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DEFINITIONS OF OPERATIONAL TERMS 

 

Perinatal mortality  stillbirth and neonatal deaths before 7th birthdate  

 

Bayesian analysis  is the inference approach that involves applying prior 

beliefs to the expected data.  

 

Antenatal care is the routine health control of the presumed pregnant 

woman.  

Intrapartum   the period spanning childbirth from the onset of 

labour to delivery.  

 

Stillbirth   loss of a baby before or during delivery  

 

The prior distribution  is the probability distribution that expresses 

one’s belief about the quantity before some evidence is taken into account.  

 

Posterior distribution 
is the probability that is assigned after the relevant evidence is taken into 

account.  

 

Maximum likelihood estimation 

is a method of estimating the parameters of a probability distribution by 

maximizing a likelihood function so that the observed data is most probable. 

  

Intra-class correlation 
is a measure of how strongly units in the same group resemble each other.  

 

Credible intervals are the probability that the true unobserved value would 

lie within the interval, given the evidence provided by the observed data.  

 

Neonatal deaths  death of a baby before 7 days after delivery  

 

Birth order   Order of birth of a child in a sequence of delivery. 
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ABSTRACT 

Background: Perinatal mortality is a big problem facing child survival in 

Tanzania. The problem has been empirically associated with numerous 

factors. The challenge which exists is the statistical association of these 

factors with perinatal mortality. This study aimed to investigate the 

determinants of perinatal mortality in Tanzania based on the TDHS 2015-

16. 

Methodology: The study used data from the Tanzania Demographic Health 

Survey whereby an assessment of the determinants of perinatal mortality 

was carried out using bivariate chi-square test, normal Bayesian logistic 

regression and multilevel Bayesian analysis in R-INLA. The multilevel 

relative risk was computed using log-binomial models in R-INLA. The chi-

square test and regression models were undertaken in R version 4.0.3. 

Results: A total of 13,266 women aged between 15-49 years and 10,233 

children born in the previous 5 years period were included in the study. 

Overall, 187 stillbirths and 215 neonatal deaths were recorded in the study 

period, giving a total of 402 perinatal deaths. Perinatal mortality was 

significantly higher in children of higher birth orders (2+) and maternal 

body mass index 25+, but lower in children with previous birth intervals of 

15+ months. In hierarchical Bayesian analysis, body mass index, previous 

birth interval and birth order were independently associated with perinatal 

mortality. Birth order 2-3 (adjusted Odds Ratio (AOR) 5.19 95% CI 

(5.17,5.21), birth order 4-5 AOR 3.39 95% CI (3.37,3.40), birth order 6+ 

AOR 5.43 95% CI (5.40,5.46) and body mass index 18.5-24.9 (adjusted 

Odds Ratio (AOR) 2.22 95% CI (2.20,2.24), body mass index 25-29.9 AOR 

2.86 95% CI (2.81,2.91) and body mass index >30 (AOR 2.86 95% CI 

(2.83,2.89) were associated with increased risk of perinatal mortality. On 

the other hand, pregnancy intervals 15-26 months, 26-38 months and 39+ 

months were associated with lower risk of perinatal mortality with AORs   



 xiv 

0.336 95% CI (0.335,0.338), 0.340 95% CI (0.338,0.341) and 0.099 95% CI 

(0.096,0.102) respectively.   

Conclusion: Perinatal mortality remains a significant problem in Tanzania. 

We have identified some of the risk factors, indicating the need to invest in 

educating mothers about previous childbirth intervals, birth order and body 

mass index. Reduction of perinatal mortality should also be attributed to 

interventions that focus on the mother’s occupation, age at first birth and 

education level. Health planners and managers could consider putting a 

strategic plan in action to assist in improving maternal health in Tanzania, 

thereby reducing the risk of perinatal deaths. 

 

 

 

 

 

 



CHAPTER ONE: INTRODUCTION 

 

1.1 Background  

Perinatal mortality (PNM) is defined as the risk for a fetus dying before 

being born or a neonate dying before the 7th day of his/her birthdate. The 

perinatal period commences at 22 weeks after gestation and ends 7 

completed days after birth  (Zupan & Åhman, 2006). It, therefore, refers to 

the number of stillbirths, and the death of neonates one week after birth. 

Perinatal mortality rates in any nation are considered to be one of the 

important indicators of the social-economic welfare (Ebenezer et al., 2019). 

This is because poor quality care contributes to morbidity and mortality. 

Over years the perinatal mortality rates in developing countries have been 

on the rise at an alarming level in contrast to the developed countries 

(Ebenezer et al., 2019; Racape et al., 2016). Recently, researchers have 

shown a slowly decreasing trend in perinatal mortality in many sub-Saharan 

countries over the past 20 years (Ikua A.W, 2010), while the converse is 

true for the under-5 mortality within the same region (Ikua A.W, 2010). 

Globally, perinatal mortality is a public health concern, although it is most 

pronounced in developing countries (Zupan & Åhman, 2006). In 2009, 

globally there were 2.6 million stillbirths recorded, and in 133 million live 

births in the same year, 2.8 million died in the first week of life (Frøen et al., 

2016). This translated to 7,120 stillbirths and 7,670 neonatal deaths per day 

as well as 40.6 deaths per 1000 live births.  It is also estimated that about 

66% of the stillbirths globally occur only in 10 countries namely India, 

Pakistan, China, Nigeria, Bangladesh, Ethiopia, Democratic Republic of 

Congo, Indonesia, Afghanistan and Tanzania (Frøen et al., 2016). The 

patterns of these deaths are similar to under 5 mortalities, with the majority 

occurring in the developing countries(Ogbo et al., 2019).  
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Since Tanzania is one of the 10 most-affected countries globally, the global 

perinatal mortality trend is similar to the situation in Tanzania. The 

Tanzania Demographic Health Survey 2015-2016 has reported perinatal 

mortality of 39 deaths per 1000 live births(Ministry of Health, Community 

Development, Gender, Elderly and Children (MoHCDGEC) [Tanzania 

Mainland], Ministry of Health (MoH) [Zanzibar], National Bureau of 

Statistics (NBS), Office of the Chief Government Statistician (OCGS) & 

ICF, 2016). The government of Tanzania in collaboration with other 

partners has conducted several interventions to reduce perinatal mortality in 

the country among other health-related problems (Ministry of Health, 

Community Development, Gender, Elderly and Children (MoHCDGEC), 

2015). However, due to lack of funding, the perinatal mortality rates 

continue to be high in the country (Ogbo et al., 2019). For example, under-5 

mortality in Tanzania in the period between 2004 and 2016 was almost 

halved while perinatal mortality remained high (Ogbo et al., 2019). The 

World Health Organization (WHO) estimated and placed Tanzania in a 

group of countries with perinatal mortality rates between 40-59 by the year 

2000 (Zupan & Åhman, 2006). The hit of 39 deaths per 1000 live births in 

2015-2016(Ministry of Health, Community Development, Gender, Elderly 

and Children (MoHCDGEC) [Tanzania Mainland], Ministry of Health 

(MoH) [Zanzibar], National Bureau of Statistics (NBS), Office of the Chief 

Government Statistician (OCGS) & ICF, 2016)   indicates slow and little 

progress. 

 

The millennium development goals (MDGs) for poverty reduction which 

were adopted by world countries in 2000 place public health improvement 

as a central focus(Jeffrey D. Sachs, 2003; United Nations (UN), 2015). This 

is because public health plays a pivotal role in the poverty reduction (Jeffrey 

D. Sachs, 2003). In the MDG-4, reduction of infant and child mortality rate 
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by two-thirds by 2015 in the developing countries was emphasized (Jeffrey 

D. Sachs, 2003). Although this was not achieved, there was a notable 

decline in under-5 mortality from 90 deaths per 1000 in 1990 to 43 deaths 

per 1000 in 2015 (Nations Unies, 2015). In an attempt to meet MDG-4, 

Tanzania as a member of the United Nations (UN) has been implementing 

different programs to improve health in the country including building 

health centres for every ward in line with the implementation of the Health 

Sector Strategic plan 2015-2020 (HSSP 1V) (Ministry of Health, 

Community Development, Gender, Elderly and Children, 2015). Despite all 

these efforts, Tanzania has achieved slow gain in reduction of Perinatal 

mortality (Mbaruku et al., 2009).  

Of particular concern is the absence of stillbirths in millennium 

development goals and the Sustainable Development Goals, making 

stillbirth a neglected issue, invisible in policies and programs (Frøen at al., 

2016). This fact should attract the governments in developing countries to 

set priorities and resources towards combating stillbirth to improve life.  

Thus, identifying the risk factors associated with perinatal mortality is very 

important in designing programs to combat the problem. The fact of life is 

that perinatal deaths will continue to occur and can be reduced if the risk 

factors are given high priority in antenatal care and intrapartum programs  

(Zupan & Åhman, 2006). Therefore, this study is aiming at modelling 

different variables for perinatal mortality in Tanzania using the Tanzania 

demographic and health survey data of 2015-2016. 

1.2 Statement of the Problem 

Perinatal mortality is a global issue that primarily affects developing 

countries, especially the Sub-Saharan region. The global trend shows that 

there has been a slow decline in perinatal mortality in many developing 

countries(Zupan & Åhman, 2006). The figure below shows regional 

perinatal mortality trends. From Figure  1, it appears that Sub-Saharan 
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countries have higher perinatal mortality rates than the rest of the world. 

These statistics show the heavy load of childhood mortality created by 

perinatal mortality, especially in the Sub-Saharan region. 

 

 

Figure  1: Global perinatal mortality by region 

Source: WHO (2006). 

 

Moreover, previous literature has been focusing on determinants of infant 

and child mortality; and very few have concentrated on perinatal mortality 

which significantly contributes to infant and child mortality (Akombi & 

Renzaho, 2019). In addition, most of these studies have used hospital or 

community-based data (Gabrysch et al., 2019; Kidanto et al., 2006; 

Mbaruku et al., 2009; McDermott et al., 1996) and very limited studies have 

used demographic health survey data for analysis (Biracyaza E* and 

Habimana S, 2019; Chinomona & Mwambi, 2015). The results from the 

hospital and community-based studies have limitations in that they cannot 

be used to infer the general population. Previous research has also shown 

that there are many unreported cases of perinatal mortality (Anwar et al., 

2018; Cardoso et al., 2016). This poses a challenge in the analysis of studies 

that would be used by policy-makers and implementers to set public health 

interventions aiming at reducing perinatal mortality. Thus, this study can go 

a long way in advising the policy-makers on the priority areas where the 
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limited resources should be directed. Lastly, many studies which involve 

hospital and community-based data and even demographic surveys have 

used logistic regression analysis to determine the effect of selected variables 

on dichotomous outcomes. However, this only makes it possible to estimate 

the intercept and other regression coefficients but leaves room for 

uncertainty in the estimates. This is because there could be several reasons 

which can lead to uncertainty with the empirical data such as unreported 

cases of stillbirth and neonatal deaths and regional differences of perinatal 

mortality within the country. By employing normal logistic regression, 

tends to ignore these prior beliefs about the data. Hence, a Bayesian 

approach will help in improving the estimates by incorporating prior 

knowledge in the model to obtain the estimates.  

 

1.3 Justification of the study  

Perinatal mortality is a major global problem contributing to a significant 

number of stillbirths and neonatal mortality. One of the greatest challenges 

is that there has been a gradual decline in perinatal mortality in most Sub-

Saharan countries including Tanzania. Most studies in the field of child 

mortality have only focused on under-5 mortality and researchers have not 

treated stillbirth in much detail. On the other hand, many types of research 

in hospital and community-based and few demographic survey studies have 

been restricted to classical logistic regression analysis. To date, only a 

limited number of studies have been identified to use Bayesian logistic 

regression analysis. Therefore, modelling of risk factors associated with 

perinatal mortality in Tanzania using the Bayesian multivariate logistic 

regression model will help in identifying the risk factors which significantly 

contribute to perinatal mortality by incorporating prior knowledge in the 

model.  
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1.4 Research questions 

(i) What is the prevalence of perinatal mortality in Tanzania among the 

selected variables? 

(ii) What are the variables associated with perinatal mortality in 

Tanzania?  

(iii) What is the relative risk of perinatal mortality in Tanzania?  

 

1.5 Objectives 

1.5.1 General Objective 

The main objective of this study was to determine the factors associated 

with perinatal mortality in Tanzania based on Tanzania Demographic and 

Health Survey 2015-2016 data.  

1.5.2 Specific Objectives 

(i) To determine the prevalence of perinatal mortality in Tanzania  

(ii) To determine the bivariate association between maternal education, 

place of residence, maternal age at birth, maternal age at first birth, 

birth interval, marital status, maternal BMI, maternal weight, birth 

order, child’s sex, maternal occupation and social-economic status 

and the risk of perinatal mortality in Tanzania using a Bayesian 

approach. 

(iii) To estimate the relative risks of perinatal mortality in Tanzania using 

the selected socio-economic and socio-demographic factors of the 

population, accounting for potentially complicated dependency 

structures of the population using a suitable hierarchical Bayesian 

Approach.   
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Perinatal mortality 

Perinatal mortality is one of the key indicators of the development of any 

country (Ebenezer et al., 2019; Zupan & Åhman, 2006). A high level of 

perinatal mortality indicates a low level of development of a community, 

and also low perinatal mortality signifies improved health systems of the 

community in question (Zupan & Åhman, 2006). Perinatal mortality rates 

may be attributed to several factors such as child sex, birth order of a child, 

maternal education etc.(Biracyaza E* and Habimana S, 2019). 

Implementation of Primary Health Care (PHC) for all by the year 2000 

(WHO, 1978) aimed at reducing neonatal mortality rates globally including 

Tanzania. However, stillbirth has continued to remain high in Tanzania 

(Kidanto et al., 2006).  

Child mortality has been a very critical issue in evaluating the progress or 

achievement towards the Millennium Development goal 4 (MDG-4) which 

required member countries to reduce child mortality by two-thirds between 

the period 1990 to 2015(Mejía-Guevara et al., 2019). The Sustainable 

Development Goal 3 (SDG 3) calls for member countries to reduce infant 

mortality to 12 deaths per 1000 live births and under-5 mortality to as low 

as 25 deaths per 1000 live births(United Nations, 2015). Even though 

MDG-4 and SDG-3 do not put any emphasis on the reduction of stillbirth, 

individual countries should focus on the reduction of stillbirth and neonatal 

mortality. The efforts towards achieving this goal require accurate statistics 

for mortality measurements (Rerimoi et al., 2019).   Additionally, while the 

target for MDG-4 was a reduction of child mortality to two-thirds, this was 

not achieved by many member states resulting in a reduction by only a half 

of the global child mortality (United Nations (UN), 2015). 

According to the Tanzania Ministry of Health, there has been a remarkable 

decline in infant and child mortality rates in Tanzania (Ministry of Health, 
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Community Development, Gender, Elderly and Children (MoHCDGEC) 

[Tanzania Mainland], Ministry of Health (MoH) [Zanzibar], National 

Bureau of Statistics (NBS), Office of the Chief Government Statistician 

(OCGS) & ICF, 2016). The UN report estimates that only Tanzania, Kenya, 

Rwanda, Uganda and Senegal can achieve a reduction of under-5 mortality 

rates (U5MR) to 25 deaths per 1000 live births by 2030(Mejía-Guevara et 

al., 2019). The report goes further and suggests that only Tanzania and 

Rwanda can achieve a reduction of neonatal mortality rate to 12 deaths per 

1000 live births by the year 2030(Mejía-Guevara et al., 2019).  

2.2 Causes of Perinatal Mortality 

There are several causes of perinatal mortality which can be categorized into 

three major parts: Those which happen in the period before childbirth 

(antepartum), those which occur during childbirth (intrapartum) and those 

related to neonatal mortality. Among other many causes of perinatal 

mortality, antepartum and intrapartum complications are the major causes of 

stillbirth (Afshan et al., 2019). Other causes include a congenital 

abnormality, intrapartum related asphyxia and high-risk fertility behaviour 

(Becher et al., 2004). 

Diseases like HIV and malaria have also been related to poor pregnancy 

outcomes (Akombi & Renzaho, 2019; McDermott et al., 1996). The 

interaction of HIV and other maternal infections may result in poor birth 

outcomes. For example, Lesotho is among the countries with the highest 

perinatal mortality in Sub-Saharan Africa with also a high level of HIV 

infection (Akombi & Renzaho, 2019). The high mortality rates in Lesotho 

are thought to be attributed to HIV infection. Studies have shown that 

maternal HIV status leads to an increased risk of perinatal mortality 

(Akombi & Renzaho, 2019; Chinomona & Mwambi, 2015). Also, HIV 
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leads to the low birth weight which may increase the risk of perinatal 

mortality, especially during the neonatal age (Akombi & Renzaho, 2019). 

2.3 Determinants of Perinatal Mortality 

Generally, studies have identified several determinants of perinatal 

mortality such as type of residence, maternal education, birth interval, child 

sex, mother’s weight and child-size (Conde-Agudelo et al., 2005; Gabrysch 

et al., 2019; Ikua A.W, 2010; Jacobsson et al., 2004; Kidanto et al., 2006; 

Muttarak & Dimitrova, 2019; Racape et al., 2016). All these fall under three 

categories which are social-economic factors, community factors and 

proximate factors. Type of residence covers several attributes which have a 

direct effect on the well-being of individuals. It has a connection to weather, 

hygiene, proximity to health services, infrastructures, altitude, water 

sanitation and social-economic status. For example, areas that are affected 

by extreme weather conditions like drought, floods amongst others have 

recorded high child mortality rates since it may negatively affect nutrition in 

the area (Muttarak & Dimitrova, 2019).  

Minsart et al., 2013, showed in their work that perinatal mortality varied 

according to the origin of the mother and her naturalization status.  In this 

study, it was reported that naturalized immigrants who had access to good 

healthcare had low perinatal mortality than those who were not naturalized. 

People living in rural areas and other disadvantaged areas are likely to 

experience high neonatal mortality rates and stillbirth due to lack of 

maternal-child health services (de Graaf et al., 2013). In their study, they 

reported a high risk of adverse perinatal mortality (21%) in deprived 

districts.  

In addition, there have been always rural-urban differences in terms of 

accessibility, readiness and delivery of health services among many 

countries in the Sub-Saharan Africa (Kanyangarara et al., 2018). A recent 
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study by Lisonkova et al., 2016 has clearly shown how the place of 

residence impacts perinatal mortality through the following results: severe 

maternal morbidity and rural residence (AOR 1.15,95% CI 1.03-1.28) 

compared to urban women. This study also indicated that rural women had 

significantly higher rates of eclampsia (AOR 2.7,95% CI 1.79-4.08), 

obstetric embolism (AOR 2.16, 95% CI 1.14-4.07), uterine rupture (AOR 

1.96, 95% CI 1.42-2.72). The same study also reported high neonatal 

morbidities in infants born in rural areas compared to those born in urban 

areas.  

Maternal level of education is also a determinant of neonatal mortality and 

stillbirth. This has been shown by numerous studies indicating that mothers 

with low education have a high probability of their baby dying in childhood 

than the highly educated one (Auger et al., 2012; Kiross et al., 2019a; 

Rahman et al., 2010; Wehby & López-Camelo, 2017). This implies that the 

level of education of women of childbearing age is associated with child 

survival or mortality and the likelihood of stillbirth. The general concept is 

for the policy-makers to invest in maternal education to reduce child 

mortality and stillbirth (Kiross et al., 2019a)(Kiross et al., 2019a). One 

notable study was conducted in Qatar by Rahman et al., 2010 where they 

showed how improved maternal education has reduced neonatal mortality 

rates from 26.27/1000 in 1974 to 4.4/1000 in 2008, perinatal mortality from 

44.4/1000 in 1974 to 10.58/1000 in 2008 and maternal mortality rate to 

zero. 

Birth interval has also been identified by several studies to be one risk factor 

for stillbirth and infant-child mortality in many countries (Becher et al, 

2004; Molitoris et al., 2019; Mondal et al., 2009). This means that if 

children are not spaced enough, there is a high risk for death of a child and 

stillbirth due to maternal factors (Molitoris et al., 2019). Andargie et al., 

2013 clearly described the effect of short birth intervals on perinatal 
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mortality whereby the AOR for short inter-pregnancy less than 24 months 

was 2.58 compared to more than 24 months interval in a study conducted in 

Ethiopia. This outcome is supported by another study conducted in Latin 

America (Conde-Agudelo et al., 2005 which reported infants with short 

inter-pregnancy intervals between 18-23 months to have morbidities like 

early neonatal death, fetal death, low birth weight, very low birth weight, 

preterm death, very pre-term birth and small for gestational age. 

Mother’s age at first birth also has a very big impact on perinatal mortality. 

Several types of research have nailed on the importance of reducing 

adolescent pregnancy to curb the problem of neonatal deaths(Jacobsson et 

al., 2004; Neal et al., 2018; United Nations, 2015). Neal et al., 2018 

reported an increased risk of neonatal mortality among infants born from 

mothers under 16 years old. Although this study reported the risk of 

neonatal mortality among adolescents, generally neonatal mortality has been 

attributed to low age and advanced age at birth. Studies have shown that 

infants born to mothers above 40 years old have a much higher risk of 

neonatal mortality than those born to mothers less than 40 years old 

(Jacobsson et al., 2004; Mutz-Dehbalaie et al., 2014). This concludes that 

perinatal mortality, intrauterine fetal death and neonatal deaths increase with 

adolescence age and advanced age. 

Social-economic status plays a pivotal role in determining stillbirth and 

infant mortality in low-middle income countries. Access to health services, 

health infrastructures, maternal education, maternal nutrition, infant 

nutrition amongst others is well influenced by the economic wealth of the 

community or household. Studies have shown that stunted under-5 children 

are mainly from poor families than wealthy families. For example, stunting 

was observed to be 45.1% in poor families while it was 26.9% in wealthy 

families in a study conducted in Ethiopia (Mohammed et al., 2019). In 

Uganda, the stunting of under-5 years children was 30% and most of the 
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children were from families whose mothers were widowed, divorced or 

separated (Ruth Sharon Apio et al., 2019). It has been noted that even 

utilization of antenatal care services differs in the community based on the 

social-economic status of the households. For instance, utilization of 

antenatal care (ANC) services is concentrated in women from wealthier 

households than in women from poor households (Novignon et al., 2019).  

2.5 Bayesian Regression 

2.5.1 General Description 

The Bayesian regression analysis has gained wide application in recent 

years due to correct estimates of regression coefficients it produces. Its 

application is not only in the medical field but it crosses to other fields like 

spatial statistics, politics, finance, business amongst others. The introduction 

of prior information without losing posterior distributions gives a useful 

advantage of producing correct estimates      (Pateras, K & Ntzoufras,I, 

2013).  

Incorporating prior information in a model renders the research more 

attractive than empirical data through the incorporation of experience, 

expert opinion or probabilistic thinking of a researcher. This study 

incorporates some non-informative priors which play a minimal role in the 

posterior distribution and with the interest of letting the data speak for 

themselves (Chinomona & Mwambi, 2015; Joanne L. Shin, 2015). Also, the 

prior knowledge about perinatal mortality will be incorporated in the model 

using the relevant prior. 

 

2.5.2 Bayes Formula 

The general idea in Bayes theorem is: 

p(Yi|Xi) =
p(XiYi)p(Yi)

p(Xi)
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where: 

p(YiXi) is the posterior probability of subject i 

p(XiYi) is the likelihood  

p(Yi) is the prior probability 

p(Xi) is the normalizing constant  so that the probability is appropriately 

scaled within 0 to 1 

The term p(Xi) in the equation above is always difficult to compute. 

Therefore,  

 

p(Yi|Xi) ∝ p(Xi|Yi)p(Yi) 

 

which means the posterior distribution is the product of the likelihood 

observed from the collected data and the prior distribution.  

2.6 Bayesian Logistic Regression Model 

In modelling the risk factors associated with perinatal mortality, we are 

interested in showing the relationship between the risk factors in this case 

regarded as independent variables and the outcome variable (dependent 

variable). In the TDHS 2015-2016 data, the outcome variable is perinatal 

mortality. This implies that the outcome variable is categorical binary 

(dichotomous) with only two probabilities and the interest is to study how a 

set of predictor variables are related to dichotomous outcomes(Harrell, 

2001). The predictor variables may be either discrete or continuous.  

Since the outcome variable is binary, a binary logistic model is appropriate 

in modelling the risk factors associated with perinatal mortality. The logistic 

regression model, therefore, provides a method of modelling binary 

outcomes which takes values 0 or 1. The proportion of children dying is an 

estimate of probabilities of death in each category. However, this 
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relationship is always nonlinear and the probabilities of death change 

slightly at the lower and upper extremities.  

The proportion of children dying can be represented by logistic regression 

represented by a linear function of covariates as follows: 

p =
𝒆 − (𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2……𝛽𝑝𝑥𝑖𝑝)

𝟏 + 𝒆−(𝜷𝟎+𝛽1𝒙𝒊𝟏+𝛽2𝒙𝒊𝟐……𝛽𝑝𝒙𝒊𝒑)
 

             

Where  is a vector of regression coefficients.The logistic or logit function 

is used to transform a nonlinear curve into a linear curve and change a range 

of proportion from 0 to 1 to - to+. The linear function of covariates for 

the binary outcome will be as follows. 

𝑙𝑜𝑔𝑖𝑡(𝑌𝑖) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2……𝛽𝑝𝑋𝑝 + ℰ 

Where ℇ~Ν(0, 𝜎2) 

and this model was used for normal Bayesian analysis with the application 

of priors. 

Bayesian logistic regression has been used in several research studies to 

solve different problems. For example, Bayesian logistic regression models 

were used by Chinomona and Mwambi(Chinomona & Mwambi, 2015) to 

model the risk of HIV in Zimbabwe using the Zimbabwe DHS dataset 2010-

11. Two other studies conducted in Nigeria used the Bayesian logistic 

regression model to determine Exclusive breastfeeding practice and the risk 

of malaria (Adigun et al., 2015; Gayawan et al., 2014). Gayawan et al 

(Gayawan et al., 2014) conducted a stepwise Bayesian analysis to determine 

exclusive breastfeeding practice in Nigeria whereby the study could 

differentiate the likelihood of exclusive breastfeeding among the Nigerian 

states. In a similar context, Adigun (Adigun et al., 2015) used Bayesian 

geostatistical modelling of the 2010 malaria indicator survey to determine 

malaria risk in Nigeria. 
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2.6.1 Likelihood of the Model 

For binary outcome studies as in the case of perinatal mortality, we should 

consider the outcome variable as Bernoulli random variable. If we want to 

choose values for parameters of logistic regression, we need to use 

maximum likelihood estimation (MLE). Since we are considering the 

outcome variable as Bernoulli random variable, then  

𝑌𝑖~𝐵𝑒𝑟𝑛(𝑝) 

where 𝑝 = 𝜎(𝜃𝑇𝑥). 

Now if the probability of one data point is computed as a Bernoulli 

probability mass function, the following equation is obtained: 

𝑃(𝑌|𝑋) = 𝜎(𝜃𝑇𝑥)𝑦. [1 − 𝜎(𝜃𝑇𝑥)]1−𝑦 

The likelihood for Bernoulli distribution will be given by: 

𝐿(𝜃) =∏𝜎(𝜃𝑇𝑥𝑖)𝑦𝑖
𝑛

𝑖=1

. [1 − 𝜎(𝜃𝑇𝑥𝑖)(1−𝑦𝑖) 

If the logarithm of likelihood 𝐿(𝜃) is taken, the log-likelihood is as follows: 

𝐿𝐿(𝜃) =∑𝑦(𝑖)
𝑛

𝑖=1

𝑙𝑜𝑔𝜎(𝜃𝑇𝑥𝑖) + (1 − 𝑦𝑖)log⁡[1 − 𝜎(𝜃𝑇𝑥𝑖)] 

From the likelihood of the model, the value of 𝜃 is chosen which can 

maximize the log-likelihood. 

 

2.6.2 Prior Distribution 

2.6.2.1 Informative Priors 

With informative priors, the useful domain knowledge about the parameters 

is encoded. The domain knowledge may arise from experience, from prior 

knowledge about the parameter or the previous literature. Informative priors 
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also can be generated from pilot studies as was emphasized by a study by 

Morris (Morris et al., 2013).   

 

2.6.2.2 Non-Informative Priors 

Non-informative priors are used when nothing is known about the value of 

the parameter. These kinds of priors have minimal effect on the posterior 

distributions and provide a greater chance for the data to speak for 

themselves (Chinomona & Mwambi, 2015). Since the prior variance is a 

decreasing function, this means the larger the variance is, the less influential 

the prior is. A large prior variance normally means a relatively weak prior 

distribution (M. Zhu & Lu, 2004). Therefore, non-informative priors are 

characterized with large variance. 

 

2.6.2.3 Conjugate Priors 

Conjugate priors are priors with prior distribution and posterior distribution 

taking the same probability distribution. For instance, if the prior probability 

𝑝(𝜃) is chosen so that the posterior distribution 𝑝(𝜃|𝑦) is of the same 

probability distribution, it is called conjugate priors. Beta distribution is a 

usual conjugate before taking a form Beta (𝛼, 𝛽) and in this case 𝛼 and 𝛽 

are the hyperparameters.  

 

2.7 Choice of priors 

To make correct predictions on unseen data, use of prior distributions on the 

regression parameters which assigns a high probability that most entries will 

have values at or near zero (Madigan, 2005; Souza & Migon, 2004) in 

Gaussian surface is encouraged. Since the outcome variable follows the 

Bernoulli distribution, conjugate priors of the beta distribution are 
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considered to obtain posterior distribution which takes the form of Beta 

(𝛼, 𝛽).  

2.8 Posterior distribution 

From the Bayes formula, the posterior distribution is computed from the 

product of the prior distribution and the likelihood given as: 

 

Posterior= 𝑝(𝑋𝑖|𝑌𝑖)𝑝(𝑋𝑖). 

 

Since the likelihood is already established and if the prior is assumed to be 

beta distribution, then the posterior distribution is obtained by combining 

the full likelihood and the prior distribution which can be derived as 

follows: 

Posterior for Bernoulli-Beta, 

Assuming the posterior of  𝜃|𝑥1:𝑛 

𝑝(𝜃|𝑥1:𝑛) 

∝ 𝑝(|𝑥1:𝑛|𝜃)𝑝(𝜃) 

_𝜃∑𝑥𝑖 (1 − 𝜃)
𝑛−∑𝑥𝑖

1

𝐵(𝑎, 𝑏)
𝜃𝑎−1(1 − 𝜃)𝑏−1(0 < 𝜃 < 

∝ 𝜃𝜀 +∑𝑥𝑖 − 1 (1 − 𝜃)
𝑏+𝑛 −∑𝑥𝑖 − 1/0 < 𝜃 < 1) 

∝ 𝐵𝑒𝑡𝑎(𝜃|𝑎) +∑𝑥𝑖 , 𝑏 + 𝑛 −∑𝑥𝑖 

The posterior distribution above from full likelihood and beta prior 

distribution is not analytically easy to deal with, hence the use of the 

Markov Chain Monte Carlo (MCMC) algorithm to sample from the 

posterior distribution (Chinomona & Mwambi, 2015). Calculation of 

posterior distribution is the main objective of the Bayesian paradigm which 

is then used to make an inference. Since the obtained distribution is 

probabilistic, then the derived distribution is called predictive distribution 

(Gelman et al., 2013).  
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2.9 Parameter Estimation 

Parameter estimation in the Bayesian paradigm involves updating the prior 

beliefs based on the newly introduced evidence. Having prior knowledge 

about perinatal mortality in Tanzania helps to extend knowledge to the 

gathered data to obtain posterior information. One common computation 

method which is used to obtain the posterior distribution is the Markov 

Chain Monte Carlo algorithm. 

2.9.1 Markov Chain Monte Carlo Algorithm  

The Monte Carlo algorithm is simulation-based and uses random numbers 

generated from some probability density function to generate a posterior 

distribution (Chinomona & Mwambi, 2015). The method is used to model 

the probability of different outcomes which cannot be easily predicted due 

to the intervention of random variables         (Gelman et al., 2013; Pateras, K 

& Ntzoufras,I, 2013; Wakefield, 2013). There are two types of Monte Carlo 

methods which are Gibb’s sampling and Metropolis-Hastings         (Pateras, 

K & Ntzoufras,I, 2013). 

2.9.1.1 Gibbs Sampling 

Gibb’s sampling is a very useful simulation method used to sample from 

distributions that are difficult to simulate directly. It is a randomized 

algorithm used to obtain a sequence of observations from a specified 

distribution. It can be illustrated by assuming the sample is simulated from 

the posterior distribution of 𝑝(𝑦|𝑥) where y is a vector of two parameters 𝑦1 

and 𝑦2. To begin the initial values are set for 𝑦  as 𝑦0
1
 and 𝑦0

2
 and 

determine posterior distribution through generating 𝑦1
𝑛 and 𝑦2

𝑛 where 𝑛 =

1,2,3… ..... 

Gibb’s sampling produces a sequence of 𝑦𝑛 = (𝑦1
𝑛, 𝑦2

𝑛) = (𝑦1
𝑛, 𝑦2

𝑛)𝑇, 

𝑛 = 1,2… in which each pair is independent of each other and create a 

chain. The chain of a sequence of independent posterior distribution from 
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the given number of iterations can produce a summary measure such as the 

mode, mean and median.  

2.9.1.2 Metropolis-Hastings 

Metropolis-Hastings is a Markov chain Monte Carlo method for obtaining a 

sequence of random samples from a probability distribution. The method 

was introduced by Nicolas Metropolis in 1953 (Chinomona & Mwambi, 

2015) and modified further by Hastings in 1970     (Pateras, K & 

Ntzoufras,I, 2013). The Metropolis-Hastings algorithm begins with an 

arbitrary choice of initial values of model parameter 𝜃0 = (𝜃1
0, … . 𝜃𝑚

0) and 

this initial value is automatically accepted in the model (Bonamente, 2017). 

It takes some time and several iterations for the chain to forget its initial 

position and start sampling posterior distribution. 

If we want to determine posterior distribution 𝑝(𝑦|𝑥) and that Markov chain 

is at 𝑦𝑡ℎ iteration and the next position denoted as 𝑦̇ will be accepted if it is 

in the region of high posterior mass or else it is accepted with certain 

probability (Chinomona & Mwambi, 2015). The density for 𝑦̇ at 𝑛 iteration 

is denoted as 𝑝(𝑦̇|𝑦𝑛). If 𝑦̇ is accepted, meaning 𝑦̇ = 𝑦𝑛+1 then the next 

move is executed and if rejected the process stops at 𝑦𝑛. The requirement 

for the move to occur requires that the probability 𝑟 =
𝑝(𝑦̇|𝑥)
𝑝(𝑦𝑛|𝑥)

> 1 and if 

r<1 the move stays at 𝑦𝑛. The move continues until convergence is reached. 

2.9.2 Convergence test 

The convergence test and stopping time of the chain are critical issues for 

Monte Carlo Markov Chain. The most common convergence tests which 

can be used with relative ease are the Geweke z-score test, Gelman-Rubin 

test and The Raftery-Lewis test (Bonamente, 2017). Others include the 

trace-plots test and Heidelberg-Welch test (Chinomona & Mwambi, 2015).  
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Before inference is made to the posterior distribution, one must test if 

convergence for stationary distribution for MCMC has been reached. 

Convergence indicates that the chain has started to sample posterior 

distribution and that the MCMC samples are now representative of the 

distribution of interest. In addition, convergence justifies that the MCMC 

samples are not biased by the choice of the initial point of the chain 

(Bonamente, 2017). 

In the interest of this research, the convergence test for MCMC will employ 

Geweke z-score test. In Geweke z-score test, convergence is determined by 

the difference of two means of the segments of the chain. Considering a 

chain having two segments, the initial segment A and segment B at the end 

of the chain. Taking chain A to be of  length  𝑁𝐴 and B has length 𝑁𝐵, then 

the two means are calculated as follows 

:{
𝜓̅𝐴 =⁡⁡⁡

1

𝑁𝐴
∑ 𝜓𝑗
𝑁𝐴
𝑗=1

𝜓̅𝐵 =
1

𝑁𝐵
∑ 𝜓𝑗
𝑁
𝑗=𝑁−𝑁𝐵+1

 

 

Comparing the two means needs  also an estimate of the sample variances 

𝜎𝐴
2 and 𝜎𝐵

2. This task is complicated since the elements of the Markov 

chain are dependent. Therefore another estimator of variances is required. 

To ensure that 𝜓̅𝐴 and 𝜓̅𝐵⁡are independent, a 10% of iteration for the initial 

chain A (𝑁𝐴 =
𝑁
10⁄ ) and 50% of iteration for last chain B (𝑁𝐵 =

𝑁
2⁄ ) is 

taken. This is referred to as thinning of the chain and by doing this a 

distance between the two parts is created. If the ratios 
𝑁𝐴

𝑁
 and is assumed to 

be fixed, then the two means are assumed to follow the same distribution 

and uncorrelated and Z-score follow Gaussian normal distribution, 

𝑍𝐺~𝑁(0,1). 
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Therefore: 

𝑍𝐺 =
𝜓̅𝐵 − 𝜓̅𝐴

√𝜎𝐴2 + √𝜎𝐵2

𝑑
→ (0,1) 

This result is used to test the null hypothesis of equal location and is 

rejected if |𝑍𝐺| is large indicating the chains have not converged.  

2.10 Hierarchical Bayesian model 

2.10.1 Introduction 

In ordinary Bayesian regression, the hierarchical nature of the dataset and 

the source of random effect has not been considered. Assuming that TDHS 

2015-16 dataset is a multi-layered dataset collected from complex sampling 

methods such as cluster sampling, this requires a model that takes into 

account these properties (Kamata, 2001; McCullagh & Nelder, 1989). 

Previously, data was assumed to be aggregated and the multi-layered nature 

was disregarded. 

One important feature when units are drawn from clusters such as 

community, schools or households, is that it can no longer assume they are 

independent. It is becoming increasingly difficult to ignore the fact that 

units drawn from the same cluster are more similar to each other than they 

are units from the different cluster and the same applies to units from the 

same household(McCullagh & Nelder, 1989). Thus, the unobserved 

variables will induce correlation between units within the cluster which 

cannot be explained by the covariates within the model(Ng et al., 2006).  

In recent years, researchers have shown Hierarchical Bayesian models to be 

a rigorous way to make scientific inferences about the population 

(Goldstein, 2010). In contrast to normal Bayesian regression where the data 

are assumed independent, however, in Hierarchical Bayesian models, data 

are not independent and therefore the need to compensate for the biases-
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largely in standard errors which may arise when independence assumption 

is violated(Goldstein, 2010; Ng et al., 2006).  

On the other hand, there is a difference in how the predictors affect the 

outcome of interest across the clusters and this is the main interest in 

employing the Hierarchical Bayesian model. This calls for a stepwise 

modelling approach for each parameter.  

The multi-level nature of the dataset largely occurs when complex methods 

of data collection are used such as multistage cluster sampling results into 

multiple sources of variation. The practical instances in which one can 

encounter hierarchical data in the case of Tanzania may include an 

individual who is nested in a household, which is nested in a village, which 

is also nested in a ward and the ward nested in a district. The same practical 

implication is observed in the TDHS dataset whereby enumerated 

individuals are nested in households that are also nested in clusters. Taking 

into account the multi-layered nature of our dataset, it would be interesting 

to use the appropriate methods which take into account intra-class 

correlation (ICC). One needs to apply a model which introduces a random 

component that accounts for correlation among groups. A much more 

classical approach is Hierarchical logistic regression embedded in the 

Generalized Linear Mixed Model (GLMM) to capture multiple sources of 

variability (Kamata, 2001). 

In this study, perinatal mortality exhibits variability within regions and areas 

of residences (McCulloch & Neuhaus, 2005). Tanzania is a large country 

with many administrative regions that exhibit a high degree of variability in 

terms of social-economic wealth index, maternal education and age at birth 

which may also impact variability in perinatal mortality. With all these 

differences, indeed the Generalized Linear mixed Model becomes 

instrumental for carrying out regional segmentation of the perinatal 

mortality (ECMS, 2016). 
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In Hierarchical models, there is a high probability of correlation of variance 

of residual errors between individual observations which are due to the 

nested nature of the data. The high correlation or dependence between 

observations makes traditional logistic regression inappropriate. The 

correlation or dependency in multi-stage cluster sampling occurs at several 

levels of the hierarchy (McCulloch & Neuhaus, 2005). For us to draw 

appropriate inferences, we require complex and tricky modelling techniques 

like Hierarchical modelling (Khan & Shaw, 2011; McCulloch & Neuhaus, 

2005). 

Hierarchical Bayesian modelling has gained a wide application currently 

due to its versatility in dealing with correlation among groups in the 

hierarchical data (Teacy et al., 2012). There is no number of studies that 

have used Hierarchical Bayesian modelling to solve different problems. 

Hierarchical Bayesian modelling was used by Teacy (Teacy et al., 2012) to 

study efficient and versatile approaches to trust and reputation and Andrade 

& Teixeira, 2015  to study the Railway track Geometry degradation which 

was very useful information for railway maintenance planners. It was also 

used to study geographic variability in age-dependent death rates(Arató et 

al., 2006). In a similar context, Zhu et al., 2006 applied Hierarchical 

Bayesian Spatial modelling to determine the availability of alcohol, drug hot 

spot and violent crime in Houston, Texas. The outcome suggested that 

activities around illicit drug outlets were more strongly associated with 

violent crime than alcohol outlets. The same approach was used to estimate 

the prevalence of HIV in Zimbabwe(Chinomona & Mwambi, 2015). 

From the studies referred here, all have employed the Markov chain Monte 

Carlo algorithm for sampling from the posterior distribution. This has been 

done despite the complex nature of the datasets used(Andrade & Teixeira, 

2015; Miklós Arató et al., 2006; Teacy et al., 2012; Zhu et al., 2006). 

Although extensive research has been carried out on Hierarchical Bayesian 



 24 

modelling, very few studies have commercialized on Integrated Nested 

Laplace Approximation (INLA) due to its advantages over the MCMC. 

Therefore, this study is seeking to use the INLA method of inference to get 

the marginal posterior distribution as opposed to the MCMC approach. 

2.10.2 Model Description 

In this research, the aim is to estimate perinatal mortality from individuals 

who are also nested in households that are finally nested in clusters. This 

means perinatal mortality is likely to differ from different households and 

among clusters. On the other hand, perinatal mortality pattern is more likely 

to be correlated between members of the same household as well as for 

households within the same cluster. By aggregating and fitting a single 

linear model, assumes that deaths occurring in the various categories are 

independent. However, this is not the case since individuals in the same 

household are likely to have the same experience of perinatal mortality. 

Similarly, individuals from the same cluster are more likely to have the 

same experience on perinatal mortality than individuals from another 

cluster. 

We may decide to model each household or cluster as a single model to 

satisfy the condition of the independent model. However, by so doing we 

will be throwing useful information by separating each model from each 

other. A better way to get rid of all these inconveniences is to employ a 

Hierarchical model structure to hierarchical data. The complexity which will 

be brought by this will create greater statistical power than isolated models. 

2.10.3 Hierarchical Model for Binary Response Variable 

If we consider our outcome of interest, perinatal mortality Xijk to be binary 

response which takes values 1 if death occurs and 0 if no death, the choice 

of the model will be logistic regression as explained by McCullagh& 

Nelder(McCullagh & Nelder, 1989) and Kamata (Kamata, 2001). In 
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Generalized Linear Model (GLM) we can utilize one of several link 

functions including logit, probit and complementary log-log.  

 

2.10.4 Generalized Linear Mixed Effects Model 

Generalized Linear Mixed Effects Model (GLMM) is an extension of a 

class of Generalized Linear Model (GLM) in which random effects are 

added to the linear predictor’s (Kamata, 2001; McCulloch & Neuhaus, 

2005). The model assumes a predictor model with two portions i.e the fixed 

effect portion X′β and the random effect portion Z′υ and it is the assumption 

for random effect model (Z′υ) which induces correlation among 

observations. This is well illustrated by McCulloch(McCulloch & Neuhaus, 

2005) that correlation coefficient  corr(Yijk, Yijk′) depend on random effect. 

In this family of models we synthesize the three common widely models: 

The Generalized linear model (McCullagh & Nelder, 1989), mixed linear 

models having both fixed effect and random as well as models with 

structured dispersions. These types of models have the fixed effect and a 

random effect part to account for correlation between groups. For a multi-

layered dataset as in our case, the random effect accounts for correlation in 

households and clusters.  

In Bayesian parameter estimation, the non-informative priors and beta 

conjugate priors will be used. Since the outcome variable is Bernoulli, the 

beta conjugate prior is the prior of choice. 

2.11 Prior Distribution 

2.11.1 Informative Priors 

Informative priors are the one that encodes useful domain knowledge about 

the parameters. The prior knowledge we intend to apply in this study is that 

perinatal mortality is 41.6 deaths per 1000 live births from the study by 

Mboya (Mboya et al., 2020). 
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2.11.2 Non-Informative Priors 

Non-informative priors are used when nothing is known about the value of 

the parameter. These kinds of priors have minimal effect on the posterior 

distributions. 

2.11.3 Conjugate Priors 

Conjugate priors are priors with prior distribution and posterior distribution 

taking the same probability distribution. 

2.12 Choice of Priors 

In this study, we intend to use non-informative and beta conjugate priors to 

produce the marginal posterior distribution.  

 

2.12 posterior distribution 

In Bayesian analysis, posterior distribution about parameter 𝜃 represents the 

knowledge about parameter 𝜃⁡after having observed data 𝑥. This is often 

summarized as: 

𝑓(𝜃|𝑥) = 𝑓(𝑥|𝜃)(𝑓(𝜃).  

From the posterior distribution, we can estimate point location and credible 

regions. Point locations implicitly mean that a point statistic is used to 

summarize the posterior distribution            (Pateras, K & Ntzoufras,I, 

2013). The important point locations are mean, standard deviation, median, 

mode and quantiles(Chinomona & Mwambi, 2015). We can also estimate 

the quantiles and credible intervals of parameter and strictly speaking, the 

100(1-q) credible interval is equivalent to 100(1-q) confidence interval for 

frequentist approach and they only differ in their interpretation (Wakefield, 

2013). While confidence intervals are the measure of uncertainty around the 

effect estimate and they are based on sampling distributions, credible 

intervals can be interpreted as a 100(1-q) probability that the true 
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unobserved value would lie within the interval, given the evidence provided 

by the observed data (Hespanhol et al., 2019). 

 

2.13 parameter estimation 

The most common method for parameter estimation from the joint posterior 

distribution is the Markov chain Monte Carlo method (MCMC). However, 

this method is computationally very expensive and takes time in the 

computation process (Gómez-Rubio, 2020).  

Despite the enormous impact of MCMC on statistical inference, they can be 

computationally burdensome, especially for complex models such as 

hierarchical model (Taylor & Diggle, 2014). On top of this, the inferential 

validity rests on the convergence of the Markov chain distribution which 

becomes difficult to verify empirically and takes more time for hierarchical 

datasets with random effects (De Smedt et al., 2015; Taylor & Diggle, 

2014). A novel method for inference known as Integrated Nested Laplace 

Approximation (INLA) will be used for the computation of the individual 

posterior marginals. This is because this method allows fast and accurate 

model fitting. A combination of analytical approximation and numerical 

integration in INLA circumvents the convergence issues hence making the 

process quicker (Taylor & Diggle, 2014). Despite these superiority 

properties, it has some disadvantages that the analytical approximation can 

introduce errors and when the event of interest is rare, it produces worse 

estimates and credible intervals(De Smedt et al., 2015; Taylor & Diggle, 

2014). 

 

2.13.1 Integrated Nested Laplace Approximation 

Integrated Nested Laplace Approximation (INLA) was proposed by Havard 

Rue, Martino and Chopin(Rue et al., 2009). In contrast to the Markov chain 

Monte Carlo method which aims at estimating the joint posterior 
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probability, INLA aims at estimating the individual posterior marginals of 

the model parameter (Gómez-Rubio, 2020). If we consider the computation 

of the posterior mean (𝜃̅) = ∫𝜃𝑖𝑝(𝜃𝑖|𝑦)𝑑𝜃𝑖 and the median 

=∫ 𝜃̅𝑀 𝑝(𝜃𝑖|𝑦)𝑑𝜃𝑖, we see that estimation of the location of posterior 

marginals aims at estimating the integrals that appear in Bayesian inference. 

In the equation for computation of the mean or median above, the term 

𝒑(𝜽𝒊|𝒚) is the marginal posterior distribution of the univariate parameter 𝜽𝒊. 

2.13.2 Model choice and assessment 

Similar to the Markov chain Monte Carlo (MCMC) method, INLA also 

computes several Bayesian criteria for the model assessment (Schrödle et 

al., 2011). The popular Deviance Information Criteria (DIC) was used for 

model choice and assessment.  

The models included the full model with all predictor variables and models 

including subsets of full models. The DIC takes into account the model-fit 

and penalty term which originated from the complexity of the model via the 

estimated number of effective parameters (Gómez-Rubio, 2020; Schrödle et 

al., 2011). It is computed as the sum of the posterior mean of the deviance 

and the number of effective parameters. 

𝐷𝐼𝐶 = 𝐷(𝑥̅, 𝜃̅) + 2𝑝𝐷 

Generally, low mean deviance indicates good model fit while large mean 

deviance indicates poor fit. However additional effective parameters reduce 

the DIC making poor model fit. Therefore, in essence, the addition of 

several effective parameters is to penalize model complexity (Schrödle et 

al., 2011). 
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CHAPTER THREE: METHODOLOGY 

3.1 Research area 

This research was conducted in Tanzania using Tanzania demographic 

Health survey 2015-2016. Tanzania is a country located in East Africa and 

it is bordering Kenya to the North-East, Uganda to the North, the Indian 

Ocean to the East, the Democratic Republic of Congo to the West, Burundi 

and Rwanda to the North-West, Zambia to the South-West and 

Mozambique to the South. The country is located within Latitude: -6° 22' 

22.17" S and Longitude 34° 53' 32.94" E. It is estimated to have a 

population of about 57.3 million according to the National Bureau of 

Statistics (2017). 

The National Bureau of Statistics in collaboration with the Ministry of 

Health, Gender, Community Development, Elderly and Children jointly 

conducted TDHS 2015-2016 with significant technical and logistic 

assistance from the Ministry. The international stakeholders such as 

Demographic Health Program from the USA provided technical assistance 

throughout the project. The survey was a nationally representative sample 

with a probability sample of 13,376 households. 

 

3.2 Research design 

This is a retrospective study that was conducted in 2015-16 collecting data 

for five years back to 2010.  

3.3 Study population 

This is secondary data targeting the women population of age between 15-

49 years from sampled households. The sample was subdivided into 59 

strata and 608 clusters. Among 13,376 households, 12,563 households were 

successfully interviewed yielding a response rate of 98%. Of the clusters 

surveyed, 180 (29.6%) were from urban and 428 (70.4%) were from rural. 
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With an average of 22 households per cluster, 13,376 households were 

involved in the survey whereby 3,960 were from urban areas and 9,416 

households were from rural areas.  

3.4 Data Structure 

The Tanzania Demographic Health Survey (TDHS) data is divided into 59 

strata, 608 clusters which were regarded as enumeration areas (EAs) which 

in turn provided 22 households each. The country was divided into 9 

regions for ease of operation namely: Western Zone, Northern Zone, Central 

Zone, Southern Highlands Zone, Southern Zone, Lake zone, South West 

Highlands Zone, Eastern zone and Zanzibar. 

Western zone 41 902 units

Zones Level3(clusters) Level2(Household) Level 1

Central zone 61 1,342 units

S. Highlands Zone 61 1,342 units

Northern zone 61 1,342 units

S.W.Highlands zone 62 1,364 units

Lake zone 123 2,706 units

Eastern zone 77 1,694 units

Zanzibar 81 1,782 units

Total: 9zones 608 clusters. 13,376 units

Respondents

Respondents

Respondents

Respondents

Respondents

Respondents

Respondents

Respondents

Southern zone 41 902 units Respondents

 

Figure 2: Hierarchical structure for 2015-16 TDHS dataset. 
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3.5 Study variables and their method of measurement 

This study is aiming at finding a statistical association between perinatal 

mortality and a set of independent variables.  

 

3.5.1 Dependent variable 

Perinatal mortality includes stillbirth and neonatal deaths during the first 

week of life. In this study the dependent variable is a binary outcome 

(perinatal mortality) which can take two forms i.e., death occurring or not. 

Therefore:𝑃𝑒𝑟𝑖𝑛𝑎𝑡𝑎𝑙⁡𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 = {
1⁡𝑖𝑓⁡𝑑𝑒𝑎𝑡ℎ⁡𝑜𝑐𝑐𝑢𝑟
0⁡𝑖𝑓⁡𝑛𝑜⁡𝑑𝑒𝑎𝑡ℎ⁡⁡⁡⁡⁡

 

 

3.5.2 Independent variables 

The factors we want to model for perinatal mortality in Tanzania are 

maternal demographic characteristics such as mother’s age at first birth, 

marital status, maternal weight, maternal BMI, and pregnancy interval. 

Other variables are social-economic characteristics such as place of 

residence, region of residence, maternal education and social-economic 

wealth index. Others include birth order, child’s sex, marital status and 

region of residence. The dummy variables for each independent variable 

were created.  

3.6 Data management 

Data was requested from the Demographic Health survey DHS program 530 

Gaither Road, Suite 500, Rockville, MD20850 USA. Data files in Stata 

format were kept in a secure file on a personal computer (Macbook air®). 

The variables were selected mainly from the literature background. The 

selected variables were categorized based on the criteria obtained from the 

DHS report. The independent variables were coded with numbers and 

dummy variables created for each variable say for example for maternal 
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age: 1 representing <20 years, 2 representing age 20-29 years, 3 

representing 30-39 years and 4 representing 40-49 years 

3.7 Conceptual framework 

Generally, there are multidimensional interactions of community factors, 

socio-economic factors and proximate factors which can influence perinatal 

mortality in the community (Biracyaza E* and Habimana S, 2019). In 

conceptualization, this study will use the framework developed by Mosley 

and Chen(Mosley & Chen, 2003)  that presents events in life that can result 

in perinatal mortality. However, the framework is modified to include other 

determinants which cause perinatal mortality during pregnancy.  

The framework incorporates both social and biological determinants of 

perinatal mortality and also integrates research methods employed by social 

and medical scientists (Mosley & Chen, 2003). The interaction between 

different factors for perinatal mortality is depicted in figure 3. 
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Figure 3: Model interaction for the community, social-economic and 

proximate Factors 

 

3.8 Ethical considerations 

Ethical approval was obtained from Institutional Review Board, Kenyatta  

Community factors 

Residence   Neonatal care 

Antenatal care visits  Ecological region 

Development of the region Ethnicity 

Delivery trained health workers 

 

Social-economic factors 

Maternal education   Woman’s occupation 

Religious belief   Partenal education 

 

Proximate determinants 

 

 
Maternal factors 

Maternal age at 

birth 

Antenatal care 

Maternal age at 

marriage 

Maternal BMI 

 

Delivery factors 

Place of delivery 

Delivery 

assistance 

Mode of delivery 

 

Neonatal factors 

Breastfeeding 

Neonatal care 

Birth interval 

Birth size 

 

Perinatal mortality 
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The hospital and the permission to access data was given by the DHS 

program. 

 

 

3.9 Statistical Analysis 

3.9.1 Descriptive statistics 

We computed the distribution of perinatal mortality rates among the 

selected explanatory variables. Perinatal mortality was design-based and 

computed based on the number of live births per respective level or class. 

The weighted number of stillbirths and neonatal deaths were computed in 

each variable category as well as the prevalence in percentages. The sum of 

stillbirths and neonatal deaths is divided by the number of live births 

provided perinatal mortality.  

3.9.2. Bivariate chi-square test 

The statistical association between individual variables and perinatal 

mortality as an outcome variable was checked using a bivariate chi-square 

test. 

 

3.9.3 Multicollinearity test 

Multicollinearity is a phenomenon whereby one or two predictor variables 

are correlated. In regression analysis, we seek to find the correlation 

between the outcome variable and a set of predictor variables. In some 

cases, there may be a correlation among predictors of something 

undesirable. If this happens, the standard error of the coefficients will 

increase making some variables statistically insignificant while they are 

significant hence affecting the reliability of the regression model. When 

collinearity exists, the standard error of the predictor’s coefficients will 

increase and ultimately the variance of predictor’s coefficients will be 

inflated. One of the tools to test this is the variance inflation factor (VIF). 
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The interpretation is based on the following criteria: VIF=1 no correlation, 

1<VIF<5 moderately correlated, VIF>5 highly correlated. 

 

3.9.4 Variable selection 

The stepAIC function in package MASS(Venables & Ripley., 2002) was 

used for both backward and forward stepwise variable selection. All twelve 

variables were fitted in the model. This is because in combination with other 

variables they can explain the dependent variable rather than when they are 

alone. The bivariate test outcome was also considered for the variables to be 

included in the model. 

 

3.9.5 Bayesian Analysis 

Statistical analysis was performed using R version 4.0.3(R Core Team 

(2014), n.d.). For ordinary Bayesian analysis, the data was aggregated and 

assumed independent and Bayesian logistic regression was used. The 

credible interval chosen for this study was 95%. The DIC was used for 

model choice and assessment. The choice of the best fit was done using the 

package BayesFactor (Morey & Rouder, 2018) using function regressionBF. 

 

In the case of women who had a stillbirth and those who had their neonates 

dying within the first 7 days of life, for woman number I pos[i] is the binary 

indicator that a woman had perinatal death or not (coded 1 if a woman had 

perinatal death and 0 if not). Therefore, the data were analyzed using the 

Bayesian logistic regression model: 

topYi~Bernouli(qi)⁡and⁡logit⁡(qi) =∑Xijk

p

j=1


j
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Whereby 𝑞𝑖 is the binary outcome (perinatal mortality), Xijk is a vector of 

covariate matrix from the ith woman from jth household and 𝑘𝑡ℎ⁡ cluster and 

𝛽𝑗 a vector of regression coefficients. 

Given our prior distribution we can have our generative model as follows: 

 

𝑙𝑜𝑔𝑖𝑡𝑞𝑖 = 𝛽0𝑗 + 𝛽1 × 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒 + 𝛽2 ×𝑀𝑎𝑡𝑒𝑑𝑢𝑐𝑎𝑡 + 𝛽3 × 𝐵𝑖𝑟𝑡ℎ𝐼𝑛𝑡 +

𝛽4 ×𝑀𝑎𝑡𝑒𝑎𝑔𝑒 + 𝛽5 × 𝑆𝐸𝑊𝐼………..𝛽𝑛𝑋𝑛 

 

Having established the priors, dataset and generative model, the Markov 

Chain Monte Carlo (MCMC) algorithm was used to find the posterior 

distribution of the model parameters.  

Bayes factor was used for the selection of the variables or discrimination of 

other competing models. Given two models, M1 and M2, Bayes factor for 

comparing the two models M1 and M2 are numbers 
𝟏,𝟐

 such that: 

p(M1y)

p(M2y)
⁄ = 

1,2

𝑝(𝑀1)
𝑝(𝑀2),⁄  

 

Where 𝒑(𝑴𝟏) and 𝒑(𝑴𝟐) indicate the prior odds for each model (Souza & 

Migon, 2004). The Bayes factor is a multiplier that changes the prior odds 

for the model into the posterior odds. The convergence test was performed 

using Geweke z-score test. 

 

3.9.6 Hierarchical Bayesian Analysis 

Following the fundamental properties of Hierarchical modelling and the 

structure of the dataset, a three-level equation can be generated according to 

the generalized linear model framework as follows: 

𝑔[𝐸(𝑋𝑖𝑗𝑘)] = 𝛼𝑖𝑗𝑘 + 𝛽𝑗𝑘 + 𝛾𝑘 

Where 𝒈(∗) is a link function and 𝛼𝑖𝑗𝑘 + 𝛽𝑗𝑘 + 𝛾𝑘 implies respondent, 

household and cluster respectively. 
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Since we are dealing with a dataset with three levels i.e., cluster, household 

and individual respondent we assume that the measurement on the response 

variable can be denoted as 𝑋𝑖𝑗𝑘 expressing 𝑖𝑡ℎ individual in the 𝑗𝑡ℎ 

household of the 𝑘𝑡ℎ cluster. At 𝑖𝑡ℎ person level, the coefficients 𝛽𝑠 are not 

constant across all persons. Therefore, we can break up the three levels and 

set up a linear model at each level of the hierarchy based on the generalized 

linear model (GLM) framework by introducing a random variable that 

explains the difference among clusters, households and respondents. 

Each generalized linear model of each hierarchy is a mixed effect model. If 

we combine the three linear models for each hierarchy, we can produce a 

full generalized linear model which represents individual respondent, house 

level and cluster level as follows: 

𝑋𝑖𝑗𝑘 = 𝛾0 + 𝛼0 + 𝛽0 +∑𝛾𝑙

𝑞

𝑙=0

𝑤𝑙,𝑘 +∑𝛽𝑙,𝑘

𝑝

𝑙=0

𝑧𝑙,𝑗𝑘 +∑𝛼𝑙,𝑗𝑘

𝑟

𝑙=0

𝑥𝑙,𝑖𝑗𝑘 + 𝜖𝑘

+ 𝜀𝑗𝑘 + 𝜅𝑖𝑗𝑘 

Where 𝜖𝑘 is a random variable with 𝐸(𝜖𝑘) = 0 and var(𝜖𝑘)=𝜎𝜖
2, 𝜀𝑗𝑘 is a 

random variable with E(𝜀𝑗𝑘) = 0⁡and⁡var(𝜀𝑗𝑘) = 𝜎𝜀
2 , 𝜅𝑖𝑗𝑘 is a random 

variable with 𝐸(𝜅𝑖𝑗𝑘) = 0 and var(𝜅𝑖𝑗𝑘)=𝜎
2. Since the individual model for 

each hierarchy is a mixed effect model, the combined full model is also a 

mixed effect model. The above model is a benchmark for hierarchical 

Bayesian analysis. 

 

In Hierarchical Bayesian analysis, data were not aggregated and correlation 

was assumed. Integrated Nested Laplace Approximation (INLA) method 

was used for parameter estimation to determine the association between 

covariates and perinatal mortality. Considering 𝑦𝑖 to be a binary response 

variable in this case perinatal mortality, it takes a value of 1 if death occurs 

and 0 if death does not occur.  

𝑦~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑥𝑖, 𝑝𝑖)  
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Where 𝑥𝑖 = {𝑥1, 𝑥2, … . 𝑥𝑝} is a vector of covariates such as maternal 

education, age at birth etc. and 𝑝𝑖 is a proportional of neonates died. From 

the latent model with structured additive predictors which is defined as:  

𝜼𝒊 = 𝜶 + ∑ 𝜷𝒋
𝒊
𝒋=𝟏 𝒁𝒋𝒊 + ∑ 𝒇𝒌𝒊

𝒌=𝟏 (𝝊𝒌𝒊) + 𝜺𝒊𝒋 whereby: 

𝜶 is the intercept, 𝛽⁡𝑖𝑠 the coefficients of covariates and 𝑓𝑘 is a function 

that describes the random effect on some vectors of covariates and 𝜀𝑗𝑖 is an 

error term.  

Bayesian structured additive logistic regression was preferred in this case 

because of its ease of interpretation. Different models ranging from the full 

model and models containing subsets of the covariates were compared by 

using deviance information criteria (DIC).  

The model fit was assessed using DIC and the model with the lowest DIC 

was considered a good fit. From marginal posterior distribution, we can 

compute the posterior mode denoted as 𝜽̂𝑴  defined as 𝐚𝐫𝐠𝒎𝒂𝒙𝒑 𝒑(𝜽|𝒚) 

which provides the value of 𝜽 when the value of 𝒑(𝜽|𝒚) is maximal while 

posterior mean 𝜽̅ = 𝑬(𝜽𝒊|𝒚) = ∫𝜽𝒊𝒑(𝜽𝒊|𝒚)𝒅𝜽𝒊 and the optimal choice 

leads to minimizing the expected loss. The posterior median 𝜽𝒊(𝟎. 𝟓)⁡ is 

often considered the adequate summary of the location of posterior marginal 

distribution (Wakefield, 2013) and is always the solution to equation 

0.5=∫ 𝜽̅𝑴 𝒑(𝜽𝒊|𝒚)𝒅𝜽𝒊. 

We could also estimate the quantiles and credible intervals of parameter 𝜽𝒊 

as follows: 

The 100*q% quantile, 𝜽𝒊(𝒒) with 0<q<1 is found by solving 

 Q=Pr[𝑞 = Pr⁡(𝜃𝑖 ≤ 𝜃𝑖(𝑞)]=∫ 𝑝(𝜃𝑖
𝜃𝑖(𝑞)

−∞
|𝑦)𝑑𝜃𝑖  

The 𝟏𝟎𝟎(𝟏 − 𝒒) equal-tailed credible interval whereby 𝟎 < 𝒒 < 𝟏 is given 

by: 

[𝜃𝑖(1 − 𝑞)/2, 𝜃𝑖(1 + 𝑞)/2)] 
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If we consider a vector of 𝒏 observations 𝒚 = {𝒚𝟏,𝒚𝟐… . 𝒚𝒏} we can 

establish a convenient generalized linear model with link 𝜼 as follows: 

𝜼𝒊 = 𝜶 + ∑ 𝜷𝒋
𝒊
𝒋=𝟏 𝒁𝒋𝒊 + ∑ 𝒇𝒌𝒊

𝒌=𝟏 (𝝊𝒌𝒊) + 𝜺𝒊𝒋 𝒊 = 𝟏, 𝟐… , 𝒏 whereby 

𝜶 is the intercept, 𝜷⁡𝑖𝑠 the coefficients of covariates such that {𝒛𝒋}
𝒊
𝒋=𝟏

 and 

𝒇𝒌 is a function that describes the random effect on some vectors of 

covariates {𝝊𝒌𝒊}
𝒊

𝒌=𝟏
 and 𝜺𝒋𝒊 is an error term. Since this model can estimate 

parameters such that 𝜽 = {𝜶, 𝜷, 𝒇(. ), } it is called latent model(Musio et al., 

2013; Schrödle et al., 2011). In integrated Nested Laplace Approximation 

(INLA) the vector of latent effect 𝒙⁡is given as  

𝑥 = (𝜂1, … . . 𝜂𝑛, 𝛼, 𝛽1… . ) 

The latent structure is considered as Gaussian Markov Random Field 

(GMRF) since it has Gaussian properties and it is Gaussian random 

variable. Therefore, the latent field can be estimated by a Gaussian Markov 

Random Field as: 

𝜃 = {𝛼, 𝛽, 𝜂, 𝑓(. ), }~𝐺𝑀𝑅𝐹(𝜓)  

were 

𝜃⁡is a set of parameters (latent field) 

𝛼 is the intercept parameter 

𝛽⁡the linear predictor effect parameters (coefficients) 

𝑓𝑘 the set of k functions associated with non-linear covariates 

𝜓 are hyperparameters representing variance-covariance matrix, Σ. 

As it was discussed earlier, the component of random effect is assumed to 

be drawn from a multivariate normal distribution with mean 0 and variance-

covariance matrix, Σ i.e N(0, Σ). For models which assume independence, 

the off-diagonals are assumed zeros 

Σ = (
𝜎2 0 0
0 𝜎2 0
0 0 𝜎2

) 
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However, in many situations, there are correlations or random effect 

dependency where the off-diagonals are not all zeros and instead, there is a 

high degree of dependency among observations. The variance-covariance 

matrix is given as: 

Σ = (

𝜎2 𝜌 𝜌3

𝜌 𝜎2 𝜌2

𝜌3 𝜌2 𝜎2
) 

 

It should be noted that there is an exponential increase in covariance with 

the increase in a number of times (n). Since the calculation of covariances 

involves multiplication of a variance-covariance matrix by the inverse of 

covariance matrix which then involves substantial expansion which rapidly 

bursts and exhaust the memory. To avoid all these, we implement the use of 

the Gaussian Markov Random Field (GMRF) 

The essence of combining all the parameters into 𝜃 is to avoid computing 

each parameter individually. Given the structure of GMRF, the precision of 

𝜃 will be very sparse and INLA takes advantage of this sparse structure and 

conditional independence of GMRF to speed the computation (Gómez-

Rubio, 2020). Now if we consider a vector of latent effect, 𝑥 and vector of 

latent field 𝜃 we can have the following equation: 

𝜋(𝜃, 𝑥|𝑦) =
𝜋(𝑦|𝜃, 𝑥)𝜋(𝜃, 𝑥)

𝜋(𝑦)
∝ 𝜋(𝑦|𝜃, 𝑥)𝜋(𝜃, 𝑥) 

In this equation 𝜋(𝑦) is the marginal likelihood or normalizing constant 

which is difficult to compute and most of the time it is ignored from the 

equation. Also 𝜋(𝑦|𝜃, 𝑥) is the likelihood.  

From the latent effect 𝑥 and 𝜃 we can compute the likelihood as follows: 

(𝑦|𝜃, 𝑥) =∏𝜋(𝑦|𝑥𝑖 , 𝜃)

𝑖∈𝐼
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We know that the intention of INLA is not to compute the posterior 

distribution but to compute marginal posterior distribution for the latent 

effect 𝑥 and hyperparameters 𝜃. For hyperparameters 𝑥𝑙 we can compute  

𝜋(𝑥𝑙|𝑦) = ∫𝜋(𝑥𝑙, 𝜃|𝑦)⏟      
𝑝𝑎𝑟𝑡⁡2

𝜋(𝜃|𝑦)⏟    
𝑝𝑎𝑟𝑡⁡1

𝑑𝜃 

Part 1 and 2 in the above equation can be processed to give a very useful 

meaning such that 𝜋(𝑥, 𝜃, 𝑦) = 𝜋(𝑥|𝜃, 𝑦)𝜋(𝜃|𝑦)𝜋(𝑦). 

Part 1 of the integral can be estimated by: 

𝜋̃(𝜃|𝑦) =
𝜋(𝑥,𝜃,𝑦)

𝜋̃𝐺(𝑥|𝜃,𝑦)
| 𝑥 = 𝑥∗(0) which is the Laplace approximation of 

marginal posterior distribution and the factor 𝜋̃𝐺(𝑥|𝜃, 𝑦) represent the 

Gaussian distribution to 𝜋(𝑥|𝜃, 𝑦) and 𝑥∗(0) is the mode of the full 

conditional of 𝑥 for a given 𝜃 

We can also compute marginal posterior for 𝜃 in a similar way: 

𝜋(𝜃|𝑦) = ∫𝜋(𝜃|𝑦)𝑑𝜃−𝑘 where 𝜃−𝑘 is a vector of hyperparameters 𝜃 

without 𝜃𝑘. 

From the previous knowledge that perinatal mortality is 41.6 deaths per 

1000 live births, it can be established from (𝑥 + 1, 𝑛 − 𝑥 + 1) the 

hyperpriors will be 𝐵𝑒𝑡𝑎(𝛼 = 42.6, 𝛽 = 959.4) assuming perinatal 

mortality in Tanzania is 41.6(Mboya et al., 2020) 

3.9.7 Likelihood of The Model  

From the knowledge that GLMM incorporates both fixed and random 

effects, then a model with an n-dimensional vector with linear predictors 

can be expressed as follows: 

 

𝐸[𝑋𝑖𝑗𝑘|X
′, υ] = 𝑔−(𝑋′𝛽 + 𝑍′𝜐)      

Where 𝒁′ is an nxq⁡model matrix of covariates with random effects and 𝒈⁡is 

a link function (e.g., logit, probit, log). The term 𝑿′𝜷 is a fixed effect term. 

In the Bayesian world, all the parameters are assumed to be random 

variables and there is no need to partition the equation into two. In this 
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expression, 𝝊 is a component of random effect which is associated with the 

level of grouping and is generally assumed to follow normal multivariate 

distribution 𝑵(𝟎, 𝚺) with density function 𝒇(𝝊, 𝚺)⁡⁡(Chinomona & Mwambi, 

2015; Ng et al., 2006).  

This means: 

 𝒗~𝑵(𝟎, 𝚺) 

Now, we can maximize the marginal likelihood of the observed data using 

the estimates 𝛽⁡ and Σ to get the marginal density of 𝑌𝑖𝑗𝑘 given 𝛽 and Σ. The 

likelihood for k observations is given by: 

𝐿(𝑋𝑖𝑗𝑘|𝛽, Σ) = ∫∏ {𝑝(𝑋𝑖𝑗𝑘
𝑘
𝑖=1 |𝜐, 𝛽, 𝑋′, 𝑍′)}⁡𝑓(𝜐|Σ)𝑑𝑢  

Whereas 𝑝(𝑋𝑖𝑗𝑘|υ, β) is the probability density function of 𝑋𝑖𝑗𝑘 given 𝜐 and 

𝛽 and 𝑓(𝜐|Σ) is the probability density function of 𝜐 given Σ. 

As it was discussed by Edmond SW Ng (Ng et al., 2006), the likelihood 

could be easily tractable if the response model was normal and the link 𝒈 

identity. Therefore, since the model response is non-normal, the maximum 

likelihood estimates are intractable and can be found through computing 

methods such as Monte Carlo integration or Integrated Nested Laplace 

Approximation (INLA) 

 

3.9.8 Study Dissemination Plan 

The study results will be disseminated using publication to a reputable 

journal. Also, the study results will be shared with Demographic Health 

Survey (DHS) program. 

 

3.9.9 Study Limitations 

There is a relatively large number of stillbirth and neonatal deaths that goes 

unreported. This is attributed to many factors such as recall bias, 

communication barriers, delivery at homes etc. In this study, this is dealt 
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with by applying the Bayesian approach which can enable us to apply prior 

beliefs on regression coefficients for each covariate.  
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CHAPTER FOUR: RESULTS 

4.1 Descriptive Results 

This study involved a total of 13,266 women aged between 15-49 years and 

10,052 children born in the previous 5 years period. The weighted and 

unweighted number of stillbirths were calculated from children files while 

weighted and unweighted numbers of neonatal deaths were computed from 

women files. From the two files, the number of stillbirths was 187 while 

neonatal deaths were 215. This depicted perinatal mortality of 402 

equivalent to the one reported in the TDHS 2015-16 report (Ministry of 

Health, Community Development, Gender, Elderly and Children 

(MoHCDGEC) [Tanzania Mainland], Ministry of Health (MoH) [Zanzibar], 

National Bureau of Statistics (NBS), Office of the Chief Government 

Statistician (OCGS) & ICF, 2016).  

Table 2 presents the results of the computed perinatal mortality per 1000 

live births and bivariate statistical association using the chi-square test. It 

was noted that perinatal mortality was higher in women aged <20 years and 

older women aged between 40-49 years compared to the mid-ages such as 

20-29 and 30-39 and the difference was statistically significant(p<0.0001). 

There were rural-urban differences where mortality was higher in urban 

residence (48 deaths per 1000 live births) and 37 deaths per 1000 live births 

in rural residences. However, the difference was not significant (p<0.2846). 

Also, of interest, perinatal mortality was higher in the first pregnancy and 

decreased with proceeding birth orders (p<0.0001) while it was also higher 

in <15 months birth interval, decreasing progressively with the increase of 

birth interval (p<0.0001). Perinatal mortality was relatively low in women 

with higher education and relatively higher in women with lower education 

i.e., women with no education, incomplete primary education and complete 

primary education (p<0.0001). Perinatal mortality in women who never 
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married was relatively higher compared to other marital statuses of women 

but the difference was not significant (p=0.4146). It was also observed that 

perinatal mortality was relatively higher in women with <20 years (59.6 per 

1000) and decreased with an increase in age. However, there was a slight 

increase in mortality in higher ages i.e., 41.3 per 1000 in age 40-49. Again, 

those women who got their first babies aged 30-39 years experienced higher 

perinatal mortality rates than other women. Both maternal ages and 

maternal age at first birth were statistically significant (p<0.0001). 

Table 1: Maternal and child variable distribution and bivariate association.  

Variables Weighted  

(n%) 

Stillbirth 

(n%) 

Neonatal 

Deaths  

(n%) 

Perinatal 

Deaths 

(/1000) 

p-value 

Residence 

       Rural 

       Urban 

 

9121 (68.8) 

4145 (31.2) 

 

44(23.5) 

143(76.5) 

 

87 (40.5) 

128.(59.5) 

 

48 

37 

 

0.28 

 

Wealth Index  

      poorest 

      poorer 

      middle 

      rich 

      richest 

 

2144 (16.2) 

2166 (16.3) 

2438 (18.4) 

3108 (23.4) 

3410 (25.7) 

 

38 (20.3) 

40 (21.4) 

52 (27.8) 

33 (17.6) 

25 (13.4) 

 

37 (17.2) 

47 (21.9) 

32 (14.9) 

52 (24.2) 

48 (22.3) 

 

31 

41 

43 

45 

44 

 

 

 

0.03 

 

Education 

 No education 

 Incomplete Primary 

 Complete Primary 

Secondaryor Higher 

 
1998 (15.1) 

7640 (57.6) 

3487 (26.3) 

141 (1.1) 

 

42 (22.5) 

125(66.8) 

19 (10.2) 

1 (0.5) 

 

21 (9.8) 

161(74.9) 

32 (14.9) 

1 (0.5) 

 

30 

44 

38 

23 

 

<0.0001 

 

Occupation 

Not working 

Working 

 Missing 

 
3773 (28.4) 

9489 (71.5) 

4 (0.03) 

 

29 (15.5) 

158(84.5) 

 

50 (23.3) 

165 (76.7) 

 

36.7 

40.8 

 

<0.0001 

 

Marital status 

Never married 

Married 

Living together 

Divorced 

Widowed 

 

3478 (26.2) 

6137 (46.3) 

2052 (15.5) 

1254 (9.5) 

345 (2.6) 

 

38 (20.3) 

40 (21.4) 

52 (27.8) 

33 (17.6) 

25 (13.4) 

 

37 (17.2) 

47 (21.9) 

32 (14.9) 

52 (24.2) 

48 (22.3) 

 

31 

41 

43 

45 

44 

 

 

0.41 

 

Weight(kg) 

   <50 

   50-70 

   70-90 

   90-110 

   >110 

 

3,799(28.6) 

7,475(56.3) 

1,584(11.9) 

287 (2.2) 

121 (0.9) 

 

53(28.3) 

105(56.1) 

23(12.3) 

3(1.6) 

3(1.6) 

   

38(17.7) 

 126(58.6) 

  47(21.9) 

  3(1.4) 

 2(0.9) 

 

34.5 

38 

63.6 

40 

61 

 

0.28 

 

Body Mass Index  

   <18.5 

   18.5-24.9 

 

3,799(28.6) 

7,475(56.3) 

  

7 (3.7) 

123(65.8) 

   

5 (2.3) 

131 (60.9) 

 

18 

37.6 

 

 

0.20 
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   25-29.9 

   >30 

   Missing 

1,584(11.9) 

287 (2.2) 

129 (1) 

  44(23.5) 

13 (7.0) 

       

 44 (20.5) 

 35 (16.3) 

50.5 

61 

 

Age at first birth  

   <20 

   20-29 

   30-39 

   40-49 

   Missing 

 

6973(52.6) 

2,603(19.6) 

144 (1.1) 

1 (0.0) 

3,545(26.7) 

 

9(48.7) 

67 (35.8) 

 3 (1.6)  

 0 (0.0) 

26(13.9) 

 

136 (63.3) 

75 (34.9) 

   4 (1.9) 

    0 (0.0) 

    0 (0.0) 

 

36.2 

38.8 

56 

0 

    

 

 

 

<0.0001 

 

Age (years) 

   <20 

   20-29 

   30-39 

   40-49 

 

2,932(22.1) 

4,577(34.5) 

3,375(25.4) 

2,382(18.0) 

  

15(8.0) 

 96(51.3) 

 55(29.4) 

 21(11.2) 

 

26 (12.1) 

97 (45.1) 

70 (32.6) 

21 (9.8) 

 

59.6 

38.8 

37 

41.3 

 

 

<0.0001 

 

Total 13,266     

Previous birth interval 

<15 

15-26 

26-38 

39+ 

Missing 

 

 285(2.8) 

 2063(20.2) 

 2476(24.2) 

 2988(29.2) 

2,421(23.7) 

 

13 (7.0) 

33(17.6) 

23(12.3) 

43(23.0) 

 

34 (15.8) 

32 (14.9) 

27 (12.6) 

43 (20.0) 

 

33 

25.6 

34 

40 

 

 

 

<0.0001 

 

Birth order 

1 

2-3 

4-5 

6+ 

Missing 

 

2,399(23.4) 

3,388(33.1) 

2,216(21.7) 

2,230(21.8) 

0 (0) 

 

49 (26.2) 

47 (25.1) 

34 (18.2) 

30 (16.0) 

27 (14.4) 

 

79 (36.7) 

56 (26.0) 

35 (16.3) 

45 (20.9) 

 - 

 

51 

30 

32.5 

37 

- 

 

<0.0001 

 

Gender 

Female 

Male 

Missing 

 

5,098(49.8) 

4,954(48.4) 

181 (1.8) 

 

83 (44.4) 

77 (41.2) 

27 (14.4) 

  

132(61.4) 

 83 (38.6) 

     - 

 

42 

32.3 

 

 

0.77 

 

Total 10,233     
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The prevalence of perinatal mortality among the variables greatly varied 

across all the variables. Figure 4 shows the highest mortality occurred in 

obese women as well as heavyweight heavyweight women (>110kgs). 

 

   

   

 
  

   

Figure 4: Prevalence of perinatal mortality among variables 

 

 

4.2 Multicollinearity test 

 

The multicollinearity test indicated a moderate correlation among the 

predictors. This is thought not to seriously affect the standard errors of the 
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predictor’s coefficients. The variance inflation factor (VIF) for the predictor 

variables ranged between 1.15 for gender and 4.63 for variable birth order. 

Since the range was within the limits, then there was no multicollinearity 

among the variables.  

 

4.3 NORMAL BAYESIAN ANALYSIS 

4.3.1 Fitting the best model 

The best model was determined using the Bayes factor and Bayesian 

information criteria (BIC) in which the model with the highest Bayes factor 

was considered the best model. Consequently, the model with the lowest 

BIC was considered the best model. 

From twelve predictor variables, only two variables were statistically 

significant to explain perinatal mortality. The Bayes Factor method 

produced the best model containing birth order and previous birth interval. 

Consequently, the omission of these variables from the model reduced the 

Bayes factor to almost zero showing that the two variables were all 

significant. Secondly, the model with only birth order and previous birth 

interval had the minimum BIC (BIC=-3136.18) while the full model had the 

highest BIC (BIC=-3057.44). Therefore, the best fit for the model 

explaining perinatal mortality included only two variables namely previous 

pregnancy interval and birth order of a child. However, from literature and 

stepAIC function for variable selection other four variables and the 

interaction were included in the model. 

 

4.3.2 Bayesian analysis using non-informative priors 

4.3.2.1 Convergence test and diagnosis 

Bayesian logistic regression analysis was computed using package arm 

(Gelman & Yu-Sung Su, 2020) in R. Convergence of the chains was 
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diagnosed using the Geweke convergence test. Convergence at MCMC 

algorithm was aimed at checking how close the process is to the true 

posterior distribution (Plummer et al., 2005). Also, the convergence 

diagnostic test was to check for stationarity of the process and verification 

of posterior summary measures. The Geweke test examines if the z-score 

falls within two standard deviation bands for the tested parameters (Gelman 

et al., 2013; Plummer et al., 2005). In this research, the intercept and all six 

variables were within the two-bound standard deviation indicating that 

convergence was attained at 50,000 iterations as is shown in figure 5. 

a) Intercept 

 

b) Birth order 

 

c) Previous birth interval 

 

d) Maternal age 

 

e) Occupation 

 

f) Maternal education 

 
g) Age at first birth 
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Figure 5: Geweke plot for the convergence test. 

 

Table 2 presents the results for Bayesian logistic regression whereby the 

three predictors including birth order, previous birth interval and maternal 

age were statistically significant since the 95% credible intervals for 

adjusted odds ratio (AOR) did not include 1 i.e., AOR=8.9(95% 

CI,5.81,13.74), AOR=7.76(95% CI,4.81,12.43), AOR=9.58(95% 

CI,5.53,16.61) for birth order, AOR=0.24(95% CI,0.17,0.36), 

AOR=0.18(95% CI,0.12,0.27), AOR=0.18(95% CI,0.12,0.20) for previous 

birth interval and AOR=3.42(95% CI,2.10,5.58), AOR=3.11(95% 

CI,1.75,5.47) and AOR=2.17(95% CI,1.16,4.10) for maternal age. The 

results also show that previous birth interval was associated with a lower 

risk of perinatal mortality while birth order and maternal age were 

associated with a high risk of perinatal mortality. Although maternal 

education was not statistically associated with perinatal mortality, it was 

associated with a lower risk of perinatal mortality. 

Considering only the significant variables, the odds of perinatal mortality 

was 8.9 times more likely in 2-3 birth order compared to first birth, 7.76 

times more likely in 4-5 birth order compared to first birth and 9.58 times 

more likely in 6+ birth order compared to first birth. The risk of perinatal 

mortality increased from 2+ birth orders. The odds of perinatal mortality 

were 76% less likely for birth interval 15-26 months compared to <15 

months, 82% less likely for interval 26-38 months compared to <15 months 

and 82% less likely for 39+ months compared to <15 months. The risk of 

perinatal mortality decreased from 15+ months intervals. On the other hand, 

the odds of perinatal mortality were 3.42 times more likely for age 20-29 

years compared to <20 years, 3.11 times more likely for 30-39 years and 

2.17 times more likely for 40-49 years. The trend shows that the risk of 

perinatal mortality decreased from 20+ years of age. The interaction 

between occupation and maternal education was not statistically significant 
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which implies that the association between maternal age, maternal age at 

first birth, occupation, maternal education, birth order and previous 

pregnancy interval with perinatal mortality is not modified with interaction 

(effect modifier). 

 

Table 2: Bayesian logistic regression output for the best fit 

 

Variable           Estimat

e 

Coefficient 

Standard 

error 

AOR AOR (95% 

CI) 

Intercept -4.83 0.36 0.008 (0.00, 0.02) 

Birth order 

        1(Ref) 

2-3 

4-5 

6+ 

 

 

2.19 

2.05 

2.26 

 

 

0.22 

0.24 

0.28 

 

 

8.90 

7.76 

9.58 

 

 

(5.81,13.74) 

(4.81,12.43) 

(5.53,16.61) 
Previous interval 

<15 months (Ref) 

15-26 

26-38 

>38+ 

 

 

-1.44 

-1.73 

-1.71 

 

 

0.22 

0.21 

0.20 

 

 

0.24 

0.18 

0.18 

 

 

(0.17,0.36) 

(0.12,0.27) 

(0.12,0.20) 
Maternal age 

<20 (Ref) 

20-29 

30-39 

40-49 

 

 

1.23 

1.13 

0.78 

 

 

0.25 

0.29 

0.32 

 

 

3.42 

3.11 

2.17 

 

 

(2.10,5.58) 

(1.75,5.47) 

(1.16,4.10) 
Occupation 

Working 

 

0.09 

 

0.31 

 

1.09 

 

(0.59,2.01) 

Education 

 No education (Ref)   

 Incomplete Primary   

 Complete Primary 

 Secondary or Higher 

 

 

-0.03 

-0.52 

-1.19 

 

 

0.32 

0.36 

1.23 

 

 

0.97 

0.59 

0.30 

 

 

(0.52,1.82) 

(0.29,1.21) 

(0.03,3.39) 
Age at first birth 

        <20 (Ref) 

          20-29 

          30-39 

          40-49 

 

 

 0.22 

 0.77 

-0.10 

 

 

0.12 

0.38 

2.39 

 

 

1.25 

2.17 

0.91 

 

 

(0.98,1.58) 

(1.03,4.53) 

(0.008,97.5) 
Working:Primaryincomplete  

Working: Complete primary   

Working:Secondary or Higher   

-0.09 

0.22 

1.11 

0.36 

0.41 

1.28 

0.91 

1.25 

3.04 

(0.45,1.86) 

(0.56,2.77) 

(0.25,37.34) 
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4.4 HIERARCHICAL BAYESIAN ANALYSIS 

Hierarchical Bayesian analysis was sought to consider the hierarchical 

nature of the dataset and the source of random effect due to differences in 

clusters and households. Due to the complexity of the dataset, this would 

take a long time using MCMC (Taylor & Diggle, 2014). To avoid this, 

Integrated Nested Laplace Approximation (INLA)(Rue et al., 2009) method 

was used for hierarchical Bayesian analysis. 

4.4.1 Model selection 

Model selection of the best fit was important to avoid overfitting by 

removing other variables which are irrelevant in explaining the perinatal 

mortality (Rue et al., 2009). The full model with all variables was run one 

without random effects and the other one with random effects. The function 

Efxplot from package ggregplot was used to plot the covariates. Taking into 

account that INLA has no p-values, the significance of the variable is 

considered by examining the overlap of 2.5% and 97.5% posterior estimates 

with zero (Gómez-Rubio, 2020; Schrödle et al., 2011). Figure 6 below 

shows that BMI, previous birth interval and birth order were promising. 

 

 

Figure 6: Significant variables for hierarchical Bayesian analysis 

 

The full model could be reduced by removing the covariates one by one to 

determine the covariates with little impact by observing how each one 
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changes the model fit using the Deviance Information Criteria (DIC) or 

Akaike Information Criteria (AIC). Therefore, taking into consideration the 

hierarchical nature of the dataset and the source of random effect, only BMI 

of a woman, previous birth interval and birth order of a child were 

significantly associated with perinatal mortality. 

 

1.4.2 Hierarchical Bayesian regression analysis 

4.4.2.1 Hierarchical Bayesian analysis using non-informative prior 

Hierarchical Bayesian regression analysis revealed birth order and BMI 

were positively associated with perinatal mortality. The results show a clear 

trend regarding body mass index and birth order favouring perinatal 

mortality. Perinatal mortality is more likely in overweight and obese women 

and the risk also increases in higher (2+) birth orders. The trend also shows 

that the risk of perinatal mortality is very low with previous birth intervals 

and the likelihood is minimal with higher previous birth intervals (+38 

months). Results for hierarchical Bayesian analysis were summarized in 

table 6. 

In this case, body mass index, birth order and previous birth interval were 

independently associated with perinatal mortality since the confidence 

interval (CI) for the adjusted odds ratios (AORs) do not contain 1. Body 

mass index 18.5-24.9 (Adjusted odds ratio (AOR) 2.22 95% CI (2.21-2.23), 

overweight women (BMI=25-29.9) AOR=2.86 95% CI(2.85,2.87), obese 

women AOR=2.86 95% CI(2.85,2.87), birth order 2-3 AOR=5.19 95% 

CI(5.186,5.193), birth order 4-5 AOR=3.39 95% CI(3.386,3.394) and birth 

order 6+ AOR=5.43 95% CI(5.429,5.435) were all associated with perinatal 

mortality. On the other hand, as it was observed in classical logistic 

regression previous birth interval was associated with a lower risk of 

perinatal mortality with AORs 0.34 95% CI(0.337,0.343), 0.34 95% 
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CI(0.337,0.343), 0.10 95% CI(0.08,0.118) for pregnancy intervals 15-26 

months, 26-38 months and 39+ months respectively. 

 

Table 3: INLA output for hierarchical Bayesian analysis with non-

informative priors. 

Variable Mean sd 2.5% 

quant 

50% 

quant 

97.5

% 

quant 

OR OR 95%CI 

Intercept -4.70  0.39      -5.53  -4.68      -3.99 0.009 (0.0089,0.009

2) 

Body mass 

index 

<18.5 (Ref) 

18.5-24.9 

25-29.9 

>30 

 

 

 

0.80 

1.05 

1.05 

 

 

 

0.38 

0.39 

0.44             

 

 

 

0.12 

0.33     

0.23    

 

 

 

0.78     

1.03     

1.04      

 

 

 

1.59 

1.88 

1.95 

 

 

 

2.22 

2.86 

2.86 

 

 

 

(2.20,2.24) 

(2.81,2.91) 

(2.83,2.89) 

Birth order 

1 (Ref) 

2-3 

4-5 

6+ 

 

 

 

1.65  

1.22  

1.69 

 

 

0.20       

0.23      

0.27       

 

 

1.27     

0.77     

1.16     

 

 

1.64       

1.22       

1.70       

 

 

2.04 

1.67 

2.21 

 

 

5.19 

3.39 

5.43 

 

 

(5.17,5.21) 

(3.37,3.40) 

(5.40,5.46) 

Birth  

interval 

(Month) 

<15 (Ref) 

15-26 

 26-38 

  >38+ 

 

 

  

 

 

-1.09  

-1.080  

-2.31 

  

 

 

 

0.18      

0.20      

1.10     

 

 

 

 

-1.45   

-1.48    

-4.78   

 

 

 

 

-1.09     

-1.08      

-2.19      

 

 

 

 

-0.74 

-0.70 

-0.48 

 

 

 

 

0.34 

0.34 

0.10 

 

 

 

 

(0.335,0.338) 

(0.338,0.341) 

(0.096,0.102) 

 
 

Furthermore, the odds of perinatal mortality happening were 2.22 times 

more likely in women with normal weight compared to underweight 

women. Also, it was 2.86 times more likely in heavyweight and obese 

women compared to underweight women. It was noted that perinatal 

mortality was 5.19 times more likely in children of order 2-3 compared to 

the first child, 3.39 times more likely in order 4-5 as compared to the first 

child and 5.43 times more likely in birth order more than six (6+) compared 

to first birth. In general, the likelihood of perinatal mortality increased in 

higher birth orders.  
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Analysis of previous birth interval indicated that perinatal mortality was 

66.4% less likely in children born between 15-26 months compared to those 

born <15 months, 66% less likely in children born between 27-38 months as 

compared to <15 months and 90% less likely in children born >39 months 

as compared to <15 months. The trend shows that child spacing more than 

15 months was more protective to perinatal mortality.  

4.4.2.2 Hierarchical Bayesian analysis using beta conjugate priors 

The results for the hierarchical Bayesian analysis by employing informative 

beta conjugate priors still indicates the three variables being statistically 

associated with perinatal mortality. With the informative priors, it was 

observed that the odds of perinatal mortality happening was 26 times more 

likely in the absence of these variables. Also, the prevalence of perinatal 

mortality was taking an opposite trend compared to that observed 

hierarchical Bayesian analysis with non-informative priors. For example, 

mortality was 3.53 times more likely in normal-weight women (BMI=18.5-

24.9) while it was only 35% more likely in obese women (BMI=>30) with 

non-informative priors. A similar trend was observed in the other two 

variables as indicated in table 4. 
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Table 4: INLA output for hierarchical Bayesian analysis with informative 

beta priors 

Variable Mean sd 2.5% 

quant 

50% 

quant 

97.5

% 

quant 

OR OR 95%CI 

Intercept 3.27  0.67      1.99  3.26      4.63 26 (25.99,26.01) 

Body mass 

index 

<18.5 (Ref) 

18.5-24.9 

25-29.9 

>30 

 

 

 

1.29 

0.79 

0.30 

 

 

 

0.75 

0.80 

0.90             

 

 

 

-0.14 

-0.72 

-1.39    

 

 

 

1.27 

0.76 

0.28      

 

 

 

2.81 

2.43 

2.13 

 

 

 

3.53 

2.20 

1.35 

 

 

 

(3.52,3.54) 

(2.19,2.21) 

(1.34,1.37) 

Birth order 

1 (Ref) 

2-3 

4-5 

6+ 

 

 

 

0.90 

0.59 

0.35 

 

 

0.78       

0.83      

0.88       

 

 

-0.57 

-0.96 

-1.30    

 

 

0.87 

0.56 

0.33       

 

 

2.50 

2.27 

2.15 

 

 

2.46 

1.80 

1.42 

 

 

(2.45,2.47) 

(1.79,1.81) 

(1.41,1.44) 

Birth  

interval 

(Month) 

<15 (Ref) 

15-26 

 26-38 

  >38+ 

 

 

  

 

 

0.54 

0.45 

0.02 

  

 

 

 

0.84      

0.86      

0.99     

 

 

 

 

-1.04   

-1.15    

-1.91   

 

 

 

 

0.51 

0.43      

0.02      

 

 

 

 

2.26 

2.21 

1.97 

 

 

 

 

1.72 

1.57 

1.02 

 

 

 

 

(1.71,1.73) 

(1.56,1.58) 

(1.001,1.04) 

 

4.4.2.3 Relative risk in hierarchical model with non-informative priors 

The relative risk of perinatal mortality among the selected predictor 

variables was computed. The selected variables were those which were 

fitted in hierarchical Bayesian analysis. It was noted that log-link produced 

probability>1. To overcome this problem, we used a modified robust loga 

link for log-binomial in INLA and the output was summarized in table 5: 

The results from table 5 shows that body mass index adjusted risk ratio 

(ARR=1.14 95% CI (1.13,1.14), 1.25 95% CI (1.24,1.25), 1.15 95% CI 

(1.14,1.15)) and birth order (ARR=2.41 95% CI (2.41,2.42), 1.79 95% CI 

(1.78,1.79), 2.52 95% CI (2.52,2.53) were associated with high risk of 

perinatal mortality. It was also noted that the risk for perinatal mortality was 

higher in higher birth orders (2+) with the respective adjusted risk ratio 
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(ARR) of 0.88 95% CI(0.87,0.88), 0.87 95% CI(0.867,0.872) and 0.56 95% 

CI(0.55,0.56). The previous birth interval was associated with a low risk of 

perinatal mortality and the risk was observed to be minimal with a higher 

previous birth interval (>38+). 

 

Table 5: INLA output for relative risk in a hierarchical model 

Variable Mean sd 2.5% 

quant 

50% 

quant 

97.5% 

quant 

RR RR 95%CI 

Intercept -4.23 0.17      -4.57  -4.23 -3.91 0.02 (0.01, 0.02) 

Body mass 

index  

<18.5 (Ref) 

18.5-24.9 

    25-29.9 

    >30 

 

 

 

0.13 

0.22  

0.14 

 

 

 

0.16 

0.18 

0.24               

 

 

 

-0.17 

-0.12   

-0.34          

 

 

 

0.13 

0.22 

0.14 

 

 

 

0.44 

0.57  

0.59   

 

 

 

1.14 

1.25 

1.15 

 

 

 

(1.13,1.14) 

(1.24,1.25) 

(1.14,1.15) 

Birth order 

1 (Ref) 

2-3 

4-5 

6+ 

 

 

 

0.880 

0.580  

0.926  

 

 

0.123      

0.148       

0.189       

 

  

0.639     

0.286     

0.544     

 

 

0.880 

0.582 

0.930 

 

 

1.121   

0.868     

1.287   

 

 

2.41 

1.79 

2.52 

 

 

(2.41,2.42) 

(1.78,1.79) 

(2.52,2.53) 

Birth  

interval 

(Months) 

 <15 (Ref) 

 15-26 

 26-38 

 >39+ 

 

 

  

 

 

-0.13 

-0.14  

-0.58      

  

 

 

 

0.14     

0.16     

0.54      

 

 

 

 

-0.41  

-0.45 

-1.73   

 

 

 

 

-0.13 

-0.14 

-0.55    

 

 

 

 

0.14    

0.16    

0.38     

 

 

 

 

0.88 

0.87 

0.56 

 

 

 

 

(0.87,0.88) 

(0.87,0.87) 

(0.55,0.56) 

 

The relative risk of perinatal mortality among women with normal weight 

was 14% more likely as compared to underweight women, 25% more likely 

in overweight women compared to underweight women and 15% more 

likely in obese women compared to underweight women. The relative risk 

of perinatal mortality was 2.41 times more likely in children of birth order 

2-3 as compared to the first birth, 79% more likely in birth order 4-5 

compared to first birth and 2.52 times more likely in birth order 6+ as 

compared to the first birth. The trend shows that the relative risk of perinatal 

mortality is higher in higher birth orders (2+).  



 58 

On examining the relative risk (RR) of perinatal mortality concerning 

previous birth interval, it was observed that perinatal mortality was 12% less 

likely in children born between 15-26 months as compared to those born 

<15 months, 13% less likely in children born between 27-38 months and 

44% less likely in children born >39 months as compared to <15 months. 

Generally, the trend shows that child spacing more than 15 months was 

more protective to perinatal mortality.  
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CHAPTER FIVE: DISCUSSION 

 

Perinatal mortality is a major threat to child survival in Tanzania(Mboya et 

al., 2020; Ogbo et al., 2019). Perinatal mortality distribution among the   

selected variables varied across different levels of each variable. For 

instance, perinatal mortality was observed to be higher in urban residence 

compared to rural residences, higher in obese women compared to other 

BMI categories, higher in women with incomplete primary education, 

higher in women working than those women not working, higher in women 

who never married, higher in women with less than <20 years of age and 

higher in the first birth order than other subsequent births.  

Accordingly, different models were fitted to the data to determine the 

determinants for perinatal mortality in the country. First, the univariate chi-

square test was fitted to the data using the Rao & Scott test which takes into 

account the design induced distortion of the asymptotic distribution of the 

Pearson x2 test (Chinomona & Mwambi, 2015). The result suggests that 

there is an association between perinatal mortality and some variables 

(education, age at first birth, age, social-economic wealth index (SEWI), 

occupation, birth interval and birth order). However, the five non-significant 

variables in the univariate analysis were also included in the multivariate 

analysis. This is based on the fact that a non-significant variable in the 

univariate analysis can be significant in the multivariate model(Lo et al., 

1995). In the same context, Chinomona and Mwambi,2015 included 

univariate non-significant variables in multivariate logistic regression, 

which however showed little significant contribution. This may be attributed 

to some factors including the influence of many missing data which was 

also the case in this study (Chinomona & Mwambi, 2015; Mboya et al., 

2020). 
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In normal Bayesian Logistic regression analysis, we disregarded the 

complex structure of the dataset. The criteria for the best model were the 

model with the highest Bayes factor (Morey & Rouder, 2018; Souza & 

Migon, 2004). The best model, in this case, included birth order, maternal 

age and previous pregnancy interval being statistically significant variables. 

The findings of Bayesian logistic regression confirmed the relationship 

between maternal age, birth order and previous birth interval with perinatal 

mortality. It was noted that maternal age and birth order were associated 

with a high risk of perinatal mortality while previous birth interval was 

associated with a low risk of perinatal mortality. The results show a 

decreasing trend of perinatal mortality >20 years. This may be attributed to 

factors such as an increase in the experience of mothers and the maturity of 

the reproductive systems (McDermott et al., 1996; Mutz-Dehbalaie et al., 

2014; Neal et al., 2018). 

Hierarchical Bayesian analysis was performed accounting for nested sources 

of variability between subjects which comes from different levels of 

hierarchy (Khan & Shaw, 2011). Model selection accounting for the multi-

stage nature of the dataset was performed and came out with three 

significant variables including body mass index, birth order and previous 

pregnancy interval. The source of the random effect, in this case, was the 

clusters and households. It can be seen that when put into consideration the 

hierarchical nature of the dataset and the sources of random effect the 

significant variables slightly changed with additional body mass index 

(BMI).  

The incorporation of random effect helped to avoid overestimation of 

standard errors of the covariates leading to wrong statistical significance 

(Lee & Nelder, 2001). For instance, the coefficient for birth order 2-3 in 

normal Bayesian logistic regression had higher disease odds of 2.19 

(AOR=8.90, 95% CI (5.81,13.74)). However, this coefficient was decreased 
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to 1.647(AOR=5.19, 95% CI (5.17,5.21) when the random effect was 

included. In addition, the analysis showed concern about body mass index 

whereby the odds of perinatal mortality were higher in overweight and 

obese women. This is an alert to policymakers to educate women of 

childbearing age on the importance of maintaining their normal weight to 

reduce perinatal mortality. It was also noted that the odds of perinatal 

mortality were reduced for previous pregnancy intervals and birth orders 

after introducing random effects. It was also noted that the three variables 

were significant when informative priors were used. However, the 

prevalence of perinatal mortality varied oppositely compared to when non-

informative priors were used.  

The relative risk for the log-binomial model shows a higher risk of perinatal 

mortality with birth order and body mass index (BMI). The analysis also 

suggested low relative risk for perinatal mortality with birth intervals. These 

findings are supported by Rahman et al., 2010 who supports the view that 

previous birth interval reduces the risk of perinatal mortality and in turn 

increase child survival. Perinatal mortality has been reported to occur at 

least in part from birth order factors. This is in line with the study by Ogbo 

(Ogbo et al., 2019) where he reported perinatal mortality being associated 

with fourth or higher birth ranks in Tanzania. In a similar context, high 

stillbirth was also associated with birth order>3 in a study conducted in 

Pakistan(Afshan et al., 2019). 

The major limitation of this study is the absence of other unmeasured 

confounding factors. The study findings may be affected by unmeasured 

confounding factors such as baby size, healthcare access, discrete 

geographical inequalities etc. (Gabrysch et al., 2019; Kanyangarara et al., 

2018; Kiross et al., 2019b). Additionally, this study computed the 

prevalence of perinatal mortality in Tanzania using just a portion of the 

population. This approach lacks representativeness since it may not cover 
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all the relevant domains of the population. Therefore, to enhance national 

and subgroup prevalence of perinatal mortality we need to employ 

appropriate statistical methods. 
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CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS 

The findings from this study alert policy decision-makers, public health 

experts and other stakeholders in Tanzania taking several steps to combat 

the problem of perinatal mortality and making sure that the problem remains 

at downward trajectory (Ministry of Health, Community Development, 

Gender, Elderly and Children (MoHCDGEC) [Tanzania Mainland], 

Ministry of Health (MoH) [Zanzibar], National Bureau of Statistics (NBS), 

Office of the Chief Government Statistician (OCGS) & ICF, 2016). 

Nevertheless, as stated earlier there should be increased efforts to reduce 

stillbirths which plays a very big role in perinatal mortality. In particular, 

this study has pointed the significant predictor variables such as BMI, birth 

order and previous birth interval. This study stresses out the government to 

invest more in maternal education to address issues such as child spacing 

and unnecessary heavyweight as pointed out in several studies (Auger et al., 

2012; Mondal et al., 2009; Rahman et al., 2010; Wehby & López-Camelo, 

2017). This study showed maternal education for complete primary 

education and secondary or higher was associated with a low risk of 

perinatal mortality while ages at first birth between 30-39 and 40-49 also 

were associated with low risk of perinatal mortality. The results in 

Hierarchical Bayesian regression are in line not only with country context 

but what has been shown in other previous studies. The authors have shown 

that increasing birth interval was negatively associated with perinatal 

mortality (Andargie et al., 2013; Becher et al, 2004; Molitoris et al., 2019; 

Mondal et al., 2009). On the other hand, a small number of children born 

from a single mother is protective to perinatal mortality (Akombi et al., 

2019) while educated women are less likely to experience perinatal 

mortality as well as women who got their first baby at age >20 years (Auger 

et al., 2012; Kiross et al., 2019a; Rahman et al., 2010; Wehby & López-
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Camelo, 2017).In addition to this, the government should also invest more 

in strengthening health systems and endless political will. 

It should be noted that large scale surveys like TDHS-2015/16 often follow 

a hierarchical data structure since the survey is based on multistage cluster 

sampling. We need to consider the source of nested variability which comes 

from different levels of hierarchy in our analysis. It has been noted that 

standard Bayesian logistic regression tends to seriously bias parameter 

estimates in the multilevel analysis (Khan & Shaw, 2011). Therefore, the 

significant predictor variables for perinatal mortality in this study were 

considered to be BMI, birth order and previous birth interval after taking 

into account the source of nested variability in the data for multistage cluster 

sampling.  

The findings of this study call for the following recommendations: This 

study involved only twelve predictor variables but there are much more 

social-economic, community and proximate factors which may influence 

the occurrence of perinatal mortality. Further studies should be conducted 

by involving more variables in the model to determine other variables which 

are associated with perinatal mortality. We also recommend the government 

invest more in women education since this has shown to be the best 

remedial action against perinatal mortality. Maternal education plays a 

pivotal role in reducing other factors associated with perinatal mortality 

such as reducing the number of children, observing child spacing, visiting 

antenatal clinics, reducing maternal weight etc. The findings of this study 

argue to policy-makers, decision-makers and planners to set programs that 

educate women of childbearing age to avoid being overweight, ensure 

enough birth interval and reduce the number of children born from a single 

mother to reduce perinatal mortality in the country.  
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