George Samueli/Agoki

A thesis submitted in fulfilment for the degree of Doctor of Philosophy in the University of Nairobi.

DECLARATION

This thesis is my original work and has not been presented for a degree in any other University.

This thesis has been submitted for examination wi my approval as University Supervisor.

Professor F.J. Gichaga
Department of Civil Engineering University of Nairobi.

ACKNOWLEDGEMENTS

In 1967 the author received a telegram informing him of a road traffic accident in which his dear sister, Eunice Nyamokami, that he follows had been involved in a nasty accident. Thank God her life was spared! Today she lives minus her right leg. This was the spark or impetus that set the launching pad for the author's life-long quest and involvement in road safety. To her and similar cases is this study and others to come dedicated. To Professor Gichaga, my supervisor, go sincere thanks for his guidance, supervision and patience during the entire study period. Many sincere thanks go to the University of Nairobi Deans Committee for granting some Kshs.13,872 for the first phase of this study during which background data was acquired, the Kenya Police and the Central Bureau of Statistics for macro data. Many thanks are extended to the author's daughter Boyani who at the age of six helped in patiently reading data for entry, to little Marna and Bogiita who provided comfort and cheer always and a reminder of life's realities, to their mother Elizabeth Agoki who assisted in sorting out data, critizing, providing encouragement and food and for her understanding and patience particularly during the critical moments of this study.

Abstract

- iv

Warm appreciation go to the author's father Johnson for challenge and mother Jerusha for inspiration. Many thanks to Mrs. Margaret Kalo for the typing well done. Many organisations and individuals assisted in one way or another. To all those who helped go sincere thanks. Finally, thanks to all those who conciously or otherwise frustrated the author's efforts, for their actions certainly helped shape the events for the realization of this final product.

SUMMARY

The objectives of this study were: to study Road Traffic Accidents (RTAs) in Kenya and to determine where possible their fundamental characteristics and causal factors related to their occurrence, to develop predictive models for Kenya at the national (macro) level to be used for the monitoring of RTAs and the performance of road safety improvement programmes and lastly to develop predictive models through some selected Kenyan roads at the road level (micro) to assist in the proper understanding of the behaviour of RTAs in relation to road design elements. In order to develop these predictive models, various mathematical models were used. These were: growth curve models, namely the logistic curve model and the logarithmic model; polynomial functions and finite differences techniques; harmonic analysis, generalised linear modelling and statistical methods for testing the fitness of the models developed. Macro level data for Kenya were collected from the Kenya Police records and from the Statistical Abstracts of the Central Bureau of Statistics of Kenya. Micro level data were collected through traffic volume counts, study of road geometry and pavement defects and by specially coded forms used for extracting data from the Traffic Police RTA records. The data were collected from the two carriageways of the Nairobi-Thika dual carriageway and the Kiganjo-Nanyuki single carriageway road. The police
forms were obtained from the police stations responsible for the roads studied. The data were analysed to provide characteristic patterns and evidence of the mathematical techniques to be used in model development. Computer facilities were used whenever necessary. The major findings at the macro level were: the logistic model is well suited in predicting the growth of RTAs and related phenomena with time, the logarithmic trend curve is well suited in predicting the growth in the distribution of RTA responsibility and involvement whilst the polynomial function is suited in predicting the trend of RTAs in relation to motorization. The major findings at the micro level were: the polynomial functions are suited in predicting the effects of road factors on RTA rates, the logistic curve is well suited in predicting the growth of RTAs in relation to vehicle flow, harmonic functions are suitable for predicting variations in RTAs and vehicle flow with time of day and the generalised linear model is beneficial when trying to study the effects of traffic and geometrical design elements on RTAs on an interactive basis. It is recommended that there be continuous data collection in the form of an accident data base. Such data will then be used on a continuous basis for model calibration and monitoring of road safety improvement measures.

TABLE OF CONTENTS

Page

Acknowledgements iii
Summary v
Chapter 1 - INTRODUCTION 1
Chapter 2 - LITERATURE REVIEW 6
2.1 Macro Level 6
2.2 Micro Level 10
2.3 Road Traffic Accident characteristics 17
2.3.1 Road Traffic Accident Trends 17
2.3.2 Road User Characteristics 22
2.3.2.1 Driver 22
2.3.2.2 Pedestrian 28
2.3.2.3 Pedal Cyclists 30
2.3.2.4. Motorcyclist 31
2.3.3 Vehicle Characteristics 31
2.3.4 Road Characteristics 32
2.3.5 Road Traffic Accident
Characteristics in Kenya From Previous Studies 37
$\searrow^{2.4}$ Appraisal of Previous Research 46
2.5 Study Objectives 49
Chapter 3 - THEORETICAL ANALYSIS 50
3.1 Functions in Road traffic AccidentTheory50
3.1.1 General Theory of Functionals 51
3.1.2 Calculus of Variations 54

- viii -
Page
3.2 Model Curves 60
3.2.1 Logistic Curve Model 60
3.2.2 Linear Model 62
3.2.3 Parabolic Model 633.2.4 Cubic and Higher PolynomialModels64
3.2.5 Exponential Model 70
3.2.6 Logarithmic Model 71
3.2.7 Power Model 72
3.3 Time Series 73
3.4 Harmonic Analysis 76
3.5 Errors in Prediction Models 83
3.5.1 Errors and Confidence Levels of Predictions 83
3.5.2 Method of Final Analysis on Predicted Data 87
3.6 Generalised Linear Models 88
Chapter 4 - ROAD TRAFFIC AND ACCIDENT DATA COLLECTION AND ANALYSIS 92
4.1 Road Traffic Data Collection and
Analysis 92
4.1.1 National Road Traffic 92
4.1.1.1 Data Collection 92
4.1.1.2 Data Analysis 94
4.1.2 Dual Carriageway (Nairobi- Thika Road) Traffic 104
4.1.2.1 Data Collection 105
4.1.2.2 Data Analysis 109
Page
4.1.3 Single Carriageway (Kiganjo- Nanyuki Road) Traffic 116
4.1.3.1 Data Collection 117
4.1.3.2 Data Analysis 120
4.2 Road Traffic Accident Data
Collection and Analysis 124
4.2.1 National Road Traffic Accidents 124
4.2.1.1 Data Collection 124
4.2.1.2 Data Analysis 125
4.2.2 Dual Carriageway Road Traffic Accidents 199
4.2.2.1 Data Collection 199
2.2.2.2 Data Analysis 202
4.2.3 Single Carriageway Road Traffic Accidents 241
4.2.3.1 Data Collection 241
4.2.3.2 Data Analysis 241
4.3 Generalised Linear Models 259
4.3.1 Dual Carriageway 259
4.3.2 Single Carriageway 263
4.4 Data Appraisal 265
Chapter 5 - DISCUSSION 267
5.1 Road Traffic Prediction 267
5.2 National Road Traffic Accidents Prediction 270
5.3 Prediction of Effect of Road Factors on Road Traffic Accidents 293
Page
5.4 Generalised Linear Models 313
5.4.1 Dual Carriageway 313
5.4.2 Single Carriageway 314
apter 6 - CONCLUSIONS 316
REFERENCES 323
NOTATIONS 333
APPENDICES 342

CHAPTER 1 - INTRODUCTION

Right from the outset of Kenya's independence in 1963, major emphasis and efforts were directed towards the upgrading and expanding of the national road network in order to meet the transport demands of the aspired economic development targets, social and administrative requirements. Road development programmes took the form of reconstruction in order to improve the vertical and horizontal alignment standards and with all weather bitumenized or gravel surfacing simultaneously constructing new sections and extending these to reach areas of the country yet unaccessed.

Concomitant with the rapid transformation of the roads was a rapid increase in vehicle population and human population. With increased travel demand, more vehicles and better faster roads inevitably came the increased road traffic accident deaths, injuries and property damage.

The problem of road traffic accidents (RTAs) remains one of the major yet unsolved problems in Kenya in particular and in other countries of the world in general. It is a significant public health and engineering issue in general and traffic engineering specifically. This problem represents a serious
national loss as well as a loss to individual Kenyans in terms of loss of life, injuries, loss of man-hours and the consequent effects on overall efficiency. RTAs are among the leading causes of death in Kenya and in many parts of the world today. In Kenya, while mortality and morbidity rates from transmissable diseases are known to be declining due to better medical and public health programmes, this is certainly not so for RTAs mortality and morbidity rates. During the period 1970-80 [58] statistics reported show that the number of reported deaths from the major notifiable infectious diseases decreased remarkably while the death toll from RTAs rose. For example, deaths from diarrhoeal disease, typhoid, smallpox and malaria decreased from 4631, 2602, 948 and 731 to $182,4,0,20$ respectively while RTA deaths increased from 944 to l413. The carnage on Kenyan roads appears to be continuing into the future unless and until some drastic measure is taken. Whilst motor vehicles are an economic asset to every nation and a necessity for mobility in today's life pursuits they are simultaneously weapons of wanton destruction of human lives.

The problem of RTAs is not very well understood in many circles. The characteristics, the causes, the interplay and counterplay of factors in RTAs causation are least understood. Research in road safety in Kenya
will be one of the most significant contributions towards the solution of the RTAs problem in Kenya and elsewhere.

Research in road safety has been pursued by the use of empirical/basic research as well as trial-and-error methods. The trial-and-error method uses experimentation and observation to find out if a "promise-looking" device or idea does in fact increase road safety. The emperical/basic research method, more characteristic of scientific research, uses fundamental investigations which endeavour to build up an understanding of the phenomenon of RTAs. If an individual RTA is considered, the main questions asked are what was the cause and who or what was to blame. If these questions are asked concerning a large number of RTAs the answers could reveal factors which are significant in the causation of RTAs. But experience has shown that this is not entirely satisfactory for the purposes of building a picture of the most important causative factors. The objections include the fact that if one or two factors are named, this may be a matter of opinion in their choice, and many factors are inevitably left out because their relevance is questionable and improperly understood or assumed to be the normal state of affairs warranting no special consideration. For scientific purposes it is thought better to regard
the phenomenon of RTAs as a chance process. At any time the road, the traffic, the user and the vehicle in a set of circumstances have a certain probability or chance of leading to a RTA. The statistician thinks more of the probability and whatever affects this probability rather than an individual RTA and its causes. On the other hand, due to the fact that every RTA depends on a serious disturbance in the relationship between the road, the vehicles and the road users, the disturbance is not a matter of chance but traceable to an immediate causal factor. Thus, by studying a large number of RTAs a better understanding of the characteristics and the nature of occurrence of the disturbances giving rise to the RTAs may be obtained. This may provide a better practical approach from the point of view of the improvement of the road safety situation. Methods of defining RTA causes, so that relevant countermeasures are found, are not very well established anywhere in the world. No unified RTA theory exists. The basic source of information so far has been various kinds of in-depth investigations of RTAs. These investigations are extremely time - and money-consuming. Thus in-depth RTA investigation studies are not justified from a resource viewpoint.

For any given country there is necessity to study the individual country's RTA characteristics
in order to understand the RTA problem better and provide a means for developing and monitoring road safety countermeasures. Such a research study may also help in the contribution to the knowledge and theory of RTAs and their causation.

The RTA problem may be summarized as the ever increasing tendency of RTAs and their resultant effects, lack of sufficient knowledge of RTAs characteristics both at the national level (macro) and the road environment level (micro) as well as the lack of sufficient knowledge of the characteristic effects of road users, vehicles and the road. Due to the complex nature of the RTA problem as well as their characteristics it is necessary that the data collection be as comprehensive as possible so as to provide sufficient background for the understanding of RTAs within the entire road traffic system. Consequently, the objectives for this study become:

- to study RTAs in Kenya in order to systematically determine their characteristic patterns, - to develop predictive models for RTAs in Kenya at the national as well as the road level.

In this way a framework for understanding the RTAs problem in Kenya will be provided which will lead to the development of realistic solutions aimed at increasing road safety.

CHAPTER 2 - LITERATURE REVIEW

2.1 Macro Level

Prior to 1972 very little research had been carried out in the developing countries on the problem of RTAs. A reason why RTA studies have been neglected in these countries is given by Jacobs [l]as being that RTA rates have been considered to be low in comparison with countries in Europe and North America.

Using data for road fatalities, vehicles and population for the year 1938 from 20 countries, the majority of which were European, Smeed [l]derived a relationship which is given by the formula

$$
\begin{equation*}
F / V=0.0003(V / P)^{\frac{2}{3}} \tag{2.1}
\end{equation*}
$$

```
where, F = road fatalities
    V = number of vehicles
    P = population.
```

The equation was a good fit for data also collected by Smeed for 16 countries, mostly European, ranging over the period 1957-66 and also a good fit for data from 68 countries over the period 1960-67. Smeed [2], in 1949, had developed the formula

$$
\begin{equation*}
D=0.0003\left(\mathrm{NP}^{2}\right)^{\frac{1}{3}} \tag{2.2}
\end{equation*}
$$

```
where, D = number of deaths in road accidents
                in any year
    N = number of licensed vehicles
    P = population.
```

The statistics N, P and D had been reported by a
number of Western European and North American
countries. Another form of the Smeed [3]formula
that has been used is
$D / P=0.0003(V / P)^{\frac{1}{3}}$
with the notations as above.

Using methods similar to those of Smeed, Jacobs and Hutchinson [1] carried out an analysis for 32 developing countries for which 1968 figures were available. The number of vehicles per 10,000 persons and the number of fatalities per 10,000 vehicles were calculated and compared. In order to derive a linear relationship the logarithmic values of the fatality rates were regressed against the logarithmic values of the vehicle-ownership rates and the following equations developed:

$$
\begin{align*}
& (F / P)=0.00077(V / P)^{\frac{3}{5}} \\
& (F / V)=0.00077(V / P)^{\frac{-2}{5}} \tag{2.5}
\end{align*}
$$

with notations as above.

A number of countries over the 10 -year period 1958-68 or as near to this period as possible had been chosen. For comparison a number of developed countries were included. yThese relationships were found to be statistically significant at the 1.0 per cent level. The number of fatalities per head of population increased with increase in motorization in all except Cyprus where there was a slight decrease. The injuries per head of population also rose with the rise in motorization in all countries.

The change in fatality and injury rates per licensed vehicle is thought to be a more meaningful indication of the accident situation in any country over a period of time. It has been observed that there is a general tendency for both rates to decrease with time. Out of the 29 countries studied, 15 showed a decrease in fatalities per vehicle and 14 a decrease in injuries per vehicle. This analysis agreed with that carried out by Smeed [l] which showed decreases in 15 out of 16 countries studied. Jacobs and Hutchinson [1] state that in those countries not showing this tendency unusual factors are operating. Kenya, Zambia and Jamaica had considerable increases in the number of fatalities per licensed vehicle. The reasons for this were advanced as non-introduction of training enforcement/regulations, improvement of vehicle standards
and road design whilst vehicle ownership was increasing rapidly.

Various reasons for the fatality rate decreases observed have been advanced the most important being:

- a decrease in the proportion of two wheeled traffic on the roads, a category of vehicle with much the highest accident rate,
- a general fall in pedestrian casualty rates which may in turn be due to improved pedestrian facilities,
- an overall tendency towards higher levels of road-user education and training, better maintenance of vehicles and the road system. Jacobs and Hutchinson [1] conclude that since the 21
Smeed equation/predict a greater decrease in fatality rate for an equivalent increase in vehicle ownership than does the equation derived for developing countries, it is possible that improvements in the safety of the road system, the vehicle and the road-user are not taking place as rapidly in the developing countries as in the more developed. If this continues, the accident situation is'likely to become very serious indeed in the developing world particularly in situations of rapid motorization.
2.2

Micro Level

Data obtained on rural roads in Kenya and Jamaica were analysed separately by Jacobs [4]. From the analysis equations were derived which related RTAs per kilometre per annum to vehicle flow and RTAs per million vehicle-kilometres to the geometric parameters.

Regression analysis was used to establish and quantify the relationships between a dependent variable and one or more independent variables. The quantity under study was termed the dependent variable. The choice of the independent variables was such that they were 'sensibly' related to the dependent variable, simple to define and reasonably easy to measure for an engineer working in the field. As a first step investigation of which variables were most closely correlated with accident rate, simple regressions of accident rate on each of the road features individually, were performed. The equations derived were of the form

$$
\begin{equation*}
y=a+b_{1} x_{1} \tag{2.6}
\end{equation*}
$$

where y and x_{1} are the dependent and independent variables respectively and a and b_{l} the regression constant and coefficient respectively. Since many of the road design features are interrelated simple regression was thought to give a
misleading impression of the relationships that they have with accident rate. Multiple regression, in which the accident rate is expressed as a function of several 'independent' variables simultaneously, was thought to be a better guide. The equations developed were then of the form

$$
\begin{equation*}
y=a+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+\ldots+b_{n} x_{n} \tag{2.7}
\end{equation*}
$$

where, $y, x_{1}, x_{2}, x_{3}, \ldots x_{n}, b_{1} b_{2} \ldots, b_{n}$ were as above.

For these estimates to be acceptable it was necessary to test the hypothesis that the value computed for each regression coefficient was unlikely to have arisen by chance. To check that this was true, the standard error of each regression coefficient was computed and tested for significance, variables with non-significant coefficients being eliminated from the analysis. The computer programme used employed the technique called 'stepwise'regression analysis whereby non-significant variables are eliminated and tested with other combinations replacing them where necessary. The relationships significance levels used were 5 or 10 per cent where 5 per cent probability is the level usually accepted in statistical analysis. Due to the many factors affecting accident rates, a relationship found significant at 10 per cent level was also
considered satisfactory. The correlation coefficient r was given as well as the coefficient of determination r^{2}, where r^{2} provides a measure of the proportion of variability in y that is accounted for by variability in the appropriate x value.

The number of injury RTAs per kilometre of road per annum occurring on rural roads in Kenya was regressed against the vehicle flow per hour occurring, on each test road section, averaged over a l2-hour period (7 am - 7 pm). The accident rate was found to be related to the vehicle flow at a significance level of 5 per cent. The equation derived for Kenya was

$$
\begin{equation*}
y=0.116+0.009 x \tag{2.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& y=\text { personal injury RTAs per } k m \text { per annum } \\
& x=\text { average vehicle flow/hour. }
\end{aligned}
$$

The regression equation of factors related to the accident rate, significant at the 5 per cent level, in Kenya was found to be

$$
\begin{equation*}
y=1.45+1.02 x_{5}+0.017 x_{3} \tag{2.9}
\end{equation*}
$$

where, $y=$ accident rate per million vehicle-kilometres

$$
\begin{aligned}
& x_{3}=\text { horizontal curvature }(\text { deg } / \mathrm{km}) \\
& x_{5}=\text { junctions per kilometre }
\end{aligned}
$$

At the 10 per cent level of significance the equation for Kenya was

$$
\begin{equation*}
y=1.09+0.03 l x_{3}+0.62 x_{5}+0.0003 x_{4}+0.062 x_{2} \tag{2.10}
\end{equation*}
$$

where y, x_{3}, x_{5} were as above and
$\mathrm{x}_{4}=$ surface irregularity ($\mathrm{mm} / \mathrm{km}$)
$x_{2}=$ vertical curvature (m / km)

Thus in Kenya junctions per kilometre was found to be the most significant independent variable with $r^{2}=0.49$. The road studied was the Nairobi-Mombasa, a two-lane single carriageway trunk road. There were never more than two junctions per kilometre. An addition of one junction per kilometre was associated with an increase in the accident rate of over one accident per million vehicle-kilometres.

In Kenya the horizontal curvature was found to be significantly related to the accident rate with a decrease of 35 degrees per kilometre reducing the accident rate by one accident per million vehiclekilometres.

The effects of surface irregularity and vertical curvature were considerably less than those of junctions per kilometre and horizontal curvature. It was found
that the rougher the road the higher the number of accidents per million vehicle-kilometres. An improvement in roughness of 200 mm per kilometre was associated with a reduction in the accident rate of 0.8 accidents per million vehicle-kilometres per annum.

On the Nairobi-Mombasa road, there was very little variation in the road width and the small amount of variation did not provide a significant relationship with accident rate.

In 1973 Silyanov [4] published the results of a comparison of accident rates on roads of different countries using data from Russia, Sweden, USA, Australia, England, Hungary, West Germany, Czechoslovakia, France, Japan and Norway. The data used was for personal injury RTAs.

It was found that the number of RTAs per kilometre of road per year increases with an increase in the hourly traffic flow with the relationship given by the equation

$$
\begin{equation*}
\mathrm{n}_{\mathrm{N}}=0.256+0.000408 \mathrm{~N}+1.36 \times 10^{-7} \mathrm{~N}^{2} \tag{2.11}
\end{equation*}
$$

```
where, }\mp@subsup{n}{N}{}=\mathrm{ number of RTAs per km of road per year
    on two-lane roads.
    N = traffic flow (vehicles/hour).
```

The rise in the number of RTAs per vehiclekilometer becomes markedly sharp when the width is less than 7 metres. The relationship was described by the formula

$$
\begin{equation*}
n_{B}=1 /(0.173 B-0.21) \tag{2.12}
\end{equation*}
$$

where, $n_{B}=$ number of RTAs per million vehicle-kilometres $B=$ carriageway width (metres) assumed between 4 and 9 metres.

On the effect of the radius of horizontal curves the most dangerous curves were found to be those with radii less than 500 metres. The relationship was described as

$$
\begin{equation*}
n_{R}=0.647+723 / R-649.5 / R^{2} \tag{2.13}
\end{equation*}
$$

where, $n_{R}=$ number of RTAs per million vehicle-kilometres

$$
R=\text { the radius of horizontal curves in metres. }
$$

The longitudinal grade was found to greatly affect the RTA rate. The most dangerous effect of
the grade was found to be apparent for vehicle movement down the grade. Silyanov [4] for the Russian data found that 65 per cent of all the vehicles involved on hills were moving downwards. The number of RTAs was found to increase continuously with an increase in grade, the increase being particularly sharp on grades of more than 3 per cent. The formula developed was

$$
\begin{align*}
n_{i}= & 0.265+0.105 i+0.0229 i^{2} \tag{2.14}\\
& \text { for } 0.5<n_{i}<7
\end{align*}
$$

where, $n_{i}=$ number of RTAs per million vehiclekilometres
$i=$ longitudinal grade expressed as percentage.

On sight distance many of the RTAs were found to occur on road sections where sight distance is less than 300 metres. The formula derived for the relationship was

$$
\begin{aligned}
& n_{d}=1 /\left(0.200+0.00111 d+0.0000009 d^{2}\right) \\
& \quad \text { for } 25<d<800
\end{aligned}
$$

where, $n_{d}=$ number of RTAs per million vehiclekilometres
$d=$ sight distance in metres.

Silyanov concludes that the practical application of the above relationships is for the detection of RTA black spots. Jacobs applied these relationships to study RTA rates in Kenya and Jamaica. His main finding was that RTA rates in developing countries, for similar levels of vehicle flow and geometric design, are considerably greater than in developed countries. It is noted however that some of the factors were not significantly related to RTA. Results from different countries also tend to contradict each other. No functional relationships between RTAs and road design elements have been developed for Kenyan roads to show how RTA rates vary characteristically with various design elements, pavement conditions and varying traffic conditions.

2.3 Road Traffic Accidents Characteristics

2.3.1 Road Traffic Accident Trends

Two deaths were recorded, in 1896 in Great Britain, as due to motor vehicles and one was recorded in the United States in 1899. From these small beginnings a terrible stream of road deaths and injuries has followed. Countries which have become highly industrialized and therefore motorized have suffered similarly to the extent that road accidents are the commonest cause of death in adolescents and young people, particularly males[20].

In most Western countries RTAs constitute the commonest single cause of violent death. For example, in Great Britain in 1963, after road deaths, death by suicide was the next highest cause. Similar trends were observed in Australia. In Canada road death rates showed an equally formidable increase over the period 1944-66 [17].

Smeed [17] has made the following observations in the general trends in RTAs:

- a general tendency for road deaths per registered motor vehicle to decrease as motorization increases. Yerrel [4l] cautions that it should not be assumed that as the number of vehicles per person increases in any given country, that such a country will simply and automatically follow a declining path of deaths per vehicle as if obeying some absolute law of nature.
- a general tendency for road deaths per head of population to increase as motorization increases.
- despite the very large differences in traffic conditions in different countries, the number of road deaths in a given country can to a large extent, be predicted from a knowledge of the population and number of vehicles $[1,2,3]$.

```
the number of pedestrian fatalities in a
given country is largely determined by its
population and is not very dependent on its
degree of motorization.
```

- as motorization increases, there is a tendency for injuries to occupants of motor vehicles to increase in number relative to injuries to pedestrians.
- a general tendency for road-user behaviour to improve as motorization increases.

An analysis of personal injury RTAs in Great Britain [3] showed the following RTAs trends:

- a steady increase of the total number of casualties for the period 1939-1960s.
- motorcyclists experiencing the greatest number of casualties, of the different classes of road users including children and adults.
- old people having the highest death rate.
- a very large number of casualties to pedal cyclists, motorcyclists and drivers on week-days during the hour 5-6 p.m.
- casualties to child pedestrians being more numerous in summer than in winter while adult pedestrian casualties were found to be relatively more frequent in winter.
- accident rates by night generally exceeding those by day.
- the total number of casualties tending to be greater in wet weather than in dry weather in winter.
- lowest RTA rates occurring on motorways and rural roads in open country and the highest in the centres of large towns. Death rates were found to be low in towns but high on unrestricted roads leading into large towns.
of the different classes of vehicles, the motorcycle, per kilometre ridden, was found to be the most dangerous from the viewpoint of risk to the driver. The pedal cycle was found to be the next most dangerous. Also from the viewpoint of injury to the pedestrian, the motorcycle, per kilometre ridden, was found to be the most dangerous.
risk of death, relative to the risk of injury was found to be the greatest for pedestrians.

In the Federal Republic of Germany, Froboese [30] gives the following RTAs trends in the period 1970-82:

- the number of casualties decreased slightly, that of deaths decreased considerably while the number of RTAs did not go down.
- motorways were found to be the safest roads for motorized traffic.
- the risk, for the occupants of passenger cars, of being injured decreased considerably. the number of RTAs involving pedestrians diminished.
- the number of RTAs involving cyclists increased noticeably.
- the RTA risk of the drivers of two-wheeled power-driven vehicles reached an alarming level. the number of children involved in RTAs, in particular the number of those killed greatly decreased. As pedestrians they were found to be less endangered, but as cyclists their risk increased.

Beginner drivers were found to be especially exposed to danger and of particular danger to other road users.

- RTAs outside built-up areas were found to have particularly consequential effects, but the rate of RTAs within built-up areas was found to be higher.
- RTAs involving only one vehicle and collisions with unprotected road users were found to be with the most serious consequences.
- excessive speed and driving under the influence of alcohol were found to be the main causes of serious RTAs.

Sloth and Bach [28] have observed that the number of RTAs and the number of fatalities have followed a similar pattern in most industrialized countries, until they reached unacceptable levels during the late 1960s. For the developing countries, Yerrell [41] has observed that death rates are very often 20 times greater than those of Western Europe or North America. For the period 1978-1980, for 35 developing countries Yerrell found a negative correlation between fatalities per vehicle and the number of vehicles per head of population, showing that the smaller the number of vehicles relative to the population the worse the death rate relative to those vehicles.

2.3.2 Road User Characteristics

2.3.2.1 Driver

The driver's part in RTAs is a question of the adequacy of his response to the road enviromment [3]. Driver characteristics result from the influence of
psychological and physiological characteristics on the performance of the driving task and the interaction of the driver with other road users and the road environment. Drivers, like other road users, are both recipients and causers of RTAs [20]. Various studies concerning driver characteristics are summarised below.

In Great Britain in 1959 [20], drivers of cars, commercial and passenger vehicles comprised 11.2 per cent out of a total of all persons killed on the roads. Using data from Belgium, Denmark, Great Britain, Italy and Sweden [20] it was found that the number of deaths of motor vehicle drivers is not closely related to traffic density or to the number of registered vehicles.

The age distribution of drivers killed showed a peak in Great Britain below the age of 30 [20]. Serious injuries to car and taxi drivers in Great Britain was found to be about 13 times, and slight injuries about 44 times, the number of RTA deaths amongst drivers. In the United States in 1959 [20] drivers under the age of 25 were found to have a considerably worse RTA ratio than that of all drivers. The lowest fatal - RTA ratios were found to be for those aged 50 to 60 (less than half those for drivers under the age of 25). In a London transport study of professional bus drivers for the period 1957-59 it
was found that [20] there was a relatively high RTA rate in young and inexperienced drivers. Those under 30 with less than four years of service had nearly four times as many RTAs as the best group, those that were aged 60-64 with about 14 years of service. In the United States it was found that driver rates in fatal RTAs begin to rise at about the age of 65 . In Finland in 1958 [20] no correlation was found between age and RTAs. Based on the number of RTAs per vehiclekilometres of travel age was found to affect RTAs only in the over 65 age group in the United states [21]. Drivers under 25 , representing 21 per cent of the driving population in the United States, were found to be involved in 34 per cent of the fatal RTAs.

In the United States [21] persons identified as suffering from epilepsy, heart disease, diabetes and mental illness were found to have a RTA rate roughly twice that of the general public whereas only 0.6 per cent of drivers fell into this category. Drivers with physical defects in sight, hearing and similar impairments were found to be involved in only 1.3 per cent of deaths and 0.6 per cent of all RTAs. It was concluded that physical defects are not a major contributor to RTAs.

Epidemiological studies $[18,20,21,26]$ show that driving occur during periods when drivers are
under the active influence of drugs and alcohol. It has been found that tranquilisers, barbiturates and cannabis lead to impairment of driving skills [18]. Drinking drivers are one of the most serious causes of all RTAs problems [2l]. Physically and mentally the drinking driver is RTA-susceptible. In the United States the following alcohol related characteristics were found [17]:

- drinking drivers responsible for fatal RTAs had higher Blood Alcohol Concentration (BAC) than those involved in non-fatal RTAs.
as far as single vehicle RTAs were concerned, 70 per cent of the drivers who died had been drinking beforehand. Further, in fatal singlevehicle RTAs, 49 per cent of the drivers were found to have BAC greater than 0.15 per cent whilst 20 per cent more had BAC between 0.05 and 0.15 per cent.
alcohol was a factor in about half of all RTA fatalities.
alcohol was related to RTAs in 30 to 70 per cent of instances.
persons driving under the influence of alcohol, who were regarded as alcoholics, crashed their vehicles at higher speeds than did social drinkers.
simple driving skills became impaired when
BAC exceed 0.1 per cent.
alcoholics were liable to incur six times as many RTAs and traffic violations as healthy drivers or drivers affected by medical illnesses uncomplicated by alcohol. In the United States 3 per cent of the drivers are alcoholics, and 4 per cent are "escape" drinkers [21]. Further, of the licensed drivers in the United States, all but 32 per cent drink [2l].
the presence of cirrhosis of the liver was found to be over 60 per cent in those persons who had substantial amounts of alcohol in their bodies at the time of death in RTAs. the ages of drinking drivers were found to be predominantly above 25 years.

Studies in Australia revealed the following characteristics concerning the effect of alcohol [17]:

- 40 per cent of drivers taken to hospital as a result of RTAs had BAC levels greater than 0.05 per cent.
- of the road fatalities 39.4 per cent were found to have BAC levels greater than 0.1 per cent.
- 60 per cent of the drivers killed in single vehicle RTAs had BAC levels greater than 0.1 per cent.
drinking drivers tended to be older, mostly
male and came from the lower occupation groups.

Similar studies in Great Britain [17] showed the following characteristics about drinking and driving:

- of the drivers involved in RTAs 41 per cent had been drinking with 34 per cent having BAC levels greater than 0.05 per cent.
- drivers who had been drinking were most frequently involved in single vehicle RTAs.
- of the dead drivers 19 per cent had BAC greater than 0.1 per cent.
- the 30-39 age group had the highest BAC found to be greater than 0.15 per cent.
- 50 per cent of the drivers involved in RTAs between the hours of $10 \mathrm{p} . \mathrm{m}$. and $4 \mathrm{a} . \mathrm{m}$. had been drinking.
- the highest RTA rates were found to occur at week-ends after 10 p.m. when licensed alcohol selling premises closed.

In Canada the studies [i7] showed that 28 per cent of all drivers convicted of drunken driving were alcoholics who had repeated RTAs and were less concerned with careful driving after moderate or heavy intake than were those alcoholics who managed to stay out of trouble. The RTA repeater alcoholic believed that liquor had
no effect on his competence to drive. In Romania [17] it was found that 28 per cent of the drivers suspected of driving under the influence of alcohol had been involved in RTAs. In Cechoslovakia [17] persons with BAC greater than 0.15 per cent were found to have a 124 -fold greater risk of being involved in RTAs when compared with those with lower alcohol levels in their blood. In Finland [17] some 14.6 per cent of road deaths were found to be due to alcohol whereas in Poland the proportion was found to be 15-19 per cent. On the whole most studies [17] show that in the vast majority of cases involving alcohol the subject is male and more commonly in the $30-60$ age group. The peak age period for road deaths among drivers lies between 15 and 25. Alcoholism, particularly when complicated by mental and physical illnesses, is an affliction of the middle-aged, a clinical factor of universal occurrence.

2.3.2.2. Pedestrian

The pedestrian as a factor carries much of the responsibility for RTAs mainly for his own safety. The main findings with respect to pedestrian characteristics are as follows:
in Great Britain RTAs to pedestrians account for about 40 per cent of the fatal RTAs and about 20 per cent in the United States and mostly occurring in urban areas [20].
the age distribution of fatally injured pedestrians is uneven. From the walking age to age 10 and from age 65 upward pedestrians are at special risk [20]. In Great Britain [3] comparing the number of pedestrian casualties with the population in each age group the maximum risk occurred for the 5-9 year old with risk increasing with age for those over 40. Children under 10 were found to be likely victims of the light commercial vehicles while persons over 70 years of age were more frequently involved with motorcycles and pedal cycles as compared with other age groups.

- the total number of pedestrians injured is about 25 times the number killed. Pedestrian deaths increase at periods of peak travelling, in cities particularly, during working days [20].
in the United States pedestrians fatally injured consisted of the elderly who had been drinking alcohol a little or not at all and a group of the middle-aged who had been drinking heavily [20]. Further studies in the United States showed that alcohol was causally involved in
- more than 30 per cent of all fatal pedestrian RTAs [18].

Further findings in Great Britain [3] indicate that:

- the number of pedestrian casualties increases at a lower rate than the traffic flow.
- about 67 per cent of pedestrian RTAs the pedestrian is likely to be crossing the road.
- the relative frequencies with which different types of vehicle collide with pedestrians varies with the crossing place.
- the proportion of pedestrian casualties whose injuries were due to being hit by motorcyclists was higher on uncontrolled crossings than elsewhere.

2.3.2.3 Pedal Cyclist

The pedal cyclist like the pedestrian is unprotected unless cycling on cycle tracks. Findings from Great Britain [20] show that pedal cyclists killed annually form about 11 per cent of the total RTA deaths. Those aged 7-15 and the elderly form the higher proportion of pedal cyclist deaths. For each cyclist death there are 75 injuries. The proportion of those killed to the injured pedal cyclists was observed to rise with increasing age.

2.3.2.4 Motorcyclist

The motorcyclist like the pedal cyclist is also unprotected. Moreover, the motorcycle is capable of very high speeds implying greater risk and severe injury. In the United States [20] out of RTA deaths 17.3 per cent have been observed to be motorcyclists. Motorcycle fatalities affect the younger age groups heavily. In Great Britain [20] about 70 per cent of motorcycle deaths affected the age-group 18-40, the majority being male. Thus length of experience and power of motorcycles were found to be the two most important factors in RTAs to young motorcyclists.

In the United Stastes studies [20] have shown that about 1 per cent of registered vehicles are motorcycles which are responsible for 1.3 per cent of the fatal RTAs, showing that the degree of risk to motorcycle riders increases. Studies in Great Britain [21] indicate that the death rate per kilometre for motorcycles was over 20 times that for motor vehicles while the personal injury rate is 3 times as great. In the United States the corresponding figure was found to be $4: 1$.

2.3.3 Vehicle Characteristics

The proportion of RTAs in which defects in vehicles are thought to be the primary contributor has been shown to be relatively small $[20,21,50]$.

In Great Britain one study [20] showed that only 2.5 per cent of casualties in RTAs were attributable to brake, tyre and steering defects. In the United States [2l] in fatal RTAs 2-ll per cent were traced to vehicle defects. In one study in the United States [20] one out of five passenger cars and one out of four trucks inspected were found to require maintenance. Some striking differences in the statistics of vehicle defects in RTAs have been observed. The common belief has been that vehicle inspection is carried out in order to decrease the risk of RTAs through badly maintained vehicles. However, studies have not been conclusive in directly linking poorly maintained vehicles to RTAs [2l].

2.3.4 Road Characteristics

Various studies in different countries have shown a strong correlation between RTAs and road design, construction and surfacing. Studies carried out in the United States [55] showed that simply resurfacing and/or widening of substandard roads increases speeds and hence increases the number and severity of RTAs. It was found out that improvements in highway geometry and alignment should be undertaken as well. Road features such as right curves, left curves, upgrades and downgrades were found to have equal traffic exposure. Left curves had a greater

RTA rate than right curves. The explanation was that there is a tendency for vehicles to depart to the right side of the road due to the fact that if a vehicle leaves the travel lane to the left, the adjacent lane allows room for recovery. There was also found a higher RTA rate on curves than on tangent sections. Most of the single vehicle RTAs involved departure on the outside of the curve rather than the inside. The explanation was that a moving object continues along a straight path unless redirected and hence the vehicles tend not to turn enough rather than turn too much. In these studies it was further found out that amany factors, often independent, influence RTAs. It was difficult to find sites where all the important factors are similar for generalization to be made. It was therefore proposed that in future studies, other types of analyses involving operational measurements and theoretical simulations be used to determine the relationship between highway design elements and road safety.

Additional research in the United States [12] on highway features and in particular on downgrades showed that downgrades were overrepresented as RTA sites. The RTA rate for downgrades was found to be 63 per cent higher than for upgrades while left curves were found to be most RTA prone. Injury rates were
higher on curves than on tangent sections, higher on downgrades than upgrades and lowest for level straight sections. There were also results which appeared to be contrary to the view that improved conditions are safer. The possible explanation for this was that the better the road, the more careless the driver. However, experience with substandard roads has shown that high design standards have led to improved transportation and road safety.

Studies in the United States [1l] to develop and test RTA prediction techniques showed that highways in mountain terrain cause problems especially for large commercial vehicles. The data collected included horizontal curvature, vertical alignment, percentage grade and length of grade. The problems were explained to be poor manouvrability, poor performance on upgrades and braking on descending grades due to loss of vehicle control, loss of brakes and improper downshifting of gears. The results of the analysis showed that:

- there was an increase in the RTA rate as the slope increases.
- a series of curves of decreasing radius place greater demands on vehicle brakes than of increasing radius.
- the average slope of a downgrade is not as significant as horizontal curvature at specific subsections of the grade.
- most RTA prone locations occurred just downgrade from sections of increasing horizontal curvature. - irregular curves with frequent discontinuities were more RTA prone than smooth curves with few discontinuities.

However, the study was found to be limited in that there was poor agreement in some results due to the small sample size used.

Tests on road safety in Great Britain [l0] on a motorway dual carriageway showed a marked relationship between RTA rate and alignment. The results showed that:

- there was a difference in RTA rate for the two carriageways. There was no direct evidence to suggest the reason for this but the possible reasons suggested were driver fatigue, effect of sunglare, differences in skidding resistance due to different surfaces and road gradients. relating RTA rate to the curvature and gradient of the carriageway, evidence was found of higher RTA rates on gradients on curved sections than on straight sections.
the effect of travelling downgrade was found to cause a lot of RTAs. This effect was found to increase stopping distances in three ways: the vehicle achieves greater speed, a small component of the vehicle opposes braking and the friction between the tyre and the road is less

Studies in Denmark [29] on RTAs on different types of roads and intersections as a function of the traffic flow showed that:

- the lowest number of RTAs is still to be found on motorways.
- for a given increase in the traffic volume, the increase in the RTA load will be less. Therefore, it pays off to gather the traffic on a few safe roads instead of spreading it on a large road network.
- the RTA frequency is lower on road sections lined with marginal strips, cyclepaths and the like compared to road sections without marginal stripping and paths. Furthermore, it was concluded that a broad delimitation will yield a lower RTA rate on road sections up to 7 metres compared to narrow types of delimitation.
two-lane urban roads of 6-9 metres have about twice the number of RTAs of rural road sections per kilometre.
- the number of RTAs per kilometre decreases on two-lane rural roads when the road width is increased up to 7-8 metres as a maximum. Therefore, a further reduction in the number of RTAs cannot be expected by widening two-lane roads with a width of carriageway of 7-8 metres.
- at two-lane roads with ribbon development the number of RTAs per kilometre increases with increasing width of carriageway up to 9 metres.
- signalized four-armed intersections have the highest number of RTAs. In general, the threearmed intersections have lower RTA numbers than the four-armed intersections.
the black-spot calculations pointed out 11 per cent of the total section length and 5 per cent of the intersections as black-spots.

2.3.5 Road Traffic Accidents Characteristics in

 Kenya From Previous Studies An analysis of RTAs in Kenya for the year 1972 [53] showed that:- the greatest number of RTAs occurred in Nairobi (40 per cent of the total). The number of
casualties was also greatest in Nairobi, being 30 per cent of the total.
the lowest RTA and casualty rates occurred in Nairobi, however. These lower rates were attributed to the fact that almost all the vehicle-kilometres travelled took place in built-up areas where vehicle speeds on average are much lower than elsewhere in Kenya. in Nairobi almost 50 per cent of all RTAs involved pedestrians.
- Central, Eastern and Western Provinces had a large majority of casualties occurring in rural areas on roads without 30 or 45 kilometres per hour speed limits. in urban areas 14 per cent of all RTA casualties were fatal and 28 per cent were serious. The equivalent figures for Great Britain in 1971, were 2.2 and 25.4 per cent. These differences were found to be statistically significant at the 5 per cent level. in rural areas over 16 per cent of all casualties were fatal. This level of severity was found to be consistent with observations in other countries including Great Britain. It was attributed to the fact that RTAs occur at higher speeds in rural areas and that medical treatment is less readily available there.

38 per cent of all road casualties occurred to car occupants, which is low compared with most European countries.

26 per cent of all road casualties involved pedestrians, which is similar to the situation in Great Britain, Yugoslavia and Spain but rather high compared with Germany, France and Italy. However, the rate of pedestrian casualties per head of population was found to be low in Kenya compared with Great Britain. ${ }^{\text {I }}$, Pedestrian casualties per head of population was slightly higher in Nairobi than the average value for urban dwellers in Great Britain.

16 per cent of the total casualties were occupants of commercial vehicles. This was found to be high compared to most European countries where the percentage is of the order of 5 .
the proportion of two-wheeled motor vehicle casualties was under 5 per cent of the total, being very low compared to European figures. 45 per cent of all fatalities were pedestrians. of the total casualties 11 per cent are juvenile casualties. The equivalent figure for Great Britain is 18 per cent and for Ghana 23 per cent. Over 19 per cent of all juvenile casualties were fatal whilst the equivalent adult value was 14

```
per cent, the difference being statistically
different at the 5 per cent level. In Great
Britain the reverse is the case with 2-3 per
cent of the adult casualties being fatal and l.4
per cent of the juvenile casualties (under 15
years of age being fatal.
over }12\mathrm{ per cent of all casualties occurring
during daylight were fatal, whilst during
darkness the equivalent figure was l7 per cent.
7 5 \text { per cent of all casualties were injured}
during the day and 22 per cent during darkness.
In Great Britain a greater percentage of all
casualties occurred in darkness (36 per cent),
a difference attributed to proportionately more
driving being done during darkness than in Kenya.
the incidence of RTA casualties in Kenya rose
sharply between 6 a.m. and 7 a.m., continuing
throughout the day to reach a peak at }5\mathrm{ p.m.
The casualty rate then decreases sharply until
the following morning. In Great Britain for
casualties a peak is reached at 5 p.m. but
another peak occurred at midnight , attributed
to a greater proportion of travel at night and
a greater incidence of drinking and driving
in Great Britain than in Kenya.
the highest number of casualties occurred on
Saturdays and Sundays whereas in Great Britain
```

the highest numbers occured on Fridays and Saturdays. The difference was found to be statistically significant at the 5 per cent level and differences in social patterns were thought to be the main reason for the difference. the greatest number of casualties occurred in March, April and September. In Great Britain, Sweden, Germany and Yugoslavia the number of casualties were highest in November and December. In Great Britain periods of a high number of casualties do not coincide with high traffic flows. The casualties are affected by short hours of daylight and extreme weather conditions. No evidence of a regular pattern of seasonal traffic flow variation had been observed in Kenya. Therefore, there was no evidence to support the notion that traffic flows are greatest in the month containing the highest number of casualties. In Kenya the climate follows a strong seasonal pattern with long rains in March, April and May and short rains in November. The first period coincides with months when casualties are highest.
vehicle-pedestrian RTAs were the most frequent being over 39 per cent of the total. In Great Britain the equivalent figure is 29 per cent, the most common RTA being the vehicle-vehicle

RTA which accounts for 45 per cent of the total whilst in Kenya it is 18.2 per cent. Single vehicle RTAs in Kenya were 27.4 per cent of the total for the equivalent figure of 19.5 per cent in Great Britain. Nearly 75 per cent of all single vehicle RTAs were found to occur in rural areas in Kenya whereas the equivalent figure in Great Britain was 42 per cent. The differences were statistically siqnificant at the 5 per cent level.
on surfaced roads, vehicle-pedestrian RTAs were commonest whereas on murram and unsurfaced roads single vehicle RTAs were the most common. Over 77 per cent of all RTAs occurred on surfaced roads and 18 per cent on murram roads. With 5 per cent of the total vehicle kilometres travelled in Kenya taking place on murram roads, the RTA rate per vehicle-kilometre is much higher on murram roads than on surfaced roads. cars and land rovers were involved in 60 per cent of all injury RTAs reported. Motorcycles had the lowest rate, a pattern commonly found in most European countries. In Great Britain however, public service vehicles have a higher RTA rate than private cars since public service vehicle journeys are made in heavy traffic with high occupancy rates.

An epidemilogical review of RTAs in Kenya for the period 1968-73 [23] found that the main factors were behavioural in nature and related to the drivers who accounted for 48 per cent of all RTAs, the pedestrians who accounted for 24.3 per cent, vehicle defects which accounted for 5.3 per cent and road defects which accounted for 2 per cent of the total.

In a review of RTAs in Nairobi for the period 1968-72 [24] it was found that:

- the severity index was 8.9 per cent.
the fatality rate per 10,000 persons was 3.44 .
- seasonal variation of RTAs appeared to be related to the climatic seasons by month of the year, day of the week and time of day. children, students and civil servants were greatly involved in RTAs and their casualties resulted in 29 per cent of all RTA deaths. the fatality figure for the males was 5 times the figure recorded for the females. vehicle drivers were responsible for 48 per cent of all RTAs and the pedestrians were responsible for 36.2 per cent of all RTAs. 93.9 per cent of all RTAs were caused by road users.

```
    In a further study on RTAs involving children
under l2 years in Nairobi [19] during the year 1975
it was found that:
RTAs ranked 14 th among the top killers in all age groups of children and 2 nd in the older more exposed school age group of 5-12 years. among the adults RTA deaths accounted for 10.3 epr cent of all deaths and for all ages RTA deaths accounted for 5.9 per cent. among RTA deaths there appears to be a male preponderance consistent with findings in the rest of the world.
- \(\quad 60\) per cent of the children involved in RTAs were unaccompanied at the time of the RTA, of whom 60 per cent were school children. for every RTA death there were 5 serious injuries and 8-19 slight injuries. RTA cases accounted for 7 per cent of all surgical admissions.
```

A study undertaken to establish the level of traffic laws violation in selected roads in Nairobi [25] indicated how unsafe it is to travel in Nairobi with 3-5.8 per cent of the drivers failing to conform to the traffic lights requirements, 2.8 per cent of the drivers failing to stop at a mandatory stop sign and 24 per cent of the drivers failing to keep to the proper lanes on a roundabout.

The pattern of RTAs in Kenya has been summarized
[51] as follows:

- the RTA rate is stable, while the fatality rate is increasing,
- fatal RTAs constitute 15 per cent of the total,
- 60 per cent of all RTAs occur in rural areas,
- 47 per cent of all RTAs occur on rural tarmac roads,
- 45 per cent of all RTA deaths are pedestrians,
- 25 per cent of RTAs occur after dark,
- $\quad 12$ per cent of RTA deaths involve vehicle occupants,
- 43 per cent of vehicle - pedestrian RTAs occur on tarmac roads, being 36 times the rate elsewhere,
- 40 per cent of RTAs on rural roads involve single vehicles.

An inventory of the factors and activities related to road safety in Kenya in the late 1970 s [26] revealed:

- lack of adequate traffic enforcement, which is leading to unconcern about traffic rules and regulations,
- careless and incorrect driving, in which traffic rules are ignored, leading to too high speeds, careless overtaking and lack of care for safety in light traffic.

2.4 Appraisal of Previous Research

The Ministry of Transport and Communications has besides the above studies carried out work on the development of an accident data system , a study of dangerous (black spot) locations and investigations on some selected RTAs. The accident data system is based on police RTA records and is aimed at
providing statistical information for analysis and dissemination. The study of dangerous locations on roads under the ministry was aimed at the development of countermeasures for highway improvement and consequently road safety improvement. The accident investigation was short-lived and failed to generate further research. Other research on study areas being pursued by the ministry include the review of the traffic legislation in Kenya, monitoring of alcohol amongst drivers, speed checks and the development of road safety devices. Findings from these activities are yet to be studied more comprehensively in order to yield concrete findings and conclusions which will facilitate further research and improvement in safety.

The Smeed relationships [1,3] for the developed countries and the Jacobs and Hutchinson's [1] relationships for the developing countries have been used for international comparisons of accident statistics. These so-called Smeed relationships are merely statistical relationships which do not imply in any way causal relationships. Firstly, international comparisons are made difficult due to the absence of common definitions of death. Secondly, whilst the countries of Western Europe are uniform in many ways developing countries, particularly those of Africa,
have wide diversity of conditions and limitations. In particular there is diversity in areal extent, populations, gross national products, road provision per head of population as well as motorization. Therefore the Smeed, Jacobs and Hutchinson's relationships cannot adequately predict fatalities for all countries with the kind of accuracy required for monitoring road safety programmes. Moreover fatalities are not the only parameter that needs to be predicted in RTAs characteristics.

The Silyanov relationships are useful for the detection of RTA black spots for similar traffic conditions. Thus they cannot predict RTA rates for roads of such countries as Kenya which have vastly different traffic and accident characteristics from those studied by Silyanov. Results obtained by the application of these relationships tend to be contradiatory.

As an improvement to the foregoing work it is necessary to study the accident situation comprehensively using data available from as far back as records exist to facilitate the development of RTA characteristics and trends over long periods. These trends can then form the basis for prediction of the accident situation in those countries and the possible future directions. Moreover, the study of an individual

```
country's statistics will aid in a better under-
standing of the accident situation before remedial
measures can be developed. Further, the relevant
predictive models of the accident trends can be a
powerful monitoring tool for road safety improvements.
Also, a systematic study of RTAs on a given road or
roads over a considerable period of time with varying
traffic conditions and geometric design can help
in the developement of functional relationships
between the various design elements and the accident
rates related to the changes in those elements.
```


2.5 Study objectives

The objectives of this study therefore are: to develop predictive models for RTAs in Kenya at the national (macro) level to be used for monitoring the performance of road safety improvement programmes,

- to develop predictive models for RTAs on Kenyan roads at the micro level to aid in the proper understanding of the behaviour of RTAs and the various design elements,
- to study RTAs in Kenya with a view to determining the fundamental and long term characteristics and where possible the causes or reasons for these observed characteristics.

CHAPTER 3 - THEORETICAL ANALYSIS

3.1 Functions in Road Traffic Accident Theory

Road traffic accidents theory is an analytical study that should be concerned with relations that exist, or can be assumed to exist, between quantities which are numerically measurable. Variable quantities in RTAs are, among others, RTA numbers, population of vehicles and humans, growth rates associated with those, road width, road curvature, road gradients and other factors related to the vehicles and roads. Some of these quantities are measurable in physical or 'natural' units. It is sufficient that they are measurable in some units. Mathematical methods are possible in RTA analysis and relations are expressible by means of mathematical functions.

The relations of RTAs, and their related functions which seek to express their form, are usually of unspecified or unknown form. For example, a RTA function cannot automatically be said to be linear or quadratic in form, although it is sometimes convenient to assume that it can be approximately represented in one of such ways. RTA conditions and the very nature of their occurrence impose certain limitations on the form of the functions. Fortunately by considering the problems of RTAs it is possible to
say that the function concerned has the mathematical property of being single-valued and decreasing, or may be represented by a certain mathematically shaped curve. This representation is sufficient for the profitable use of mathematics and the understanding of the variations in the measurable quantities in RTAs.

Analytical methods are therefore applicable to RTA problems and their analysis. However, mathematics is a tool for analysis and not a master! In this chapter the theoretical basis, which forms the background for analysis in chapter 4, is set out. The necessary formulae and the curve equations used for curve fitting are presented. These formulae form the basis for the development of the predictive models. The statistical techniques and formulae for testing the fitness of the model equations are stated. Finally, the method of the final analysis is stated. The method of the final analysis used compares predicted data with observed data with the aim of establishing how well the developed models predict observed RTA data as well as the related observed road traffic data.

3.1.1 General Theory of Functionals [8]

The theory of functionals deals with functions of a finite number of variables. The variations of quantities depend on one or more other quantities
as well as functions which take a quantity as dependent not only as a finite set of other quantities but upon one or more variable functions.

```
A variable quantity \(u\) is defined as taking its value from the form assumed by a function
```

$$
\begin{equation*}
x=\phi(t) \tag{3.1}
\end{equation*}
$$

To each function $\phi(t)$ corresponds a definite value of u. As the form of the function is changed so is the value of u changed. The dependence of u upon $\phi(t)$ is called a functional and written as

$$
\begin{equation*}
u=F\{\phi\} \tag{3.2}
\end{equation*}
$$

A function of a function is expressed as

$$
\begin{equation*}
u=F\{\phi(t)\} \tag{3.3}
\end{equation*}
$$

This assumes that $\phi(t)$ is a given function of t and that u is also a definite function of t. The functional takes ϕ as a variable function associating one value of u with each whole function ϕ. The variable t does not itself appear in the determination of u in the functional relation. Generally, when u is a functional of several variable functions $x=\phi(t), y=\psi(t), z=x(t) ; \ldots$ the function takes the form

$$
\begin{equation*}
u=F\{\phi, \psi, x, \ldots\} \tag{3.4}
\end{equation*}
$$

The functions $\phi, \psi, x, \ldots m$ may be functions of several variables instead of one variable t only. In Fig.3.1, the variable function $x=\phi(t)$ is shown by a variable curve C in the plane 0xt. As the form of the function changes $\left(\phi_{1}, \phi_{2}, \phi_{3}, \ldots\right)$, the curve Cshiftsand takes up different positions and shapes $\left(C_{1}, C_{2}, C_{3}, \ldots\right)$. If u is a functional of ϕ, then its value depends on the particular position taken by the curve C, and to the series of positions $\left(C_{1}, C_{2}, C_{3}, \ldots\right)$ there corresponds a series of definite values of $u \quad\left(u_{1}, u_{2}, u_{3}, \ldots\right)$.

3.1.2 Calculus of Variations [8]

Frequently the functional $u=F\{\phi\}$ takes the form of an integral. If $f(t)$ is a function varying in form as (t) varies then

$$
\begin{equation*}
u=\int_{t_{P}}^{t_{Q}} f(t) d t \tag{3.5}
\end{equation*}
$$

where t_{P} and t_{Q} are certain limits of integration. The value of u depends on what particular form is taken for $\phi(t)$ and hence for $f(t)$. The problem usually encountered is the determination of that function ϕ which makes u a maximum or a minimum.

The problem to be solved is stated so that only certain arcs of the variable curve $x=\phi(t)$ in the plane Oxt are needed. Definite conditions are imposed upon the points which mark the ends of the arcs. The conditions are that the arcs should start and finish at two fixed points P and Q in the plane. The boundary conditions impose limitations on the field of possible variation of the curve $x=\phi(t)$ and only those curves which can be drawn from P to Q are considered. Analytically, the function $x=\phi(t)$ can only be selected provided that $\phi\left(t_{p}\right)=x_{p}$ and $\phi\left(t_{Q}\right)=x_{Q}$ where $P\left(t_{p}, x_{p}\right)$ and $Q\left(t_{Q}, x_{Q}\right)$ are the two fixed endpoints.

Although the boundary conditions are considered, the field of variation of the function $x=\phi(t)$ is so large that the analysis of the problem is practically impossible unless the field of variation is limited by a further device. For, example, it is possible to take only those functions satisfying the boundary conditions, which are continuous and possess continuous derivatives up to any desired order. Further still, the field could be severely limited by taking functions of a particular type of curves of a particular class. For example, only those functions of the quadratic form represented by parabolas with vertical axis may be taken. The function type or curve class can be represented by a relation involving certain parameters $\alpha, \beta, \gamma, \ldots$ The larger the number of parameters the more general is the function type or class of curve. Consequently, the limitation on the field of the variable functions is to replace the function $x=\phi(t)$ of variable form by

$$
\begin{equation*}
x=\phi(t ; \alpha, \beta, \gamma, \ldots) \tag{3.6}
\end{equation*}
$$

where ϕ is now of fixed form and the variation of the function is replaced by the variation of the parameters involved. Thus the function is limited to a more restricted variation described by parameters in a function of fixed form. If the parameters
are few the restriction is very severe. For example, if only three parameters are used the function takes the form

$$
\begin{equation*}
\phi(t)=\alpha t^{2}+\beta t+\gamma \tag{3.7}
\end{equation*}
$$

so that the variable curve is limited to the class of parabolas with their axes vertical and parallel to $0 x$. But by taking more parameters the field of variation of the function type is more generalized. If a sufficiently large but finite number of parameters is selected, the restricted field of variation is made different in a few vital respects from the complete field. This is achieved by excluding from the latter the more unusual kinds of functions. The problem of the calculus of variations is thus reduced to a problem of extreme values of an ordinary function of several variables $\phi, \beta, \gamma, \ldots$ Functionals are changed back into functions. The step from functionals to functions is reversed. A functional can be regarded as a function of an infinity of variables. Approximations are made by taking a function of a large number of variables, the parameters $\alpha, \beta, \gamma, \ldots$ The extent to which the simplified form approximates the original depends on the number of parameters taken. The vital point about the analysis is that it is quite independent of how many parameters there are, provided their number is finite. The solution
obtained is not perfectly general but provides an approximation sufficiently descriptive for practical purposes.

The function $f(t)$, which gives the variable u on integration, depends upon the variable function $x=\phi(t)$ and the derivatives of ϕ. For example, using only the first derivative $\phi^{\prime}(t)$ and the function $\phi(t)$

$$
\begin{equation*}
f\left(t, x, \frac{d x}{d \bar{t}}\right)=f\left\{t, \phi(t), \phi^{\prime}(t)\right\} . \tag{3.8}
\end{equation*}
$$

This is a function of t given in the function of functions form. The function ϕ is of variable form, as well as the function f to be integrated. It is further assumed that the boundary conditions are such that the variable curve $x=\phi(t)$ pass through two fixed points P and Q. In particular setting P and Q as 0 and 1 respectively the problem reduces to one of finding extreme values of the integral

$$
\begin{equation*}
u=\int_{t_{0}}^{t_{1}} f\left(t, x, \frac{d x}{d t}\right) d t \tag{3.9}
\end{equation*}
$$

for all possible variations in the function $x=\phi(t)$,
such that $\phi\left(t_{0}\right) x_{0}, \phi\left(t_{1}\right)=x_{1}$ where $\left(t_{0}, x_{0}\right)$ and $\left(t_{1}, x_{1}\right)$ are the fixed points.

To solve equation (3.9) the limitations above are imposed on the variation of $\phi(t)$ taking the functions in the form of equation (3.6) where ϕ is a fixed function with a continuous derivative and $\alpha, \beta, \gamma, \ldots$ are parameters. Alloting arbitrary differential increments $\delta \alpha, \delta \beta, \delta \gamma, \ldots$ to the parameters the corresponding variations x and x^{\prime} are first derived in the function x and its derivative $x^{\prime}=d x / d t$. Thus

$$
\begin{align*}
\delta x & =\frac{\partial x}{\partial \alpha} \delta \alpha+\frac{\partial x}{\partial \beta} \delta \beta+\frac{\partial x}{\partial \gamma} \delta \gamma+\ldots(3.10) \\
\text { and } \delta x^{\prime} & =\delta\left(\frac{d x}{d t}\right)=\frac{\partial}{\partial \alpha}\left(\frac{d x}{d t}\right) \delta \alpha+\frac{\partial}{\partial \beta}\left(\frac{d x}{d t}\right) \delta \beta+\frac{\partial}{\partial \gamma}\left(\frac{d x}{d t}\right) \delta \gamma+\ldots \\
& =\frac{d}{d t}\left(\frac{\partial x}{\partial \alpha}\right) \delta \alpha+\frac{d}{d t}\left(\frac{\partial x}{\partial \beta}\right) \delta \beta+\frac{d}{d t}\left(\frac{\partial x}{\partial \gamma}\right) \delta \gamma+\ldots \\
& =\frac{d}{d t}\left(\frac{\partial x}{\partial \alpha} \delta \alpha+\frac{\partial x}{\partial \beta} \delta \beta+\frac{\partial x}{\partial \gamma} \delta \gamma+\ldots\right)=\frac{d}{d t}(\delta x) \tag{3.11}
\end{align*}
$$

All the variations here are ordinary differentials and subject to the ordinary rules of differentiation.
where, "d" refers to variation in the variable t and " δ " refers to variation in the parameters $\alpha, \beta, \gamma, \ldots$

The function $f\left(t, x, x^{\prime}\right)$ and the integral u can be considered as dependent on the parameters $\alpha, \beta, \gamma, \ldots$ and the variations in their values are obtained as

$$
\begin{equation*}
\delta f=\frac{\partial f}{\partial x} \delta x+\frac{\partial f}{\partial x}, \delta x^{\prime}=\frac{\partial f}{\partial x} \delta x+\frac{\partial f}{\partial x}, \quad \frac{d}{d t}(\delta x) \tag{3.12}
\end{equation*}
$$

and

$$
\begin{aligned}
& \delta u=\delta\left\{\int_{t_{0}}^{t_{1}} f\left(t, x, x^{\prime}\right) d t\right\}=\int_{t_{0}}^{t_{1}}(\delta f) d t=\int_{t_{0}}^{t_{1}}\left\{\left(\frac{\partial f}{\partial x} \delta x\right)\right\} d t \\
&+\int_{t_{0}}^{t_{1}}\left\{\frac{\partial f}{\partial x^{\prime}}, \frac{d}{d t}(\delta x)\right\} d t
\end{aligned}
$$

Now

$$
\begin{aligned}
& \frac{d}{d t}\left[\frac{\partial f}{\partial x}, \delta x-\int\left\{\frac{d}{d t}\left(\frac{\partial f}{\partial x},\right) \delta x\right\} d t\right]=\frac{d}{d t}\left(\frac{\partial f}{\partial x}, \delta x\right)-\frac{d}{d t}\left(\frac{\partial f}{\partial x},\right) \delta x \\
& =\frac{d}{d t}\left(\frac{\partial f}{\partial x},\right) \delta x+\frac{\partial f}{\partial x}, \frac{d}{d t}(\delta x)-\frac{d}{d t}\left(\frac{\partial f}{\partial x},\right) \delta x=\frac{\partial f}{\partial x}, \frac{d}{d t}(\delta x) .
\end{aligned}
$$

Hence, except for the addition of an arbitrary constant.

$$
\int\left\{\frac{\partial f}{\partial x}, \frac{d}{d t}(\delta x)\right\} d t=\frac{\partial f}{\partial x}, \delta x-\int\left\{\frac{d}{d t}\left(\frac{\partial f}{\partial x},\right) \delta x\right\} d t .
$$

so $\int_{t_{0}}^{t_{1}}\left\{\frac{\partial f}{\partial x}, \frac{d}{d t}(\delta x)\right\} d t=\left[\frac{\partial f}{\partial x}, \delta x\right]_{t_{0}}^{t_{1}} \int_{e_{0}}^{t_{1}}\left\{\frac{d}{d t}\left(\frac{\partial f}{\partial x},\right) \delta x\right\} d t$.

The expression for the variation in u then becomes

$$
\begin{equation*}
\delta u=\left[\frac{\partial f}{\partial x}, \delta x\right]_{t_{0}}^{t_{1}}+\int_{t_{0}}^{t_{1}}\left\{\frac{\partial f}{\partial x}-\frac{d}{d t}\left(\frac{\partial f}{\partial x},\right)\right\} \delta x d t . \tag{3.13}
\end{equation*}
$$

The problem in the calculus of variations is therefore reduced to the simple problem of integrating a differential equation.

3.2. Model Curves

3.2.1 Logistic Curve Model [5]

The variable x increases as t increases at
a rate given by

$$
\begin{equation*}
\frac{d x}{d t}=b x \quad\left(1-\frac{x}{L}\right) \tag{3.14}
\end{equation*}
$$

where L and b are given constants. The curve represents x as a function of t. To find x as a function of t

$$
\begin{aligned}
d x & =b x d t-\frac{b x^{2}}{L} d t \\
L d x & =L b x d t-b x^{2} d t \\
& =x(L-x) b d t
\end{aligned}
$$

$$
\begin{aligned}
& \frac{L d x}{x(L-x)} \quad=b d t \\
& \int \frac{L d x}{x(L-x)}=b t+k
\end{aligned}
$$

But $\quad \int \frac{L d x}{x(L-x)}=\int\left(\frac{1}{x}+\frac{1}{L-x}\right) d x=\log x-\log (L-x)$

$$
=-\log \frac{L-x}{x}
$$

$$
\text { So } \quad \log \frac{L-x}{x}=-b t-k
$$

$$
\frac{L-x}{x}=e^{-b t} e^{-k}=a e^{-b x}
$$

where,

$$
a=e^{-k} \text { is an arbitrary constant. }
$$

Rearranging,

$$
\begin{equation*}
x=\frac{L}{1+a e^{-b t}} \tag{3.15}
\end{equation*}
$$

This is an S - shaped growth curve where x has the initial value of zero at equal to minus infinity. The curve is symmetrical about its inflection point $x=L / 2$. The constants should determine where the curve will be in time and the steepness of the sharply rising portion. When $\ln (L / x-1)$ is plotted against time a straight line is obtained which can be extrapolated into the future. From historical data setting

$$
\begin{equation*}
Y_{i}=\ln (L / x-1) \tag{3.16}
\end{equation*}
$$

values of Y_{i} corresponding to time t_{i} are obtained and the expression

$$
\begin{equation*}
\sum_{i}^{N}\left(Y_{i}-\ln a+b t_{i}\right)^{2} \tag{3.17}
\end{equation*}
$$

is minimized to obtain a regression fit of Y on t The initial growth is slow and the upper portion flattens as it approaches the limit although in some cases this may not be physically achievable. The logistic model above is to be used in developing predictive models where road traffic data and RTAs have shown growing (increasing) tendencies with the passage of time particularly where S-shaped curves are observed.

3.2.2 Linear Model [5]

In the linear model x varies linearly with t such that

$$
\begin{equation*}
\frac{d x}{d t}=\beta \tag{3.18}
\end{equation*}
$$

$$
\begin{align*}
d x & =\beta d t \\
\int d x & =\int_{0}^{t} \beta d t \\
x & =\beta t+\alpha \tag{3.19}
\end{align*}
$$

where α and β are regression constants calculated as

$$
\begin{aligned}
& \beta=\frac{n \Sigma x t-x \sum t}{n \Sigma t^{2}-(\Sigma t)^{2}} \\
& \alpha=\frac{\Sigma x-\beta \cdot \Sigma t}{n}
\end{aligned}
$$

where n is the number of pairs of variables.
This model is to be used for the final analysis of each predictive model developed where predicted data using the predictive models is compared with observed road traffic data as well as RTAs data.

3.2.3 Parabolic Model [5j

In this model the variation in x is equated to the acceleration of a new body in equilibrium to a new equilibrium state. The accumulation of the variable is analogous to the distance travelled by the new mass. The rate of x's generation is equivalent to speed and the second derivative of x over time is equivalent to acceleration. Mathematically stated this yields

$$
\begin{align*}
& \frac{d^{2} x}{d t^{2}}=a \text { constant, } g \tag{3.22}\\
& \frac{d x}{d t}=g t
\end{align*}
$$

$$
x=\int_{0}^{t} g t d t=\frac{g}{2} t^{2}
$$

which may be written more completely as

$$
\begin{equation*}
x=\alpha+\beta t+\gamma t^{2} . \tag{3.23}
\end{equation*}
$$

The parameters α, β, γ can be solved by the solution of the normal equations

$$
\begin{align*}
& \Sigma x=\alpha n+\beta \Sigma t+\gamma \Sigma t^{2} \\
& \Sigma x t=\alpha \Sigma t+\beta \Sigma t^{2}+\gamma \Sigma t^{3} \tag{3.24}\\
& \Sigma x t^{2}=\alpha \Sigma t^{2}+\beta \Sigma t^{3}+\gamma \Sigma t^{4}
\end{align*}
$$

The parabolic model is a curve with one bend. This model is to be used where observed data show a curve with a single bend.

3.2.4 Cubic and Higher Polynomial Models

Following similar methods as those used for the linear model and the parabolic model the cubic model is of the form [5]

$$
\begin{equation*}
x=\alpha+\beta t+\gamma t^{2}+\lambda t^{3} . \tag{3.25}
\end{equation*}
$$

The cubic model is a curve with two bends. The parameters α, β, γ and λ can be solved by the solution of the normal equations

$$
\begin{align*}
\Sigma x & =\alpha n+\beta \Sigma t+\gamma \Sigma t^{2}+\lambda \Sigma t^{3} \\
\Sigma x t & =\alpha \Sigma t+\beta \Sigma t^{2}+\gamma \Sigma t^{3}+\lambda \Sigma t^{4} \tag{3.26}\\
\Sigma x t^{2} & =\alpha \Sigma t^{2}+\beta \Sigma t^{3}+\gamma \Sigma t^{4}+\lambda \Sigma t^{5} \\
\Sigma x t^{3} & =\alpha \Sigma t^{3}+\beta \Sigma t^{4}+\gamma \Sigma t^{5}+\lambda \Sigma t^{6} .
\end{align*}
$$

Polynomials of higher degrees may be solved by increasing the number of parameters and the number of normal equations correspondingly. Cubic and higher polynomial curves are to be used where road traffic as well as RTAs data show curves with more than one bend.

Finite difference methods [8]as numerical methods can also be used to get approximate solutions. The principle by which they operate is that very simple equations are adequate to describe the function of a variable over very short distances and times.

Finite-difference methods are applicable to functions for which values are available at equidistant points. Given a series of points

$$
x_{n}=x_{0}+n \cdot h \quad(n=0,1, \ldots, n)
$$

with corresponding function values

$$
f_{n}(n=0,1, \ldots, N) .
$$

One of the many problems related to the analysis of experimental data is the representation of data by analytical formulae such as those above. Finitedifferences are useful in such analysis. The simplest analysis on a table of values is to find the difference between each pair by subtracting each value from its successor in the table, second differences by repeating a similar process on the first differences and so on for higher orders. These differences together comprise the finite differences of the table. Considering a set of pairs of values $\left(x_{i}, Y_{i}\right)$, where $i=a, 1, \ldots, n-1$, which can be represented by points in the $x y$ plane, the differences between successive pairs of ordinates Y_{i+1} and Y_{i} is denoted by Δy_{i}, where Δ is the difference operator.

Thus,

$$
\Delta y_{i}=y_{i+1}-y_{i} \quad i=0,1,2, \ldots, n-1 \cdot(3.27)
$$

The second forward differences are defined by

$$
\Delta^{2} y_{i}=\Delta y_{i+1}-\Delta y_{i} \quad \text { and in general, the } k t h
$$

forward differences are

$$
\begin{equation*}
\Delta^{k} y_{i}=\Delta^{k-1} y_{i+1}-\Delta^{k-1} y_{i} \tag{3.28}
\end{equation*}
$$

If the roth differences $\Delta^{r} y_{i}$ are constant then all the differences of order higher than r are zero. From equations 3.27 and 3.28 it follows that

$$
\begin{aligned}
y_{i}= & y_{0}+\Delta y_{0} \\
y_{2}= & y_{1}+\Delta y_{1}=\left(y_{0}-\Delta y_{0}\right)+\left(\Delta y_{0}+\Delta^{2} y_{0}\right)=y_{0}+2 y_{0}+\Delta^{2} y_{0} \\
y_{3}= & y_{2}+\Delta y_{2}=\left(y_{0}+2 \Delta y_{0}+\Delta^{2} y_{0}\right)+\left(\Delta y_{1}+\Delta^{2} y_{1}\right) \\
= & \left(y_{0}+2 \Delta y_{0}+\Delta^{2} y_{0}\right)+\left(\Delta y_{0}+\Delta^{2} y_{0}+\Delta^{2} y_{0}+\Delta^{3} y_{0}\right) \\
= & y_{0}+3 \Delta y_{0}+3 \Delta^{2} y_{0}+\Delta^{3} y_{0}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& y_{1}=(1+\Delta) y_{0} \\
& y_{2}=(1+\Delta)^{2} y_{0} \\
& y_{3}=(1+\Delta)^{3} y_{0}
\end{aligned}
$$

in which $(1+\Delta)^{k}$ is an operator on y_{0} with the exponent on the Δ indicating the order of the difference. By induction

$$
\begin{equation*}
y_{k}=(1+\Delta)^{k} y_{0} \quad k=1,2, \ldots \tag{3.29}
\end{equation*}
$$

and expanding

$$
\begin{equation*}
y_{k}=y_{0}+k \Delta y_{0}+\frac{k(k-1)}{2!} \Delta^{2} y_{0}+\frac{k(k-1)(k-2)}{3!} \Delta^{3} y_{0}+\ldots \tag{3.30}
\end{equation*}
$$

With the assumption that the values x_{i} in a given set of data $\left(x_{i}, y_{i}\right)$, where $i=0,1,2, \ldots, n$ are equally spaced with the spacing interval h

$$
x_{1}=x_{0}+h, \quad x_{2}=x_{0}+2 h, \ldots, x_{n}=x_{0}+n h
$$

Letting the data be represented by some formula $y=f(x)$ which for $x=x_{o}+k h$ yields $y_{k}=f\left(x_{o}+k h\right)$, noting that $f_{k}=y_{k}$ formula (3.30) yields for $r_{\leqslant} k$,

$$
\begin{equation*}
y_{k}=y_{o}+\binom{k}{1} \Delta y_{o}+\binom{k}{2} \Delta^{2} y_{o}+\ldots+\binom{k}{r} \Delta^{r} y_{0} \tag{3.31}
\end{equation*}
$$

where the binomial coefficients $\binom{k}{r}$ are defined by

$$
\begin{equation*}
\binom{k}{r}=\frac{k(k-1)(k-2) \ldots(k-r+1)}{r!} \tag{3.32}
\end{equation*}
$$

Since the x_{i} are spaced h units apart,

$$
x_{k}=x_{o}+k h \quad k=1,2, \ldots, n
$$

so that

$$
\begin{equation*}
\mathrm{k}=\frac{\mathrm{x}_{\mathrm{k}}-\mathrm{x}_{\mathrm{o}}}{\mathrm{~h}} \tag{3.33}
\end{equation*}
$$

The expression (3.31) is a polynomial of degree r in k. On substituting in 3.30 for k from
3.32 , a polynomial of degree r in x_{k} is obtained. Collecting like powers of x_{k} equation 3.30 takes the form

$$
\begin{equation*}
y_{k}=a_{o}+a_{1} x_{k}+a_{2} x_{k}^{2}+\ldots+a_{r} x_{k}^{r} \tag{3.34}
\end{equation*}
$$

Accordingly, the polynomial in x

$$
\begin{equation*}
y(x)=a_{0}+a_{1}^{x}+a_{2} x^{2}+\ldots+a_{x} x^{r} \tag{3.35}
\end{equation*}
$$

assumes the values y_{k} when $x=x_{k}$. Thus when the rth differences of the y_{k} are constant and the x_{k} are equally spaced, the polynomial (3.35) represents these data exactly. When rth differences in a given set of data are not constant but differences are negligible, the polynomial (3.35) represents the data approximately. The finite difference technique is to be used to test tabulated data observed in order to ascertain the suitability of fitting polynomial curves on to such data.

In order to determine the maximum values the first order condition will generally give the value or values of the independent variable for which $\frac{d x}{d t}=0$. The value of the independent value for which this is the case is called the critical value for the function in question. In order to ascertain whether the critical value so obtained constitutes a relative maximum, the second order condition for a relative maximum is applied which is

$$
\frac{d^{2} x}{d t}<0
$$

Thus for example for a cubic function $\frac{d x}{d t}$ which is a. parabola is solved by using the general quadratic
equation

$$
\alpha+\beta t+\gamma t^{2}=0 \quad \gamma \neq 0
$$

and $t=-\beta \pm \frac{\sqrt{\left(\beta^{2}-4 \alpha \gamma\right)}}{2 \gamma}$
3.2.5 Exponential Model [5]

This model is based on the simple explanation
that the variation in the variable x is proportional to the level of the variable at any given time

$$
\begin{align*}
& \frac{d x}{d t} \propto x \tag{3.37}\\
& \frac{1}{2} d x=\beta d t \\
& \int \frac{1}{x} d x=\int_{0}^{t} \beta d t \\
& \ln x=\beta t+\alpha \\
& x=\alpha e^{\beta t} . \tag{3.38}
\end{align*}
$$

To solve for the parameters α and β equation
(3.38) is transformed into

$$
\ln x=\ln \alpha+\beta t \quad \text { and } \alpha \text { and } \beta
$$

calculated by the expressions

$$
\begin{equation*}
s=\frac{n \sum(t \ln x)-t \sum \ell n x}{n \sum t^{2}-(\Sigma t)^{2}} \tag{3.39}
\end{equation*}
$$

where n is the number of pairs of the variables. This model as a growth curve is to be used in the preliminary analysis of fitting observed data particularly RTAs data at national level that has been observed as increasing with time.

3.2.6 Logarithmic Model [5]

This model is based on the simple explanation that the variation in the variable x is proportional to the inverse of the time

$$
\begin{align*}
& \frac{d x}{d t} \propto \frac{1}{t} \tag{3.41}\\
& d x=\frac{\beta}{t} d t \\
& \int d x=\int_{0}^{t} \frac{\beta}{c} d t \\
& x=\beta \ln t+\alpha . \tag{3.42}
\end{align*}
$$

To solve for the parameters α and β the expressions

$$
B=\frac{n \sum(x \ell n t)-\sum \ell n t \sum x}{n \sum(\ell n t)^{2}-\left(\sum \ell n t\right)^{2}}
$$

α

$$
\begin{equation*}
\frac{\sum x-\beta \sum \ell n t}{n} \tag{3.44}
\end{equation*}
$$

are solved where, n is the number of pairs of the variables. This growth model is to be used in fitting data and developing predictive models for observed data particularly RTAs data at national level which has been observed as showing an increasing trend over time.

3.2.7 Power Model [5]

This model is based on the simple explanation that the variation in the variable x is proportional to the level of the variable and the inverse of time

$$
\begin{align*}
& \frac{d x}{d t} \propto \frac{x}{t} \tag{3.45}\\
& \frac{1}{x} d x=\frac{\beta}{t} d t \\
& \int \frac{1}{x} d x=\int_{0}^{t} \frac{\beta}{t} d t \\
& \ln x=\beta \ln t+\ln \alpha \\
& x=\alpha t^{\beta} \tag{3.46}
\end{align*}
$$

To solve for the parameters α and β the expression

$$
\begin{align*}
& \beta=\frac{n \sum(\ell n t \ell n x)-\sum \ell n t \sum \ell n x}{n \sum(\ell n t)^{2}-\left(\sum \ell n t\right)^{2}} \tag{3.47}\\
& \alpha=\frac{\sum n x-\beta \sum \ell n t}{n} \tag{3.48}
\end{align*}
$$

are solved where n is the number of pairs of the variables. This growth model is to be used for fitting data at the preliminary analysis stage where observed data shows increasing tendencies with time.

3.3. Time Series $[5,6]$

A time series is a set of observational data taken at specified times more often than not at equally spaced intervals. Mathematically a time series is defined by the values $Y_{1}, Y_{2}, \ldots, Y_{n}$ of a variable at times $t_{1}, t_{2}, \ldots, t_{n}$. Thus Y is a function of t, (with Y the dependent variable and t the independent variable)

$$
\begin{equation*}
Y=F(t) . \tag{3.49}
\end{equation*}
$$

Using the equation

$$
\begin{equation*}
y=\left(\frac{\sum x y}{\sum x^{2}}\right) x \tag{3.50}
\end{equation*}
$$

where

$$
\begin{align*}
& x=X-\bar{X} \tag{3.51}\\
& y=Y-\bar{Y} . \tag{3.52}
\end{align*}
$$

The trend line has the equation

$$
\begin{equation*}
Y=A+B X \tag{3.53}
\end{equation*}
$$

where the values of Y computed for various values of X are called trend values. The origin $X=0$ is the base year and the units of X are 1 year.

If values of X are assigned to the years for which data is available beginning from the base year to the last so that $\Sigma X=0$, the equation of the least square line can be derived as

$$
\begin{equation*}
Y=\bar{Y}+\left(\frac{\Sigma X Y}{\Sigma X^{2}}\right) X \tag{3.54}
\end{equation*}
$$

where X replaces x which was given by equation 3.51 i.e. $\sum(X-\bar{X})=0$ and $Y=y$ the initial values.

$$
\begin{equation*}
\bar{Y}=\left(\frac{\sum Y}{N}\right) \tag{3.55}
\end{equation*}
$$

where N is the number of years. If the number of years (N) is even the equation must be modified. For N even, the column of x is doubled to yield $\sum X=0$ and the origin becomes January 1 (between July 1 of the two middle years. The resulting equation (3.54) has X with units of half years. To measure X in whole years instead of half years, X is replaced by 2 X but the origin remains in January 1 as before. For N odd the middle year is the origin $(X=0)$ and the values of Y refer to mid-year values i.e. as of July 1.

The components of a time series are the characteristic movements T, C, S and I and are related by the equation

$$
\begin{equation*}
Y=T \times C \times S \times I \tag{3.56}
\end{equation*}
$$

where, T is the long-term secular movements, secular variation
or secular trend indicated by the trend curve,
C is the cyclical movements,
S is the seasonal movements,
I is the irregular, random movements or residual influences.

The analysis of the factors T, C, S and I is called the decomposition of a time series.

The amount of variation present in the time series data can be reduced by the use of techniques such as moving averages. The elimination of these unwanted fluctuations is called the smoothing of a time series.

Given a set of variables $Y_{1}, Y_{2}, Y_{3}, \ldots, Y_{n}$ a moving average of order N is defined by the sequence of arithmetic means

$$
\begin{equation*}
\frac{Y_{1}+Y_{2}+\ldots+Y_{N}}{N} \quad \frac{Y_{2}+Y_{3}+\ldots+Y_{N+1}}{N} \quad \frac{Y_{3}+Y_{4}+\ldots Y_{N+2}}{N} \tag{3.57}
\end{equation*}
$$

The sums in the numerators are called moving totals of order N. If the data is given annually, a moving average of order N is called an N year moving average. Any other unit of time can be used. If weighted arithmetic means are used, the weight being
prespecified, the sequence is called a weighted moving average of order N.

```
    The estimation of the trend curve is achieved
through the following steps in the time series
analysis:
- data collection,
- graphing, noting qualitatively the presence of
    long-term trend, cyclical varations and
    seasonal variations,
    construction of the long-term trend curve or
    line by use of least squares method or moving
    averages method
    prediction and error evaluation.
Time series techniques are to be used where data
observed particularly RTAs data at national level
shows growing tendencies over time. The techniques
are to be used in fitting trend line (curve) equations
and data smoothing.
```


3.4 Harmonic Analysis [8]

This is the problem of representing a suitable periodic function in a trigonometric series. The problem reduces to one of fitting a finite trigonometric function to a set of observed values (x_{i}, y_{i}). Letting the set of observed values (x_{0}, y_{0}), $\left(x_{1}, y_{1}\right), \ldots,\left(x_{2 n-1}, y_{2 n-1}\right),\left(x_{2 n}, y_{2 n}\right), \ldots$ be such
that the values of y start repeating with $Y_{2 n}$ (i.e., $y_{2 n}=y_{0}, y_{2 n+1}=y_{1}$ etc.). The assumption is that the x_{i} are equally spaced, $x_{0}=0$, and that $y_{2 n}=2 \pi$. On the basis of these assumptions

$$
x_{i}=\frac{i 2 \pi}{2 n}=\frac{i \pi}{n}
$$

The trigonometric polynomial

$$
\begin{equation*}
y=A_{0}+\sum_{k=1}^{n} A_{k} \cos k x+\sum_{k=1}^{n-1} B_{k} \sin k x \tag{3.58}
\end{equation*}
$$

contains the $2 n$ unknown constants $A_{0}, A_{1}, A_{2}, \ldots, A_{n}, B_{1}$, $\mathrm{B}_{2}, \ldots, \mathrm{~B}_{\mathrm{n}-1}$, which can be determined so that equation (3.58) will pass through the 2 n given points x_{i}, y_{i} by solving the $2 n$ simultaneous equations

$$
y_{i}=A_{0}+\sum_{k=1}^{n} A_{k} \cos k x_{i}+\sum_{k=1}^{n-1} B_{k} \sin k x_{i} \quad i=0,1,2, \ldots, 2 n-1 .
$$

Since $x_{i}=\frac{i \pi}{n}$, these equations become

$$
\begin{align*}
y_{i}=A_{0}+\sum_{k=1}^{n} A_{k} \cos \frac{i k \pi}{n} & +\sum_{k=1}^{n-1} B_{k} \sin \frac{i k \pi}{n} \\
i & =0,1,2, \ldots, 2 n-1 . \tag{3.59}
\end{align*}
$$

The solution of equations 3.59 is done by means of a scheme similar to that used for the determination of the Fourier coefficients. The coefficient of A_{0} is unity. Therefore, multiplying both sides of each equation by the coefficient of A_{0} and adding the results yields

$$
\left.\sum_{i=0}^{2 n-1} y_{i}=2 n A_{0}+\sum_{k=1}^{n}\left(\sum_{k=1}^{2 n-1} \cos \frac{i k \pi}{n}\right) A_{k}+\sum_{k=1}^{n-1} \sum_{i=0}^{2 n-1} \sin \frac{i k \pi}{n}\right) B_{k} .
$$

Now,

$$
\sum_{i=0}^{2 n-1} \cos \frac{i k \pi}{n}=0 \quad k=1,2, \ldots, n
$$

and

$$
\sum_{i=0}^{2 n-1} \sin \frac{i k \pi}{n}=0 \quad k=1,2, \ldots, n-1 .
$$

Therefore $\quad 2 n A_{0}=\sum_{i=0}^{2 n-1} y_{i}$.

Multiplying both sides of each equation in
3.59 by the coefficient of A_{j} in it, and adding the results, yields

$$
\begin{aligned}
& \sum_{i=0}^{2 n-1} y_{i} \cos \frac{i j \pi}{n}=\sum_{k=1}^{n}\left(\sum_{i=0}^{2 n-1} \cos \frac{i k \pi}{n} \cos \frac{i j \pi}{n}\right) \\
& \left.\qquad A_{k}+\sum_{k=1}^{n-1} \underset{i=0}{2 n-1} \sin \frac{i k \pi}{n} \cos \frac{i j \pi}{n}\right) B_{k} \\
& \text { for } j=1,2, \ldots, n-1 .
\end{aligned}
$$

But

$$
\begin{aligned}
\sum_{i=0}^{2 n-1} \cos \frac{i k \pi}{n} \cos \frac{i j \pi}{n} & =0 \\
& =n
\end{aligned} \begin{array}{ll}
\text { if } k \neq j \\
& \text { if } k=j
\end{array}
$$

and

$$
\sum_{i=0}^{2-1} \sin \frac{i k \pi}{n} \cos \frac{i j \pi}{n}=0 \quad \text { for all values of } k .
$$

therefore,

$$
\begin{equation*}
n A_{j}=\sum_{i=0}^{2 n-1} Y_{i} \cos \frac{i j \pi}{n} \quad j=1,2, \ldots, n-1 . \tag{3.61}
\end{equation*}
$$

To determine the coefficient of A_{n} the same procedure is followed, but

$$
\begin{array}{rlrl}
\sum_{i=0}^{2 n-1} \cos \frac{i k \pi}{n} \cos i \pi & =0 & \text { if } k \neq n \\
& =2 n & & \text { if } k=n .
\end{array}
$$

Hence,

$$
\begin{equation*}
2 n A n=\sum_{i=0}^{2 n-1} y_{i} \cos i \pi \tag{3.62}
\end{equation*}
$$

On multiplying both sides of each equation of (3.59) by the coefficient of B_{k} in it and adding, it is found that

$$
\begin{align*}
n B_{j}= & \sum_{i=0}^{2 n-1} y_{i} \sin \frac{i j \pi}{n} \tag{3.63}\\
& j=1,2, \ldots, n-1 .
\end{align*}
$$

Equations 3.60 to 3.63 give the constants in equation 3.58 . A compact schematic arrangement is used to simplify the labour of evaluating these constants. The method is based on the equations that determine the constants together with trigonometric relations such as

$$
\begin{aligned}
& \sin ^{\pi / n}=\sin \left(\frac{n-1}{n}\right)^{\pi}=-\sin \left(\frac{n+1}{n}\right)^{\pi}=-\sin \frac{(2 n-1) \pi}{n} \pi \\
& \cos ^{\pi / n}=-\cos \frac{(n-1) \pi}{n}=-\cos \frac{(n+1) \pi}{n}=\cos \frac{(2 n-1) \pi}{n} .
\end{aligned}
$$

For a six-ordinate scheme $2 \mathrm{n}=6$; the given data being $\left(x_{i}, y_{i}\right)$, where $x_{i}=\frac{i \pi}{3} \quad(i=0,1,2,3,4,5)$; and equation 3.58 yields

$$
y=A_{0}+A_{1} \cos x+A_{2} \cos 2 x+A_{3} \cos 3 x+B_{1} \sin x+B_{2} \sin 2 x
$$

With the notation given below

	Y_{0}	Y_{1}	y_{2}	v_{0}	v_{1}	w_{0}	w_{1}
	y_{3}	y_{4}	Y_{5}		v_{2}		w_{2}
sum	v_{0}	${ }^{\text {v }} 1$	v_{2}	p_{0}	p_{1}	r_{0}	r_{1}
difference	${ }^{W}$	${ }_{1}$	w_{2}		q_{1}		s_{1}

equations 3.60 to 3.63 , with $n=3$, yield

$$
\begin{aligned}
& 6 A_{0}=\sum_{i=0}^{5} y_{1}=y_{0}+y_{1}+y_{2}+y_{3}+y_{4}+y_{5}=p_{0}+p_{1} \\
& 3 A_{j}=\sum_{i=0}^{5} Y_{1} \cos \frac{i j \pi}{3} \quad j=1,2
\end{aligned}
$$

$$
3 A_{1}=\sum_{i=0}^{5} y_{i} \cos \frac{i \pi}{3}=y_{0}+y_{1} \cos \frac{\pi}{3}+y_{2} \cos \frac{2 \pi}{3}+y_{3} \cos \pi
$$

$$
+y_{4} \cos \frac{4 \pi}{3}+y_{5} \cos \frac{5 \pi}{3}
$$

$$
=y_{0}+\frac{1}{2} y_{1}-\frac{1}{2} y_{2}-y_{3}-\frac{1}{2} y_{4}+\frac{1}{2} y_{5}
$$

$$
3 A_{2}=\sum_{i=0}^{5} y_{i} \cos \frac{i 2 \pi}{3}=y_{0}+y_{1} \cos \frac{2 \pi}{3}+y_{2} \cos \frac{4 \pi}{3}+y_{3} \cos 2 \pi
$$

$$
+y_{4} \cos \frac{8 \pi}{3}+y_{5} \cos \frac{10 \pi}{3}
$$

$$
=\quad y_{0}-\frac{1}{2} y_{1}-\frac{1}{2} y_{2}+y_{3}-\frac{1}{2} y_{4}-\frac{1}{2} y_{5}
$$

$$
\begin{aligned}
6 A_{3}=\sum_{i=0}^{5} y_{1} \cos i \pi & =y_{0}+y_{1} \cos \pi+y_{2} \cos 2 \pi+y_{3} \cos 3 \pi \\
& =y_{0}-y_{1}+y_{2}-y_{3}+y_{4}-y_{5}
\end{aligned}
$$

$$
\begin{gathered}
{ }^{3 B_{j}=\sum_{i=0}^{5} y_{1} \sin \frac{i j \pi}{n} \quad j=1,2} \begin{array}{r}
3 B_{1}=\sum_{i=0}^{5} y_{i} \sin \frac{i \pi}{3}=y_{1} \sin \frac{\pi}{3}+y_{2} \sin \frac{2 \pi}{3}+y_{4} \sin \frac{4 \pi}{3} \sin \frac{5 \pi}{3} \\
=\frac{\sqrt{3}}{2} y_{1}+\frac{\sqrt{3}}{2} y_{2}-\frac{\sqrt{3}}{2} y_{4}-\frac{\sqrt{3}}{2} y_{5} \\
3 B_{2}=\sum_{i=0}^{5} y_{i} \sin \frac{2 i \pi}{3}=y_{1} \sin \frac{2 \pi}{3}+y_{2} \sin \frac{4 \pi}{3}+y_{4} \sin \frac{8 \pi}{3} \\
\end{array} \begin{array}{r}
\quad+y_{5} \sin \frac{10 \pi}{3}=\frac{\sqrt{3}}{2} y_{1}-\frac{\sqrt{3}}{2} y_{2}+\frac{\sqrt{3}}{2} y_{4}-\frac{\sqrt{3}}{2} y_{5}
\end{array}
\end{gathered}
$$

giving

$$
\begin{aligned}
& 6 A_{0}=p_{0}+p_{1}, \quad 3 A_{1}=r_{0}+\frac{1}{2} s_{1}, \quad 3 A_{2}=p_{0}-\frac{1}{2} p_{1} \\
& 6 A_{3}=r_{0}-s_{1}, \quad 3 B_{1}=\frac{\sqrt{3}}{2} r_{1}, \quad 3 B_{2}=\frac{\sqrt{3}}{2} q_{1}
\end{aligned}
$$

with the checks on the calculations given by

$$
A_{0}+A_{1}+A_{2}+A_{3}=y_{0} \quad \text { and } \quad B_{1}+B_{2}=\sqrt{\frac{3}{3}}\left(y_{1}-y_{5}\right)
$$

For a 24 -ordinate scheme $2 n=24, n=12$, given $\operatorname{data}\left(x_{i}, y_{i}\right)$ where $x_{i}=\frac{i \pi}{12} \quad(i=0,1,2, \ldots, 22,23)$ equation 3.58 becomes

$$
y=A_{0}+\sum_{k=1}^{l 2} A_{k} \cos k x+\sum_{k=1}^{11} B_{k} \sin k x .
$$

To calculate all the coefficients and set out a scheme for their solution equations 3.60 to 3.63 are used as

$$
24 A_{o}=\sum_{i=0}^{23} y_{i}, \quad 12 A_{1}=\sum_{i=0}^{23} y_{i} \cos \frac{i \pi}{12}, \ldots
$$

Harmonic analysis techniques are to be used in representing suitable periodic functions in a trigonometric series for observed road traffic as well as RTAs data where such data show periodic variation for example, the variation of road traffic flow and the variation of RTAs over a period of 24 hours. The periodic functions will then be fitted to predict the variation of traffic or RTAs.

3.5 Errors in Prediction Models

3.5.1 Errors and Confidence Levels of Predictions $[5,6,7]$

It is desirable to assess the confidence levels in predictions and to have some measure of the probability of error. This is necessary because predictive models, particularly when they are approximating functions, contain inherent errors. The assessment
of the errors is done by regression analysis and correlation analysis which are measures of fitting curves to the variation of errors and a measurement of the degree of fit respectively. This is achieved by determining the standard error of estimate and the calculation of the correlation coefficient.

Just as the standard deviation measures the variation of the values of a variable about their arithmetic mean, the standard error of the estimate is a prediction of the scatter of the variables about a line. The standard error of the estimate, symbolized by $S_{y . x}$ represents the standard deviation of the y's on the x 's.

$$
\begin{equation*}
S_{y \cdot x}=\left(\frac{\Sigma\left(y-\bar{y}_{p}\right)^{2}}{n-2}\right)^{\frac{1}{2}} \tag{3.64}
\end{equation*}
$$

where,
$\left(y-\bar{y}_{p}\right)$ are vertical deviations from the regression
line, \bar{Y}_{p} is the predicted value and
n-2 are the degrees of freedom.
If a large number of data are observed, calculating each \bar{Y}_{p} point on the regression line and then squaring the differences is very involving. For ease of computation the formula used is

$$
\begin{equation*}
S_{y \cdot x}=\left|\frac{\Sigma y^{2}-a(\Sigma y)-b(\Sigma x y)}{(n-2)}\right|^{\frac{1}{2}} . \tag{3.65}
\end{equation*}
$$

Theoretically the standard error of the estimate is a valid measure in setting the confidence limits about a predicted value \bar{y}_{p} if the size of the sample is large and the points on the scatter diagram are normally distributed.

In the confidence limits

$$
\begin{aligned}
& \overline{\mathrm{y}}_{\mathrm{p}} \pm \mathrm{S}_{\mathrm{y} \cdot \mathrm{x}} \text { encompasses the middle } 68 \% \text { of the } \\
& \text { data points, } \\
& \overline{\mathrm{y}}_{\mathrm{p}} \pm 1.96 \mathrm{~S}_{\mathrm{y} \cdot \mathrm{x}} \text { encompasses the middle } 95 \% \text { of } \\
& \text { of the data points and } \\
& \overline{\mathrm{y}}_{\mathrm{p}} \pm 3 . \mathrm{S}_{\mathrm{y} \cdot \mathrm{x}} \quad \begin{array}{l}
\text { encompasses the middle } 99.7 \% \\
\\
\end{array} \begin{array}{l}
\text { of the data points. }
\end{array}
\end{aligned}
$$

The equation of the confidence level is

$$
\begin{equation*}
\bar{y}_{p} \pm t\left(S_{y \cdot x}\right)=\left(\frac{1}{n}+\frac{(x-\bar{x})^{2}}{\sum(x-\bar{x})^{2}}\right)^{\frac{1}{2}} \tag{3.66}
\end{equation*}
$$

where $n=$ number of observation
$t=$ value from Students t - distribution obtainable from statistical tables.

Generally, the standard error of estimate is rather difficult to interpret. A standard error of zero means that all of the variation is explained by x. The proportion of the variation explained is called the coefficient of determination r^{2} and the unexplained variation is called the coefficient of non-determination denoted by $\left(\mathrm{k}^{2}\right)$. The value of the
coefficient of determination varies from 0 to 1. A coefficient of determination zero indicates that none of the variation in y is explained by the variable x. A coefficient of determination 1 indicates that 100 per cent of the variation in Y is explained by x. The variation in y which is not associated with x is measured by the standard error of the estimate $S_{y . x}$. To convert the variation to a coefficient $S_{Y . x}$ is divided by the total variation thus,

$$
\begin{equation*}
r^{2}=1-\frac{\text { unexplained variance }}{\text { total variance }}=1-\frac{s_{y \cdot x}^{2}}{s_{y}^{2}} \tag{3.67}
\end{equation*}
$$

The square root of the coefficient of determination is called the correlation coefficient. A more convenient formula for calculating the correlation coefficient is

$$
r=\frac{n\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{\left\{\left[n\left(\Sigma x^{2}\right)-(\Sigma x)^{2}\right]\left[n\left(\Sigma y^{2}\right)-\left(\sum y\right)^{2}\right]\right\}}
$$

The value of r lies between +1 (for perfect positive relationships) and -1 (for perfect negative relationships). A correlation coefficient of 0.9 and greater is considered quite significant. To calculate the level of significance the value of t in equation 3.66 may be calculated from the equation

$$
\begin{align*}
& -87 \\
& t=\frac{r(n-2)^{\frac{1}{2}}}{\left(1-r^{2}\right)^{\frac{1}{2}}} \tag{3.69}
\end{align*}
$$

where, r is the correlation coefficient, r^{2} is the coefficient of determination and n are the number of observations.

The statistical techniques above are to be used in evaluating the quality of fitness of the predictive models developed and the confidence levels of such predictions.

3.5.2 Method of Final Analysis on Predicted Data

In order to predict the relative accuracies of the models developed, each model is used as applicable to predict the dependent variable whose variation is being sought to be fitted to a curve. Simple linear regression is used to compare the observed data with the predicted data by each model. A similar test is applied to models, developed by other researchers, predicting the same variable. Perfect prediction by any formula would result in a regression line whose slope $=1$, intercept $=0$, a correlation coefficient r of 1.0 and the critical coefficient or the coefficient of determination $r^{2}=1$. The less accurate a prediction is, the more the regression line varies from this ideal and the lower the correlation coefficient. A further measure of the data

Abstract

scatter for each regression is obtained by calculating the standard error about the observed $=$ predicted line. The slope and correlation coefficient for various predictive models can be compared since these are dimensionless.

3.6 Generalised Linear Models [59]

A generalised linear model is generally regarded as consisting of two elements. These are the systematic component and the random component. The systematic component describes the way the predicted values of the dependent variable relate to a set of independent variables. In the ordinary least squares regression the fitted equation has the form

$$
\begin{equation*}
\mu=a_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\cdots \tag{3.70}
\end{equation*}
$$

where μ is the value of the dependent variable predicted by the regression line for a particular set of the independent variables. The a's are the regression coefficients. The generalised linear model preserves the linear form of the right-hand side of equation 3.70 , but generalises the relationship between the value of the linear predictor denoted by η and the fitted value μ yielding the equations

$$
\begin{align*}
& \eta=a_{0}+a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\cdots \tag{3.71}\\
& \eta=f(\mu) . \tag{3.72}
\end{align*}
$$

Equation 3.72 is a relationship giving the link function. For accident data, the dependent variable is the number of accidents occurring at a particular site within a given period. The number of accidents is normally regarded as having a Poisson error structure. The independent variables are those associated with traffic flow and road geometry. By using a logarithm link such that

$$
\begin{equation*}
n=\ln (\mu) \tag{3.73}
\end{equation*}
$$

where ℓn is the logarithm to the base e a multiplicative model becomes

$$
\begin{equation*}
A=e^{k} K^{b} e^{\left(\sum a_{i} x_{i}\right)} \tag{3.74}
\end{equation*}
$$

where A is the number of accidents, K is the vehiclekilometres of travel during the period under study, a_{i} are the coefficients, x_{i} are the independent variables and k is the constant.

The linear equation becomes

$$
\ln A=k+b \ln K+a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\ldots(3.75)
$$

The other component of the generalised model is the random element. In least squares regressions the observations are regarded as drawn from a population with a mean equal to the value given by the regression line. The variance is constant throughout the range
of the data. If the data is drawn from a normal population standard significance tests are applied and the least squares estimates of the regression parameters are maximum likelihood estimates. If the observations are drawn from a non-normal population, as in this case where in RTAs the error distribution is regarded as Poisson, the constant variance assumption is violated since the variance of the Poisson distribution equals its mean. The generalised linear model formula allows either a known or assumed error distribution of the dependent variable to be specified explicitly for the exponential family of distributions.

Once the link function and the error structure have been specified, the maximum likelihood estimates of the coefficients are calculated. The 'normal' equations are solved to give the coefficient estimates. These equations are similar to those for ordinary weighted least squares regression but the dependent variable is replaced by a modified variate given as

$$
\eta+\delta(y-\mu)
$$

where η is the linear predictor, y is the observed dependent variable, μ is the predicted value and δ is $\frac{d \eta}{d \mu}$ which is the derivative of the link function. The procedure is iterative. Each
cycle of the fit uses estimates of the various parameters from the previous cycle until convergence is obtained. Convergence is obtained usually in 3 or 4 cycles.

For significance testing the Scaled Deviance is used. Deviance is a likelihood ratio equal to -2 $\ln \lambda$, where

$$
\begin{equation*}
\lambda=\frac{\max L^{\max L_{f}} .}{} . \tag{3.76}
\end{equation*}
$$

Therefore,

$$
\text { Scaled Deviance }=-2\left[\ell n(\max L)-\ell n\left(\max L_{f}\right]\right.
$$

where $\ln (\max L)$ is the maximised log-likelihood for the model under review and $\ln \left(\max \mathrm{L}_{\mathrm{f}}\right)$ is the corresponding value for the full model which exactly fits all the data points ($\mu=y$).

A generalised linear model is good if Scaled Deviance (S.D)/degrees of freedom (d.f) is near 1.

The generalised linear modelling technique will be used through the computer program GLIM to obtain unified RTA models for the single carriageway road (Kiganjo-Nanyuki) and the dual carriageway road (Nairobi-Thika).

CHAPTER 4 - ROAD TRAFFIC AND ACCIDENT

 DATA COLLECTION AND ANALYSISIn this chapter road traffic and road traffic accident data collection and analysis are presented. Road traffic data and analysis is presented followed by road traffic accident data and analysis. Firstly, road traffic data collection and analysis is presented in three sections covering nationaltraffic, dual' carriageway (Nairobi-Thika Road) traffic and the single carriageway (Kiganjo-Nanyuki Road) traffic. Secondly, road traffic accident data collection and analysis is also presented in three sections covering national road traffic accidents, dual carriageway RTAs and the single carriageway RTAs. The data analysis is based on the threoretical analysis presented in Chapter 3.
4.1 Road Traffic Data Collection and Analysis 4.1.1 National Road Traffic
4.1.1.1. Data Collection

At the national level the data collected relating to the Kenya transportation system (Fig.4.1) included human population, cumulative number of vehicles, vehicle composition and the total length of classified roads. These data were collected from the Central Bureau of Statistics of Kenya (CBSK) for the years 1949-1983 (Appendix A.13).

4.1.1.2 Data Analysis

Data on human population was plotted as shown in Fig.4.2. Using equation 3.15 and figures of population for Kenya, as predicted by the United Nations [56] for the year 2025, models for growth in population were developed to be used in relation to the cumulative number of registered vehicles to obtain degree of motorization. The United Nations projects Kenya's population to be 103.738 and 53.314 million for high and low growth levels respectively. These figures were used as the upper limits of growth and the models developed were respectively

$$
\begin{align*}
& \mathrm{H}_{\mathrm{p}_{1}}=\frac{103.738}{1+18.797 \mathrm{e}^{-0.038 t}} \tag{4.1}\\
& \mathrm{H}_{\mathrm{p}_{2}}=\frac{53.314}{1+9.254 \mathrm{e}^{0.042 t}} \tag{4.2}
\end{align*}
$$

for high and low growth rates, where
$\mathrm{H}_{\mathrm{p}_{1}}$ is human population predicted using high
growth rate
$\mathrm{H}_{\mathrm{p}_{2}}$ is human population predicted using low growth rate
t is time in years
e is base of natural logarithms.

On the basis of the method of analysis outlined in 3.5.2 and using equation 3.19 the regression equations were

$$
\mathrm{H}_{0}=1.004 \mathrm{H}_{\mathrm{p}_{1}}-0.036
$$

with $r=0.99, r^{2}=0.99$ and standard error of 4.256 ,

$$
\mathrm{H}_{0}=1.011 \mathrm{H}_{\mathrm{p}_{2}}-0.112
$$

With $r=0.99, r^{2}=0.99$ and standard error of 4.271 where H_{o} is the observed human population data. In all the prediction models developed in this chapter the relationship between observed and predicted data for perfect prediction (section 3.5.2) is expected ro result in a regression line whose slope is 1 , intercept is 0 and the correlation and determination coefficients 1.

The predictive models for vehicles per population (motorization) were based on the assumption that the degree of vehicle ownership for Kenya will grow and tend to the level experienced in Nairobi the country's capital. According to the Nairobi Urban Study Group [57] vehicle ownership was projected to be 0.09 vehicles per person at the turn of the century. From Fig. 4.4 the overall national vehicle ownership was found to be less than 0.02 . Thus for the purpose of model development the upper limit was set at 0.1 vehicles per person. On this basis the two

upper limits for vehicles, corresponding to the human population were derived as 5.3314 and 10.3738 million vehicles respectively for the year 2025.

Observed cumulative vehicles were plotted (Fig.4.3) and using equation 3.15 the predictive models for motor vehicles were developed as

$$
\begin{align*}
& \mathrm{V}_{\mathrm{p}_{1}}=\frac{10.3738}{1+281.817 \mathrm{e}^{-0.064 t}} \tag{4.3}\\
& \mathrm{~V}_{\mathrm{p}_{2}}=\frac{5.3314}{1+144.667 \mathrm{e}^{-0.065 t}} \tag{4.4}
\end{align*}
$$

where, $\mathrm{V}_{\mathrm{P}_{1}}$ and $\mathrm{V}_{\mathrm{P}_{2}}$ are predicted cumulative vehicles using high and low growth rates respectively. The comparison of observed and predicted data for equations 4.3 and 4.4 were

$$
\mathrm{v}_{\mathrm{O}}=0.972 \mathrm{v}_{\mathrm{p}_{1}}+0.003
$$

with $r=0.99, r^{2}=0.99$, standard error 0.062 ,

$$
v_{0}=0.973 \mathrm{v}_{\mathrm{p}_{2}}+0.003
$$

with $r=0.99, r^{2}=0.99$ and standard error 0.061 , where V_{0} is observed cumulative vehicles.

FIG. 4.4 GROWTH IN VEHICLES PER PERSON (MOTORIZATION) IN KENYA

Using the figure of 0.1 vehicles per person for the first upper limit for the degree of motorization in Kenya, the observed vehicles per person were plotted against time and the data smoothed by the moving averages technique $N=5$ years, using equation 3.57 to get rid of fluctuations (Fig.4.4). Using equation 3.15 the predictive model for the growth in motorization was developed as

$$
\begin{equation*}
\left(\mathrm{V} /_{\mathrm{P}}\right)_{\mathrm{p}}=\frac{0.1}{1+12.790 \mathrm{e}^{-0.028 t}} \tag{4.5}
\end{equation*}
$$

where, $(\mathrm{V} / \mathrm{P})_{\mathrm{p}}$ is the predicted level of motorization at time t in years. The comparison of observed and predicted data for equation 4.5 was

$$
(\mathrm{V} / \mathrm{p})_{0}=0.914(\mathrm{v} / \mathrm{p})_{\mathrm{p}}+0.00075
$$

with $r=0.95, r^{2}=0.90$ and standard error of 0.00289 , where $(\mathrm{V} / \mathrm{P})_{o}$ is the observed degree of motorization.

From the observed number of vehicles involved in RTAs the highest percentage of RTAs vehicles with respect to the cumulative vehicles was found to be 3.12 per cent. Using this figure and the upper limit of cumulative vehicles at the lower growth rate (equation 4.4) of 5.3314 million vehicles the approximation of the upper limit of vehicles to be
involved in RTAs was estimated as 166073 vehicles. Using this limit and equation 3.15 the predictive model for the growth of RTAs vehicles was developed as (Fig.4.5)

$$
\begin{equation*}
\left(V_{A}\right)_{p}=\frac{166073}{1+77.867 e^{-0.052 t}} \tag{4.6}
\end{equation*}
$$

where $\left(V_{\mathcal{A}^{\prime}}\right)_{p}$ is the predicted number of vehicles involved in RTAs. The comparison of observed and predicted data for equation 4.6 was

$$
\left(V_{A}\right)_{O}=0.882\left(V_{A}\right)_{P}+451
$$

with $r=0.94, r^{2}=0.88$ and standard error of 1437.

Observed data on vehicle composition was plotted and smoothed by moving averages. The data was converted into percentage vehicle composition for the individual class or group of vehicle type in order to determine their proportion in relation to the cumulative vehicles. After testing the data by various models the curve of best fit was found to be equation 3.42 , the logarithmic model. The model for the percentage composition of cars and utilities was developed as (Fig.4.35)

$$
\begin{equation*}
\left((\%)_{C U}\right)_{\mathrm{P}}=76.427-2.160 \operatorname{lnt} \tag{4.7}
\end{equation*}
$$

[^0]where, $\left((\%) \mathrm{CU}^{\prime}\right)$ is the predicted eprcentage composition of cars and utilities at time t. The composition of observed and predicted data for equation 4.7 was
$$
\left((\%)_{\mathrm{CU}}\right)_{\mathrm{O}}=0.994\left((\%)_{\mathrm{CU}}\right)_{\mathrm{p}}+0.489
$$
where $\left((\%)_{\mathrm{CU}}\right)_{0}$ is observed percentage composition, with $r=0.91, r^{2}=0.82$ and standard error 1.785 . Using similar techniques as above the growth model for the percentage composition of buses, lorries and taxis was developed as (Fig.4.36)
\[

$$
\begin{equation*}
\left((\%)_{\mathrm{BLT}}\right)_{\mathrm{p}}=11.873+0.239 \text { lnt } \tag{4.8}
\end{equation*}
$$

\]

where, $\left((\%)_{\mathrm{BLT}}\right)_{\mathrm{p}}$ is the predicted percentage composition of buses, lorries and taxis at time t. The composition of observed and predicted data for equation 4.8 was

$$
\left((\%)_{\mathrm{BLT}}\right)_{\mathrm{O}}=1.158\left((\%)_{\mathrm{BLT}}\right)_{\mathrm{p}}-2.070
$$

where ($\left.(\%)_{\text {BLT }}\right)_{0}$ is observed percentage composition, with $r=0.38, r^{2}=0.14$ and standard error 0.198 . The growth model for the percentage composition of motorcycles was developed as (Fig.4.37)

$$
\begin{equation*}
\left((\%)_{M}\right)_{p}=5.323+0.309 \text { lnt } \tag{4.9}
\end{equation*}
$$

where $\left((\%)_{M}\right)_{P}$ is the predicted percentage composition of motorcycles at year (time) t. The comparison of observed and predicted data yielded the equation

$$
\left((8)_{M}\right)_{O}=1.123\left((\%)_{M}\right)_{\mathrm{P}}-0.705
$$

where $\left((\%)_{M}\right)_{p}$ is observed percentage composition, with $r=0.63, r^{2}=0.40$ and standard error of 0.256 .

The relationships developed as equations 4.1 to 4.9 were found to be significant at a level of 5 per cent.

4.1.2 Dual Carriageway (Nairobi-Thika Road) Traffic

The Nairobi-Thika Road was chosen for this study because of a number of reasons. The most important of these reasons are: as a dual carriageway it has a higher capacity for traffic than any other trunk road in Kenya thus providing awide range of variation in traffic volumes, speeds, vehicles compositions and geometric design, it passes through land uses which vary from urban through semi-urban to semi-rural which greatly influence traffic movement. These reasons together with the fact that as a tarmac road with a high level of service consequently making it one of the roads in Kenya with a high potential for RTAs made the choice of this road for study a natural or

The Nairobi-Thika Road is a Class A international trunk road according to the road classification of the Ministry of Transport and Communications (MOTC) of Kenya. This road is part of the trunk road designated A2 and is one of the two major trunk routes emanating from Nairobi on which the road system in Kenya's Central Province is focussed (Fig.4.1). The trunk route A2, commences in Nairobi skirts the eastern flanks of the Nyandarua via Thika and Muranga, serving as the through route for all traffic travellin in a north-south direction in the densely populated districts of Kiambu, Muranga, Nyeri and Kirinyaga. Due to the prohibitive deeply gullied topography of the area the main Nairobi-Thika Road is the sole connection between the numerous roads leading into the densely populated districts of Kiambu and Muranga. Nearly all the major urban centres of Central Province are located on or near this route and owe their development to the stimulus to trade provided by this bituminized road. The distance from Nairobi to Thika is some 38 kilometres making the total distance of the dual carriageway studied 76 kilometres. Each carriageway was built as a two lane 6.5 metre wide road. The design speed is 80 kilometres per hour.

4.1.2.1 Data Collection

The data collection points are shown in Fig.4.6.

KENYKTTA

 UNIVERSITYRUIRU

FIG 4.6 NAIROBI - THIKA ROAD DATA COLLECTION

LEGEND
OrRAFFIC CCUNT STATION

The data collected included manual counts, public transport counts, pedestrian and pedal cyclist counts. The manual counts were carried out in order to obtain traffic volumes on the main road, the turning vehicle movements at the most important junctions and roundabouts and the daily traffic variation on the main carriageways. These data were further used in the analysis for developing predictive models for road traffic, road traffic accidents and as a background to road traffic and road traffic accident characteristics. A total of 7 persons carried out the enumaration using tally counters. The counting period for day traffic was between $6.30 \mathrm{a} . \mathrm{m}$. and $6.30 \mathrm{p} . \mathrm{m}$. except for Outer Ring site where it was between $7.00 \mathrm{a} . \mathrm{m}$. and $7.00 \mathrm{p} . \mathrm{m}$. Night counts were also made to complete the 24 -hour count in order to get the proportion of night and day traffic. It thus became necessary to split the counting into two shifts. One shift lasted from $7.00 \mathrm{a} . \mathrm{m}$. to $7.00 \mathrm{p} . \mathrm{m}$. and the second from $7.00 \mathrm{p} . \mathrm{m}$. to $7.00 \mathrm{a} . \mathrm{m}$. The manpower needed at the different locations varied depending on the traffic volume. The field team was driven to their appropriate counting sites in good time to commence the counting. The vehicles were classified into four categories: passenger cars, lorries, buses and matatus. Each half hour the field team had to change to allow for breaks. The counting lasted for two weeks. The major constraints during the observations were fast
vehicle speeds, high volumes and poor lighting at night. Fortunately, these limitations did not affect the quality of the results since the enumerators were trained well before hand to cope with such difficulties

The public transport counts were carried out in order to provide the necessary background data for RTAs analysis, to reveal the importance of this transportion mode and to give specific background information on the usage of matatus (mini-buses) as opposed to buses. Two sections of the Nairobi-Thika Road were chosen as representative. One located near the Safari Park Hotel and another east of Ruiru. The enumeration period was one week for each direction. Day as well as night counts were made. Besides the amount of buses and matatus, the number of passengers were also recorded. A total of 8 enumerators assisted by two policemen carried out the survey. The policemen stopped the buses and matatus on a queue and the enumerators quickly carried out the counting of the passengers. The major constraint was the delays experienced by these vehicles because of stopping. This led to some annoyance to both the operators as well as the passengers particularly at the start of the enumeration period. Poor lighting at night made the enumeration particularly of passengers difficult. These limitations however, did not affect adversely the quality of the results.

Parallel with the vehicular traffic manual counts, pedestrians and pedal cyclists crossing the NairobiThika Road were counted at some locations in order to give an indication of these road users level in order to provide the necessary background for understanding the RTAs related to these road users. The locations chosen were near the Drive-In-Cinema, near the Githurai junction and near the Jujajunction. The enumaration near Githurai was done at half hour intervals. The enumaration for the other two sites was carried out as a whole from 6.30 a.m. to 6.30 p.m. to yield the approximate total number. The major limitation during this enumaration was the large number of pedestrians rushing across the carriageway at certain times, particularly at the start and end of the day.

4.1.2.2 Data Analysis

The directional vehicle movement counts showed that through traffic on Thika Road was dominating at intersections. Outer Ring Road and Garissa Road contributed most of the traffic onto Thika Road. Outer Ring had 40 per cent more than the through traffic. Outer Ring is a distributor road for traffic from Mombasa Road towards Thika and Nyeri area as well as serving the industrial corridor along the road. Garissa Road connects Thika Road to Thika Town an industrial and commercial town of rapid
development. Ruiru urban area with industrial activities equally contributed substantial traffic especially lorries and buses. Most of the buses from Nairobi went through Ruiru Township towards Thika.

Although the enumeration days were different for each site, the peak hours were occurring almost at the same time. The morning peak hour was between $7.30 \mathrm{a} . \mathrm{m}$. and $8.30 \mathrm{a} . \mathrm{m}$. whilst the afternoon peak hour occurred between 4.30 p.m. and 5.30 p.m. with some sections occurring between 5.00 p.m. and 6.00 p.m. (Fig.4.7). The traffic variation at Ruiru (Appendix A.l)differed from this general pattern. It was observed that the heaviest morning traffic was as late as $10.30 \mathrm{a} . \mathrm{m}$. to $11.30 \mathrm{a} . \mathrm{m}$. This enumeration point occurs more or less midway between Nairobi and Thika. Therefore due to its location the peak hour is likely to be influenced by the travel time from Nairobi to Ruiru and Thika to Ruiru. Further, Ruiru has a number of industrial activities which draw traffic from Nairobi and therefore such traffic which leaves Nairobi and possibly Thika at about $9.00 \mathrm{a} . \mathrm{m}$. is likely to lead to this observed traffic pattern. The traffic from Nairobi reached a peak between 6.30 p.m. and 7.30 p.m.

The vehicle counts revealed that the traffic varied only slightly during the weekdays. Sunday

$2000-\frac{\text { COMPARISON OF OBSERVED AND }}{\text { PREDICTED DATA }}$

had the lowest traffic volume at both locations, but on Saturday the traffic at Ruiru on the Thika bound carriageway reached a maximum. The reverse occurred on Monday when traffic towards the city was above average. This traffic pattern can be explained by the recreational traffic. Lorries and buses had a similar daily traffic variation pattern as the total traffic. However, at peak hours the proportion of buses and lorries was less than the off-peak hours of the day. This was not surprising and was confirmed by other surveys, because passenger cars carrying people to and from work at those times were dominating. During the week days, the percentage of heavy traffic (lorries and buses) varied less near Drive-In-Cinema (19-22\%) than near Ruiru (19-30.5\%) of the total traffic.

The results of the public transport counts were influenced by the four week period within which the enumeration was done. During the first weekend of August the high number of buses and matatu passengers was found to be related to pay day. Buses were found to carry the larger proportion of all passengers using public transport. At Safari Park 66\%-79\% of the passengers were found to be bus users and 21\%-34\% matatu users. At Ruiru the figures varied between 53\% and 71% for buses and 29\%-47\% for matatus. Comparing the number of vehicles passing the enumeration sites,
matatus had a higher percentage. The survey revealed that matatus are a vital factor in public transportation on the study road as well as the whole area. The census indicated that many of the vehicles not only matatus but buses as well, were overloaded with passengers. The highest number of passengers recorded in an ordinary matatu (weight 1070 kg) was 24 with others carrying over 20. Ordinary matatus have a passenger capacity varying between 13 and 20. Buses with a capacity of 90 passengers had up to 200 passengers, but most of the buses did not exceed their allowed capacity. From this analysis it was observed that both buses and matatus are necessary in the day to day passenger as well as goods transportation at the same time their overloading being a significant factor linked to RTAs (Appendix A.3).

Parallel with the vehicle counts, pedestrians crossing Thika Road were recorded at some selected locations. Near the Drive-In-Cinema where only the total number was required some 1300 pedestrians crossed the road in connection with the bus-stops sited there. Many pedestrians were also observed to be walking alongside the road on both sides as well as in the median. The highest number of pedestrians crossing the dual carriageway was recorded at the Juja intersection, where some 4000 pedestrians and 250 bicyclists were crossing during the day. This
high number of crossings was related to the fact that industrial use lies on one side of the road whilst housing lies on the other coupled with the fact that the shops are located close to the road on both sides. In order to obtain the variation of pedestrian and pedal cyclist crossings during the day the observations at Githurai had been done at hourly intervals with a total of 2121 pedestrians and 83 (Appendix A.4) pedal cyclists crossing the road. The crossings at Githurai were made in connection with bus-stops and the market located close to the road. Not surprisingly, these crossings are a significant factor related to the RTAs on the study road.

In order to develop apredictive model, one day's data, on traffic observed at Muthaiga, was plotted and smoothed by moving averages (Fig.4.7). Using the technique of harmonic analysis from 3.4 equations 3.60 to 3.63 were used and a sixordinate scheme developed to calculate the coefficients of a suitable periodic function in a trigonometric series to fit the observed data. To test the effect of data smoothing two predictive models were developed, one for unsmoothed data and an improved model for the smoothed data. Both models were analysed for fitness. For the unsmoothed data the predictive model gave the following
expression:

$$
\begin{align*}
\mathrm{q}_{p_{1}}= & 701.667-580 \cos t-46.667 \cos 2 t \\
& +165 \cos 3 t-121.244 \sin t \\
& -144.338 \sin 2 t \tag{4.10}\\
& 40<q 1800
\end{align*}
$$

where, $q_{p_{1}}$ is the predicted number of vehicles per hour at time t. The comparison of observed and predicted data yielded the equation

$$
q_{0}=0.919 q_{p_{1}}+36
$$

with $r=0.91, r^{2}=0.83$ and standard error of 458 where, q_{o} is the observed number of vehicles at time t.

Similarly, the equation for the smoothed data was developed as

$$
\begin{align*}
\mathrm{q}_{p_{2}}= & 715.667-532.667 \cos t-140.667 \cos 2 t \\
& +134.667 \cos 3 t-209.001 \sin t \\
& -162.813 \sin 2 t \tag{4.11}\\
& 40<q<1800
\end{align*}
$$

where, $q_{p_{2}}$ is the predicted number of vehicles per hour at time t. The comparison of observed and predicted data yielded the equation

$$
q_{o}=0.945 q_{p_{2}}+5
$$

with $r=0.93, r^{2}=0.86$ and standard error of 452 where, q_{0} is as above. Both models were tested and found to be statistically significant at the 5 per cent level. The models can be improved by adopting an ordinate scheme greater than six such as 8 or better still using all data in a 24 -ordinate scheme. The effect of data smoothing can be seen in the change in the slope and intercept of the linear regressions obtained above by comparing the observed and peridicted data. The slope improves from 0.919 to 0.945 and the intercept drops from 36 to 5 for the two cases respectively. These two parameters indicate, by the method of final analysis outlined in section 3.5 .2 , that the calibration of the models, particularly that obtained using smoothed data, is quite acceptable and therefore the predictions are close to the observed values since 0.945 is close to 1 and 5 (vehicles) is close to 0.
4.1.3 Single Carriangeway (Kiqanjo-Nanyuki Road)Traffic

The Kiganjo-Nanyuki Road was chosen for this study due to a number of reasons. The most important of these reaons are: the continuation of the trunk road A2 of which the Nairobi-Thika Road studied earlier is part, it serves a typically rural area where 60 per cent of all RTAs occur [15] and is one of the rural tarmac roads which contribute 47
per cent of all RTAs in Kenya, it has a good geometric design implying that the effect of geometric design was likely to be of less significance compared to the effect of junctions and pavement defects, it offered a variety of pavement defects which at the time of study were the major factors influencing RTAs together with the many junctions and accesses to the farms in this rural area.

The Kiganjo-Nanyuki single carriageway road is of class A international trunk road classification according to the MOTC. It is part of the trunk road designated A2 and one of the major trunk routes from Nairobi on which the road system in Kenya's Central Province is focussed (Fig.4.1). The Kiganjo-Nanyuki Road is located on the western side of Mount Kenya, partly in the densely populated Nyeri District of Central Province and partly in Laikipia District of the Rift Valley Province. The road starts at the junction of Kiganjo-Nanyuki Road A2 and the NyeriKiganjo secondary road C75, some 142 kilometres from Nairobi and ends at Nanyuki. The total length of the study road is 48 kilometres. It is a two lane road of 6.1 metres width. The design speed is 80 kilometres per hour.

4.1.3.1 Data Collection

The data collection sites were located as shown
in Fig.4.8. The data collection comprised mainly of classified traffic counts. These vehicle counts were done manually using six persons. The manual counts were carried out in order to obtain traffic volumes on the main road, the turning vehicle movements at the most important junctions and the daily traffic variation and composition on the main road. The data were further used in the analysis for developing predictive models for road traffic, RTAs and as a background to road traffic and road traffic accident characteristics. Tally counters were used during the enumeration. The enumeration phase lasted for two weeks Friday 21-1.83 to Thursday 27.1 .83 and Tuesday 1.2 .83 to Monday 7.2.83. The first week was used for recording the classified manual counts between Naro Moru and Nanyuki whilst the second week was used for the Kiganjo-Naro Moru section. After a day's training the enumerators performed satisfactorily. The enumerators worked in groups of twos for eight-hour shifts with overlaps of up to one hour for changing the teams. The counts included day and night traffic. The major constraint in the enumeration was the poor lighting conditions at night characteristic of rural roads in Kenya. The enumerators were however, equipped with torches and this limitation did not adversely affect the results. The results were plotted for each enumeration site (Appendix A. 2).

LEGEND

- TRAFFIC CCuNt station

$$
\begin{aligned}
& \text { END OF STUDY } \\
& \text { KM } \angle 8+125
\end{aligned}
$$

Parallel with manual counts information on origin and destination was obtained from heavy vehicles to provide a background for RTAs contribution by heavy vehicles.

4.1.3.2 Data Analysis

The traffic flow data obtained was compared with the historical traffic data kept by the MOTC and it was found that there was a general increase in traffic in the area growing at annual rates varying between 4.4 to 7.7 per cent. Through traffic was found to dominate, being as high as 12 times that of traffic turning at junctions. The classified manual counts gave an indication of the daily traffic variations and distribution in the various vehicle types. The analysis of the traffic composition revealed that 42 per cent of the traffic is passenger cars, 30 per cent is light goods vehicles, 20 per cent is medium goods vehicles, 5 per cent is heavy goods vehicles (made up of 2 per cent oil-carrying and 3 per cent non-oil-carrying), 4 per cent buses. Regrouping, it was found that 29 per cent of the total traffic was heavy commercial vehicles. Total night traffic did not exceed 30 per cent of the total traffic. It was noted that during the traffic enumeration the ban on night driving of heavy vehicles was in force. Matatus were round to be four times the number of
buses. Matatus were found to be making more frequent trips than buses plying the same routes.

Peak hour traffic varied at different sites generally recurring between noon and 4.00 p.m. along the whole study road. Due to the night ban on heavy traffic they were almost non-existent except those carrying essential services. Traffic varied only slightly during the weekdays. Sunday had the lowest traffic volume, particularly at Naro Moru. From information on origin and destination it was observed that of all the heavy traffic at Nanyuki, 75 per cent is through traffic. At Kiganjo it was found to be as high as 95 per cent. At Nanyuki 40 per cent of the through traffic had their origin/destination as Meru, with significant amounts going as far north as Isiolo and Marsabit. At Kiganjo, 30 per cent of the through traffic had its origin and destination as Meru, Isiolo and Marsabit. South bound heavy traffic (i.e. Nanyuki to Kiganjo) was found to be 78 per cent and 55 per cent of all through heavy traffic at Kiganjo and Nanyuki respectively.

Using equations 3.60 to 3.63 and a sixordinate scheme of the harmonic analysis predictive models for traffic flow on the single carriageway were developed for both smoothed and unsmoothed data. The predictive model for the observed un-
smoothed traffic flow data was developed as (Fig.4.9)

$$
\begin{align*}
q_{p_{1}}= & 64.167-64.667 \cos t-0.667 \cos 2 t+8.167 \cos 3 t \\
& -24-249 \sin t+6.928 \sin 2 t \tag{4.12}
\end{align*}
$$

$$
40<q<100
$$

where, $q_{p_{1}}$ is the predicted number of vehicles at time t. The comparison of observed and predicted data gave the equation

$$
q_{0}=1.019 q_{p_{1}}+0.354
$$

with $r=0.94, r^{2}=0.88$ and standard error of 51 where, q_{0} is the observed number of vehicles at time t. Similarly, the equation for the smoothed data was developed as

$$
\begin{gather*}
q_{p_{2}}=65.333-63.5 \cos t-2.833 \cos 2 t+11 \cos 3 t \\
-28.001 \sin t+8.372 \sin 2 t \tag{4.13}\\
40<q<100
\end{gather*}
$$

where, $\mathrm{q}_{\mathrm{p}_{2}}$ is the predicted traffic flow at time t. The comparison of observed and predicted data yielded the equation

$$
\begin{gathered}
q_{0}=1.011 q_{p_{2}}-0.217 \\
\text { with } r=0.94, r^{2}=0.89 \text { and standard error of } 51
\end{gathered}
$$

FIG. 6.9 PREDICTION OF AVERAGE TRAFFIC FLOW PER HOUR: KIGANJO-NANYUKI ROAD
where q_{o} is as above. To reduce the standard error larger ordinate schemes than six can be used. The slopes of the regression equations obtained by comparing the predicted and observed data are very nearly ideal (1.019 and l.011). Their corresponding intercepts are very nearly zero (0.354 and - 0.217). Thus for low trafficked rural roads with little flactuations in the traffic flow data smoothing does not affect the prediction models developed. Both models are quite acceptable for prediction purposes.
4.2 Road Traffic Accidents Data Collection and Analysis

4.2.1 National Road Traffic Accidents

4.2.1.1 Data Collection

National RTAs statistics were collected and extracted from the Kenya Traffic Police records and supplemented with those published in the annual Statistical Abstracts prepared and published by the CBSK. The data covered the period 1949-83. For each year the data gathered included: injury RTAs; road fatalities; drivers, motorcyclists, pedal cyclists passengers and pedestrians (killed, seriously and slightly injured); RTAs victims below/above age 16; RTAs distribution by day/night; responsibility for RTAs by class of road user (Appendix A.13).
4.2.1.2 Data Analysis

In order to develop mathematical models each plot of data was smoothed using the technique of moving averages. The curve shape revealed by the smoothed data was then determined. Using the smoothed data as the model data and choosing an appropriate function from Chapter 3 the predictive model, was developed and tested by the method of analysis of comparing observed and predicted data as outlined in 3.5.2. Finally the level of significance for each relationship was determined.

Injury Road Traffic Accidents

For injury RTAs growth models for RTAs and RTAs per 10^{6} vehicle-kilometres were developed. Models predicting RTAs and RTAs per vehicle as functions of motorization were also derived. For injury RTAs the growth model was developed as a logistic curve which the shape of the smoothed data suggested (Fig.4.10). It was necessary to choose a limit for this model and the figure of 8049 which was the maximum observed was used for limit approximation. The model developed then was (using equation 3.15 ;

$$
\begin{equation*}
{ }^{A} p_{1}=\frac{8049}{1+1.984 e^{-0.137 t}} \tag{4.14}
\end{equation*}
$$

where, $A_{p_{1}}$ is predicted injury RTAs at year t. The comparison of observed and predicted data yielded the equation

$$
A_{0}=0.946 A_{P_{1}}+399
$$

where A_{0} is observed injury RTAs, with $r=0.91$, $r^{2}=0.83$ and standard error of 1394. Smoothed data of the number of RTAs were plotted against motorization. Using the finite differences technique for equally spaced data the data suggested a polynomial curve of third degree (Fig.4.11). Using formulae in 8.26 the predictive model was developed as

$$
\begin{align*}
{ }^{\mathrm{A}} \mathrm{P}_{2}= & 6.6981 \times 10^{-8}(\mathrm{~V} / \mathrm{p})^{3}-0.82263376(\mathrm{~V} / \mathrm{p})^{2} \\
& +270.438684(\mathrm{~V} / \mathrm{p}+15342.4929 \tag{4.15}
\end{align*}
$$

where, $A_{p_{2}}$ is the number of injury RTAs and V / p is vehicles per 10^{4} persons. The comparison between observed injury RTAs (A_{0}) and the predicted number of injury RTAs yielded the equation

$$
A_{0}=1.135 A_{p_{2}}-605
$$

with $r=0.92, r^{2}=0.85$ and stnadard error of 1259. The predictions by the two models (4.14, 4.15) are quite consistent ($r^{2}=0.83,0.85$ respectively) but model 4.14 predicts injury RTAs closer to the

FIG 411 PRELATION 日ETWEEN RTAS ANO MOTORIZATION
observed values since the slope of the regression equation (0.946) is closer to the ideal (1) than 1.135 and the intercept of 399 is closer to the origin (0) than -605 . This implies that the polynomial model (4.15) tends to under-predict injury RTA when compared with the logistic model (4.14). Models 4.14 and 4.15 were found to be significant at the 5 per cent level.

Injury RTAs per Vehicle

Injury RTAs per vehicle were plotted against motorization. After data smoothing and testing for polynomial fit the predictive model (Fig.4.12)

$$
\begin{align*}
(\mathrm{A} / \mathrm{V})_{\mathrm{P}}= & 0.656 \times 10^{-12}(\mathrm{~V} / \mathrm{P})^{3}-0.00000484(\mathrm{~V} / \mathrm{P})^{2} \\
& +0.001059 \mathrm{~V} / \mathrm{P}-0.0183 \tag{4.16}
\end{align*}
$$

was developed where, $\left({ }^{A /} V\right)_{P}$ is the number of injury RTAs per vehicle predicted and V / p is degree of motorization. The comparison of observed and predicted data yielded the equation

$$
(A / V)_{0}=1.246(A / V)_{p}-0.0092
$$

where, $(A / V)_{o}$ is observed injury RTAs per vehicle, with $r=0.80, r^{2}=0.64$ and standard error of 0.0034 . The regression equation of observed values compared with predicted values indicates good correlation ($r=0.80$) but the model 4.16 explains only

64 per cent of the variation in data. The regression equation reveals that the intercept (-0.0092) is very near the origin but from the slope (1.246) model 4.16 has a tendency of under-predicting. Model 4.16 was found to be significant at 5 per cent level.

Injury RTAs per 10^{6} Vehicle-Kilometres

Predictive models were also developed along the same lines for injury RTAs per 10^{6} vehiclekilometres. The growth model was developed as (Fig.4.13)

$$
\begin{equation*}
(\mathrm{A} / \mathrm{K})_{\mathrm{P}_{1}}=\frac{1.833}{1+0.085 \mathrm{e}^{0.093 t}} \tag{4.17}
\end{equation*}
$$

where, $(A / K) P_{1}$ is the predicted RTAs per 10^{6} vehiclekilometres at year t and 1.833 the highest observed RTAs per 10^{6} vehicle-kilometres used here as an approximation of the upper limit in the logistic curve model of equation 3.15 . The comparison of observed data $(A / K)_{o}$ and the predicted data by equation 4.17 was found to be related by the equation

$$
(A / K)_{O}=0.890(A / K)_{P_{1}}+0.168
$$

with $r=0.82, r^{2}=0.68$ and standard error of 0.195. The polynomial fit between injury RTAs per 10^{6} vehicle-kilometres and motorization was developed as

FIG. 4.13 GRONTH OF INJURY RTAS PER 10^{6} VEHICLE-KILOMETRES IN KENYA

$$
\begin{align*}
(\mathrm{A} / \mathrm{K})_{P_{2}}= & 0.2728 \times 10^{-10}(\mathrm{~V} / \mathrm{P})^{3}-0.00019613(\mathrm{~V} / \mathrm{P})^{2} \\
& +0.042285(\mathrm{~V} / \mathrm{P})-0.6774 \tag{4.18}
\end{align*}
$$

where $(A / K) p_{2}$ is RTAs per 10^{6} vehicle-kilometres predicted as a function of motorization. The comparison of observed data and predicted data by equation 4.18 yielded the equation

$$
(A / K)_{O}=0.956(A / K)_{P_{2}}+0.082
$$

with $r=0.76, r^{2}=0.58$ and standard error of 0.246 . The two models 4.17 and 4.18 were found to be significant at the 5 per cent level. The regression equations for the predictions obtained by models 4.17 and 4.18 indicate that the predictions are close to the observed since the slopes 0.890 and 0.956 are close to unity and the intercepts 0.168 and 0.082 are close to origin (0). However, model 4.18 gives better predictions than model 4.17 .

RTA Casualties

RTAs casualties are defined as the sum of road deaths and road injuries (serious plus slight). Predictive models were developed based on road casualties in Kenya for the period 1960-83 for which data was available. After data smoothing and plotting of casualties against time (years)
and using equation (3.15) the predictive model for casualties was developed as (Fig.4.14)

$$
\begin{equation*}
c_{p_{1}}=\frac{14749}{1+3.772 e^{-0.137 t}} \tag{4.19}
\end{equation*}
$$

where, $C_{p_{1}}$ is the predicted number of casualties at time t and 14749 was the highest level of casualties observed used here as an approximation of the limit. The comparison between observed data (C_{0}) and predicted data by model 4.19 gave the equation

$$
c_{o}=1.014 c_{p_{1}}+204
$$

with $r=0.94, r^{2}=0.88$ and standard error of 3137. Using formulae 3.26 and plynomial fitting techniques as before the polynomial function predicting casualties asafunction of motorization was determined as

$$
\begin{align*}
\mathrm{C}_{\mathrm{P}_{2}}= & 0.1162 \times 10^{-6}(\mathrm{~V} / \mathrm{P})^{3}-1.10706866\left(\mathrm{~V} / \mathrm{P}^{2}\right)^{2} \\
& +414.989047 \mathrm{~V} / \mathrm{P}-26131.0196 \tag{4.20}
\end{align*}
$$

where $C_{P_{2}}$ is the predicted value of casualties at a given level of motorization (V/P). Observed and predicted values by equation 4.20 were compared and yielded the equation

$$
c_{0}=1.090 c_{p_{2}}-733
$$

COMPARISON OF OBSERVED AND PREDICTED DATA

FIG 4.14 GROWTH IN RTA CASUALTIES IN KENYA
with $r=0.93, r^{2}=0.86$ and standard error of 2690. Models 4.19 and 4.20 were found to be significant at the 5 per cent level. Considering the slopes of the regression equations 1.014 and 1.090 , the predictions by the two models are very close to the observed values. However, model 4.19 has a better calibration than model 4.20 considering that the intercept 204 is closer to the origin than -733 . Both models 4.19 and 4.20 have very consistent predictions considering the correlation and determination coefficients. Therefore, both models are quite acceptable in predicting RTA casualties.

Casualties per Road Traffic Accident

Casualties per RTA (C/A) were plotted against time (Fig.4.15), after data smoothing and using equation 3.15 the predictive model was developed as follows:

$$
\begin{equation*}
(C / A)_{P_{1}}=\frac{1.8}{1+0.584 \mathrm{e}^{-0.095 t}} \tag{4.21}
\end{equation*}
$$

where, 1.8 is the highest observed value used as the approximate limit, $\left({ }^{(C / A)} p_{1}\right.$ is the predicted value of casualties per RTA at time (year) t using equation 4.21 . Comparing observed values ((C/A)) and predicted values the equation below was obtained

$$
(C / A)_{0}=1.219(C / A)_{P_{1}}-0.304
$$

with $r=0.87, r^{2}=0.75$ and standard error of 0.159 The corresponding polynomial model was developed as (Fig.4.16)

$$
\begin{align*}
(C / A)_{P_{2}}= & 0.11831 \times 10^{-10}(\mathrm{~V} / \mathrm{P})^{3}-0.00015(\mathrm{~V} / \mathrm{P})^{2} \\
& +0.04492 \mathrm{~V} / \mathrm{p}-1.7667 \tag{4.22}
\end{align*}
$$

where, $\left({ }^{C / A}\right) \mathrm{P}_{2}$ is predicted casualties per RTA at a given level of motorization (V / P). The observed data were compared with predicted data and yielded the equation

$$
(\mathrm{C} / \mathrm{A})_{0}=1.355(\mathrm{C} / \mathrm{A})_{p_{2}}-0.488
$$

with $r=0.84, r^{2}=0.71$ and standard error of 0.146 . Models 4.21 and 4.22 were found to be significant at the 5 per cent level. Considering the coefficients of correlation and determination for the regression equations for the models 4.21 and 4.22 the predictionsare reasonably consistent $(r=0.87$, $0.84 ; \mathrm{r}^{2}=0.75,0.71$). However considering the slopes (1.219, 1.355) which are greater than 1 and the intercepts ($-0.304,-0.488$) the models have a tendency of over-predicting casualties per RTA initially at low levels and under-predicting at high values. Within the range of the observed data the

FIG.4.16 RELATION BETWEEN CASUALTIES PER RTA AND MOTORIZATION
predictions are quite close to the observed values.

Casualties per 10^{4} Vehicles

Similarly for casualties per 10^{4} vehicles (C / V) the growth model using equation 3.15 was developed as (Fig.4.17)

$$
\begin{equation*}
(\mathrm{C} / \mathrm{V})_{p_{1}}=\frac{713.67}{1+0.964 \mathrm{e}^{-0.048 t}} \tag{4.23}
\end{equation*}
$$

where, 713.67 is the highest value of C / V observed used here to approximate the limit and (C/V) p_{1} is the predicted value by equation 4.23. Comparing observed data $\left((\mathrm{C} / \mathrm{V})_{0}\right)$ and predicted data yielded the equation

$$
(\mathrm{C} / \mathrm{V})_{0}=0.713(\mathrm{C} / \mathrm{V})_{p_{1}}+144.78
$$

with $r=0.52, r^{2}=0.27$ and standard error of 72.47. The polynomial model by similar techniques as, afore-mentioned was determined as (Fig.4.18)
$(\mathrm{C} / \mathrm{V})_{\mathrm{P}_{2}}=8.8191 \times 10^{-8}(\mathrm{~V} / \mathrm{P})^{3}-0.04464166(\mathrm{~V} / \mathrm{P})^{2}$

$$
\begin{equation*}
+12.597057 \mathrm{~V} / \mathrm{P}-337.6169 \tag{4.24}
\end{equation*}
$$

where, $(\mathrm{C} / \mathrm{V})_{\mathrm{p}_{2}}$ is the predicted C / V as a function of motorization (V / P). Using equation 4.24 observed data compared with predicted data
C/V 1000 GROWTH OF CASUALTIES PER 10^{4} VEHICLES IN KENYA

FIG 4.17 GROWTH OF CASUALTIES PER 10^{4} VEHICLES IN KENYA

resulted in the equation

$$
(\mathrm{C} / \mathrm{V})_{0}=1.022(\mathrm{C} / \mathrm{V})_{\mathrm{P}_{2}}-8.841
$$

with $r=0.79, r^{2}=0.62$ and standard error of 71.414. Models 4.23 and 4.24 were found to be significant at the 5 per cent level. Considering the slopes of the regression equations (0.713, 1.022) and their intercepts (144.78, -8.841), model 4.24 is better calibrated than model 4.23 since the slope is close to unity and the intercept is close to 0. Further, considering the coefficients of correlation and determination ($r=0.52,0.79$; $r^{2}=0.27,0.62$) model 4.24 fairs better than model 4.23. Model 4.23 has much lower consistency, as the scatter is quite considerable, than model 4.24.

Road Traffic Accident Deaths

Predictive models were also developed based on road deaths on Kenyan roads for the period 1949-83. After data smoothing and plotting of deaths against time (years) and using equation 3.15 the predictive model for deaths was developed as (Fig.4.19)

$$
\begin{equation*}
D_{p_{1}}=\frac{1720}{1+22.889 e^{-0.174 t}} \tag{4.25}
\end{equation*}
$$

where, $D_{p_{1}}$ is the number of predicted deaths at time t and 1720 was the highest level of deaths observed during the period under study, used here as an approximation of the limit. A higher value (like 2000) than 1720 would alter the limit of saturation and increase the rate of growth of RTA deaths with time. This was tried and the model obtained was used to predict RTA deaths which were compared with the observed value. It was found that the resulting regression equation did not significantly differ from the one obtained using 1720 as the upper limit. The comparison between observed data (D_{0}) and predicted data by model 4.25 gave the equation

$$
D_{0}=0.994 D_{p_{1}}-22
$$

with $r=0.97, r^{2}=0.95$ and standard error of 553. Using formulae 3.26 and polynomial fitting techniques as before the polynomial function predicting deaths as a function of motorization was developed as (Fig.4.20)

$$
\begin{align*}
D_{p_{2}}= & 229.7235-11.960418 \mathrm{~V} / \mathrm{P}+0.14040617(\mathrm{~V} / \mathrm{P})^{2} \\
& +0.18958 \times 10^{-6}(\mathrm{~V} / \mathrm{P})^{3} \tag{4.26}
\end{align*}
$$

Where $D_{p_{2}}$ is the number of predicted deaths at a given degree of motorization V / P. Comparing observed data against predicted data yielded the equation

$$
\mathrm{D}_{0}=1.009 \mathrm{D}_{\mathrm{p}_{2}}-10
$$

with $r=0.97, r^{2}=0.94$ and standard error of 545.
Models 4.25 and 4.26 were found to be significant at the 5 per cent level. Considering the coefficients of correlation and determination of the regression equations $\left(r=0.97 ; r^{2}=0.95,0.94\right)$ the predictions obtained by the two models are very consistent. Considering the slopes (0.994, 1.009) and the intercepts (-22, - l0) the calibration of the two models are very near perfect since these parameters are very close to 1 and 0 respectively. Both models are therefore acceptable as the predicted values are almost identical to the observed values.

RTA Deaths per 10^{4} Persons

Road deaths per 10^{4} persons (D / P) were smoothed and plotted against motorization (Fig.4.21). Using polynomial function fitting techniques as above the predictive model was developed as

$$
(\mathrm{D} / \mathrm{P})_{\mathrm{p}_{1}}=1.9788 \times 10^{-10}(\mathrm{~V} / \mathrm{P})^{3}+0.00001494(\mathrm{~V} / \mathrm{P})^{2}
$$

$$
\begin{equation*}
+0.007762(\mathrm{~V} / \mathrm{P})-0.4127 \tag{4.27}
\end{equation*}
$$

where $\left({ }^{D / P}\right)_{p_{1}}$ is the predicted number of road deaths per 10^{4} persons at a given level of motorization (V / P). Observed data (D/P) owas compared with the predicted data by equation (4.27) yielding

FIG.4.20 RELATION BETWEEN RTA DEATHS AND MOTORIZATION
equation

$$
(\mathrm{D} / \mathrm{P})_{0}=0.923(\mathrm{D} / \mathrm{P})_{\mathrm{P}_{1}}+0.054
$$

with $r=0.93, r^{2}=0.87$ and standard error of 0.31 . Model 4.27 was found to be significant at the 5 per cent level. The regression of predicted values against observed values showed a consistert prediction and strong correlation ($r=0.93, r^{2}=0.87$). The slope (0.923) and intercept (0.054) indicate slight under-prediction for low ranges and slight overprediction for high ranges. The predictions, nonetheless, are close to the observed values and quite acceptable as the slope is close to 1 and the intercept nearly 0 .

RTA Deaths per 10^{4} Vehicles

Further, road deaths per 10^{4} vehicles (D/V) were smoothed and plotted against motorization (Fig.4.22). Again, using the polynomial function fitting techniques as before the predictive model was developed as

$$
\begin{align*}
(\mathrm{D} / \mathrm{V})_{\mathrm{p}_{1}}= & 1.4218 \times 10^{-8}(\mathrm{~V} / \mathrm{P})^{3}-0.00022871(\mathrm{~V} / \mathrm{P})^{2} \\
& +0.577548 \mathrm{~V} / \mathrm{p}-5.4171 \tag{4.28}
\end{align*}
$$

where $(\mathrm{D} / \mathrm{V}) \mathrm{p}_{1}$ is the predicted number of deaths per 10^{4} vehicles for a given level of motorization.

FIG. 4.21 RELATION BETWEEN DEATHS $/ 10^{4}$ PERSONS AND MOTORIZATION

The observed data (D/V) ${ }_{0}$ was compared with the predicted data using equation 4.28 resulting into the equation

$$
(\mathrm{D} / \mathrm{V})_{\mathrm{o}}=0.769(\mathrm{D} / \mathrm{V})_{\mathrm{P}_{1}}+13
$$

with $r=0.77, r^{2}=0.59$ and standard error of 15. Model 4.28 was found to be statistically significant at the 5 per cent level. Considering the regression equation above with coefficients of correlation and determination 0.77 and 0.59 respectively the prediction is not very consistent since it has some scatter. The slope (0.769) and the intercept (13) suggest that at low ranges there is under-prediction of data and at high ranges there is over-prediction. This suggests need for further calibration. Comparing the predictions with those obtained by Jacobs and Smeed model 4.28 is a better fit for Kenyan data (Fig.4.22) and therefore quite acceptable.

RTA Deaths per 10^{6} Vehicle-Kilometres

Similarly predictive models for deaths per 10^{6} vehicle-kilometres (D/K) were developed. Firstly, a growth model was sought. Therefore after data smoothing and plotting (Fig.4.23) and using equation 3.15 the predictive growth model was developed

FIG. 4.22 RELATION BETWEEN RTA DEATHS PER 10^{4} VEHICLES AND MOTORIZATION

$$
\begin{equation*}
(D / K){ }_{p_{1}}=\frac{0.3415}{1+1.9986 \mathrm{e}^{-0.093 t}} \tag{4.29}
\end{equation*}
$$

where, $(D / K)_{p_{1}}$ is the predicted number of road deaths by the logistic curve model per 10^{6} vehicle-kilometres at time t and 0.3415 was the highest observed D / K used here to approximate the limit. Comparing observed data $(D / K)_{o}$ against predicted data gave the equation

$$
(\mathrm{D} / \mathrm{K})_{\mathrm{O}}=0.864(\mathrm{D} / \mathrm{K})_{\mathrm{p}_{1}}+0.032
$$

with $r=0.84, r^{2}=0.71$ and standard error 0.060 . In order to relate road deaths per 10^{6} vehiclekilometres smoothed data was plotted (Fig.4.24) and using the polynomial function fitting techniques as before the predictive model was developed as

$$
\begin{align*}
(\mathrm{D} / \mathrm{K})_{\mathrm{p}_{2}}= & 0.58935 \times 10^{-10}(\mathrm{~V} / \mathrm{p})^{3}-0.00000131(\mathrm{~V} / \mathrm{p})^{2} \\
& +0.00241 \mathrm{~V} / \mathrm{p}-0.0273 \tag{4.30}
\end{align*}
$$

where, $(\mathrm{D} / \mathrm{K})_{P_{2}}$ is predicted data using equation
4.30 at a given level of motorization. Comparison between observed data and predicted data yielded the equation

$$
(\mathrm{D} / \mathrm{K})_{\mathrm{O}}=0.763(\mathrm{D} / \mathrm{K})_{\mathrm{p}_{2}}+0.053
$$

FIG. 423 GROWTH IN DEATHS PER 10^{6} VEH-KMs IN KENYA
with $r=0.77, r^{2}=0.59$ and standard error of 0.059 . The predictive models 4.29 and 4.30 were found to be significant at the 5 per cent level. Considering the coefficients of correlation and determination (r $=0.84,0.77 ; r^{2}=0.71,0.59$) for the two regression equations above the predictions are fairly consistent although there is some scatter. The slopes ($0.864,0.763$) and the intercepts $(0.032,0.053)$ suggest that at low ranges the values of D / K are under-predicted whilst at high ranges the values of D / K are over-predicted. However, since the slopes are reasonably close to 1 and the intercepts sufficiently close to 0 the predictions are acceptable for the data fitted. The slopes and intercepts suggest a possibility of improving the calibration of the models. Model 4.29 makes better prediction than model 4.30.

RTA Injuries

Predictive models were also developed based on RTAs injuries on Kenyan roads for the period 1949-83. After data smoothing and plotting of injuries against time (years) and using model equation 3.15 the predictive growth model for injuries was developed as (Fig.4.25)

$$
\begin{equation*}
I_{p_{1}}=\frac{13526}{1+12.095 \mathrm{e}^{-0.122 t}} \tag{4.31}
\end{equation*}
$$

FIG 4.24 RELATION GEIWEEN DEATHS PER $1 C^{6}$ VEH-KMS AND MOTORIZATION
where, $I_{p_{1}}$ is the predicted number of injuries at time t and 13526 was the highest level of injuries observed, used here as an approximation of the limit. The comparison between observed data I_{0} and predicted data as obtained by using model 4.31 yielded

$$
I_{0}=1.045 \mathrm{I}_{\mathrm{p}_{1}}-171
$$

with $r=0.97, r^{2}=0.93$ and standard error of 3430. Using formulae 3.26 and the polynomial fitting techniques as before the polynomial function predicting injuries as a function of motorization was developed as

$$
\mathrm{I}_{\mathrm{P}_{2}}=1.2305 \times 10^{-6}(\mathrm{~V} / \mathrm{P})^{3}+0.25629308(\mathrm{~V} / \mathrm{P})^{2}
$$

$$
\begin{equation*}
+60.580992 \mathrm{~V} / \mathrm{P}-4849.778 \tag{4.32}
\end{equation*}
$$

where $I_{p_{2}}$ is the predicted number of injuries at a given level of motorization. Comparing observed data against predicted data gave the equation

$$
I_{o}=0.961 I_{p_{2}}+344
$$

with $r=0.94, r^{2}=0.89$ and standard error of 3144. Models 4.31 and 4.32 were found to be significant at the 5 per cent level. Considering the coefficients of correlation and determination for the
regression equations above $\left(r=0.97,0.94 ; r^{2}=0.93\right.$, $0.89)$ the consistency in the predictions is very good. Further, the slopes (1.045, 0.961) and the intercepts $(-171,344)$ suggest that the calibration of the two models is good since the two parameters are sufficiently close to 1 and 0 respectively. The models are therefore quite acceptable for the data fitted.

RTA Injuries per 10^{4} Persons

Then injuries per 10^{4} persons (I/P) were smoothed and plotted (Fig.4.26) against time (years) and using model equation 3.15 the predictive growth model for injuries per 10^{4} persons was developed as

$$
\begin{equation*}
(I / P){ }_{P_{1}}=\frac{8.483}{1+2.788 e^{-0.086 t}} \tag{4.33}
\end{equation*}
$$

where, $(I / P) p_{1}$ is the predicted number of injuries at time t and 8.483 was the highest level of injuries per 10^{4} persons observed, used here as an approximation of the limit. The comparison between observed data (I/p) ${ }_{\circ}$ and predicted data as obtained by using model (4.33) yielded

$$
(I / P)_{0}=1.047(I / P)_{P_{1}}-0.149
$$

with $r=0.91, r^{2}=0.83$ and standard error of 1.509 .
Using formulae (3.26) and the polynomial function

fitting techniques the predictive model relating injuries per 10^{4} persons and motorization (Fig.4.27) was developed as

$$
\begin{align*}
(\mathrm{I} / \mathrm{P})_{\mathrm{P}_{2}}= & 9.869 \times 10^{-10}(\mathrm{~V} / \mathrm{P})^{3}-5.156 \times 10^{-4}(\mathrm{~V} / \mathrm{P})^{2} \\
& +0.174566 \mathrm{~V} / \mathrm{P}-7.9035 \tag{4.34}
\end{align*}
$$

where, $(I / P)_{p_{2}}$ is the predicted number of injuries per 10^{4} persons using model (4.34). Comparing observed and predicted data yielded the equation

$$
(\mathrm{I} / \mathrm{P})_{\mathrm{O}}=0.885(\mathrm{I} / \mathrm{P})_{\mathrm{p}_{2}}+0.764
$$

with $r=0.87, r^{2}=0.76$ and standard error of 1.742. Models 4.33 and 4.34 were found to be significant at the 5 per cent level. The coefficients of correlation and determination for the regression equations above indicate strong correlation between predicted and observed values as well as consistency in prediction. The slopes $(1.047,0885)$ and the intercepts $(-0.149,0.764)$ imply good calibration of the models. Model 4.33 however, is closer to the ideal (slope $=1$, intercept $=0$) than model 4.34 which tends to under-predict at low ranges and over-predict at high ranges of injuries per 10^{4} persons.

Injuries per 10^{4} Vehicles

Similarly, a predictive growth model relating injuries per 10^{4} vehicles (I/V) to time (years) was developed as (Fig.4.28)

$$
\begin{equation*}
(I / V)_{p_{1}}=\frac{664}{1+0.916 \mathrm{e}^{-0.035 t}} \tag{4.35}
\end{equation*}
$$

where, ${ }^{(0 / \mathrm{V})} \mathrm{p}_{1}$ is the predicted number of injuries per 10^{4} vehicles using model 4.34 . The observed data $(I / V)_{o}$ was compared with the predicted to yield the equation

$$
(\mathrm{I} / \mathrm{V})_{0}=0.734(\mathrm{I} / \mathrm{V})_{p_{1}}+117
$$

with $r=0.44, r^{2}=0.19$ and standard error of 54. By polynomial function fitting techniques the predictive model relating injuries per 10^{4} vehicles and motorization (Fig.4.29) was developed as

$$
\begin{align*}
(\mathrm{I} / \mathrm{V})_{\mathrm{P}_{2}}= & 6.0845 \times 10^{-8}(\mathrm{~V} / \mathrm{P})^{3}-0.0471716(\mathrm{~V} / \mathrm{P})^{2} \\
& +12.4842 \mathrm{~V} / \mathrm{P}-337.0343 \tag{4.36}
\end{align*}
$$

where, $:(I / V){ }_{p_{2}}$ is the predicted number of injuries per 10^{4} vehicles using model (4.36). Comparing observed and predicted data gave the equation

$$
(I /)_{0}=1.103(I / P)_{P_{2}}-55
$$

FIG. 427 RELATION BETWEEN INJURIES PER 10^{4} PERSONS AND MOTORIZATION

FIG 4.28 GROWTH IN RTA INJURIES PER 10^{4} VEHICLES IN KENYA
with $r=0.78, r^{2}=0.60$ and standard error of 56. Models 4.35 and 4.36 were found to be significant at the 5 per cent level. The regression equation obtained by using model 4.35 for prediction shows that the prediction is not very consistent as the scatter is very considerable and correlation, between observed and predicted values, weak $\left(r=0.44, r^{2}=0.19\right)$. However, the slope (0.734) and the intercept (117 are fair indicating a fair calibration. Model 4.36 has a better calibration than model 4.35 considering that the slope (1.103) is much nearer to 1 and the intercept (-55) is much closer to 0 than the corresponding parameters for model 4.35. Therefore, model 4.36 is more acceptable for predicting injuries per 10^{4} vehicles than model 4.35.

Injuries per 10^{6} Vehicle-Kilometres

Injuries per 10^{6} vehicle-kilometres were smoothed, plotted (Fig.4.30) and modelled using equation 3.26 yielding the predictive growth model

$$
\begin{equation*}
(I / K)_{p_{1}}=\frac{2.657}{1+0.9897 e^{-0.042 t}} \tag{4.37}
\end{equation*}
$$

where, $(I / K) p_{1}$ is the predicted number of injuries per 10^{6} vehicle-kilometres, 2.657 is the limit

approximated from the observed highest number of injuries per 10^{6} vehicle-kilometres. The observed data $(I / K)_{o}$ was compared with the predicted data and yielded the equation

$$
(I / K)_{0}=0.924(I / K)_{P_{1}}+0.084
$$

with $r=0.69, r^{2}=0.47$ and standard error of 0.239 . In order to relate injuries per 10^{6} vehicle-kilometres to motorization, smoothed data was plotted (Fig.4.31) and modelled using polynomial curve fitting techniques as before yielding the equation

$$
\begin{align*}
(\mathrm{I} / \mathrm{K})_{\mathrm{P}_{2}}= & 2.2162 \times 10^{-10}(\mathrm{~V} / \mathrm{P})^{3}--0.00014687(\mathrm{~V} / \mathrm{P})^{2} \\
& +0.041751(\mathrm{~V} / \mathrm{P})-1.0039 \tag{4.38}
\end{align*}
$$

where, $(I / K) p_{2}$ is the predicted number of injuries per 10^{6} vehicle-kilometres using equation 4.38 . Comparing observed and predicted data yielded the equation

$$
(I / K)_{0}=1.020(I / K){ }_{P_{2}}-0.052
$$

with $r=0.77, r^{2}=0.59$ and standard error of 0.242 . Models 4.37 and 4.38 were found to be significant at the 5 per cent level. The models show a fair degree of consistency in their prediction ($r=0.69,0.77 ; r^{2}=0.47,0.59$). There is however, some scatter in the plot of predicted values against

observed data. Considering the slopes (0.924, 1.020) and the intercepts $(0.084,-0.052)$ of the regression equations above there is indication that the two models are well calibrated as the two parameters are very close to the ideal values $(1,0)$ respectively. The models are quite acceptable therefore.

Severity Index

Severity index is defined as the ratio of road deaths to casualties. This ratio was converted to percentage, smoothed and plotted against time (years) (Fig.4.32). Using equation 3.26 the predictive growth model was developed as

$$
\begin{equation*}
\rho_{p_{1}}=\frac{16.1}{1+0.995 \mathrm{e}^{-0.051 t}} \tag{4.39}
\end{equation*}
$$

where, $\rho_{p_{1}}$ is the predicted severity index at time t using equation 4.49 . The observed data ρ_{0} was compared with the predicted data and yielded the equation

$$
\rho_{0}=0.643 \rho_{p_{1}}+8.9
$$

with $r=0.53, r^{2}=0.29$ and standard error of
1.65. Using smoothed data, plotting it against motorization (Fig.4.33) and on the basis of polynomial function fitting techniques the

predictive model developed was

$$
\rho_{\mathrm{p}_{2}}=0.106 \times 10^{-8}(\mathrm{~V} / \mathrm{P})^{3}+0.00121676(\mathrm{~V} / \mathrm{P})^{2}
$$

$$
\begin{equation*}
-0.2271 \mathrm{~V} / \mathrm{p}+20.8768 \tag{4.40}
\end{equation*}
$$

where, $\rho_{p_{2}}$ is the predicted severity index using model 4.40. Comparing observed and predicted data yielded the equation

$$
\rho_{0}=0.833 \rho_{p_{2}}+1.655
$$

with $r=0.63, r^{2}=0.40$ and standard error of 1.508 . Both predictive models 4.39 and 4.40 were found to be statistically significant at the 5 per cent level. The corresponding regression eqations above reveal considerable scatter, of the plot of predicted values against observed values $\left(r=0.53,0.63 ; r^{2}=0.29\right.$, 0.40), making the correlation a rather weak one particularly for model 4.39. The slopes $0.643,0.833$ of the regression equations and the intercepts (3.9, 1.655) suggest under-prediction and over-prediction of data, by the models, at low ranges and high ranges respectively. However, for the range of data used the models could be improved in calibration as the slopes and intercepts suggest.

Further National RTA Characteristics

Further national RTA characteristics were
modelled relating to the percentage distribution of RTAs by day and night, percentage responsibility for RTAs, percentage distribution of those killed above/below age 16 , percentage distribution of RTAs victims killed and injured. For each of these a predictive growth model was sought. In order to develop such models the available data, which covered the periods 1960-83 for some of them and 1973-83 for others,were smoothed using the technique of moving averages with $\mathrm{N}=5$ years (equation 3.57). These data were then plotted and models developed using trend curve fitting techniques by trying each of the following models: linear model (3.19), exponential model (3.38), logarithmic model (3.42) and the power model (3.46). The model that best described the trends was the logarithmic model. Logarithmic time series trend curves were then developed accordingly for each of the above mentioned characteristics.

RTAs Distribution by Day and Night

For the growth of percentage distribution of RTAs by day and night in Kenya, the predictive model developed was (Fig.4.34)

$$
\begin{equation*}
\left((\%)_{A_{d}}\right)^{p}=81.073-5.656 \text { lnt } \tag{4.41}
\end{equation*}
$$

$$
\text { with } r=-0.76, r^{2}=0.58 \text {, where }\left((\%)_{A_{d}}\right) \text { is the }
$$

FIG 4.33 RELATION BETWEEN SEVERITY INDEX ANO MOTORIZATION
predicted percentage at year t. The comparison of observed data $\left(\left(\frac{y}{b}\right)_{A_{d}}\right)_{o}$ and predicted data yielded the equation

$$
\left((\%)_{A_{d}}\right)_{o}=0.754\left({ }^{(\%)} \mathrm{A}_{\mathrm{d}}\right)_{\mathrm{p}}+17.004
$$

with $r=0.45, r^{2}=0.20$ and standard error of
4.674. The relationship described by equation 4.41 was found to be statistically significant at the 5 per cent level. Considering the coefficients of correlation and determination $\left(r=0.45\right.$, or $\left.{ }^{2}=0.20\right)$ the prediction is not very consistent and the correlation is weak revealing considerable scatter. The slope (0.754) and the intercept (17.004) suggest under-prediction at low ranges and over-prediction at high ranges. The calibration could therefore be improved with further data observation over the years.

RTAs Responsibility

Predictive models relating to the growth in percentage RTAs responsibility for classes of vehicle types, road user categories or groups of these were developed and tested for fitness of the trend curve and statistical significance. In order to compare percentage responsibility with percentage composition for each category, the percentage composition data had also been smoothed and plotted on the same graph. For RTA responsibility by cars and utilities
the trend curve was developed as the model given by the equation (Fig.4.35)

$$
\begin{equation*}
\left((\%)_{\mathrm{cu}}\right)_{\mathrm{p}}=74.161-1.923 \text { lnt } \tag{4.42}
\end{equation*}
$$

with $r=-0.70, r^{2}=0.49$, where (\%) $\mathrm{cu} p$ is the predicted percentage responsibility by cars and utilities for year t as predicted by equation 4.42. Comparing observed data (\%) cu$)_{0}$ and predicted data yield the equation

$$
((8) \mathrm{cu})_{\mathrm{o}}=0.887((\mathrm{y}) \mathrm{cu})_{\mathrm{p}}+14.661
$$

with $r=0.43, r^{2}=0.18$ and standard error of 1.59. Equation 4.42 was found to be statistically significant at 5 per cent level. The coefficients of correlation $(r=0.43)$ and determination $\left(r^{2}=0.18\right)$ show that the prediction is not very consistent and the correlation is weak due to the considerable scatter. The slope (0.787) and the intercept (14.661) indicate under-prediction at low ranges and over-prediction at high ranges. The calibration could be further improved with additional data observation over the years

For RTA responsibility by buses, lorries and taxis the trend curve developed is represented by

the equation (Fig.4.36)

$$
\begin{align*}
&\left((\%)_{\mathrm{blT'}}\right)_{p}=18.268+2.652 \text { lnt } \tag{4.43}\\
& \text { with } r=0.78, r^{2} \\
& \text { where } \quad(\%)_{b l T} \quad \text { is }
\end{align*}
$$

the predicted percentage responsibility by buses, lorries and taxis by equation 4.43 . Comparing observed data $\left({ }^{(\%)} \mathrm{b} \ell \mathrm{T}^{\prime}\right)_{0}$ and predicted data yielded

$$
\left((\%)_{\mathrm{b} \ell \mathrm{~T}^{\prime}}\right)_{\mathrm{o}}=0.767\left((\%)_{\mathrm{b} \ell \mathrm{~T}^{\prime}}\right)_{\mathrm{p}}+5.894
$$

with $r=0.53, r^{2}=0.29$ and standard error of 2.19 .
Model 4.43 was found to be statistically significant at the 5 per cent level. The coefficients of correlation $(r=0.53)$ and determination ($r^{2}=0.29$) reveal that the correlation between predicted and observed values is fair but the consistency of prediction is not very strong as there is considerable scatter. The slope (0.767) and the intercept (5.894) indicate need for further calibration with additional data. Model 4.43 has a tendency to under-predict at low ranges and to overpredict at high ranges as seen from the slope and intercept.

motorcycles was developed as the growth model
(Fig.4.37)

$$
\begin{equation*}
\left((\%)_{m}\right)_{p}=6.956-0-552 \text { lnt } \tag{4.44}
\end{equation*}
$$

with $r=0.042, r^{2}=0.18$ where $\left((\%)_{m}\right)_{p}$ is the predicted percentage responsibility of motorcycles. The comparison of observed ${ }^{(\%)} \mathrm{m}{ }_{0}$ and predicted data yielded the equation

$$
((8) \mathrm{m})_{0}=0.868 \quad\left((8)_{\mathrm{m}}\right)_{\mathrm{p}}+0.727
$$

with $r=0.30, r^{2}=0.09$ and standard error of 0.453. Model 4.44 was found to be statistically significant at 10 per cent. The coefficients of correlation $(r=0.30)$ and determination $\left(r^{2}=0.09\right)$ suggest very weak correlation between predicted and observed values, very considerable scatter and therefore lack of consistency in prediction. However, the model calibration (slope $=0.869$, intercept $=0.727$) indicate that the predictions are close to ideal (slope $=1$, intercept $=0$).

The growth model representing pedal cyclists percentage responsibility (Fig.4.38) was developed as the equation

$$
\begin{equation*}
\left((\%)_{b^{\prime}}\right)_{p}=11.748-2.003 \ln t \tag{4.45}
\end{equation*}
$$

FIG.1. 37 PERCENTAGE COMPOSITION AND RESPONSIBILITY FOR RTAS OF MOTORCYCLES IN KENYA
with $r=0.94, r^{2}=0.89$ where, $\left(\left(\frac{\%}{0}\right)_{b}\right)_{p}$ is the predicted percentage for pedal cyclists. Comparing the observed data $\left(\left(\frac{8}{(}\right)_{b}\right)_{o}$ and the predicted yielded the equation

$$
\left((z)_{b^{\prime}}\right)=0.979\left((\%)_{b^{\prime}}\right)_{\mathrm{p}}+0.040
$$

with $r=0.76, r^{2}=0.57$ and standard error of 1.655 . The level of significance for model 4.45 was found to be 5 per cent. The coefficients of correlation $(r=0.76)$ and determination $\left(r^{2}=0.57\right)$ show that there is consistency in the prediction. The slope (0.979) and the intercept (0.040) are close to the ideal values (1,0 respectively). This model is therefore quite acceptable as the consistency and calibration are good. This further implies that the responsibility for RTAs by pedal cyclists have strongly followed the trend given by equation 4.45 .

For the growth in handcarts and animals percentage responsibility the trend curve was developed as (Fig.4.38)

$$
\begin{equation*}
\left((\%)_{\mathrm{ha}}\right)_{\mathrm{p}}=3.526-0.4 \ln t \tag{4.46}
\end{equation*}
$$

with $r=-0.52, r^{2}=0.27$ where, $\left({ }^{(\%)} \mathrm{ha}\right)_{p}$ is the predicted percentage responsibility for handcarts and animals in year t. Comparing observed data (\%) ha
and predicted data yielded

$$
\left((\%)_{\mathrm{ha}}\right)_{\mathrm{O}}=0.596 \quad\left((8)_{\mathrm{ha}}\right)_{\mathrm{p}}+0.983
$$

with $r=0.15, r^{2}=0.02$ and standard error of 0.331 . Model 4.46 was found to be statistically significant at 25 per cent level. The coefficients of correlation $(\mathrm{r}=0.15)$ and determination $\left(\mathrm{r}^{2}=0.02\right)$ show that the predicted and observed values are not well correlated. This implies that the prediction is not consistent and the scatter is very considerable. This further implies that the responsibility for RTAs of animals and handcarts has remained stable. The slope (0.596) and the intercept (0.983) suggest a need for further calibration.

Finally, the growth model for pedestrian together with passenger percentage responsibility was developed as (Fig.4.38)

$$
\begin{equation*}
\left((\%)_{w p}\right)_{p}=7.016+9.073 \text { lnt } \tag{4.47}
\end{equation*}
$$

with $r=082, \mathrm{r}^{2}=0.67$ where, ((\%) $\left.\mathrm{wp}_{\mathrm{p}}\right)_{\text {is the pre- }}$ dicted percentage using equation 4.47 . Comparing observed data $\left({ }^{(\%)_{w p}}\right)_{0}$ and predicted data gave the equation

$$
\left((\%)_{w p}\right)_{o}=0.736 \quad\left((\%)_{w p}\right)_{p}+7.496
$$

with $r=0.53, r^{2}=0.28$ and standard error of 7.498 . The model relationship described by equation 4.47 was found to be statistically significant at 5 per cent level. The coefficients of correlation ($r=0.53$) and determination $\left(r^{2}=0.28\right)$ suggest fair correlation. Further, the consistency of prediction is affected adversely by the very considerable scatter. The slope (0.736) and the intercept (7.496) show that the model (4.47) has a tendency of under-predicting at low ranges and over-predicting at high ranges. The responsibility of pedestrians and passengers for RTAs has also followed the trend suggested by model 4.47 fairly closely. Thus the responsibility by pedal cyclists, pedestrians and passengers, have shown definite tendencies in Kenya.

Distribution by Age of RTA Victims killed

The growth model for the percentage distribution of those killed above age 16 (Fig.4.39) was developed using the logarithmic model as described above (equation 3.42). The model is described by the equation

$$
\begin{equation*}
\left((\%)_{D_{16+}}\right)_{p}=86.051-2.884 \quad \ln t \tag{4.48}
\end{equation*}
$$

with $r=-0.72, r^{2}=0.52$ where, $\quad\left({ }^{\left.(\%)_{D_{16+}}\right)_{p} \text { is the }}\right.$ predicted percentage using equation 4.48 . Comparing

 the equation

$$
\left({ }^{\left.(\%)_{D_{16+}}\right)_{o}=0.211\left((\%) D_{16+}\right)_{p}+64.905}\right.
$$

with $r=0.05, r^{2}=0.003$ and standard error 1.547 . The relationship in equation (4.48) was found not to be statistically significant. Considering that the predicted values and the observed values are not correlated ($r=0.05, r^{2}=0.003$) model 4.48 requires more data for recalibration. The slope (0.211) and intercept (64.905) are far from ideal.

Distribution by Age of RTA Victims Injured

The growth model for the percentage distribution of those injured above age 16 (Fig.4.39) was found to be statistically significant at the per cent level of 20. The model was developed as

$$
\begin{equation*}
\left((\%)_{I_{16+}}\right)_{p}=91.01-2.468 \text { lnt } \tag{4.49}
\end{equation*}
$$

with $r=-0.81, r^{2}=0.66$ where, $\left({ }^{(\%)} \bar{I}_{16+}\right)_{\mathrm{p}}$ is the predicted percentage using equation 4.49 . The observed data $\left({ }^{(\%)^{\prime}} I_{16+}\right)_{o}$ compared with predicted data gave the equation

```
                        - 187 -
\[
\left((\%)^{\left(I_{16+}\right.}\right)_{0}=0.856 \quad\left((\%)_{I_{16+}}\right)_{p}+13.117
\]
with \(r=0.40, r^{2}=0.16\) and standard error of 1.808 . Considering the coefficients of correlation ( \(r=0.40\) ) and determination \(\left(\mathrm{r}^{2}=0.16\right)\) the scatter of the predicted against observed values is very considerable and the correlation weak. This implies that the prediction by model 4.49 is not very consistent and requires additional data observation. The calibration is otherwise tending to the ideal considering that the slope (0.856) and the intercept (13.117) are approaching 1 and 0 respectively. With additional data the characteristic trend curve could be improved. .
```


Distribution by Class of Road User of RTA Victims Killed

The growth in percentage distribution of RTA drivers killed was developed into the model represented by (Fig.4.40) the equation

$$
\begin{equation*}
\left((\%)_{D_{D^{\prime}}}\right)_{p}=14.695-0.541 \ln t \tag{4.50}
\end{equation*}
$$

with $r=-0.44, r^{2}=0.19$ where, $\left((\%)_{D_{D}}\right)_{p}$ is the predicted percentage distribution obtained by using equation 4.50 . Comparing observed $\left((\%)_{D_{D}}\right)_{0}$ and predicted data yielded the equation

$$
\left((\%)_{D_{D^{\prime}}}\right)_{0}=3.147 \quad\left((\%)_{D_{D^{\prime}}}\right)_{p}-30.145
$$

with $r=0.45, r^{2}=0.20$ and standard error of 0.398 . The relationship in equation 4.50 was found to be statistically significant at the 10 per cent level. The correlation coefficient ($r=0.45$) and the coefficient of determination $\left(r^{2}=0.20\right)$ show that there is considerable scatter and therefore the prediction is not very consistent. The slope (3.147) and the intercept (-30.145) indicate that the calibration of the model is far from ideal and requires additional data to be obtained over the future. The tendency shown by equation 50 is therefore a weak one.

The percentage distribution of motorcyclist killed was developed as the growth model (Fig.4.40)

$$
\begin{equation*}
\left((\%)_{D_{M}}\right)_{p}=1.778 \text { \&nt }-0.277 \tag{4.51}
\end{equation*}
$$

with $r=0.90, r^{2}=0.80$ where, $\left((\%)_{D_{M}}\right)_{p}$ is the percentage distribution predicted by equation 4.51 . Comparing observed values $\quad\left(\left.{ }^{(\%)^{\nu_{M}}}\right|_{\mathrm{O}}\right.$ and predicted values gave the relationship

$$
\left((\%) \mathrm{D}_{\mathrm{M}}\right)_{\mathrm{O}}=0.63 \quad\left({ }^{(\%)} \mathrm{D}_{\mathrm{M}}\right)_{\mathrm{p}}+0.884
$$

with $r=0.36, r^{2}=0.13$ and standard error of 1.303 . Equation 4.51 was found to be statistically significant at the 20 per cent level. The trend shown by equation 4.51 is a strong one ($r=0.90, r^{2}=0.80$). However the prediction is not very consistent $\left(r=0.36, r^{2}=0.13\right)$ as there is very considerable scatter. The slope (0.63) and the intercept (0.884) are tending to the required slope (1) and intercept (0). With further data observation the calibration could be improved even more.

The growth in percentage distribution of pedal cyclists killed was developed as the model (Fig.4.40)

$$
\begin{equation*}
\left((\%)_{D_{B}}\right)_{p}=10.397-3.049 \text { ln } t \tag{4.52}
\end{equation*}
$$

with $r=0.38, r^{2}=0.15$ where, $\quad\left({ }^{(\%)_{D_{\bar{B}}}}\right)_{p}$ is the predicted value of the percentage distribution of pedal cyclists killed. Comparing observed data $\left.\left({ }^{(\%}\right)_{D_{B}}\right)_{o}$ and predicted data yielded the equation

$$
\left((\%) \mathrm{D}_{\mathrm{B}^{\prime}}\right)_{0}=0.42\left((\%)_{\mathrm{D}_{\mathrm{B}^{\prime}}}\right)_{\mathrm{P}}+3.161
$$

with $r=0.38, r^{2}=0.15$ and standard error of 2.235, the relationship being significant at the 20 per cent level. The trend shown in equation 4.52 is weak. This has led to weak correlation between predicted and observed values as shown by
the coefficients of correlation (0.38) and determination (0.15) for the regression of predicted values against observed values. The considerable scatter has led also to very poor consistency in prediction resulting in poor calibration as seen by the slope (0.42) being far from 1 and the intercept (3.161) being far from 0. This implies need for additional data over the coming years.

The growth in percentage distribution of pedestrians killed in RTAs was developed as the model (Fig. 4.40)

$$
\begin{gather*}
\left((\%)_{D_{W}}\right)_{P}=39.74+2.023 \ln t \tag{4.53}\\
\text { with } r=0.87, r^{2}=0.77 \text { where, }(4.53
\end{gather*}
$$ percentage distribution predicted of pedestrians killed. Comparing observed $\left(^{(\%)^{D_{W}}}{ }\right.$ and predicted data yielded the equation

$$
\left((\%)_{D_{W}}\right)_{0}=0.925 \quad\left((\%)_{D_{W}}\right)_{\mathrm{P}}+3.197
$$

with $r=0.45, r^{2}=0.20$ and standard error of 1.484, the relationship being significant at 10 per cent level. The trend shown in model equation 4.53 was the strongest in terms of the distribution of killed RTA victims. This shows the significant unfortunate role played by pedestrians in RTAs in

Kenya on the one hand and on the other, the need for concentrating on pedestrian safety for the reduction of RTAs in Kenya. The slope (0.925) and the intercept (3.197) show that the calibration is very near the ideal (l, 0 respectively). The consistency can be improved however by further data observation as the scatter is very considerable (r = 0.45), $\left.r^{2}=0.20\right)$.

The growth in percentage distribution of passengers killed in RTAs was determined as the model equation (Fig.4.40)

$$
\begin{equation*}
\left((\%)_{D_{P}}\right)_{\mathrm{p}}=34.240+0.434 \ln t \tag{4.54}
\end{equation*}
$$

with $r=0.37, r^{2}=0.14$ where, $\left((\%)_{D_{P}}\right)_{p}$ is the predicted percentage in equation 4.54 . The observed data $\left((\%)_{D_{P}}\right)_{0}$ and the predicted data were compared and yielded the equation

$$
\left((\%)_{D_{O}}\right)_{0}=1.339 \quad\left((8)_{D_{P}}\right)_{p}-11.235
$$

with $r=0.21, r^{2}=0.04$ and standard error of 0.319 . The relationship described by equation 5.54 was found to be significant at 30 per cent level. The regression equation of the predicted and observed values indicates by slope (1.339) and intercept (-11.235) that the


```
calibration is fair. However, the coefficient of
correlation (0.2l) and determination (0.04) indicate
very considerable scatter and therefore very little
consistency in prediction. This is expected since the
trend in 4.54 is rather weak. The model could be
improved with additional future observations.
```


Distribution by Class of Road User of RTA Victims Injured

Growth models were developed for the percentage distribution of road users injured in RTAs (Fig.4.4l) using techniques as described above. For injured drivers the model representing the distribution growth is

$$
\begin{equation*}
\left((\%) I_{D^{\prime}}\right)_{p}=19.19-2.251 \quad \ln t \tag{4.55}
\end{equation*}
$$

with $r=-0.75, r^{2}=0.56$ where, $\left({ }^{(\%)^{\prime}} I_{\bar{D}}\right)_{p}$ is the predicted percentage distribution in equation (4.55). The comparison of observed data
${ }^{(\%)} I_{D^{\prime}} o^{\text {and }}$ predicted data was found to be represented by the equation

$$
\left({ }^{(\%)} I_{D^{\prime}}\right)_{o}=1.516 \quad\left((\%)_{I_{D^{\prime}}}\right)_{p}-8.112
$$

with $r=0.59, r^{2}=0.35$ and standard error of 1.65 ,

the relationship being significant at the 5 per cent level. The trend shown by model 4.55 is fair as well as the correlation (0.59) of the predicted values against observed, but the consistency of prediction is low as the scatter is very considerable ($r^{2}=0.35$). The slope (1.516) and intercept (-8.112) indicate over-prediction at low ranges and under-prediction at high ranges. The model could improve in calibration with additional future data.

For motorcyclists the model developed is

$$
\begin{equation*}
\left((\%) I_{M}\right)_{\mathrm{p}}=2.216+1.131 \text { lnt } \tag{4.56}
\end{equation*}
$$

with $r=0.83, r^{2}=0.69$ where $\quad\left({ }^{(\%)} I_{M}\right)_{p}$ is the predicted percentage distribution by equation 4.56 . Comparing observed data $\left({ }^{(\%)} I_{M}\right)_{o}$ and predicted data gave the equation

$$
\left((8)_{I_{M}}\right)_{0}=4.202-0.052 \quad\left((8)_{I_{M}}\right)_{p}
$$

with $r=-0.02, r^{2}=0$, standard error of 0.673 and the relationship in equation (4.56) being found not significant statistically. Although the trend shown by model equation 4.56 is good $\left(r=0.82, r^{2}=0.69\right)$, there is no correlation between predicted values and observed values $\left(r=-0.02, r^{2}=0\right)$ as the scatter is very considerable. This suggests further calibration

```
with additional data.
```

The model for the growth in percentage distribution of pedal cyclists injured in RTAs was developed as

$$
\begin{equation*}
\left((8)_{I_{B}}\right)_{p}=4.838+0.723 \text { ln } t \tag{4.57}
\end{equation*}
$$

with $r=0.67, r^{2}=0.44$ where, $\left({ }^{(\%)} I_{B^{\prime}}\right)_{p}$ is the predicted value by equation 4.57 . Comparing observec data $\left({ }^{(\%)_{B^{\prime}}}\right)_{0}$ and predicted data gave the equation

$$
\left({ }^{(\%)} I_{B^{\prime}}\right)_{o}=6.175-0.057\left({ }^{(\%)} I_{B^{\prime}}\right)_{\mathrm{p}}
$$

with $r=-0.01, r^{2}=0$ and standard error of 0.529 . The relationship in equation 4.57 was found not to be statistically significant. The model equation shows a fair trend. Due to the scatter of the data the slope (-0.057) and the intercept (6.175) are far from ideal. This suggests further data observation and recalibration.

The growth in percentage distribution of pedestrians injured in RTAs was modelled as

$$
\begin{equation*}
\left((\%)_{I_{W}}\right)_{p}=29.642-4.72 \ln t \tag{4.58}
\end{equation*}
$$

with $r=-0.86, r^{2}=0.75$ where, $\left({ }^{(\%)^{I}}{ }_{W}\right)_{p}$ is the predicted value of the percentage distribution by equation 4.58 . Comparing observed $\left({ }^{(8)_{I_{W}}}\right)_{0}$ data and predicted data yielded the equation

$$
\left((8) I_{W}\right)_{0}=0.486\left((8) I_{W}\right)_{p}+10.677
$$

with $r=0.30, r^{2}=0.09$ standard error of 3.46 , the relationship in equation 4.58 being statistically significant at 20 per cent level. The trend shown by model equation 4.58 is good but due to the considerable scatter in the predicted values against observed values the consistency of prediction is poor. The slope (0.486) and intercept (10.677) indicate much under-prediction at low ranges and over-prediction at high values. This implies need for further calibration with additional data.

Finally, the growth in percentage distribution of passengers injured in RTAs was modelled as

$$
\left((\%)_{I_{P}}\right)_{p}=52.089+0.367 \text { थn } t
$$

with $r=0.18, r^{2}=0.03$ where, $\left({ }^{(\%)} I_{p}\right)_{p}$ is the predicted percentage distribution of passengers injured as predicted by the model in equation 4.59

The observed data $\left({ }^{\left.(\%)_{I_{P}}\right)}\right.$ o was compared with the predicted data to yield the equation

$$
\left((\%) I_{P}\right)_{0}=3.448 \quad\left((\%) I_{P}\right)_{p}-127.706
$$

with $r=0.22, r^{2}=0.05$ and standard error of 0.268. The relationship described by the model equation 4.59 was found to be statistically significant at 30 per cent level. The trend shown by equation 4.59 is very weak and consequently because of much scatter the slope (3.448) and the intercept (-127.706) of the regression equation vary considerably from ideal. This suggests need for additional data.
4.2.2 Dual Carriaqeway Road Traffic Accidents 4.2.2.1 Data Collection

Data collection was based on police records of past RTAs based on the Police Form 41 (Appendix A.5). Forms 1 and 2 (Appendix A.6) were used for data acquisition. The study road falls under four Police Stations of Muthaiga, Ruiru, Juja and Thika. The information coded included road condition, traffic regulations and the environment, sociological and psychological conditions of the persons directly involved in RTAs.

The study area was zoned. The road network was classified into road classes A, B, C, D and E. The local road network consisting of feeder roads and accesses and other locations consisting of parking lots, yards, petrol stations and the like were also classified. The nodes were located on junctions between the trunk road and the secondary roads. Each node was numbered in relation to its zone. The number consisted of 4 digits where the first three referred to the zone number and the last, to the node in that zone (Appendix A.6/3). One zone could only have nine nodes. If a junction was complex or was a roundabout, a special area was introduced. The special areas got their identification number starting for example, with 1000. A special area designated 1011 meant that it was the first special area and the first node in that area being partitioned into 9 subnodes only.

To define the location of a RTA the node numbers were used. If the RTA ocurred at a junction (node) only one number, the node number, was coded. The section of road between two nodes was partitioned into a grid of 8 squares horizontally and 9 vertically in order to locate the RTA spot more precisely. The spot was then coded using the horizontal and vertical digits. The RTA spot at a junction was located precisely using an equally partitioned grid of 9 squares
horizontally and vertically. The coordinates of the RTA spot were then coded.

The description of a RTA started with choosing the primary elements, where an element was defined as any vehicle or road user involved in the RTA in questior of which the primary elements were the principal or main participants. In a single vehicle RTA there would be only one primary element whereas in a vehicle-vehicle or vehicle-pedestrian RTA for example there would be a maximum of two primary elements. Thus, there was a possibility of a maximum of two primary elements. These primary elements were further supposed to be the ones involved in the initial and last moments of the RTA. Such primary elements would then as a result of the RTA have incurred some degree of damage as a result of the collision. Secondary elements were defined as any other vehicles or road users involved in the RTA in question other than the primary elements defined above. Such secondary elements were deemed to have been involved because they were indirectly made to participate in the RTA in question due to their presence in the traffic situation. Such involvement, in the RTA in question, by the secondary elements was defined as the disturbance phase of the RTA under study.
4.2.2.2 Data Analysis

During the period January 1977 to July 1980, 725 RTAs were recorded on the study road. Of these, 702 were used for systematic analysis. Out of the total, 450 (64%) of the RTAs involved injuries and 130 (208) were fatal. Although 167 persons were killed and 868 were injured. Therefore an average of 2.3 persons are killed or injured in every injury RTA on this road. The average annual increase in RTAs for the period 1977-79 was 16.5%. More than half of the fatal RTAs involved pedestrians. The RTA category which occurred most frequently apart from those involving pedestrians, were RTAs between vehicles travelling in the same direction (38%). Single vehicle RTAs had a share of 34% of the total.

The monthly distribution of RTAs (Fig.4.42) does not seem to indicate that certain seasons are significantly more RTA-prone than others. The two peak periods are May and December. These two coincide with the long rains in May when schools are closed and the Labour day public holiday (May 1), together with December when schools are closed and the Jamhuri celebrations (December 12) and of course Christmas and New Year celebrations.

The daily RTA trend (Fig.4.43) shows that weekends have considerably more RTAs than the rest of the

FIG. 4.43 NAIROBI - THIKA ROAD: ACCIDENT DISIRIBUTION BY DAY OF WEEK
week. Of all RTAs 368 happened on Saturdays and Sundays, but only 24% of the weekly traffic falls on those two days. The time of the day with the most RTAs was found to be between 5.00 p.m. and 8.00 p.m, with 28% of the daily total (Fig.4.44). This is partly due to the traffic peak between 5.00 p.m. and 6.00 p.m., the bad lighting conditions on the road at that time and drunken driving. Almost, half of the pedestrians killed in RTAs were killed at night.

Fig. 4.45 shows the distribution by age of the RTA elements (drivers, pedestrians) directly involved. Although many did not reveal their ages, the figures were nonetheless indicative and conclusive of the fact that the most RTA involved age-group is ages 26-40. This group alone had an involvement per cent of 36 . The ages least involved according to this study was found to be that over 56 years whose involvement rate was only 2.4\%.

Geometric factors have been responsible for many of the RTAs studied. Some RTAs west of Utalii and near Broadway Store/Allsopps had been indirectly caused by the longitudinal gradient of the vertical alignment. Due to the high proportion of heavy and very slow speed vehicles on these sections, RTAs resulted when they were overtaken by high speed traffic using the inner lanes. Increased RTA rates were recorded

in both crest and sag curves as compared to the tangent portions of the vertical alignment. The vertical alignment and especially crest curves had sight distances far below those allowed for the traffic speed on the road [14]. For example, near Clayworks, on the Nairobi bound carriageway, the sight distance was found to be just over 100 m and with a bus stop and the access to Clayworks just behind the crest curve, some RTAs recorded there, must have been related directly to the alignment of the road. The access to Clayworks had no provision for a deceleration lane for vehicles turning into Clayworks. Many RTAs were also caused indirectly by broken down vehicles. Without provision for parking off the traffic lanes, broken vehicles were often forced to stand in either the inner or outer lanes. As a result on-coming vehicles had no chance of stopping in time and hit other vehicles when overtaking, due to high speeds and short sight distances. Some sections with high slopes without guardrails to prevent falling towards the ditch had a high and serious RTA rate. At two sections east of Githurai and east of Kenyatta University, the narrow bridges were a significant factor in RTA causation. When overtaking at or near the bridge rails drivers got the psychological feeling that the bridge rails were appearing too close to the traffic lane. Then when trying to get back to the outer lane, the vehicle hit others often
resulting in overturning. In some RTAs the bridge rails were hit causing serious damage to the vehicles and injury to persons. Besides the geometric layout, road surfacing in general caused many RTAs. This was especially observed in the outer lane, which was, at the time of the study, cracked both on the surface and edges. The bad surfacing together with high speeds resulted in many RTAs. Drivers got aware of the cracks or potholes only too late and in trying to avoid them with a quick turning movement, lost control over the vehicle either overturning on the carriageway or into the ditch. At some locations the openings in the central reserve had many RTAs. Both the paved and track opening had bad sight distances in relation to the traffic on the main road. These very short sight distances coupled with the difficulty to judge high speeds from a distance were causally related to RTA occurrence there. At one of the most RTA rated spots, the entering carriageway from Nairobi towards Roysambu roundabout proved particularly dangerous. There appeared to be no obstacles to sight and at first glance the geometry looked satisfactory but the manouvre at the roundabout led to RTAs. The approaching carriageway was observed to have a crest curve just before the roundabout. The geometry together with underestimating speed is likely to have been the cause of RTAs. Almost every RTA studied here involved overturning of vehicles towards the centre of the roundabout.

Vehicular factors were equally significant

 in RTA causation. The mechanical condition of the vehicles was found to be causing more RTAs than 8%. In both the single vehicle RTAs and the vehicle-vehicle RTAs between vehicles in the same direction, the causes were related to the careless behaviour of drivers combined with the bad mechanical conditions of the vehicles. Burst tyres, faults in the breaking and steering systems often resulted into loss of control, overturning of vehicles and collisions between vehicles. RTAs resulting into vehicles running off the carriageway were significant in frequency and severity. The single vehicle RTAs were found to be more than twice as likely to be fatal as other vehicle RTAs. Most of these single vehicle (RTAs involved either overturning on the carriageway or on the roadside. Speeding, improper driving, overloading, vehicle shape and the unsatisfactory road conditions were significant causation factors. For example, matatus were involved in some fatal and serious RTAs with an indication of overloading. Overloading left the front wheels with light pressure on the road. Consequently, when hitting a bump or pothole or making a sudden movement to avoid an obstacle the vehicle easily overturned.Road user characteristics were observed to be an important causal factor in RTAs. Most of the fatalities were caused by pedestrians crossing the

Pedestrians had a high night to day RTA ratio. Only closest to Muthaiga was there any lighting. At other locations it was extremely difficult to discover pedestrians on the carriageway in darkness.

Traffic signing was found to be generally very poor. Many of the RTAs could be traced to lack of warning signs to the dangerous locations. Reduce speed signs were non-existent at the time of the study (Appendix A.ll).

In order to model RTAs independent variables were chosen from the above analysis of the causative factors influencing RTAs. The independent variables chosen were longitudinal gradient, sight distance, carriageway width, junctions, horizontal curve radius, super-elevation, vehicle flow and time of day. All coded RTAs were plotted along the study road. Using traffic data obtained from the traffic counts vehiclekilometres were calculated for the period of study. The dependent variable was then developed as RTAs per 10^{6} vehicle-kilometres. For each of the above independent variables the observed RTAs per 10^{6} vehiclekilometres were recorded. RTAs per 10^{6} vehiclekilometres were then plotted against each of the independent variables. In order to obtain model data it was necessary to smooth the data both for the dependent and the independent variables. Data
smoothing was achieved by meaning, repeated meaning by interpolation and use of moving averages. The aim of data smoothing was to obtain values of the dependent variable from group data representing the worst possible RTA situation and the best possible RTA situation. From these two extreme cases the most probable unsafe condition representing the dependent variable was chosen as the model data. This smoothed data was then replotted against the independent variable with ranges indicated where necessary. The plots indicated certain curve functions. These were then tried for best fit using models in section 3.2 and tested by the methods of analysis outlined in section 3.5 (Appendix A.14)

Longitudinal Gradient

For longitudinal gradient a histogram of RTAs and downgrade as well as upgrade gradient was constructed (Fig.4.46). This revealed that flatter gradients are more RTA prone. RTAs decrease with increase in gradient. The data from both carriageways was combined. A plot of the smoothed data for the upgrade gradients was made (Fig.4.47). The curve shape was observed as a quadratic polynomial function fitting techniques using finite differences were used for points at equal intervals to confirm the curve shape. Using formulae 3.24 the model was developed as

- smoothed dala
, mala

FIG. 447 RELATION BETWEEN RTAS $/ 10^{6}$ VEHICLES-KILOMETRES AND UPGRADE GRADIENT

$$
\begin{gather*}
-214- \\
\left(a_{g}\right)_{p_{1}}=0.9866+1.10666 g-0.18401 g^{2} \tag{4.60}\\
0<g<6
\end{gather*}
$$

where, ($\left.\mathrm{a}_{\mathrm{g}}\right)_{\mathrm{p}_{1}}$ is the predicted RTAs per 10^{6} vehicle-
kilometres and g is the upgrade gradient in per cent. Comparing observed data (a_{y}) and the predicted data yielded the equation

$$
\left(\mathrm{a}_{\mathrm{g}}\right)_{0}=0.811\left(\mathrm{a}_{\mathrm{g}}\right)_{\mathrm{p}_{1}}+0.455
$$

with $r=0.68, r^{2}=0.46$ and standard error of 0.781 . The relationship given by equation 4.60 was found to be significant at 20 per cent level. For downgrade gradients the model developed in the same way as above became (Fig. 4.48)

$$
\begin{gather*}
\left(\mathrm{a}_{\mathrm{g}}\right)_{\mathrm{p}_{3}}=2.993+0.11 \mathrm{~g}-0.05165 \mathrm{~g}^{2} \tag{4.61}\\
0<\mathrm{g}<8
\end{gather*}
$$

where, $\left(a_{g}\right){ }_{p_{3}}$ is the predicted number of RTAs per 10^{6} vehicle-kilometres and g the downgrade gradient in per cent. The observed data and predicted data by equation 4.61 were compared and yielded the equation

$$
\left(a_{g}\right)_{0}=1.018\left(a_{g}\right)_{p_{3}}-0.095
$$

- smoothed data

[^1]with $r=0.97, r^{2}=0.94$. The relationship (4.61) was found to be significant at the 5 per cent level.

Sight Distance

Using formulae 3.24 as before the models related to sight distance were developed separately for each of the two carriageways. For the Nairobi-to-Thika carriageway the model was developed as (Fig.4.49)

$$
\begin{equation*}
\left(\mathrm{a}_{\mathrm{s}}\right)_{\mathrm{p}_{1}}=-8.745+0.079815-0.000136 \mathrm{~s}^{2} \tag{4.62}
\end{equation*}
$$

$$
150<5<400
$$

where, $\left(a_{s}\right){ }_{p_{1}}$ is the predicted number of RTAs per 10^{6} vehicle-kilometres and S is the sight distance measured in metres. Comparing observed data (a_{s}) against predicted data yielded the equation

$$
\left(A_{s}\right)_{o}=0.723\left(a_{s}\right)_{p_{1}}+0.826
$$

with $r=0.83, r^{2}=0.69$ and a standard error of 0.996. For the Thika-to-Nairobi carriageway the equation of the model was developed as (Fig.4.50)

$$
\begin{gathered}
\left(\mathrm{a}_{\mathrm{s}}\right)_{p_{2}}=-1.8551+0.03467 \mathrm{~s}-0.00006 \mathrm{~s}^{2} \\
\ldots(4.63) \\
150<5<500
\end{gathered}
$$

smoothed
where, $\left(a_{s}\right)_{p_{2}}$ is the predicted number of RTAs per 10^{6} vehicle-kilometres predicted by equation 4.63 . Comparing observed and predicted data as before yielded the equation

$$
\left(\mathrm{a}_{\mathrm{s}}\right)_{{ }_{0}}=0550\left(\mathrm{a}_{\mathrm{s}^{\prime}}\right)_{\mathrm{P}_{2}}+1.057
$$

with $r=0.74, r^{2} 0.55$ and standard error of 0.441 . Both models for sight distance were found to be significant at 5 per cent level.

Carriaqeway Width

After data smoothing RTAs per 10^{6} vehiclekilometres and plotting them against carriageway width (Fig.4.51) the relationship took the shape of a linear function. Using model 3.19 the model relating RTAs per 10^{6} vehicle-kilometres a_{w} and carriageway width (w) in metres was developed as the equation

$$
\begin{equation*}
\left(\mathrm{a}_{\mathrm{w}}\right)_{\mathrm{p}_{1}}=32.6439-4.2348 \mathrm{~W} \tag{4.64}
\end{equation*}
$$

$$
5.8<w<6.5
$$

with $r=-0.99, r^{2}=0.99$ where, $\left(a_{w}\right)_{p_{1}}$ is the predicted data using equation 4.64 . The observed data

$\left(a_{w}\right)_{o}$ and the predicted data were compared yielding the equation

$$
\left(a_{w}\right)_{0}=0.883\left(a_{w}\right)_{p_{1}}+1.603
$$

with $r=0.88, r^{2}=0.78$ and standard error of 1.316 . The relationship was found to be significant at the 5 per cent level. It was found necessary to combine data from both carriageways to yield a sensible relationship.

Junctions

Models relating RTAs per 10^{6} vehicle-kilometres to junctions per kilometre (j) were developed for each of the carriageways. After data smoothing the plot for the Nairobi-to-Thika carriageway (Fig.4.52) suggested a linear model which by using equation 3.19 was developed as

$$
\begin{gather*}
\left(a_{j}\right)_{P_{1}}=5.068+1.672 j \tag{4.65}\\
0<j<4
\end{gather*}
$$

with $r=0.92, r^{2}=0.84$ where $\left(a_{j}\right){ }_{p_{l}}$ is the predicted data using equation 4.65 . Comparing observed data $\left(a_{j}\right)_{o}$ and predicted data gave

$$
\left(a_{j}\right)_{o}=1.001\left(a_{j}\right)_{p_{1}}-0.004
$$

with $r=0.92, r^{2}=0.84$ and standard error of 2.644 . For the Thika-to-Nairobi carriageway (Fig.4.53) the model developed was

$$
\begin{equation*}
\left(a_{j}\right)_{P_{2}}=3.0099+2.9239 j \tag{4.66}
\end{equation*}
$$

$$
0<j<6
$$

with $r=0.99, r^{2}=0.99$ where, $\left(a_{j}\right)_{p_{2}}$ is the predicted
data by equation 4.66 . Comparing observed and predicted data yielded the equation

$$
\left(\mathrm{a}_{\mathrm{j}}\right)_{\mathrm{o}}=0.97\left(\mathrm{a}_{\mathrm{j}}\right)_{\mathrm{p}_{2}}-0.696
$$

with $r=0.93, r^{2}=0.86$ and standard error of 6.316 . Both models for junctions effect were found to be significant at the 5 per cnet level.

Horizontal Radius

The influence of horizontal alignment is often thought to affect the vehicles that turn off the road to the right or left. All such RTAs were studied carefully. They were found to be 132 (19\%) out of the total 702 RTAs studied. Of the 132 studied for horizontal alignment performance, 37% occurred where a vehicle turned off to the left on a straight road section (radius $=\infty$), as opposed to 24% which turned off to the right on a straight section.

FIG 4.53 RELムTION BETWEEN RTAS/10 ${ }^{6}$ VEH-KMS AND JUNCTIONS/KM. THIKA-TO

Since on Kenyan roads vehicles are driven on the left side it may be argued that this is the main reason for a greater percentage turning off to the left. A vehicle turning off to the right has a whole lane width in which to regain in a corrective manoeuvre assuming no other vehicles are occupying the opposite lane. On curves, 11% of the RTAs involved vehicles turning off to the left on a right curve whilst 7% turned to the right on a right curve. On left curves 8.3\% of the vehicles turned off to the left and 9.8\% to the right. The severity of injury in relation to the horizontal alignment was found to be 0.9 injury RTAs per kilometre on straights and 1.9 injury RTAs per kilometre on curves. The fatality rate was found to be 0.2 fatal RTAs per kilometre on straights and curves. It is seen that in spite of a greater number of RTAs on straights, the injury rate on curves is higher. In similar studies [l2] only driver injury is considered so as to avoid variation due to the number of occupants in the vehicle. The above rates have been treated the same. For saloon cars and vans there was a strong indication that RTA occurrence is higher at right curves than either straights or left curves. Of these RTAs studied in detail, 53.8\% involved saloons or lighter vehicles, 25% involved vans, 12% involved lorries and 9\% involved buses. Generally, it can be inferred that the frequency of occurrence decreases with increase in vehicle masses.

For lighter vehicles the pattern observed here is to be expected given that a moving object tends to continue in motion in a straight line until redirected and vehicles are ordinarily travelling on the left. Evidently, lighter vehicles are travelling at higher speeds than heavy ones. Hence speed is a significant factor in contributing to RTA causation. For the same phenomenon there were, only one RTA involving a bus, one involving a lorry on a right curve and two involving lorries and three buses on left curves.

The horizontal alignment effect was analysed using two independent variables. These were the horizontal curve radius and the superelevation of the horizontal alignment. Further, in order to distinguish the effect of upgrade and downgrade vertical curves, the horizontal curves were divided into those occurring on crests and those occurring at sags. Firstly, the RTA density per kilometre for each horizontal curve was calculated and a histogram constructed (Fig.4.54). This showed that small radii curves were more RT'A prone than larger radii curves. However, RTAs per kilometre rose again with increased radius. To confirm this observation the histogram for RTAs and superelevation was constructed (Fig.4.57). This revealed that as superelevation tended to zero (i.e. horizontal radius tended to infinity) RTAs increased and as superelevation increased (i.e. horizontal radius

FIG.4.54 NAIROBI-THIKA ROAD:GRAPH OF NUMBER OF ACC
decreased) RTAs decreased. These observations were used in plotting RTAs per 10^{6} vehicle-kilometres against horizontal curve radius. For upgrade curves the smoothed plot (Fig.4.55) revealed two bends in the curve. By polynomial fitting techniques and confirming the shape by the finite differences technique formulae 3.26 were used and the model developed as

$$
\left(\mathrm{a}_{R}\right)_{P_{1}}=3.346-0.0009 \mathrm{R}+0.77 \times 10^{-7} \mathrm{R}^{2}
$$

$$
\begin{equation*}
-1.361 \times 10^{-12} \mathrm{R}^{3} \tag{4.67}
\end{equation*}
$$

$$
130<R<2500
$$

where, $\left(a_{R}\right){ }_{P_{1}}$ is the number of predicted RTAs per 10^{6} vehicle-kilometres using equation 4.67 and R is radius in metres. Observed data $\left(a_{R}\right)$ was compared with predicted data and yielded the equation

$$
\left(a_{R}\right)_{0}=1.011\left(a_{R}\right)_{p_{1}}-0.055
$$

with $r=0.67, r^{2}=0.44$ and standard error of 0.774 . For downgrade curves the smoothed plot (Fig.4.56) revealed a quadratic function. Using formulae 3.24 and confirming by finite differences technique the relationship was modelled as

$$
\begin{gathered}
\left(\mathrm{a}_{\mathrm{R}}\right)_{\mathrm{p}_{2}}=6.8699-0.0031 \mathrm{R}+0.000000397 \mathrm{R}^{2} \ldots(4.68) \\
130<R<6000
\end{gathered}
$$

- smoothed data

where, $\left(\mathrm{a}_{\mathrm{R}}\right)_{\mathrm{P}_{2}}$ is the predicted value of RTAs per 10^{6} vehicle-kilometres using equation (4.68). Observed data compared with predicted yielded the equation

$$
\left(a_{R}\right)_{0}=0.844\left(a_{R}\right)_{p_{2}}+0.555
$$

with $r=0.88, r^{2}=0.77$ and standard error of 1.843 . Both models (4.67) and (4.68) were found to be significant at 5 per cent level.

Superelevation

The superelevation of upgrade curves was
separated from that of downgrade curves. Observed RTAs per 10^{6} vehicle-kilometres were smoothed as afore-mentioned and plotted against superelevation. For the upgrade curves the model was developed using formulae (3.24) and polynomial function fitting techniques. The model was developed as (Fig.4.58)

$$
\begin{aligned}
{ }^{\left(a_{\alpha}\right)_{p_{1}}}= & 2.2729+0.6 \alpha-0.098 \alpha^{2} \\
& 0<\alpha<5
\end{aligned}
$$

where, $\left(\mathrm{a}_{\alpha}{ }_{\mathrm{p}_{1}}\right.$ is the predicted value of RTAs per 10^{6} vehicle-kilometres and α is superelevation in per cent. Comparing observed data (a $\left.{ }_{\alpha}\right)_{0}$ and predicted data yielded the equation

$$
\left(\mathrm{a}_{\alpha}\right)_{0}=0.99(\mathrm{a})_{p_{1}}+0.142
$$

with $r=0.7, r^{2}=0.5$ and standard error of 0.43 . Similarly, the model for downgrade curves was developed as

$$
\begin{equation*}
\left(\mathrm{a}_{\alpha}\right)_{\mathrm{p}_{2}}=1.0693+1.3132 \alpha-0.22 \alpha^{2} \tag{4.70}
\end{equation*}
$$

$$
o<\alpha<4.5
$$

where, $\left(a_{\alpha}\right)_{p_{2}}$ is the predicted value by equation
4.70 . Observed and predicted values were compared yielding the equation

$$
\left(\mathrm{a}_{\alpha}\right)_{{ }_{o}}=0.945\left(\mathrm{a}_{\alpha}\right)_{p_{2}}+0.072
$$

with $r=0.91, r^{2}=0.83$ and standard error of 0.718. Both sueprelevation models were significant at 5 per cent level.

Vehicle Flow

To model the effect of vehicle flow on RTAs it was necessary to combine observed data for KiganjoNanyuki Road (single carriageway trunk road) and each of the carriageways of the dual carriageway road (the Nairobi-Thika Road). This was found necessary
because applying data smoothing techniques adopted for this study, the range of vehicle flow on the single carriageway yielded only a single model data point. It was observed that RTAs rise slowly at first with increase in vehicle flow to reach a saturation level where RTAs are many but a majority of which are non injury. Since the RTAs studied here were mainly injury RTAs, they represent the earlier portion of a logistic curve model. Therefore, the equation 3.15 was the basis for modelling. The result of the analysis of the combined Kiganjo-Nanyuki road and the Nairobi-to-Thika carriageway (Fig.4.59) was the model

$$
\begin{equation*}
\left(\mathrm{a}_{\mathrm{q}}\right)_{\mathrm{p}_{1}}=\frac{18.89}{1+24.128 \mathrm{e}^{-0.002} q} \tag{4.71}
\end{equation*}
$$

$$
30<q<1430
$$

where 18.89 is the highest observed level of RTAs/km/ annum used as approximate limit, ($\left.a_{q}\right)_{p_{1}}$ is the predicted RTAs per kilometre per annum and q is average vehicle flow per hour. Observed data $\left(\mathrm{a}_{\mathrm{q}}\right)_{\mathrm{o}}$ compared to predicted data yielded the relationship

$$
\left(\mathrm{a}_{\mathrm{q}}\right)_{\circ}=0.966\left(\mathrm{a}_{\mathrm{q}}\right)_{\mathrm{p}_{1}}+0.065
$$

with $r=0.97, r^{2}=0.94$ and standard error of 0.937. The result of the analysis of the combined KiganjoNanyuki Road and the Thika-to-Nairobi carriageway (Fig.4.60) was the model

$$
\begin{gather*}
\left(a_{q}\right)_{p_{2}}=\frac{24.55}{1+38.983 e^{-0.003 q}} \tag{4.72}\\
30<q<1340 .
\end{gather*}
$$

where $\left(\mathrm{a}_{\mathrm{q}}\right)_{\mathrm{q}_{2}}$ is the predicted RTAs/km/annum predicted by equation (4.72) and 24.55 being the approximation for the limit taken here as the highest value observed. Comparing observed and predicted data yielded the equation

$$
\left(\mathrm{a}_{\mathrm{q}}\right)_{\mathrm{o}}=0.921\left(\mathrm{a}_{\mathrm{q}}\right)_{\mathrm{p}_{2}}+0.11
$$

with $r=0.96, r^{2}=0.91$ and standard error of 1.679 . Both models were significant at 5 per cent level.

RTAs per Hour

Using average vehicle flow for the two carriageways of the Nairobi-Thika Road, all the RTAs occurring each hour of the day for the $3 \frac{1}{2}$ years of RTA study the mean RTAs per 10^{6} vehicle-kilometres for each hour of the day was calculated (Fig.4.44). Mean RTAS

COMPARISCN BY AGOKI FORMULA

COMPARISON BY TRRL FORMULA

COMPARISON BY SILYANOV FORMULA

per 10^{6} vehicle-kilometres were plotted against time of day and the data smoothed (Fig.4.61). By harmonic analysis techniques (3.4) curves were fitted for the unsmoothed and smoothed data. For the unsmoothed data the model was developed as
${ }^{(a / K)}{ }_{p_{1}}=0.392-0.207 \cos t-0.055 \cos 2 t+0.033 \cos 3 t$

$$
\begin{equation*}
\text { - } 0.095 \text { sint - } 0.147 \text { sin2t } \tag{4.73}
\end{equation*}
$$

where $(a / K) p_{1}$ is predicted data from the unsmoothed curve at time t. Comparing observed data (a/k) o and predicted data yielded the equation

$$
(\mathrm{a} / \mathrm{K})_{0}=1.358(\mathrm{a} / \mathrm{K})_{p_{1}}-0.026
$$

with $r=0.77, r^{2}=0.59$ and standard error of 0.201. For the smoothed data the model developed was

$$
\begin{align*}
(a / K) p_{2}= & 0.538-0.267 \cos t-0.085 \cos 2 t+0.033 \cos 3 t \\
& -0319 \sin t-0.0095 \sin 2 t \tag{4.74}
\end{align*}
$$

where, ${ }^{(a / K)} p_{2}$ is predicted value using equation
4.74 . The comparison of observed and predicted data yielded the equation

$$
(a / K)_{0}=0.979(a / K) p_{2}-0.020
$$

[^2]with $r=0.87, r^{2}=0.75$ and standard error of 0.315 . Both models were significant at the 5 per cent level.
4.2.3 Single Carriageway Road Traffic Accidents 4.2.3.1 Data Collection

The methodology for RTAs data collection on the single carriageway was identical to the one used for the dual carriageway as outlined in section 4.2.2.1 and on the basis of the Police Form P41. The study road fell under three Police Stations at Kiganjo, Naro Moru and Nanyuki.

4.2.3.2 Data Analysis

A total of 94 injury and fatal RTAs was recorded during the study period January 1979 to December 1982. Non-injury RTAs were not studied. Of the total injury RTAs 28% were fatal. Nearly 10% of the fatal RTAs occurred at junctions but many more were associated with junctions and accesses. The annual increase for 1979-80 was 32% and that for 1981-82 was 38\%. An annual decrease of 16% was recorded for 1980-81. Of the fatal RTAs 20% involved pedestrians. The most frequent RTAs involved overturning (21\%), head-on collision (21\%) and turning off the road onto the roadside (21\%). The second category most frequently observed involved vehicles driving in the same direction (14\%) and pedestrians
crossing the carriageway (13\%).

The monthly distribution of RTAs (Fig.4.62)
indicated that March, Nay, September and December were the most RTA rated months for the four quarters of the year respectively. As observed earlier May is the month for the long rains and Labour day public holiday. December is the Christmas and New Year festivities as well as school holidays.

The daily RTA trend showed that (Fig.4.63) weekends had considerably more RTAs than the rest of the week. Of the total RTAs 59% occurred on Friday, Saturday and Sunday. For the remaining days Tuesday had a higher proportion than the others (17\%). This trend was observed to coincide with high traffic volumes on Friday and Saturday. The worst times of the day (Fig.4.64) were observed to be 12.00 noon and 5.00 p.m., coinciding with the traffic peaks. These hours alone had 14% and 15% of the fatal RTAs respectively.

The road factors on this road found to be causally related to RTAs were road work or cleaning, damaged carriageway, loads on carriageway. The road environment contributed to 19% of the RTAs directly.

Vehicular factors on this road contributed to

FIG. 662 KIGANJO-NANYUKI ROAD MONTHLY ACCIDENT DISIRIBUTION

F10.6.66 KIGANJO-NANYUKI ROAD ACCIDENT DISIRIBUIION BY HOUR OF DAY

FIG. 465 KIGANJO-NANYUKI ROAD. DISTRIBUTION OF ACCIDENT VEHICLES BY AGE

FIG.4.66 KIGANJO - NANYUKI ROAD ACCIDENT INVOLVEMENT BY DRIVING EXPERIENCE

218 of the RTAs directly. Light vehicles like cars, pick-ups and vans constituted 45% of the RTA elements. Matatus constituted 11%, heavy vehicles constituted 21% and pedestrians 13% of the RTA elements. The most frequent vehicular failures contributing to RTA causation were, in order of their frequency: steering defects, tyre bursts or defects, general unroadworthiness and brake defects. For night RTAs the dazzling light from on-coming vehicles was a significant causation factor. From the ages of vehicles (Fig.4.65) involved in RTAs it was observed that new vehicles (1-3 years old) featured most frequently and generally the frequency decreasing with increasing age.

Road user factors were observed to be causatively associated to 60% of the RTAs. The causes were ascribed to the driver's careless behaviour and inattention. From the data observed RTA involvement by drivers increased with years of experience (Fig.4.66). In particular drivers with 9 or more years of experience were the most involved. Saloon cars were involved in 36% of the fatal RTAs. Most of them were single vehicles either overturning or hitting objects. These were observed to be associated with speeding. Pedestrians were hit when crossing the carriageway behind parked vehicles (masked) or rushing suddenly onto the carriageway in the path of

FIG4.67 KIGANJO-NANYUKI ROAD ACCIDENI INVOLVENT BY AGE GROUP

```
speeding vehicles. Matatus were involved due to
standing in the carriageway or improperly driven
causing collisions with other vehicles. Pedal
cyclists and motorcyclists were involved in turning
or crossing movements without due care and attention.
Some light goods vehicles were involved in fatal
RTAs due to overloading of miraa (addictive drug
chewing plant) and miraa dealers. Significant
fatal RTAs were also caused by disturbance from
other vehicles such as hanging or projecting objects,
wide loads or falling ones. The use of alcohol played
a significant role in fatal RTAs, particularly in
single vehicle RTAs and pedestrians walking along
the road.
```

 Of all RTAs studied, \(26 \%\) occurred at night,
 the most frequent being head-on collision
turning off the road and those associated with a
single vehicle. A third of the pedestrian RTAs
also occurred at night. One of the most significant
illumination problems on this road was pedestrians
and pedal cyclists not being seen (Appendix A.9).

> Traffic signing on the road was observed to be very unsatisfactory. Many dangerous locations had no warning signs. The few signs observed on the road were rusty and a majority of them non-standard.

Other factors associated with RTA causation were animals and trees on the roadside. RTAs involving cattle and sheep occurred when they crossed the road from nearby bushes. RTAs involving wild animals occurred mainly at night and involved crossing. Along the Nanyuki end of the road some fatal and serious RTAs occurred in connection with vehicles hitting trees along the road.

Age and sex were used as social indicators of those responsible for RTAs. Of all the drivers, pedestrians, pedal and motorcyclists involved 87.1% were found to be male (Appendix A.10). The females were 4.3%, undetermined road users were 6.7% and animals had a 1.8% share. The age distribution data (Fig.4.67) revealed that the most affected ages lie in the group 17-49. This was true particularly of all road users and those primary elements in RTAs causation.

The geometric elements on the single carriageway did not feature directly as causative factors. They modified RTAs whose main causation lay in other factors. It was observed however, that the road had many junctions and accesses which influenced RTA occurrence directly. Pavement conditions were also observed to have caused RTAs directly for example potholes, damaged sections and repair works. The overall assessment of the RTA situation left as independent variables to be studied

- smoothed data

as junctions, pavement condition, vehicle flow and time of day. As earlier noted, the smoothing of RTA data in relation to the low vehicle flow on this road yielded only a single data point for modelling. Therefore it was necessary to combine these data with the data of the dual carriageway. In making the combination it was assumed that traffic behaviour exhibited on the single carriageway trunk road would be similar to that exhibited on the dual carriageway trunk road. In any case from the traffic studies on the single carriageway considerable traffic was found to originate in Nairobi destined for Nanyuki and beyond. Further, it was found that when vehicle flow data and RTAs for the single carriageway were plotted on the graph of the dual carriageway data, the observations of the single carriageway clustered near the origin confirming the assumption. This way it was possible to use the model developed from data from both carriageways for predicting the effect of vehicle flow on RTAs for low trafficked rural roads as well as for high trafficked urban and semi-urban roads (Appendix A.12).

The remaining independent variables and the dependent variable RTAs per 10^{6} vehicle-kilometres were subjected to the same smoothing process as outlined earlier and plots made. The suggested
curve shapes were then fitted by the modelling techniques outlined in Chapter 3.

Junctions

For junctions per kilometre and their effect on RTAs (Fig.4.68) the model developed was a polynomial of second degree given by the equation

$$
\begin{equation*}
\left(a_{j}\right)_{p}=0.6668+1.1082 j-0.1288 j^{2} \tag{4.75}
\end{equation*}
$$

$$
1<j<8
$$

where, $\left(a_{j}\right)_{p}$ is the predicted number of RTAs per 10^{6} vehicle-kilometres for j junctions per kilometre. Observed data $\left(a_{j}\right)_{o}$ compared with predicted data yielded the equation

$$
\left(\mathrm{a}_{j}\right)_{0}=1.004\left(\mathrm{a}_{\mathrm{j}}\right)_{\mathrm{p}}-0.009
$$

with $r=0.98, r^{2}=0.96$ and standard error of 0.642. The relationship was found to be significant at 5 per cent level.

Pavement Defects

The pavement defects were observed under the following: rutting; crazing and cracking; potholes, patches, depressions and upheavals; edge spalling. After data smoothing each separate plot the data

- smoothed data

FIG. 4. 73 RELATION BETWEEN RTAS $/ 10^{6}$ VEH-KMS AND CRAZING CRACKING: KIUANJO-NANYUKI ROAD
fitted a quadratic function as before. For rutting the model developed was represented by the equation (Fig.4.69)

$$
\begin{gathered}
\left(a_{r^{\prime}}\right)_{p}=4.1084-0.17319 r^{\prime}+0.0033678 r^{, 2} \\
0<r^{\prime}<50
\end{gathered}
$$

where, ($\left.a_{r}\right)_{p}$ is the predicted value of RTAs per 10^{6} vehicle-kilometres for a given value of rutting measured in millimetres. Observed data (${ }_{r}$,) was compared with predicted data and yielded the equation

$$
\left(a_{r^{\prime}}\right)_{o}=0.998\left(a_{r^{\prime}}\right)_{p}+0.006
$$

with $r=0.94, r^{2}=0.88$ and standard error of 0.785 , the model equation (4.76) being significant at 5 per cent level. The model for cracking and crazing was developed as (Fig.4.70)

$$
\begin{equation*}
\left(a_{c}\right)_{p}=2.7363-0.1565 c+0.0069 c^{2} \tag{4.77}
\end{equation*}
$$

$$
0<c<25
$$

where, $\left(a_{C}\right)$ is the predicted value for equation 4.77 and C is the amount of cracking and crazing
(\%) in the section of road. Comparing observed data $\left(\mathrm{a}_{\mathrm{c}}\right)_{\mathrm{o}}$ and predicted data gave

$$
\left(\mathrm{a}_{\mathrm{c}}\right)_{0}=0.998\left(\mathrm{a}_{\mathrm{c}}\right)_{\mathrm{p}}+0.005
$$

with $r=0.50, r^{2}=0.25$ and standard error of 0.428 . This model related to cracking and crazing equation
4.77 was found to be statistically significant at the 10 per cent level. The model for relating potholes, patches, depressions and upheavals to RTAs was developed as (Fig.4.71)

$$
\begin{equation*}
\left(a_{p}\right)_{p}=2.7988-0.0627 p+0.0039 p^{2} \tag{4.78}
\end{equation*}
$$

$$
0<P<25
$$

where, $\left(a_{p}\right)_{p}$ is the predicted value using equation 4.78 and P is amount of potholes, patches, depressions and upheavals in for the road section where RTAs are observed. Comparing observed data $\left(\mathrm{a}_{\mathrm{P}}\right)_{\mathrm{O}}$ and predicted data yielded the equation

$$
\left(a_{\bar{p}}\right)_{o}=0.999\left(a_{p}\right)_{p}-0.0002
$$

with $r=0.84, r^{2}=0.70$ and standard error of 0.318 . The relationship described by equation 4.78 was found to be statistically significant at the 5 per cent level. Finally, for pavement defects the model derived relating edge spalling to RTAs per 10^{6} vehicle-kilometres is given by the equation (Fig.4.72)

$$
\begin{gather*}
\left(a_{E}\right)_{p}=1.4311+0.1146 E-0.0011818 E^{2} \tag{4.79}\\
0<E<100
\end{gather*}
$$

where ($\left.A_{E}\right)_{p}$ is the predicted number of RTAs per 10^{6} vehicle-kilometres at a given per cent of edge spalling (E) in a road section. Observed and predicted data yielded the equation

$$
\left(a_{E}\right)_{o}=1.001\left(a_{E}\right)_{p}-0.002
$$

with $r=0.92, r^{2}=0.84$, standard error of 1.018 where, ($\left.a_{E}\right)_{o}$ is observed data. The relationship described by equation 4.79 was found to be significant at the 5 per cent level.

RTAs per Hour

For the prediction of mean RTAs per 10^{6} vehicle-kilometres at a given time of the day, the data for the single carriageway were treated in the same manner as for the dual carriageway. Using harmonic analysis as before models were developed for unsmoothed as well as smoothed data. For the unsmoothed data (Fig.4.73) the model was developed as

$$
\begin{align*}
(\mathrm{a} / \mathrm{K})_{p_{3}}= & 0.803-0.832 \cos t+0.357 \cos 2 t-0.327 \cos 3 t \\
& -0.309 \sin t-0.103 \sin 2 t \quad \ldots(4.80) \tag{4.80}
\end{align*}
$$

FIG.4.73 PREDICTION OF MEAN RTAs $/ 10^{6}$ VEH-KMs
where, $(a / K) p_{3}$ is the predicted value using equation
4.80 at time t. Observed data $(a / K)_{0}$ was compared with predicted data and yielded the equation

$$
(\mathrm{a} / \mathrm{K})_{0}=0.506(\mathrm{a} / \mathrm{K})_{p_{3}}+0.285
$$

with $r=0.57, r^{2}=0.33$ and standard error of 0.734 . For smoothed data the equation was developed as

$$
\begin{aligned}
(\mathrm{a} / \mathrm{K})_{\mathrm{P}_{4}} & =0.7040 .456 \cos t-0.02 \cos 2 t+0.01 \cos 3 t \\
& -0.446 \sin t+0.172 \sin 2 t \quad \ldots(4.81)
\end{aligned}
$$

where, $(a / K) p_{4}$ is predicted data using equation 4.81 . Observed data when compared with the predicted yielded the equation

$$
(\mathrm{a} / \mathrm{K})_{0}=0.922(\mathrm{a} / \mathrm{K})_{\mathrm{p}_{4}}+0.042
$$

with $r=0.68, r^{2}=0.46$ and standard error of 0.477 . Both models (equations $4.80,4.81$ were significant at the 5 per cent level.

4.3. Generalised Linear Models

4.3.1 Dual Carriageway

The dependent variable was chosen as the number of eTAs that had occurred on a given section
of the carriageway during the study period. The independent variableschosen included the average daily traffic, vehicles per hour, the percentage of lorries and buses, junctions per kilometre, horizontal curve radius, superelevation, longitudinal gradient and sight distance. These data were observed and recorded for each section length (in metres) of road studied (Appendix A.15). The horizontal curve radius was classified into 3 classes as follows: $0-800 \mathrm{~m}, ~ 800-3200 \mathrm{~m}$ and $>3200 \mathrm{~m}$.

Two models were developed. The first model related to those sections under curves and the second model related to straight sections. Using the generalised linear modelling techniques outlined in 3.6 and the computer program GLIM it was found that the variables which were reasonably related to RTAs were vehiclekilometres (exposure), junctions, lorries and buses, horizontal curve radius and superelevation. The estimated values for fitting the model equation 3.74 for the first model are tabulated in Table 4.1. The estimated values were obtained at cycle 4.

The parameters are interpreted for equation 3.74

$$
A=e^{k_{k} b^{\left(\sum a_{1} x_{1}\right)}}
$$

TABLE 4.1 MODEL 1 for DUAL CARRIAGEWAY

Estimate	s.e.	Parameter
-0.09198	0.4942	k
0.7248	0.07462	b
0.0849	0.02295	JPK
0.01904	0.006628	LAB
-0.7595	0.5382	FCR(2)
-0.2860	0.4984	FCR(3)
-0.1692	0.1371	FCR(1).SUE
-0.01629	0.08199	FCR(2).SUE
-0.2639	0.09962	FCR(3).SUE

as follows:
k is the constant,
b is the power of K ,
JPK is the coefficient of the junctioneffect,
LAB is the coefficient of the effect of lorries and buses,

FCR(2) is the coefficient of the effect of horizontal radius ($800-3200 \mathrm{~m}$),

FCR(3) is the coefficient of the effect of horizontal radius ($>3200 \mathrm{~m}$),

FCR(1). SUE is the coefficient of the effect of the interaction of horizontal radius (0-800m) and superelevation,

FCR(2). SUE is the coefficient of the effect of horizontal radius $(800-3200 \mathrm{~m})$ and superelevation and FCR(3). SUE is the coefficient of the effect of horizontal radius($>3200 \mathrm{~m}$) and superelevation. For $\operatorname{FCR}(1)$, the bottom level of the horizontal radius (0-800m), the effect is included in the constant term $\left(e^{k}\right)$. Therefore, the model may be stated as

$$
\begin{equation*}
A_{1}=e^{-0.09198} \quad K^{0.7248} \quad e^{\left(\sum a_{i} x_{i}\right)} \tag{4.82}
\end{equation*}
$$

where the coefficients a_{i} and the independent variables x_{i} are chosen from table 4.1 , noting that A_{1} is the predicted number of RTAs for the period under study and K is the travel in vehicle-kilometres during the corresponding period. For this model S.D./d.f. was found to be 1.81 .

The parameters of the second model for the dual carriageway are tabulated in Table 4.2.

TABLE 4.2 MODEL 2 FOR DUAL CARRIAGEWAY

Estimate	s.e.	Parameter
-0.6274	0.2716	k
0.7532	0.07081	b
0.07437	0.02435	JPK
0.02132	0.006333	LAB
67.36	31.50	AR
-0.1213	0.04734	SUE

The parameters are interpreted as before and AR is the reciprocal of the horizontal radius which is equal to zero for a straight road section. Therefore, the second model may be stated as

$$
\begin{equation*}
A_{2}=e^{-0.6274} K^{0.7532} e^{\left(\sum a_{i} x_{i}\right)} \tag{4.83}
\end{equation*}
$$

where A_{2} is the predicted number of RTAs for straight sections for the period under study. The remaining terms are as before and the coefficients a_{i} and independent variables X_{i} are chosen from Table 4.2. For this second model S.D./d.f was found to be 1.79 .

4.3.2 Single Carriaqeway

The dependent variable was chosen as the number of RTAs that had occurred on a given section of the carriageway during the study period. The independent variables chosen were average daily traffic, vehicles per hour, the percentage of lorries and buses, junctions per kilometre, horizontal curve radius, edge spalling, crazing and cracking, potholes and rutting. These data were observed and recorded for each 500 m section (Appendix A.16). The horizontal curve radius was classified as <799m, 800-3099m, >3100m. Edge spalling was classified as <29\%, $30 \%-60 \%,>60 \%$. Crazing and cracking was classified as < 5%, $5 \%-10 \%$, $>10 \%$. Lorries and buses were classified as <28\%, >28\%. Junctions were classified as <3 junctions,

3-7 junctions, >7 junctions. Using the techniques outlined in 3.6 the most suitable model was developed whose parameters are tabulated in Table 4.3.

TABLE 4.3 MODEL FOR SINGLE CARRIAGEWAY

Estimate	s.e	Parameter
-0.1617	0.4770	k
1.138	0.6950	b
0.8154	0.2300	FJ(2)
0.3817	0.4030	FJ(3)
-0.7622	0.2874	FLB(2)
0.6893	0.2863	FCC (2)
0.6791	0.3569	FCC (3)
0.9192	0.3696	FED (2)
0.4871	0.4167	FED (3)
-0.6669	0.3796	FCR(2)
-0.5413	0.3470	FCR(3)

For the single carriageway equation 3.74 therefore becomes the predictive model

$$
\begin{equation*}
A_{3}=e^{-0.1617} K^{1.138} e^{\left(\sum a_{i} x_{i}\right)} \tag{4.84}
\end{equation*}
$$

where A_{3} is the predicted RTAs on the single carriageway for the period under study, K is the travel in vehicle-kilometres, the coefficients a_{i} and the
independent variables x_{i} are chosen from Table 4.3. The effects of the bottom classes are included in the constant term. The independent variables that were found to be reasonably related to RTAs (Table 4.3) were:

```
FJ(2): 3-7 junctions per kilometre,
FJ(3): >7 junctions per kilometre,
FLB(2): <28% lorries and buses,
FLB(3): >28% lorries and buses,
FCC(2): 5%-10% cracking and crazing,
FCC(3): >10% cracking and crazing,
FED(2): 30%-60% edge spalling,
FED(3): >60% edge spalling,
FCR(2): 800-3099m horizontal curve radius,
FCR(3): >3l00m horizontal curve radius.
```

Equation 4.84 was found to have S.D/d.f of 1.42 .

4.4 Data Appraisal

At the national level it was found that the collection of some of the data began only in 1960 and 1973. This had a definite effect on the calibration of the models developed in this study.

Further there were other extrenous factors that led to flactuations in RTA trends. These, among others were the emergency in the early l950s during the struggle for independence, independence and the ensuing socio-economic and political development in the 1960 s and onward, the matatu legislation of 1973, the oil crisis of the early 1970s, the subsequent coffee boom of the middle and late 1970s, the ban on vehicle importation of the early 1980 s and the subsequent ban on night driving by heavy vehicles. Modulating the above was the road safety improvement measures started in the early l980s to date. Nonetheless, the data available wereof good quality and acceptable.

At the micro level on the roads, the location of RTA spots during coding was affected by missing files or files pending in court, stored away or destroyed at the expiry of certain periods of time. Nonetheless, these difficulties and the inadequacy of information contained in the Police Form P4l were solved by the assistance of the local police officers. It is generally believed that there is under-reporting of RTAs in Kenya and elsewhere. Further, it is not mandatory to report to the police RTAs involving property damage only (the practice of reporting stopped in 1973 in Kenyal. Despite these shortcomings the data is considered and has been shown to be of good quality or at least reasonable in deriving RTA patterns in

CHAPTER 5 - DISCUSSION

5.1 Road Traffic Prediction

Firstly, from the models 4.1, 4.2 on human population growth in Kenya, it was found that human population is increasing rapidly. The prediction models obtained in this study were found to be a good fit for Kenyan data since the slope of observed versus the predicted regression line was almost ideal (i.e. unity) and the intercept nearly zero.

Due to rapid population increase, a high temple of socio-economic development and increased travel, road traffic is likely to increase rapidly. The annual rate of population increase was found to be 3.8\%-4.2\%. The high variant growth by United Nation is an over-prediction.

On the assumption that past trends can be used to predict future motor vehicle levels, assuming the trends to continue into the future, it was found that road vehicles are increasing at an annual rate of 6.5\%. The predictive models 4.3, 4.4 developed for the data analysed were found to be a good fit judging from the slope and the intercept (Fig.4.3). The prediction was equally consistent as shown by the correlation coefficient. It is worth noting that despite using two different limits for the number of motor vehicles, the results of the two predictions agree closely.

The level of motorization was found to be increasing at an annual rate of 2.8%. The predictive model 4.5 was found to be of good fitness, consistency and calibration (Fig.4.4).

The increase in motor vehicles involved in RTAs was found to be 3.6% per annum which is growing approximately as Kenya's human population increase. The predictive model 4.6 fitted observed data well. The logistic curve was found to be suited in predicting data related to population, vehicle fleet and motorization.

The predictive model for the growth in the composition of cars and utilities was (4.7) found to be the best compared to the ones for buses/lorries/taxis and the one for motorcycles. The model for cars and utilities was nearest to the ideal line (Fig.4.35) and was very consistent ($r=0.91$). The slope for the model for buses/lorries/taxis was greater than 1 (1.158). Although this may be considered acceptable the data had very considerable scatter ($\mathrm{r}=0.38$). The slope for the model for motorcycles was found to be acceptable (1.123) and the scatter ($r=0.63$) much better than that for buses/lorries/taxis. The standard error of the model for cars and utilities was greater however, than for the other two classes. The logarithmic curve was found to be the growth curve
suited to describe growth in vehicle composition.

In this study it has been demonstrated that harmonic analysis techniques can be used to predict average vehicle flow per hour at a given time of the day, even with traffic counts taken at 4 hourly intervals (six-ordinate scheme). In fact, for lower accuracy predictions no data smoothing is necessary as the standard errors remain virtually the same. Data smoothing considerably improves the calibration of the model. On the dual carriageway both the smoothed and unsmoothed data models $4.10,4.11$ were found to be of good fitness judging by their slopes and intercept (Fig.4.7). They were also consistent, with $r=0.93$ and 0.91 respectively. The standard errors were large and this may be due to the fact that a lower number of ordinate scheme was used as well as the variations in traffic with time. A lower number ordinate scheme will skip some data points which have high variation leading to over/under estimation. Therefore, using a 12 or 24 ordinate scheme is likely to improve the model. The modeis $4.12,4.13$ developed for predicting traffic on a low trafficked single carriageway were found to be of very good fit as the slope was very nearly ideal (Fig.4.9). The prediction was very consistent ($\mathrm{r}=0.94$) for both models and the standard errors were equal. The models for unsmoothed
and smoothed data made almost identical predictions because traffic variation on the single carriageway was low. This implies, therefore, that the interval could be increased from 4 hourly for the traffic counts, as long as some points around the peak flow are observed, and still get good predictions.

All the models discussed above were found to be significant at the 5 per cent level which is the level of statistical significance usually accepted.
5.2 National Road Traffic Accidents Prediction

In this study it was found that injury RTAs are increasing with time at the rate of 3.7% per annum. This is growing at the same rate as that of vehicles involved in RTAs.

The logistic curve

$$
A_{p_{1}}=\frac{8049}{1+1.984 e^{-0.137 t}}
$$

was found to be a good fit for the data observed. Although the slope of the regression curve was good (0.946) the intercept did not pass through zero (Fig.4.10). This suggests that the model could be improved by calibration. This is likely to have happended because these data, unlike other RTA data that were collected since 1949 ,were first recorded in 1960. It is likely that earlier data included also non-injury RTAs. However, the prediction was
consistent ($r=0.91$). The standard error was large (1394). The significance level was found to be 5 per cent. The model may be improved in calibration by data improvement as well as choice of limit. In relation to motorization, injury RTAs were found to increase slowly in the initial stages of motorization, rising sharply, levelling off and falling. The model was found to be the cubic polynomial (4.15)

$$
A_{P_{2}}=6.6981 \times 10^{-8}(\mathrm{~V} / \mathrm{P})-0.82263376(\mathrm{~V} / \mathrm{P})^{2}
$$

$$
+270.438684 \mathrm{~V} / \mathrm{P}-15342.4929
$$

The slope for the prediction line for this model was acceptable (1.135) and the consistency good (r=0.92) (Fig.4.11). The standard error was large (1259) and the level of significance was found to be 10 per cent. This was considered acceptable. Data smoothing by moving averages as before improved the shape of the function curve. Although the curve shows that RTAs will be zero at a level of motorization between 250 and 260 vehicles per 10^{4} persons this is not likely to be the case. What is more likely to be the case is that as the effects of rapid motorization balance out with those of road safety improvements the curve will stabilize at some level in future.

Injury RTAs per vehicle were found to be decreasing with motorization increase and the relationship described by a cubic polynomial (4.16)

$$
\begin{aligned}
(\mathrm{A} / \mathrm{V})_{p}= & 0.656 \times 10^{12}(\mathrm{~V} / \mathrm{P})^{3}-0.00000484(\mathrm{~V} / \mathrm{P})^{2} \\
& +0.001059 \mathrm{~V} / \mathrm{P}-0.0183 .
\end{aligned}
$$

The calibration of the predictive model was almost ideal with slope equal to 1.246 and intercept -0.009 (Fig.4.12). The prediction was consistent although there was some scatter ($\mathrm{r}=0.8$). The standard error was small (0.0034) and with the level of significance of 5 per cent. The data were of good quality and data smoothing improved the shape of the curve. However, as earlier mentioned injury RTA data were limited to the period 1960-83 which was a shortcoming for long-term prediction purposes.

It was found that injury RTAs per 10^{6} vehiclekilometres were decreasing at an annual rate of 1.6% with time. Therefore, as travel increases and therefore exposure to risk increases and RTAs per vehicle decrease this trend is likely. The logistic model was found to fit these data with slope of prediction line of 0.89 , intercept of 0.168 and some scatter ($\mathrm{r}=0.82$). The standard error was small (0.195). To improve the prediction a model relating this
variable with motorization was developed (4.18)

$$
\begin{aligned}
(\mathrm{A} / \mathrm{K})_{P_{2}}= & 0.2728 \times 10^{-10}(\mathrm{~V} / \mathrm{P})^{3}-0.00019613(\mathrm{~V} / \mathrm{P})^{2} \\
& +0.042285(\mathrm{~V} / \mathrm{P})-0.6774
\end{aligned}
$$

which had a better slope (0.956), a smaller intercept (0.082) and standard error smaller (0.146). The scatter however, was more considerable ($r=0.76$) but both models, were significant at 5 per cent. Therefore, the cubic polynomial function can predict injury RTAs per vehicle-kilometre as a function of motorization. The data smoothing could be improved by removing the cyclic variation observed through decomposition of the series.

In this study the analysis showed that casualties from RTAs can be predicted by the logistic model (4.19)

$$
C_{p_{1}}=\frac{14749}{1+3.772 e^{-0.137 t}}
$$

Casualties were found to be increasing with time at the rate of 5.6% per annum. The prediction was very near the ideal since the slope was 1.014 and the intercept of 204 was small compared to the standard error of 313 ? which is somewhat large. However, tne cunsistency of prediction was good as there was small scatter $(r=0.93)$. The cubic
polynomial prediction model 4.20 improved the prediction (slope $=1.09$) but the intercept dropped) (-733). Whilst the consistency remained the same (r=0.93) the standard error dropped (2690). Therefore, with the significance level for both models of 5 per cent, the models were considered acceptable. The logistic model could be improved by improving the limit and extending the data. The data recording on casualties like that of injury RTAs begins in 1960. The calibration therefore can be improved.

Casualties per RTA were found to be increasing at the rate of 1.9% per annum (similar to that of casualties per 10^{4} vehicles).

The prediction was near the ideal (l.219) but the intercept was not near zero (-0.304) (Fig.4.15). The calibration could be improved through revision of limit and data extension and smoothing. The scatter was acceptable $(r=0.87)$. The standard error was small (0.159) and the model significant at 5 per cent level. Considering the limitation in data the model was acceptable. This result confirms that found by Jacobs and Hutchinson [l] for Kenya (an increase of 60% between 1961-1971).

It was found that casualties per RTA decrease with increase in motorization. The cubic polynomial
model (4.22)

$$
{ }^{(C / A)}{P_{2}}=0.11831 \times 10^{-10}(\mathrm{~V} / \mathrm{P})^{3}-0.00015(\mathrm{~V} / \mathrm{P})^{2}
$$

$$
+0.04492 \mathrm{~V} / \mathrm{P}-1.7667
$$

- fitted the data with reasonable accuracy. Although the calibration of the model could be improved, the predicted data was scattered around the ideal line $($ slope $=1.355$, intercept $=-0.488)($ Fig.4.16). The consistency was fair ($r=0.84$) and the standard error small (0.146). Again, as observed earlier the curve is not likely to decrease to zero but rather it is likely to stabilize at some point in the future. The relationship described by the model was found to be significant at 5 per cent level. Therefore, the predictive model is acceptable.

This study showed that casualties per 10^{4} vehicles is increasing at the rate of 1.7% per annum (Fig.4.17) (Similar to casualties per KIA).

After data smoothing variation were still
afflicting the shape of the curve. The logistic curve (4.23) was much flatter. The predicted data werescattered around the ideal curve with slope $=0.713$ and intercept of 145 . The calibration could be improved by removal of the variations and revision of limit.

The scatter was considerable $(r=0.52)$ but the standard error small considering the variation in the series
(72.47). The model was found to be significant at the 5 per cent level.

It was further found that casualties per 10^{4} vehicles are decreasing with increase in motorization. The cubic polynomial (4.24)

$$
\begin{aligned}
(\mathrm{C} / \mathrm{V})_{\mathrm{p}_{2}}= & 8.8191 \times 10^{-8}(\mathrm{~V} / \mathrm{P})^{3}-0.04464166(\mathrm{~V} / \mathrm{P})^{2} \\
& +12.597057 \mathrm{~V} / \mathrm{P}-337.6139
\end{aligned}
$$

was a good fit for this data. The prediction was near the ideal (slope $=1.022$, intercept $=-8.841$) (Fig.4.18). Although there was scatter in the predicted data ($r=0.79$) it was found that the accuracy of prediction was good. The calibration was therefore acceptable. The standard error (71.44) improved only slightly above the logistic model. The cubic model was found to be significant at 5 per cent level.

During the study it was found that data on RTA deaths can be definitely fitted by a logistic curve (4.25)

$$
D_{P_{1}}=\frac{1720}{1+22.889 e^{-0.174 t}}
$$

to show the trend in road deaths over time. It was
further found that RTA deaths in Kenya are increasing at a high rate of 7.4% per annum nearly twice the increase in population. The predictive model was very near the ideal (slope $=0.994$ and intercept $=-22)(F i g .4 .19)$. The consistency of prediction was good (r =0.97). The standard error was found to be somewhat large (553). The level of significance was found to be 5 per cent and therefore the prediction is reasonable.

It was further found that road deaths in Kenya will first increase, stabilize and then begin to decrease with motorization. The cubic polynomial (4.26)

$$
\begin{aligned}
\mathrm{D}_{\mathrm{P}_{2}}= & 229.7235-11.960418 \mathrm{~V} / \mathrm{P}+0.14040617(\mathrm{~V} / \mathrm{P})^{2} \\
& +0.18958 \times 10^{-6}(\mathrm{~V} / \mathrm{P})^{3}
\end{aligned}
$$

was found to be a very reasonable fit for this trend. Predictions for Kenyan data were also made using Smeed's equation (2.2) [2] and the results compared in Table 5.1. The Agoki formula came nearest to the ideal (Fig.4.20) observed = predicted line. The consistency in prediction is of the same quality.

TABLE 5.1 COMPARISON OF OBSERVED ANI PREDICTED RTA DEATHS IN KENYA

Formula Units	Regression Slope		Correlation Coefficient, r	Determination Coefficient, \mathbf{r}^{2}	Standard Error	
Agoki	Deaths	1.009	-10	0.97	0.94	545
Smeed	Deaths	1.751	-459	0.96	0.93	310

Although the Smeed formula had a lower standard error, the slope and intercept suggest that the calibration could be improved. The Smeed formula over-predicts for lower rates of death and at higher rates it underpredicts. Smeed formula correctly predicts at around 500 deaths.

The study showed further, that deaths per 10^{4} persons in Kenya increase slowly at first, then sharply, stabilize, and then may start to fall slowly. The cubic polynomial (4.27)

$$
\begin{aligned}
(D / P)_{p_{1}}= & 1.9788 \times 1-^{-10}(V / P)^{3}+0.00001494(\mathrm{~V} / \mathrm{P})^{2} \\
& +0.007762 \mathrm{~V} / \mathrm{P}-0.4127
\end{aligned}
$$

was found to be a good fit for Kenyan data. Predictions were also made on the same data using Smeed formula (2.3) [3] and Jacobs and Hutschinson formula (2.4)[1]. The comparison of the three formulae is shown on Table 5.2.

TABLE 5.2 COMPARISON OF OBSERVED AND PREDICTED RTA DEATHS PER

Formula	Units	Regressicn		Correla. Coeffi.,r	Determin. Coeff1., r	Std. Error
		Slope	Inter.			
Agoki	D/P	0.923	0.054	0.93	0.87	0.31
Smeed	D/P	4.809	-2.545	0.91	0.83	0.06
Jacobs \& Hutchinson	D/P	3.550	-1.172	0.92	0.85	0.08

Again, the Agoki formula (Fig.4.2l) came nearest to the ideal observed $=$ predicted line although it had highest standard error. All formulae have the same consistency in predicting data but the slopes and intercepts of the Smeed, Jacobs and Hutchinson formulae suggest that calibration is needed. Jacobs and Hutchinson formula predict Kenyan data correctly around $D / P=0.4$ and the Smeed formula at $D / P=0.6$. All models are significant at 5 per cent level.

It was further found that RTA deaths per 10^{4} vehicles in Kenya rose slowly at first, rapidly and are likely to stabilize in future and drop as motorization increases. Again, the cubic polynomial function (4.28)

$$
\begin{aligned}
(\mathrm{D} / \mathrm{V})_{\mathrm{p}_{1}}= & 1.4218 \times 10^{-8}(\mathrm{~V} / \mathrm{P})^{3}-0.00022871(\mathrm{~V} / \mathrm{P})^{2} \\
& +0.577548 \mathrm{~V} / \mathrm{P}-5.4171
\end{aligned}
$$

was found to be a good fit for the data for Kenya.

Again, the model derived in this study (Fig.4.22) was compared with those developed by Smeed (2.1) [1] and Jacobs and Hutchinson (2.5) [1]. The comparison of the three formulae is shown on Table 5.3.

TABLE 5.3 COMPARISON OF OBSERVED AND PREDICTED RTA DEATHS PER 10^{4} vehicles

Formula	Units	Regression		Correla.Coeffi.,r	Determ. Coeffi., r${ }^{2}$	Std Error
		Slope	Intercept			
Agoki	D/V	0.769	13	0.77	0.59	15
Smeed	D/V	-0.876	111	-0.70	0.49	12
Jacobs \& Hutchinson	D/V	-2.013	151	-0.72	0.51	5

Again, the Agoki formula came nearest to the ideal prediction line. The Agoki and Smeed formulae had the same order of standard error and Jacobs and Hutchinson had the smallest standard error. The slopes and intercepts of the Smeed, Jacobs and Hutchinson formulae suggest strongly a need for their calibration. The Agoki formula could be improved in calibration particularly with improved data reporting and keeping for both road deaths and vehicle fleet and of course more accurate population census and prediction (although this is not critical considering the trend prediction for population discussed earlier). All models were statistically significant at the 5 per cent level.

With respect to deaths per 10^{6} vehicle-kilometres the analysis revealed an increasing trend with time at the rate of $\mathbf{I} .88$ per annum, a rate similar to that shown by casualties per RTA. The data was fitted using the logistic curve model 4.29 and the prediction proved consistent although there was some scatter $(r=0.84)$. The prediction was near the ideal line (slope $=0.864$, intercept $=0.032$) (Fig.4.23). The standard error was small (0.060) and with a significance level of 5 per cent the prediction is reasonable. Despite data smoothing the curve was still afflicted with flactuations. This difficulty may be overcome if data were available for decomposition of this time series. With further data smoothing calibration might be improved.

As seen in earlier trends, deaths per 10^{6} vehicle-kilometres has risen slowly at the start, sharply then stabilized before beginning to drop. On a long term basis this trend is to continue. A cubic polynomial (4.30) fitted the curve with a somewhat poorer fit than the logistic curve. Although the data were predicted around the ideal line the slope was only 0.763. The intercept was good (0.053) (Fig.4.24) and comparable to the previous model. The standard error was equally small (0.059). The calibration could be improved by more accurate data on vehiclekilometres. The amount of travel is somewhat difficult
to observe or predict with great accuracy. The model was nonetheless, significant at the 5 per cent level. This model is reasonable for prediction.

RTA injuries were found to be increasing with time at the rate of 5.8% per annum. This is about the same rate as for the increase in casualties. This would
imply that they are of a greater influence in the growth of casualties than do deaths. The trend was fitted by the logistic curve (4.31) for predicting the trend in the growth of injuries. The prediction was found to be nearly ideal (slope $=1.045$, intercept $=-171)($ Fig.4.25). The prediction was consistent ($r=0.97$) but the standard error large (3430). The cubic polynomial (4.32)

$$
\begin{aligned}
\mathrm{I}_{\mathrm{P}_{2}}= & 1.2305 \times 10^{-6}(\mathrm{~V} / \mathrm{P})^{3}+0.25629308(\mathrm{~V} / \mathrm{P})^{2} \\
& +60.580992 \mathrm{~V} / \mathrm{P}-4849.778
\end{aligned}
$$

predicted the data satisfactorily and indicated that injuries have tended to increase with motorization. The prediction was still near the ideal line with slope $=0.961$ but the intercept nearly trebled shifting to 344 . The prediction remained consistent ($r=0.94$) and the standard error dropped somewhat (3144). Data smoothing is likely to improve the calibration of the model. Both models found
to be significant at 5 per cent level and accordingly were accepted as predicting the number of injuries from RTAs.

With respect to injuries per 10^{4} persons it was found that the trend was an increasing one with time at the rate of 5.2% per annum. The prediction model (4.33) found to predict this trend was the logistic curve. The prediction was very nearly ideal (slope=1.047 intercept $=-0.149)($ Fig.4.26). The prediction was consistent ($r=0.91$) and the standard error small. With a significance level of 5 per cent, this prediction model was accepted. The data after smoothing was found to be still with variations which would imply a need for further smoothing to improve the calibration of the model. The reporting of injury data is likely to have affected the shape of the curve. A polynomial function (4.34) of the third degree was found to fit the same data in relation to motorization. It was found that injuries per 10^{4} persons increases slowly initially, rapidly next then stabilizes before starting to fall as motorization increases. The prediction was near ideal (slope $=0.885$, intercept $=0.764)($ Fig.4.27) . The consistency was fair $(r=0.87)$ and the standard error small (1.742). The two models were significant at 5 per cent level. The polynomial model had a better curve shape meaning that the data smoothing was very effective.

Injuries per 10^{4} vehicles was found to grow at a rate of 1.8% per annum. It was observed that the smooth data curve (4.35) was flatter than some of the earlier curves. This implies that injuries per 10^{4} vehicles are stabilizing with time as borne out by the growth rate and the fact that the predictions were scattered around the centre of the prediction line. The prediction was found to be fairly close to the ideal line (slope $=0.734$, intercept $=117)($ Fig.4.28) . The prediction was not very consistent as the scatter was very considerable ($\mathrm{r}=0.44$). The standard error was not large considering the scatter. The model was statistically significant at 5 per cent level. The slope, the intercept and the scatter suggest that the model could be improved. This might be done by further data smoothing and the revision of the limit. The variation in injuries per 10^{4} vehicles was found to fit the cubic polynomial function (4.36) with motorization as the independent variable. It was further found that even for Kenya as motorization increases injuries per 10^{4} vehicles decreases, a finding which is at variance with the earlier finding by Jacobs and Hutchinson [l]. Their finding was based on data limited to only 10 years (1961-71). Therefore, it is to be noted that for both national and international comparisons long term trends based on records kept for a considerable period are more reliable for studying RTA patterns of different countries. The
predictive model was nearly ideal (slope = 1.103, intercept $=-55)($ Fig.4.29). The standard error of 56 was comparable to that obtained for the logistic model, for this phenomenon, above. The model was significant at 5 per cent level. This model is quite suited for prediction and therefore acceptable.

In this study it was further found that injuries per 10^{6} vehicle-kilometres are increasing with time at the rate of 2.4% per annum.

Further, that the trend can be described by the logistic curve (4.37). The prediction was close to ideal (slope $=0.924$, intercept $=0.084)($ Fig.4.30). However, the scatter was considerable ($r=0.69$). The standard error was small (0.239). It was further found that as motorization increases injuries per 10^{6} vehicle-kilometres decrease the trend was described by the cubic polynomial function (4.38). The prediction was very nearly ideal (slope $=1.02$, intercept $=-0.052$) (Fig.4.3l). The scatter of $r=0.77$ showed that the prediction was not very consistent. The standard error of 0.242 was rather large for the phenomenon being predicted but comparable to the previous logistic model. Both modelswere significant at 5 per cent level. The trend revealed that injuries per 10^{4} vehicle-kilometres have stabilized and are decreasing. Both models could be improved in terms of calibration by further data smoothing and observation of more reliable data on vehicle-kilometres.

The severity index was found to be increasing with time at the rate of 3.0% per annum. The predictive model 4.39 was found to be the logistic curve but with a flatter shape. There appeared to be flăctuations even after data smoothing. This led to a rather considerable scatter in the prediction (r=0.53). The slope was 0.643, the intercept was 3.9 (Fig.4.32) and the standard error 1.65 . The predictions are reasonable but the slope and intercept suggested necessary improvement in the calibration. The model was found to be significant at 5 per cent level.

It was found that severity index increases slowly with motorization and then rapidly. The cubic polynomial function (4.40) was found to fit the data. The prediction was fairly close to the ideal (slope $=0.833$, intercept $=1.655)($ Fig.4.33). The scatter had lessened $(r=0.63)$ compared to that of the logistic prediction. The standard error was 1.508 rather like that of the logistic model. Both models were found to be significant at 5 per cent level. The severity indices for various classes of road users were analysed. Due to lack of sufficient data no meaningful functional relations either with time or motorization were suitable. But the analysis revealed that the severity index of pedestrians was postively correlated with motorization. Therefore, pedestrians would seem to be the main category of road users affecting severity index in RTAs. The finding by Jacobs and Hutchinson
that the lower the vehicle ownership level, the greater the severity index is contradicted by the finding in this study.

The percentage distribution of RTAs by day and night in Kenya was found to be described by a logarithmic trend curve (4.41)

$$
\left({ }^{(8)_{A_{d}}}\right)_{p}=81.073-5.656 \quad \text { ent }
$$

over time. This curve was significant at 5 per cent level and for the data observed the prediction was about the ideal line (slope $=0.754$, intercept $=17.004$) (Fig.4.34).

Due to flactuations remaining in the smoothed data there was much scatter $(r=0.45)$. The standard error was 4.674 which is considered reasonable. The trend revealed that the day proportion is decreasing whilst the night proportion is increasing with a tendency to stabilize at around 50%. Nonetheless about $2 / 3$ of RTAs in Kenya are still occurring during the day in line with the proportion of day traffic. Therefore, equal efforts in reducing RTAs should be exerted to both day as well as night RTAs.
(The percentage RTA responsibility of various classes of vehicles was found to be described by the
logarithmic trend (4.42-4.47) curve over time. The results for the various classes of vehicle type are summarized in Table 5.4. It was found that the prediction for pedal cyclists responsibility came nearest the ideal line. The prediction for pedal cyclists responsibility was the most consistent with some scatter however ($r=0.76$). The others had reasonable calibration but with considerable scatter. When responsibility and composition (Fig.4.35-4.38) distribution were compared it was found that cars and utilities were responsible for RTAs in about the same proportion as their composition. Indeed their responsibility was just below the composition. Not surprisingly, buses, lorries and taxis were found to be responsible for nearly twice as much as their composition with an increasing tendency in their RTA involvement. Their composition was found to be stable. Because this class of vehicles carries passengers it has agreat effect on casualty, injury, death and RTA rates. Concerted efforts in RTA reduction should therefore be directed towards this class of vehicles as there is much potential for safety improvement. Although motorcycles were involved in RTAs more than their composition initially the stabilizing tendency was found to reveal that they are being involved in RTAs less than their composition. The responsibility by handcarts and animals as well as by pedal cyclists has remained more or less constant in recent years.

TABLE 5.4 COMPARISON OF OBSERVED AND PREDICTED PERCENTAGE RTA RESPONSIBILITY

Vehicle Type	Units	Regression		Correlation Coefficient,r	Determination Coefficient, r^{2}	Standard Error	Significance Level
		Slope	Intercept				
Cars, Utilities	$\%$	0.787	14.661	0.43	0.18	1.590	5
Buses, Lorries, Taxis	\%	0.767	5.894	0.53	0.29	2.190	5
Motorcycles	\%	0.868	0.727	0.30	0.09	0.453	10
Pedal cyclists	\%	0.979	0.040	0.76	0.57	1.655	5
Handcarts \& animals	\%	0.596	0.983	0.15	0.02	0.331	25
Pedestrians \& Pass.	\%	0.736	7.496	0.53	0.28	7.498	5

TABLE 5.5 COMPARISON OF OBSERVED AND PREDICTED \% DISTRIBUTION OF PERSONS KILLED

Road user	Units	Regression		Correlation Coefficient,,$~$	Determination Coefficient, r^{2}	Standard Error	Significance Level
			0.398	10			
Drivers	$\%$	3.147	-30.145	0.45	0.45	1.303	20
Motorcyclists	$\%$	0.630	0.884	0.36	0.13	1.484	10
Pedestrians	$\%$	0.925	3.197	0.45	0.20	0.319	30
Passengers	$\%$	1.389	-11.236	0.21	0.04	2.235	20

Of great concern was the finding that pedestrian and passenger responsibility is continuing to increase despite growth in motorization. Measures in safety improvement for these unprotected class of road users has not kept pace with increased travelling. This is yet another class of road users with much potential for RTAs reduction. Efforts should be directed towards this group both in terms of education as well as design for pedestrian facilities on Kenyan roads and changes in transportation of passengers. The models were found to predict responsibility and composition reasonably well. Their slopes and intercept indicate that their calibration could be improved. There was much fluctuation in motorcycle, buses/lorries/taxis and pedestrian/passenger data, which if smoothed out could greatly improve the calibration of predictive models related to these categories of road users.

The growth in percentage distribution of those killed and injured above 16 years of age was found to be logarithmic (4.49). However, the prediction of data for the distribution of those killed was not found to be statistically significant. The distribution predictive model for those injured was however, found to be significant at 20 per cent. These data had only been observed for a decade and it is not valid to extend them beyond a decade for long term extra-
polative purposes. Nonetheless, they are useful in indicating short term trends. The prediction for the distribution of those injured came nearer the ideal (slope $=0.856$, intercept $=13.117$) (Fig.4.39). There was considerable scatter ($\mathrm{r}=0.40$). The standard error was small (1.808). If the data is extended for this model it could prove useful for predictive purposes. More useful information on age distribution could be gained if age grouping of those killed and injured was widened much in line with the grouping used in the analysis for the dual as well as the single carriageways data.

The percentage distribution of those persons killed in RTAs in Kenya was found to be described by the logarithmic trend curve (4.50-4.54) over time. The results for the various road user categories are summarized in Table 5.5. Since these predictions were about the ideal line all the results could be accepted as indicative of the distribution characteristics of those killed. Because data was of short duration it was found that it had very considerable scatter even after smoothing. For indicative purposes the levels of significance found were reasonable. Hence, judging the models by slope and intercept criteria revealed that the prediction for pedestrians came nearest the ideal line, followed by that for passengers and then the one for motorcyclists.

In terms of trends it was found that they were all stable. However, it was observed that nearly 80\% of those killed are pedestrians and passengers followed by 14% as drivers. Therefore, in order to reduce RTAs efforts should be directed towards drivers as they have responsibility for themselves as well as for passengers $(35 \%$ of total killed). Therefore, drivers were found to be potentially responsible for nearly 49% of those killed whereas pedestrian have a share of 45%. This result indicates that concerted efforts in road safety improvements should be directed towards the drivers and pedestrians. Again, passenger transportation is another area of potential improvement if RTA deaths are to be reduced. This confirms earlier predictions by responsibility distribution. For long term predictions these data need to be extended by further observations and subsequent recalibration. This may be said to be true of all the predictive models obtained in this study.

Finally, for the national RTA trends in Kenya, the percentage distribution of those persons injured in RTAs was found to be described by the logarithmic trend curve (4.55-4.59) over time. The results for the various road user categories are summarized in Table 5.6. It was found that the prediction for motorcyclists and pedal cyclists were not statistically
significant. Again, since all the predictions were about the ideal line (i.e. they all intersected the ideal line at least) they could be accepted as indicative of the distribution characteristics of those injured. The prediction that came nearest the ideal line was that for drivers (slope 1.516 , intercept $=-8.112)(F i g .4 .41)$. It however requires further calibration after data.extension. The scatter was found to be considerable ($r=0.59$). The standard error lay between those models found to be statistically significant. Again, for purposes of RTAs reductions efforts should be directed towards driver training, retraining and education. Also efforts should be directed towards passenger carrying regulations particularly for public transport vehicles like matatus and the buses as well as open lorries.
5.3 Prediction of Effect of Road Factors on

Road Traffic Accidents

In this study it was found that the effect of longitudinal gradient on RTAs can be predicted by a quadratic polynomial function. Predictions were also made on the same data using Silyanov formula (2.14) [4] and compared (Table 5.7). For both upgrade and downgrade data the Agoki formulas $(4.60,4.61)$

TABLE 5.6 COMPARISON OF OBSERVED AND PREDICTED \% DISTRIBUTION OF PERSONS INJURED

Road User	Units	Regression		Correlation Coefficient, r	Determination Coefficient, r^{2}	Standard Error	Significance Level
		1.516	-8.112	0.59	0.35	1.650	5
Motorcyclists	$\%$	0.052	4.202	-0.02	0	0.673	NONE
Pedal cyclists	$\%$	0.057	6.175	-0.01	0	0.529	NONE
Pedestrians	$\%$	0.486	10.677	0.30	0.09	3.460	20
Passengers	$\%$	3.448	-127.706	0.22	0.05	0.268	30

TABLE 5.7 COMPARISON OF OBSERVED AND PREDICTED RTAS PER 10^{6} VEHICLE KILOMETRES

Formula	Units	Regression		Correlation Coefficient, r	Determination Coefficient, r^{2}	Standard Error	Significance Level
Agoki (Upgrade) Silyanov (Upgrade)	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	0.811	0.455	0.68	0.46	0.651	20
Agoki (Downgrade)	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	0.025	1.956	0.02	0	0.565	NONE
Silyanov (Downgrade)	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	1.018	-0.095	0.97	0.94	0.853	5

$$
\begin{gathered}
-295 \\
\left(\mathrm{a}_{\mathrm{g}}^{\mathrm{p}_{1}}\right. \\
\left(\mathrm{a}_{\mathrm{g}}\right)_{p_{2}}=0.9866+1.10666 \mathrm{~g}-0.18401 \mathrm{~g}^{2} \\
\end{gathered}
$$

came nearer the ideal observed $=$ predicted line. The slopes and intercepts for the Silyanov formula suggest that they need recalibration if they are to interpret Kenyan or similar data. The Agoki formula for downgrade gradients came nearest the ideal line and therefore can be used in predicting the effect of gradient on RTA occurrence. The Agoki formula for upgrade gradient is a good fit also (slope $=0.811$, intercept $=0.455)($ Fig. $4.47,4.48)$ but the prediction is not as consistent as that for downgrade. It has scatter ($\mathrm{r}=0.68$) and the level of significance of 20 per cent. This could be acceptable since RTAs are dependent on many causative factors. Silyanov [4] found out that the number of RTAs increased continuously with increase in grade particularly being sharp at 3 per cent. The majority of the vehicles from Silyanov's result were moving downwards. In this study it was found that for upgrade gradients 3 per cent had the worst RTA incidence. For the downgrade the worst gradients are ones less than 3 per cent. The general finding was that flatter grades were more RTA prone than steeper ones. The reason for this may lie in the fact that the steeper
the gradient the more careful and alert the drivers become. On the upgrade vehicular speeds reduce with increase in gradient thus better holding possibilities and better control of vehicles is enhanced. Design criteria [14] recommend maximum ranges of gradient for flat country as 3-5 per cent, rolling country as 4-7 per cent and mountainous as 7-10 per cent. These ranges fall largely in the decreasing section of the models developed in this study. This implies that the design of flatter gradients than 3 per cent is crucial to safety particularly when combined with other factors of sight distance and horizontal alignment. Further, attempts to achieve grades less than 3 per cent imply increase in construction costs which must be justified by increased traffic safety due to reduced RTAs.

The effect of sight distance on RTAs was also found to be predictable by a quadratic polynomial function. The comparison of prediction performance qualities of the models developed in this study was made with that of Silyanov (Table 5.8). The Agoki formulae (4.62, 4.63)

$$
\begin{aligned}
& \left(\mathrm{a}_{s^{\prime}}\right)_{\mathrm{p}_{1}}=-8.745+0.07981 \mathrm{~s}-0.000136 \mathrm{~s}^{2} \\
& \left(\mathrm{a}_{\mathrm{s}^{\prime}}\right)_{\bar{p}_{2}}=-1.8551+0.03467 \mathrm{~s}-0.00006 \mathrm{~s}^{2}
\end{aligned}
$$

TABLE 5.8 COMPARISON OF OBSERVED AND PREDICTED RTAS / 10^{6} VEHICLE - KILOMETRES

Formula	Units	Regression		Correlation Cofficient,r	Determination Coefficient, r^{2}	Standard Error	Significance Level
		0.723	0.826	0.83	0.69	0.996	5
Silyanov (Nairobi-to- Thika CWY)	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	-1.734	5.609	0.85	0.72	0.424	5
Agoki Thika-to- (Nairobi CWY)	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	0.550	1.057	0.74	0.55	0.441	5
Silyanov (Thika-to- Nairobi CWY)	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	-0.473	3.463	0.59	0.35	0.326	5

TABLE 5.9 COMPARISON OF OBSERVED AND PREDICTED RTAs/ 10^{6} VEHICLE KILOMETRES

Formula	Units	Regression		Correlation Coefficient r	Determination Coefficient r^{2}	Standard Error	Significance Level
		Slope	Intercept				
Agoki	RTA/ $10^{6} \mathrm{~V}$-K	0.883	1.603	0.88	0.78	1.317	5
Silyanov	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	15.92	-11.293	0.88	0.78	0.073	5

came nearer the ideal line but the consistency, though better than in Silyanov's, showed scatter. Silyanov's formulae are unsuited for predicting the study data and judging from the slopes and intercept $(4.49,4.50)$ they need recalibration. The Nairobi-to-Thika carriageway model had the highest standard error. Silyanov found that RTAs occurred on road sections where sight distance was less than 300 metres. In this study it was found that sections with 300 metres experience the worst RTA occurrence. RTAs were found to decrease for shorter or longer distances than 300 m . The possible explanation here is that at distances greater than 300 drivers have a greater chance of avoiding a RTA and at distances less than 300 m drivers are more careful and speeds are more moderate since other limiting factors such as gradient and curvature come into play. Design standards $[14,16]$ recommend minimum sight distances, on level roads in Kenya for design speeds 60-120 kph, ranging from 80-310 metres. These standards are comparable to those used in Great Britain. USA and Australia have lower standards. From this study it can be seen that where roads have many sections which fall within this range RTAs increase with sight distance to reach a maximum at 300 m of sight distance for those sections between 300 and 500 m RTAs decrease with increase in sight distance. The MOTC [14] standard specifying 300 m sight distance for $120 \mathrm{k} . \mathrm{p} . \mathrm{h}$. for stopping and

60 k.p.h. for passing requires revision since at this level of sight distance the horizontal alignment as well as the vertical alignment appear to be contributing the most in worsening the safety situation.

In this study it was found that RTAs decrease with increase in carriageway width. A linear function (4.64)

$$
\left(a_{w}\right)_{p_{1}}=32.6439-4.2348 w
$$

was found to be describing this relationship. This finding was found to be consistent with that of Silyanov [4] where he observed that RTAs per vehiclekilometre becomes markedly sharp when the width is less than 7 metres. The two models were compared (Table 5.9), Silyanov's equation being equation (2.12) [4]. The Agoki formula came nearer the ideal line than Silyanov's although Silyanov's had a much lower standard error. The consistency in prediction is comparable for both models. Silyanov's formula grossly under-predicts when used for Kenyan data. The slope and intercept for Silyanov's formula prediction suggest improvement in calibration for Kenyan data. It is to be noted that the comparison shows that RTA rates on Kenyan roads are as high as 15 times the rates in Europe for which Silyanov developed the model. Alternatively seen, there is
potential for RTA reduction on Kenyan roads if carriageway widths are increased and present roadways routinely maintained including the shoulders.

On an urban and semi-urban dual carriageway, the effect of junctions per kilometre was found to be linear (4.65, 4.66).

$$
\begin{aligned}
& \left(a_{j}\right)_{p_{1}}=5.068+1.672 j \\
& \left(a_{j}\right)_{p_{2}}=3.0099+2.9239 j
\end{aligned}
$$

RTAs per 10^{6} vehicle-kilometres were found to increase with increase in number of junctions per kilometre. On the single carriageway rural road with a higher number of junctions and accesses per kilometre (than the dual carriageway urban and semi-urban road with control and restriction of access) it was found that the effect of junctions is non-linear. It was found to be of a quadratic polynomial function (4.75)

$$
\left(a_{j}\right)_{p}=0.6668+1.1082 j-0.1288 j^{2}
$$

The prediction by the models developed in this study was compared with that of Jacobs formula (equation (2.9) [4]). Table 5.10 shows the comparison.

TABLE 5.10 COMPARISON OF OBSERVED AND PREDICTED RTAS/ 10^{6} VEHICLE-KILOMETRES

Formula	Units	Regression		Correlation Coefficient,r	Determination Coefficient, r^{2}	Standard Error	Significance Level
		Slope	Intercept				
Agoki (Nairobi-toThika CWY)	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	1.001	-0.004	0.92	0.84	2.649	5
Jacobs (Nairobi-toThika CWY)	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	1.639	2.691	0.92	0.84	2.346	5
Agoki (Thika-to- Nairobi CWY)	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	0.970	-0.696	0.93	0.86	6.316	5
Jacobs Thika-to- Nairobi CWY)	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	2.781	-1.808	0.808	0.93	2.578	5
Agoki (KiganjoNanyuki Rd)	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	1.004	-0.009	0.98	0.96	0.642	5
$\begin{array}{\|l} \text { Jacobs } \\ \text { (Kiganjo- } \\ \text { Nanyuki Rd) } \end{array}$	RTAs/ $100^{6} \mathrm{~V}-\mathrm{K}$	-0.050	2.670	-0.19	0.04	2.498	NONE

Jacobs [4] found, for the Nairobi-Mombasa Road, that junctions per kilometre were the most significant independent variable. The critical coefficient (r^{2}) for the model for his data was found to be only 0.49 meaning that the model explained only 49 per cent of the variation. This is rather too low. He states that there were never more than two junctions per kilometre and hence an addition of one junction per kilometre led to RTA increase of over one RTA per 10^{6} vehicle-kilometre. From Table 5.10 it is confirmed that junctions per kilometre are a very significant independent variable in relation to RTA causation. The models developed in this study were all significant at 5 per cent level. The prediction came very near the ideal. For all intents and purposes they could be said to be perfect. The slopes and intercepts for the Nairobi-to-Thika carriageway and the KiganjoNanyuki Road together with their intercepts reveal that the models are very well calibrated. The worst condition on the single carriageway is 4 junctions. Thus RTAs per 10^{6} vehicle-kilometres increase with increase in junctions per kilometre. After 4 junctions per kilometre they decrease with increase in junctions per kilometre. This is to be expected because the fewer the junctions the greater the mobility, free flow conditions and hence the higher the speed. The more the junctions the greater the restriction to flow, the slower the vehicle and the safer. With reference to the
comparison of the observed and predicted data by Jacobs formula, noting that the slope of the prediction line is nearly zero it can be assumed to be parallel to the predicted axis. Therefore the prediction by Jacobs formula on the study data varies in the observed value (the RTAs/ 10^{6} vehicle-kilometres axis) only to a great extent meaning that it is actually tracing out the locus of the effect of junctions on RTAs. Thus it confirms the finding that the relationship is quadratic. At 4 junctions per kilometre Nairobi-to-Thika carriageway has an RTA rate of nearly 12 RTAs per 10^{6} vehiclekilometres, the Thika-to-Nairobi carriage has 15 and the single carriageway has 3 . Thus in relation to junctions the single carriageway low trafficked road is the safest. The two carriageways of the dual carriageway road can be said to be quite dangerous to the extent of 5 times. The reasons for this high rate on the dual carriageway is likely to be speed, poor visibility, poor illumination at night and the high level of traffic. The developed models may be said with all certainty to be predictive of the phenomenon of RTAs. Jacobs formula failed in predicting the study data.

The effect of horizontal curves was found to be non-linear. The upgrade curves affected the occurrence of RTAs as a cubic polynomial function, while the effect of downgrade curves was of a
quadratic nature. The two models developed in this study were compared with Silyanov's model (equation (2.13) [4]. Table 5.11 depicts the comparison. The Agoki formulae $(4.67,4.68)$

$$
\begin{aligned}
\left(\mathrm{a}_{R_{P_{1}}}\right. & =3.346-0.0009 \mathrm{R}+0.77 \times 10^{-7} \\
& -1.361 \times 10^{-12} \mathrm{R}^{3} \\
\left(\mathrm{a}_{R^{\prime}}\right)_{P_{2}} & =6.8699-0.0031 \mathrm{R}+0.000000397 \mathrm{R}^{2}
\end{aligned}
$$

came nearest to the ideal in terms of prediction. In particular the prediction by the model developed from upgrade data (the cubic function) predicts well but has some scatter ($r=0.67$) (Fig.4.55). The standard errors are reasonable. The formula by Silyanov could be improved in terms of calibration. Silyanov formula predicts data for downgrade curves in Kenya judging by the slope and intercept. However it tends to under-predict and could be improved by calibrating the intercept in particular. Silyanov found that the most dangerous horizontal curves were those of less than 500 metres. By Silyanov's formula (2.13) this radius gives a rate of 2 RTAs per 10^{6} vehicle-kilometres. Using this rate on the models developed here implies that for downgrade gradient curves the most dangerous are those less

TABLE 5.11 COMPARISON OF OBSERVED AND PREDICTED RTAS PER 10^{6} VEHICLE-KILOMETRES

Formula	Units	Regression		Correlation Coefficient,r	Determination Coefficient, ${ }^{2}$	Standard Error	Significance Level
		Slope	Intercept				
Agoki (Upgrade)	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	1.011	-0.055	0.67	0.44	0.509	5
Silyanov (Upgrade)	RTAs / $10^{6} \mathrm{~V}-\mathrm{K}$	0.194	2.112	0.37	0.14	1.467	20
Agoki (downgrade)	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	0.844	0.555	0.88	0.77	1.909	5
Silyonav (downgrade)	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	0.827	2.270	0.73	0.53	1.625	5

TABLE 5.12 COMPARISON OF OBSERVED AND PREDICTED RTAs PER 10^{-6} VEHICLE-KILOMETRES

Formula	Units	Regression		Correlation Coefficient, r	Determination Coefficient, r^{2}	Standard Error	Significance Level
		Slope	Intercept				
Agoki-Kiganjo/ Nairobi-to-Thika	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	0.966	0.065 .	0.97	0.94	0.937	5
$\begin{aligned} & \text { Jacobs-Kig./ } \\ & \text { Nbi-Tka } \end{aligned}$	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	0.415	0.126	0.95	0.90	2.132	5
$\begin{aligned} & \text { Silyanov-Kig/ } \\ & \text { Nbi-Tka } \end{aligned}$	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	6.782	-1.351	0.96	0.93	0.132	5
$\begin{aligned} & \text { Agoki-Kig/ } \\ & \text { Tka-Nbi } \end{aligned}$	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	0.921	0.110	0.96	0.91	1.679	5
Jacobs Kig/ Tka-Nbi	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	0.669	-0.635	0.92	0.84	2.220	5
Silyanov-Kig/ Tka-Nbi	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	10.969	-3.038	0.93	0.87	0.138	5

than 1500 metres and for upgrade those that are 2000 metres. This would seem to imply that drivers in Kenya take curves at higher speeds for the same curves taken in Europe. In fact curves less than 200 metres were found to be extremely dangerous particularly when occuring at crests. Design criteria [l4] recommend for design speeds ranging between $40-120 \mathrm{kph}$ curve radius ranges $60-1000 \mathrm{~m}$. Speeds of 90-100 k.p.h. require about 500 m radius curves [14]. These speeds are the design range for the study roads. From this study it is seen that all these curves, particularly when negotiated at high speeds, lie in the RTA prone zone. It is not unthinkable to imagine that drivers in Kenya particularly with high powered engines negotiate curves at speedsmuch higher than 120 kph . As a measure for RTA reduction the models suggest that for downgrade curves it is RTA saving to design curves greater than 1500 metres. This would be true also for upgrade curves. For downgrade curves 4000 metre radius appeared to be the safest. Not surprisingly however after this radius RTAs begin to rise with increase in radius. The influence would seem to be that of high speeds. and steeper gradients.

The effect of superelevation on RTAs was found to be virtually the same for upgrade as well as downgrade curves. It was found that RTAs decrease
with increased superelevation. Taken on the face of it would seem to imply that small radii curves are safer. This would contradict the finding from horizontal curve effect. Rather, what is likely is that smaller radii curves are taken cautiously by drivers thus reducing RTAs on high superelevation curves. Further, an attempt to use larger radii for horizontal curves must take into consideration the cost implications versus the saving to be realized from a drop in RTAs particularly on curves. Quadratic polynomial functions were found to fit this effect of superelevation (4.69, 4.70),

$$
\begin{aligned}
& \left(a_{\alpha}\right)_{p_{1}}=2.2729+0.6 \alpha-0.098 \alpha^{2} \\
& \left(a_{\alpha}\right)_{p}=1.0693+1.3132 \alpha-0.22 \alpha^{2} .
\end{aligned}
$$

The predictions were near ideal and consistent. The level of significance was 5 per cent and therefore the models were acceptable. The standard errors were small.

In this study it was found that whereas RTAs per 10^{6} vehicle-kilometres increase with increase in vehicle flow (average vehicles per hour) the growth in RTAs follows the logistic curve (4.71, 4.72)

$$
\left(\mathrm{a}_{\mathrm{q}}^{\mathrm{p}_{1}}\right)^{1+24.128 \mathrm{e}^{-0.002} q}
$$

$$
\left(a_{q}\right)_{p_{2}}=\frac{24.55}{1+38.983 e^{0.0003 q}}
$$

This was true for data from the single carriageway combined with each of the carriageways of the Nairobi-Thika Road. The models were compared with those of Jacobs (2.8) and Silyanov (2.11) [4] in Table 5.l2. All the models were consistent in their prediction and significant at 5 per cent level. The Agoki and Silyanov formulae had lower errors than Jacobs formula. Of all the models the Agoki models came closest to the ideal line. Thus Jacobs formula that is linear over-predicts on the assumption that the effect of vehicle flow is linear, Silyanov's under-predicts as the non-linear quadratic function risessharply. The Agoki formula predicts right rising slowly first then sharply to level off as traffic saturates. This finding fitted the logistic curve model. This finding was further enhanced by the fact that from harmonic analysis RTAs per 10^{6} vehicle-kilometres and vehicle flow varied similarly with time of day to reach the peak i.e. at low traffic flow RTAs are low and reach peaks much the same way. These models were found to predict the phenomenon

TABLE 5.13 COMPARISON OF OBSERVED AND PREDICTED RTAS/ 10^{6} VEHICLE - KILOMETRE

Formula	Units	Regression		Correlation Coefficient,r	Determination Coefficient, ${ }^{2}$	Standard Error	Significance level
		Slope	Intercept				
Nairobi-Tka Rd Unsmoothed	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	1.358	-0.026	0.77	0.59	0.201	5
Smoothed	"	0.979	-0.020	0.87	0.75	0.315	5
Kiganjo-Nyki Rd Unsmoothed	"	0.506	0.285	0.57	0.33	0.734	5
Smoothed	"	0.922	0.042	0.68	0.46	0.477	5

TABLE 5.14 COMPARISON OF OBSERVED AND PREDICTED RTAs/ 10^{6} VEHICLE-KILOMETRES

Formula	Units	Regression		Correlation Coefficient,r	Determination Coefficient, r^{2}	Standard Error	Significance Level
		Slope	Intercept				
Rutting	RTAs $/ 10^{6} \mathrm{~V}-\mathrm{K}$	0.998	0.006	0.94	0.88	0.785	5
Cracking	"	0.998	0.005	0.50	0.25	0.428	10
Potholes	"	0.999	0	0.84	0.70	0.318	5
Edge Spalling	"	1.001	0.002	0.92	0.84	1.018	5

```
310 -
well and therefore were found acceptable.
```


Abstract

The variation of mean RTAs per 10^{6} vehiclekilometres, for both carriageways, was found to vary harmonically with time of the day $(4.74,4.81)$. $$
(a / K)_{p_{2}}=0.538-0.267 \cos t-0.085 \cos 2 t+0.033 \cos 3 t
$$

$$
\text { - } 0.319 \text { sint }-0.095 \text { sin } 2 t,
$$

$$
(\mathrm{a} / \mathrm{K})_{\mathrm{P}_{4}}=0.704-0.456 \cos t-0.02 \cos 2 t+0.01 \cos 3 t
$$

$$
-0.446 \text { sint }+0.172 \sin 2 t .
$$

The comparison of the predictions for unsmoothed and smoothed data for the two study roads is shown in Table 5.13.

The formulae obtained after data smoothing by the moving averages technique improved both the calibration and prediction consistency particularly for low volume flow roads. For both study roads models developed using smoothed data came nearer the ideal line. The standard errors also dropped after data smoothing although the level of significance remained unchanged. The models were accepted for prediction.

Using data from the single carriageway the effect of pavement defects was found to be significant. The

The comparison of the prediction models is tabulated in Table 5.14. The effects were found to be non-linearly related to RTA occurence and the quadratic function gave the best fit. The prediction that came nearest the ideal (4.76-4.79, Fig.4.69-4.72) observe = prediction line was found to be that of edge spalling. Edge spalling, rutting, and potholes (together with patches, depressions and upheaval) were found to be more significant (5 per cent level) than cracking and crazing (significant at 10 per cent). Overally, rutting, cracking and potholes behave in the same manner in their effect on RTA occurrence. At the initial stages they have a reducing effect on RTA rates. After a minimum is reached they tend to increase the incidence of RTAs as they rise. Edge spalling acts in a counter manner to rutting, cracking and potholes. RTAs increase with increasing edge spalling to reach a maximum and then decrease with further increase in edge spalling. It is to be noted that for newly surfaced roads, when these independent variables are zero, driving speeds are considerably higher than after pavement defects have taken their toll. At this stage any small rutting causes the greatest rise in RTA occurence (4 RTAs per 10^{6} vehicle-kilometres), followed by cracking and potholes (3 RTAs/ 10^{6} vehicle-kilometres) then edge spalling (nearly 1 RTA per 10^{6} vehical-kilometres).

The former three then have a decreasing effect and edge spalling which trigers RTAs predominates up to a level when it is nearly 40% causing as high as 4 RTAs per 10^{6} vehicle-kilometres. At 100% edge spalling the road becomes virtually unpaved hence speeds reduce and consequently RTAs reduce. Maintenance criteria for paved roads [5] considers for all road bases that for no cracks, rutting of less then 10 mm the pavement is good and acceptable. It should be noted that at this stage RTAs are at a level of 3 RTAs per 10^{6} vehiclekilometres. On the basis of the same criteria rutting of less than 25 mm without cracks is critical. From this study, at this critical value rutting has the minimum effect and RTAs are more influenced by the other pavement defects. On the basis of the same criteria reconstruction is recommended when the rate of potholes is more than 40 per 100 metres. If this is considered to be equivalent to 100% potholes then patching and overlaying is recommended at 15-40 holes per 100 metres. Taking the lower limit (15) patching commences at 38% potholes. At this stage, from the analysis in this study, this pavement defect is already contributing close to 5 RTAs per 10^{6} vehicle-kilometres. Therefore poor road maintenance has a considerable effect on RTA rates. A reduction in RTAs could be obtained by proper road maintance coupled with speed regulatory and related safety enforcement measures. These models are reasonable in their predictions and therefore acceptable.

5.4 Generalised Linear Models

5.4.1 Dual Carriageway

The two models developed for the dual carriageway indicated that on an interactive basis junctions per kilometre, the percentage of heavy vehicles, horizontal radius and superelevation have a far greater influence on RTAs than longitudinal gradient and sight distance. The first model further showed that the effect of superelevation depends on horizontal curve radius as would be expected. For the first model (equation 4.82)

$$
A_{1}=e^{-0.09198} K^{0.7248} e^{\left(\sum a_{i} x_{i}\right)}
$$

S.D./d.f was found to be l.81. This value is reasonably close to 1 and therefore the model is quite reasonable in predicting RTAs.

The second model developed for straight sections (equation 4.83)

$$
A_{2}=e^{-0.6274} K^{0.7532} e^{\left(\sum a_{i} x_{i}\right)}
$$

was found to have S.D./d.f. = 1.79. This is quite a good model as S.D./d.f. is also tending to 1. Junctions and heavy vehicles increase RTA risk. Horizontal radius has the following effect on risk:

```
for radius }300\textrm{m}\mathrm{ the effect = exp. (67.36x 支 300}=1.24
for radius 3000m the effect =exp. (67.36x \frac{1}{3000}=1.02
for straight section the effect = 1.00, for example.
```

The risk decreases as the radius increases.
The result is very interesting and is in the direction one could imagine.

5.4.2 Sinqle Carriageway

The model developed for the single carriageway (equation 4.84) indicated that on an interactive basis the best variables that had any meaning when considering RTAs were junctions per kilometre, heavy vehicles, crazing and cracking, edge spalling and horizontal curve radius. Potholes, patches, depressions and upheavals as well as rutting did not have as significant an influence on RTAs.

Considering equation 4.84

$$
A_{3}=e^{-0.1617} K^{1.138} e^{\left(\sum a_{i} x_{i}\right)}
$$

and the parameters in Table 4.3, given that the effect of 3 or less junctions per kilometre is 1.00 (bottom value), the effect for 3-7 junctions per kilometre was found to be 2.26 (exp. (00.8154)) and that for 7 or more junctions 1.45 (exp.(0.3817)). This means that risk increases 2.26 if junctions are in the second class and 1.45 if in the third class. For lorries and buses the risk decreases from 1.00 (for $<28 \%$) to 0.47 (for $>28 \%$). This would imply
that there is not much variation and there are correlations. Therefore more data is required to be able to see the real effect. For crazing and cracking, if the effect for the first level of $<5 \%$ is 1.00 , for $5 \%-10 \%$ being $\exp (0.6893)$ which is 1.99 and for the third level of $>10 \%$ being exp(0.6791) which is l.92, this would mean that risk increases about 1.9 if crazing and cracking is above or equal to 5\%. Similarly for edge spalling if the effect for the class $<29 \%$ is 1.00 (bottom class) and that of $30 \%-60 \% 2.51(\exp (0.9192))$ and that of $>60 \% 1.63$ (exp(0.4871)) then risk increases for edge spalling for the two classes in the order of 2.51 and 1.63 respectively. For horizontal curve radius if the risk is 1.00 for radius $<799 \mathrm{~m}$ then for $800-3099 \mathrm{~m}$ is $0.51(\exp (0.3796))$ and for $>3100 \mathrm{~m}$ is $0.58(\exp (0.3470))$ meaning that when the radius is above 799 m the risk is about 0.5 times compared with the radius below 800 m . The model for the single carriageway (equation 4.84) had S.D/d.f. of l.42. This model is quite good since 1.42 is close to 1 and therefore quite acceptable in finding out the effect of various independent variables on RTAs.

CHAPTER 6 - CONCLUSIONS

The objectives of this study were: to study road traffic accidents (RTAs) in Kenya and determine where possible their fundamental characteristics and causal factors related to their occurrence, to develop predictive models for Kenya at the National (macro) level to be used for the monitoring of RTAs and the performance of safety improvement programmes and lastly to develop predictive models for some selected Kenyan roads at the road (micro) level to assist in the proper understanding of the behaviour of RTAs in relation to the design elements. The results of this study indicated that:

1) RTA phenomenon lends itself to mathematical modelling and in particular the characteristic patterns of RTAs in different countries, and in particular Kenya, can be predicted provided long term accurate data for the particular country in question exist. At the macro level the logistic model is well suited in predicting the growth of RTAs with time, the logarithmic trend curve is well suited in predicting the growth in the distribution of RTA responsibility and involvement while the polynomial function is suited in predicting the trend of RTAs in relation to motorization. At the macro level
the Smeed relationships and those developed later by Jacobs and Hutchinson do not satisfactorily predict RTA phenomena in Kenya. The corresponding models developed in this study performed best overall. To predict RTA deaths the formula developed in this study as follows was (equation (4.26)):-

$$
\begin{aligned}
\mathrm{D}_{\mathrm{P}_{2}}= & 229.7235-11.960418 \mathrm{~V} / \mathrm{P}+0.14040617(\mathrm{~V} / \mathrm{P})^{2} \\
& +0.18958 \times 10^{-6}(\mathrm{~V} / \mathrm{P})^{3}
\end{aligned} \quad \begin{aligned}
\text { with } \mathrm{r} & =0.97, \mathrm{r}^{2}=0.94, \text { slope }=1.009, \text { intercept } \\
= & -10 \text { which is better than Smeed's }
\end{aligned}
$$

formula (2.2)

$$
\mathrm{D}=0.0003(\mathrm{VP})^{\frac{1}{3}}
$$

with $r=0.96, r^{2}=0.93$, slope $=1.751$ and intercept $=-459$. To predict RTA deaths per 10^{4} persons the formula developed from the iequation (4.27)
$(\mathrm{D} / \mathrm{P})_{\mathrm{p}_{1}}=1.9788 \times 10^{-10}(\mathrm{~V} / \mathrm{P})^{3}+0.00001494(\mathrm{~V} / \mathrm{P})^{2}$

$$
+0.007762 \mathrm{~V} / \mathrm{P}-0.4127
$$

with $r=0.93, r^{2}=0.87$, slope $=0.923$, intercept $=0.054$, which is better than both Smeeds formula (2.3)
$D / P=0.0003(V / P)^{\frac{1}{3}}$
with $r=0.91, r^{2}=0.83$, slope $=4.809$, intercept $=-2.545$ and Jacobs and Hutchinson's formula (2.4)
$D / P=0.00077(V / P)^{\frac{3}{5}}$
with $r=0.92, r^{2}=0.85$, slope $=3.550$ and intercept $=-1.172$. To predict RTA deaths per 10^{4}
vehicles the model developed here as the equation (4.28)
$(D / V) p_{1}=1.4218 \times 10^{-8}(\mathrm{~V} / \mathrm{P})-0.00022871(\mathrm{~V} / \mathrm{P})^{2}$

$$
+0.577548 \mathrm{~V} / \mathrm{P}-5.4171
$$

with $r=0.77, r^{2}=0.59$, slope $=0.769$, intercept $=13$, is again better than both Smeed's formula (2.1)
$D / V=0.0003(V / P)^{-\frac{2}{3}}$
with $r=-0.70, r^{2}=0.49$, slope $=-0.876$, intercept $=111$
and Jacobs and Hutchinson's formula (2.5)
$\mathrm{D} / \mathrm{V}=0.00077(\mathrm{~V} / \mathrm{P})^{\frac{-2}{5}}$
with $r=-0.72, r^{2}=0.51$, slope $=-2.013$ and intercept $=151$.
2. At the micro level polynomial functions of the first, second and third degree were found to be suited in predicting the effects of road factors on RTA rates, the logistic curve is well suited in predicting the growth of RTAs in relation to vehicle flow whilst the variations in RTAs and vehicle flow with time of day can be predicted by harmonic functions. The models developed
in this study gave highest correlation between predicted and actual values. The relationships developed by Silyanov and later by Jacobs do not satisfactorily predict RTA phenomena on Kenyan roads. In particular to predict the effect of upgrade and downgrade gradients respectively, the models developed in this study viz,
$\left(\mathrm{a}_{\mathrm{g}}\right)_{p_{1}}=0.9866+1.10666 \mathrm{~g}-0.18401 \mathrm{~g}^{2}$ (for upgrades)
with $r=0.68, r^{2}=0.46$, slope $=0.811$, intercept $=0.455$ and $\left(a_{g}\right)_{p_{2}}=2.993+0.11 g-0.05165 g^{2}$ (for downgrades)
with $r=0.97, \mathrm{r}^{2}=0.94$, slope $=1.018$, intercept $=-0.095$, were better than Silyanov's formula (2.14)
$a_{g}=0.265+0.105 g+0.0229 g^{2}$
with $r=0.02, r^{2}=0$, slope $=0.025$, intercept $=1.956$ for upgrades and $r=-0.97, r^{2}=0.94$, slope $=-1.180$ and intercept=3.584 for downgrades. To predict the effect of sight distance one of the models developed in this study viz. $\left(a_{s}\right)_{p_{1}}=-8.75+0.079815-0.0001365^{2}$
with $r=0.83, r^{2}=0.69$, slope=0.723, intercept $=0.826$ performed better than Silyanov's formula (2.15)
$-320-$
$a_{d}=1 /\left(0.200+0.00111 d+0.0000009 d^{2}\right)$
with $r=0.85, r^{2}=0.72$, slope $=-1.734$ and intercept=5.609. To predict the effect of carriageway width the model developed from this study, viz.

$$
\left(a_{w}\right)_{p_{1}}=32.6439-4.2348 \mathrm{~W}
$$

with $r=0.88, r^{2}=0.78$, slope $=0.883$, intercept $=1.603$ performed better than Silyanov's formula (2.12)

$$
a_{w}=1 /(0.173 w-0.21)
$$

with $r=0.88, r^{2}=0.78$, slope $=15.92$ and intercept $=-11.293$. To predict the effect of junctions using the model developed from the single carriageway data viz,

$$
\left(a_{j}\right)_{p}=0.6668+1.1082 j-0.1288 j^{2}
$$

with $r=0.98, r^{2}=0.96$, slope $=1.004$, intercept $=-0.009$, performed better than Jacob's formula (2.9)

$$
a_{j}=1.45+1.02 j
$$

with $r=-0.19, r^{2}=0.04$, slope $=-0.050$ and intercept=2.670. To predict the effect of horizontal radius the model developed in this study for upgrade curves viz.

$$
\left(\mathrm{a}_{\mathrm{R}}\right)_{\mathrm{P}_{1}}=3.346-0.0009 \mathrm{R}+0.77 \times 10^{-7} \mathrm{R}^{2}-1.361 \times 10^{-12} \mathrm{R}^{3}
$$

with $r=0.67, r^{2}=0.44$, slope $=1.011$, intercept $=-0.055$, performed better than Silyanov's formula (2.15)

$$
a_{\bar{R}}=0.647+723 / R-649.5 / R^{2}
$$

with $r=0.37, r^{2}=0.14$, slope $=0.194$ and intercept $=2.112$. To predict the effect of vehicle flow one of the models developed in this study, viz,

$$
\left(a_{q}\right)_{p_{1}}=\frac{18.89}{1+24.128 e^{-0.002 q}}
$$

with $r=0.97, r^{2}=0.94$, slope $=0.966$, intercept $=0.065$, performed best compared with Jacobs formula (2.8)

$$
a_{q}=0.116+0.009 q
$$

with $\mathrm{r}=0.95, \mathrm{r}^{2}=0.90$, slope $=0.415$, intercept $=0.126$ and Silyanov's formula (2.11)

$$
\begin{aligned}
\mathrm{a}_{\mathrm{q}} & =0.256+0.000408 \mathrm{q}+1.36 \times 10^{-7} \mathrm{q}^{2} \\
\text { with } \mathrm{r} & =0.96, \mathrm{r}^{2}=0.93, \text { slope }=6.782 \text { and intercept } \\
& =-1.351 .
\end{aligned}
$$

3. RTAs do not occur by chance but are causally related to some characteristic factors on the road environment, vehicle or road user. Further, that these relationships can be described by mathematical models.
4.

Generalized linear models are very beneficial when trying to study the various effects of traffic and geometrical design elements on RTAs. Further, that the interactions between various variables may be determined from these models. With increased data availability such models can be improved in order to form predictive models for a wider range of road and traffic conditions.
5. There is potential for RTA reduction in any country, and in particular Kenya, and the performance of improvement schemes can be monitored by predictive models similar to those developed in this study.

REFERENCES

1. JJacobs, G.D. and Hutchinson, P. "A study of accident Rates in Developing Countries". Department of the Environment, TRRL Report LR 546. Crowthorne, 1973 (Transport and Road Research Laboratory). pp 1-24.
2. 3 Johnson, H.D. and Garwood, F. "Notes on road accident statistics." Department of the Environment, RRL Report LR 394. Crowthorne, 1971 (Road Research Laboratory). pp 1-27.
3. -HMSO, "Research on Safety." Department of the Environment. London 1963 (Road Research Laboratory). pp 1-602.
4. 2Jacobs, G.D. "A Study of Accident Rates on rural roads in developing countries." Department of the Environment, TRRL Report LR 732. Crowthorne, 1976 (Transport and Road Research Laboratory). pp l-14.
5. Spiegel, M.R. "Theory and Problems of Statistics" SI Metric Edition, McGraw-Hill Book Company (UK) Limited, 1972.
6. "Ówen, F. and Jones, R. "statistics". 2nd Edition. Polytech Publishers Limited. Great Britain, 1982.
7. Ramalingom, T. "A data book for scientists and Engineers. Published by Nohan Primlani for Oxford \& IBH Publishing Co. New Delhi, 1984.
8. Sokolnikoff, I.S. and Redheffer, R.M. "Mathematics of Physics and Modern Engineering." 2nd Edition. International Students Edition. McGraw-Hill, Inc. New York, 1966. pp35l-354, 649-683.
9. Organisation for Economic Cooperation and Development. "Optimization of road alignment". Paris, l973. pp 12-14.
10. *Great Britain Road Research Board. "British Road Research". GBRRB, 1964. PP48-50.
11. Transportation Engineering Journal of ASCE Vol. 109 No.4, July 1983. "Studies on Accident Prediction Techniques.
12. Brinkman, C.P. and Perchonok, K. "Harzadous Effects of Highway Features and Roadside Objects - Highlights. Public Roads Vol.43, No.1, June 1979. pp 8-14.
13. Organisation for Economic Cooperation and Development, "Geometric Road Design Standards". Paris, 1977. pp 92-97.
14. $\mathcal{\sim}$ Ministry of Transport and Communications, Kenya. "Geometric Design of Rural Roads, Design Manual Part 1". Nairobi, January 1979.
15. TRRL. "Maintenance Management for District Engineers". Department of the Environment, TRRL Overseas Road Note 1. Crowthorne, 1981. (Transport and Road Research Laboratory.
16. RGichaga, F.J. and Parker, N.A. "Essentials of highway engineering". MacMillan Publishers Ltd. 1988.
17. Whitlock, F.A. "Death on the Road; a study in social violence." Tavistock Publications Limited. London, 1971.
18. \imath^{\checkmark} Moskowitz, H. "Drugs and Driving". Edited by H. Moskowitz, University of California. Pergamon Press. Oxford, 1976. pp 1-77.
19. 3 Miyanji, O.M. "Road Traffic Accidents in Kenya and in the Capital City, Nairobi, With Special Emphasis on Road Traffic Accidents to children under Twelve Years of age in Nairobi During 1975
20. cont.
and on Road Safety and Preventive Aspects". M.Med. Thesis. University of Nairobi, Nairobi, 1976. pp 1-79.
21. , Norman, L.G. "Road Traffic Accidents; Epidemiology, Control and Prevention". Public Health Papers No. 12. World Health Organisation. Geneva, 1962. pp 1-110.
22. 3 Oglesby, C.H. "Highway Engineering." 3rd Edition. John Wiley and Sons. New York, 1975. pp 248-267.
23. *Hobbs, F.D. "traffic Planning and Engineering." Pergamon Press. Oxford, 1974. pp 430-488.
24. Kwamina-Duncan, J.W., Noel, L.P. and Soin, S.S. "Epidemiological Review of Road Traffic Accidents in Kenya. 1968-1973. "University of Nairobi. Nairobi, 1975. pp 1-27.
25. Kwamina-Duncan, J.W., Noel, L.P. and Soin, S.S. "A Review of Road Traffic Accident in Nairobi, Kenya 1968-72". University of Nairobi. Nairobi, 1975. pp 1-24.
26. 丸Gichaga, F.J. and Kipkore, S.K. "The Study of Violation of Traffic Laws in Selected Roads of Nairobi." A Paper Presented at the 4 th International Road Federation-African Highway Conference held in Nairobi. Nairobi, 1980 pp 1-19.
27. Viatek Consulting Engineers. "Road Safety Improvement Project." Study Report. Ministry of Transport and Communications, Kenya and Ministry of Foreign, Affairs, Finland. Nairobi \qquad 1980. pp 1-108.
28. Transportation Engineering Journal of ASCE Vo. 108 No. TA, July 1982. Road Safety Research.
29. Sloth, S.H. and Bach, D. "Traffic Safety in Denmark in Relation to Traffic Safety in Developing Countries". A paper presented at the First African Road Safety Congress (FARSC). Nairobi, 1984. pp 1-12.
30. Schroder, M. "The Coordinated Accident statistics". A paper presented at the FARSC. Nairobi 1984. pp 1-2.
31. Froboese, H.J. "Road Safety Programme 1984 of the Federal Republic of Germany". A paper presented at the FARSC. Nairobi, 1984. pp l-14.
32. ' Maki, M. "The Efficacy of Measures Against Drunken Driving in Finland (1975-1981)". A paper presented at the FARSC. Nairobi, 1984. pp 1-12.
33. Stigre, S.A. and Slagnes, G. "Traffic Accident Reduction Through Inexpensive Physical Means, Norway". A paper presented at the FARSC. Nairobi, 1984. pp 1-20.
34. DLauridsen, H. "Norwegian Traffic Safety Efforts Aimed at Developing Countries". A paper presented at the FARSC. Nairobi, 1984. pp 1-14.
35. LBlakstad, F. "Design of Traffic Accident Recording Systems". A paper presented at the FARSC. Nairobi, 1984. pp 1-15.
36. Slagnes, G. "Traffic Accident Situation in Norway." A paper presented at the FARSC. Nairobi, 1984. pp 1-16.
37. ${ }^{5}$ Muskaug, R. "Road Accidents and Traffic Safety of Children". A paper presented at the FARSC. Nairobi, 1984. pp 1-16.
38. 5 Muskaug, R. "The Impact of Alternative Traffic Safety Policies - A Methodological Approach." A paper presented at the FARSC. Nairobi, 1984.pp 1-7
39.

World Health Organisation Secretariat. "Major Issues in Road Safety". A paper presented at the Conference on Road Traffic Accidents in Developing Countries. Mexico-City, 198l, and at the FARSC, Nairobi, 1984. pp 1-37.
39. XGrenke, W.C. "Technology Transfer for Effective Safety Programmes in Developing Countries". A paper presented at the FARSC. Nairobi, 1984. pp 1-21.
40. Economic Commission for Africa Secretariat. "The Road Accident Statistics in Africa". A paper presented at the FARSC. Nairobi, 1984. pp 1-12.
41. Yerrel, J.S. "Road Safety in Countries of Africa an Overview". A paper presented in the FARSC. Nairobi, 1984. pp 1-15.
42. 2 National Road Safety Committee, Ministry of Works and Communications, Botswana. "Review of Road Safety in Botswana". A paper presented at the FARSC. Nairobi, 1984. pp 1-22.
43. Kalinda, P.J. "General Road Accident Situation in Zambia". A paper presented at the FARSC. Nairobi, 1984. pp 1-28.

Mwasi, D.E.M. "road Accidents as a Kenyan Problem and the Role of the National Road Safety Council". A paper presented at the FARSC. Ministry of Transport and Communications (MOTC), Kenya. Nairobi, l984. pp 1-6.
45. Raval, S.K. "Selective Traffic Enforcement as Relates to Accident Investigation Programme in Kenya". A paper presented at the FARSC. MOTC, Kenya. Nairobi, 1984. pp 1-23.
46. Ogula, P.H.A. "The Current Status of the Road Safety Education Programme in Kenya". A paper presented at the FARSC. MO'TC, Kenya. Nairobi, 1984. pp 1-8.
47. 2Kiguru, S.M. "Road and Traffic Engineering Component in Kenya's Road Safety Programme". A paper presented at the FARSC. MOTC, Kenya. Nairobi, 1984. pp 1-8.
48. Mounsey, J. "Introduction to Statistical Calculations". English Universities Press. London, 1967. pp 182-185.
49. Wise, R.L. "Statistics for Scientists and Engineers". Prentice Hall Inc. London, 1964. pp 29-38.
50. Proceedings of Seminar J. Held at the Planning and Transport Research and Computation (PTRC) Summer Annual Meeting. University of Warwick, England, 1979. Volume P l80. "Traffic and Environmental Management". PTRC Education and Research Services Ltd. pp 267-347.
51. 7 Ministry of Works. Roads Department. Government of Kenya. "Kenya Highway Transport Study". Vol.l. Kenya Transport System Present Conditions and Performance. Nairobi, 1978. pp 119-124.
52. ${ }^{10}$ Mbatia, G.N. "A Study of Accident Rates in Developing Countries". University of Birmingham, 1984. pp 1-68.
53. - Jacobs, G.D. and Sayer, I.A. "An analysis of road accidents in Kenya in 1972". Department of The Environment, TRRL Supplementary Report 227 UC. Crowthorne,. 1976 (Transport and Road Research Laboratory). pp 1-20.
54. s Kadiyali, L.R. "Principles and Practice of Highway Engineering". Khanna Technical Publications. Delhi, l984. pp 674-688.
55. Transportation Engineering Journal of ASCE Vol. 108 No. TEA, July 1982. "Road Safety Research".
56. United Nations. "Demographic Indicators of Countries: Estimates and projections as assumed in 1980". United Nations, New York, 1982. p 74.
57. Nairobi Urban Study Group. "Nairobi Metropolitan Growth Strategy". Nairobi City Council. 1973.
58. Central Bureau of Statistics. "Statistical Abstracts, 1972, 1983 ". Government Printer, Nairobi.
59. "Maycock, G. and Hall, R.D. "Accidents at 4-arin Roundabouts". Department of the Environment, TRRL Report ll20. Crowthorne, 1984 (Transport and Road Research Laboratory). pp 5l-54.

NOTATIONS

A observed number of RTAs
$A_{p_{1}} \quad$ predicted number of RTAs by the logistic curve model
${ }^{A} \mathrm{p}_{2}$ predicted number of RTAs as a function of motorization
$(A / K)_{o}$ observed RTAs per 10^{6} vehicle - kilometres
${ }^{(A / K)}{ }_{p_{1}}$ predicted RTAs per 10^{6} vehicle - kilonetres by the logistic curve model
${ }^{(A / K)} \mathrm{p}_{2}$ predicted RTAs per 106^{6} vehicle - kilometres as a function of motorization
(A/V) o observed RTAs per motor vehicle
${ }^{(A / V)_{p}}$ predicted RTAs per motor vehicle as a function of motorization
$C_{0} \quad$ observed number of casualties i.e. sum of injured and killed
$C_{p_{1}} \quad$ predicted casualties by the logistic curve model
$C_{p_{2}}$ predicted casualties as a function of motorization
(C/A) observed casualties per RTA
(C/A) p_{1} predicted casualties per RTA by the logistic curve model
${ }^{(C / A)} \mathrm{p}_{2}$ predicted casualties RTA as a function of motorization
$(\mathrm{C} / \mathrm{V})_{o}$ observed casulties per 10^{4} vehicles
$(C / V)_{p_{1}}$ predicted casualties per 10^{4} by the logistic curve model
${ }^{(C / V)} p_{2}$ predicted casualties per 10^{4} as a function of motorization

Do observed RTA deaths
$D_{p_{1}} \quad$ predicted deaths by the logistic curve model
$\mathrm{D}_{\mathrm{p}_{2}}$ predicted deaths as a function of motorization
$(\mathrm{D} / \mathrm{K})_{o}$ observed deaths per 10^{6} vehicle - kilometres
${ }^{(D / K)} \mathrm{P}_{1}$ predicted deaths per 10^{6} vehicle - kilometres by the logistic curve model
${ }^{(D / K)} p_{2}$ predicted deaths per 10^{6} vehicle - kilometres as a function of motorization
(D/P) o observed deaths per 10^{4} persons (population)
${ }^{(D / P)}{ }_{p_{1}}$ predicted deaths per 10^{4} persons as a function of motorization
${ }^{(D / P)} \mathrm{P}_{2}$ predicted deaths per 10^{4} persons by Jacobs \& Hutchinson Formula
(D/P) p_{3} predicted deaths per 10^{4} persons by Smeed formula
(D/V) observed deaths per 10^{4} vehicles
${ }^{(D / V)} \mathrm{P}_{1}$ predicted deaths per 10^{4} vehicles as a function of motorization
${ }^{(D / V)} \mathrm{P}_{2}$ predicted deaths per 10^{4} vehicles by Jacobs \& Hutchinson formula
${ }^{(D / V)} P_{3}$ predicted deaths per 10^{4} vehicles by Smeed formula

H_{0}	observed human population
$\mathrm{H}_{\mathrm{p}_{1}}$	predicted human population by high growth by logistic curve model
$\mathrm{H}_{\mathrm{p}_{2}}$	predicted human population by low growth by logistic curve model
I_{0}	observed injuries from RTAs
${ }^{\prime} \mathrm{p}_{1}$	predicted injuries by the logistic curve model
K	vehicle - kilometres (amount of travel as measured by products of vehicle flow and distance travelled)
$(\mathrm{I} / \mathrm{K})_{0}$	observed injuries per 10^{6} vehicle - kilometres.
${ }^{(I / K)} P_{1}$	predicted injuries per 10^{6} vehicle - kilometres by the logistic curve model
${ }^{(I / K)} p_{2}$	predicted injuries per 10^{6} vehicle kilometres as a function of motorization
$(I / P)_{0}$	observed injuries per 10^{4} persons
${ }^{(I / P)} P_{1}$	predicted injuries per 10^{4} persons by the logistic curve model
$(I / P)_{p_{2}}$	predicted injuries per 10^{4} persons as a function of motorization
$(\mathrm{I} / \mathrm{V})_{0}$	observed injuries per 10^{4} vehicles
${ }^{(I / V)} p_{1}$	predicted injuries per 10^{4} vehicles by the logistic curve model
${ }^{(I / V)} P_{2}$	predicted injuries per 10^{4} vehicles as a function of motorization

$\left({ }^{(\%)} \text { blT }\right)_{0}$ observed percentage responsibility of
($\left.(\%)_{b \ell T}\right)_{p}$ predicted percentage responsibility of buses, lorries and taxis
$\left({ }^{(\%)} \mathrm{Cu}\right)_{0}$
$\left.\left({ }^{(\%}\right)_{\mathrm{CU}}\right)_{\mathrm{p}}$ predicted percentage composition of cars and utilities
($\left.{ }^{(\%)} \mathrm{cu}\right) \circ$ observed percentage responsibility of cars and utilities
$\left({ }^{(\%)} \mathrm{cu}\right)_{\mathrm{p}}$ predicted percentage responsibility of cars and utilities
($\left.(\%)_{b}\right)_{0}$ observed percentage responsibility of pedal cyclists
$\left.\left({ }^{(\%}\right)_{b}\right)_{p}$ predicted percentage responsibility of pedal cyclists
($(\%$) ha $)$ observed percentage responsibility of handcarts and animals
(${ }^{(\%)}$ ha) predicted percentage responsibility of handcarts and animals
($\left.(\%)_{\text {wp }}\right)_{0}$ observed percentage responsibility of pedestrians and passengers
(${ }^{(\%)}$ wp $)_{p}$ predicted percentage responsibility of pedestrians and passengers
$\left((\%)_{M}\right)_{O}$ observed percentage composition of motorcycles
$\left((\%)_{M}\right)_{p}$ predicted percentage composition of motorcycles
$\left({ }^{(8)} D_{16+}\right)_{0}$ observed percentage of those killed above age 16
$\left({ }^{(8)} \mathrm{D}_{16+}\right)_{p}$ peredicted percentage of those killed above age 16
$\left({ }^{(8)} D_{B}\right)_{0}$ observed percentage distribution of pedal cyclists killed
$\left((\%)_{D^{\prime}}\right)_{p}$ predicted percentage distribution of pedal cyclists killed
$\left({ }^{(\%)^{D}} D_{D}\right)_{0}$ observed percentage distribution of drivers killed
$\left({ }^{(\%)} \mathrm{D}_{\mathrm{D}^{\prime}}\right)_{\mathrm{p}}$ predicted percentage distribution of drivers killed
$\left((\%)_{D_{M}}\right)_{o}$ observed percentage distribution of motor cyclists killed
$\left({ }^{(\%)} D_{M}\right)_{p}$ predicted percentage distribution of motor cyclists killed
$\left({ }^{(\%)} D_{p}\right)_{0} \quad$ observed percentage distribution of passengers killed
$\left({ }^{(8)} \mathrm{I}_{\mathrm{p}}\right)_{\mathrm{p}} \quad$ predicted percentage distribution of passengers killed
$\left({ }^{(\%)} D_{W}\right)_{0} \quad$ observed percentage distribution of pedestrians killed
$\left(^{(\%)} D_{W}\right)_{p}$ predicted eprcentage distribution of pedestrians killed
$\left(^{(\%)} I_{16+}\right)_{0}$ observed percentage of those injured above age 16
$\left(^{(8)} I_{16+}\right)_{p}$ predicted percentage of those injured above age 16
$\left.(18)_{B}\right)_{0}$
$\left({ }^{(8)} I_{B}\right)_{p}$
predicted percentage distribution of pedal cyclists injured
$\left({ }^{(8)} I_{D}\right)_{0}$ observed percentage distribution of drivers injured
$\left((\%) I_{D^{\prime}}\right)_{P}$ predicted percentage distribution of drivers injured
observed percentage distribution of motor cyclists injured
$\left({ }^{(\%)} I_{M}\right)_{p} \quad$ predicted percentage distribution of motor cyclists injured
$\left({ }^{(\%)} I_{P}\right)_{O}$ observed percentage distribution of passengers injured
$\left(^{(\%)} I_{P}\right)_{p} \quad$ predicted percentage distribution of passengers injured
$\left(^{(\%)} I_{W}\right)_{0} \quad$ observed percentage distribution of pedestrians injured
$\left(^{(\%)} I_{W}\right)_{P} \quad$ predicted percentage distribution of pedestrians injured
(a_{c}) observed RTAs/10 ${ }^{6}$ vehicle-km associated with cracking and crazing
($\left.a_{c}\right)_{p} \quad$ predicted RTAs/ 10^{6} vehicle-km associated with cracking and crazing
$\left(a_{E}\right)_{0} \quad$ observed RTAs/ 10^{6} vehicle-km associated with edge spalling
$\left(a_{E}\right)_{p} \quad$ predicted RTAs $/ 10^{6}$ vehicle-km associated with edge spalling

$\left(\mathrm{a}_{\mathrm{g}}\right)_{0}$	observed RTAs/ 10^{6} vehicle-km associated
	with longitudinal gradient
$\left(a_{q}\right)_{p}$	predicted RTAs/ 10^{6} vehicle-km associated
	with longitudinal gradient
$\left(a_{j}\right)_{0}$	observed RTAs/10 ${ }^{6}$ vehicle-km associated
	with junctions per km
$\left(a_{j}\right)_{p}$	predicted RTAs/10 ${ }^{6}$ vehicle-km associated
	with junctions per km
$(\mathrm{a} / \mathrm{K})_{0}$	observed RTAs/10 ${ }^{6}$ vehicle-km on a road
	section
${ }^{(a / K)}{ }_{p}$	predicted RTAs/10 ${ }^{6}$ vehicle-km on a road
	section
$\left(a_{p}\right)_{0}$	observed RTAs/ 10^{6} vehicle-km associated
	with potholes, upheavals and depressions
$\left(a_{p}\right)_{p}$	predicted RTAs/10 ${ }^{6}$ vehicle-km associated
	with potholes, upheavals and depressions
$\left(a_{q}\right)^{\prime}$	observed RTAs/l0 ${ }^{6}$ vehicle-km associated
	with vehicle flow per hour
$\left.{ }^{(a q}\right)^{\prime}{ }_{p}$	predicted RTAs/10 ${ }^{6}$ vehicle-km associated
	with vehicle flow per hour
$\left(a_{R}\right)_{0}$	observed RTAs/10 ${ }^{6}$ vehicle-km associated
	with horizontal curve radius
$\left.{ }^{(a}{ }_{R}\right)_{p}$	predicted RTAs/l0 ${ }^{6}$ vehicle-km associated
	with horizontal curve radius
$\left(a_{r}\right)^{\prime}$	observed RTAs/10 ${ }^{6}$ vehicle-km associated
	with rutting
$\left(a_{r}\right)^{\prime}{ }_{p}$	predicted RTAs/ 10^{6} vehicle-km associated
	with rutting

$\left(a_{s}\right)_{0}$	observed RTAs/ $10{ }^{6}$ vehicle-km associated
	with sight distance
${ }^{(a s)}{ }_{\text {P }}$	predicted RTAs/10 ${ }^{6}$ vehicle-km associated
s p	with sight distance
$\left\{\left.a_{W}\right\|_{0}\right.$	observed RTAs/10 ${ }^{6}$ vehicle-km associated
	with road width
$\left(a_{W}\right)_{p}$	predicted RTAs/l0 ${ }^{6}$ vehicle-km associated
	with road width
$\left(a_{a}\right)_{0}$	observed RTAs/l0 ${ }^{6}$ vehicle-km associated
$\left(a_{\alpha}\right)_{p}$	with superelevation
	predicted RTAs/ 10^{6} vehicle-km associated
	with superelevation
c	pavement cracking and crazing (\%)
E	pavement edge spalling (\%)
g	Longitudinal gradient (\%)
j	junctions per km
P	potholes in pavement (\%)
q	vehicles/hour
r^{\prime}	pavement rutting (mm)
R	horizontal curve radius (m)
S	sight distance (m)
t	time (hours, years etc)
α	superelevation (\%)
r	correlation coefficient
r^{2}	coefficient of determination (critical
	coefficient)
$S_{y \cdot x}$	standard error of estimate
e	base for natural logarithms

APPENDIX A.l

mund gmutic count at mutinign zeih-31St octoder

HOUR

MANUNL TRAFFIC COUNT AT MUTHAIGA 31ST OCT-1ST NOU
1800 1680 :

MONURL TRAFFIC COUNT AT GUTHAIGA 2ND-3RD NOUEMHER

manm thartic count at mutiaign 3RD-4tu nouember

mamunl traffic count at muthaiga 4th-sth noulmben

manlal thaffic count at muiru 29 til-30th october

manual traffic count at ruird 3ath-3ist octoder

mandal traffic count nt ruiru 2hd-3hd mouender

Monlint. traffic coumt at rulau ist-2md houemoeil
\qquad
\because \qquad
morlhal traffic count at muiru 3rd-4th houemuen

A. 1/3

NINE INTIC COUNT AT RUIRU 4 TII-STII MOUEMBER

manund traffic count at thika iSt-2nd SEpterber

MANUAL TRAFFIC COUNT AT THIKA 29TH-30TH OCTOBER

monunl taffic count at thika zeth-3ist octoder

minuml traffic count at thika 4th-5th nouember

(

NWUAL TRAFFIC COUNT AT BLUE POST HOTEL 31ST OCTOBER - 1ST NOUEMBER

MANUAL TRAFFIC COUNT AT BLUE POST HOTEL 3ETII-3IST OCTOBER

MANUAL TRAFFIC COUNT AT BLUE POST HOTEL 1ST-2ND NOUEMBER

A. 2 / 1

MANUAL TRAFFIC COUNT AT XIGANJO POLICE COLLEGE 2ZND-23RD JANUA

MANUAL IMAEEIC COUNT AT KIGANJO KEMO 2ND-3RD FLDRUARY

\qquad
manal thaffic count at kiganjo police college 4th-5th fedrunry

MANUOL TRAFFIC COUNT AT KIGתNJO POLICE MOLLEGE ATH-5TH FEBR

W-1CL covosificm		HOUR		
t	1	B	M	Vehicles
(1)	305	43	126	1286
0.18	23.88	3.38	9.85	1008
	1	-	H	VEHICLES
113	37	11	9	232
3.48	16.08	4.78	3.92	1008
	1	-	H	VEHICLES
21.6.8	12.18 -	25.68	7.18	18.08

hamlal traffic count at cilakn 5ti-Gtil fedhuniy

\qquad
\qquad

MANUAL THAFFIC COUNT AT KIGANJO KCC 3RD-4IH FEBRUARY

mANUNL TAAFFIC COUNT AT CHAKA STH-GTH FEBRUARY

manual traffic count at hyange 24th-25th january

BEHICLE CORTOSSIION		HOUR		
P	L	B	M	VEhicles
602	279	40	141	1065
56.5\%	26.2\%	3.8\%	13.58	100%
Hichil iraffic (6.00 pme 6.00 am)				
F	1	B	H	vehicels
152	37	5	21	215
70.7\%	17.2:	2.38	9.85	1008
amet migit tahafic / 24 mours traffic				
P	L	8	H	vehicles
25.24	13.38	12.54	14.68	20.28

11234567891811121314151617181928212223 Hour

MAMUAL TRAFFIC COUNT AT NARO MORU 23RD-24TH JANUARY

MAMIIL IMAFFIC COUNT AT NARO MOKU 21ST-22WD JONURRY

1
MAMUML TRAEFIC COUNT AT NARO MORU 23RD-24TH JAMUNRY

JAMUARY GIRLS S. SCHOOL 27TH-2日TH Janunky

manual traffic count ay siluerbeck hotel 27th-2日th jamuary

manunl. imoryic count at siluerbeck hoitl 27th-20ih jaminay

vehicle composition		$\begin{aligned} & \text { HOUR } \\ & \text { (:AGE) } \end{aligned}$		
P	1	B	\%	vemices
1087	350	40	96	1573
69.15	22.38	2.5\%	6.18	100\%
WIGHT iraffic (6.00 pme - 6.00 am)				
P	1	B	M	Vehicles
282	51	7	7	347
81.35	14.78	2.0\%	2.08	100\%
: age might trafic / 24 hours traffic				
P	L	8	H	vehicles
25.98	14.68	17.5\%	7.38	22.1:

smual thaffic count at siluerbeck hotel z7tiozeth Janundy

manunl. tharyic count at manyuki toun hall 26 til-27til january

A. $2 / 8$

Public Tronsportation Usoge
Kiegistration lkear Salari Pork 7:7-21:7:80.

PEDESTRIANS \& BICYCLES CROSSING THIKA ROAD NEAR GITF

TIME	$6.30-7!30-8!30-9!30-10!30-11!30-12!30$						
PEDESTRIANS	337	298	139	124	126	86	1
BICYCLES	6	9	6	4	7	3	

THE KTSY'A POLICE-TRAFFIC DI:PARTMEAT

ACCIDENT REPORT

Chafge Rec No.
Acc. Res No.

0 O No.

Siced lumis an
Street highing: Yes...is
ninh

Spectal ficature of any

[^3]

Remarhs of Investigating Officers.

Has a notice of intended prosecution been served against either driver and, if so, on whom
\qquad
\qquad

Dale of serving

Action takien

(Police accidenis only)

Despatchod in Commissioner of Pulice
$\left.\begin{array}{ll}n & \text { "P.P.O. } \\ \text { " } & \text { "Divisional Officer }\end{array}\right\}$ Throuth D.T.O.

Dare \qquad

Cम斤न,

(6)

Parking place, shoulder Footpath
Roadslide
Unknown

NAIROBI - THIKA ROAD DISTRIBUTION OF RTAS II SEVERITY OF INJURY

| | TYPE | FATAL | SERIOUS |
| :--- | :---: | :---: | :---: | SL

KIGANJO-NANYUKI RŪĀ̀: DISTRIBUTION OF RTAs BY DAY AND JIGHT

KIGANJO-NANYUKI ROAD: SEX DISTRIBUTION OF DRIVERS, PEDESTRIANS AND CYCLISTS INVOLVED IN RTAS

SEX	ELEMENTS		TOTAL	\%
	FIRST	SECOND		
```Irrelevant (animals) Unknown Male```	$\begin{array}{r} 0 \\ 6 \\ 94 \end{array}$	$\begin{array}{r} 3 \\ 5 \\ 48 \end{array}$	$\begin{gathered} 3 \\ 11 \\ 142 \end{gathered}$	$\begin{array}{r} 1.8 \\ 6.7 \\ 87.1 \end{array}$
Female	1	6	7	4.3
Total	101	62	163	100
\%	62.0	38.0	100	

DISTRIBUTION OF RTAS BY TYPE : NAIROBI - THIKA KOAD

TYPE		NAI ROBI	RA ROAD		ARPENDIX A H3	
	SEVERITY OF INJURY					
	FATAL	SERIOUS	SLIGHT	NONE	TOTAL	7
1. Vehicle-vehicle in same direction	14	23	53	176	266	37.9
2. Head-on collision	3	3	1	2	8	1.1
3. Turning from same direction	1	3	4	10	18	2.6
4. Turning from opposite direction	0	0	0	2	2	0.3
5. Crossing without turning	2	3	7	9	21	3.0
6. Crossing with turning	1	3	5	3	12	1.7
7. Pedestrian crossing carriageway	57	33	19	1	110	15.7
8. Pedestrian walking along	11	7	6	0	24	3.4
9. Vehicle turns off the road	16	33	52	31	132	18.8
0. Other types	25	26	37	21	109	15.5
TOTAL	130	133	184	255	702	100

KIGANJO-NAYUKI ROAD: DISTRIBUTION OF RTAs BY TYPE


1948	$\bigcirc$	5．251120	5.489	5.199167	5.240178			YEAR	TIME	VEHICLES
1949	1		5.489	5.400955	5.243358					Vehrcleg
1950	2		5.579	5.609661	5.633720			1949	－	． 030014
1951	3		5.669	5.825452	5.840789			1950	1	． 035408
1952	4		5.760	6.048491	6.055000			1951	2	． 039900
1953	5		5.851	6.278941	6.276563			1958	3	． 044170
1954	6		5.948	6.516960	6.505693			1953	4	． 043939
1955	7	－	6.048	6.762704	6.742609			1954	5	． 049778
1956	8	．	6.993	7.016326	6.987533			1955	6	． 056861
1957	9	．	7.209	7.277972	7.240690	－		1956	7	． 063626
1958	10		7.432	7.547785	7.502307			1957	8	． 067670
1959	11		7.880	7.825900	7.772616			1958	9	． 073351
1960	12		8.115	8.112446	8.051849	1		1959	10	． 077669
1961	13	－	6．352	8.407545	E． 340241			1960	11	． 089505
1962	14	0．636263		8．711310	0.638030	：	－	1961	12	． 084540
1963	15		8.847	9.023844	8.945455	－	－	1962	13	． 087130
1964	16	．	9.104	9.345242	9.262756	－		1963	14	． 087073
1965	17		9.385	9.675586	9.590173	－	．	1964	15	．092581
1966	12	－	9.643	10.014948	9.927946	－	－	1965	16	． 099825
1967	19	．	9.948	10.363386	10.270319	－	－	1966	17	． 103175
1963	20	－	10.209	10．720044	10.035530	－	－	1967	18	． 107436
1089	21	10．742706		11．087i5s	11.005817	－	－	1068	19	－1：35この
$19 \% 0$	2a	．	12.247	11.463533	11.357421	－	－	1969	20	－ 224348
1771	23	．	11.694	11.349578	11．7日り5゙ヶ4	－	－	1970	E1	－137271
： 97 こ	2	－	12.091	1 1．2ヶ2773	12．185511	－	－	1071	23	． 147750
1073	E5	－	12.504	：2．j46083	13.602459	－	－	1972	23	． 159649
1974	26	－	12.935	：3．0584E5	13．03：0ヶ2	－	－	1973	24	－164222
1975	27	－	13.413	13．479816	13.47321	－	－	1974	25	． 184086
19\％6	29	－	13.953	13．910075	13．92758？	－	－	1975	26	． 199715
1977	29	－	$14.34 E$	14.349121	14.304773	－	－	1975	こ7	203440
1978	30	－	14.875	14．790821	14．875033	－	－	1977	28	． 213451
$17 \% 9$	31		－	15．253021	15．366559	－	－	1970	20	． 225447
1ロヨ゙：	ご	．	$1=.2$ 3	i5．71：ざ	1ํ．¢55Eご	$10.4+4$	15.451	－¢7\％	$3 \cdot$	－ミさこここの
－95：	ミ		$1 \pm . E C O$	1．च．13cece	1－354： 50	．	．	1000	31	．$E+645$
17Eき	$3{ }^{\circ}$	．	－-100	$1-.89076$	1e． 730500	－	－	1931	ふこ	－セ＋613E
：793	35	．	13.754	17．159005	17．4TEE16	－	$\bullet$	1993	35	． 247105
$176{ }^{\text {¢ }}$	三－	．	．	17．35465e	13．641194	－	－	1983	34	．25991\％
10\％5	37	－	－	¢0．15742e	18． 517750	20．154	23.207	1984	35	．
10Es	35	．	－	ic． 560005		．	．	1085	35	－
：25	5	－	－	：9．1331：S	17．2133＝3	－	－	198	ミT	－
$1=93$	$\rightarrow \dot{0}$	．	．	17.7536	2\％．43357\％	－	－	1087	38	－
1097	$-1$	－	－	2\％．こここム！		－	＊	1959	$5 ?$	－
：9\％\％	$4 ミ$	－	－	20．T00048	2：．71c58：	23．81：	35．jこを	：990	44	－
106：	45	－	－	E！．30゙心2¢0	22． 275731	．	．	156	41	－
－ 95	42	－	－	ミ：． 4 セころ3	E3．05＇324	－	－	$1 \geqslant 91$	42	－
1 －	45	－	－	ご二．Зロ5535	23． 250303	－	－	1072	＋こ	－
190－	$\rightarrow 0$	－	－	Eこ．9404＋2	2－4．4．7250	－	－	1773	44	－
1795	47	－	－	2こ． $50.060 \%$	Es．178310	．	－	193	45	－
$1 \mathrm{OCH}_{5}$	49	－	－	24.059539	25．014305	－	－	1095	80	－
169	47	－	－	巨－．016759	26．000 153	－	－	155	47	
159	50	－	－	Es．177831		－	－	$159 \%$	48	－
1099	51	－	－	25．740201	28． 205951	－	－	1900	4.7	
20.10	52	．	－	20．303385	23．997445	31.125	38.550	1099	50	－
c0is：	53		－	26． 3 st803	2〒．2．3235	－	．	2000	51	－
26く2	ご，	－	－	27．4．3029	50．0ご心	－	－	2001	5．	－
2．53	55		－		31．45155：	－	－	2002	53	
20，04	50	－	－	28．5542－1	－2．こ¢\％170	．	．	2r03	54	－
gurs	5		－	29．： $1 \rightarrow$ C゙a゙y	72． 1 －103	－	－	2C0\％	$5{ }^{5}$	
2．ne	E 3		－		フ－．．．．＊89 3	－	－	Er	Et	－
3－${ }^{\text {－}}$	天	－	－		ミ4． 7 －	－	－	ご． 0	\％＂	－
…	0			吅，－－Gc＝5	34．＂ら－80	－		E．․	5	
2,	$={ }^{\prime}$	－		．	\％29	－		Fx	7	

AOOKI 1
.036600 .039026 .041612 .044367 .047304 ．050433 .053766 ．057318 .061102 .065132 .069425 ． 073997 ． 078865 ． 08404 B .089566 .095440 .101692 .108345 .115423 .122953 .130902 .139478 .143532 ． 159157 .108394 .179251 .190792 ． 203047 .216057 ．22？与е2 ． $24+509$ ．シoviot ． $27=503$ ． 25584 ？ .312426 ．בּق ． 352095 ． 374595 .357 .40 －4E2176 －4420อ ．4752？1 .534008 $.55+271$ ． 5 को 150 ． 509735 .635013 －ロゴロース ． 71 1000 .751740 .794468 ． 83910 ？ $.2953^{\circ} 5$ ． 3.346 气 1 ．79555 ． 0 Е35 5 －ージロッグー $1=-\infty$

AGOK 10
． 036690 .039097
.041671 .044415 .047339 .050454 ． 053773 .057309 .061076 ． 065089 .069364 .073918 ． 078769 ． 083935 .089438 .095297 .1015971 .108181 .1 ．5255 －122780 $.13<803$ .130336 .148418 .158082 .108366 .179307 $.19 C 945$ ． 203324 ． 216498 ． 23.7495 ．2－53ッ5 ．ご11ラ －ミーロロロ？ ．『cser 7 $.31+8: 6$ ． 33 4090 ． 350349 ． 370052 －4．25！ 42
 ． 455509 .424532 ．51498！ ．54－2ここの .53130 .5 ．$-1755 \approx$ .6553 ． 0 －926： .739020 .794193 ． $83198 \%$
 $.735 \overline{c o}^{\circ} 0$ ．7912コヨ i．UEO143 1．1：2！ $\int^{6}$ 1.7 7



A．13／3
YEAR TIME RTAVEHIC MOVINGAV AGOKI

1960	0	2788	－	2106	1960	$\bigcirc$	4101	＊	2698
1961	1	2377	－	2217	1961	1	3573	－	2948
1962	2	2469	2494	2335	1962	2	3595	3708	3207
1963	3	2385	2445	2458	1963	3	3578	3600	3474
1964	4	2450	2458	2598	1964	4	3693	3655	3746
1965	5	2542	2554	2725	1965	5	3562	3813	4020
1966	6	2445	2703	2868	1966	6	3847	4000	4295
1967	7	2947	2786	3020	1967	7	4387	4101	4566
1968	8	3129	2987	3179	1968	8	4511	4421	4833
1969	9	2869	3342	3346	1969	9	4196	4860	5093
1970	10	3540	3686	3522	1970	10	5163	5305	5344
1971	11	4 ご17	3999	3706	1971	11	6042	5761	5583
1972	$1 \geq$	400 E	4301	3901	1072	12	6013	6171	5310
1973	13	4695	4562	4105	1973	13	6799	6446	6024
1974	14	4379	＋0．0	4319	1974	14	6250	0547	6224
1975	15	4751	4633	4545	1975	15	6534	6414	6400
1776	16	4605	4819	4782	1976	16	3548	6447	6581
$197 \%$	17	4536	5187	5031	1977	17	5949	c， 807	6737
1979	18	5e25	5073	529	1778	1E	4756	6732	5980
1979	19	t216	5302	5567	1979	17	804 ？	6873	7019
1980	20	4485	5571	5855	1980	20	6162	．	7129
19 E 1	21	$5-48$	5.38	6159	10 E 1	21	7250	－	7233
1782	ここ	50¢1	．	6476	1 cge	2コ	$75 こ 4$	．	7529
1983	23	－コロヒ	－	0809	1583	ここ	8.023	－	7413
1754	$2{ }^{4}$	．	－	7156	$183+$	24	．	－	74.83
1？05	อэ	．	－	T5Eb	1785	25	－	－	755
$179=$	そ！		．	$\cdots$	1アを碞	E\％	．	．	？ 615
：09？	${ }^{-}$	－	－	9314	－ 987	ミ7	－	－	7 cc
： 9 ¢	23		－	9730	1956	23	－	．	7715
17 등	こ\％	－	－	9190	1989	E9	－	－	775
：700	30	－	．	9644	1590	30	－	．	7992
1991	31			10130	1001	31	－	－	79こ4
1905	$3 も$	－	．	10639	1772	33	－	－	78ะ2
12¢3	3 J			11171	1993	33	－	．	－276
$17 \% 4$	$3 \cdot 4$	－	－	117E	$1 \mathrm{cc}_{+}$	54	－	－	7E96
1005	ご			1こう12	1935	35	－	．	74：＂
$1=90$	36		－	：292	1990	3¢	－	－	7934
175	37	－	－	：3555	1097	37	－	－	7543
： 09	こ5	．	．	14224	1998	$3 E$	．	．	フラo1
$: 70$	37	－	－	14\％${ }^{1}$ ？	1979	39	．	－	79？\％
2000	4.3		－	15664	20，00	40	－	－	7982
20：	41	－	．	10401	2001	41	－	－	7900
2002	42	．	．	17：90	200	42	．	．	－coe
3 cou	43	－	－	18013	2003	43	＊	．	80014
こ0c4	$4{ }_{4}$		．	18870	2004	44	－	．	8010
2005	45	－	－	19762	2005	45	－	－	8015
200\％	40	．	－	26671	2000	4s	．	．	8019
2 m	47	－	－	216：5	2007	47	－	－	8023
20吕	$4{ }^{4}$			2500i	24\％	$+3$	．	－	8030
e． 2	$4=$		－	E3\％M	E．：	4	．	．	日気？
$3 \because$	－		－	24．3\％	$3 \cdot 1$	5	．	．	EOここ

## A． $13 / 5$

 YEAR MOTORIZA OBSERVED| 1960 | 110.29 | ．04582 |  | ． 03962 |
| :---: | :---: | :---: | :---: | :---: |
| 1961 | 101．22 | ． 04223 |  | ． 03930 |
| 1962 | 100．88 | .04126 | .04206 | ． 03928 |
| 1963 | 98.42 | .04109 | ． 04015 | ． 03904 |
| 1964 | 101.69 | ．03989 | ． 03916 | ． 03934 |
| 1965 | 104．69 | ． 03625 | ． 03892 | ． 03952 |
| 1966 | 106.99 | ． 03729 | ． 03866 | ． 03960 |
| 1967 | 110.01 | ． 04009 | .03743 | ． 03963 |
| 1968 | 111.00 | .03980 | .03771 | ． 03962 |
| 1969 | 113.63 | ． 03374 | ． 03832 | ． 03954 |
| 1970 | 122.05 | .03761 | ． 03857 | ． 03885 |
| 1971 | 128．05 | ． 04.035 | ． 03888 | ． 03795 |
| 1972 | 132．30 | .04134 | ． 03892 | ． 03709 |
| 1973 | i3i．33 | ． 04134 | ． 03794 | ． 03730 |
| 1974 | 142.31 | ．03395 | ．03624 | ． 03439 |
| 1575 | 148.59 | ．03272 | ． 03353 | ．03208 |
| 1976 | $14 E .30$ | ．031日7 | ． 03143 | ． 03231 |
| 1977 | 149.37 | ．02775 | ． 03158 | ． 03189 |
| 1978 | 151.54 | ．03086 | ． 03016 | .03104 |
| 1979 | 150.40 | .03409 | ． 02968 | ． 0314 ？ |
| 1980 | 149.77 | ． 02563 | － | ． 03174 |
| 1981 | 140.17 | ． 02746 | － | ． 03198 |
| 1902 | 145.70 | ．03020 | － | ． 03325 |
| 1923 | 133.58 | ． 03797 | ． | ． 03680 |
| 1 ¢54 | 172.4 | － | － | － 02001 |
| ： 935 | 176.40 | ． | ． | ． 01739 |
| 1 วอ， | 180.5 | － | － | ．015：5 |
| 179\％ | 134.70 | ． | － | ． 01218 |
| 19E | 187.00 | ． | ＊ | ． 00995 |
| 1789 | 173.30 | － | － | ． 00555 |
| ：969 | 190.70 | － | － | ． 00188 |

100 c 1995 1094 1ヶちら 190 1987 ： 998 1 두 2000 2001 $20 \cdot 2$ 2043 2004 2095 2COé 2007 2バさ 20．4 2










## 2.








## A．13／13

YEAR MOTORIZA OBSDRTAS MOVAVERA AGOKI

1960	110.29	4101	－	4478
1.961	101.22	3573	－	3603
1962	100.88	3595	3709	3568
1963	98.42	3578	3600	3305
1964	101.90	3693	3655	3652
1965	104.69	3562	3813	3954
2966	106.99	3847	4000	4175
1967	110.01	4387	4101	4453
196日	111.00	4511	4421	4541
1969	113.63	4196	4860	4766
1970	122．05	5163	5365	5411
1971	126.05	－604？	5751	5799
1972	132.30	$\dot{5} \leq 12$	317：	6038
1973	151.33	－${ }^{\text {－}}$	3440	5990
1974	142.31	－¢5	2．547	c． 84
1975	148.8 B	ら534	$=\dot{+1 \%}$	0687
1970	148.30	－54E	$6 \times 8.7$	3671
1977	$14 \% .39$	59\％	－3c7	070.0
1978	151．54	－75	c 732	5747
1979	150゙．4．？	E．4？	こゴ3	－7．3
1980	147.77	－：＝こ	．	$570^{\circ}$
1981	149.17	－2区゙	．	
1982	145.70	－5ミー	－	¢5c7
1983	13こ．うら	三－	－	－1\％
1784	！こミ．＊い	．	＋	こご！
$108 \%$	：－．．－	－	．	二－aE
1986		－	－	Es．）
1987	！日ヵ－－！	－	－	$25+5$
1988	$190 . \%$	．	－	＝230
1989	173.30	－	－	$0: \%$
1990	197．70	－	－	5071
1991	こCこ．この	．	－	E－ie
1992	265．7．	－	．	こ4：1
1993	211．40．	－	－	Sues
1994	ごら口，	－	－	
1995	220．9\％）	－	－	$\rightarrow$ こモっ
1996	こここ．70	－	．	3751
1997	250． 0	－	－	コล゙．
1998	225． 70	－	－	2－0\％
1999	24， 7.7	．	．	2793
2000	245.70	－	－	14，
2001	E51．19	－	－	098
2002	256．40	－	－	．
2003	201．e0	－	－	＊
2004	26．．29	－	－	＊
2005	27セ．80	－	－	＊
2006	2\％6．30	－	－	＊
2007	2¢4．00	－	．	－
2008	こち？．00	，	－	－
2009		－	－	＊
20：0	30：．-6		－	

## A．13／14

year time casualti movavera agokil agokiz

1960	－	4307	－	3123	6172
1961	1	4030	－	3474	4532
1962	2	4260	4457	3951	4467
1963	3	4794	4535	4253	3989
1964	4	4902	4754	4680	4621
1965	5	4698	5091	5128	5182
1966	6	5125	5254	5595	5596
1967	7	5945	5530	6078	6124
1968	8	5599	6141	6573	6293
1969	9	6292	6827	7075	6730
1970	10	7756	7744	7580	8027
1971	11	8555	8824	8083	8850
1972	12	10528	9675	8579	9395
1973	13	10997	10048	0065	9276
1974	14	10540	10719	9535	10506
1975	15	9 P 21	$1072{ }^{\circ}$	0997	$1: 115$
1975	16	11909	10504	10418	11045
1977	17	10577	11346	10825	11158
1978	18	9874	11502	11207	11334
1979	19	14749	11294	11562	11.42
1980	E0	10403	．	11891	11190
1391	21	10865		12154	11139
1 フ5き	Eミ	13640		12470	－10832
：-83	E3	135こら		12－c゙コ	9545
1\％84	E	．		12050	13510
： 0 ¢5	35			13： 5	！＇ごった。
1－¢\％	三ァ	－		－こご	137．7
1797	E－			12505	13251
1739	28			$1 こ ゙ 5$ こ	1 135\％
： 780	29	－		13784	1272 L
109	30	．		1390	12543
1591	31	－		$14 \mathrm{CHj}_{3}$	12518
1009	32			$140=5$	1ココッ0
1503	33	－		1－i．5	1E： 24
1780	34	－		$142 \cdot 0$	－1350
1095	35	－		14360	－15E6
1005	36	－		14333	11137
$1 \geqslant 97$	37	－		14413	1967
1096	38	－		1－254	10131
1099	$3{ }^{\circ}$	－	－	14491	9619
2（b）	40	－	－	14534	$877 \pm$
2u0：	41	－	－	1455 2	日273
2002	42	－		14577	7474
2003	43	－		14599	$66^{68}$
2004	44	－		14519	5716
2005	45	－		14435	$46 ?$
2006	46	－		14046	3619
3 cos	47			$1+50$ 2	2437
20．c	$4{ }^{4}$			$: 4=73$	1．es
E0no	47			14053	
219	50			1	

## A. 13/15

year time casperta movavera agoki

1960	0	1.10		1.14	1960	110.29	1.10		
1961	1	1.10		1.18	1961	101.22	1.10		1.24
1962	2	1.20	1.20	1.21	1962	100.88	1.20	1.20	
1963	3	1.30	1.24	1.25	1963	98.42	1.30	1.2	1.25
1964	4	1.30	1.29	1.29	1964	101.69	1.30	1.3	1.29
1965	5	1.30	1.32	1.32	1965	104.69	1.30	1.30	1.32
1966	6	1.30	1.30	1.35	1966	106.99 110.01	1.30	1.34	1.36
1967	7	1.40	1.34	1.38	1967	1110.01	1.20	1.38	1.37
1968	8	1.20	1.38	1.41	1968	113.63	1.50	1.40	1.40
1969	9	1.50	1.40	1.44 1.47 1.4	1970	123.05	1.50	1.44	1.48
1970	10	1.50	1.54	1.49	1971	129.05	1.40	1.5	1.53
1971	11	1.40	1.52	1.51	$19 \% 2$	13 1. 30	1.60	1.5	1.55
1972	12	1.60		1.54	1973	131.33	1.60	1.5	1.55
1973	13	1.60	1.50	1.56	1974	14 E .31	1.70	1.64	1.59
1974	14	1.70	1.64	1.50	1975	148.89	1.50	1.68	1.60
1975 1976	15 16	1.50 1.80	1.64	1.60	1976	14 E . 30	1.30	1.6	1.60
1977	17	1.80	1.64	1.61	1977	149.39	1.80	1.66	1.6
1978	18	1.40	-	1.63	1975	151.54	1.40	. 5	1.60
1979	19	1.80	-	1.64	1979	150.40	1.80	1.5	1.60
1990	20	1.70	-	1.56	$1 \div 80$	149.77	1.70	.	1.60
198!	21	1.80	-	1.07	1981	149.17	1.8		1.59
: 9	23	1.30	$\checkmark$	1.63	193 c	145.50	1.70	:	1.56
1 108	Es	:.	-	1.07	$\bigcirc$	-7E.43	.		1.58
1984	$\underline{3}$	-	-	1.71	! $=3$ \%	176.49			$1 .+7$ ?
¢50	Ec			1.73	19 00	130.50	.	-	1.45
: 5 ?	27	-	-	1.72	1737	184.70	-		1.41
1993	28			1.73	1988	189.00	-	-	1.37
198	$2{ }^{\circ}$	-	-	1.74	$193 ?$	193.30	-	.	1.31
1090	3.	,	.	1.74	107.	197.79	-	-	1.18
199:	$3!$	.	-	1.75	$10 c_{1}$	2ve.20	-	-	1.11
1003	32	-	-	1.75	1092	20.7.9	-	:	1.03
1903	-3		-	1.75	1603	311.40			1.94
1994	$3{ }^{34}$	-	-	1.70	10 ch	210.10	-	-	. 8
1993	$5{ }^{5}$			1.77	190	2E5. ${ }^{\text {co }}$			. 73
1997	a	.	-	1.77	1997	230.09	-	-	-6
1908	39	-	.	1.77	1979	235.70	-	-	. 49
1790	$3{ }^{\circ}$	.	-	1.77	1969	240.70		-	-30
3000	4.1	-	-	1.78	E000	345.90	-	-	. 21
2001	41	-	-	1.78	2001	251.10			. 06
2002	42	.	-	1.73	2002	256.40	-	-	-
2003	43	-	-	1.76	2003	261.80	.		-
2004	44		-	1.78	2004	267.20	-	-	-
2905	45	-	-	1.79	2005	272.80	.	-	-
2000	40		-	1.79	20\%	278.30			.
cow	47	-	-	-. 0	2(m)	23-.00			-
cos	48	.	-	1.70	5\%	こ¢?.70	-	-	
2\%, 14	4	-	-	:	E, ${ }^{\text {a }}$	375.50			
$\underline{e} \cdot 1 \%$	5	-	-	1.7	200	301.0.)	-	-	-

A. $13 / 16$

YEAR MOTORIZA CASPERTA MOVAVERA AGOKI




以















3 है:



[^4]

```
 10E2 3 11&0)}11:97:1419 1334
 1503 4 1024 1282 1447 1303
 1eE-4 5 1301 :309 1475 1402
 :05E 0 1002 14.32 !502 15E3
 :055 7 1096 1533 15=0 1579
 1957 㲘 1477 1576 1557 1621
 :909 9 1556 1599 :534 1686
 1059 10 1488 1610 1610 1085
 1750 1: 177% 1659 1037 1815
 1961 :2 1751 1747 1663 171:4
 1902 13 1775 1928 1099 1718
 1903 14 1940 18111 1715 1683
 1764 15 13?3 1807 1740 1723
```



```
 !0==!? -732 !702 178% :-5?
 :=- !こ 15:U1"=? 15:4 1%.E
```






```
1F74 ES 10SG 20.Sa 1074 1404
17"5 ミo 10Sज 16m, 1?0ङ 105:?
17%0 27 201? 1757 E01s 1?53
1977 33 :Є8% ミコ5, 203! 1756
```




```
17E% 31 1464 . 26% :20%
```





```
19ジア 35 . . こ!コ4 :83.
1905 3s. . 2!evirpiz
103= 3". . 215- !-...向
1905 35 . . 2213 1&#%
1088 39 . . 2ここ9 104゙3
193040% . 2243 1580
1900 41. . 225日 1512
1771 42. . 2372 1435
1972 43 0.0 . 2285 :353
1973 44 . . 2390 1361
199445. . 23111102
199546. . 2324 1054
1996 47. . 2336 940
199748: % 2348 817
199849 < 2359 680
1999 50:45, 2370.540
2000 51.32. % 2380 385
2002 53: ! 240149.0
2003 54. . 2410.
```

$$
17505056: 800: 1048 \text { Eve }
$$

1951 o8772171 2300 tee3 2534. 195276 2a 2254， 2184 24Е1 2000 1953 7509 1923 8589 อ298 2850 19548308 272玉 292730443015 195594013907317530513184 19569098 3858 355ะ 37113357 $195793863465 \quad 374739403533$ 195898703838394543043711 195998553668406042943892 1961110248984262250794073 195110124431445244354256 196210084476468144614438 196398424781458742844619 190410194812462845174800 196510404427475547224979


 －7ッ 12ロE

 ：073 ：313 7574 6831 5132 0265 19741421 t420 205755006403 $1975148^{\circ} 6: 75$－ 6755 6501 6535 $197=14207413 \quad 65746648631$ ：977 1499 6254 b785 8e：－1 673： ：$=7$ ع 15145570 5550 57156375 $107 ? 150084336540$ б572 7603
 ：95：147\％07：． 15BE 1450 7239．б5こ6 7こ5：3 ：フエ゙ ：こコ3 フo13．ย213 7373 175－1720
17モ5：750
：9E3 180以 19871340 19381990 19891930 19901970 19912020 199220600.0 19932110 19942160 15952200 19962250 19972300 19982350 19992400 20002450 20012510 20022560 20032610 20042670 200s a720 2006 2790
 20以 2כック 2004 2950
ごは1： 2010

A． $13 / 22$


1960	0	89505	4769	5.33		
1961	1	84540	4600	5.44		5.3
1962	2	87130	4713	5.41	5.43	5.5
1963	3	87073	4736	5.44	5.54	5.
1964	4	92581	5100	5.51	5.65	5.7
1965	5	93258	5793	5.90	5.77	5.8
1966	$t$	103175	0164	5.97	5.92	5.
1957	7	109439	6593	－．c．	6.10	5.9
19	5	1：3323	7004	5－13	4.20	5.7
1969	9	124348	7970	6.41	－． 3 i	
1070	10	137271	8823	2.43	0.45	
1971	11	149750	$97 \%$	－． 53	0.30	
1972	12	159969	10681	6.68	6.14	0.0
1973	13	164222	8960	5.40	5.99	
1974	14	184086	10352	5.61	5.85	
1975	15	199715	11312	5.66	5.70	6.1
1976	16	203446	11870	5.83	5.83	ob． 1
1977	17	214351	12763	5.95	5.90	0.2
1979	18	235447	$1374 t$	6.10	6.11	6.2
1979	19	232629	14573	－． 28	6.27	6.2
1980	20	24C435	15343	6． 38	c． 42	0.2
1981	21	240132	12345	0.64	6．55	o． 2
1982	22	240162	16870	0.77	．	6.2
1983	23	250915	16823	6.70	－	6.2
1984	24	－	．	．	－	6.3
1985	25	－	－	－	－	6.3
1986	26	－	－	－	－	6.3
1987	27	－	－	－	－	6.3
1988	28	－	－	－	．	6.3
1989	29	－	－	－	－	6.3
1990	30			－		6.3
1991	31		－	－		6.3
1992	32		．	－	－	6.
1993	33			－		6.4
1994	34					6.
1995	35					6.
1996	36					6.
1997	37					6.4
1998	38					6．4：
1999	39					6.4
2000	40					6.4
2001	41					6.4
2002	42					6.4
2003	43	－	－	－	－	6.4
2004	44	－	－	－	－	6.
2005	45	－	－	－	－	6.5
2006	43	－	－	－	－	6.5
$200 \%$	47	－	．	－	－	0.5
2006	48		．	．	－	
2009	4	－	－		－	0． 5
2010	50	－	－	－	－	

## A．13／23

ME	$Y$	A	E	＝		－E	F	0	H		
1590		¢゙505	64594	72：7		－	2789	1885	6761		
1901	1	84－40	64163	7590		7643	2377	1664	7000		7416
1982	2	e－130	EEE73	7500	7476	7493	2459	1745	7068	7019	7283
1903	3	87073	65511	7524	7493	7405	3385	1880	7044	7107	7205
1964	4	92581	69357	7491	7423	7343	2450	1769	7220	7256	7150
1965	5	98コฐ	71750	7302	7347	7295	2542	1831	7203	7292	7107
1966	6	103175	74697	7240	726＋	7250	2445	1894	7746	7242	7072
1967	7	109439	73554	7178	7179	72 z	2947	2135	7245	7178	7042
10.65	B	1：	6055ó	7169	71：0	7194	3129	2127	6798	7054	7016
19 c	3	： 2 く 3 ¢	عワワワ	．069	7065	7138	Csć？	1979	6399	6928	6994
1000	：$\because$	！こージ1	8557	6984	－つ三é	7145	E5is．	2334	万ら⿹\zh26		jャr．
	1	：$¢=$－	－ 4 以アニこ	－テア	＋cas	－！こ	－Ei7	2コea	7．03＝	03：4	－5：5
1～＂	：	：-1.0	：1：00	350	マ3゙	7！	$4 \leq .03$	3 Sc 2	－5こう	名ご	¢493
－	：${ }^{\text {a }}$	－－－ミ̇」	ミここーム年	7：$=1$	－903	7 7 ジラ	＋0． 5	こセ5ic		7 73？	－¢ ¢ こ
－－－	14	：- －＝	12ニラ37	1： 3	7085	70\％	437\％	32		－137	¢\％
ゴ5	：	：$-\cdots: 5$	：42．さら	7：$:$	7113	7033	498゙：	354：	7150	5－5：	¢ $\mathrm{c}^{\text {ces }}$
：5－5	16	30\％－40	： $4+490$	7102	－102	$7 \mathrm{CH}+$	4EOS	21EJ	03－3	sery	¢อ่33
17\％：	1？	ここヶここ：	：-5536	7：is	7081	703：	453	3011	6ESE	2981	3e7：
：$¢$	！	ミここ．－	： $5=3347$	$70{ }^{\text {c }} 7$	－000	701	Et25	3530	－5！2	6714	－ 3 ć
$12 * ?$	：$¢$	23－0，	¢ ¢3こa	T¢0！ 1	704	76？	E2is	＋240	๑もご：	－71s	6800
1750	2	24CuE玉	1－5153	7036	7024	－\％9b	4435	2ese	6314	673s	564io
1551	${ }^{1}$	$346: 32$	172166	¢ 4	7017	8すぐ5	5648	3897	－340	6690	58．3：
：＂$=$－	コミ	ミロー	$154-70$	769		Sors	Eา3：		3736	．	S323
－－：	三	バにニン	： $7 \times 4.0$	ついうこ	－	0505	635\％	4 4 5	－3E5	－	ba：3
しくらか	E．		．	－		的河。					68．う
：＝三	こ	－	－	．		E5．0－	－		－	－	6777
1\％＊	3.	－	－	－	－	シラコ？	－		－	－	6790
198．	ぎ：	．				6F3：	－			－	STEコ
196き	E3	．	．	．		－92引				－	6775
1 ロコロ	2＝			－		69.5	－				676
－$=$	3.	8	．	．	．	¢ヶ\％	．	．	－	．	6．6e
： 88 ．	こ：	．	．	．	．	$\dot{¢} \because$	0	．	．	．	－ 0.5
$10 く$	$3 ?$	．	．	－	．	6394		－	－	－	6750
$10 \%$ こ	コ	．	－		－	6837	－	－			5.44
17ジ	36	．	．			－881	－	－			0.73
1905	35	－	．	－	－	6275	－		－	－	6733
$109 \%$	30	．	．	－	．	6867	．	．	．	．	6727
1497	37	－	－	．	－	6365	－				6722
1908	38	．	．	．	－	6857	．	－		－	6717
1977	35	－	－	－		6851	$\bigcirc$				6712
2006	40	－	．			6846				－	6707
2001	41	－	－			4841				－	6702
2002	42	．	．		－	6835					6697
2003	43					6830					6693
2004	44		－			6825				－	6689
2005	45	－	．			6820					6684
2006	46		－			6816				．	6680
2007	47					6811				．	6676
2008	48					6807					6672
2009	49					6802				－	6668
2010	50					6798					6064

## A. $13 / 24$

yeaf time rtas dayrtas percent movihbav agoki

yEAR TIHE TDTELEME PEDALCYC PERCENT MOVINGAV AGOKI

1960	0	3515	429	12.20	－	，
1961	1	3473	398	11.46	－	11.75
1962	2	3595	340	9.46	10.59	10.36
1963	3	3578	374	10.45	9.84	9.54
1964	4	3693	346	9.37	9.02	8.97
1965	5	3564	302	8.47	9.63	8.53
1966	6	3991	293	7.34	7.87	8.16
1967	7	4321	324	7.50	7.55	7.85
1968	9	4511	302	6.69	7.30	7.51
1059	9	4103	310	7.77	7.24	7.35
1979	15	5： 5	372	7.21	6.92	7.14
1971	11		－55	7.6	7.00	0.95
1975	12	－งき2	3¢5	5.92	c． 55	6.77
！ 9 \％	： 3	c？	484	7.13	6.07	0.51
！ 97.	$1+$	c25：	342	5.47	5.65	－ 0.4
1975	15	\＄534	312	4.78	0.45	0.35
1970	10	－5 48	325	4.96	0.94	6.20
1977	17	$\leq 703$	505	9.91	5.73	6.07
1978	18			$\bigcirc .56$	6.57	5.96
1977	19	304？	356	4.43	6.65	5.85
1980	20	6162	240	3.97	5.76	5.75
1991	21	7122	333	5.38	4.75	5.65
1982	22	7524	410	5.45	．	5.56
1793	23	80， 23	363	4.52	．	5.47
1054	$2:$			．	．	5.38
：985	25		．	－	－	5.30
108	26	．	．	－	．	5.22
1957	27	－	－	－	－	5.15
1989	ะ9	．	．	．	－	5.08
1989	29	－	．	－	－	5.01
199	30	－	－	－	－	4.94
1901	$\Xi 1$	．	－	－	－	4.57
1052	3 S	－	－	－	－	4.81
1593	33	－	－	－	－	4.75
1994	34	－	－	－	－	4.69
1995	35	．	－	－	－	4.63
1950	36	－	－	－	－	4.57
1997	37	－	－	－	－	4.52
1998	38	－	－	－	－	4.46
1999	39		－	－	－	4.41
2000	40	$\square$－	－	－		4.36
2001	41	．	－	－		4.31
2002	42					4.26
2003	43	－				4.22
2004	44	－	－	$\cdots$	－	4.17
2005	45		．	－	－	4.13
2006	46	－		．	．	4.08
2007	47		．	－	－	4.04
2009	48			－－		4.00
2009	49			－	－	3.95
2010	50		．		．	3.91

TIME
1900
1961
1962
1963
1964
1965
1966
1967
1968
1969
176

$B \quad C$
C D
D E











173่ 24
10ミヒ ЕЕ . . . .
1986 26 . . . ここム
1987 27 . . . . Eこ1
1988 ニ日 • . . 217
1989 25 . . . 218

1ocき Јe . . . . こう
1793 3ニ . . . $\quad=13$
199434 • • • E12
199656 . . . 207
199737 . . . . 208
199838 . . . 207
199939 . . . . 2006
200040 . . . 205
200141 . . . . 204
200242 . . . 203
$\begin{array}{lll}200343 & \quad . \quad 202 \\ 20044\end{array}$
200545 . . . 200
200046 .. .. . 200
200747 . . . . 197
200848 . . . . 198
200949 . . . . 197
$201050 . \quad . \quad . \quad 108$
$\theta$
$H$

## A. 13/28



PCENTMC MOUINGAM AGOKIM PEDALCYC PCENTPCY MOVINGAP AGOKIP

A. 13/29


TIMT Y	A	B	C	D	$E$	F	G	H	I
19730	9595	2082	2170	－	－	4753	4959	－	
19741	9：87	1975	2150	－	2594	4907	5439	－	520．9
1575	5ここ3	1695	2040	2504	2E．37	42be	5150	5ミーマ	5ここ4
197e 3	$1 \%$ ct9	2035	2506	245.	2440	56こち	5487	こらナこ	50.54
19774	9017	32 ®	3530	2443	EЗ：0	4它尤	5175	5ミヶ：	こミ0゙」
17785	10956	2112	1945	234 ${ }^{\text {a }}$	E205	$50{ }^{51}$	5457	E146	5 Si S
19796	13087	2ワ20	2078	2243	2118	0455	4935	E：EC	$5 \leq 5$
19807	8990	140.14	1562	－830	204：	4こうこ	4 ¢\％＇5	53：3	$5 \equiv 80$
172： 4	$1 \pm 1=$ ？	2ここ7	E048	； 80 E	19Eこ	0：5：	5 Ec	Exis	5 ¢25．
158 c	12ご辺	ざこご	17：3	－	－70゙		5 Eg	．	5290
190310	2 35．こe	ごご	1835	．	！	258	E®O：	．	c．アと．
1584 i1	－	．	．	．	¢832	．	．	．	「もブ！
1795 12	．	．	．	．	：00：	－	－	－	¢－0．
108s 13	－	．	．	．	：754	－	．	．	5ご95
19 ご 34	．	．	－	．	17：	．	－	－	5300
19 E 15	－	．	－	．	ieso	－	．	．	539
193910	．	．	．	－	1és	－	－	－	5＇今：
174017	．	．	．	－	15 T	－	－	．	5ご，
1701 18	0	．	．	－	1600	－	－	．	ごご：
：092 ；	．	．	．	．	：574	．	．	．	ここ：
ことご				，	1－5：		．	－	$5:$
．行－	－	－	－		－－	．		－	－
Bt	－	－	－	－	． 5	－	－	－	－
$\cdots$	．	－	－	－	－－			．	\％－2\％
？\％\％\％	－	．	－	－	1～4に	．	－	．	$5{ }^{\text {c }}$
：9ヶ5 ぞ	0	．	－	．	ごミら	．	－	．	ごミ゙く
2000 E？	．	－	－	－	1408	－	．	．	5330
2001 2a	．	．	．	．	1391	．	－	．	$533:$
200229	－	－	－	－	1375	－	．	，	5こ32
200330	．	．	．	－	1359	－	－	－	5334
2004 31	－	－	－	－	1343	－	－	－	Е335
2005 ゴ	－	－	－	－	1335	－	－	－	5ごこ
2000 35	－	－	－	－	1314	．	－		E337
2007 34	－	．	．	－	1300	．	．	．	5334
ご00e	－	－	－	－	1 188	．	－	－	E．599
20\％5i	．	－	．	．	－ 273	．	．	．	¢34
$2110=-$	．	．	．	．	12ら）		．	－	Eis

## A. 13/31

## YEAR TIME INJURIES DRIVERS PERCENT MOVINGAV AGOKI

1973	0	9595 9187	2607 2464	27.17 26.82		19.19
1975	2	8283	1251	15.10	-18.66	17.63
1976	3	10269	1124	10.95	16.69	16.72
1977	4	9017	1196	13.26	14.43	16.07
1978	5	10856	1879	17.31	14.54	15,5?
1979	6	13087	2035	15.55	15.53	15, 10
1980	7	899	1403	15.61	15.64	14, 31
1981	8	11167	1776	15.90	14.97	14.51
1982	9	12378	1712	13.83	.	14.24
1983	10	13526	1890	13.97	-	14.01
1984	11	.	.	.	-	13.79
1985	12	-	-	-	-	13.60
1986	13	-	-	-	-	13.42
1987	14		-	-	-	13.23
1988	15	-	-	-	-	13.09
1969	16	-	-	-	-	12.95
1990	17		-	-	-	12.81
1991	18	-	-	-	-	12.68
1992	19		-	-	-	12.56
1993	20	-	-	-	-	12.45
1904	21		-	-	-	12.34
1995	22		-	-	-	12.23
1996	23	-	-	-	-	12.13
1997	24	-	-	-	-	12.04
1998	25		-	-	-	11.94
1999	26	-	-	-	-	11.86
2000	27		-	-		11.77
2001	28		-	-	-	11.69
2002	29		-	-	-	11.61
2003	30		-	-		11.53
2004	31					11.46
2005	32			-		11.39
2006	33					11.32
2007	34					11.25
2008	35					11.19
2009	36					11.12
2010	37					11.06

A．13／32

TIMT	$r$	A		c	D	$E$	F	G	H	$\cdots$
1973	0	9595	279	289	．		704	734	．	
1974	1	9187	193	613	．	292	563	613	．	484
1975	2	8283	169	204	334	300	539	651	514	534
1976	3	10259	340	331	339	346	535	¢2：	538	563
1 ．7ワ7	4	0.017	211	こコ ${ }^{\text {¢ }}$	ごง	3－9	315	3＊0	－0\％	E84
177．3	$=$	10をちう	24.	313	4ET	（60） 4	5．）！	ど『゙＋	¢ูコ	$\leq 0$
－$-\frac{1}{6}$	$=$	：3ご可	巨37	410	4こ	ミ，	0： 5	47：	कem	$6: 3$
198．）	7	300．0	－52	E36	460	$4 \rightarrow$ ご	1：30	1254	S -7	$6{ }_{64}$
$145!$	5	11167	414	3\％＇1	45：	4ご	535	483	－29	634
1982	9	i237a	$\therefore 55$	353	．	470	576	405	－	643
1093	10	135ご	433	320		4 az	628	40＇	．	650
173：	11	．	．		－	403	．	－	－	657
1985	13		．	－	．	$5 \%$		．	－	603
1980	こ	．	．	．	．	512	．	．	．	609
1957	14	－	－	－	－	ธ20	－	－	－	6.5
！ 988	15	．	－	，	．	52 c		．	－	68.0
1530	10	－	－	－	－	巨ご	－	－	－	$\pm \boxed{4}$
：990	17	－	－	－	．	コヶ2	－	－	－	287
19.71	：	－	－	－	－	E－	－	．	－	－5．
1573	ir	．	．	－	－	$\mathrm{ES}_{4}$	－	－	－	0.77
1973	20	－	－	．	．	$5=0$	－	－	－	7190
1994	31	－	－	－	－	Eis		－	－	704
1075	22	－	－	－	－	571	－	＊	－	707
1096	E3	－	－	－		E．5	－	－	－	．
1 $\%$ \％	こ．	－	．	．		50：	－	－	－	．
$1=03$	2－	－	－	－		535	－	－	－	$\cdot$
：0．09	Eコ	．	．	．		5¢0	－	．	．	717
ごい	$\bar{E}^{-}$	－	－		－	EF4	．	－	－	7E®
2001	23	－	．	－	－	573	－	－	－	725
arne	27	－	－	－	－	602	－	－	－	727
2003	30	．	．	．	－	609	－	－	－	730
2004	こ1	－	－	．	－	610	－	－	－	732
2005	52	－	－	．	－	613	．	．	．	734
2006	33	－	．	．	－	617		－	－	737
2007	34	－	－	．	－	620		－	－	739
2008	35	－	．	．	－	624	－	－	－	741
2009	36					627				743
20103	37					630				745

## A. $14 / 1$

MOURE OBGDFLOW MODFLOW AGUKII AGOKIS

0	240	177	240	177
1	70	123	114	39
2	60	53	-10	- 11
3	30	43	-55	-67
4	40	63	40	63
5	120	.	296	32.1
6	260	-	627	647
7	1180	880	764	950
8	1200	1147	12 (1)	1147
9	1060	1087	1287	1293
10	1000	1003	1 ก45	1143
11	950	1007	1146	1040
12	1070	973	1070	179
13	900	983	$1 \vdots 64$	936
14	980	1020	1116	1070
15	1180	1107	1170	1173
16	1160	1227	1160	$12: 37$
17	1340	1133	10 发4	1191
18	900	960	870	1065
19	640	680	665	1388
20	500	707	500	797
21	980	580	405	5.54
22	260	487	362	430
23	220	240	321	310

A. $14 / 3$
gradient bradieni rtai rtaz ogserved predi flieve

.5	.5	.53	2.73	1.41	1.47	.30
2.1	2.1	2.73	1.11	1.42	2.50	.57
3.9	3.9	1.80	0.0	3.34	2.50	$1.0 \%$
5.0	5.6	1.67	.	1.67	1.92	1.34
6.0	.	.49	2.65	1.57	1.00	1.72

## A. $14 / 4$

DOWNGRAD MODGRADE RTAI FTA己 MODRTA OBSRTAS AGLII. 1 SILGMUM


## A. $14 / 5$




A． $14 / 6$

RTAI RTAC KTA3 RTA4 HTAS FUlUG FilNy HODELFTA

11	0	
0	E	
L	b	A
E	L	G
1.	1）	D
S	5	$K$
（）	（1）LITEDFTAS	I SILYANOV


． 49	． 53	． 83	1.11	2.95	3.33	4.24	2.01	$15 i 5$	150	2.01	1.97	2.59
3.53	6.28	7.39	8．16	．	．	．		．				
． 52	1.04	2．74	5.45	－		－	2.94	237.5	250	2．48	3.03	1.87
． 91	． 98	1.57	1.67	2.50	0.71	8.87	．	．	275	2.89	3． 11	1.74
1.18	1.67	1． ¢ $^{\text {P }}$	4.17	4.55	4.71	－	．	．	304	5．92	3.10	1.63
． 49	． 63	． 81	1.05	1.57	1.67	1．7i	－	－	S25	c． 48	3.03	1．52
2.09	2．22	3.55	4.71	3.12	O． 18	．	3.04	337.5	．	．	－	
． 49	1.76	5.29	－	－	－	＊	．	．	ヨ゙ィミ	2． 31	2.64	1.35
． 49	． 52	． 53	． 59	1．7b	2． d 1	2．95	2.60	400.0	400	2.60	2． 34	1.27
1．82	． 83	1.67	2．35	2.50	3.53	3.44		．	．	．	．	．
3.33	3.64	4.17	4.55	．	．	．	－	＊	，	－	－	－

A． $14 / 7$
rtai rtaz rtab modeleta model．wid dusdhidt ogsedith agul：shlyanou


## A． $14 / 8$

RTAI RTAR FTA3 FTA4 RTAS MIEELRTA OGSEDJNS DESEINIIA AGOKI JACOBS

.91	1.67	2.73	9.17	． 83	5.98.	0	S． EG	5.07	1.45
2.50	4.17	10.00	20.90	－					
1.11	7.50	7.27	6.67	10.59	4.80	1	6.1301	6.74	2．47
2．62	11.82	．	．	－					
1.11	3.33	3.64	5.00	5.24	7.28	2	7.0	8.41	3.49
6.36	7.79	9.85	13．26	17.27	7．2a	－	．		
3.45	7.06	9.41	13．76		9.92	3	0.72	10．08	4.51
5.00	10.00	24．35		－	13.10	4	19.113	11.76	5.53



A． $14 / 10$


130	130	2．94	－	c． 9.94	c．$\%$	3．53	6.17
4715	$\therefore 10$	i？呺	．	3.11		1．173	2．18
：4，	－	：$\because 1$	－	－	1．11	［1．11	2． 8.9
［（11）	610	と．cis	1．－\％i	4．11	1．it	4－43	1．135
Eici	－	1．7t	，	．	1．75	こ． 31	1．日1
98゙0	520	2．73	．	2．73	\＆．${ }^{1}$	c． 58	1.43
1637	11：4	2．73	－	2．2゙1	［．75	2．49	1． 14
1250	－	1．82	－	．	1．83 ${ }^{2}$	：-2.34	1．22
1500	1500	$1.6 \%$	2．5	1.74	1．44	己． 16	1.13
2cu0	2000	1.176	－	1.76	1．7is	1.83	1.0 O
2500	25010	1.67	－	1．6\％	1.07	1． 5.5	． 94

A．14／11
dowlighad modradiu rtal ktale mideleta jobsedkiti alioki silyanou

130	130	6．E3		6.23	6.35	6．48	6.17
360	340	5.71		5.91	5.41	5.67	2.77
590	590	7.27	4.71	5.99	5.97	5.17	1.87
$60{ }^{\circ}$	600	4.71		4.71	4.91	5.16	1.85
900	905	3.64	5.00	4.32	$4.3{ }^{2}$	4.41	1.45
510	．	． 8 ＇3	5.45		3.14	4.39	1.44
1980	1980	2.23		2.23	2．e3	¢． 92	1.01
3200	3200	2．4is			2.46	1.06	． 87
5000	5500	2.50	2.22	1.92	2．36	1.37	． 79
6000		1.05	．		1.05	2.65	． 77

A． $14 / 12$
LFGSUFER MUDELGUF FTAL ritaie kTas obsedfita nGul


## A．14／13

dOWNSLPE MODELSIJF FTAI RTAE MODELRTA OBSEDFTH AGGK：I

0.0	0.0	1.05		1.05	1．05	1.07
2． 4		． 47	4.02	．	2．0\％	2．95
2.6	2.5	． 49	5.91	3.13	3.20	12．99
3.0		4.02	2.09	．	3.06	3.02
3.8	3.4	3.79	1.02	2.80	2.81	2．88
4.2	4.2	1.47	3.79	2.63	2．6．	2.70
4.5	4.5	$1.4 \%$	3.78	2.63	2．chl	¢． 51

A． $14 / 14$
RTAI RTAD RTA3 RTA4 RTAS MUDEIFITA MONELFLI OESFLUW DEGURTAS

． 80	3.71		－		－Bü	00	BO	． 40	． 8 日	． 84	． 29
． 29	3.71 .57	． 57		－	－		3urs？	1． 513	1.33	2．83	． 39
． 29	． 57	1.14	2.00	4．8．3		－	417	1.87	1.65	3.87	． 45
．86	$2 \cdot 0$	1.14	6.57		2.04	464	475	2.14	1.63	4.39	． 48
2.00	2.00	2．29	－	－	－		500	1．$\because 2$	1.81	4.62	． 49
1.71	－	－	－	－	－		509	rector	1.94	4.70	． 50
2.00	．	．	－				\＆゙3）	$1 . \% 1$	2.114	4.95	． 51
． 29	． 57	1.43	9.00				6	2．0）	2． 37	5.71	． 6
． 29	． 57	2．80	0． 2.29		2．E．e	667	641	ご． 5	2．45	5.89	． 57
3.14	，	．	－．29		2．6．	667	407	0	2.57	6． 12	． 59
3.71	．						779	$3.1-1$	3.11	7.13	． 66
3.14	4.57	4.66			3.71	640	840	3.71	3.44	7.68	． 69
		4.80	－		4.19	1000	1000	4.19	4.43	9.12	． 60

A． $14 / 15$
RTAI RTAZ RTA3 RTA4 KTAS HODEI ETi MUDFI．CW OHSDFI－OW RHSTHTAS


A．14／16
HOURS TQTRTAE DESEDFTA MODELFTA
AGOK：II
Agatile

0	9	． 164004	． 218736	． 1640104	． 218730
1	6	． 109350	． $11544^{\text {a }}$	． 070.451	． 097420
2	4	．072912		.010700	． 001971
3	0	0.0	． 048600	．©07890	．06458́
4	4		－ $0546 \pm{ }^{\text {a }}$	． 07 2．712	． 0544690
5	5	． 0971110		． $1970{ }^{\circ}$	
6	12	－ᄅ197こu		． \％$^{4} 1902$	． 3 ¢961\％
7	27	．+9 172	． 437500	． 198856	． $44.3{ }^{2} 70$
8	33	． 601584	． 552900	． 611504	． $5 \boxed{2950}$
9	31	．Scisuc	． 65 Erema	． 6.42035	． 614436
10	44	． $80 \times 104$	． 714 EEG	－ 5 ¢23767	． 648190
11	41	．510432	． 686640	． $6 ¢ 9667$	． 663465
12	28	． 510432	－ 686640	． 510432	．tictect1）
13	44	－日0－164	． 60156	． $4 \% 1350$	． 733950
14	27	－4c2192	.710942	． 163 －73	． 90431 t
15	46	． 1518560	． 682712	． 4 E1274	． 591430
16	41	． 510432	.941856	． 51043 a	． 941657
17	60	1．2396ご4	1．0147 ¢	． 534 己る	． 963380
18	56	1．057320	1．184928	． 541346	． 942294
19	69	1.257640	． 535784	．5®\％35a	． 874655
20	27	． 492172	． 77203 c	－492172	． 772033
21	31	． 56512 c	． 455736	． 436535	． $6,4582 \mathrm{E}$
22	17	－309912	． 419280	． 360539	． 505535
23	21	． 9 928こ4	． 285600	． 266831	－359536

## A． $14 / 17$

TOTJUNCT RTA1 RTAE RTA3 RTA4 RTAS RTAG RTA7 RTA日 MOLELKTA MGOKI JACOES

，	1.13	1.21	2.27	2.43	－	－		．	1．70，	1.65	2.47
2	1.61	． 86	1.13	4－ç	2．5\％	2.43	3.64	2．27	2．20	2．37	3.49
3	． 85	3.64	E． 43	2．27	6.03	1.1 .3		2．	2.75	2.83	4.51
4	． 76	1.13	4.136	3.40	．	．		．	$3.0 \%$	3.04	5.53
5	1.53	2．¢7	4.93	－	－	．	－	－	E． 91	2.98	6.55
6	． 8 s	2．2：	5．3．3	－	－	．	－	－	2.134	2.60	7.57
7	2.27	．	．	．	．	．			2． $\mathrm{B}^{\text {¢ }}$	2.11	8.59
B	1.13	－	．	．	－	－		－	1.13	1.29	9.61

．14／18 hours totrths obsetifta moneleta abokit miatie

0	9	0.9	． 207624	0.0	－123：924
1	3	． 5.35103	．17世いに日	－． $0 \times 5101$	－6511794
2	0	11.0	． 50 \％）：79	－1） 1 corot	． 16
3	$\stackrel{\sim}{c}$	． 5 ¢\％\％	． $176 \% 8$	． 12385	． $110 \cdot 445$
4	1	．1＂？¢うЗen	－¢ ${ }^{\text {\％\％\％}}$	． 1 ＇it3c？	\％
5	1	．17636	．	． 150559	．17\％）Who
6	1	． 170968		． 1.30977	－E\％／」s
7	1	． 17 ¢5E6	． 497260	．230ヶ95	
$\bigcirc$	3	． 535103	． 416171	． $5: 35163$	$\therefore 13.371$
9	3	． 535103	． 713470	1.044534	． 1 リヒゾ\％
10	6	1.070205	． 62.4014	1．0．36597	1．．115425
11	i＇	．354\％35	1．2485\％9	2． $11601 / 4$	1．Wroncts
12	13	2．318：74	1．1ट゙9561	2．316？7／3	1．157560
13	4	． 713470		2．17ら313	1．14\％シ 47
14	7	1．24E5\％73	1．1970605	1．76：17\％	
15	7	1．34日S\％	1．1Eな」く1		1．1\％6\％94
16	5	． 891838	1．4aic：197	． 691630	1．डड४118
17	13	2．31日779	1．4126941	．7248－44	
18	t	1.070305	1． $5 \therefore 5$	． 75 ¢40 1	1．16．1029
19	7	1．	1．0703005	． $054 \times 11$	
20	5	． 481830	．7630\％\％	． 091631	1．110\％49
21	$\bigcirc$	0.1	． 4136191	．706756	．Fi．1014
$2{ }^{2}$	e	． 3096735	． 173 j （28	． 503813	－6．06ciol

A．14／21
$R$
R
U
T
1
H
G


0	E．27	2.29	5.30	E．bu	－	－	－	－	－	－	－	－
$+5$	1.01	2．29	6．．日品	．	．	－	－	－	．	－	－	－
10	．86	1．（19）	1.1 is	1．E1	2.43	2．57	3.64	6.07	．	－	－	－
15	． 75	． 86	1．157	1.15	1.21	1.53	2．E7	3．4．6	3.64	4．2．9	4.93	6.03
20	． 86	1．1：1	1．ᄅ1	2．E゙7	F．43	．	－	．	－	．	．	－
25	． 86	1．21	2．c）	2． ¢́ $^{\circ}$	こ．4i）	．	，	．	－	．	．	．
30	． $\mathrm{BG}^{\text {d }}$	1.15	1．21	2．ご	3．4，4	．	．	．	．	．	．	．
35	1.13	4.24	，	，	．	－	．	．	．	．	－	．
40	2．ᄅ＇7	－	－	．	－	．	．	．	．	．	．	．
45	1.13	2．モ7	6.07	－	－	－	－	－	－	－	－	－
50	2．27	5．3日	．	．	．	．	－	－	．	．	－	＊

4.204 .11
3.393 .33

2．3日 2.71
2．6i） 2.27
1.581 .99
2.041 .68
1.821 .44
2.712 .17
2.272 .57
3.163 .13

3．83 3.97

## A．14／22



## A． $14 / 23$

POTHDLES RTA1 RTAE RTA3 RTTA RTAS RTAG RTAD RTAB DUSEDRTA AGDKI

0.0	．86	1.21	2.45	4.29	6.03	－	－	－
1.2	． 66	1.21	2．4＇3	4.93	5． 39	－		
2.5	1.07	2.36	3.64	．	．	－		
3.5	2.27							
5.0	． 66	1.13	1.21	2.27	2.29	2.43	5.316	G．－bos
7.5	． 86	1.13	2．ご	2.43	2．57	6.07	．	．
10.0	1.21	2．27	3.64	．	．	．		
12.5	2.67	2.43	3.40	．	．	．	－	－
15.0	1.09	1.53	2．27	3.64	6.07	－	－	－
17.5	1.13	4.93	．	．	．	－	．	．
20.0	2.27	3.64	－	．	．		．	
25.0	3．64	－	．	．	．	－	．	－


2.97	2.80
2.96	2.73
2.35	2.67
2.27	2.63
2.60	2.58
2.56	2.55
2.37	2.56
2.70	2.62
2.92	2.74
3.63	2.90
2.96	3.10
3.64	3.67

2.992 .74
2.062 .39
1.842 .12
1.511 .95
1.701 .66
3.101 .95
$2.84 \quad 3.16$

A．14／24
EDGESFAL RTAI RTAE FTAS RTA4 RTAS IESEDRTA AGOII

0	． 76	． 66	1.09	1.5 .3	2.43	1.33	1.43
5	． 66	1.619	1．．⿺尢丶			1.16	1．9\％
10	． 66	4.1 .2	4.73			3.34	2． 2.46
20	3.40	．	．	－		3.40	3． 3.25
25	3.64	－		－		3.64	3．5：
50	2．2．？	2．：5	4.93	5.38		3.713	3.11
60	1.13	2.27	3.64	6.03	6.86	3.74	4.05
80	1.13	1.21	4.97			2.86	
90	1.01	1.13	3.64	－		1.95	2．1\％
100	． 76	－Ers	1.13	1.21	2．27	1.44	1.04
	2.43						



APPENDIX A． 15

	-4.*	$\text { oweg } 11326$ $\text { 2049.2 } 313 \text { 2. }$	$\begin{array}{r} 2 \\ 4 \\ \hline \end{array}$			L
o12 Ruestmet	19	1 15\％2 350 14	10	30	2．	E 3¢3
oc 2 gr－Aliral	124	$1100 \%$ \％ $3+014$	0	E00，	1.	12．5
63 ב RDY5．7Mnl	491	1037235014	0 2		2.0	－コ．ち コミ5
64 2 El－HURA	219	100493014	32		，	－2．0 360
os 2 RCYSimsu	3ós	$11: 37235014$	－ 1	00	4.5	－5．7 325
So 2 KAHAWA	$43 \Xi 5$	1064535414	$\mathrm{E}^{14}$		3.	3． 040
67 ב ROYSAMBU	1317	：0372 35014	－ 8		1.5	－2．0
6日 2 SUKARI	2.61	1004525414	－ 4	900	4.0	2.6300
－9 2 ROYSAMEI	E 58	1037 Éc 350 14	2	600	6.0	－2．0 325
70 e SUKARI	803	10045 こ54 14	12		0.3	0.4500
71 e ROYSAME	610	1037235014	27		1.5	． 6
Te a Sur：mfi	936	1004 ころ4 14	01		1．5	－2．0 30，
732 githurai	170	1004534014	\＆ 1	2002	1.2	－1．8300
－$=$ EITHLLRAI	trs	10.030014	$z$		3．9	00
$\geq$ dintram	E：${ }^{\text {a }}$		$\cdots$			＝
E Sutata？	：32		4 ：		4.3	－ER\％
	－：		01			－
を Suknが	1．0：	104－6 35	－ 3	47	\％．0	
	298	： 1045 2E4：4	4		$\therefore$	
84 E Pu	$2 ?$	9巨c－31：三¢	＇ 1		，	ミ－
35 E Suifu	445	7「ロミ こ！：$コ$ こ	22	2．．．	こ。	－1．650\％
			$\bigcirc$	92	：． 5	－6． 4
E FUSTS	こヨコ	－5フコ ご1 ミ¢	$\bigcirc$ i		1.3	． 5
¢ 2 FUIFL：		$9 ニ 023: 130$	0 －		． 3	．${ }^{\text {a }}$
89 E RLIPU	39を		33	3000	2.5	－ 2 －
3 FUIF	Eง\％	アらャロ 311 2s			1.0	1.
¢ 2 บ！コロ	8	フゴを 2 ワ．こ！	c		0.	－5． 0
	41	7E03－7\％Ј1	$\therefore \quad \therefore$		0.5	5．3
	¢58	OECE ミR－3！	$\geq 3$	E	$\leq$	－6 三
$84 \pm$ Tu3io	1295	TEuE 309 31	5		D． 5	Si．
¢5 E JuJら	$1: 59$	－ごを ミワロ ヨ			0.7	－
	515	－908 34－3：	3 ：	E	4.5	－ 5
\％ 2 JUJA	$00 \%$	Targe 2nu 31	13		6.0	．j 2es
¢8 \％Jun		ワごきミ゙ャ4 ミ1	$3 \quad 4$		9.	1．3 ₹อ¢
	コ	ここUE 玉ロッ 31	1 ：	9E0	4	＋1．3 こ̇E
100 ב JUJन	：${ }^{\text {！}}$	7208 2゙ム 31	$\bigcirc$	09	2．1）	－3．6 395
101 e J！JJir	1323	フeOE 344	217		0.5	－6．4 235
1022 こuつn	$\therefore 175$	7ecodat 31	23		6．	． 3 ここ5
$103 \geq$ Jujor	1093	7206 14.031	12		1.0	－6．7 3 こう
104 a Juja	709	720024031	，		1.0	－0．7 285
OS 2 JנJィ	218	720685031	01	125	0.5	－3．4
：OS 2 Juja	204	720824031	2	125	0.5	＋3．7225
1072 JUJA	532	720824031	04		1.0	－5．9 э25
108 2 JUJa	781	720824031	9		2.5	＋4．5 2 こ5
109 E JUJA	917	720824031	2		$1.0+$	＋2．5 235
1102 THIKA	1448	48242103	21		1.5	＋3．0 225
1112 THIKA	1744	482421036	22		1.0	．0 2es
112 2 THIKA	313	482421036	$\bigcirc 1$	1500	3.0	4．6 225
1132 THIKA	339	482421036	05	1625	$3.0+$	＋4．6 225
$1: 42$ THIKA	1134	482421036	5		$1.0+$	＋5．0 225
1152 THIkA	1430	482421036	19		$1.5+$	＋1．5 225
116 ב THItA	355	4824 280， 36	3 2	5000	1.5	－0．2 2 2 5
$11 \%$ ¢ Thila	1875	4：3ट4 ट60 36	214		： 4	．0205
1152 THfta	195	4 40．4 2d 30	25		． 3	＋0．it ats
5－t	$1-3$		C 1			$\because$－
	$\checkmark$	－．${ }^{-}$．${ }^{\text {a }}$	．：			

A． 15 （CONTD）
？\＃CAL KRE＝（\％YV－\％＋V）／\％SGR1（\％い！is
？LOOK ONO 6 JFK LiB AF：SLE 天I＇／\％rEE FMis
－11st truncated

	Ofv）	5
1	1.000	2．34035
2	2．000	2． $5+033$
3	3.080	1． ¢ย̇̇を6
4	4.000	1．：41\％9
5	5.000	1．47203
6	a．000	1.30459
7	7.000	1． 6 ¢上17
8	9.000	c． 335132
9	9.000	2．sei？${ }^{\text {c，}}$
10	10.606	せ．1はごっ1
11	11.000	2．7：174
12	12.000	2．41498
13	13.000	2.79141
14	14.000	0.713 22
15	15．000	0．764\％
16	16.000	5． 3.48 .1
17	17.000	0.15765
18	18.000	0.53314
19	19.000	0.65213
20	20.000	O．Entab
21	21．003	1.99171
22	22．000	2． $50 \% 34$
23	23.000	1．44tE2
24	24.000	1.13573
25	25.000	6．sai314
26	26.000	1．01957
27	27.6000	0.19557
28	28.010	1．02\％＇it？
29	29．000	2．60゙心11
30	30.000	2．J¢： 37
31	31.000	2．13877
32	32.000	3.71 55a
33	33.000	1．82853
34	34.000	2．さら゙み69
35	35.000	1． 57109
36	36.000	0．160．5
37	37.000	1.79408
38	38.000	L． 19657
39	34.000	2． 60.159
40	40.000	亿．191374
41	41.000	1．64039
42	42.000	$1.5 \%$ 56．
43	43.000	听 648.12
44	44.000	2．6．94：
45	45．005	
46	46.040	1．
47	47.060	ij．76411
48	48.0010	2．37496
47	47.000	1.21641
50	50.000	0． 5 ¢184
51	51.000	2．45064
52	52.000	2．6．73\％4
53	53.000	$1.7401{ }^{\text {c }}$
54	54.000	i． 97330
54	55.000	0.7268 L
56	56．000	1.11511


31\％	Loil	1.	51E	$\therefore$ 吅
3． 30	1\＆．0．0）		1．30）	
（1），（1） 0	16．0．4	$\therefore$ ，bexthat	－．Dinor	4.3771
S－10）	16．6）	（1．）arbatur	1.0000	d．raty
（1．0） $0^{3}$	16．（i）		1．5000	く． 11 गे
$\because$ O，Lin	1边．4．1		＋． 01000	1．734
0．1．1）	16．in）	B－16，3．611	2．inos	1．\％
Q．inlo	16.90		$1 . \operatorname{sing}$	
（），ina	1b．an）		E． 0 chas	$3 \cdot \cdots 15$
6．610	18.00	9，${ }^{\text {co－to }}$	4 ． 160	5.7 Rict
9 －，	16．in		3．10）	〕． 1 ¢
E．min	14．0．0	（1，cruces	1.0900	6．3sidi
¢．1バゥ	14．00	1．．．6）． 1.1	1.0060	5．9115
A．Sou	15.400	a． 16.16 .4	1.0600	
0 0 0，100	16．in）		C． 41000	1．${ }^{\text {anmos }}$
O．	15.00			1．
3.1100	14．10\％	（）．＇maturn	1． 5000	9．7602
C．Coli	10.30		0.500	ロッリブ
$0.0 \times 10$	10．0．0．	O．Sno．．${ }^{\text {a }}$	3．1000	1.1911
3．Ocm	14.60		12． 50000	1．1576
＇0－00\％	14.00	O．0．6－	1． 1000	1．8174
1． 0.00	16．01）		1． 5 H0\％	
O．－uty	14.00		$1 . \operatorname{rom}$	4.659
－5．1．J\％	16.010	D．${ }^{\text {a }} 11$ \％	$\therefore .4 n 00$	E．
（0．0）	14．0）	C．bG1	＂，060t	1．1 2 itis
（1．）	$1 \mathrm{1}, \mathrm{m}$		$\because$－，¢й ${ }^{\circ}$	1． 11.15
0 －100	14.00	（1）．16．	1．（in）${ }^{\text {a }}$	1．${ }^{\text {a }}$
1）0	14．031	－•＂	$\cdots$－inoos	1）\％小゙い
B． 3.51	14．m	U－601 \％	1． 10000	
	14.6		$1 . \operatorname{mosis}$	
4 －imo	14．0）	¢．1．．	1． 1.16008	4 －＂ther
3 ．int	14. i	＂．． 11	1.1600	$\rightarrow$－ 317 ！
4.0800	14.00	6．．．1＂${ }^{\text {a }}$	1.5000	
a．	$14.0 \times 1$	り．116．1．1	1．uriog	3．¢ibis
$\dot{4}$	14．06．		1． 6.040	3．181？
（1．）．＂	14.00	（1．16）．．．${ }^{\text {a }}$	1.6000	
14．090	1\％．0\％	《．06\％\％	A．Pbo	
－ 0 000	14.60	O．A．．．．1 bil	1． 5000	2 ckety
5．．isk	14.00	¢，（－1，），，	$1 . \operatorname{limio}$	4.11 \}e3
3 aj	14．00	＂．（cano．．	$1 . \operatorname{Ligo}$	5．36tio
$\therefore$－\％0．，	$1+400$		－Anouro	0.6811
O．min	14．is）	Q．．．．11	$1 . \therefore$ anim	¢． $\mathrm{l}^{\circ} \mathrm{C}$
¢ ．inn	1 \％，（iol）	\％－－，M－	1.0000	\％ $10 \cdot 1$
－ 011 mm	14.65		1．5．01）	O．r゙ッs
3 ソッ	121.00		－- Enios	$\%$ \％
11 1.1	14.016	（．01）．．．${ }^{\text {a }}$	$\therefore$ Eomj）	3．1．9\％
4．6．01	1．1．im		1． 10000	1． $1.31 \%$
E．Cou	14.01		$\therefore .5000$	2．． $\mathrm{l}^{2}$ \％
$1 .(n, 0)$	14.0 －		1． －Sincos	4.4844
4.600	ds． 010		－． 0000	$3.1 \% 11$
6． 0.60	2s．00		12．000）	1.15
S． 0 ino	2d． 19	3．Whe．${ }^{\text {a }}$（．．．	11． 2000	5.7133
O．（1）	促．00		1． 6000	¢．－00\％
2．inio	2i． 00	1．．．．．．1－1：1	$\therefore .0000$	C．$\because \cdots+C$
a． 0.100	きゃ．心	G－1：－${ }^{\text {a }}$		
（1．（1） 3 ）	－${ }^{\text {cos }}$		．．Anou	1．11，ErS
$0 . \sin (1)$	2心．（1）	い．いうけ111	：．． 1 H000）	1．- ¢ 3



#  




$\qquad$


```品
```






30	59.000	2．0is）	1.7802			
	59.000	2．os．	4.78198	－1．25170．6	$0.00$	0.0610000  
	56．000	2．uco	3．23－18		Q（\％）．00	G． 0111111
	\＄1．090	E．000	23	－ 1.3 aratam	13.00	\％．016923
	\＄2．000	2．000	1－9？7i？	0．amse？	20．0．00	a．e．n50y0
	63.000	2．勺以	\．．s．s．）		0.0	i）．1）（\％0000
	8，4．000	2.000	2．5） 51	－ 3.317136	9．00	i．amodeo
	65.000	1.06.	1． $5: 23$		70\％．00	9．．．11111
	66．000	14.010	$1 \because 83 \%$	－6． 6 － 0 siot	\％om	
	$\therefore 7.000$	8.50	5．＂＇i：c＇；	$0.53180^{\prime \prime}$	9． 0	1.1.
	68.001	4.060	1．312．	2．3tare	40000	Q－011111
	69.000	2．1，	1．：\％ 74	13．75\％你？	609．0．	$\therefore 1.116067$
	70.000	2．600	$4.87 \times 3$	－1．23\％15	0．10）	0．0．090000
	71.000	7.009	．1．751	1．704234	0.00	0.00 mbog
	72．000	1．00，		－ 1 ，23503is	0.00	9.10 romon
	73.000	1．0．0）	1. ¢E゙7！	－0．05\％．971	iscoce 0	$\text { O., } 1040008$
	75.000	日．bre	1．asise		O． 010	11．Cmimots
	77．0（4）	E．c．．．	11 1i：3\％，	1．01：1－5	0.009	1i．iveroovo
	79.000	1.000	1．$\cdot 133$ ？		460.00	9．00） 21737
	81.000 32.000	1.000	c．+9.462	0.376137	9．00	\％．Cowogon
	812.000 83.000	2．00：	－3．3．87	$1.07 \% 10 \%$	$4 \% 0.00$	9．0121277
6	83.000 84.000	4.0 cron	1．A¢cal	1．013：10	9．00	
31	84.000 85.000	1.000		－1．bienjo	9．00	0.0 .900000
92	86．000	2	！1．9\％71	－0．＂jocuer 4	3100000	0．mooskez6
3.	日7．000	3．m．．．．．	1 － 5 ：25	－0．837cre	40.00	（1）．01119987
3	88.000	1．r．un	¢ 8115	－ 0 （b）${ }^{\text {a }}$	9，00	
83	87.000	$3.00 \%$	$\cdots 114$	0.34177	：79e．00	व． 62 ¢1
36	99.000	2．Gom		O．149303＊	3000．00	9． 0 00：3333
$\square$	1．000	2．00！		$-1.00093$	0.00	A．rivacoun
O8	72.000	$4.0 \cdot 1$	4，¢rnic	co．${ }^{\text {a }}$－		－
E7	93.000	3． 3 ，$\ldots$ ．	Q 1 ¢2，	－0．103¢ ${ }^{\text {a }}$	520．00	$\bigcirc$
$9 \cdot 1$	74.009	5.90	3.0711	$-1.03 \mathrm{~s}^{\circ} 711$	0.00	－rimoocho
91	73．000	6．010	2，ต¢\％	－0．344 10	0.00	0．¢umpepo
9.	96.000	1． 51.12	2，3041	－0．85．7143	93.78 .00	0.0010764
93	97.000	3．心！	4.3135	$-0.7134 \mathrm{Cl}$	0.00	1.
9\％	98.000	4.020	4．4516	－0．e 14050	0.00	2． 0000000
988	99.000	$1.0 n \mathrm{l}$	$\therefore$ ，51711	0．70＋75\％	reo．00	11．0910870
96	100.000	1.004	1．$\therefore 115$	－0．91200．91	790.00	11．1914808
－19	101.000	19.010	11． $2 \cdot 006$	3．\％$\%$ \％ 4.1	9，00	＇． ragogeg
93 0.9	102.000	22．0w？	$\because .3780$	－．0．3134？	0.00	3.0 mouras
－	103.000	2．00．	C．． 1 l	－1．6．3544	0.00	9．， $0^{\text {a }}$（10000
\％	104.000	2．00\％	1．197	1．1\％2745	0.00	1. coromoors
101	105.000	1.020	1． F ［96）	0.643343	1 125\％， 00	－．0．03600
UF	183.000	2．000	$1.3 \mathrm{c}^{\text {a }}$	0.12 cma	10：30．00	A．surnamios
49	107.000	4 ，rome	－：\％ne	0．35：38：0）	0.00	O．aromeno
$\because 4$	11.8 .000	B．0r．	3.2318		0，00	11．Onciomeo
$\because$	109.000	2.000	3.4505	－1．477904	0.019	－1．000000
	110.000	1.0010	－． 6297	－1．751 ${ }^{\text {ara }}$	0．0）	O．borocuo
7	111.000	E． 600	$\%$ \％reck	－？．08131］	O．or	サ，omuongo
\％	112.000	1.000	1.5189	$-0 .+1780$	1500．0，	$\cdots \mathrm{ClOMEG6} \mathrm{\%}$
34	113.000	5.000	1．80） 3	2．6773\％4	145\％	O． 0000154
15	114.000	5.000	5.3697	－0．109001	0.00	0．Dr．mougo
11	115.000	9．006	S． E \％ose		0 （ ${ }^{\text {a }}$	U．ongovo
1 c	116.000	2．0．0	2．asd	－0．2？ $7.3=4$	5000.80	Q．moseom
1.3	117.000	10.080	7.66245	0.31 \％3ั¢	0.00	13．00jocoas
14	118.000	5.20 in	8.1790	－1．117016	0.00	$0.1 \mathrm{mgmg00}$
15	119.000	1．001）	1.16180		900．0u1	$\therefore .011111$
16	120.000	$1.00 \cdot 9$	1． 3.3181	－0．2723：0	G．COI	

## Note for Appendix A． 15

## 1：Constant，

S：power to which travel is raised， JPK：junctions per kilometre，
LAB：lorries and buses
FCR（2）：horizontal radius（800－3200m），
FCR（3）：horizontal radius（ 73200 m ），
FCR（1）：SUE：horizontal radius $(0-800 \mathrm{~m})$ and superelevation， FCR（2）．SUE：horizontal radius（ $800-3200 \mathrm{~m}$ ）and superelevation， FCR（3）．SUE：horizontal radius（＞3200m）：and superelevation，
AR：reciprocal of the horizontal radius，
SUE：superelevation
＊UNITS 116


$1 \times, F 4_{4}, 0,1 \times, F 3,1,1 \therefore, 14,1,1 X, 11,1=$

\＄L MIF 15.3 .141 183
\＄DIH7＊

CCAL SUO－4：A1 $\%$
－Cal．5－\％LDG（Ellij）

－CAL B2 $=1 / \mathrm{El}$ \％

\＄CAL ARA＝10＋GFA\＄
＊FAC FJ 3＊


©FAC FCR 3 F゙SU \＆F゙பli 3 Ft e $\therefore$ \＆

＊CAL FSU＝ $1+\%$ GK（SIJE，З．Sill

＊CAL FLE $=1+\%$ GE（LAn，20） $1 \%$ \％（t．（1．6is，（\％）



\＄C CAL \％FEE＝（\％YV－\％FV）／\％SUKr（\％in ：

－RETURN

Ecaled deviatice $=$ 303．19 at：Einle 4 d．f．$=115$

 d．f．$=113$ （chiatiote in -1 ；
 d．f．＝ 11 ë

 change 15－15．is far -1 d．f．

1	Es
2	
3	0
4	0
ccale	

S．e．faidancter
－0．82ais
$0 . \operatorname{ces} 3$
$\begin{array}{lll}0.7636 & 0.06074 & G \\ 0.02125 & 0.0061519 & 1.04\end{array}$

scale paramelar takero te $1.000_{0}^{\circ}$
？SFIT tf日日出

d．f．$=111$

-1 ；
？DISP D E＊




```
* SFIT +SID$
 scaled deviance = 200.63
 d.f. = 110
climraje
 (ctlwbuje: =a
 -1)
 ? SFIT -SID+AR*
 scaled deviance = 196.91
 d.f. = 110 (chankje - "*S.7.
 ? $DISP D E$
 Scaled deviance is 196.90& wh 110 d.1. from 1l.. utbervationc
 change is -3.726 fluo 0 d.1.
\begin{tabular}{|c|c|c|}
\hline estimatu & 5．0． & parametar \\
\hline －0．62＇74 & 0.2716 & 1 \\
\hline 0.7532 & 0.07081 & 5 \\
\hline 0.02132 & 0.0063 .33 & Lค8 \\
\hline 0.07437 & 0.02435 & ．JFK \\
\hline －0．121：3 & 0.04734 & blie \\
\hline 67.36 & 31.51 & ate \\
\hline
\end{tabular}
 scale parameter takien as 1.rnm
 S%)
 $FIT-AR+FCR%
 scaled deviance = 190.26 (chamge se +1.30) at cycJ= %
 } SDISP D E*
 Scaled deviance is 190.25& on bij d.f. Promi 1lou,uswivations
 change is +1.350 tor -1 d.f.
\begin{tabular}{|c|c|c|}
\hline estimate & s．e． & parameter \\
\hline －0．2777 & 0.2984 & 1 \\
\hline 0.7330 & 0.07412 & 6 \\
\hline 0.02174 & 0.006450 & 1．AE \\
\hline 0.08607 & 0.0 čét 7 & JFK \\
\hline －0．1278 & \(0.05 i 998\) & SUE \\
\hline －0．3601 & 0.2198 & HCR（2） \\
\hline －0．3133 & 0．13305 & FCR（3） \\
\hline
\end{tabular}
 scale parameter taken as 1.0)%%
```

                                    A. I5 (CONTD)
    ,34, at cyas
?. \$FIT + GRAS

? \$FIT $:+5:+$ JFK $:+$ LAB $z+$ SUE $9+$ filita ISF b EH
scaled deviance $=360.19$ at Eyclea 4
d.f. $=115$
scaled deviance $=228.96$
d.f. $=114$
(change $=-1.1$
scaled deviance $=217.69$ (changés $=-11.271$ ) al. cy, b 4
d.f. $=113$
(ctacouje $=-1$ )

d.f. $=112 \quad$ (chunge $=$

d.f. $=111 \quad$ (charigu $=\quad-1$ )
scaled deviance $=196.91$
(ctange $=-4.11$ ) at est he 4
d.f. $=110$
(ctrange $=-1$ )
Scaled deviance is 196.908 on $110 \mathrm{d.f}$. frum 1 f . cheurvations
change is -4.112 for $-1 \mathrm{d.f}$.
estimato
-0.6274
$-0.6274$
0.7532
0.07437
0.02132
$-0.1213$
67.36
parameter
1
2
scale parameter taken as 1.000
$\begin{array}{rr}\text { E.e. } & p a \\ 0.2716 & 1 \\ 0.07081 & G\end{array}$
0.024 .75 JFK
0.006353 LAB
0.04754 SLIE
31. 鹏 $_{0} \mathrm{AH}$
? \$FIT -SUE+GRA
scaled deviance $=$ 202. 78 (charrgi: $=$ +6..8\%) it , 1 "
d.f. $=110$ (c.lositie $=$ リ) )
? \$FIT $5+$ JPK $+L A B:+A F$ ह
scaled deviance $=2 U 6.23$ at $c y c h a$
d.f. $=1 \mathrm{l}$ ?
scaled deviance $=203.8 日$ (ctounuja $=2-2.35$ ) al c...if it
d.f. $=111 \quad$ (clonime $-\quad-1$ )
? \$DISP D Eb

change 15 -2.35is tul -1 d.t.

-0.4721
0.9113
0.9113
0.02006



scaled deviancu - 303. 19

A. 15 (CONTD)


7 SDISP D Eb



? 3 \&FIT -FCR.SUE F FCR. FSLIs
 d.f. 108
chainge -
$+1$
? \$FIT +FSU\$
scaled deviance $=199.89$ (chumge $=0.00)$ at c.iv. d.f. $=10 \theta$ 0 )

scaled deviance $=3800.19$ at cycle 4
d.f. $=115$
scaled deviance $=220.76$ (chamge $=-151.2$ ) at cycte of
d.f. $=114$ (chano $=-1$ )
sealmd deviance $=217.69$

d.f. $=113$
(change $=-1$ )
scaled deviance $=206.29$
(chanyz $=-11.4$ Sĩ) at cyc. 1 ar 4
d.f. $=112$
(ctanges $=-1$
scaled deviance $=205$. 日S change $=-0.38$ ) at cyile 4
? \$FIT-LAB
scaled devia d.f. $=112$
(change $=$ +4.51 at eyluo!
d.f. $=112$
(chançe -
+1 )
? \$FIT $:+5:+J F K:+$ LAE +AR DDISP I) E 4 IT +SLE
scaled deviance $=380.19$ at cycle 4
d.f. $=115$
cerm
scaled deviance $=220.96$
$\begin{array}{cc}\text { (changu }=-151.2) \\ \text { (changen } & -1,\end{array}$
scaled deviance

d.f. $=113$ (changte =
ceb
ance $=206$
d.f: $=112$
(change $=-11.452$ ) at cyi bey (chanejt = -1 )
craled devt
(charios = -2.36 ) atçilu 4
d.f. $=111$
(changer a -1
Scaled deviance $1 \Xi 203.873$ or $111 \mathrm{~d} . f$. frcum 11 s . li-urvations change is -2.356 fo4 -1 d.f.

estimate
$-0.9721$
0.8113
0.08006
0.02308
51.36

scaled deviance 4196.91 (charust ot $-6.9 \%$ at 5.61 e d.f. $=110$
(change
$-1$

## ? \$DISP DE\%

Scaled deviance is 196.903 on 110 d.f. forom \& la watervations change is $-6.9 \%$ for -1 d.f.

pithate
-0.6274
s.e.

$$
\begin{array}{r}
\text { s.e. } \\
0.2716
\end{array}
$$

0.753 j

$$
\begin{aligned}
& \text { s.e. } \\
& 0.2716
\end{aligned}
$$

0.07437

$$
0.070131
$$ 0.0213

$$
0.02435 \text { J'k }
$$

67.36
-0.1213

$$
976161
$$

0.006jitis $\quad$ - CB

geale paranktar taken as 1,1رM)

$\geq$－ 1 รัแไร	500 1－23	＋3 3a	4	3	009．3	＋3．00	1．5 3世．0	1.25	5.00
E O k1［6．1JiJ	500 ！ 6 \％3	1： 21	6	1		－0． 30	2.045 .0	2.50	3.50
3 こ：551＋150	50c さa＝3	7： 27	3	5	914．4．	－1．10	5.650 .3	1.25	0.00
－ 2 Kらうのrıín	5001230	5：${ }^{\text {2 }}$	己	0	009．0	－1．48	5.0 T．E	0.00	1.25
5 こ 15GNJO	5（0）1Eこ？	5128	2	0	914.4	＋0．57	2.560 .0	0.00	1.25
a 2 KIGANJO	500 1ごこ	54 27	4	1		－1．30	5.055 .0	0.00	0.00
7 2 KIGANJO	S00 12Go	54.	4	8		－0．10	0.080 .0	0.00	1.25
a 3 CHkkin	5010 15\％	$\leq 32$	0	，	609.6	－0．30	5.030 .0	1.25	2.50
－E Emaka	Ern 15ンこ	－3 3 を	5	1		－0．50	－．2 50.0	0.00	0.00
102 Ehira	53）：ごs	－ 2 －	2	2	： 524.0	＋1．50	7.3 20．0	0.00	1.25
－1！L：Mmin！$]$	『゙げ ご－	3	4	5		＋	32.550 .0	2.00	0.00
－i上，－\％	퓨：	18	$\cdots$	三		－	$\therefore$ ミ－\％	1.25	B． 54
こートル－214	20？	－	4	E	－10．0	－13		\％．c．	：\＃．E．）
－• Erovisy	ごこ：	－2	$\rightarrow$	$\therefore$	$\therefore=5.3$	－	．． 3 3	3． 00	－． 00
cot	$10^{\circ}$	Z		？		「－37	：コ．こ－－	：0．	：． 3 ¢
－き－66\％\％r	玉゙：－－	3		6		－？．－	－7．3 ご．¢	$\therefore$－ 0	1．25
3 －inar CMET	5．je ：．$=$＝	Ec：	0	1		－1． 10	こ「3．6． 5.6	5．75	3.75
$1 \because 2$ A	5（\％）1Ce三	3	2	r		＋1．30	23．0 15．0	：．25	1.25
7 \％v－tतIC：dES	－（10）10゙こ	3.	4	1		＋1．3：）	！T． 5 50．0	2． 5.3	E）． 00
－！¢r	$\pm 100$	ご	4			＋1．12	ㄹ․ ． 10	$\therefore 00$	5．－ᄅ
		9\％	8	3		－E．E0）	心．ミ0．6	b． 38	－． $0^{8}$
$\cdots \geq 2$－iravise	500737	二	$\triangle$	2	$3: 4.4$	＋3．3\％	1\％．0 50．0	3.60	． 25
＝－HuEE	Sco $=:=$	3	E	$\ddot{\text { E }}$	5i．．．7	＋1． $0^{\circ}$	เอ．5 E゙．し	0.00	13．${ }^{\text {－}}$
	5－0 327	$3:$	P	$\therefore$	：Ее¢	$\cdots$	：¢．E\％．	¢ ¢0	ソ・のこ
こ こと こご	50．${ }^{\text {co }}$	50	\％	\％		＋ 5.5	何． C ¢	11．35	！．e年
二－ 4 ：！＝さ！	56\％	－$\because$	＊	$\because$			¢0，	4． 20	ぐき，－
ご．－－－J	200	S．	－	is	a＜90．0	－1．40	$7.3 \%$	0.65	13．73
ごく こここうご		\＃n	\％	：		＋6．$: 7$	こと．0 ご．	0.00	1．ご
三5 三 $\because 0: 50$ 亿	E0i eE゙	$13 \%$	－	3		＋1）． $60^{\circ}$	10．0 9\％．el	0.20	2． 5
う！ᄅ c¢Tjul		－1 3＊）	i	0		＋8．30	：2．5 bu． 0	0.00	12．3コ
ミ！ミ T－－	5\％＝－	4－ご，	4	$c$		＋0．15	19．0 ذit．	$0.0 \cdot 7$	？E．
それ コ－j－ゴご	3．．ミー	$\bigcirc$	$+$			＋：． 61			\％，${ }^{\circ}$
－5－－Lidsurie	뷰：$=$－	16		$\because$		－ $\mathrm{B}^{\circ} \mathrm{O}$		9.30	二．5i
E¢	E．．．	$\pm$－ 3	1	$\because$		$\cdots$	－	$\because$	¢．$=5$
P\％＝－－inom	\＃ic		，			－．	！$-3.53^{\prime \prime}$	$2-00$	$t$ こ．
	Fin 1：－1	しここう	$\cdots$	1	7 i 4.4	－1．95	－7．5 5．	2.50	73
3－ 3 「HINSんRE	E．．．．110：	43 ミモ	0	1		＋1．70	19．\％35．0	1.25	3.75
E E EMuTEMFE	Soc，il $1+$ ？	4 こう	e	0	914.4	＋9．90）	17．5 30.0	3.75	3．75
30 －THUTGGRE	500） 11.18	4트 25	0	0		－0．03	7．545．0	0.00	26.25
40 e T＇Hungafie		$48 \geq 5$	4	2		－0．80	17．5 60.0	0.00	5.00
1 2 AGUTHA	5001141	4 a	2	3		－0．07	12.545 .0	1．25	2.50
－¢ ¢GUTH』	－50 1141	43 25	6	0		＋0．60	22．5 95．0	0.00	1．25
3 c AGUTHI	$500111-1$	4825	0	$\bigcirc$		＋2．46	टE．5 90．0	0.00	0.00
44 P AGLITHI	$500: 141$	48 25	0	0		－：．15	6.265 .0	2.50	12.501
452 AGUTHI	5001141	4825	2	1		＋1）．14	20.050 .0	3.75	7.501
46 2 RUAFE	5001141	4825	0	1		＋2．24	7.560 .0	2.50	$2.50 \%$
72 F L 7 ARE	E00 1141	48 25	0	$\bigcirc$		＋0．90	12.535 .0	2．50	5.001
49 RUARE	50021141	4825	0	1		－1．20	12.555 .0	5.00	15．00


Ruare	Ero 114：	4825	0	4		－0．20	3\％＇．5 35.0	0.00	：1．ご
2 RUARE	$500: 141$	4 4 25	8	1		＋5．60	10.090 .0	3．7\％	3． 30
2 Noiriomaru	5001141	48 อ5	a	1	304.8	＋4．80	37.5	0．00	1．$\frac{1}{}$ ¢
NAROPIORU	5001050	4423		1	304.8	－2．70	10.070 .0	0.06	1．E®ら
Naromoris	5001050	4428	4	1		＋1．06	0.735 .0	12．50	8．\％5
NAROMORU	5001050	4428	4	1	609.6	＋3．10	25.015 .0	19.75	12．50
naromoru	5001050	4429	2	3	$30 \div 8.0$	－0．5s	10.072 .5	6． 25	6．e5
NAROMORU	5001050	4428	2	2	3048.0	＋2．70	12.550 .0	10.00	11.25
MURIRO	5001050	$44^{4} 29$	0	0	3048.0	－0．67	10.035 .0	7.50	5.00
MUR：R0	5001050	4429	4	1	3048.0	－2． 37	20.040 .0	6.35	E．50
MLE 5 ¢0	500：030	4423	－	2	3646.0	－3． 3 C	З2．5 ？\％．t	16．CW	1\％．50
ithersto	उ－0．\％：EC	23	$\therefore$	$\pm$	－1．	＋1． $\mathrm{E}^{\text {r }}$	3ミ．3 3ミ．n	0．ここ	
Mi BZFH	500：300	－ 25	$=$	！	20．a．	－3． 51	ミ2． 3 －3．	1．ご	，
MLRİ	5ưu 10．50	¢ $¢ 9$	4	$\dot{*}$	こりくら，	－4．46	ミ3．－－－	3．－6	c． 2
MLETE0	50）：000	$4 \sim 23$	8	$\bigcirc$		＋4，com	2e．－3\％．0	E．E	
5nitu	506 luci	4 ¢ อง	－	$\square$	．$\because$	－t．ご	52．区43．3	1．39	
3नidT	500 1050	$4+$ E9	こ	0	3 H	－ミ． 0 己	15.090 .1	1．Es	－．${ }^{\text {a }}$
gante	Sor 1050	4423	2	0		－1）． 44	5．0 45．0	5.06	－．c゙\％
ennite	$5 C 01050$	$2{ }^{1}$	4	1		－	50.080 .9	5.00	．
QGNT：	$500: 050$	28	2	1		－2． 53	22.545 .0	：0．20	투
Esm？	E00 1050	28	－	0		－9．15	－\％	－$=0$	：
RardTu	Sun 1222	5088	$s$	－	1534．0	＋E． 34	52．5 25．0	5.86	3．3．5
Emitut	Juo 1202	5026	2	0		－1．09	25．0 47.5	3.75	7.50
EAt：TJ	5001202	5928	4	i	： $5 . E$	＋0．33	15．3 Є5．v	7．53	\％．EC
ETVAF：	$500: 30$ ¢	E）EB	E	$\dot{\sim}$	： 5	＋9．49	：7．5 15．0	10.66	\％．-
：${ }^{\text {WCRA }}$	Son 1202	¢） $\mathrm{c}^{\text {a }}$	$\therefore$	，		－0．47	20．0 25．0	5.181	． 37
	50，1E E	5．j 29	0	c		＋1．-8	10.030 .0	$10.3{ }^{1}$	13．${ }^{\text {a }}$
Elura	500 12゙く	3．） 28	2	0		$+0.39$	47.5080	17．0．1	Et
Gliafif	500 ：こj2	50 23	c	ミ	3C4E．0	－4．0．03	37．5 ミะ．』	7．3：	：$\because$－${ }^{\text {co }}$
「Wara	5051202	5023	2	0	\＃п4－．0	＋6．53	15．0 E．－9	12．7\％	，
3Mrat	$500-203$	529	2	0	3048.0	－1．70	3\％．E bᄅ．${ }^{\text {a }}$	10.40	3．＂5
？Guknt	Eか）！－	Ev） 23	3	0	30450	＋1．-4	15.072 .0	2.5	2．7
こ 1：ごびッ	50712 c	E＂ $2 \overline{6}$	$\stackrel{6}{6}$	2		＋1， b $^{\text {co }}$	$12.51^{-1}$.	10．0．	E．3\％
ここちゃ	$530: 202$	$5 \% 3$	2	$\because$	ごっくら．0	－1．3E	20．0 E2．	1．こう	ご
＂「u二品	5＊－ 3 ：2	こ）2a	$\because$	0		－t．		3．1こ	
O心A	$50012 \% 2$	5． 29	4	0	3 4 4 E .2	$-2.40$	30．0 7＊．	3．12	$\cdots 3$
Gritame？	500 1こ0	5 E ¢	2	1		＋1．5＝	57．5 2！．	15．rno	E．${ }^{\circ}$
GmTMER：	300 ：2r．a	5028	4	1		＋4． 30	71.2 50．c	7.55	3.85
GGTHE？！	5001202	51） 23	4	2		＋4．10	－̇．5 45.0	3．75	3．50
MOIEQUAT	E\％O 120e	5028	9	3		＋1．20	45.040 .0	15.02	5.00
MOIEOUAT	5001434	6025	12	0		＋0．98	32．5 97.5	2.50	2.53
2 MOIEQUAT	5001434	6025	6	2		＋5．36	25.050 .0	0.00	2.50
2 SILVERBE	50011434	60 25	6	1		＋5．00	12.565 .0	1.25	6.00
SILVERBE	5001573	6525	4	3	914.4	＋0．99	12．5 45．0	0.00	1.25
NANYUKI	5001573	6525	6	2		－0．86	12.520 .0	2.50	8.75
MANYUKI	5001573	6525	2	1		－0．08	12.50 .00	5.00	7.50
2 NAMylei	5002363	9819	0	0		＋0．57	5.00 .00	2.50	5.00
Pandrulil	5002303	9819	0	3		＋0．49	5.00 .00	5.00	E．EO









 ut
u
5
















4DATf CYNL LEES ALT UFH LAB JFK FIA FAD LGR RUT EDS ERC FEAS
 $1 \lambda . F 6.1,1 X, F 5.2,1 X, F 4-1,1 X, F 4,1,1 X, F 5.2,1 X, F 5.24$
1 F．FMOIN SATOI：DATA，AJUUIFTA AGGLIM，DATA AGOI．DAT
4 －MLL 5 ．3．1988
s！1N ？
\＃CAL $A 1=365 *($ LES $/ 1000) * A D T / 1000000 \$$



16AL H2 ：LII



すこのL 「FF（FF，






：IT：4

－！：F シFE FJ FLE FEC FED FCNま
Note for Appendix A． 16
1：Constant
S：to which travel is raised FJ（2）：3－7 junctions per kilometer， FJ（3）：$>7$ junctions per kilometer， FLB（2）：＜28\％lorries and buses，
FLB（3）：＞28\％lorries and buses，
FCC（2）：5\％－10\％cracking and crazing，
FCC（3）：＞10\％cracking and crazing，
FED（2）：30\％－60\％edge spalling，
FED（3）：$>60 \%$ edge spalling，
FCR（2）：800－3099m horizontal curve radius，
FCR（3）：$>3100 \mathrm{~m}$ horizontal curve radius

## GLIM

C：\GLIM：echce off
A． 16 （CONTD）
GLIM 3.77 update 1 （copyight） 198 Foyal Statistical Suciety，London ？\＆INP！T 嗦
File name？AGGLIH
Fill reme？ACDI．DAT
Ecalad df viamoe $=15 \% .6 \%$ at rycle 4

$$
\text { G.f. }=95
$$



$$
\text { d.1. }=04 \quad \text { (-tarble }=-1 \text { ) }
$$



 d． $5 .=71$（changl $=-1$


$$
\text { ट.f. }=89 \text { (charge }=- \text { 2 ) }
$$








```
-c d.t.
```



Far ametei
1
5
FJTE1
FJ（3）
FLE＇？
FCCi己）
FCE（こ）
FED（こ）
CED（3）
「ご：（2）
FCF（E）


[^0]:    FIG.4.5 GROWTH IN RTA VEHICLES IN KENYA

[^1]:    FIG. 448 RELATION BETWEEN RTAS/VEHICLE-KIL OMETRES AND DOWNGRADE GRADIENT

[^2]:    Q.6.61 PREDICTION OF MEAN RTAS PER $10^{6}$ VEH-KMS: NAIROBI - THIKA ROAD

[^3]:    A.e ('i:urt illimeedinat Concemplatad - Ísa No
    
    

[^4]:    
    

