorganic) applications 

-Chemical (pesticide) applications (amount, material) 

-Tillage 

- Harvesting calendar 

Source: Kasampalis et al., 2018 

2.3.2.2 Crop Growth Model Uses 

Crop growth models are important tools to evaluate weather threats, to determine optimal 

planting dates, and to calculate the performance of crops where they have not been cultivated 

before (Chakrabarti, 2013). Models are developed to help us understand how crops interact 

with climate in processes such as photosynthesis and water flow and to find gaps in 

knowledge (Jame and Cutforth, 1996). Models are able to represent the relationship between 

crop development, genetic constraints and the environment thus, may be used to assist in 

plant breeding efforts (Yin et al., 2004).  

2.4 Study Assumptions 

In carrying out this study, it was necessary to make certain assumptions. The following 

assumptions were made:  

 When making a suitability map for green gram production, the variation in suitability 

is only accredited to climate parameters under past and future scenarios. 

 Land use persists in the future since the model precedes the prevalent land use 

structures. 

 The physical and chemical properties of the soil remain constant in the future. In 

reality soil is affected by many factors such as fertilizer application, irrigation 

practices, liming and erosion, among others. 
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 The topography of the area remains constant in the future. Ecological and 

geographical activities such as afforestation, landslides and earthquakes among other 

major alterations may change the applicability of this study’s results.  

 This study seeks to show that green gram can be a suitable option for protein supply 

in the ASALs of Kenya. However, the location chosen for further analysis of 

projected yield using APSIM-Green gram model was the most suitable for green gram 

production. Although only the most suitable area for green gram growth was chosen 

for use in the APSIM model, the results would be applicable in other ASAL areas as 

well where the climate and soil patterns are similar.  

 The model applied in this study was ad hoc, having been calibrated to give the best 

results on green gram suitability. Users need to recalibrate the model to suit their area 

of interest before using the findings of this study. 

2.5 Conceptual Framework 

This study set out to determine the suitability for green gram production in Kenya under a 

changing climate.  

Literature shows there is insufficient material on the effects of variable and changing climate 

on green gram growth stages, and land suitability for green gram production. Mugo et al. 

(2016) determined the suitability of green gram production in Kitui County; however, they 

did not quantify how much yield is expected or how climate change will affect future 

production.  Robertson et al. (2002) successfully created a model that can simulate the 

growth of green grams; however, the study is yet to be done in Kenya. 

Figure 2-2 shows an illustration of the conceptual framework. The first part of the study 

involved understanding how climate variables behave in time and space in Kenya. The 

second step identified land that is suitable for green gram production presently and in the 

future. Lastly, the study simulated the effect the changing climate would have on green gram 

yield using the APSIM model. 

The specific details on research design including variables, materials (data, tools and climate 

models) selected and analysis methods adopted to achieve the specific objectives are 

presented in Chapter Three under materials and methods.  
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Figure 2-2: Conceptual framework of the study. Where SPOB1, SPOB2, and SPOB3 stand for specific objectives one (1), two (2), and 

three (3) respectively 
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Study Area 

Kenya (Figure 3-1) is a country in East Africa lying approximately between longitudes 34°E 

and 42°E and latitudes 5°N and 5°S and has a land area of roughly 584,000 km
2
.  

Kenya receives rainfall in a bimodal pattern that coincides with the movement of the ITCZ. 

The existence of high mountains, plains, valleys, vegetation, soil types, urbanisation and 

large water bodies, among others, also influence the climatic patterns in the country. Climate 

is highly correlated to topography with the high elevation parts receiving more rainfall than 

the low elevation areas (Herrero et al., 2010). Rainfall is highly variable in Kenya, with the 

ASALs experiencing the highest variability in space and time. 

The ASALS, which constitute in excess of 80% of Kenya’s land quantity, are home to nearly 

38% of Kenya’s population. The ASALs are endowed with vast resources. These regions are 

home to more than 90% of the wildlife in the country and support tourism, generating 12% of 

Kenya’s Gross Domestic Product (GDP) (GoK, 2012). Approximately 70% of Kenya’s 

livestock resource is also found in the ASALS and are estimated at a value of Ksh.70 billion. 

Further, they have great potential for renewable energy especially solar and wind power 

(GoK, 2012). Despite all these resources the inhabitants in the ASALs endure poor 

infrastructure, high poverty levels, human conflicts, low illiteracy levels, and land 

degradation (GoK, 2012). The ASALs are also disposed to floods and droughts. Drought 

occurrence in Kenya is still a challenge to predict and this has an undesirable effect on crop 

production in the ASALs. Periods of high rainfall, which cause floods, follow the droughts 

resulting in the loss of life and property (Herrero et al., 2010).  
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Figure 3-1:  Topography of the Study Area (in meters). The brown regions show areas 

of low elevation increasing through to the blue regions. Source (Mugo et al., 2020). 

3.2 Materials 

The datasets utilised in this study were climate data and non-climate data on soils, 

topography and green gram phenological data.   

3.2.1 Climatic Data 

This subsection presents the climate data used in this study which includes the historical 

station-based data, CRU datasets and the CORDEX datasets. 
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3.2.1.1 Historical Station-based Climate Data 

The station data utilized in the study was 47 years of monthly rainfall, and 47 years of 

monthly temperature data from 1970 to 2016 of the homogenous zones in Kenya (Table 3-1) 

obtained from the Kenya Meteorological department. The stations chosen for analysis are 

based on the homogenous zones for the MAM and OND seasons as shown in Figure 3-2a and 

Figure 3-2b.  

In addition to this, daily rainfall, solar radiation, and maximum and minimum temperature 

data were collected from the South Eastern Kenya University (SEKU) meteorological station 

in Kitui County, Kenya for the years 2018 and 2019 when the green gram production 

experiments were conducted. SEKU is located in the ASALs region of Kenya and it falls in 

the homogenous zone 7 in MAM (Voi station) and the homogenous zone 7 in OND 

(Dagoretti station). 
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Figure 3-2a: Homogenous rainfall stations in Kenya during the MAM season. The 

stations located in each homogenous zone can be used to represent the entire zone. 

Source (Indeje et al., 2000) 
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Figure 3-3b: Homogenous rainfall stations in Kenya during the OND season. The 

stations located in each homogenous zone can be used to represent the entire zone. 

Source (Indeje et al., 2000) 
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Table 3-1: Names of Meteorological Stations Utilized in the Study, Showing their 

Elevations, Geo-location (where E, N, and represent East, North and South, 

Respectively), and Homogenous Zones during the MAM and OND Seasons 

 Homogenous  zone 

Station Name Latitude (°) Longitude (°) Elevation (m) MAM OND 

Dagoretti 36.8 E 1.3 S 1798 8 7 

Garissa 39.6 E 0.5 S 147 4 8 

Kakamega 34.8 E 0.3 N 2133 - 5 

Kisumu 34.8 E 0.1 S 1146 12 12 

Lamu 40.9 E 2.3 S 30 5 11 

Mandera 41.9 E 3.9 N 230 - 3 

Marsabit 38 E 2.3 N 1345 11 - 

Mombasa 39.6 E 4.1 S 55 6 10 

Moyale 39.1 E 3.5 N 1097 2 2 

Nakuru 36.1 E 0.3 S 1901 - 6 

Nanyuki 37 E 0.1 N 1905 9 - 

Narok 35.9 E 1.1 S 1890 10 - 

Voi 38.6 E 3.4 S  597 7 9 

Wajir 40.1 E 1.7 N 244 3 4 

Lodwar 
35.6 E   3.1 N 

523 1 1 

3.2.1.1 Coordinated Downscaling Experiment Data 

Coordinated Downscaling Experiment (CORDEX) is an international project instituted by the 

World Climate Research Programme. CORDEX is a coordinator for the global efforts in 

downscaling datasets from Global Climate Models to scales of regional scope (Gutowski et 

al., 2016). 

Table 3-2 shows the 9 GCMs downscaled by the RCA4 RCM for Africa which have been 

used in this study. The Africa-CORDEX ensemble (9 GCMs downscaled) and the Euro-

CORDEX ensemble (9 GCMs downscaled), are the largest ensembles of transitory (1951-

2100) regional climate simulations ever made by one regional model determined by different 

CMIP5 GCMs under both the RCP 8.5 and RCP 4.5 scenarios.  
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Table 3-2: Global Climate Models Downscaled in the CORDEX Africa Project (Source: 

(Endris et al., 2013)) 

 Institute Name GCM Name Country  Calendar 

Days 

1 Canadian Center for Climate Modelling and 

Analysis (CCCma)  

CanESM2 Canada 365 days 

2 Centre National de Recherches Météorologiques 

(CNRM-CERFACS) 

CNRM-CM5 France Standard 

3 Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) 

QCCCE-

CSIRO-Mk3-

6-0 

Australian 365 days 

4 Institut Pierre Simon Laplace (IPSL) CM5A-MR France 365 days 

5 Max Planck Institute for Meteorology (MPI-M)  MPI-ESM-LR Germany Standard 

6 Met Office Hadley Centre (MOHC)  HadGEM2-ES United 

Kingdom 

360 days 

7 Model for Interdisciplinary Research on Climate 

(MIROC)  

MIROC5 Japan 365 days 

8 National Oceanic and Atmospheric 

Administration- Geophysical Fluid Dynamics 

Laboratory (NOAA-GFDL)  

GFDL-

ESM2M 

USA 365 days 

9 Norwegian Climate Centre (NCC)  NorESM1-M Norway 365 days 

The data from the CORDEX the Fourth edition of the Rossby Centre (RCA4) RCM was used 

to determine the future changes in climate variables over Kenya under the RCP 4.5 scenarios 

which assume that there is business as usual, and the RCP 8.5 scenario, which is the worst 

case scenario. The period of time considered for the future climate was between 2021 and 

2050, which is the period for implementation of Kenya’s vision 2030 goals. 

3.2.1.2 Projection of Future Climate under Various RCP Scenarios 

The Representative Concentration Pathways (RCPs) are courses of greenhouse gas (GHG) 

levels agreed upon in the fifth Assessment Report of the IPCC (2014). The RCPs succeeded 

the SRES projections issued in 2000. The RCPs are named in accordance with the radiative 

forcing target level for 2100.  

The RCP 2.6 scenario represents conditions leading to very low GHG concentration levels. 

During the RCP 2.6 Scenario the radiative forcing level will peak to 3.1 W/m
2
 by the mid-

century and then drop to 2.6 W/m
2
 by the year 2100. The scenario was developed at the 

Planbureau voor de Leefomgeving (PBL) Netherlands Environmental Assessment Agency by 

the Integrated Model to Assess the Global Environment (IMAGE) modelling team.  

The RCP 4.5 scenario represents conditions where the level of greenhouse gases will stabilize 

to 4.5 W/m
2
 by the year 2100 (Wise et al., 2009). The RCP 4.5 scenario was developed in the 
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United States at the Pacific Northwest National Laboratory’s Joint Global Change Research 

Institute (JGCRI) by the GCAM modelling group (Clarke et al., 2007; Smith and Wigley 

2006; Wise et al., 2009).  

The RCP 6.0 scenario represents conditions where the level of greenhouse gases will stabilize 

to 6.0 W/m
2
 by the year 2100. The RCP 6.0 scenario was established in Japan at the National 

Institute for Environmental Studies (NIES) by the Asia-pacific Integrated Model (AIM) 

modelling team (Fujino et al., 2006; Hijioka et al., 2008).  

The RCP 8.5 scenario represents cases in literature where GHGs increase over time, leading 

to high GHG concentrations. The RCP 8.5 scenario was established in Austria using the 

Model of Energy Supply Systems and their General Environmental Impact (MESSAGE) 

model together with the Integrated Assessment Framework of the International Institute for 

Applied Systems Analysis (IIASA) (Van Vuuren et al., 2011). 

3.2.2 Non Climatic Data 

Data on topography was obtained from the United States Geological Survey (USGS) digital 

elevation model (DEM) and soil data from the Kenya Soil Survey (KSS).  

Primary data was also collected on green gram phenology for four different varieties on an 

experiment set up in Kitui at the SEKU farm. 

3.2.3 Quality Control of Climate Data 

The purpose of data quality control is to identify errors and missing data, and where possible 

correct them to ensure the highest level of accuracy when using the data (Steinacker et al., 

2011).  

Correlation and regression methods were used to determine approximate values of missing 

data. The first step was to determine the station with the highest correlation with the station 

with missing data. A regression equation between the two stations was developed for the 

period of time where data was available. Provided that not more that 10% of the data in a 

time series is missing, the World Meteorological Organisation recommends the use of this 

method.  

Consistency tests help to ascertain that the variability in the data is climatological and not due 

to other factors such as change of instrument over time, change in observers, instrument 
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malfunction, or change in exposure condition of the site. The single mass curve was used to 

check for the data consistency.  

Other homogeneity tests conducted included the Pettitt test, Buishand range test and the 

Standard Normal homogeneity test. These methods tested at the 0.05 level of significance 

that there is no unwarranted change in the data meaning it is homogenous.  These tests were 

conducted using the available trend package in the R software (Pohlert, 2018). 

3.2.3.1 Pettit’s Test 

The Pettitt (1979) test was used to identify whether there was a significant change in the 

mean of the time series when the precise time of change is unknown. According to Pettitt’s 

test, if   ,   ,   ,…,    is a time series of observed data which has a change at time t such 

that   ,   ,…,    has a distribution function   ( ) which is different from the distribution 

function   ( ) of the second part of the time series     ,     ,     ,…,    then the test 

statistics    for the Pettitt test may be computed as presented in Equation 3.1, and defined in 

Equation 3.2.  
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The test statistic K and the allied confidence level ( ) for the sample length (n) may be 

defined as in Equation 3.3 and Equation 3.4, respectively. 
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When   is less than the confidence interval level, the null hypothesis is rejected. The 

approximate significance probability (p) for a change-point is defined as shown in Equation 

3.5. 

       (3.5) 
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3.2.3.2  Buishand Range Test 

In the Buishand range test (Buishand, 1982) the adjusted partial sum (  ), that is the 

cumulative deviation from the mean for the     observation of a time series 

  ,   ,   ,…,    …,    which has a mean ( ̅) can be calculated using Equation 3.6: 

 

   ∑    ̅

 

   

 

(3.6) 

A time series is assumed to be homogenous, that is without any change point, if     . This 

is because in a random series the deviation from the mean will be distributed on both sides of 

the mean of the series. The significance of the change can be assessed by calculating the 

rescales adjusted range (R) as shown in Equation 3.7. 
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The calculated value of  √ ⁄  , where  n is sample size, is likened with the critical values 

given by Buishand (1982).  

3.2.3.3 Standard Normal Homogeneity Test 

In the standard normal homogeneity test (Khaliq and Ouarda, 2007), the test statistic (  ) is 

used to compare the mean of the first n observations with the mean of the remaining (n-k) 

observations with n data points as shown in Equation 3.8. 
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   and    can be computed as shown in Equation 3.9 and Equation 3.10, respectively  
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In Equation 3.10,  ̅ and   are the mean and the standard deviation of the time series. The year 

k is the change point and contains a break where the value of    achieves the maximum 

value. In order to reject the null hypothesis, the test statistic should be larger than the critical 

value, which is contingent on the sample size (n). 
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3.3 Methodology 

This subsection presents the methodologies used to determine the temporal and spatial 

variability of climate variables in Kenya, the analysis of land suitability for green gram 

production, and the simulation of the effects of climate change on green gram yield in Kenya. 

3.3.1 Temporal and Spatial Variation of Climate Elements in Kenya 

This subsection presents the methodologies on trend analysis, error analysis and bias 

correction. 

3.3.1.1 Trend Analysis 

Both parametric and non-parametric methods can be used to detect trend in a time series. 

Parametric methods make the assumption that the data is free from outliers and are thus 

normally distributed; non-parametric methods do not have such assumptions.  

The Mann-Kendall method, proposed by Mann (1945), is one commonly applied non-

parametric method for identifying trend in a time series. Several recent studies have used the 

Mann-Kendall test to identify trends in time series (Taxak et al., 2014; de Carvalho et al., 

2014; Mallya et al., 2016). The Mann-Kendall method is often preferred for trend analysis, 

because it can work with missing data, non-normality, seasonality and outliers in a time series 

(Oloruntade et al., 2016).  

a) Mann- Kendall Test 

The Mann-Kendall test (S) (Equation 3.11) was used to determine whether there was a trend 

in the rainfall and temperature, annually and in the MAM and OND seasons.  
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In Equation 3.12    represents the successive values and n represents the number of data 

points in a set.  
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According to Equation 3.12 if a data variable from a previous time (  ) is larger than one 

from a later time (  ), the value (S) is increased by 1, and vice versa. 
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The variance statistic, Var (S), is given by Equation (3.13): 

 
    ( )  
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(3.13) 

In Equation 3.13, r represents the number of tied clusters (i.e., sample data with equal value), 

and    are the data points in the p
th 

tied cluster.  The values of S and Var(S) are then used to 

determine the test Z value as shown in Equation 3.14:  
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From Equation 3.14, an increasing trend is reported if Z is positive and, in addition, the 

calculated value is larger than the significance level. A decreasing trend is reported if Z is 

negative and the calculated value is greater than the significance level. If the calculated value 

of Z is smaller than the significance level then the trend is not significant. A significance 

level of 5% was applied.   

b) The Sen’s Slope Estimator Test for the Magnitude of Trend 

The magnitude of trend was estimated using the Sen’s slope test. Here, the slope (  ) of all 

pairs of data is calculated as shown in Equation 3.15 (Sen, 1968). 

    
     

   
 For i=1, 2, …, n (3.15) 

In Equation 3.15 parameters    and    are the values of data at period j and k where j is 

greater than k. The mean of the n values of    is symbolized as the Sen’s estimator of slope 

and computed using Equation 3.16. 
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Positive values of    indicate an increasing trend while negative values of    indicate a 

decreasing trend in the time series. 
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3.3.1.2 Spatial Analysis and the Performance of CORDEX in Simulating Historical 

Climate 

The data from 1971 to 2000 was used as the baseline for the verification of CORDEX 

models. The performance of CORDEX RCMs in mimicking climate conditions in various 

places has been studied by a number of authors (Endris et al., 2013; Mascaro et al., 2015; 

Luhunga et al., 2016; Mutayoba and Kashaigili, 2017). The skill of an RCM to mimic the 

climate of an area has been shown using diverse techniques, but no specific system is 

considered better than another. The collective use of many methods is what brings an all-

inclusive impression of the model presentation (Flato et al., 2013).  

The CORDEX model outputs were assessed against the observed data using statistical 

measures of bias (Equation 3.17) and the normalised root mean square (NRMSE) (Equation 

3.18) which was calculated using the root mean square error (RMSE) (Equation 3.19); the 

World Meteorological Organisation recommends these measures (Luhunga et al., 2016).  
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In Equations 3.17 and 3.19, O is the observed value, P the simulated value and N the total 

number of these pairs (Luhunga et al., 2016). 

The Normalised Root Mean Square Error (NRMSE) (Equation 3.18) measures the absolute 

error of the RCM in simulating observed climate. Smaller values of NRMSE indicate that the 

RCM simulated the observed climate well; large values show model deficiency in simulating 

the observed climate. 

3.3.1.3 Bias Correction 

Bias correction is done to reduce the error of the models in overestimating or underestimating 

future climate. There are four popular bias correction methods which include the 

Standardization-Reconstruction, Scaling, Gamma Quantile Mapping, and Empirical Quantile 
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Mapping methods (Akhter et al., 2017). This study used the Scaling method also called the 

change factor method (Equation 3.20). The choice was based on its simplicity and extensive 

usage in literary works (Wetterhall et al., 2012).   

The scaling method involves adjusting the model data using the multiplicative (quotient) or 

additive (difference) factor between the observed and model data. The multiplicative 

approach is best suited to variables with a lower bound, (e.g. precipitation), and the additive 

approach to boundless variables, (e.g. temperature) (Akhter et al., 2017). For rainfall which 

was corrected for bias, the formula was expressed as shown in Equation 3.20.  

   

 
            

  

  
 

(3.20) 

Here      and      are the corrected and uncorrected model outputs, respectively;    and    

are the average observed and GCM precipitation during the reference period. The equation 

for the addictive approach involves changing the quotient (multiplicative) sign to the 

difference (additive) sign. 

3.3.2 Land Suitability Analysis 

The analysis of the suitability of land involved the determination of the thresholds from 

literature within which green gram performs best and worst. The data on climatic, soil and 

topographical conditions suitable for green gram was first categorized into two classes; these 

were the suitable class and not suitable class. The two classes were additionally alienated into 

four classes namely, Highly suitable (S1), Moderately suitable (S2), Marginally suitable (S3) 

and not suitable (N) as directed by Table 3-3.  

Table 3-3: Land Suitability Classification Structure 

Order  Class Explanation  

 

S 

S1 Land with no major limits to sustain a particular continued use, or whose limitations 

are only minor and cannot reduce production and benefits and will not require inputs 

above a level which is not acceptable.  

S2 Land whose limits are only moderately severe to the sustenance of a particular use; 

the limitations thus would affect production and benefits and increase the required 

inputs to a level where the final benefit gained, although still good, is substantially 

lower to that anticipated in the S1 class. 

S3 Land whose limits are severe to the sustenance of a particular use and thus would 

lower production and benefits, and increase the inputs required, such that the final 

benefit is only marginally justifiable. 



40 
 

Order  Class Description  

 

 

N 

N1 Land whose limits may be overcome with time but cannot be corrected using the 

current information at a tolerable cost; the limitation is so severe to support the 

sustained use of land in the suggested way.  

N2 Land that has limits so severe that they exceed any chance to support the sustained 

use of land in the suggested manner. 

Source: FAO (1976) 

3.3.2.1 Green Gram Suitability Table 

Table 3-4 shows four classes of the suitability of green gram production under different soil, 

climate and topography summarized as the Highly suitable class (S1), Moderately suitable 

class (S2), Marginally suitable class (S3) and not suitable class (N).  

Table 3-4: Green gram Suitability Table for Factors used in Developing Suitable Areas 

for Green gram Production in Kenya, Where, S1, S2, S3 and N are the Highly suitable 

class, Moderately suitable class, Marginally suitable class, and not suitable class (N) 

Respectively. 

Parameter S1 S2 S3 N Source 

Rainfall 250-350 

mm 

150-250 mm 

350-600 mm 

75-150 

mm 

>600 

<75 mm (Gaiser et al. 2001) 

Temperature 30-21C 18-21 C 15-18 C 

 

<15 C 

>30 C 

(Al-Mashreki et al., 

2011) 

Soil pH 6.2-7.2 5-6.2 7.2-8.0 >8.0 

<5.0 

(Mugo et al., 2016; 

Ogunwale et al., 2009) 

Drainage Well-

drained  

Imperfectly 

drained 

Poorly 

drained, 

Rapidly 

drained 

Very 

poorly 

drained  

(Mugo et al., 2016; 

Yohannes and 

Soromessa, 2018) 

Texture  Loam  

Sandy 

Loam  

Clayey 

 

Very 

clayey 

Extremely 

sandy  

- (Mugo et al., 2016; 

Yohannes and 

Soromessa, 2018) 

CEC >10meq/1

00g 

5-10 

meq/100g 

0-5 

meq/100g 

- (Mugo et al., 2016; 

Ogunwale et al., 2009 

) 

Depth >50cm 30-50cm <30cm  (Mugo et al., 2016; 

Yohannes and 

Soromessa, 2018) 

Altitude 0-1600 1600-2000 2000-3000 <0 

>3000 

(Mugo et al., 2016; 

Ogunwale et al., 2009 

) 
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3.3.2.2 Pairwise Comparison Matrix 

Saaty’s (2008) scale of values from 1 to 9 (Table 3-5) was used to compare and assign 

weights to factors under climate (rainfall and temperature), soil (pH, texture, depth, drainage 

and CEC) and altitude.  

Table 3-5: Scale of Relative Importance between any Two Factors which Affect Green 

Gram Production e.g. Rainfall vs. Drainage 

Definition of Importance Scale  

Equally ranked factors 1  

One factor’s rank is weaker than the other 3  

One factor’s rank is much stronger than the other 5  

One factor’s importance is more than the other  7  

One factor has absolute rank over the other 9  

Values used when a factor’s rank is between odd numbers 2,4,6,8  

3.3.2.3 Criteria Weights Assignment  

A Consistency Ratio (CR) as presented in Equation 3.21 was calculated and for the weights 

to be adopted, the ratio was required to be less than 10% to avoid bias (Halder, 2013). 
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In Equation 3.22 CI denotes the Consistency Index; λmax Denotes the maximum Eigen value 

of the pairwise comparisons; N is the number of parameters being related; CR is the 

Consistency Ratio and RI stands for the Random Inconsistency Index which depends on the 

number of factors being related as shown in (Table 3-6). 

Table 3-6: Random Inconsistency Index (RI) for N=I, II..., XI 

N I II III IV V VI VII VII IX X XI 

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 

Source: Saaty (2008) 
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3.3.2.4 Model Inputs Preparation 

Secondary data were attained from a number of sources as presented in (Table 3-7). The 

secondary databases were maps of soil parameters obtained from the Kenya Soil Survey map, 

present and future temperature and rainfall data from CORDEX and altitude extracted from 

the Digital Elevation model (DEM) of the United States Geological Survey (USGS). The 

secondary layers were used as inputs to the ArcGIS weighted overlay model.  

Table 3-7: Description of Secondary Data Sources used as Map Layers in Delineating 

Areas Suitable for Green gram Production 

Data layer Source Scale/ Resolution Data Format 

Climate: 

Temperature and rainfall 

CORDEX 0.44 degrees/ 50km Raster format  

Soil: pH, CEC, depth, drainage and texture KSS  Vector format 

Topography/ DEM: Slope USGS 30m Raster format  

3.3.2.5 Soil Data of the Study Area 

The five vector layers of interest for this analysis (pH, depth, drainage, texture, and CEC) 

were extracted and converted into a raster format. The 5 raster layers were then reclassified 

into 4 classes of suitability (Highly suitable class, Moderately suitable class, Marginally 

suitable class and not suitable class). 

3.3.2.6 Altitude of the Study Area 

The altitude of the area was obtained in raster format from the DEM of the area. The altitude 

was reclassified into 4 classes of suitability (Highly suitable class, Moderately suitable class, 

Marginally suitable class and not suitable class).  

3.3.2.7 Climate of the Study Area 

The current and future seasonal total precipitation during the MAM and OND seasons and the 

seasonal mean temperature for these seasons were calculated from the normal average 

ensemble of the nine RCA4 RCM model. The temperature and rainfall was then reclassified 

into 4 classes of suitability as presented earlier in Table 3-4.  

3.3.2.8 Green Gram Suitability Map 

After rating and reclassifying the maps of climate, soil and altitude parameters, each was 

given a percentage stake (weight). These weights were obtained through the Analytical 

Hierarchy Process (AHP) (Mugo et al., 2016; Kihoro et al., 2013; Kamau et al., 2015). The 
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maps were then overlaid to generate a green gram suitability map under current and future 

climates.     

3.3.3 Simulation of the Impact of Changing Climate on Green Gram Production 

From the green gram suitability maps, a highly suitable area in Kitui County was identified 

for further study to simulate what would be the actual yield of such an area under various 

agronomic scenarios. This involved planting four main green gram varieties at the SEKU 

farm under various agronomic scenarios and collecting the phenology, biomass, days to 

maturity and seed yield data upon harvesting.  

3.3.3.1 APSIM Model Calibration  

The APSIM module can simulate nine cultivars of the green gram crop. The varieties 

calibrated in APSIM include: Satin, a dull green seed resembling KS20; Celera, a small 

seeded, shiny green seed with hard seed levels resembling N26, and Berken and Emerald, 

medium-large and shiny green seeds resembling Tosha and Biashara varieties respectively 

(Gentry and Gordon, 2010). The calibrated Biashara, Tosha, KS20 and N26 were used to 

simulate the effect of changing climate on the yield, biomass and days to physiological 

maturity of green gram. 

The Agricultural Production Systems sIMulator (APSIM) mimics the development of a crop 

by pooling management and biophysical modules (Mohanty, 2012). The modules mimic crop 

growth upon input of certain data, for instance, crop management data, weather data and soil 

data which have been described in more detail in the subsections below.   

a) Crop Management data 

Green gram was planted at a distribution of four to six kilograms per hectare, spacing of 15 

cm and 45 cm between plants and rows, respectively, and a depth of three to five centimetres. 

Weeding was done two weeks after the emergence of seeds and before flowering. Pesticides 

were applied twice during the growth of green grams; at the budding stage and at the podding 

stage. Fertiliser was applied before the crop flowered and during fruiting to increase yields 

(SASOL, 2015). 
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b) Weather data 

The APSIM weather module requires daily data on rainfall, solar radiation, minimum 

temperature, and maximum temperature. The APSIM model requires the data to be input as 

one file of daily weather parameters arranged in columns in chronological order. The data 

was saved as a .prn file under excel and this was converted to .met using the Tav_Amp 

program written in FOTRAN language. The .met is then read into the APSIM weather 

module.  

Daily data on rainfall, solar radiation, minimum temperature, and maximum temperature 

were collected from the SEKU weather station which is located in Kitui County, Kenya 

during the year, 2018 and 2019 in the seasons when green gram experiments were conducted 

for use in model initialization and validation. Data on the number of rainy days in each month 

when green gram was planted was also collected to help understand the distribution of 

rainfall. A rainy day was described as a day when rainfall was more than or equal to 0.85 mm 

(Barron et al., 2003). 

Daily data on rainfall and temperature from the CORDEX RCA4 model ensemble under the 

baseline scenario (1971 to 2000), and the future RCP 4.5 and 8.5 scenarios (2021 to 2050) 

were also used as inputs in the green gram weather module to study the effect of climate 

change on green gram yield.  

c) Sampling of Soil Parameters 

Samples of soils were obtained using a soil auger at various depths (0-15 m, 15-30 m, and 30-

45 m) sampled at different points in the experimental site using a zigzag pattern. The soils' 

subsamples were placed in three buckets based on the different depths (0-15 m, 15-30 m, and 

30-45 m) and thoroughly mixed. A final sample of 1 kg from each bucket was obtained and 

placed in three collection bags labelled according to the soil depths. The three samples were 

then transported on the same day to the National Agricultural Research Laboratory (NARL) 

in Kabete, Kenya for physical and chemical analysis. Table 3-8 shows the physical and 

chemical soil parameters tested and the methods used. 
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Table 3-8 Soil Parameters Required by APSIM and the Analysis Method Used 

3.3.3.2 Validation of the APSIM Green gram Model 

The APSIM model was investigated for its ability to simulate the yield, biomass, and days to 

maturity of the green gram experimental data collected during the years 2018 and 2019.  

a)  Statistical Evaluation of the Green Gram Model Performance  

The ability of the of the APSIM green gram model to simulate the observed green gram yield, 

biomass, and days to maturity were evaluated using the Bias and NRMSE tests (Section 

3.3.1.2). 

b) Future Green Gram Suitability 

The effect that climate change will have on green gram yield under RCP 4.5 and RCP 8.5 

scenarios from CORDEX was investigated using the validated green gram module. The 

period of consideration for the future climate was between 2021 and 2050 which is the 

implementation period for Kenya’s vision 2030 objectives. 

Parameter Units Analytical method 

Field capacity  (g/cm
3
) Initial Drainage Curve (IDC) (Klute, 1986) 

Saturated water 

content  

(mm/mm) Initial Drainage Curve (IDC) (Klute, 1986) 

Labile Phosphorus (mg/kg) Olsen method (Olsen and Sommers, 1982) 

Bulk Density  (g/cm
3
) Oven dried (105

o
C) to constant weight, after Blake 

and Hartge (1986) 

Organic Carbon (g/kg) Walkley and Black process (Nelson and Sommers, 

1996) 

Total Nitrogen  mg/L Kjeldahl process, (Bremner and Mulvaney, 1982) 

Cation Exchange 

Capacity 

Cmol+/kg Ammonium-acetate process (Schollenberger and 

simon, 1945) 

pH 1:5 water 1:2.5 soil (KCl I1M), by a standardized pH meter 

Potassium Cmol+/kg Ammonium-acetate process  (Schollenberger and 

simon, 1945) 

Sodium Cmol+/kg Ammonium-acetate process  (Schollenberger and 

simon, 1945) 

Texture (Particle size 

of clay, sand) 

 Soil texture class and size classification conferring to 

USDA  system (Gee et al.,1986) 
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CHAPTER 4: RESULTS AND DISCUSSIONS  

This Chapter presents the results and discussions of modelling green gram production in 

Kenya under current and future climates. It specifically presents the results and discussions 

on data quality control, spatial and temporal variability of climate, suitability of land to green 

gram production, and the simulated yield of green gram under the changing climate.  

4.1 Data Quality Control 

Missing data were estimated using the correlation and regression method as described in 

Section 3.2.3 provided that not more than 10% of the total data was missing.  

Figure 4-1 presents the results of the single mass curve for all stations which generally 

displays no major shifts from the general trend during the period from 1970 to 2016. 

Table 4-1 presents the results of homogeneity tests conducted using the Pettit, Buishand 

range and standard normal tests (Taxak et al., 2014; Andang’o et al., 2016) at a significance 

level of 0.05. There is no station where all the tests showed a statistically significant change 

in the homogeneity of the data. The year when a break occurred in the time series is also 

presented. For example a break is noted in the Dagoretti station forty years after 1970, in the 

year 2010. Andang’o et al. (2016) recorded similar results where they found 12 rainfall 

stations in Kenya were homogenous and thus useful for further analysis. 
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Figure 4-1 Singe mass curves of annual rainfall of stations in Kenya. The results generally show no major shifts from the general trend 

during the period 1970 to 2016
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Table 4-1: Homogeneity Tests Showing the Year between 1970 and 2016 when a Break 

Occurred in the Time Series of Rainfall e.g. 40 Years After 1970 a Break is noted in the 

Dagoretti Station, in the Year 2010; S Denotes Significant and NS Not Significant Using 

a P-Value Of 0.05 

Station Pettitt (Break) Buishland range (Break) Standard normal (Break) Verdict 

Dagoretti NS (40) NS (40) S (42) Good  

Garissa NS (18) NS (18) NS (7) Good 

Kakamega NS (22) NS (22) NS (22) Good 

Kisumu NS (24) NS (40) S (43) Good 

Lamu NS (27) NS (27) NS (27)  Good 

Lodwar NS (32) NS (32) NS (41) Good 

Mandera NS (19) NS (19) NS (43) Good 

Marsabit S (32) S (36) NS (41) Good 

Mombasa NS (7) NS (7) NS (43) Good 

Moyale NS (21) NS (29) NS (29) Good 

Nakuru NS (31) NS (31) NS (40) Good 

Nanyuki NS (9) NS (40) NS (41) Good 

Narok NS (40) NS (40) NS (44) Good 

Voi NS (7) NS (7) NS (47) Good 

Wajir NS (19) S (42) NS (20) Good 

4.2 Spatial and Temporal Variability of Climate Parameters in Kenya 

This subsection presents results on the spatial and temporal variability of climate variables in 

Kenya. In this section the CORDEX RCA4 models are assessed on their ability to replicate 

the observed rainfall and temperature. The bias corrected ensemble of rainfall and the 

ensemble of temperature are then used to study the temporal and spatial variability.  

4.2.1  Performance of the CORDEX RCA4 Models in Simulating the Observed 

Temporal Distribution of Rainfall and Temperature Climatology in Kenya 

This subsection presents results on the ability of the CORDEX RCA4 model to replicate the 

annual cycle of rainfall and temperature in Kenya.  

4.2.1.1 Performance of the CORDEX RCA4 Models in Simulation the Observed 

Temporal Distribution of Rainfall 

Figure 4-2 shows the distinct bimodal pattern of total mean annual rainfall in Kenya for some 

homogeneous stations. The models and the ensemble replicate the bimodal pattern of annual 

rainfall, but have notable biases. The CORDEX models and their ensemble underestimate 

rainfall during the MAM season and overestimate the rainfall during the OND season. The 

propensity of the CMPI models to underestimate the rainfall during the MAM season and 

overestimate the rainfall in the OND season over East Africa has also been observed by 

others (Ongoma et al., 2019; Yang et al., 2015). MAM is considered the main rainy season 
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due to its large spatial coverage and amount, especially along the coast and the Lake Victoria 

regions, while the OND season is the main season in the lower eastern and central regions 

(Ayugi et al., 2016). Kenya’s rainfall patterns are mainly dependent on the movement of the 

ITCZ during the MAM season as it moves North and the OND season as the ITCZ moves 

south. During the JJA season rainfall in Kenya is controlled by the Southeast monsoon which 

brings moist air to the western and coastal portions of Kenya, the moist Congo air mass from 

the west, and the northward displacement of the ITCZ which bring moist air to the northern 

part of the country (Opijah et al., 2017). 
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Figure 4-2: Average monthly observed and model rainfall (mm) patterns for stations in Kenya during the 1971 to 2000 period 
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4.2.1.2 Performance of the CORDEX RCA4 Models in Simulation the Observed 

Temporal Distribution of Temperature  

Figure 4-3 and Figure 4-4 illustrate the pattern of the mean annual maximum and mean 

annual minimum temperature, respectively. Maximum and minimum temperature as 

presented in Figures 4-3 and 4-4 show small variability throughout the year with a decrease 

in temperature taking place during the MAM and OND rainy seasons because of the 

influence of cloud cover, and during the JJA season when there is advection of cold air from 

the South (Opijah et al., 2017).  
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Figure 4-3: Average monthly observed and model maximum temperature patterns for stations in Kenya during the 1971 to 2000 period 



53 
 

 

Figure 4-4: Average monthly observed and model minimum temperature patterns for stations in Kenya during the 1971 to 2000 period 
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4.2.2 Performance of the CORDEX RCA4 Models in Simulating the Spatial Pattern of 

Observed Rainfall Climatology in Kenya 

This subsection presents the results on the ability of the CORDEX models to simulate the 

MAM and OND seasonal rainfall which are the main planting seasons in Kenya. 

4.2.2.1 Climatology of Observed and Simulated Rainfall over Kenya 

The spatial plots of the rainfall climatology of the MAM and OND seasons for the observed 

(Climate Research Unit (CRU)) and nine models is displayed in Figures 4-5 and 4-6 

respectively. In Figure 4-5, the observed distribution shows that much of the rainfall is 

concentrated in the central, western, and coastal regions of Kenya. The rainfall pattern could 

be attributed to the influence of the meso-scale systems around the regions and the apparent 

position of the ITCZ which is around the equator. All the nine models and their ensemble 

overestimate the rainfall over the Mt. Kenya and Mt. Kilimanjaro regions since the values of 

total rainfall are larger than that of the CRU dataset. The results agree with other studies that 

indicate that models tend to have poor accuracy in high altitude areas (Endris et al., 2013; 

Mukhala et al., 2017; Kisembe et al., 2019; Warnatzsch and Reay, 2019). 

The distribution of the observed OND rainfall climatology differs slightly from that of MAM 

rainfall climatology. The models and their ensemble also overestimate rainfall peaks around 

Mt. Kenya and Mt. Kilimanjaro regions as shown in Figure 4-6. Generally the ensemble 

which is a normal average of the nine CORDEX models (Endris et al., 2013) is a better 

representation than the individual models during both the MAM and OND seasons. The 

better representation by the ensemble can be attributed to its ability to cancel opposite signed 

biases across individual models. Individual models can sometimes be unreliable since they 

give good results in one region and poor results in another region over the same time period. 

The ensemble, although potentially biased, simulated rainfall better compared to individual 

models; model ensembles have previously been used for future climate studies (Endris et al., 

2013; Buontempo et al., 2015; Ogega et al., 2016; Mukhala et al., 2017; Mutayoba and 

Kashaigili, 2017; Gibba et al., 2019; Kisembe et al., 2019). 
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Figure 4-5: Performance of CORDEX models in simulating the observed MAM rainfall 

total (in mm) over Kenya for 1971-2000. Rainfall amount increases from the white 

shaded areas through to the blue shaded areas. 
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Figure 4-6: Performance of CORDEX RCA4 models in simulating the observed OND 

rainfall total (in mm) over Kenya for 1971-2000. Rainfall amount increases from the 

white shaded areas through to the blue shaded areas. 

4.2.2.2 Rainfall Bias in the Simulated Dataset  

The spatial distribution of the average bias of the simulated rainfall dataset against the 

observed rainfall datasets for the period 1971-2000 is presented in this section. Figures 4-7 

and 4-8 present the average bias in rainfall during the MAM and OND seasons, respectively. 

Most of the CORDEX models overestimate the rainfall over most parts of Kenya during the 

MAM season, except for the MOHC, NCC and NOAA models which tend to underestimate 

the observed rainfall amounts. Overestimation of rainfall is noted in the western and central 

parts of Kenya, particularly around Mt. Kenya region, especially by CSIRO, IPSL, MIROC 

and MPI models as shown in Figure 4-7. 

Higher positive values of bias were observed during the OND season in contrast to the MAM 

season. The models simulate higher rainfall over the regions near the mountains and lakes 
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especially around Mt. Kenya and Mt. Kilimanjaro region, and the Lake Victoria region as 

indicated in Figure 4-8. The models do not properly simulate the mesoscale systems which 

are driven by the orographic drag, and the land-water contrasts.  

 

Figure 4-7: Bias of the average CORDEX simulated rainfall against the observed 

rainfall for the period 1971-2000 rainfall (in mm) during the MAM season over Kenya. 

Shades of red indicate overestimation while shades of blue indicate underestimation 
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Figure 4-8: Bias of the average CORDEX simulated rainfall against the observed 

rainfall for the period 1971-2000 rainfall (in mm) during the OND season over Kenya. 

Shades of red indicate overestimation while shades of blue indicate underestimation 

4.2.2.3 Normalised Root Mean Square Error in the Simulated Rainfall Datasets  

The spatial distribution of the average NRMSE in the simulated rainfall dataset against the 

observed rainfall datasets for the period 1971-2000 are presented in this section. Figure 4-9 

and 4-10 present average NRMSE during the MAM and OND seasons, respectively, which 

was generally high. The NRMSE measures the absolute error of the RCM in simulating the 

observed climate parameters of interest. The smaller the value of the NRMSE the better the 

RCM simulates the observed climatology, and vice versa. 

During the MAM season lower values of NRMSE are observed over most parts in Kenya 

especially with the MOHC, NCC, NOAA, and the ensemble showing good simulation of 

observed data by the models. High values of NRMSE are noted around Mt. Kilimanjaro 

region, the western and central (around Mt. Kenya) parts of Kenya as shown in Figure 4-9. 
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High NRMSE show poor simulation of observed data by the models especially the mesoscale 

systems around the western and central parts of Kenya.  

During the OND season, higher values of NRMSE are observed compared to the MAM 

season.  High values of NRMSE are noted around Mt. Kilimanjaro, the western and central 

(around Mt. Kenya) parts of Kenya, especially with the CCCma, IPSL, NCC and NOAA 

models as shown in Figure 4-10.  

 

Figure 4-9: NMRSE of the average CORDEX simulated rainfall against the observed 

rainfall for the period 1971-2000 rainfall (in %) during the MAM season over Kenya. 

Shades of red indicate large error while shades of blue indicate small error. 
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Figure 4-10: NMRSE of the average CORDEX simulated rainfall against the observed 

rainfall for the period 1971-2000 rainfall (in %) during the OND season over Kenya. 

Shades of red indicate large error while shades of blue indicate small error. 

4.2.2.4 Bias-corrected Rainfall Climatology in Kenya 

This section presents results on reduction of bias between the observed rainfall dataset and 

the ensemble of the CORDEX models. The rainfall ensemble, despite performing better than 

the individual CORDEX models, still showed notable biases. This necessitated bias 

correction to better simulate the observed rainfall before studying the temporal and spatial 

variability of rainfall and green gram crop modelling under present and future climate 

conditions. Figure 4-11 illustrates the average bias in rainfall after reducing bias using the 

scaling method for the MAM and OND seasons. Figure 4-12 presents the average NRMSE in 

rainfall after reducing bias during the MAM and OND seasons. The error in the rainfall 

ensemble is reduced as shown by lower values of bias (Figure 4-11) and NRMSE (Figure 4-

12).  
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The bias corrected ensemble during the MAM (Figure 4-13) and OND (Figure 4-14) season 

shows improvement after being adjusted using the scaling method. Bias correction is able to 

reduce the disagreement between the observed dataset and the ensemble of the CORDEX 

models’ dataset. Other studies have shown the importance of performing bias correction 

before using the data for climate impact studies (Ezéchiel et al., 2016; Akhter et al., 2017; 

Mutayoba and Kashaigili, 2017; Ayugi et al., 2020). 

 

Figure 4-11: Deviation of the average bias corrected ensemble of simulated rainfall 

(mm) against the observed rainfall for the period 1971-2000 during the MAM and OND 

seasons over Kenya. Shades of red indicate overestimation while shades of blue indicate 

underestimation 
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Figure 4-12: NMRSE of the average CORDEX simulated rainfall against the observed 

rainfall (mm) for the period 1971-2000 rainfall during the MAM and OND seasons over 

Kenya. Shades of red indicate large error while shades of blue indicate small error. 

Figure 4-13: Performance of the CORDEX bias corrected ensemble in simulating the 

observed MAM rainfall total (in mm) over Kenya for 1971-2000. Rainfall amount 

increases from the white shaded areas through to the blue shaded areas 
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Figure 4-14: Performance of the CORDEX bias corrected ensemble in simulating the 

observed OND rainfall total (in mm) over Kenya for 1971-2000. Rainfall amount 

increases from the white shaded areas through to the blue shaded areas  

4.2.3  Performance of the CORDEX RCA4 Models in Simulating the Spatial 

Climatology of Minimum Temperature in Kenya 

This subsection presents results on observed and simulated climatology of minimum 

temperature during the MAM and OND seasons. 

4.2.3.1 Climatology of Observed and Simulated Minimum Temperature over Kenya 

The spatial distributions of the climatology of the observed minimum temperature for the 

MAM and OND seasons are represented in Figures 4-15 and 4-16, respectively.  

The lowest temperature of the day is recorded early in the morning just before sunrise. The 

cooling of the atmosphere is cumulative and during the day the sun warms the earth’s surface. 

Once the sun sets, the earth begins to cool off by radiating infra-red radiation into space. The 

air near the earth’s surface becomes progressively cooler during the night until the early 

morning hours around sunrise when the sun begins to warm the earth once more.  

During the MAM and OND seasons, all the models and their ensembles capture the observed 

pattern of the spatial distribution of temperature as illustrated in Figure 4-15 and Figure 4-16, 

respectively. Other studies have also shown that models are able to simulate temperature 

fairly well (Opijah et al., 2017; Mukhala et al., 2017; Warnatzsch and Reay, 2019). 

Low values of minimum temperature are observed in central and western parts of Kenya 

which are the highland zones. High values of minimum temperature values are observed in 

the eastern and northern parts of Kenya which are the low lying areas. Temperature decreases 
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with altitude such that low altitude areas (eastern and northern Kenya) experience higher 

temperature than in the higher altitudes (western and central Kenya) which experience lower 

temperature. At higher altitude, the density of air is lower. Therefore, there are less 

greenhouse gases in the air. The high altitude areas, thus, lose more heat during the night 

when the earth cools off by radiating infra-red radiation into space leading to lower minimum 

temperatures being recorded. At lower altitudes the denser atmosphere absorbs the outgoing 

long wave radiation and re-directs it back leading to higher values of minimum temperature 

being recorded.  

 

Figure 4-15: Performance of CORDEX models in simulating the observed mean 

minimum temperature in the MAM season (C) during 1971-2000 over Kenya. The 

temperature increases from the blue shades through to the red shades 
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Figure 4-16: Performance of CORDEX models in simulating the observed mean 

minimum temperature in the OND season (in C) during 1971-2000 over Kenya. The 

temperature increases from the blue shades through to the red shades 

4.2.3.2 Bias of Minimum Temperature in the Simulated Dataset 

This section presents the spatial distribution of the mean bias between the simulated 

minimum temperature data against the observed data for the period between 1971 and 2000. 

Figure 4-17 and 4-18 present the average bias during the MAM and OND seasons, 

respectively. Generally the CORDEX models and their ensemble are a good representation of 

the observed minimum temperature since they show low levels of bias during the MAM and 

OND seasons.  

During the MAM season, some models, especially the CCCma, CSIRO, IPSL and NCC 

models, overestimate the minimum temperature in the western, north western, northern and 

central parts of the country. Negative values of bias are observed around Mount Kenya and 

Mount Kilimajaro region especially by the CNRM, MIROC, MPI, and NOAA models as 
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shown in Figure 4-17. The models, thus, do not properly capture the effect of altitude, 

radiation loss and atmosphere density on minimum temperature. 

During the OND rainfall season, some models, especially the CCCma, CSIRO and IPSL, 

overestimate the minimum temperature in the western, north western, northern and central 

parts of the country. The underestimation of minimum temperature is most notable in the 

CNRM and NOAA models where the underestimation is in most parts of Kenya as shown in 

Figure 4-18. The model ensemble generally shows lower values of bias compared to the rest 

due its ability to smooth over the individual biases of each model. Minimum temperature is 

dependent on altitude which affects cloud cover and radiation loss from the earth during the 

night.  

Figure 4-17: Bias of the average CORDEX simulated minimum temperature (inC) 

against the observed minimum temperature from 1971 to 2000 during the MAM season 

over Kenya. Shades of red indicate overestimation while shades of blue indicate 

underestimation 
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Figure 4-18: Bias of the average CORDEX simulated minimum temperature (inC) 

against the observed minimum temperature from 1971 to 2000 during the OND season 

over Kenya. Shades of red indicate overestimation while shades of blue indicate 

underestimation 

4.2.3.3 Normalised Root Mean Square Error in the Simulated Minimum Temperature 

Datasets  

The spatial distribution of the average NRMSE in the simulated minimum temperature values 

against the observed minimum temperature values for the period 1971-2000 are presented in 

this section. Figure 4-19 and 4-20 depict the average NRMSE during the MAM and OND 

seasons respectively. The NRMSE measures the absolute error of the RCM in simulating the 

observed climate parameters of interest. The smaller the value of the NRMSE the better the 

RCM simulates the observed climatology, and vice versa. 

During the MAM season higher values of NRMSE are observed in the central and western 

regions of the country. Lower values of NRMSE are observed in the southern and eastern 
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region of the Country indicating that the models and their ensemble are able to simulate the 

minimum temperature patterns in the low lying areas with more accuracy as shown in Figure 

4-19. 

During the OND season higher values of NRMSE are observed in the northern and western 

region of the country. Lower values of the NRMSE are observed in the southern and eastern 

region of the Country indicating that the models and their ensemble are able to simulate the 

minimum temperature patterns with more accuracy as shown in Figure 4-20. 

 

Figure 4-19: NRMSE of the average CORDEX simulated minimum temperature 

against the observed minimum temperature for the period 1971-2000 minimum 

temperature (in %) during the MAM season over Kenya. Shades of red indicate large 

error while shades of blue indicate small error. 
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Figure 4-20: NRMSE of the average CORDEX simulated minimum temperature 

against the observed minimum temperature for the period 1971-2000 minimum 

temperature (in %) during the OND season over Kenya. Shades of red indicate large 

error while shades of blue indicate small error. 

4.2.4 Performance of the CORDEX RCA4 Models in Simulating the Spatial 

Climatology of Maximum Temperature in Kenya 

This subsection presents results on observed and simulated climatology of maximum 

temperature during the MAM and OND seasons. 

4.2.4.1 Climatology of Observed and Simulated Maximum Temperature over Kenya 

The spatial distribution of the climatology of the observed maximum temperature for the 

MAM and OND seasons are displayed in Figures 4-21 and 4-22 respectively. 

The maximum temperature of the day is recorded in the afternoon three to four hours before 

sunset. The earth’s surface becomes progressively warmer as the sun heats the earth reaching 

its maximum temperature a few hours before sunset. The maximum temperature of the day is 
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determined by the amount of reflected heat, in the form of long-wave radiation, trapped in the 

atmosphere. 

In Figure 4-21, all the models and their ensemble can simulate the observed spatial 

distribution of maximum temperature during the MAM season reasonably well. Low 

maximum temperatures are observed in the high ground areas including the central parts of 

Kenya, and the highlands west of the Rift Valley. High values of maximum temperature are 

mainly concentrated in the north-eastern and north-western regions of Kenya which are the 

low-lying areas. Temperature decreases with altitude such that low altitude areas (north-

western, north-eastern, eastern and coastal Kenya) experience higher temperature than the 

higher altitude areas (western and central Kenya) which experience lower temperature. 

Maximum temperature is affected by altitude due to air density and the balance between 

incoming solar radiation and outgoing terrestrial radiation. Low altitude areas have a higher 

concentration of air leading to more absorption of heat and in turn higher records of 

maximum temperature. The spatial distribution of maximum mean temperature during OND 

generally follows that of the MAM season as shown in Figure 4-22.  
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Figure 4-21: Performance of CORDEX RCA4 models in replicating the observed 

maximum mean temperature in the MAM season (in C) during 1971-2000 over Kenya. 

The temperature increases from the blue shades through to the red shades 
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Figure 4-22: Performance of CORDEX RCA4 models in replicating the observed 

maximum mean temperature in the OND season (C) during 1971-2000 over Kenya. 

The temperature increases from the blue shades through to the red shades 

4.2.4.2 Maximum Temperature Bias in the Simulated Datasets  

This section presents the spatial distribution of the mean bias between the simulated 

maximum temperature data against the observed data from 1971 to 2000. Figure 4-23 and 4-

24 display the average bias during the MAM and OND seasons, respectively. Generally the 

CORDEX models and their ensemble show low levels of bias during the MAM and OND 

seasons, thus the models are a good representation of the observed maximum temperature. 

In Figure 4-23, during the MAM season, underestimation of maximum temperature is noted 

in the western and south western regions of the country especially with the CNRM, CSIRO, 

MIROC and MPI models. Positive values of bias are noted in the northern region of the 

Country. Positive values of bias mean that the models overestimate maximum temperature in 

the northern parts of Kenya. Maximum temperature is affected by altitude due to air density 
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and the balance between incoming solar radiation and outgoing terrestrial radiation. Low 

altitude areas have a higher concentration of air leading to more absorption of heat and in turn 

higher records of maximum temperature.   

In Figure 4-24, during the OND season underestimation of maximum temperature is observed 

in most parts of the Country by all the models, but especially in the western and south 

western regions. Overestimation of maximum temperature is observed over the northern part 

of the country by the CCCma, CSIRO and IPSL models as presented in Figure 4-24.  

 

Figure 4-23: Bias of the average CORDEX simulated maximum temperature (inC) 

against the observed maximum temperature from 1971 to 2000 during the MAM season 

over Kenya. Shades of red indicate overestimation while shades of blue indicate 

underestimation 
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Figure 4-24: Bias of the average CORDEX simulated maximum temperature (inC) 

against the observed maximum temperature from 1971 to 2000 during the OND season 

over Kenya. Shades of red indicate overestimation while shades of blue indicate 

underestimation 

4.2.4.3 Normalised Root Mean Square Error in the Simulated Maximum Temperature 

Datasets against the Observed Maximum Temperature 

The spatial distribution of the average NRMSE in the simulated maximum temperature 

dataset against the observed maximum temperature datasets from 1971 to 2000 are presented 

in this section. Figures 4-25 and 4-26 display the average NRMSE during the MAM and 

OND seasons, respectively. The NRMSE measures the absolute error of the RCM in 

simulating the observed climate parameters of interest. The smaller the value of the NRMSE 

the better the RCM simulates the observed climatology and vice versa.  

During the MAM and OND seasons, low values of NRMSE are observed in most parts of the 

country. The models and their ensemble are able to simulate the observed climatology with 
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higher accuracy. Higher values are noted in the western and northern regions of the Country 

as shown in Figure 4-25 and Figure 4-26.  

 

Figure 4-25: NRMSE of average (1971-2000) CORDEX simulated maximum 

temperature against the observed maximum temperature (%) from 1971 to 2000 during 

the MAM season over Kenya. Shades of red in the IPSL model indicate large error 

while shades of blue indicate small error. 
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Figure 4-26: NRMSE of average (1971-2000) CORDEX simulated maximum 

temperature against the observed maximum temperature (%) from 1971 to 2000 during 

the OND season over Kenya. Shades of red indicate large error while shades of blue 

indicate small error. 

4.2.5 Temporal Variability of Seasonal Climate in Kenya 

This section presents the results of the significance of the Mann Kendall test and Sen’s 

estimate at a significance level equalling 0.001, 0.01, 0.05, 0.1. The Sen Slope was also 

expressed as a percentage of the average parameter per unit time (% Δ). 

4.2.5.1 Temporal Variation of Seasonal Rainfall in Kenya 

This subsection presents results on the temporal variation of rainfall in Kenya during the 

MAM and OND season. Table 4-2 and Table 4-3 show the results of the time series of total 

rainfall for the baseline, RCP 4.5 and RCP 8.5 scenarios, during the MAM and OND seasons, 

respectively.  
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Under the baseline condition, the rainfall during the MAM season shows a generally 

increasing trend except for Voi, but statistical significance was not recorded for any of the 

stations; the magnitude of trend ranged between -4.4% and 26.0% (Table 4-2). The OND 

season showed an increasing trend in all stations, but statistical significance was not recorded 

in any of the stations; the magnitude of trend ranged between 4.0% and 40.4% (Table 4-3). 

The insignificance in trend for both seasons means we cannot decisively state that rainfall is 

decreasing or increasing in these regions and this could be attributed to the variable nature of 

the rainfall. 

Under the RCP 4.5 condition, the rainfall during MAM season showed an increasing trend for 

most stations except Kakamega, Kisumu, Nakuru and Narok Table (4-2). Statistical positive 

significance was recorded for Mandera, Marsabit, Moyale, Voi, Wajir and Kitui; the 

magnitude of trend ranged between -8.5% and 85.1%. The OND season showed an increasing 

trend for all stations, for which statistical positive significance was recorded for the 

Kakamega and Lodwar stations; the magnitude of trend ranged between 6.4% and 51.6% 

(Table 4-3). This increase in rainfall can be attributed to global warming due to the projected 

increase in greenhouse gases, which could lead to higher temperatures and, therefore, 

enhanced convection near the surrounding Lakes and Indian Ocean, if conditions are 

favourable in terms of an unstable atmosphere, availability of condensation nuclei and a 

lifting mechanism rainfall could be enhanced. 

Under the RCP 8.5 condition the rainfall during MAM season showed an increasing trend for 

most stations except Dagoretti, Nakuru, Nanyuki, Narok and Kitui. Statistical positive 

significance was recorded for Mandera, Marsabit, Moyale, Wajir and Lodwar; the magnitude 

of trend ranged between -6.4% and 52.6% (Table 4-2). The OND season showed an 

increasing trend all stations except Kisumu and Nakuru. Statistical positive significance was 

recorded for the Marsabit and Moyale stations; the magnitude of trend ranged between -5.7% 

and 27.5% (Table 4-3). This increase in rainfall can be attributed to global warming due to 

the projected increase in greenhouse gases which could lead to higher temperatures and 

therefore enhanced convection near the surrounding Lakes and Indian Ocean, if conditions 

are favourable in terms of an unstable atmosphere, availability of condensation nuclei and a 

lifting mechanism rainfall could be enhanced. 

Other studies have found rainfall to be highly variable with the OND season exhibiting 

greater consistency compared to the MAM season (Liebmann et al., 2014; Yang et al., 2014). 
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Rainfall over the region is regulated by large scale systems like the ENSO circulation, which 

has a significant influence on rainfall during the OND season (Endris et al., 2013) and which 

is linked with wet conditions (El Niño) and dry conditions (La Niña). Moreover, the Indian 

Ocean Dipole (IOD) significantly influences rainfall during the OND season than the MAM 

seasonal (Behera et al., 2005).  

Table 4-2: Time Series Analysis of Total MAM Rainfall (mm) for the Baseline, RCP 4.5 

and RCP 8.5 Scenarios (Z Denotes the Mann Kendall Statistic, Sig Denotes the Level of 

Significance Denotes the Sen’s Slope, % Δ the Percentage of the Sen’s Slope over Mean 

Quantity per Unit Time, and NA Denotes Data that was not Available) 

 Baseline RCP 4.5 RCP 8.5  

Station Z Sig Q % Δ Z Sig Q % Δ  Z Sig Q % Δ 

Dagoretti 1.4   1.9 12.5 1.4   2.9 18.5 -0.8   -1.0 -6.3 

Garissa 1.2   0.6 12.6 1.9 + 3.8 61.7 0.6   0.7 10.6 

Kakamega 1.2   2.6 12.3 -0.1   -0.6 -2.7 0.2   0.9 3.7 

Kisumu 1.0   1.7 9.4 -1.0   -4.0 -21.2 0.5   0.7 3.7 

Lamu NA NA NA NA NA NA NA NA NA NA NA NA 

Mandera 0.6   0.3 5.9 2.7 ** 3.6 56.8 2.5 * 3.1 42.8 

Marsabit 0.6   0.6 7.6 2.8 ** 6.9 73.0 2.9 ** 3.8 37.9 

Mombasa NA NA NA NA NA NA NA NA NA NA NA NA 

Moyale 0.0   0.0 0.3 2.8 ** 3.8 37.2 2.9 ** 3.8 35.3 

Nakuru 0.2   0.3 2.7 -0.6   -1.0 -10.3 0.0   0.0 -0.3 

Nanyuki 0.4   0.5 3.9 1.9 + 2.8 21.8 -1.0   -0.8 -6.0 

Narok 1.0   1.7 14.7 -0.4   -1.0 -8.5 -0.7   -0.8 -6.4 

Voi -0.6   -0.3 -4.4 2.1 * 3.2 38.4 -0.2   -0.2 -2.5 

Wajir 1.8 + 1.5 26.0 3.9 *** 5.9 85.1 2.0 * 1.7 23.4 

Lodwar 0.9   0.5 16.0 1.7 + 2.4 55.2 2.1 * 2.4 52.6 

Kitui 1.4   1.6 14.2 2.5 * 5.7 46.4 -0.7   -0.8 -5.9 

Key: *** represents significance in trend at α = 0.001, ** represent significance in trend at α 

= 0.01, * represents significance in trend at α = 0.05, + represents significance in trend at α = 

0.1, a blank cell means the significance level greater than 10% 

Table 4-3: Time Series Analysis of Total OND Rainfall (mm) for the Baseline, RCP 4.5 

and RCP 8.5 Scenarios (Z Denotes the Mann Kendall Statistic, Sig Denotes the Level of 

Significance Denotes the Sen’s Slope, % Δ the Percentage of the Sen’s Slope over Mean 

Quantity per Unit Time, and NA Denotes Data that was not Available) 

 Baseline RCP 4.5 RCP 8.5  

Station Z Sig Q % Δ Z Sig Q % Δ  Z Sig Q % Δ 

Dagoretti 0.4   0.4 4.0 1.9 + 1.7 16.9 1.0   0.8 8.3 

Garissa 1.4   0.5 9.3 1.7 + 1.9 26.4 0.9   1.0 13.8 

Kakamega 1.0   2.0 16.5 2.1 * 3.5 24.9 0.5   0.9 6.3 

Kisumu 1.1   1.6 15.5 1.3   2.0 17.6 -0.3   -0.6 -5.7 

Lamu NA NA NA NA NA NA NA NA NA NA NA NA 
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 Baseline RCP 4.5 RCP 8.5 

Station Z Sig Q % Δ Z Sig Q % Δ  Z Sig Q % Δ 

Mandera 1.2   0.5 11.6 1.4   1.3 27.3 1.8 + 1.4 25.8 

Marsabit 0.5   0.5 8.5 1.8 + 2.0 26.8 2.3 * 2.2 27.5 

Mombasa NA NA NA NA NA NA NA NA NA NA NA NA 

Moyale 0.8   0.5 8.6 0.9   1.3 17.2 2.2 * 2.1 27.5 

Nakuru 0.9   0.4 6.1 1.0   0.4 6.4 -0.4   -0.1 -1.2 

Nanyuki 1.2   1.0 6.6 1.3   1.5 9.8 0.9   0.6 3.7 

Narok 0.4   0.2 4.1 1.3   0.8 13.2 0.0   0.0 0.5 

Voi 0.5   0.2 2.6 1.6   1.7 17.6 1.1   1.1 10.8 

Wajir 1.6   0.8 18.5 1.8 + 1.7 30.5 1.8 + 1.4 24.3 

Lodwar 1.4   0.6 40.4 2.2 * 0.9 51.6 1.0   0.5 24.5 

Kitui 1.0   0.8 6.0 1.6   2.2 13.7 1.1   1.7 10.0 

Key: *** represents significance in trend at α = 0.001, ** represent significance in trend at α 

= 0.01, * represents significance in trend at α = 0.05, + represents significance in trend at α = 

0.1, a blank cell means the significance level greater than 10% 

4.2.5.2 Temporal Variation of Seasonal Maximum Temperature 

This subsection presents results on the temporal variation of maximum temperature in Kenya 

during the MAM and OND seasons. Table 4-4 and Table 4-5 show the results of the time 

series of maximum temperature for the baseline, RCP 4.5 and RCP 8.5 scenarios, during the 

MAM and OND seasons, respectively. 

Under the baseline condition the maximum temperature during MAM season shows an 

increasing trend for all stations (Table 4-4). Statistical significance was recorded for most of 

the stations except for Kakamega and Kisumu; the magnitude of trend ranged between 1.1% 

and 2.9%. The increase in maximum temperature during the MAM season was attributed to 

global warming owing to increased anthropogenic greenhouse gas emissions. The OND 

season showed a decreasing trend for all stations, statistical negative significance was 

recorded for the Garissa, Lamu, Mandera, Marsabit, Mombasa, Moyale, Voi, Wajir and 

Lodwar stations; the magnitude of trend ranged between -2.8% and -0.9% (Table 4-5). 

Under the RCP 4.5 condition, the maximum temperature during MAM season showed an 

increasing trend in all stations, statistical positive significance was recorded for all stations; 

the magnitude of trend ranged between 1.3% and 3.8% (Table 4-4). The increase in 

maximum temperature during the MAM season was attributed to global warming owing to 

increased anthropogenic greenhouse gas emissions. The OND season showed a decreasing 

trend for most stations except Kakamega, Kisumu, Mandera, Nakuru, Nanyuki and Lodwar 
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stations, statistical significance was recorded for the Mandera and Voi stations; the 

magnitude of trend ranged between -2.2% and 2.4% (Table 4-5). 

Under the RCP 8.5 condition the maximum temperature during the MAM season showed an 

increasing trend in all stations, statistical positive significance was recorded in all stations; 

the magnitude of trend ranged between 3.2% and 5.3% (Table 4-4). The OND season showed 

a positive trend in most stations except the Garissa, Lamu, Moyale, Voi and Wajir stations; 

statistical significance was recorded in the Lamu, Mombasa, Nakuru, Nanyuki and Narok 

stations; the magnitude of trend ranged between -1.0% and 2.6% (Table 4-5). The increase in 

maximum temperature during the MAM season was attributed to global warming owing to 

increased anthropogenic greenhouse gas emissions. 

Table 4-4: Time Series Analysis of Mean MAM Maximum Temperature (in C) of the 

Baseline, RCP 4.5 and RCP 8.5 Scenarios (Z Denotes the Mann Kendall Statistic, Sig 

Denotes the Level of Significance; Q Denotes the Sen’s Slope and % Δ Percentage of the 

Sen’s Slope over Mean Quantity per Unit Time) 

 Baseline RCP 4.5 RCP 8.5  

Station Z Sig Q % Δ Z Sig Q % Δ  Z Sig Q % Δ 

Dagoretti 3.2 ** 0.0 2.3 4.9 *** 0.0 2.8 5.3 *** 0.0 5.3 

Garissa 3.1 ** 0.0 1.9 3.5 *** 0.0 1.3 5.2 *** 0.0 3.6 

Kakamega 1.5   0.0 1.3 5.3 *** 0.0 2.8 5.1 *** 0.0 3.4 

Kisumu 1.2   0.0 1.1 5.5 *** 0.0 2.9 5.0 *** 0.0 3.4 

Lamu 4.6 *** 0.0 2.8 4.3 *** 0.0 1.6 5.5 *** 0.1 4.6 

Mandera 4.1 *** 0.0 1.9 5.1 *** 0.0 1.8 5.7 *** 0.0 3.6 

Marsabit 3.1 ** 0.0 2.1 4.8 *** 0.0 1.6 5.1 *** 0.0 3.2 

Mombasa 4.5 *** 0.0 2.7 4.9 *** 0.0 1.8 5.7 *** 0.0 4.2 

Moyale 4.5 *** 0.0 2.9 4.9 *** 0.0 1.8 5.1 *** 0.0 3.8 

Nakuru 2.8 ** 0.0 2.7 5.4 *** 0.0 3.8 5.4 *** 0.0 5.1 

Nanyuki 2.8 ** 0.0 2.2 5.3 *** 0.0 3.1 5.6 *** 0.0 4.2 

Narok 2.4 * 0.0 2.1 5.2 *** 0.0 3.2 5.1 *** 0.0 5.3 

Voi 3.4 *** 0.0 2.6 3.1 ** 0.0 1.4 5.0 *** 0.1 4.2 

Wajir 3.8 *** 0.0 2.1 4.4 *** 0.0 1.5 5.4 *** 0.0 3.6 

Lodwar 3.8 *** 0.0 1.9 5.3 *** 0.0 1.9 5.6 *** 0.0 3.6 

Kitui 2.0 * 0.0 1.8 4.4 *** 0.0 2.1 4.6 *** 0.0 4.1 

Key: *** represents significance in trend at α = 0.001, ** represents significance in trend at α 

= 0.01, * represents significance in trend at α = 0.05, + represents significance in trend at α = 

0.1, a blank cell means the significance level greater than 10% 
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Table 4-5: Time Series Analysis of Mean OND Maximum Temperature (in C) of the 

Baseline, RCP 4.5 and RCP 8.5 Scenarios (Z Denotes the Mann Kendall Statistic, Sig 

Denotes the Level of Significance; Q Denotes the Sen’s Slope and % Δ Percentage of the 

Sen’s Slope over Mean Quantity per Unit Time) 

 Baseline RCP 4.5 RCP 8.5  

Station Z Sig Q % Δ Z Sig Q % Δ  Z Sig Q % Δ 

Dagoretti -1.8 + 0.0 -1.9 -1.3   0.0 -1.2 0.8   0.0 0.6 

Garissa -3.5 *** 0.0 -2.0 -1.5   0.0 -1.4 -0.8   0.0 -0.4 

Kakamega -1.1   0.0 -1.3 0.4   0.0 0.4 1.4   0.0 1.1 

Kisumu -1.0   0.0 -1.0 0.8   0.0 0.7 1.8 + 0.0 1.4 

Lamu -4.2 *** 0.0 -2.8 -1.9 + 0.0 -1.3 -2.1 * 0.0 -1.0 

Mandera -2.5 * 0.0 -1.1 2.4 * 0.0 1.3 1.1   0.0 0.9 

Marsabit -2.6 ** 0.0 -1.3 -0.5   0.0 -0.3 0.1   0.0 0.1 

Mombasa -3.9 *** 0.0 -1.4 -0.7   0.0 -0.3 2.0 * 0.0 0.6 

Moyale -3.1 ** 0.0 -2.1 -0.6   0.0 -0.7 -0.8   0.0 -0.8 

Nakuru -1.0   0.0 -1.1 1.0   0.0 0.9 3.7 *** 0.0 2.6 

Nanyuki -1.3   0.0 -1.1 0.9   0.0 0.8 3.5 *** 0.0 2.2 

Narok -1.0   0.0 -1.1 -0.5   0.0 -0.4 2.0 * 0.0 1.4 

Voi -3.8 *** 0.0 -2.1 -2.2 * 0.0 -1.8 -0.5   0.0 -0.3 

Wajir -3.2 ** 0.0 -2.0 -0.6   0.0 -0.6 -0.8   0.0 -0.5 

Lodwar -2.1 * 0.0 -0.9 1.0   0.0 0.6 1.7 + 0.0 0.8 

Kitui -1.6   0.0 -1.3 -1.6   0.0 -1.0 1.2   0.0 0.6 

Key: *** represents significance in trend at α = 0.001, ** represents significance in trend at α 

= 0.01, * represents significance in trend at α = 0.05, + represents significance in trend at α = 

0.1, a blank cell means the significance level greater than 10% 

4.2.5.3 Temporal Variation of Seasonal Minimum Temperature 

This subsection presents results on the temporal variation of minimum temperature in Kenya 

during the MAM and OND seasons. Table 4-6 and Table 4-7 show the results of the time 

series of maximum temperature for the baseline, RCP 4.5 and RCP 8.5 scenarios, during the 

MAM and OND seasons, respectively. 

Under the baseline condition the minimum temperature during MAM season shows an 

increasing trend for all stations (Table 4-6). Statistical significance was recorded for most of 

the stations except Mandera, Marsabit and Lodwar. The magnitude of trend ranged between 

0.1% and 5.7%. The OND season showed an increasing trend in minimum temperature for all 

stations, statistical significance was recorded for the Dagoretti, Kakamega, Kisumu, Moyale, 

Narok and Wajir stations; the magnitude of trend ranged between -2.2% and 2.4% (Table 4-

7). The increase in minimum temperature could be attributed to global warming as a result of 
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increased anthropogenic greenhouse gas emissions which prevent the loss of terrestrial 

radiation by absorbing it and storing it in the surface boundary layer. 

Under the RCP 4.5 condition the minimum temperature during MAM season showed an 

increasing trend in all stations, statistical positive significance was recorded all stations; the 

magnitude of trend ranged between 2.3% and 7.7% (Table 4-6). The OND season showed an 

increasing trend in minimum temperature for all stations, statistical significance was recorded 

for all stations; the magnitude of trend ranged between 2.6% and 9.4% (Table 4-7). The 

increase in minimum temperature could be attributed to global warming as a result of the 

increased anthropogenic greenhouse gas emissions which prevent the loss of terrestrial 

radiation by absorbing it and storing it in the surface boundary layer. 

Under the RCP 8.5 condition the minimum temperature during MAM season showed an 

increasing trend in minimum temperature in all stations, statistical positive significance was 

recorded for all stations; the magnitude of trend ranged between 4.7% and 10.6% (Table 4-6). 

The OND season showed an increasing trend in minimum temperature in all stations, 

statistical significance was recorded in all stations; the magnitude of trend ranged between 

3.9% and 11.3% (Table 4-7). The increase in minimum temperature could be attributed to 

global warming as a result of the increased anthropogenic greenhouse gas emissions which 

prevent the loss of terrestrial radiation by absorbing it and storing it in the surface boundary 

layer. 

Table 4-6: Time Series Analysis of Mean MAM Minimum Temperature (in C) of the 

Baseline, RCP 4.5 and RCP 8.5 Scenarios (Z Denotes the Mann Kendall Statistic, Sig 

Denotes the Level of Significance; Q Denotes the Sen’s Slope and % Δ Percentage of the 

Sen’s Slope over Mean Quantity per Unit Time) 

 Baseline RCP 4.5 RCP 8.5  

Station Z Sig Q % Δ Z Sig Q % Δ  Z Sig Q % Δ 

Dagoretti 4.5 *** 0.0 5.7 5.4 *** 0.0 7.7 6.0 *** 0.1 10.3 

Garissa 3.0 ** 0.0 2.0 5.1 *** 0.0 3.7 5.9 *** 0.1 5.5 

Kakamega 3.3 *** 0.0 3.6 5.0 *** 0.0 6.2 5.9 *** 0.0 7.0 

Kisumu 3.6 *** 0.0 3.6 5.1 *** 0.0 6.2 6.0 *** 0.1 7.6 

Lamu 3.0 ** 0.0 1.9 4.8 *** 0.0 2.9 5.7 *** 0.0 4.7 

Mandera 0.1   0.0 0.1 3.8 *** 0.0 2.3 5.5 *** 0.0 4.9 

Marsabit 0.5   0.0 0.5 4.0 *** 0.0 2.9 5.5 *** 0.0 4.8 

Mombasa 4.0 *** 0.0 2.5 5.0 *** 0.0 3.2 5.7 *** 0.0 4.8 

Moyale 2.9 ** 0.0 2.1 4.6 *** 0.0 3.4 5.7 *** 0.0 5.5 
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 Baseline RCP 4.5 RCP 8.5  

Station Z Sig Q Station Z Sig Q Station Z Sig Q Station 

Nakuru 3.3 ** 0.0 4.0 5.1 *** 0.0 8.0 5.8 *** 0.0 10.6 

Nanyuki 2.4 * 0.0 2.6 5.3 *** 0.0 5.5 6.0 *** 0.0 7.9 

Narok 4.3 *** 0.0 5.4 5.3 *** 0.0 7.6 5.7 *** 0.1 10.4 

Voi 4.4 *** 0.0 3.5 5.4 *** 0.0 4.6 5.8 *** 0.1 6.3 

Wajir 2.3 * 0.0 1.5 4.8 *** 0.0 3.3 5.7 *** 0.1 5.4 

Lodwar 1.1   0.0 1.1 4.6 *** 0.0 3.8 5.7 *** 0.0 4.8 

Kitui 3.5 *** 0.0 3.4 5.4 *** 0.0 5.3 5.7 *** 0.0 7.3 

Key: *** represents significance in trend at α = 0.001, ** represents significance in trend at α 

= 0.01, * represents significance in trend at α = 0.05, + represents significance in trend at α = 

0.1, a blank cell means the significance level greater than 10% 

Table 4-7: Time Series Analysis of Mean OND Minimum Temperature (in C) of the 

Baseline, RCP 4.5 and RCP 8.5 Scenarios (Z Denotes the Mann Kendall Statistic, Sig 

Denotes the Level of Significance; Q Denotes the Sen’s Slope and % Δ Percentage of the 

Sen’s Slope over Mean Quantity per Unit Time) 

 Baseline RCP 4.5 RCP 8.5  

Station Z Sig Q % Δ Z Sig Q % Δ  Z Sig Q % Δ 

Dagoretti 1.7 + 0.0 1.7 4.1 *** 0.0 3.8 5.4 *** 0.0 5.7 

Garissa 2.6 * 0.0 1.8 5.1 *** 0.0 3.9 6.4 *** 0.0 5.5 

Kakamega 1.1   0.0 0.9 3.8 *** 0.0 3.6 5.0 *** 0.0 5.5 

Kisumu 1.4   0.0 1.1 3.7 *** 0.0 3.6 5.3 *** 0.0 5.8 

Lamu 3.0 ** 0.0 1.8 5.0 *** 0.0 3.3 6.0 *** 0.0 4.3 

Mandera 4.4 *** 0.0 4.6 5.2 *** 0.1 6.5 5.6 *** 0.1 7.8 

Marsabit 3.4 *** 0.0 3.3 4.6 *** 0.0 4.9 5.8 *** 0.1 6.3 

Mombasa 2.0 * 0.0 1.0 4.5 *** 0.0 2.6 5.7 *** 0.0 3.9 

Moyale 1.6   0.0 1.4 4.3 *** 0.0 3.3 4.8 *** 0.0 4.6 

Nakuru 4.7 *** 0.0 6.9 5.6 *** 0.0 9.3 6.3 *** 0.1 11.3 

Nanyuki 4.4 *** 0.0 6.1 5.2 *** 0.0 8.5 6.6 *** 0.1 10.5 

Narok 1.8 + 0.0 1.3 4.3 *** 0.0 3.5 5.1 *** 0.0 5.2 

Voi 2.4 * 0.0 1.3 4.9 *** 0.0 3.1 6.2 *** 0.0 5.0 

Wajir 1.4   0.0 0.9 4.6 *** 0.0 3.3 5.3 *** 0.0 4.4 

Lodwar 3.5 *** 0.0 3.0 5.1 *** 0.0 4.8 5.6 *** 0.1 6.5 

Kitui 3.5 *** 0.0 4.3 4.5 *** 0.0 5.9 6.2 *** 0.1 7.8 

Key: *** represents significance in trend at α = 0.001, ** represents significance in trend at α 

= 0.01, * represents significance in trend at α = 0.05, + represents significance in trend at α = 

0.1, a blank cell means the significance level greater than 10% 
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4.2.6 Spatial Variation of Seasonal Climate in Kenya 

This subsection presents the results of the spatial variability of rainfall and temperature under 

baseline period from 1971 to 2000, and the future climate scenarios (RCP 4.5 and 8.5 

scenarios from 2021 to 2050). The spatial plots of the future rainfall, maximum and minimum 

temperature climatology of the MAM and OND seasons are shown in Figure 4-27 to Figure 

4-32. 

4.2.6.1 Spatial Variation of Seasonal Rainfall in Kenya 

Figure 4-27 and Figure 4-28 present the spatial variation of rainfall during the MAM and 

OND seasons, respectively. The rainfall amount under both the RCP 4.5 and 8.5 scenarios is 

expected to increase spatially; the increase is higher under the RCP 8.5 when compared to the 

RCP 4.5 scenario. Other studies using the CMIP3/5 found that rainfall will increase in the 

future over East Africa due to global warming because of increased anthropogenic 

greenhouse emissions (Otieno and Anyah, 2013; Peterson et al., 2013; Tierney et al., 2015). 

The increased level of greenhouse emissions will favour higher temperatures which could 

enhance convection and if the conditions are favourable yield higher amounts of rainfall. 

However, other studies using observed station data have found that rainfall will reduce in 

East Africa during the MAM season and increase in the OND season (Ongoma and Chen, 

2017; Ongoma et al., 2018; Mumo et al., 2019). The increase in rainfall during the OND 

season over East Africa has been attributed to the warming of the western Indian Ocean 

(Liebmann et al., 2014). The reduction in MAM rainfall over East Africa has been associated 

with changes in sea surface temperatures over the Pacific Ocean instead of anthropogenic 

effect (Yang et al., 2014).  

The discrepancy between the GCM projections and observed climate in East Africa is called 

the ‘East Africa climate paradox’ (Rowell et al., 2015). Brands et al., (2013), has associated 

this discrepancy to the insufficiency of observed data required for model parameterization 

over the region. Additionally, rainfall biases in CMIP3/5 have been attributed to several 

factors like a double ITCZ, an extreme equatorial Pacific cold tongue, and a weak Atlantic 

meridional overturning flow (Lee and Wang, 2014).  
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Figure 4-27: Spatial comparison of the total mean MAM rainfall under the baseline 

(1971-2000), RCP 4.5 and RCP 8.5 scenarios (2021 -2050) in Kenya. Rainfall amount 

increases from the white shaded areas through to the red shaded areas 

 

Figure 4-28: Spatial comparison of the total mean OND rainfall under the baseline 

(1971-2000), RCP 4.5 and RCP 8.5 scenarios (2021 -2050) in Kenya. Rainfall amount 

increases from the white shaded areas through to the red shaded areas 

4.2.6.2 Spatial Variation of Seasonal Maximum Temperature in Kenya 

Figure 4-29 and Figure 4-30 present the spatial variation of maximum temperature during the 

MAM and OND seasons respectively. Maximum temperature increases from west to east 

during both MAM (Figure 4-29) and OND (Figure 4-30) seasons. The MAM season shows 

increased temperatures in the north western and eastern region of the country during both the 

RCP 4.5 and RCP 8.5 scenarios.  
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Figure 4-29: Spatial comparison of the Mean MAM maximum temperature under the 

Baseline (1971-2000), RCP 4.5 and RCP 8.5 scenarios (2021-2050) in Kenya. Maximum 

temperature increases from the white shaded areas through to the red shaded areas 

 

Figure 4-30: Spatial comparison of the Mean OND maximum temperature under the 

Baseline (1971-2000), RCP 4.5 and RCP 8.5 scenarios (2021-2050) in Kenya. Maximum 

temperature increases from the white shaded areas through to the red shaded areas 

4.2.6.3 Spatial Variation of Seasonal Minimum Temperature in Kenya 

Figure 4-31 and Figure 4-32 present the spatial variation of maximum during the MAM and 

OND seasons respectively. Minimum temperature increases from west to east during both 

MAM (Figure 4-31) and OND (Figure 4-32) seasons. The pattern of minimum temperature 

varies only slightly under both RCP 4.5 and RCP 8.5 scenarios in the MAM and OND 

seasons. 
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Figure 4-31: Spatial comparison of the mean MAM minimum temperature under the 

Baseline (1971-2000), RCP 4.5 and RCP 8.5 scenario (2021-2050) in Kenya. minimum 

temperature increases from the white shaded areas through to the red shaded areas 

 

Figure 4-32: Spatial comparison of the mean OND minimum Temperature under the 

Baseline (1971-2000), RCP 4.5 and RCP 8.5 scenario (2021-2050) in Kenya. Minimum 

temperature increases from the white shaded areas through to the red shaded areas 

4.3 Analysis of the Suitability of Land over the Study Area for Green Gram Production 

under Past and Future Climate Scenarios 

This section presents results from the weighted overlay of climate (past and future rainfall 

and temperature), soil (pH, depth, texture, drainage, and CEC) and altitude. The first step in 

analysing the suitability of green gram production involved reclassification of soil, climate 

and altitude parameters based on Table 3-4 which shows the conditions under which green 

gram performs best. The bias corrected ensemble of rainfall and the ensemble of temperature 

from the CORDEX RCA4 models have been used in the analysis. When making a suitability 
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map for green gram production, the variation in suitability is only accredited to climate 

parameters under past and future scenarios. 

4.3.1 Reclassification of Soil and Altitude Parameters in Terms of their Suitability for 

Green Gram Production 

This subsection presents the results on the reclassification of soil and altitude depending on 

their suitability levels as in Table 3-4. Figure 4-33 presents the results for the reclassification 

of soil and altitude parameters into four classes (S1, S2, S3 and N). The factors highly 

limiting the suitability of green gram were depth, pH, drainage and altitude.  

The soil Cation Exchange Capacity (CEC) in the study area falls into three classes of 

suitability in terms of green gram production with most of the area being suitable (Figure 4-

33). The soil CEC has an impact on the acidity and availability of nutrients in the soil. 

Generally, soils with a high CEC do not require much liming as compared to those soils with 

low CEC (Moore and Blackwell, 1998). Soils with CEC greater than 10meq/100g in general 

experience little cation leaching making application of N and K fertilizer more realistic 

during the rainy season. Soils with a low CEC less that 5meq/100g are prone to deficits of 

magnesium, potassium, and other cations (CUCE, 2007). 

The soil texture in the study area falls into three classes of suitability in terms of green gram 

production with most of the area being suitable (Figure 4-33). Green gram is suitable for most 

soil textures but prefers fertile, deep, well-drained loams or sandy loams (Oplinger et al., 

1990; Morton et al., 1982; SASOL, 2015; Infonet, 2018, Meena, 2013). The legumes are 

most suitable to clayey soils (SASOL, 2015) but do not preform well on heavy clay soils with 

poor drainage and are somewhat tolerant of saline soils (Grealish et al., 2008, Oplinger et al., 

1990). Sandy soils require good fertilizer and water supply and organic soils need drainage 

and raised beds since their water tables occur at or near the soil surface (Grealish et al., 

2008). 

The soil pH in the study area falls into four classes of suitability in terms of green gram 

production with most of the area being not suitable (Figure 4-33). Green gram is well 

adjusted to a pH range of 5 to 8 (Grealish et al., 2008; SASOL, 2015; Infonet, 2018, Meena, 

2013; Hanumantharao et al., 2016). The performance of green gram is best when the soil has 

a pH between 6.2 and 7.2. Otherwise, the plants depict signs of serious iron chlorosis and 

micronutrient deficits on alkaline soils (Morton et al., 1982; Oplinger et al., 1990). They 

require slightly acidic soils for the best growth (Morton et al., 1982). 
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The soil depth of the study area falls into four classes of suitability in terms of green gram 

production (Figure 4-33). Soil depth is the approximate space in centimetres where root 

development is unhindered by any chemical or physical barrier. This may be in the form of 

an impassable or contaminated layer.  

The altitude of the study area falls into four classes of suitability in terms of green gram 

production with the not suitable class being located in the central and western part of the 

country (Figure 4-33). Green gram performs best at a height of 0-1600m above sea level 

(SASOL, 2015) but not exceeding 2,000 m altitude (SASOL, 2015).  

The drainage of the soil falls into four classes of suitability in terms of green gram production 

(Figure 4-33). Green gram performs best in well drained soils. Regions with poor drainage 

can be amended by constructing fallows to boost drainage during the rainy season which can 

further improve green gram suitability. 
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Figure 4-33: Reclassified maps of soil Cation Exchange Capacity (CEC), texture, pH, 

depth, altitude and drainage. The dark green colour shading (S1) represents the most 

suitable areas, light green shading (S2) represents the moderately suitable areas, yellow 

shading (S3) represents the marginally suitable areas, and red shading (N) represents 

areas that are not suitable for green gram production in Kenya based on these 

classifications. 

4.3.2 Reclassification of Temperature and Rainfall under Present (1971-2000) and 

Future (2021-2050) RCP 4.5 and RCP 8.5 scenarios in Relation to their 

Suitability for Green Gram Production 

This subsection presents the results of the reclassification of temperature and rainfall 

depending on their suitability levels for green gram production (Table 3-4) under present 

(1971-2000) and future (2021-2050) RCP 4.5 and RCP 8.5 scenarios. Figure 4-34 shows the 

areas in Kenya that are either suitable or not suitable for green gram production in terms of 

mean temperature using the ensemble of the CORDEX RCA4 models. Figure 4-35 shows the 

areas in Kenya that are either suitable or not suitable for green gram production in terms of 

rainfall using the bias corrected ensemble of the CORDEX RCA4 models. 
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In Figure 4-3, during the MAM season under present conditions, most of the country is 

highly suitable for green gram production in terms of mean temperature. In the future under 

the RCP 4.5 scenario areas in the north western and eastern part of the country will not be 

suitable for green gram production. Under the RCP 8.5 scenario the areas in the north western 

and eastern parts of the country will also not be suitable for green gram production. Under the 

RCP 4.5 and RCP 8.5 conditions during the MAM season, regions around the north-western 

and eastern parts of the country will not be suitable for green gram production since these 

areas experience a mean temperature greater than 30 C. A temperature range of 28 to 30 C 

is recognized as the best for green gram growth (Mogosti, 2006; Morton et al., 1982). 

During the OND season under the present conditions, most of Kenya is highly suitable for the 

production of green gram in terms of mean temperature as shown in Figure 4-34. Under the 

present conditions areas that are not suitable are noted around Nyandarua and Nyeri Counties 

since these regions experience mean temperatures lower than 15 C which, according to 

Mogosti (2006), are not suitable for green gram production. In the future, under the RCP 4.5 

scenario most of the country will be highly suitable for green gram production. Under the 

RCP 8.5 scenario most of the country will also be highly suitable for green gram production. 

In Figure 4-35 during the MAM season under present condition most of the country is 

suitable for green gram production in terms of total rainfall. In the future under the RCP 4.5 

most of the country will be suitable for green gram production. Under the RCP 8.5 scenario 

most of the country will also be suitable for green gram production. The area highly suitable 

for green gram production in terms of rainfall under present conditions increases under the 

RCP 4.5 and RCP 8.5 scenarios to include the north eastern part of the country due to 

increase in rainfall.  

During the OND season areas that are not suitable for green gram production under the 

present conditions are located in the north western parts of the country in terms of rainfall as 

shown in Figure 4-35. Under the RCP 4.5 scenario the north western part of the country is not 

suitable for green gram production. Under the RCP 8.5 scenario the north western part of the 

country is also not suitable for green gram production.  Areas that are not suitable for 

production are located around the north-west part of Kenya during the OND season for all 

scenarios since the total rainfall amounts are lower than 75 mm per season. Water stress 

reduces the rate of nutrients uptake, budding, flowering, leaf area development and 
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photosynthesis instigating a reduction in yield (Malik, 2006). A rainfall amount of between 

250 and 350 mm per season is considered best for sustained growth (Gaiser et al., 2001).  

Figure 4-34: Reclassified maps of present and future mean temperature (in C) layers 

during the MAM (top row) and OND (bottom row) seasons. The dark green colour 

shading (S1) represents the most suitable areas, light green shading (S2) represents the 

moderately suitable areas, yellow shading (S3) represents the marginally suitable areas, 

and red shading (N) represents areas that are not suitable for green gram production in 

Kenya based on these classifications. 
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Figure 4-35: Reclassified maps of present and future total rainfall (in mm) during the 

MAM (top row) and OND (bottom row) seasons. The green colour shading (S1) 

represents the most suitable areas, light green shading (S2) represents the moderately 

suitable areas, yellow shading (S3) represents the marginally suitable areas, and red 

shading (N) represents areas that are not suitable for green gram production in Kenya 

based on these classifications. 

4.3.3 Overall Suitability of Green Gram Production in Kenya Obtained from a 

Weighted Overlay of Prevailing and Projected Climate, Soil and Altitude 

Parameters 

This subsection presents the results of the green gram suitability maps. The suitability maps 

were obtained through the weighted overlay of climate under the prevailing and projected 

RCP 4.5 and RCP 8.5 scenarios, soil and altitude parameters whose weights were obtained as 

shown in Table 4-8. Figure 4-36 presents areas suitable for green gram production under 

historical climate data (1971-2000). Figure 4-37 presents areas suitable for green gram 

production in the future under RCP 4.5 scenario for the years 2021 to 2050. Figure 4-38 
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presents areas suitable for green gram production under future RCP 8.5 scenario for the years 

2021 to 2050.  

Table 4-8 shows that rainfall is the most important factor to the growth of green grams by 

33% followed by temperature by 20%. Soil parameters in terms of the depth, texture, CEC, 

pH and drainage account for 6.5%, 5.0%, 9.0%, 9.5% and 12.4% of the weighted overlay for 

green gram production, respectively. Altitude accounted for the 8% of the weighted overlay 

for green gram production. 

Figure 4-36 shows areas suitable for green gram production during the MAM and OND 

seasons under historical conditions. During the MAM season areas highly suitable for green 

gram production are found in the lower eastern, coastal, central and lower Rift Valley 

regions. During the OND season, areas highly suitable for green gram production are found 

in the western, lower eastern and coastal regions.  

Figure 4-37 shows areas suitable for green gram production during the MAM and OND 

seasons under the RCP 4.5 scenario. During the MAM season, areas highly suitable for green 

gram production are found in the lower eastern, coastal, central and lower Rift Valley 

regions. During the OND season areas highly suitable for green gram production are found in 

the lower eastern, lower Rift Valley and coastal regions. 

Figure 4-38 shows areas suitable for green gram production during the MAM and OND 

seasons under the RCP 8.5 scenario. During the MAM season areas highly suitable for green 

gram production are found in the lower eastern, coastal, and central and lower rift valley 

regions. During the OND season areas highly suitable for green gram production are found in 

the lower eastern, lower rift valley and coastal regions. 

Figure 4-36 (historical), Figure 4-37 (RCP 4.5), and Figure 4-38 (RCP 8.5) show that most of 

the country is currently moderately suitable for the production of green gram during the 

MAM and OND season, with highly suitable classes being found in Counties like Kitui, 

Makueni, Machakos, Isiolo, Samburu, Narok and West Pokot. 
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Table 4-8: Weights obtained through the Analytical Hierarchy Process Showing the Contribution of each Parameter in the Weighted 

Overlay of Green gram Production 

 Rainfall Temperature Depth Texture CEC pH Drainage Slope Weights  Rank  

Rainfall 1 3.00 4.00 4.00 4.00 4.00 4.00 4.00 33.0% 1 

Temperature 0.33 1 3.00 3.00 3.00 3.00 3.00 3.00 20.2% 2 

Depth 0.25 0.33 1 2.00 0.50 0.50 0.50  2.00 6.5% 6 

Texture  0.25 0.33 0.50 1 0.33 0.33 0.33 2.00 5.0% 7 

CEC 0.25 0.33 2.00 3.00 1 1.00 0.50 2.00 9.0% 5 

pH 0.25 0.33 2.00 3.00 1.00 1 0.50 3.00 9.5% 4 

Drainage 0.25 0.33 2.00 3.00 2.00 2.00 1 3.00 12.4% 3 

Altitude 0.25 0.33 0.50 0.50 0.5 0.33 0.33 1 4.3% 8 
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Figure 4-36: Present lands suitable for green gram production during the MAM (left) 

and OND (right) season. The dark green colour shading (S1) represents the most 

suitable areas, light green shading (S2) represents the moderately suitable areas, and 

yellow shading (S3) represents the marginally suitable areas, for green gram production 

in Kenya based on these classifications. 
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Figure 4-37: Future land suitable for green gram production during the MAM (left) and 

OND (right) season under the RCP 4.5 scenario for the years 2021 to 2050. The dark 

green colour shading (S1) represents the most suitable areas, light green shading (S2) 

represents the moderately suitable areas, and yellow shading (S3) represents the 

marginally suitable areas, for green gram production in Kenya based on these 

classifications. 
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Figure 4-38: Future land suitable for green gram production during the MAM (left) and 

OND (right) season under the RCP 8.5 scenario for the years 2021 to 2050. The dark 

green colour shading (S1) represents the most suitable areas, light green shading (S2) 

represents the moderately suitable areas, and yellow shading (S3) represents the 

marginally suitable areas, for green gram production in Kenya based on these 

classifications. 

Table 4-9 shows the area in km
2
 suitable for green gram production during the MAM and 

OND seasons under baseline and future climate scenarios. Table 4-10 shows the percentage 

change in area between the present and the future climate scenarios. The change in the 

suitable area is only based on climatic parameters and not on the conditions of soil and 

altitude. 

During the MAM season, the area presently highly suitable for green gram production 

(67842.62 km
2
) is expected to increase slightly by 1.1% to 68600.4 km

2 
under the RCP 4.5 

scenario. The area is projected to reduce by -9.6% to 61307.8 km
2
 under the RCP 8.5 

scenario. During the OND season the area currently highly suitable for green gram 

production (49633.4 km
2
) is projected to increase under the RCP 4.5 scenario by 22.2%. The 
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area is projected to increase by 58.5% under the RCP 8.5 scenario, due to favourable rainfall 

and temperature conditions in the future. 

During the MAM season the area presently moderately suitable for green gram production 

(470972 km
2
) is estimated to reduce by 16.8% to 391768.9 km

2 
under the RCP 4.5 scenario. 

The area is projected to decrease by 14.1% to 404721.1 km
2 

under the RCP 8.5 forcing. 

During the OND season the area currently moderately suitable for green gram production 

(423463.3 km
2
) is projected to increase by 7.9% to 457128.1 km

2 
under the RCP 4.5 scenario. 

The area is projected to increase by 15.3% to 488043.8 km
2
 (15.3%) under the RCP 8.5 

condition. 

During the MAM season the area currently marginally suitable for green gram production 

(41552.37 km
2
) is projected to increase by 188.8% to 119997.7 km

2 
under the RCP 4.5 

scenario. The area is projected to increase by 175% to 114275.8 km
2 

under the RCP 8.5 

condition. During the OND season the area currently marginally suitable (111174.4 km
2
) is 

projected to reduce by 45.9% to 60173.4 km
2
. The area is projected to reduce by 88.5% to 

12777.6 km
2
 under the RCP 8.5 scenario. 

Table 4-9: Changes in Land Suitable for Green gram Production (in km
2
) under the 

Baseline and Future RCP 4.5 and 8.5 Climate Scenarios during the MAM and OND 

Seasons 

Table 4-10: Percentage Changes in Land Suitable for Green gram Production between 

Baseline and Future RCP 4.5 and RCP 8.5 Climate Scenarios during the MAM and 

OND Seasons 

 RCP 4.5 RCP 8.5 

 MAM OND MAM OND 
S1 1.1% 22.2% -9.6% 58.5% 

S2 -16.8% 7.9% -14.1% 15.3% 

S3 188.8% -45.9% 175.0% -88.5% 

 HISTORICAL RCP 4.5 RCP 8.5 

MAM (km
2
) OND (km

2
) MAM (km

2
) OND (km

2
) MAM (km

2
) OND (km

2
) 

S1 67842.6 45729.4 68600.4 55885.1 61307.8 72464.8 

S2 470972 423463.3 391768.9 457128.1 404721.1 488043.8 

S3 41552.4 111174.4 119997.7 60173.4 114275.8 12777.6 
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4.4 Simulation of the Impact of Changing Climate on Green Gram Production 

This section presents the results of the effect of changing climate on the yield of four green 

gram varieties planted at the SEKU farm. The APSIM module is able to simulate nine 

cultivars of the green gram crop. The varieties calibrated in APSIM include: Satin, a dull 

green seed resembling KS20; Celera, a small seeded, shiny green seed with hard seed levels 

resembling N26, and Berken and Emerald, medium-large and shiny green seeds resembling 

Tosha and Biashara varieties respectively (Gentry and Gordon, 2010). The calibrated 

Biashara, Tosha, KS20 and N26 were used to simulate the effect of changing climate on the 

yield, biomass and days to physiological maturity of green gram.  

4.4.1 Weather Conditions during the Growing Period 

Land was prepared at the beginning of the season and sowing done when at least 30 mm of 

rainfall had been received to enable sufficient moisture in the soil for sustained germination 

of the green gram varieties. This threshold in some cases occurred in the middle of the 

season. Table 4-11 shows the pattern of rainfall, solar radiation, and minimum and maximum 

temperature during the growing season when the experiments were conducted. 

Rainfall of 250 to 350 mm per season is considered as optimal for green gram production 

(Gaiser et al. 2001; SASOL, 2015; Infonet, 2018). The OND season of 2018 received rainfall 

amount of 302.5 mm, which favoured good yield during the season. The MAM season of 

2019 received rainfall amount of 132.9 mm which resulted in reduced yields. The OND 

season of 2019 received higher than the optimal amount required of 464.7 mm which resulted 

in increased biomass and less yield compared to the 2018 OND season. 

The temperature during all the growing seasons remained optimal as shown in Table 4-11. A 

temperature of 21 to 30 C is considered ideal for seed germination and plant growth 

(Mogosti, 2006; Morton et al., 1982). The temperature should always be above 15 C during 

crop growth (Mogosti, 2006).  
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Table 4-11: Distribution of Monthly Total Rainfall (mm), Mean Maximum and 

Minimum Temperature, and Mean Solar Radiation during the Growing Season when 

the Green gram Experiments were Conducted at the SEKU Farm. NRD Denotes the 

Number of Rainy Days with at Least 0.85 mm of Rainfall 

Experiment 1 OND 2018 

Months Total 

rainfall 

(mm) 

NRD Maximum 

temperature (C) 

Minimum 

temperature 

(C) 

Radiation MJ m
-2

 

day
-1

 

Nov 127.2 11 28.7 18.3 18.2 

Dec 171.6 14 27.2 17.7 17.6 

Jan 3.5 1 29.0 16.5 19.2 

Total/M

ean 

302.5 26 28.3 17.5 18.3 

Experiment 2 MAM 2019 

Months Total 

rainfall 

(mm) 

NRD Maximum 

temperature (C) 

Minimum 

temperature 

(C) 

Radiation MJ m
-2

 

day
-1

 

Apr 98.8 10 31.5 20.1 17.5 

May 33.8 5 27.5 18.3 15.6 

Jun 0.1 0 26.5 17.1 12.1 

Jul 0.2 0 27.1 15.7 13.6 

Total 

/Mean 

132.9 15 28.2 17.8 14.7 

Experiment 3 OND 2019 

Months Total 

rainfall 

(mm) 

NRD Maximum 

temperature (C) 

Minimum 

temperature 

(C) 

Radiation MJ m
-2

 

day
-1

 

Oct 381.2 20 27.1 18.2 17.1 

Nov 4.4 1 26.6 18.1 17.0 

Dec 79.1 8 26.6 18.4 14.6 

Total/M

ean 

464.7 29 26.8 18.2 16.2 

4.4.2 The Performance of APSIM Green Gram Module in Simulating the Observed 

Yield, Biomass and Days to Maturity 

This section presents results on the performance of the APSIM green gram model in 

simulating the observed yield, biomass and days to maturity. The green gram model was 

calibrated for four varieties of the legume which are Biashara, Tosha, N26 and KS20 

varieties. Table 4-12 shows the genetic coefficients used to model the green gram varieties. 

Table 4-13 shows the observed and simulated yield, biomass and days to maturity for the 

green gram varieties when experiments were conducted. Table 4-14 shows the results of the 

strength of the relationship between the observed and simulated green gram varieties. 
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Table 4-12 shows the calculated number of growing degree days it takes for each green gram 

variety to develop through seven phenological phases. The APSIM green gram model uses 

7.5 C base temperature, 30 C optimal temperature and 40 C extreme temperature as the 

key values in the calculation of degree days (Carberry, 2007; Chauhan et al., 2010). 

Table 4-13 shows the observed versus and simulated yield, biomass and days to maturity for 

each green gram variety. The APSIM model generally underestimates the observed yield, 

biomass and days to maturity. The yield during the OND season of 2018 was better compared 

to the MAM 2019 and OND 2019 season. The differences in yield, biomass and days to 

maturity were attributed to changes in rainfall (Table 4-11) since temperature remained 

optimal for production as discussed in the preceding section. Table 4-14 represent the 

strength of the relationship between the observed and modelled varieties which was good and 

the model was approved for future climate studies. 

Table 4-12: The Genetic Coefficients used to Model the Four Varieties of Green gram 

Biashara, Tosha, KS20 and N26 

 Green gram Variety 

PHENOLOGY Source  Units Biashara Tosha KS20 N26 

Emergence C C days 95.2 95.2 95.2 95.2 

Emergence To End Of Juvenile 

Phase 

C C days 430 430 400 508 

Juvenile To Floral Initiation D Hours 5 5 5 5 

Floral Initiation To Flowering D Hours 25 25 25 25 

Flowering To Start Of Grain 

Filling 

C C days 206 206 178 205 

Start of Grain Filling to 

Maturity 

C C days 313 320 313 304 

Start of Grain Filling To End Of 

Grain Filling 

D C days 30 27.5 25 25.5 

C: Calibrated; D: Default 
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Table 4-13: Observed and Simulated Yield, Biomass and Days to Maturity for each 

Green gram Variety for the Growing Season when the Green gram Experiments were 

Conducted. Obs and Sim denote the Observed and Simulated Parameters, Respectively 

OND 2018 

Variety Yield (kg/ha) Biomass (kg/ha) Days to maturity 

Obs Sim % 

error 

Obs Sim % 

error 

Obs Sim % 

error 

Biashara 1071.2  654 -38.9 1954.3  1738 -11.1 71  65 -8.5 

N26 995.8 771.2 -22.6 2773.6 2416.3 -12.9 75  69 -8.0 

KS20 798.1  403.6 -49.4 1859.3  1334.7 -28.2 62  60 -3.2 

Tosha 854.2  601.6 -29.6 2631.9  1887.7 -28.3 69  65 -5.8 

MAM 2019 

Variety Yield (kg/ha) Biomass (kg/ha) Days to maturity 

Obs Sim % 

error 

Obs Sim % 

error 

Obs Sim % 

error 

Biashara 510.5  380.6 -25.4 1405.9 1169.1 -16.8 66  60 -9.1 

N26 570.2 409.9 -28.1 1748.6  1491.3 -14.7 70  64 -8.6 

KS20 405.4  288.2 -28.9 1615.1  1005.9 -37.7 60  57 -5.0 

Tosha 614.6 379.3 -38.3 1558.1  1252.8 -19.6 59  61 +3.4 

OND 2019  

Variety Yield (kg/ha) Biomass (kg/ha) Days to maturity 

Obs Sim % 

error 

Obs Sim % 

error 

Obs Sim % 

error 

Biashara 850.4  616.9 -27.5 2080.6 1614.7 -22.4 73  68 -6.8 

N26 894.3  611.3 -31.6 2463.5  1911.4 -22.4 77  72 -6.5 

KS20 760.2  449.7 -40.8 1994.2  1357.6 -31.9 64  64 0 

Tosha 721.8  549.1 -23.9 2503.2  1632.4 -34.8 71 68 -4.2 

Table 4-14: Results of the Strength of the Relationship between the Observed and 

Modelled Green gram Varieties using the Coefficient of Determination (R
2
) NRMSE, 

and Bias Tests of Skill 

Variety  R
2
 NRMSE (%) BIAS 

Yield 

(kg/h

a) 

Bioma

ss 

(kg/ha

) 

Days 

to 

maturi

ty 

Yield 

(kg/h

a) 

Bioma

ss 

(kg/ha

) 

Days 

to 

maturi

ty 

Yield 

(kg/h

a) 

Bioma

ss 

(kg/ha

) 

Days 

to 

maturi

ty 

Biasha

ra 92.6 85.9 99.0 35.3 18.0 8.1 16.1 17.5 2.4 

N26 94.9 92.5 99.0 27.8 17.5 7.7 14.9 19.7 2.4 

KS20 87.0 91.2 99.3 45.5 32.5 3.4 16.6 24.3 1.3 

Tosha 87.8 91.2 92.1 30.5 30.7 4.7 14.8 25.3 1.3 
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4.5.6 Climate Characteristics between the Baseline and Future Climate Scenarios in 

Kitui County, Kenya 

This section presents the results of the simulated yield, biomass and days to maturity of green 

gram under the baseline (1971-2000) and the future climate (2021-2050) using the RCP 4.5 

and RCP 8.5 scenario for a highly suitable region in Kitui County in Kenya. Table 4-15 

presents the results on the distribution of total annual and seasonal rainfall, mean annual and 

seasonal maximum and minimum temperature and mean annual and seasonal solar radiation 

under the baseline and future RCP 4.5 and 8.5 scenarios. 

Table 4-15 shows an increase in total rainfall, minimum and maximum temperature during 

both future RCP 4.5 and RCP 8.5 scenarios. The projected increase in the rainfall and 

temperature is more during the RCP 8.5 scenario in comparison to the RCP 4.5 scenario. This 

is because the RCP 8.5 scenario represents higher concentration of greenhouse gases 

compared to the RCP 4.5 scenario. The increased level of greenhouse emissions will favour 

higher temperatures which could enhance moisture evaporation and if conditions are 

favourable yield higher amounts of rainfall. 

Table 4-15: Distribution of Mean Total Annual and Seasonal Rainfall, Mean Annual 

and Seasonal Maximum and Minimum Temperature, and Mean Annual and Seasonal 

Solar Radiation under Baseline (1971-2000), RCP 4.5 (2021-2050) and RCP 8.5 (2021-

2050) Scenarios in Kitui County, Kenya 

 Scenario Total rainfall 

(mm) 
Maximum 

temperature 

(C) 

Minimum 

temperature 

(C) 

Radiation MJ m
-2

 

day
-1 

Annual  Baseline 765.8 26.7 15.4 18.1 

RCP 4.5 850.0 27.9 16.9 18.1 

RCP 8.5 870.0 28.1 17.1 18.1 

MAM Baseline 298.9 27.1 16.2 18.2 

RCP 4.5 318.9 28.2 17.6 18.2 

RCP 8.5 328.5 28.4 17.9 18.2 

OND Baseline 345.3 25.6 15.9 18.4 

RCP 4.5 394.2 26.8 17.4 18.4 

RCP 8.5 400.1 27.0 17.6 18.4 

4.5.7 The Effect of Climate Change on Green Gram Yield, Biomass and Days to 

Maturity in Kitui County Kenya 

This subsection presents the results of the effect of climate change on four green gram 

varieties modelled using the APSIM Model in Kitui County, Kenya. Figure 4-39 presents the 
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effects of climate change on green gram yield during the MAM season. Figure 4-40 presents 

the effects of climate change on green gram yield during the OND season. Figure 4-41 

presents the effects of climate change on green gram biomass during the MAM season. 

Figure 4-42 presents the effects of climate change on green gram biomass during the OND 

season. Figure 4-43 presents the effects of climate change on green gram days to maturity 

during the MAM season. Figure 4-44 presents the effects of climate change on green gram 

days to maturity during the OND season. Table 4-16 shows the actual values of the mean of 

the yield, biomass and days to maturity during the MAM season for the historical, RCP 4.5 

and RCP 8.5 scenarios. Table 4-17 show the actual values of the mean of the yield, biomass 

and days to maturity during the OND season for the historical, RCP 4.5 and RCP 8.5 

scenarios. 

During the MAM and OND seasons under the RCP 4.5 and RCP 8.5 scenarios, there is a 

decline in yield, biomass, and days to maturity as displayed in Figure 4-39, Figure 4-40, 

Figure 4-41, Figure 4-42, Figure 4-43, and Figure 4-44. The decline in yield, biomass and 

days to maturity is slightly larger during the RCP 8.5 scenario in comparison to the RCP 4.5 

scenario in both MAM and OND seasons. This is because the RCP 8.5 scenario represents 

higher concentrations of greenhouse gas emissions leading to more rainfall when compared to 

the RCP 4.5 scenario. The projected increase in rainfall amount under both the RCP 4.5 and 

RCP 8.5 scenarios will translate to a decreased yield due to reduced pod setting (Mogosti, 

2006; Oplinger et al., 1990). The increase in temperature will result in reduction of the days 

to maturity for green gram.  

Table 4-16 and Table 4-17 reinforce the result during the MAM and OND season under both 

RCP 4.5 and RCP 8.5 scenarios there is a decline in yield, biomass and days to maturity. The 

decline in yield, biomass and days to maturity is slightly larger under the RCP 8.5 scenario 

than the RCP 4.5 scenario in both seasons. Overall the yield is greater during the OND season 

compared to the MAM season due to more favourable weather conditions. 

Kenya, currently, only produces 460kg/ha of green grams (Kilimo Trust, 2017). The study 

found that despite the decrease in yield, potential production under the future climate 

scenarios was still above 460kg/ha. There is, thus, potential to expand on the current 

production of green grams. Therefore, despite the decrease in the future green gram is still a 

lucrative crop since farmers still stand to increase their current production.  
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Figure 4-39: The effect of changing climate on green gram yield (kg/ha) over the study 

area for four varieties during the MAM season. The varieties are Biashara, Tosha, 

KS20 and N26. The red colour represents yield during the baseline period (1971-2000), 

the green colour represents yield under the RCP 4.5 scenario (2021-2050) and the blue 

colour represents the yield during the RCP 8.5 scenario (2021-2050) 
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Figure 4-40: The effect of changing climate on green gram yield (kg/ha) over the study 

area for four varieties during the OND season. The varieties are Biashara, Tosha, KS20 

and N26. The red colour represents yield during the baseline period (1971-2000), the 

green colour represents yield under the RCP 4.5 scenario (2021-2050) and the blue 

colour represents the yield during the RCP 8.5 scenario (2021-2050) 

 



108 
 

Figure 4-41: The effect of changing climate on green gram biomass (kg/ha) over the 

study area for four varieties during the MAM season. The varieties are Biashara, 

Tosha, KS20 and N26. The red colour represents biomass during the baseline period 

(1971-2000), the green colour represents biomass under the RCP 4.5 scenario (2021-

2050) and the blue colour represents the biomass during the RCP 8.5 scenario (2021-

2050) 

 



109 
 

Figure 4-42: The effect of changing climate on green gram biomass (kg/ha) over the 

study area for four varieties during the OND season. The varieties are Biashara, Tosha, 

KS20 and N26. The red colour represents biomass during the baseline period (1971-

2000), the green colour represents biomass under the RCP 4.5 scenario (2021-2050) and 

the blue colour represents the biomass during the RCP 8.5 scenario (2021-2050) 
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Figure 4-43: The effect of changing climate on green gram days to maturity over the 

study area for four varieties during the MAM season. The varieties are Biashara, 

Tosha, KS20 and N26. The red colour represents days to maturity during the baseline 

period (1971-2000), the green colour represents days to maturity under the RCP 4.5 

scenario (2021-2050) and the blue colour represents the days to maturity during the 

RCP 8.5 scenario (2021-2050) 
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Figure 4-44: The effect of changing climate on green gram days to maturity over the 

study area for four varieties during the OND season. The varieties are Biashara, Tosha, 

KS20 and N26. The red colour represents days to maturity during the baseline period 

(1971-2000), the green colour represents days to maturity under the RCP 4.5 scenario 

(2021-2050) and the blue colour represents the days to maturity during the RCP 8.5 

scenario (2021-2050) 
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Table 4-16: Comparison of Yield under the Baseline Period (1971-2000) and under the 

RCP 4.5 (2021-2050) and RCP 8.5 (2021-2050) Scenarios for Four Green gram Varieties 

during the MAM Growing Season 

MAM  Variety Past (1971-2000) RCP4.5 (1921-2050) RCP8.5 (1921-2050) 

YIELD 

(kg/ha) 

Biashara 984.5 858.1 835.6 

Tosha 967.0 785.4 759 

Ks20 743.5 683.2 668.2 

Nylon 1154.0 830.9 815.9 

BIOMASS 

(kg/ha) 

Biashara 2534.6 2293.4 2260.2 

Tosha 2658.0 2334.7 2303.2 

Ks20 2121.2 2108.3 2085.2 

Nylon 3285.5 2585.6 2576.5 

MATURITY 

(days) 

Biashara 70.9 65 64 

Tosha 71.2 65.2 64.3 

Ks20 66.2 60.8 59.9 

Nylon 75.7 69.3 68.3 

Table 4-17: Comparison of Yield under the Baseline Period (1971-2000) and under the 

RCP 4.5 (2021-2050) and RCP 8.5 (2021-2050) Scenarios for Four Green gram Varieties 

during the OND Growing Season 

OND  Variety Past (1971-2000) RCP4.5 (1921-2050) RCP8.5 (1921-2050) 

YIELD (kg/ha) Biashara 1139.3 935.4 911.9 

Tosha 1196.9 903.7 874.2 

Ks20 944.9 684.9 657.5 

Nylon 1425 1066.3 1030.6 

BIOMASS (kg/ha) Biashara 2923.9 2416 2358.8 

Tosha 3085 2532.4 2476.9 

Ks20 2484.8 1991.5 1935.3 

Nylon 3788.5 3153.3 3092.9 

MATURITY(days) Biashara 76.4 69.2 68.4 

Tosha 76.8 69.4 68.7 

Ks20 71.5 64.7 64 

Nylon 81.4 73.6 72.8 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

This chapter presents the conclusions and recommendations of the study.  

5.1  Conclusions 

This study set out to model the suitability of green gram production in Kenya by determining 

the temporal and spatial variability of climate parameters in Kenya, identifying present and 

future suitability for green gram production in Kenya, and simulating the effects of climate 

change on green gram yield in Kenya. 

5.1.1 Spatial and Temporal Variation of Rainfall and Maximum and Minimum 

Temperature in Kenya 

5.1.1.1 Minimum Temperature Distribution 

The lowest temperature of the day is recorded in the early morning just before sunrise. The 

cooling of an object is cumulative. During the day the sun warms the surface of the earth. 

Once the sun sets, the earth begins to cool off by radiating infra-red radiation into space. The 

earth’s surface becomes progressively cooler during the night until the early morning hours 

around sunrise when the sun begins to warm the earth once more.  

Low values of minimum temperature are observed in central and western regions of Kenya 

which are the highland zones. High values of minimum temperature values are observed in 

the eastern and northern regions of Kenya which are the low lying areas. Temperature 

decreases with altitude such that low altitude areas (eastern and northern Kenya) experience 

higher temperature than in the higher altitudes (western and central Kenya) which experience 

lower temperature. At higher altitude, the amount of atmosphere is lower, therefore, there is 

lower concentration of less greenhouse gases in the air. The high altitude areas thus lose more 

heat during the night when the earth cools off by radiating infra-red radiation into space 

leading to lower minimum temperatures being recorded. At lower altitudes the thicker 

atmosphere absorbs the outgoing terrestrial radiation and re-directs some of it back to earth 

leading to higher values of minimum temperature being recorded.  

During the MAM season, some models especially, the CCCma, CSIRO, IPSL and NCC 

models, overestimate minimum temperature in the western, north western, northern and 

central regions of the country. Negative values of bias are observed around Mount Kenya and 

Mount Kilimanjaro region especially by the CNRM, MIROC, MPI, and NOAA models. The 
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models thus do not properly capture the effect of altitude, radiation loss and atmosphere 

content on minimum temperature.  

During the OND rainfall season, some models especially with the CCCma, CSIRO and IPSL 

overestimate the minimum temperature in the western, north western, northern and central 

parts of the country. The underestimation of minimum temperature is most notable in the 

CNRM and NOAA models where the underestimation is in most parts of Kenya. The model 

ensemble generally shows lower values of bias compared to the rest due to its ability to 

smooth over the individual biases of each model. Minimum temperature is dependent on 

altitude which affects atmosphere content and radiation loss from the earth during the night.  

Under the baseline condition, the minimum temperature during the MAM season shows an 

upward trend that is significant from a statistical point of view for most of the stations, except 

for Mandera, Marsabit and Lodwar. The OND season showed an upward statistically 

significant trend for the Dagoretti, Kakamega, Kisumu, Moyale, Narok and Wajir stations. 

Under the RCP 4.5 condition, the minimum temperature during the MAM season showed an 

upward statistically significant trend for all stations at the 5% level. The OND season showed 

an upward statistically significant trend for all stations at the 5% level. The increase in 

minimum temperature could be attributed to global warming as a result of the increased 

anthropogenic greenhouse gas emissions which prevent the loss of terrestrial radiation by 

absorbing it and storing it in the surface boundary layer. 

The minimum temperature during the MAM season under the RCP 8.5 condition exhibited an 

increasing trend that was statistically significant at all stations at the 5% level. The OND 

season showed an increasing trend that was statistically significant at all stations at the 5% 

level. The increase in minimum temperature could be attributed to global warming as a result 

of increased anthropogenic greenhouse gas emissions which prevent the loss of terrestrial 

radiation by absorbing it and storing it in the surface boundary layer. 

5.1.1.2 Maximum Temperature Distribution 

The maximum temperature of the day is recorded in the afternoon three to four hours before 

sunset. The earth’s surface becomes progressively warmer as the sun heats the earth reaching 

its maximum temperature a few hours before sunset.  

Low values of maximum temperature were recorded in the high altitude areas including the 

central parts of Kenya, and the highlands west of the Rift Valley. High values of maximum 
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temperature are mainly concentrated in the north western, northern, north eastern, eastern and 

south eastern parts of Kenya which are the low lying areas. The models simulate the effect of 

altitude on maximum temperature fairly well.  

During the MAM season, underestimation of maximum temperature is noted in the western 

and south western regions of the country, especially with the CNRM, CSIRO, MIROC and 

MPI models. Positive values of bias are noted in the northern region of the Country. Positive 

values of bias mean the models overestimate maximum temperature in the northern parts of 

Kenya. Maximum temperature is affected by altitude due to air density, low altitude areas 

have a higher concentration of air leading to more absorption of heat and in turn higher 

records of maximum temperature.   

During the OND season, underestimation of maximum temperature is observed in most parts 

of the Country by all the models, but especially in the western and south western regions. 

Overestimation of maximum temperature is observed over the northern part of the country by 

the CCCma, CSIRO and IPSL model. 

The model ensemble showed lower values of bias when compared with the individual 

models. This was attributed to the ensemble’s ability to smooth out the individual biases. The 

ensemble was used to assess the space and time variation of maximum temperature under the 

baseline, RCP 4.5 and RCP 8.5 scenarios.  

Under the baseline condition, the maximum temperature during MAM season showed an 

upward trend that was statistically significant at the 5% level for most of the stations except 

for Kakamega and Kisumu. The increase in maximum temperature during the MAM season 

was attributed to global warming owing to increased anthropogenic greenhouse gas 

emissions. During the OND season, a downward and statistically significant trend at 5% level 

was recorded for the Garissa, Lamu, Marsabit, Mandera, Moyale, Mombasa, Voi, Lodwar 

and Wajir stations.  

Under the RCP 4.5 condition, the maximum temperature during the MAM season displayed a 

rising and statistically significant trend for all stations at the 5% level. During the OND 

season an increasing (decreasing) and statistically significant trend was observed for the 

Mandera (Voi) stations at the 5% level. 

Under the RCP 8.5 condition, the maximum temperature during the MAM season displayed a 

rising and statistically significant trend for all stations at the 5% level. The OND season 
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displayed an increasing and statistically significant trend at the 5% level for the Mombasa, 

Nakuru, Nanyuki and Narok stations, and decreasing significant trend in the Lamu station at 

the 5% level. 

5.1.1.3 Rainfall Distribution 

The rainfall pattern during MAM and OND seasons in Kenya is largely dependent on the 

north-south movement of the ITCZ. The presence of the Indian Ocean in the east, Lake 

Turkana in the north west, Lake Tanganyika in the south west, Lake Victoria in the west, and 

other inland lakes, and high mountains such as Mount Kilimanjaro in the south west and 

Mount Kenya in central Kenya influence the pattern of rainfall in Kenya such that the highest 

intensity of rainfall is located in the central, western, and coastal areas of Kenya. Winds play 

an important part in the rainfall pattern in Kenya, especially the Easterlies traversing the 

Indian Ocean, which transport large amounts of moisture into the country.  

To study the space and time variation of rainfall in Kenya under changing climate, a 

collection of GCMs downscaled by the RCA4 model was first assessed for its capacity to 

simulate rainfall in Kenya. The different models and the ensemble simulate the annual 

bimodal pattern of rainfall but have notable biases where most of the models underestimate 

the rainfall during the MAM season and overestimate the rainfall during the OND season 

During the MAM season, most of the models overestimate the spatial distribution of the 

observed rainfall in most parts of Kenya, except for the MOHC, NCC and NOAA models 

which underestimated the observed rainfall amounts. Overestimation of rainfall in the MAM 

season is noted in the central and western regions of Kenya, particularly around Mt. Kenya, 

especially by the CSIRO, IPSL, MIROC and MPI models. 

The models also overestimate rainfall over the high altitude regions of Kenya during the 

OND season as well. It is expected that the coarse resolution of the models could lead to 

failure to capture the mesoscale systems which are driven by the land-water differences and 

orographic strain in these regions. Since the ensemble was a better depiction of rainfall when 

compared to the individual models, it was used to evaluate the space and time variability of 

rainfall in Kenya.  

Under the baseline condition, the temporal trend in rainfall was not significant at a 5% level 

under both the MAM and OND seasons. The insignificance in trend for both seasons means 
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we cannot decisively state that rainfall is decreasing or increasing in these regions and this 

could be attributed to the variable nature of the rainfall. 

Under the RCP 4.5 scenario during the MAM season, a positive 5% statistically significant 

trend in rainfall was noted at the Moyale, Marsabit, Mandera, Wajir, Voi, and Kitui stations. 

These stations are located in the eastern region of Kenya where rainfall is lesser than the 

western part of the country. The increased level of greenhouse emissions will favour higher 

temperatures to the eastern and northern parts of the country which could enhance convection 

and, if conditions are favourable, yield higher amounts of rainfall. During the OND season a 

positive 5% statistically significant trend in rainfall was recorded at the Lodwar and 

Kakamega stations under the RCP 4.5 scenario. These stations are on the western part of the 

country, which is characterised by mesoscale features such as Lake Victoria and Lake 

Turkana. The projected increase in greenhouse gases could lead to higher temperatures and, 

therefore, enhanced evaporation of moisture from the surrounding lakes. If the conditions are 

favourable in terms of an unstable atmosphere, availability of condensation nuclei, and a 

lifting mechanism, rainfall could be enhanced. 

Under the RCP 8.5 scenario during the MAM season, a positive 5% statistically significant 

trend in rainfall was observed at the Mandera, Marsabit, Moyale, Wajir and Lodwar stations. 

The increase in the pattern of rainfall during the MAM season under the RCP 8.5 scenario is 

projected to only be concentrated towards the northern part of the country. This is in contrast 

to the RCP 4.5 scenario where the rainfall is projected to occur both to the eastern and 

northern parts of Kenya. During the OND season a positive 5% statistically significant trend 

was recorded at Moyale and Marsabit stations under the RCP 8.5 scenario. The increase in 

the projected pattern of rainfall during the OND season under the RCP 8.5 scenarios favours 

the north eastern part of Kenya. The increase in rainfall in the northern and eastern part of the 

country can be attributed to global warming due to the projected increase in greenhouse gases 

which could lead to higher temperatures and, therefore, enhanced evaporation of moisture 

from Lake Turkana and the Indian Ocean. If the conditions are favourable in terms of an 

unstable atmosphere, availability of condensation nuclei and a lifting mechanism, rainfall 

could be enhanced. 

Spatially, under both the RCP 4.5 and RCP 8.5 scenarios, wetter conditions are expected over 

the study area. The conditions will be wetter under the RCP 8.5 in comparison to the RCP 4.5 

scenario. The RCP 8.5 scenario represents higher emissions of greenhouse gases and this will 
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result in a higher temperature increase under the RCP 8.5 compared to the RCP 4.5 scenario. 

This increase in rainfall can be attributed to global warming due to the projected increase in 

greenhouse gases which could lead to higher temperatures and therefore enhanced convection 

and if conditions are favourable in terms of an unstable atmosphere, availability of 

condensation nuclei and a lifting mechanism rainfall will be enhanced. 

5.1.2 Land Suitability Mapping for Green gram Production in Kenya 

Suitability maps showing varying levels of green gram suitability in Kenya were found using 

a weighted overlay of past and future rainfall and temperature climate parameters, soil 

properties comprising pH, depth, CEC, texture, and drainage, and altitude features. Each of 

the parameter maps was first categorised into four classes. These classes are the Highly 

Suitable (S1), Moderately Suitable (S2), Marginally Suitable (S3), and Not Suitable (N) class 

categorised based on their suitability for green gram production.  

The study showed that there are some areas in Kenya that are presently not suitable for green 

gram production and this limits the successful use of land for green gram production in those 

areas. Most areas in Kenya fall under the “Not suitable” class in terms of soil pH, depth, 

drainage, and altitude.  

The country was found suitable for green gram production in terms of mean temperature 

under the baseline condition in the MAM season. In the future, during the MAM season 

under the RCP 4.5 and RCP 8.5 scenarios, areas in the north western and eastern regions of 

Kenya will not be suitable for green gram production. This is because in the future these 

areas are likely to experience a mean temperature greater than 30 C which is not suitable for 

green gram production. A temperature range of 21 to 30 C is the most optimal for the 

growth of green gram. 

During the OND season under the baseline condition, some areas were found as not suitable 

for green gram production in terms of mean temperature. These areas are located around the 

counties of Nyandarua and Nyeri. This is because these regions experience a mean 

temperature lower than 15 C during the OND season which is not suitable for green gram 

production. In the future, under the RCP 4.5 and RCP 8.5 scenarios, the country will be 

suitable for green gram production in terms of the mean temperature, including the counties 

of Nyandarua and Nyeri.  
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During the MAM season under the baseline condition, all areas in the country were found 

suitable for green gram production. The regions suitable for green gram production will 

remain favourable in the future under the RCP 4.5 and RCP 8.5 scenarios. An optimal rainfall 

of 250 to 350 mm is considered the most favourable for the sustained growth of green gram. 

During the OND season under the baseline condition, some regions in the country were found 

not suitable for green gram production in terms of rainfall. These areas are located in the 

north-western region of the country during the OND season.  The areas in the north-western 

part of the country will remain as not suitable for green gram production in the future under 

the RCP 4.5 and RCP 8.5 scenarios since the total seasonal rainfall are less than 75mm. 

Water stress reduces the rate of nutrients uptake, leaf area development, budding, flowering, 

and photosynthesis, which could result in yield reduction of green grams.  

Overall, most of Kenya is moderately suitable for green gram production during the MAM 

and OND seasons under the baseline, RCP 4.5 and RCP 8.5 scenarios. Highly suitable areas 

are located in the counties of Kitui, Makueni, Machakos, Isiolo, Samburu, Narok, and West 

Pokot. 

During the MAM season, the area currently highly suitable for green gram production 

(67842.6 km
2
) is projected to increase slightly to 68600.4 km

2 
by 1.1% under the RCP 4.5 

scenario. The area is projected to reduce to 61307.8 km
2
 by 9.6% under the RCP 8.5 scenario.  

During the OND season, the area currently highly suitable for green gram production 

(49633.4 km
2
) is projected to increase under the RCP 4.5 scenario by 22.2%. The area is 

projected to increase by 58.5% under the RCP 8.5 scenario. This increase is due to the 

projected favourable rainfall and temperature conditions in the future. 

5.1.3 Effects of Change in Climate on Green gram Yield in Kenya 

Kitui County, a highly suitable County for green gram production, was used for further 

analysis in estimating the expected yield of green gram under the baseline and future climate 

scenarios. The green gram model was calibrated for the Biashara, Tosha, N26, and KS20 

varieties. The calibrated green gram model captured the observed yield, biomass, and days to 

maturity of the four varieties of green gram shown by a coefficient of determination ranging 

between 87.0% and 99.0%; bias values between 1.3 and 25.3 and levels of normalized root 

mean square error ranging between 4.7% and 45.5%. 
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In the future, during both the RCP 4.5 and RCP 8.5 scenarios, rainfall and temperature in 

Kitui are projected to increase due to the projected rise in greenhouse gas emissions. The 

temperature change in the future will remain in the optimal range for green gram production. 

However, the expected increase in rainfall in the future for Kitui will be more than the range 

required for green gram production leading to reduced pod setting and increased biomass 

production. 

The increase in rainfall and temperature is more during the RCP 8.5 scenario in comparison 

to the RCP 4.5 scenario. This is because the RCP 8.5 scenario represents higher 

concentrations of greenhouse gas emissions than the RCP 4.5 scenario. The increase in 

rainfall amount under both the RCP 4.5 and RCP 8.5 scenarios will translate to a lower yield 

and increased biomass. The increase in temperature will result in reduction to the days to 

maturity for green gram in Kitui County.  

5.1.4 Overall Deductions Inferred 

The study found marked variation in space in both MAM and OND seasons. This variation 

was attributed to the interplay of surface peculiarities, including topography, distribution of 

water bodies, and large scale weather controls, especially the ITCZ.  

The study also found appreciable variability of rainfall in time. Temporal trends were 

attributed to global warming due to the projected increase in greenhouse gases which could 

lead to higher temperatures and therefore enhances convection and if conditions are 

favourable in terms of an unstable atmosphere, availability of condensation nuclei and a 

lifting mechanism rainfall be enhanced. 

Both maximum and minimum temperatures have been increasing over time and are projected 

to increase significantly over the area under the RCP 4.5 and RCP 8.5 scenarios due to the 

projected increase in greenhouse gases.  

Most of Kenya is moderately suitable for green gram production under the baseline, RCP 4.5 

and RCP 8.5 scenarios during both the MAM and OND seasons. The area currently highly 

suitable for green production in Kenya will increase in the future under the MAM season 

RCP 4.5, the OND season RCP 4.5 scenario, and the OND season RCP 8.5 scenario. The area 

currently highly suitable for green gram production in Kenya will reduce in the future under 

the MAM season RCP 8.5 scenario. 
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The increase in rainfall amount under both the RCP 4.5 and RCP 8.5 scenarios will translate 

to a lower yield and increased biomass. The increase in temperature will result in reduction to 

the days to maturity for green gram in Kitui County. One assumption of this study is that the 

green gram model was only calibrated for one highly suitable region and is assumed to apply 

for similar areas where climate and soil patterns are similar. The drop in yield, biomass, and 

days to maturity is slightly larger during the RCP 8.5 scenario in comparison to the RCP 4.5 

scenario for both MAM and OND seasons. This is because the RCP 8.5 scenario represents 

higher concentrations of greenhouse gas emissions leading to more rainfall when compared to 

the RCP 4.5 scenario. 

The maps of green gram suitability indicate that the area suitable for green gram production 

will increase in the future. There is, however, a net decrease in yield of the four green gram 

varieties modelled. Kenya, currently, only produces 460kg/ha of green grams. The study 

found that despite the decrease in yield, potential production under the future climate 

scenarios was still above 460kg/ha. There is, thus, potential to expand on the current 

production of green grams. Therefore, despite the decrease in the future, green gram is still a 

lucrative crop since farmers still stand to increase their current production. 

Policymakers can refer to the developed green gram suitability maps under past and future 

climate scenarios, to determine how suitable their region will be for green gram production. 

Policymakers should also make use of the four green gram varieties developed under the 

APSIM model to mitigate against the possible impacts of climate change on green gram 

yield. Given that the government aims to revive farming in the ASALs by promoting climate 

smart agriculture through planting drought resistance crops, there is need to develop green 

gram varieties which are more tolerant to the expected increase in rainfall and temperature to 

increase yield and in turn benefit farmers, the society and the country at large. 

5.2 Recommendations 

This section presents the recommendations of this study for the different players in the green 

gram value chain, namely, scientists, policymakers, and users.  

5.2.1 Recommendations for Scientists 

Models require initial conditions to begin a forecast. These conditions are not always 

accurately known. Since these initial states are not error-free they lead to errors in the model 

simulations. Forecasts are thus run from a range of modified initial conditions to obtain a 

series of possible simulations called an ensemble. This study used a multi-model ensemble 
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approach where all the models had equal weight. Future studies should use a weighted 

ensemble method depending on the rank of the models.  

The scarcity of in situ data required for model initialization over the region is one of the 

reasons for the biases in the models. There is a need to expand the current network of upper 

air meteorological stations for future use in model initialization. 

The coarse resolution of GCMs and RCMs mean that some systems that control the weather 

in Kenya are not well captured. For a forecast to be accurate, all the processes leading to 

cloud and rainfall formation need to be well captured. There is thus need for scientists to 

develop models with higher resolution so that they can capture the effects of mesoscale 

systems that affect weather in Kenya. 

A decline in green gram yield is expected under future climate scenarios in one of the highly 

suitable zones for Kitui County, Kenya. There is a need to enhance research on extreme 

weather tolerant green gram varieties to favour the expected projected alterations in rainfall 

and temperature parameters.  

This study only focused on green gram production during the MAM and OND seasons. An 

assumption was made that the seasons would remain optimal in the future. There is need to 

assess the likelihood of a shift in seasonal rainfall in the future since this may have an impact 

on crop production.  

Different crop management practices have an impact on the yield of green grams. It is 

necessary to determine the possible impacts of different management practices on green gram 

production. 

Green gram production is affected by the weather experienced during its growing season. 

This study only collected data on green gram production for three seasons. There is need to 

continue the collection of green gram production data under different seasons. This will help 

in the further validation and fine tuning of the APSIM green gram model. 

There is need to quantify the possible income that could be generated in the classes that were 

found highly suitable class for green gram production. 

There is need to conduct studies on the suitability of land to different crops, besides green 

gram, to make crop diversification easier. The factors that affect specific crops can be 

determined and overlaid in GIS environment to develop different crop suitability maps. 
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Although the results of this study are applicable in other ASAL areas where the climate and 

soil patterns are similar, future studies should carry out experiments in other highly suitable 

regions to assess the likely effect of climate change on green gram production. 

5.2.2 Recommendations to Policymakers  

Since rainfall and temperature are projected to increase under the RCP 4.5 and RCP 8.5 

scenarios, there is a need for policymakers in consultation with scientists to develop climate 

adaptation strategies for each scenario to mitigate against the negative impacts of changing 

climate on green gram production. 

Policymakers should encourage the use of the available technology such as mobile phones 

and radios to educate farmers on the effects of different weather conditions on their crops and 

how to mitigate these effects. The ease of access to weather information builds up the 

capacity of the community to make the appropriate decisions in case of climate extremes. 

Encouraging the use of weather products, water harvesting, giving loans to farmers for land 

preparation, and investing in irrigation equipment are some of the steps donors, policymakers 

and the government can take to cushion green gram farmers against the adverse effects of 

changing climate.   

The government should enhance education on the importance of weather products to 

agriculture at the county and ward levels. This will ensure stakeholders have access to 

climate information to use in planning their socio-economic activities.  

Global warming as a result of increased greenhouse gases emissions is one of the reasons for 

climate change. On a large scale landowners can help mitigate this increase in greenhouse 

gases by practicing agroforestry to help reduce carbon emissions.  

5.2.3 Recommendations to Users 

In the highly suitable areas where the climate already favourable for green gram production, 

players in the green gram value chain can maximise the good weather and adequately prepare 

their farms to plant green gram since a decent harvest is highly expected. Adequate 

preparation involves using the proper inputs of seeds, pesticides, and fertilizers, which will 

enhance a positive outcome since the environment is already appropriate for cultivation.  

Players in the green gram value chain in the moderately and marginally suitable classes are 

encouraged to grow and invest in green gram production as well. Farmers could take 

advantage of the climate forecasts disseminated when planning their agricultural activities to 
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adequately prepare in case the weather is not favourable. One way of effecting this would be, 

for instance, by changing the planting dates to make maximum use of the season.  

Rainfall is highly variable, hence, farmers, with help from the government, could prepare 

adequately by harvesting rainwater for use during dry conditions. Soil water management 

techniques such as conservation tillage, and building ridges and furrows can increase water 

infiltration, and prevent water and nutrient loss through leaching, erosion, and runoff. 
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