

UNIVERSITY OF NAIROBI
DEPARTMENT OF COMPUTING AND INFORMATICS

A VENDOR NEUTRAL QUALITY OF SERVICE MONITORING MODEL FOR
SOFTWARE AS A SERVICE CLOUD COMPUTING SOLUTIONS

FRANKLINE MAKOKHA

P80/54513/2019

THIS THESIS IS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE AWARD OF PHD IN COMPUTER SCIENCE

AUGUST 2022

 i

Declaration

Student:

I declare that this Thesis is my original research and to the best of my knowledge, it has

not been submitted for a degree award in any institution of learning.

Name

:

Frankline Makokha

Signature:

:

Date:

:

1st August 2022

Supervisors:

This thesis has been presented for final examination with our endorsement as the

University supervisors.

Name : Dr. Christopher K. Chepken, PhD

Signature:

:

Date:

:

1st August 2022

Name : Prof. Elisha T. O. Opiyo, PhD

Signature

:

Date

:

1st August 2022

 ii

Dedication

This work is devoted to my parents, Fredrick Makokha and Stella Awino, for their

psychological and spiritual support offered during my entire study period.

 iii

Acknowledgments

I wish to acknowledge, with thanks, the academic support and oversight offered by the

deceased Prof Okello-Odongo, during the embryonic stages of this study, afore his ill-

timed demise. May peace be upon him. I as well thank my supervisors, Prof. Opiyo and

Dr. Chepken, for the knowledge, skills, techniques, guidance and insights offered,

enabling the success of this research. May the Almighty God bless them abundantly. I

thank the entire School of Computing fraternity, the PhD Defense Committees for all

the academic criticisms that shaped the trajectory of this research. I finally thank Mr.

Dennis Wekesa, the JavaScript go to guru, for the tutorials and insights in JavaScript

and Node.js programming that augmented my programming knowledge, leading to the

success in prototype development for this project.

 iv

Abstract

The large number of providers of cloud services, offering comparable solutions

marketed at different prices and at distinctive Quality of Service (QoS) levels, portends

a decision challenge to users. The users have to make a selection or a comparison

between the available providers of cloud services in so far as performance of their cloud

solutions is concerned. Even though there exists computational models for developing

QoS measuring tools, they are not vendor agnostic therefore hampering cross vendor

performance comparison.

To abate the decision challenge and enable cross cloud performance comparison,

various research have been done culminating in probable solutions, like the Technique

for Order Preference by Similarity to Ideal Solution (TOPSIS), Heterogeneous

Similarity Metrics (HSM), Event Based Multi Cloud Service Applications Framework,

Multiple-Cloud Monitoring platform, Multicloud Security Applications (MUSA)

framework, the PeRformance Evaluation of SErvices on the Cloud (PRECENSE)

framework and Cross-Layer MultiCloud Application Monitoring with Benchmarking as

a Service (CLAMBS).

Whereas there is existence of research meant to address the cross cloud performance

comparison, the shortcoming is that they rely on the use of existing vendor specific

tools, customized for the specific cloud providers’ infrastructure which are then spread

across different cloud providers, while in some instances the use of customized software

agents installed in various cloud providers’ platform, and use of synthetically generated

data.

 v

This research addressed the existing gap by developing a cloud QoS monitoring

framework from which a vendor agnostic cloud QoS monitoring model was designed.

The focus was on Software as a Service (SaaS) cloud computing solutions. In designing

of the model, the research focused on the location of the QoS monitoring tool, the

intention of monitoring, and the mode of access to the cloud services.

The QoS parameters monitored by the vendor neutral tool were service stability, service

response time and service availability, which are the main quantitative parameters for

cloud QoS as far as performance is concerned. The tool was subjected to Google docs

and Microsoft 365 cloud services for comparison performance, under the same

computing platform and Internet conditions.

From the comparison, the average service response time for Google was 4.47 seconds

while for Microsoft was 6.04 seconds. Both platforms had an availability of 100% since

at no time during the testing period did any of the platform report a platform failure that

would have led to outage of services. Whereas the availability is 100%, the fluctuations

in the service response time were higher for Microsoft at 5.966 seconds than for Google

at 2.003 seconds, meaning the Google platform was more stable than the Microsoft

platform. From the trust evaluation, it was noted that the two compared cloud providers,

Google and Microsoft, were both trustable since the results they reported were within

the confidence interval of those reported by the vendor neutral model.

Further research could be extended to monitor Infrastructure as a Service and Platform

as a Service solutions. Advanced studies could also focus on other common aspects

used by all cloud providers at the client side, for example the operating system, where

the monitoring capability could be installed as a utility on the operating system.

 vi

 Table of Contents

Declaration ... i

Dedication ... ii

Acknowledgments .. iii

Abstract .. iv

CHAPTER ONE: INTRODUCTION .. 1

1.1. Background .. 1

1.2. Definition of Research Discipline and Sub Discipline .. 4

1.3. Problem Statement ... 5

1.4. Research Objectives ... 9

1.5. Research Questions .. 10

1.6. Significance of the Study ... 10

1.7. Justification .. 11

1.8. Scope of the Research .. 13

1.9. Assumptions .. 14

1.10. Limitations of the Research ... 14

1.11. Knowledge Contribution ... 15

1.12. Operational Definition of Terms ... 16

1.13. Chapter Summary .. 17

CHAPTER TWO: LITERATURE REVIEW ... 18

2.1. Cloud Computing Concepts ... 18

2.2. Service Models of Cloud Computing .. 22

2.3. Strengths of Cloud Service Computing ... 29

2.4. Limitations of Cloud Computing ... 30

 vii

2.5. Contemporary Research Trends in Cloud Computing ... 31

2.5.1. Service Level Agreements (SLAs) .. 31

2.5.2. Management of Data in the Cloud ... 32

2.5.3. Access Controls.. 33

2.5.4. Energy Resource Management .. 33

2.5.5. Reliability and Availability of Service... 33

2.5.6. Common Cloud Standards ... 34

2.5.7. Interoperability ... 34

2.6. Quality of Service Monitoring ... 35

2.6.1. Quality of Service in Telecommunications .. 36

2.6.2. Quality of Service in Cloud Computing .. 43

2.7. Quality of Service Monitoring Models in Cloud Computing .. 45

2.7.1. Agent Based Model .. 45

2.7.2. The QoS MONitoring as a Service Model (QoSMONaaS) ... 48

2.7.3. CloudQual .. 51

2.7.4. Adaptive QoS-driven Monitoring Model ... 56

2.8. Vendor Neutrality of the Cloud Quality of Service Monitoring Models ... 58

2.9. Existing Cloud QoS Monitoring Framework Formulation .. 60

2.10. Comparable Studies on Developing Multi Cloud QoS Monitoring Frameworks 66

2.11. Evaluating Trust in Information Systems.. 81

2.12. Research Gulf .. 92

2.13. Chapter Summary .. 93

 viii

CHAPTER THREE: METHODOLOGY .. 94

3.1 Research Philosophy .. 94

3.2. Development of a Client Trustable Cloud QoS Monitoring Framework .. 97

3.3. Design of a Vendor Neutral Cloud QoS Monitoring Model ... 98

3.4. Implementation the Designed Vendor Neutral Model ... 100

3.5. Research Design .. 104

3.5.1. Sampling Strategy .. 104

3.5.2. Study Design .. 108

3.5.3. Testing Procedure ... 111

3.6. Verification and Validation Methodology ... 112

3.6.1. Case Study Validation .. 116

3.7. Chapter Summary .. 118

CHAPTER FOUR: REALIZATION OF THE VENDOR NEUTRAL MODEL 119

4.1 Formulation of A Client Trustable Cloud QoS Monitoring Framework .. 120

4.2. Appraisal of Trust in the New Framework .. 122

4.3. Formulation of the Proposed Vendor Agnostic SaaS Cloud QoS Monitoring Model 122

4.3.1. The Web Browsers Architecture .. 127

4.3.2. Web Browser Sub Components ... 128

4.3.3. Browser Extensibility ... 130

4.3.4. The Architecture of a Browser Extension .. 133

4.4. Proposed Vendor Neutral Cloud QoS Monitoring Model ... 135

4.5. Actualization of the Proposed Vendor Neutral Model for Cloud QoS .. 137

4.5.1. Algorithms Development ... 137

4.5.2. Tool Integration into the Browser .. 141

4.5.3. Testing with the Vendor Agnostic Cloud QoS Tool .. 144

4.6. Chapter Summary .. 145

 ix

CHAPTER FIVE: RESULTS AND DISCUSSION ... 146

5.1 Cloud QoS Monitoring with the Vendor Neutral Model Tool ... 147

5.2. Results from Existing Cloud Computing Platform Integrated Tools .. 151

5.2.1. Gsuite .. 151

5.2.2. Salesforce ... 153

5.2.3. Hubspot .. 156

5.2.4. Shopify ... 159

5.2.5. Microsoft .. 162

5.3. Analysis of the Testing Results ... 164

5.4. Application of the Vendor Neutral Model Tool in Cloud Provider Choice 166

5.5. Application of the Vendor Neutral Model Tool in Cloud Providers Trust Computations 169

5.6. Summary of Results and Discussion ... 172

5.7. Chapter Summary .. 172

CHAPTER SIX: CONCLUSION AND FURTHER RESEARCH ... 173

6.1 Conclusion .. 173

6.2. Knowledge Contribution to Computer Science ... 175

6.3. Implications on Theory, Practice and Policy ... 175

6.4. Future Studies .. 176

References .. 177

Appendix 1: Email Conversations and Chats with Cloud Providers .. 198

Appendix 2: JavaScript Code Snippet for Getting Terminal Specifications 206

Appendix 3: JavaScript Snippet for getting Internet Connection Parameters 207

Appendix 4: Sample JavaScript Snippet for Monitoring Cloud Platform QoS 208

Appendix 5: Sample Raw QoS Monitoring Results For All Cloud QoS Platforms 213

Appendix 6: Sample Raw QoS Results For Google and Microsoft Comparison 232

Linked Publications .. 246

 x

List of Figures

Figure 1: High Level Architecture of Cloud Computing ... 20

Figure 2: Models of the Cloud ... 21

Figure 3: Cloud Service Models ... 23

Figure 4: XaaS Architecture ... 24

Figure 5: High level diagram for Voice QoS Measurements ... 38

Figure 6: Photos of Sample Equipment .. 39

Figure 7 : End to End, Hop by Hop and Link by Link Measurements .. 42

Figure 8: High level Architecture for Agent based Model .. 46

Figure 9 : Implementation of an Agent Based Model in IaaS .. 47

Figure 10 : High Level Architectural Diagram for QoS-MONaaS .. 49

Figure 11 : QoSMONaaS Implementation on SRT project ... 50

Figure 12: CloudQual High Level Architectural Diagram ... 52

Figure 13 : High Level Architectural Diagram for Adaptive QoS SaaS Model 57

Figure 14: Existing Cloud QoS Monitoring Framework ... 65

Figure 15: Event Based Multi Cloud Service Based Applications Framework 67

Figure 16: Architecture with Direct Communication .. 69

Figure 17: Architecture with Communication through Gateway ... 69

Figure 18 : the TOPSIS Cloud Discovery and Ranking Framework ... 71

Figure 19: The MUSA Security Assurance Architecture ... 73

Figure 20 : The MUSA Framework Workflow .. 74

Figure 21: Third Party Audit Model .. 75

Figure 22: PRESENCE Architectural Diagram ... 78

Figure 23: CLAMBS Architecture ... 80

Figure 24 : Trust Metrics .. 82

 xi

Figure 25: Trust Based Approach for Service Selection .. 83

Figure 26 : Web Trust Model ... 84

Figure 27 : Framework for Measuring Trust. .. 85

Figure 28 : Turn Around Trust Model. .. 87

Figure 29 : Proposed Trust Quantification Model ... 91

Figure 30: New QoS Monitoring Framework Development Process .. 97

Figure 31: New SaaS Cloud QoS Monitoring Model Design Process ... 99

Figure 32: Evolutionary Prototyping .. 102

Figure 33: Research Process .. 103

Figure 34: Categories of Services Implemented on SaaS by Percentage. .. 105

Figure 35: Proposed Client Trustable Cloud QoS Monitoring Framework. .. 121

Figure 36: Cloud Reference Architecture .. 123

Figure 37 : A Bird’s Eye View of QoS Monitoring using Existing Models .. 124

Figure 38: High Level Architecture of Cloud QoS Monitoring using a Vendor Agnostic Model 125

Figure 39: Cloud Services Access Models ... 126

Figure 40: High Level Architecture of the Web Browser .. 128

Figure 41: Browser Architecture with Add-on Sub Structure. ... 132

Figure 42: Generic Interfacing of an add on to a host application ... 132

Figure 43: Sub Structures of a Browser Extension .. 133

Figure 44: A High Level Blueprint for the Proposed Vendor Agnostic Model 135

Figure 45 : A Zoomed-in Diagram of the Proposed Model for Cloud QoS Monitoring 136

Figure 46: Integration Interface for the QoS tool into Chrome Browser ... 141

Figure 47: Cloud QoS Service Monitor as Integrated in Google Chrome ... 142

Figure 48: Starting the QoS Monitoring Tool .. 143

Figure 49: Active QoS Monitoring Platform on the Browser .. 144

Figure 50: QoS Monitoring Platform for Gsuite ... 152

 xii

Figure 51: Sample Screenshot for Salesforce QoS Monitoring Platform .. 155

Figure 52: Hubspot Platform for QoS Monitoring ... 157

Figure 53: Summary of QoS Metrics Monitored by Hubspot Platform ... 158

Figure 54: Summary of Hubspot Past Incidences .. 158

Figure 55: Shopify Platform for QoS Monitoring .. 159

Figure 56: Shopify Quantifiable QoS Metrics. .. 160

Figure 57: Shopify Historical Incidences. ... 161

Figure 58 : Shopify QoS Metrics ... 162

Figure 59 : The Health Status of Microsoft Cloud Services. ... 163

Figure 60 : Advisory Page for Microsoft Services .. 164

Figure 61: Google Performance Report ... 167

Figure 62: Microsoft Performance Report ... 168

Figure 63: QoS Screenshot Results for Microsoft ... 170

Figure 64: QoS Screenshot Results for Google ... 171

 xiii

List of Tables

Table 1: Examples of International Cloud Service Providers .. 25

Table 2: Voice Traffic QoS Metrics ... 36

Table 3: Data Traffic QoS Metrics ... 37

Table 4: Cloud Computing QoS Metrics as Defined by this Research .. 44

Table 5: Key SaaS Providers per Market Segment ... 106

Table 6: Definitions of Software Quality Factors .. 115

Table 7: Noted Distinctions Between Plug-in, Widget, Add-on and Extension 131

Table 8: Cloud Providers QoS Monitoring Results ... 148

Table 9: Google Service Level Agreement based on uptime. ... 153

Table 10: Comparative Summary of Cloud QoS Monitoring Tools Capabilities 165

Table 11: Comparison Results Between Microsoft office and Google Docs 166

Table 12: Measured QoS Results by the Vendor Agnostic Tool .. 169

Table 13: Quantitative Trust Values .. 171

 xiv

List of Abbreviations

API : Application Programing Interface

ATM : Asynchronous Transfer Mode

CDN : Content Distribution Network

CLAMBS Cross-Layer MultiCloud Application Monitoring as well as

Benchmarking as a Service

C-MaaS : Cloud Migration as a Service

CPU : Central Processing Unit

CRM : Customer Relationship Management

CSS : Cascading Style Sheets

DaaS : Desktop as a Service

DARGOS : Distributed Architecture for Resource manaGement and mOnitoring in
cloudS

DOM : Document Object Model

DPI : Deep Packet Inspection

EMR : Elastic Map Reducer

ETSI European Telecommunications Standards Institute

EC2 : Elastic Computer Cloud

FURPS : Functionality, Usability, Reliability, Performance and Supportability

GPD : Generalized Pareto Distribution model

GSM : Global System for Mobile Communication

GUI : Graphical User Interface

HEEM Heterogeneous Euclidean-Eskin Metric

HSM : Heterogeneous Similarity Metrics

HELM : Heterogeneous Euclidean-Lin Metric

HEGM : Heterogeneous Euclidean-Goodall Metric

HEOM : Heterogeneous Euclidean-Overlap Metric

HTML : Hypertext Markup Language

HVDM : Heterogeneous Value Difference Metric

IaaS : Infrastructure as a Service

 xv

IBM : International Business Machines Corporation

ICT : Information and Communication Technology

IEEE : Institute of Electrical and Electronics Engineers

IM : Instant Messaging

IP : Internet Protocol

ISO : International Organization for Standardization

ITU : International Telecommunications Union

KPI : Key Performance Indicator

MaaS : Cloud Migration as a Service

MMT Montimage Monitoring Tool

MUSA : Multicloud Security Applications

PaaS : Platform as a Service

PRESENCE : PeRformance Evaluation of SErvices on the Cloud

PoP : Point of Presence

QoS : Quality of Service

QoSMONaaS : QoS MONitoring as a Service Model

RAM : Random Access Memory

RANTIP : Regional Academic Network on IT Policy

SaaS : Software as a Service

SAN : Storage Area Network

SEO : Search Engine Optimization

SIM Card : Subscriber Identity Module card

SLA : Service Level Agreement

SoA : Service Oriented Architecture

SONET : Synchronous Optical Networking

SPI Model : Software Platform and Infrastructure model

SRT Subscription Racing Technology

S3 : Simple Storage Services,

TOPSIS : Technique for Order Preference by Similarity to Ideal Solution

U-CaaS : Unified Communication as a Service

 xvi

VMs : Virtual Machines

VoIP : Voice over IP services

VPC : Virtual Private Cloud

XaaS : X as a Service

XCP : Xen Cloud Platform

XML : Extensible Markup Language

 1

CHAPTER ONE: INTRODUCTION

The desire to optimize existing computing resources, and the ever increasing realm

of computation problems, coupled with the general automation of various facets of

human life, has catalyzed the need for advanced research into the field of computing

in a bid to meet the pressure exerted on computing platforms. This research focused

on one such technology developed to ease pressure on the computing platforms,

namely, cloud computing.

1.1. Background

The current trends in big data and optimizing problems are exerting pressure on

current computing platforms in terms of processing speed and storage capacity. Big

data is data that is beyond the computing capability of conformist database

platforms by virtue of it being voluminous, at high velocity, and varied in formats

that it can not be stored in conformist database architectures (Dumbill, 2012). To

derive insights from these big datasets, it is imperative to consider alternative

processing and storage platforms.

Big data may also be described as a type of data source that has at minimum three

common features: huge data Volume, at extreme Velocity and Varied (Hurwitz,

Nugent, Halper & Kaufman, 2013). Misra, Sharma, Gulia and Bana (2014) define

big data as datasets so large and unwieldy that conformist database platforms strain

to capture, store, share and manage.

According to the International Telecommunications Union (ITU, 2015), the term big

data has evolved to involve not only the data itself, but also the means available for

manipulation of the data. It defines big data as a paradigm for aiding the collecting,

storing, managing, analyzing and visualization, in real-time constraints, of extensive

data with diverse characteristics.

 2

This has led to development of various computing technologies namely grid

computing, distributed computing, utility computing, parallel computing, cluster

computing, and now cloud computing.

Parallel computing refers to solving a size n problem through division of its problem

areas into a ≥ 2 (with a ∈ N) parts and solving using k (with k ∈ N) physical

processors, at the same time (Navarro, Kahler & Mateu, 2014); Distributed

Computing refers to processing different segments of a program at the same time on

two or more computers that are collaborating with each other through a network

(Kaur, 2015).

Utility computing has been defined as offering of resources needed for computing,

such as computation, storage and services, as a service paid on a metered basis

(Mondal & Sarddar, 2015); Cluster computing refers to unified but detached

computers working in unison as a combined computing resource (Buyya, 1999).

The computational model of sharing computing resources and solving of

computational task in a harmonized, dynamic and cross-institutional virtual

organization has been termed as grid computing (Foster, Kesselman & Tuecke,

2001).

The focus of this research, cloud computing, is a standard for facilitating universal,

appropriate, demand driven usage access to a communal collection of

computational solutions that are quickly provisioned and discharged with little

effort or solution provider’s intervention (National Institute of Standards and

Technology, 2011).

 3

According to Vouk (2008), a key distinguishing segment of a fruitful information

technology resides in its capability to become a real, treasured, and inexpensive

contributor to computing infrastructure. Cloud computing utilizes the cyber platform

and capitalizes on decades of studies in utility computing, virtualization, distributed

and grid computing, and of late the worldwide web, software services and

networking. These essentially are the driving powers for cloud computing.

Further, a formidable core and facilitating concept is computation via Service

Oriented Architectures (SOA) – which provides a unified and coordinated set of

functions to users through an arrangement of lightly and tightly coupled tasks or

services mostly through the network (Vouk, 2008).

Endrei, Ang, Arsanjani, Chua, Comte, Krogdahl, Luo and Newling (2004) define a

SOA as a methodology for developing distributed platforms that brings forth

software functionalities as services for client applications and related services.

A Service Oriented Architecture (SOA) can be viewed as a model for unifying a

suite of capabilities, mostly over the network and under the administration of

different domains of ownership, which are used to provision solutions to business

needs, which conform to information technology solutions (Laskey & Laskey,

2009).

This progress in the cloud computing technology has lured more companies into

adopting the technology because of reduced cost of initial investment as opposed to

actual acquisition of hardware and software platforms. This in return has contributed

to a sharp rise in the number of cloud service providers, spawning competition for

cloud service users.

 4

To help cloud clients during selection of a cloud service provider from among

several providers in the market, there is a need for means through which service

users can measure the performance levels offered by the different cloud providers.

Further, in instances where a client uses services from more than one cloud

provider, especially for redundancy purposes, the client should be in a position to

compare the performance levels in terms of QoS of the services being provided by

the two providers.

This research aims to explore the existing framework and models used for

monitoring the QoS provided by cloud service providers offering Software as a

Service solutions, the limitations of the existing QoS monitoring framework, and the

QoS monitoring models derived from the framework. Further, this research intends

to investigate ways of overcoming the shortcomings of the existing cloud QoS

monitoring models.

1.2. Definition of Research Discipline and Sub Discipline

This research concentrates on the advances in the field of cloud computing, namely,

performance monitoring, the existing framework under which performance

monitoring is done, existing models used in performance monitoring, challenges

and shortcomings of the existing framework and models used to monitor

performance in cloud computing solutions.

It explores the challenges faced by developers of cloud performance monitoring

tools during the development of the tools as well as during integration with the

various cloud service providers.

 5

This research also explores the challenges faced by users during monitoring of the

performance of the various cloud services as well as the challenges they may

encounter when they need to equate the performance of different cloud services as

advertised by cloud offering companies.

The sub discipline of this research is Quality of Service experienced in cloud

services, focusing specifically on the Software as a Service (SaaS) model of cloud

computing, how the existing cloud QoS monitoring models are used, how they are

implemented on the cloud platform, the various examples of tools developed using

the various models, critical QoS parameters and how they are measured with an aim

to overcome the limitation of the existing cloud QoS monitoring models.

1.3. Problem Statement

With the increase in public cloud offerings, it is difficult for cloud service users to

determine which cloud operator is able to meet their desired Quality of Service

(QoS) demands, since cloud providers propose same services with the only

difference being prices and levels of performance with different characteristics

(Mamoun & Ibrahim, 2014).

Further, according to Nazir (2012), amongst biggest challenges faced by cloud users

is to appraise the Service Level Agreements (SLAs) of cloud providers. This is due

to the fact that most vendors design SLAs to make a self-protective buffer against

litigations, yet presenting least guarantees to customers.

An SLA refers to a treaty document or an officially negotiated pact based on the

commitment and goals between the cloud operators and their customers (Dash,

Saini, Panda & Mishra, 2014). This research defines an SLA as terms of

engagement between a service providing entity and the service user that stipulate the

expectations and responsibilities of each entity in the SLA.

 6

Cloud consumers face the challenge of business responsibility given that most of the

cloud provider’s SLA states that a client could get a service credit during settling of

the bill if the offered service level falls below a given cut-off value, yet SLAs still

lack in realizing several parameters related to user’s constraints (Jones, 2010).

Thus, in many cases, the information or business harm to the client is not well

catered for. Aceto, Botta, Donato and Pescapè (2013) pointed out that some of the

emerging issues and future trend of cloud monitoring include new monitoring tools

and techniques, cross layer monitoring, monitoring of federated cloud and

monitoring of new network platforms based on clouds. This research aims to

advance on new cloud monitoring tools and techniques.

According to a survey done by Regional Academic Network on IT Policy

(RANTIP) –Cloud Computing Research Case of Kenya (Cloud User Perspectives)

in November 2017, one of the barriers and challenges with respect to adoption of

Cloud Computing was sighted as poor services from cloud providers (Omwansa &

Walubengo, 2017). Further, lack of control over the cloud servers and staff for

SLA’s enforcement was sighted as a key barrier to migration to the cloud for most

organisation (Omwansa & Walubengo , 2017).

From a baseline survey of cloud computing in Kenya by Omwansa, Waema and

Omwenga (2014), whose purpose was to examine the present position of cloud

computing uptake in Kenya, ascertain the influence of cloud computing and provide

a way forward through various channels, among them white papers, academic paper

and policy statements, made as one of their recommendations the need to find ways

of enforcing Security, SLA’s and Privacy in the cloud.

 7

According to Manuel (2014), trust plays a significant part in commercial cloud

service ecosystem and is among the major challenges of cloud technology as it

facilitates users in selecting the best resources in a heterogeneous cloud

infrastructure.

The Manuel (2014) Trust model computes trust value using four parameters,

namely, turnaround efficiency, reliability, availability and data integrity. The

privacy of data, the confidentiality of data, and trust establishment are deemed to be

the major security concerns for any establishment intending to move its data to the

cloud platform (Gholami & Ghobaei-Arani, 2015).

Due to the high competitive nature and the service environment being distributed in

cloud computing, the assurances (SLA’s) are not enough for the cloud clients to

recognise reliable and trustworthy cloud service providers. In view of these

hindrances, potential clients are not certain on whether they can trust the cloud

service providers in so far as offering dependable services is concerned (Habib,

Hauke, Ries & Mu ̈hlha ̈user , 2012).

According to Odun-Ayo, Ajayi, and Falade (2018), the increase in cloud services

usage, has made the quality of cloud services to be an increasingly important matter

due to many unresolved challenges that have to be addressed, case in point those

that relate to trust and availability. QoS is therefore a matter that requires proper

addressing to enhance trust in the cloud.

 8

According to Chekfoung, Kecheng and Sun (2013), features that a SaaS cloud

consumer should factor prior to embracing a SaaS solution include, Functionality,

which addresses whether the offered SaaS service sufficiently supports the existing

business model; Availability which establishes whether the SaaS service delivery

can exhibit satisfactory and quantifiable uptime in line with the expected operations

of the firm.

Chekfoung et al (2013) also postulate that SaaS users should also consider network

performance, which is, whether the SaaS provider support enough network capacity

and latency to support acceptable performance to all users; Status visibility to gauge

the SaaS provider’s capability to submit service performance metrics to the SaaS

clients; Service Level Agreements (SLA) to gauge whether the SaaS provider

provides a detailed SLA which is inclusive of specific security elements and to

determine the SaaS provider’s past performance alongside this or similar SLAs for

other clients.

Whereas several tools exists for monitoring the QoS offered by cloud providers,

most available tools are developed by cloud platform providers for monitoring the

QoS of their own cloud services. The results from the cloud provider’s tool is what

is presented to the cloud user as the level of QoS of the platform. This arrangement

does not offer end-to-end QoS since the measured QoS is up to the cloud platform

as opposed to being up to the end user.

To compound the problem, the results are stored in the cloud provider’s

infrastructure, which the user has no visibility over, except to only query for the

QoS values. The existing cloud QoS monitoring tools have this limitation because

the underlying models from which the tools are developed are platform dependent,

meaning the underlying architecture of this models are designed based on the low

level architecture of the cloud providers infrastructure.

 9

This raises an issue of trust with regards to the results from the monitoring tool,

since the monitoring tool developer is the same entity whose services are being

monitored. In addition, for accurate performance comparison, a single tool should

be able to monitor more than one cloud provider, with no modifications on the tool

or cloud platform. This is not possible with the existing tools as they are not vendor

neutral.

1.4. Research Objectives

i. To Develop a high level Client Trustable QoS Monitoring Framework for

Cloud Computing Systems.

ii. To Design a Vendor Neutral Cloud QoS Monitoring Model that

implements the developed Framework for SaaS Cloud Computing

Solutions.

iii. To Prototype and Evaluate a SaaS Cloud QoS Monitoring Tool which is

based on the proposed Vendor Neutral Model.

iv. To Develop Algorithms for implementing the proposed Vendor Neutral

SaaS Cloud QoS Monitoring Tool.

 10

1.5. Research Questions

i. Why is there lack of trust in the existing cloud QoS Monitoring

Framework?

ii. How can a Vendor Neutral SaaS QoS Monitoring Model be realized?

iii. How does a cloud QoS monitoring tool developed from the new Vendor

Neutral SaaS Cloud QoS Monitoring Model compare to other existing

tools?

iv. How can the Algorithms needed to realize the proposed Vendor Neutral

SaaS Cloud QoS Monitoring Tool be derived?

1.6. Significance of the Study

Since there exists an SLA between cloud users and providers of cloud services in

cloud computing, it is imperative to monitor and analyze the services being offered

(Qi & Gani, 2012).

This study aims to explore existing cloud QoS monitoring models, highlighting how

they are implemented, sample tools that have been developed using each model, the

limitations of the identified models and how this limitations can be overcome.

The identified limitations will be profiled according to the challenges they present to

the user of the cloud services, as well as the challenges they present to developers of

cloud QoS monitoring tools.

 11

The information gained will be used to explore ways of developing a model that

addresses the identified challenges to both users and developers of cloud QoS

monitoring tools.

The insights gained from this research will be handy during Service Level

Agreements (SLA’s) evaluation by users and providers of cloud services for

settlement purposes. Further, tools developed using the new model will build

confidence in use of cloud since the cloud user will be able to authenticate the QoS

as experienced against what the cloud solution provider alleges to be their QoS.

1.7. Justification

According to Zia and Khan (2012), all cloud computing services are required to be

in accord to role out better QoS i.e., to offer enhanced software functionality, meet

the user’s requests for their preferred processing power and to use enhanced

bandwidth.

Due to undependable internet links, different cloud services may receive different

quality levels for same cloud services so there is need to select the optimal services

(Subha & Banu 2014). Further, according to the same authors, with the speedy

growth of cloud computing, several cloud operators have emerged who provide

same services at different performance levels and prices.

According to Saravanan and Kantham (2013) from the user’s viewpoint, it is not

easy to choose which operator is the best to contract and what is the selection

rationale. Further, finding out which is the best service from the cloud for a

particular application is very challenging and many times defines the achievement

of the core business of the clients.

 12

As there exists a lot of cloud service providing companies, cloud providing

companies strive to reduce their fees to the lowest it can get so as to attract as many

clients as possible. Further, the cloud providing companies have also to provision as

many customers as possible on their cloud platforms to ensure profitability.

The more the cloud users are boarded onto the cloud platform, the high the chances

that the QoS of the cloud service will decline. Therefore it becomes essential to

monitor, track and quantify the performance level of cloud services in order to

provide the correct information to both clients and service providers (Firdhous,

Hassan & Ghazali, 2013).

According to Firdhous et al (2013), cloud providers need to win the confidence of

customers to enable them use their cloud computing platforms. This can only be

done if cloud service providers come up with innovative means to provide the QoS

demanded by cloud applications and independent means to verify the claims by

service providers of meeting the user’s QoS.

According to the same authors, the increase in number of public cloud offerings has

made it difficult for users to determine which operator can meet their QoS

constraints. Cloud providers provision same services on different performance

levels and costs and using different parameters.

Cloud monitoring is important to cloud providers because it assists them and cloud

software developers to keep their cloud platforms operating at high proficiency,

detecting changes in cloud platform performance, taking note of the Service Level

Agreement (SLA) contraventions of some metrics, and following the subscription

operations of cloud resources as a result of system fails and configuration changes

(Alhamazani, Ranjan, Mitra, Rabhi, Jayaraman, Khan, Guabtni & Bhatnagar, 2014).

 13

According to Ardagna, Casale, Ciavotta, Pérez and Wang (2014), whereas the cloud

has to a great extent simplified the provisioning process of cloud capacity, it poses

various new challenges in the area of QoS administration.

This is also reinforced by Kashyap and Kashyap (2017), who stated Quality of

Service (QoS) management to be among the challenges faced by cloud applications,

which is stated as the difficulty of allocating cloud resources to the mobile

application to ensure high level of service for performance and availability.

Due to the importance of cloud QoS monitoring, all cloud providers have their

respective tools to monitor QoS on their cloud platform. To raise the confidence of

cloud users, it is imperative to have independent means by which the users can

measure and validate the level of QoS reported by a given cloud provider.

1.8. Scope of the Research

This research was limited to the QoS monitoring in SaaS cloud computing

applications. Further, the research was limited to quantitative cloud QoS metrics.

Given that SaaS services can be accessed through browser or vendor application,

this study focused on SaaS solutions that can be accessed via a browser.

 14

1.9. Assumptions

The main assumption in this research was that Cloud Service providers offering trial

solutions on their platforms have not over provisioned the trial platforms with more

resources than the same service or client would receive under ordinary service

usage, thus making the platform perform better under trail than under live usage.

This research as well assumes that network congestion, a network performance

parameter that may affect cloud application performance, has been taken care of by

the network administrator of the user through use of various congestion control

techniqiues like TCP/IP window reduction; Fair queuing in network devices such as

routers, switches, and other devices; Priority schemes which transmit higher priority

packets ahead of other traffic; and Explicit network resource allocation via

admission controls toward specific flows.

1.10. Limitations of the Research

This research was not able to factor in its research design the effect of the location

of the Service Provider’s servers and the associated Point of Presence (PoP) of the

Content Distribution Network (CDN) service providers that may have been

contracted by the studied cloud service providers.

Throughput, in the context of software systems, which refers to transactions per

second that the application can handle, and is measured by subjecting the

application to a mix of frequent, critical, and intensive transactions, a process called

load testing, to see how many pass successfully in an acceptable time frame

governed by the SLAs was not part of this research.

 15

This is because throughput is measured using specialised tools like the Visual

Studio Team System which have capability of simulating a mix of the transactions,

simulate network latency, user think times and test iterations. However it is

imperative to note that response time, a key metric of this research, is inversely

related to throughput, in the sense that increasing throughput of the application

reduces the response time. Therefore the results of response time from this research

tell on the throughput of the SaaS applications studied.

1.11. Knowledge Contribution

This research enhanced the existing domain knowledge in the field of QoS

monitoring in cloud computing solutions. It reviewed the limitations of the existing

QoS monitoring framework in the cloud with a view of proposing a better

framework. It collated the existing cloud QoS monitoring models used in

development of cloud QoS monitoring tools and explicitly derived the existing

cloud QoS monitoring framework for analysis.

Based on the collated models and the explicit framework, this research identified the

shortcoming of this framework and the shortcomings of the existing models and

proposed a new cloud QoS monitoring framework and a new model for SaaS cloud

QoS monitoring. This research also developed Algorithms for actualising the

proposed cloud QoS Model for Software as a Service solution under the new cloud

QoS monitoring framework.

 16

1.12. Operational Definition of Terms

Accuracy

: Refers to the level of correctness of the QoS results from the

cloud provider’s tool as compared with results from the vendor

neutral tool.

Adaptability

: Refers to the capability and ease with which the cloud provider

can amend or enhance the cloud platform features and services

based on user’s requests.

Availability : Refers to ratio of the number of instances that a user requests

for a cloud service and gets the service to the number of times

the user requests for the cloud service and does not get the

requested service

Reliability : Refers to the availability of the service throughout the duration

that the user has initiated a service therefore enabling atomic

completion of a given task.

Service
Response
Time

: Refers to the speed with which the requested cloud service

loads (Also called service initiation time)

Stability

: Refers to the degree of variability in the service response times

of the cloud service

Trust : Refers to the level of confidence the user has in the services

provided by a given cloud service provider

 17

1.13. Chapter Summary

This chapter provided a chronological advancement in computing technologies,

leading to cloud computing .The chapter also highlighted the computing problems

that were the driving force behind the need for improved computing technologies,

key among them being the need to process big data sets.

With the widespread adoption of cloud computing, the chapter noted an emerging

research issue, quality of service monitoring, in cloud computing platforms. The

chapter highlighted the problem of trust in the current framework of cloud quality of

service monitoring between the cloud providers and the reported quality of service

values during service level agreement evaluation due to vendor centricity of the

quality of service monitoring tools.

From the main identified problem, the chapter developed research objectives,

assumptions, limitations for the research and the knowledge contribution that

resulted from this research.

 18

CHAPTER TWO: LITERATURE REVIEW

To ensure the objectives of this research are comprehensively covered, various

published works in the field of cloud computing were synthesized and documented

into three segments, namely, cloud computing concepts, current challenges and

research trends in the cloud computing sphere, and measuring the Quality of Service

derived from cloud computing platforms.

2.1. Cloud Computing Concepts

Cloud computing encompasses computer applications and services executed on a

dispersed network platform, by use of virtualized computing resources accessible by

mutually agreed network standards and Internet rules (Sosinsky, 2011). It is notable

by the virtual and infinite nature of resources and abstraction of physical systems

details that run the software.

Other scholars have described it is an extensive and dispersed computing platform

driven by economies of scale, where a collection of abstract, virtual, scalable

platforms, managed computational power, computing storage, and other computing

services are provisioned based on client demands over the Internet (Al-Roomi, Al-

Ebrahim, Buqrais & Ahmad, 2013).

Cloud computing therefore provides a platform that supports universal, expedient,

on need access to a communal collection of computation resources like storage,

applications, servers, networks and services that are quickly configurable and freed

with ease in terms of management effort or provider intervention (Mell & Grance,

2011).

 19

The cloud has been defined as hardware, storage space, network devices, software

and computing interfaces supporting computing as a service solutions (Zia et al,

2012), with an alternate definition being data center hardware and software that

enables computation services to be delivered through the internet (Armbrust, Fox,

Griffith, Joseph, Katz, Konwinski, Lee, Patterson, Rabkin, Stoica & Zaharia, 2009).

From the identified definitions, this research defines the cloud as a pool of

virtualized computational resources accessible in a multi tenant mode, dynamically

and concurrently, while cloud computing is the access to and usage of virtual

computational platforms as a service.

The usage of the term cloud refers to two fundamental concepts: Abstraction due to

the fact that cloud computing hides the platform realization details from users and

software developers i.e. applications are executed on physical infrastructures that

have not been specified, data are kept in sites that are anonymous, management of

the platform is subcontracted, and access by users is pervasive; Virtualization due to

the fact that infinite logical resources are created by merging and sharing resources,

provisioning of systems and storage could be as demanded from a federal platform,

bills are determined on a rated basis, multiple lease is possible, and resources can

be scaled (Sosinsky, 2011).

Various definitions of the term Virtualization exist, among them being the

abstraction of a tangible component into a conceptual object, by Portnoy (2012), and

a technique that combines or separates computation systems to give more than one

execution setting using methods like hardware and software division, machine

simulation and emulating, by Naeem, Memon, Siddique and Rauf (2016). The same

authors, Naeem et al (2016), have as well defined abstraction as eliminating

complexities of a system or process from prominence.

 20

Virtualization enables creation of virtual machines (VMs), which share the same

physical server. These VMs are leased to service providers dynamically based on

their needs, creating an illusion of infinite resources (Desai, Oza, Sharma & Patel

2013). Figure 1 illustrates a typical high level diagram of a cloud architecture.

Figure 1: High Level Architecture of Cloud Computing

Source: Nazir (2012)

From Figure 1, the shared hardware could be processors, storage units, networking

equipment and servers. The hosting operating system is the application provisioned

on the hardware being shared and interacts with hardware’s components. The

hypervisor creates various execution environments from one shared resource.

Clouds can be categorized based on the model of deployment and the model of

service. The model of deployment informs where the cloud is sited and how it is

managed, namely, private, community, public, and hybrid.

According to Vyawahare, Bende, Bhajipale, Bharsakle and Salve (2016), cloud

services deployed according to user requirements can be classified as Private,

Public, Community, Hybrid and Mobile clouds.

 21

Service models define the service type that the provider is offering namely

Software, Platform and Infrastructure, all offered as a service. This is usually called

the SPI model (Sosinsky, 2011). This research focuses on the service models,

namely the SPI model.

The various categories of cloud can be summarized as portrayed in Figure 2.

Figure 2: Models of the Cloud

Source: The National Institute of Standards and Technology (NIST, 2011)

 22

2.2. Service Models of Cloud Computing

The various service models of computing on the cloud platform take the form of
“XaaS” where “X” is the service being provided.

The three universally accepted service models according to the National Institute of
Standards (2011) are:

1. Infrastructure as a Service (IaaS): this involves providing storage platforms,

machines and various hardware assets as virtual resources to users. In this model,

the provider takes care of all the physical and virtual infrastructure, while the

user manages the deployment of the virtual services. This can cover the systems

software, user software, and any user communications with the cloud platform.

2. Platform as a Service (PaaS): this involves providing systems, machines,

software, user software and software creation frameworks as virtual computing

resources. In this model, the user can install their user software on the cloud

platform or use softwares that were developed using coding environments

supported by the PaaS cloud provider. The PaaS provider is in charge of the

cloud platform, the systems software, and the enabling environment. The client

installs and manages the user softwares they require.

3. Software as a Service (SaaS): refers to the whole working platform consisting of

user softwares, managing interface, and the user interface. In this set up, the user

system is enabled using a thin client interface (mostly the browser), and the

user's obligation is only inputting their data, managing it and user

communication.

A diagrammatic presentation of the models and example providers is as depicted in

Figure 3.

 23

Figure 3: Cloud Service Models

Source: Vidhya (2013)

According to Vidhya (2013), the services currently provided are taking new

dimensions. Examples of the new services are Desktop as a Service (DaaS), Cloud

Migration as a Service (C-MaaS), Communication as a Service (CaaS), (Monitoring

as a Service (MaaS), and Anything as a Service (XaaS).

Monitoring-as-a-Service (MaaS) gives cloud providers the opportunity to

amalgamate monitoring requests at different levels (platform, infrastructure, and

application) to enable efficient and scalable monitoring (Meng & Liu, 2013).

Examples of vendors who offer this service are AppDynamics, Coradiant and

NewRelic.

Cloud Migration as a Service (C-MaaS) involves moving the whole or a portion of a

company’s applications, data, services at user premises into the cloud or transferring

them from one cloud provider to another. Migration from in-house resources to the

cloud is called cloud migration while moving to a different cloud provider is called

cloud service migration (Gouda, Dwivedi, Patro & Bhat, 2014).

 24

One such example of a C-MaaS provider is Rivermeadow enCloud, which allows

customers to move to cloud in a cost effective way. It has four steps in moving to

the cloud, namely, Collects, Converts, Deploys and Synchronize.

Communication as a Service (CaaS) is a subcontracted business telecommunications

solution where operators of the solution (CaaS vendors) are in charge of managing

the platform required to convey Voice over IP (VoIP) services, video conferencing

capabilities and Instant Messaging (IM) to clients (Gurudatt, Maheshchandra,

Sadanand & Hemant, 2013).

XaaS or ‘anything as a service’ is any feature delivered to customers through the

cloud rather than depending on in-house technologies. It could be defined as the

range of all services that can be delivered via the cloud platform (Esteves, 2011).

Examples of XaaS services include Network as a Service, Storage as a Service,

Unified Communications as a Service (U-CaaS) and Desktop as a Service. XaaS can

be represented as in Figure 4.

Figure 4: XaaS Architecture

Source: Gouda, Dwivedi, Patro and Bhat (2014).

A list of global providers for the stated cloud service models is as shown in Table 1.

 25

Table 1: Examples of International Cloud Service Providers

Source: Dash, Saini , Panda and Mishra (2014)

No Provider Contribution Services Platform Infrastructure Details Interfaces
1. Amazon EC2 Elastic Computer

Cloud,

EMR Elastic Map
Reducer,

S3 Simple Storage
Services,

VPC Virtual Private
Cloud

IaaS
PaaS
SaaS

Enterprise
Linux by Red
Hat

Windows
R2 Servers of
2003,2008 as
well as
2008.

RAM: 1.7GB,

Local storage :160GB

Compute Unit: 1 EC2

API
Command Line
GUI
Web Based
Application/Control
Panel.

2. IBM Dynamic Infrastructure
Smart Cloud
Blue Cloud

IaaS
PaaS
SaaS

IBM Web
sphere and
DB2.

Virtual
CPUs of 32 bit with
1.25GHz;
Virtual memory of 2 GB;

Instance Storage (60 GB)

API
Web Based
Application/Control
Panel.

3. Google Platform for creation of
gaming and mobile
applications development

Google Drive

PaaS Windows
Mac OS X,
Linux

Based on
Requirements and
existing environment

API
Web Based
Application /Control
Panel.

 26

No Provider Contribution Services Platform Infrastructure Details Interfaces
4. Microsoft Windows Azure

PaaS Managed

code
Languages
Supported by
. NET

CPU of 1.6 GHz,
RAM of 1.75 GB,
Instance Storage 225 GB
Moderate I/O
Performance

Use of Web Based
Application/Control
Panel
Use of API
Use of Command
Line

5. AT&T Synaptic Hosting
Synaptic Storage

PaaS Synaptic
Platform for
Hosting
Virtual
Solution for
Hosting

Based on requirements
and existing environment

Use of Web Based
Application/Control
Panel

6. Salesforce Heroku

PaaS
IaaS
SaaS

Development
Environments
including
.NET, Java,
PHP

CPU: 1.6 GHz, 1.75
GB RAM,
Instance Storage: 225 GB
I/O Performance:
Moderate

Use of of API
Use of Web Based
Application/Control
Panel

7. Rackspace Provides Infrastructure
requirements for the cloud
implementation

IaaS All Main
development
platforms

RAM: 512 MB,
1 vCPU,
local storage: 20GB,
public network
throughput: 20 Mbps
internal network
throughput: 40 Mbps

Use of API
Use of Web Based
Use of Application
/Control Panel

 27

No Provider Contribution Services Platform Infrastructure Details Interfaces
8. OrangeScape Delivers a platform as

Orange scape using Cent
OS

PaaS all major
Development
platforms are
supported

RAM: 0.5 GB,
1/2vCPU,
Storage: 20 GB SATA
SAN,

Inclusive of 1 TB of data
transfer

API
Web Based
Application/Control
Panel
GUI

9. Cisco Provides Infrastructural
requirements for cloud
applications

IaaS Based on
Requirements

Based on requirements
and current platforms

Web Based
Application/Control
Panel

10. Enki
Consulating

PaaS operator of
personalized cloud
services based on ENKI
enabled platform.

PaaS Java, .NET ,
PHP as well as
major
development
environments

Firewall
Backup Storage
Data Encryption
Frequent Data
Back-Up

API
Web Based
Application/Control
Panel
GUI

 28

According to NIST (2011), the five vital features the cloud computing platform

must provide are: On-Demand Self-Service by the user so that users can self

allocate computation resources without having to liaise with cloud platform

owner; Broad Network Access for accessing the cloud platform is offered via the

system through defined processes in a way enabling platform neutral access to

different user categories. This includes different computing terminals with

different systems softwares, such as phones, laptops and other digital assistants.

Other notable features include Platform Resources Sharing for generating

resources to be shared through a platform that provisions multiple simultaneous

usage scenarios. Physical and virtual resources are dynamically provisioned based

on user need. The fundamental aspect in this concept of resource sharing is the

idea of abstraction that conceals the site of resources like processing, memory,

storage, virtual machines, network bandwidth and connectivity; Quick Elasticity

for quickly provisioning resources with high flexibility provisioned.

The system can scale up resources (extra powerful computer) or scale out systems

(many similar computers), with capability for automatic or manual scaling. From

the user’s perspective, the cloud computing platform should appear infinite and

can be procured at whatever time and in whichever amounts.

Finally having a metered platform to enable measuring usage of cloud resources,

appraising, and conveying to the client in accordance with a metered scheme. A

user can be billed based on parameters that are known such as quantity of

processing power in use, transactions quantity, storage quantity used and network

bandwidth. A user is billed based on the number of services provided.

 29

2.3. Strengths of Cloud Service Computing

According to the US National Standards Institute (2011), cloud service computing

offers several advantages, namely, less costs since cloud platforms function at high

efficiencies and with great utilization, there are huge cost reductions experienced;

ease of deployment based on the kind of service being provisioned, one may not need

hardware and software authorization to use their service; Quality of Service which is

realized by use of Service Level Agreements signed by the cloud solution provider

and the user of the cloud solution.

Cloud solutions also provide: Reliability based on the cloud platforms magnitudes

and capability to implement task balancing and failover which increases their

reliability, higher than what can be achieved in a solitary organization; Subcontracted

Information Technology management since cloud deployments enables someone else

to manage computing infrastructure on behalf of another as the owner focuses on

managing the business which leads to substantial reductions in IT staff costs; Easy

maintenance and upgrade by the fact that the system is located at a central site, it is

easy to apply patches and upgrades, therefore have access to updated software

versions; and finally fewer obstacles to entry given that initial capital is significantly

reduced, making it easy for anyone to significantly expand their businesses at any

time.

 30

2.4. Limitations of Cloud Computing

The US National Standards Institute (2011), states disadvantages in cloud service

computing as being susceptible to the innate latency that is inherent in their internet

links, hence not appropriate for usage scenarios that require huge amount of data

transfer.

Software offered through the cloud is not easily customizable, as the client might

want; Cloud service computing as a platform is stateless, just like the Internet is. For

data to be sent on a distributed infrastructure, it has to flow in one direction. This lack

of state makes data to traverse various routes thus arriving out of sequence, in

addition various other features permit the interaction to be successful even on a faulty

platform. For transactional coherency on the platform, service brokers, transaction

managers, and middleware are needed to the system, which introduce additional

overheads.

The cloud is also limited on privacy and security concerns since data transits across

and is stored on systems that are no longer under the control of the client, interception

risk is also increased and malfeasance of others.

 31

2.5. Contemporary Research Trends in Cloud Computing

Explorations in cloud Computing tackles the problems of satisfying the constraints of

future generations of private, public and hybrid platforms for cloud, as well as the

challenges of letting software and development infrastructure to benefit from merits

of cloud services (Nazir, 2012).

Some of the identified challenging research issues include Access Control, Server

Consolidation, Reliability and Availability of Service, Service Level Agreement,

Management of Energy, Data Management and Security, Data Encryption, virtual

machines migration, interoperability, Multi-tenancy, mutually agreed Cloud

Standards and finally Management of the cloud platforms.

2.5.1. Service Level Agreements (SLAs)

As the number of cloud users entrusting their operations to cloud platforms increase,

Service Level Agreements (SLA) amongst cloud service clients and providers cloud

service arise as an important concern. Since the cloud platform is dynamic in nature,

constant monitoring on Quality of Service (QoS) parameters are essential to ensure

SLAs (Patel, Ranabahu & Sheth, 2009).

The cloud paradigm is governed by service level agreements which permit numerous

occurrences of a single application to be duplicated on several servers if there is need,

depending on a priority pattern in use, a low level application may be minimized or

shut down. A big concern for the user of cloud services is assessing the cloud

vendors’ SLAs (Nazir, 2012). This was the focus of this research.

 32

2.5.2. Management of Data in the Cloud

Data from cloud systems is normally very huge (especially text based and scientific

data), amorphous or semi amorphous, and usually affixed only with erratic updates

and thus management of these data is a key research topic in cloud computing (Nazir,

2012).

Further, according to Nazir (2012), given the fact that providers of certain services

usually have no access to the physical security infrastructure around data centres,

they fully depend on the platform provider to attain full data security.

Factually, the uptake of cloud models makes users give up control of security of the

physical systems. Further more, where cloud storage is in public clouds, users share

the storage resources (Yahya, Chang, Walters & Wills, 2014).

This applies to virtual private clouds also, where the cloud provider can only indicate

the security settings remotely, and is not in a position to confirm whether it is fully

implemented. Platform providers, in this setting must attain the objectives of privacy

and auditability.

Confidentiality is key for safe access to data and transmission, and auditability, for

confirming if security settings for softwares have been interfered with.

Confidentiality is attained by use of cryptographic protocols, while auditability could

be attained via remote confirmation methods. Nonetheless, in virtual platforms as the

clouds, VMs can dynamically move from a certain location to another location; thus

the direct use of remote attestation is not adequate. In this scenario, it is vital to

develop trust means at each architectural layer in the cloud.

 33

2.5.3. Access Controls

This deals with issues like ensuring password strength and how often the passwords

are changed, who configures the rate of password change, the recovery procedure for

account names and passwords, how passwords are conveyed to users after being

changed, the logs and the capability to review access (Nazir, 2012).

Most of the times, security is the principal concern with regards to records, platform

and virtualization because business data is more than just a competitive asset, it most

of the times has information on clients, users and staff which if it is accessed by

unauthorised persons, may lead to civil liability and potentially criminal charges

(Murtaza & Al Masud, 2012). In view of this, many conversations on cloud services

target secrecy, confidentially and the separation of data from software logic (Murtaza

et al, 2012).

2.5.4. Energy Resource Management

Huge energy saving in cloud infrastructure centres without compromising the

services offered are an economic enticement for infrastructure providers and can

make a huge influence to environmental sustainability (Nazir, 2012). Design of data

centres that are efficient in energy use has attracted considerable attention with the

main challenge being how to ensure a better balance between energy saving and

platform performance.

2.5.5. Reliability and Availability of Service

In cases where an operator delivers software as a service on a need basis, the service

requires a reliability quality factor to enable users review it in any conditions of the

network, inclusive of network connections that are slow (Nazir, 2012).

 34

2.5.6. Common Cloud Standards

Standardization in Cloud Computing covers three major areas: technology, personnel

and operations. Nazir (2012) points out that at the moment, one major problem is the

presence of many fragmented activities ongoing around cloud accreditation, yet a

common body to coordinate those activities is not in place. The creation of an

accreditation entity to attest cloud platforms and services is a huge task.

2.5.7. Interoperability

Interoperability in cloud computing is brought about by unavailability of common

interfaces and open APIs, unavailable open standards for VM formats and service roll

out interfaces. These setbacks cause integration challenges between services procured

from dissimilar cloud platforms as well as from resources of the cloud and users

internal legacy platforms (Ghanam, Ferreira & Maurer 2012).

 35

2.6. Quality of Service Monitoring

The phrase Quality of Service is widely used across industries that deal in service

provision. One of the fields where the term is commonly used is in the Information

and Communication Technology (ICT) sector, namely, in computer networks and

telecommunication.

According to the International Telecommunications Union (ITU 2008), the term QoS

in the telecommunication field refers to the entirety of features of a

telecommunications service that affect its capability to achieve specified and implied

requirements of the telecommunication service user.

According to Cisco Systems Inc. (2003), the phrase QoS in the field of computer

networks is the capability of a system to offer enhanced services to certain network

traffic across several technologies. The technologies include Ethernet and associated

802.1 networks, Asynchronous Transfer Mode (ATM), the SONET, Frame Relay and

all IP-routed networks that use either or all of the stated core technologies. The main

objective of QoS, according to Cisco (2003) in this context is to offer priority as well

as controlled jitter and latency (to be used by traffic in real-time and interactive

basis), dedicated bandwidth, and improved loss features.

With regards to cloud computing, QoS means the extent of reliability, performance

and availability presented by a service application and by a service platform or

infrastructure on which it is hosted (Ardagna et al, 2014). Generically, it is the extent

to which a suite of innate characteristics satisfy requirements (Ramad & Kashyap,

2017).

 36

2.6.1. Quality of Service in Telecommunications

The telecommunications sub sector has two services whose QoS could be monitored,

namely, the mobile voice service and the Internet (data) services. The voice QoS

metrics are as shown in Table 2.

Table 2: Voice Traffic QoS Metrics

No Metric Description

1. Rate of setting
up calls

The ratio of calls effectively set up to a genuine number,
well dialed and at time which the busy tone, ring tone, or
answer signal is identified at the termination point

2. Rate of
dropped calls

The ratio of calls, that are not deliberately terminated
during conversation minus the users involvement

3. Rate of
successful calls

The ratio of calls that are well set up and disconnected by
the user

4. Rate of
blocking calls

The ratio of calls that are not set up due to lack of
required resources

5. Time required
to set up calls

The duration from when a phone send button is pushed to
when the user busy tone, ringing tone or answer signal is
established at the user.

6. Rate of
successful
handovers

The ratio of effective hand overs, out of the total hand
overs requested

7. Quality of
speech

The clearness of the communication conveyed (without
noise, echo and interference)

Source: Communications Authority of Kenya (2016).

 37

In the computer networks subsector, the data metrics are as shown in Table 3.

Table 3: Data Traffic QoS Metrics

No Metric Description

1. Rate of successful
internet log in

The ratio of effective internet logins that launch
an internet period within 40 seconds

2. Rate of Internet
session retention

The ratio of internet periods that are effectively
started and continue until terminated by user

3. Rate of successful
internet data
transmission

The ratio of successful internet data transmission
periods where data is fully transmitted without
errors between network points

4. Transmission time for
internet data

The span from when internet data is sent to the
network and when it is received

5. Transmission capacity
for internet data

The ratio of the internet data transmission rate
advertised by the provider that is actually
achieved during a continuous transmission

6. Latency The time taken to send data from its source to
intended recipient

7. Packet loss The vanishing of message units on transit in the
network.

Source: Communications Authority of Kenya (2016)

The voice and Internet sub sectors are regulated by various country ICT regulators. In

Kenya, they are controlled by Communications Authority of Kenya, through the

Kenya Information and Communications Act, No.2 of 1998.

By virtue of them being regulated, the regulator ensures users get value for money by

ensuring the service providers deliver on what they have committed to deliver. For

example in Kenya, the Communications Authority of Kenya carries out dry tests to

ascertain the QoS for voice telephony and data. Service providers found to be

offering services below the set QoS threshold are fined a penalty of upto 0.2% of

their gross revenue.

 38

For the measurements in table 2, the Authority conducts dry runs, which involve

using a server, which contains slots for inserting GSM SIM cards, which also has the

database for recorded measurements; the portable slave unit which has slots for

inserting mobile phones; Display unit used for configuration of the master and slave.

During operation, the SIM cards in the slave are configured to call the master, from

different location by moving around the country in a vehicle.

The SIM cards are loaded with airtime the normal way and all the calls made are

measured for the various QoS parameters, and recorded in the master for later

download. The recorded metrics are later produced in form of a report, showing the

regions where the metrics were above the set levels and where they were below the

set levels. A high level diagram showing how the measurements are done is as in

Figure 5.

 Location B (moving)

Location A (Fixed (office))

Figure 5: High level diagram for Voice QoS Measurements

Source: Communications Authority of Kenya (2016)

One of the equipment used by Communications Authority of Kenya, is QVoice

equipment from Ascom. Sample equipment photos are as depicted in Figure 6 a, b

and c.

Master Unit
with SIM

cards

GSM Network

Portable slave
with SIM cards
unit in vehicle

 39

a) Display Unit

b) Slave (Portable Unit)

c) Server

Figure 6: Photos of Sample Equipment

Source: Communications Authority of Kenya (2016)

 40

From Figure 6, the display unit is used for configuration purposes as it provides a

graphical user interface that is used for configuring of parameters to measure. During

measurements it also displays the network performance as monitored in form of

colour codes configured e.g. green for parameters that have met the threshold and red

for those parameters that have not met the set threshold.

The Portable (Slave) unit contains SIM cards that have been configured to call or

receive calls from the SIM cards inserted in the server unit. The configuration for

receiving or calling is done using the display unit. The portable unit is installed in a

moving vehicle.

The Server is a stationery unit that contains SIM cards that call or receive call from

the slave unit. It also contains the software for reporting, from which one can log in

and download the measurement data from the field.

The data QoS monitoring provides for three types of service levels, namely, best

effort, differentiated service and guaranteed service. The service levels are the

network’s capability to provide the service required by particular traffic on the

network from end node to end node or edge to edge of the network (Cisco, 2002).

The best effort service level offers no guarantee on the QoS to be offered; the

distinguished service, sometimes referred to as soft QoS, offers preferential treatment

for some traffic types by applying statistical techniques that ensure quicker handling,

increased average bandwidth, and reduced average loss rate; while the guaranteed

service, referred to also as hard QoS, uses complete reservation of platform resources

for specific traffic (Cisco, 2002).

 41

In data networks, the measurements can be active or passive. In active measurement

probe packets are generated and send to the network and measurement for important

factors like latency, jitter, throughput, packet loss taken (Peuhkuri, 2002). This

measurement mode may introduce excess traffic on the network. For passive testing,

real traffic is monitored and used to measure QoS parameters.

Both active and passive measurements can be modeled as End-to-End measurement,

Hop-by-Hop measurement and Link-by-Link measurement (Peuhkuri, 2002). For

End-to-End QoS measurement, the measurement probes are placed at the start and at

the end of the path taken by the traffic to be measured, i.e. immediately after the

service provider equipment and just before the user terminal.

For Hop-to-Hop QoS measurements, the measurement probes are placed immediately

after each service provider equipment along the path that the traffic travels, so

measurements are done after they leave each equipment.

For link to Link measurements, the measurement probes are placed after the service

provider equipment and before the next service provider equipment, so traffic is

measurement without the processing delays introduced by the equipment. Figure 7 a,

b and c illustrates a high level architecture of these modeling.

 42

a) End to End

b) Hop by Hop

c) Link by Link

Figure 7 : End to End, Hop by Hop and Link by Link Measurements

Source: Peuhkuri (2002)

User Terminal
Service Provider Probe

Probe

User Terminal Service Provider
(SP)

Probe Probe
SP Probe

SP Probe

Service Provider
(SP) Probe

Probe User Terminal

SP Probe

Probe
SP

Probe

Probe

 43

2.6.2. Quality of Service in Cloud Computing

Unlike in the telecommunications sub sector where QoS is regulated and the

consumer has an entity mandated to ensure that desired levels of QoS are achieved, in

cloud computing there is no entity to ensure cloud QoS is realized since cloud

computing is currently unregulated.

Amongst the main challenges presented by cloud services is how to manage Quality

of Service, referring to the problem of provisioning resources to the user’s application

to ensure user satisfaction along dimensions such as reliability, performance and

availability (Ardagna et al, 2014).

With the swift uptake of cloud computing, various cloud operators have emerged who

provide same services at dissimilar costs and levels of performance. Moreover, the

dynamic nature of cloud platforms which occur due to the flexibility and demand

based provision of cloud resources, there are substantial fluctuations in the Quality of

Service levels at each service (Subha et al, 2014). Considering the user’s view point,

it is not easy for them to select which service is better for them, and which one to use,

and what selection parameters to check. Further, ascertaining the best service for a

particular task is difficult and mostly defines the achievement of the core business of

the consumers (Saravanan et al, 2013).

According to Bardishri and Heshemi (2014), Quality of Service metrics play a critical

role in choosing Cloud providers. The same authors argue that to select the best

among several Cloud providers, users ought to have a means to monitor and also

evaluate vital performance standards, which are necessary to their applications.

QoS parameters can be grouped into two, namely, functional parameters and non-

functional ones. Some of the QoS metrics cannot be monitored with ease due to the

setup of the clouds (Garg, Versteeg & Buyya, 2011). Further, it is not easy to match

which services best fit with all functional and nonfunctional requirements.

 44

The various metrics used to measure QoS can be Qualifiable or Quantifiable.

Qualitative metrics are deduced based on experiences from the user. Quantitative

measured by use of software and hardware observation tools. This research shall

focus on Quantitative metrics.

There are several metrics that are used to rate the Quality of Service delivered by

cloud platform providers. The select QoS metrics and as defined by this research are

as indicated in Table 4:

Table 4: Cloud Computing QoS Metrics as Defined by this Research

Accuracy

Refers to the level of correctness of the QoS results from the

cloud provider’s tool as compared with results from the vendor

neutral tool.

Adaptability

Refers to the capability and ease with which the cloud provider

can amend or enhance the cloud platform features and services

based on user’s requests.

Availability Refers to ratio of the number of instances that a user requests for

a cloud service and gets the service to the number of times the

user requests for the cloud service and does not get the requested

service

Reliability Refers to the availability of the service throughout the duration

that the user has initiated a service therefore enabling atomic

completion of a given task.

Service
Response
Time

Refers to the speed with which the requested cloud service loads

(Also called service initiation time)

Stability

Refers to the degree of variability in the service response times of

the cloud service

Trust Refers to the level of confidence the user has in the services

provided by a given cloud service provider

 45

2.7. Quality of Service Monitoring Models in Cloud Computing

According to Aceto et al (2013), there are seven layers at which QoS measurements

of cloud platforms could be performed, namely, hardware, middleware, network, OS,

facility, application, and the user. The layers could be viewed as the location of the

probes used for examining the system. Consequently, the tier where the probes are

positioned directly determines the features that can be scrutinized.

In view of the observation by Aceto et al (2013), monitoring models are modeled

around which layer the monitoring probe will be put. The various models are:

2.7.1. Agent Based Model

In this model, software agents are positioned in the virtual machines of the cloud

platform. An agent is an independent entity, that has the capability of executing

defined duties autonomously, based on explicitly stated instructions or through

environment gained knowledge and adapting to variations in the environment through

latest knowledge update (Meera & Swamynathan, 2013). They are also defined as

self executing codes that work on behalf of the humans (Agrawal & Choubey, 2015).

This model is commonly used in Monitoring as Service Solutions (MaaS). MaaS

enables monitoring for purposes of security for example detecting vulnerability,

monitoring to aid in trouble shooting, external threats, monitoring to aid in SLA

compliance check and QoS (Meera et al, 2013).

Ganglia monitoring system is one of the tools that was developed based on this

model, initially used for high performance computing platforms like clusters and

Grids, and has now been extended to cloud platforms, using sFlow agents found in

the Virtual Machines (Dhingra, Lakshmi & Nandy, 2012). According to Dhingra et

al (2012), currently, sFlow agents exists for XCP (Xen Cloud Platform), KVM/libvirt

virtualization, Citrix XenServer platforms.

 46

The other monitoring tool that is based on this model is Monitis which implements

agents that have been installed on the resources to monitor, to enable users get service

performance information and send alerts based on resource scarcity (Aceto et al,

2013). Other tools using this models are: Up.time, Cloudyn, CloudCruiser,

Cloudfloor, Boundary, New Relic and DARGOS.

Through literature review, Makokha, Opiyo and Okello-odongo (2017), derived a

high level architecture depicting the agent-based model as depicted in Figure 8.

 Client 1 Client 2 Client x

 Figure 8: High level Architecture for Agent based Model

Source : Makokha et al (2017)

 Host

 VM

VM

Metrics Collector

Customer Interface Module

VM
agent

VM
agent

 47

A detailed implementation architecture for an agent based resource monitoring

architecture is depicted in Figure 9.

Figure 9 : Implementation of an Agent Based Model in IaaS

Source: Meera and Swamynatha (2013)

From Figure 9, the IaaS cloud is designed to have virtual machines in its platform. A

Virtual machine Resource Monitoring agent (VmRM agent) is installed in each

Virtual Machine to monitor a specific aspect of the cloud.

 48

The VmRM agent collects the CPU and memory utilization of each virtual machine

hosted with different types of applications. It sends the resource usage statistics to the

agent based resource monitoring system. Agent based resource monitoring system

has two components. The resource usage collector component collates the health

information of each VM and sends that to the resource usage reporter.

The resource usage reporter reports the virtual machines status information to the

cloud administrator and also displayed in the dashboard. The cloud administrator has

a performance analyzer module that analyzes the statistical report in order to measure

whether the performance is as per the SLA.

2.7.2. The QoS MONitoring as a Service Model (QoSMONaaS)

 It is a portable architecture which implements a trustworthy (neutral, dependable,

and timely) infrastructure for checking the QoS as experienced at the business tier on

a common cloud infrastructure (Adinolf, Cristaldi, Coppolino & Romano, 2012).

The portability of the architecture is based on the fact that it is possible to migrate it

from one infrastructure to a different one after little changes. The infrastructure is

presented to all functions running on all as a Service platforms.

Its architecture is made up of the basic interface, the extended interface and two main

services, which are authentication and anonymization (Zavol, Jung & Badica, 2013).

The basic interface is used by QoSMONaaS to interface with other applications, i.e.

the channel that all applications use to request the platform.

The Extended interface is used to collect the information used for QoS monitoring.

QoSMONaaS uses the authentication and anonymization services from the

underlying platform and which require modification efforts for the QoSMONaaS to

be ported on different cloud platforms.

 49

The QoSMONaaS is delivered with a prescribed depiction of the particular business

process (KPIs, entities and associations) and a prescribed explanation of the SLA to

be guaranteed, that is a suite of controls that must be respected, to enable it monitor

the real QoS conveyed by the cloud provider (Cicotti, Coppolino, Cristaldi, Salvatore,

& Romano, 2011).

A high level architectural diagram on the implementation of this model is as shown

in Figure 10.

Figure 10 : High Level Architectural Diagram for QoS-MONaaS

Source: Adinolf et al 2012.

A zoomed in view of the QoSMONSaaS as implemented on the Subscription Racing

Technology (SRT) platform is as shown in Figure 11.

QoS-MONaaS

Service Provider Service User

Platform Adaptation Layer

Cloud Platform

 50

Figure 11 : QoSMONaaS Implementation on SRT project

Source: Cicotti et al 2011.

The SLA Analyzer reads and processes (parsing) SLAs provided as input and also

gathers data delivered to the KPI Meter to examine it, while the KPI Meter constantly

observes the real value of the KPIs using queries for submission to the SRT-15.

The Breach Detector amalgamates the KPI monitor outputs and the SLA Analyzer

conditions to identify contract negations. It reports deviations to the SLA Analyzer

and advances all similar data to Violation Certifier.

The Breach Detector outputs are augmented by the Violation Certifier using a

timestamp and a digital signature, to enable production of evidence that is not easy to

forge and thus usable for forensic purposes.

QosMONaaS

SLA

Analyser
Breach

Detector
Violation
Certifier Violation

Record

KPIs
Meter

SRT-15 PaaS

 IaaS

SLAs

 51

The SRT-15 being a cloud Platform as a Service solution, enables construction of

every software as a service solution. The objective of the Subscription Racing

Technology (SRT) for 2015 was to develop a scalable platform for linking enterprise

applications and services. The platform aids in enabling the discovery and

amalgamation of dynamic business services on the Internet (Cicotti et al, 2011).

2.7.3. CloudQual

Is a model that describes five quality metrics based on six quality dimensions from a

service user’s perspective (Zheng, Martin, Brohman & Xu, 2014). The dimensions

used by this model are service reliability, service usability, service availability,

service responsiveness, service security and service elasticity.

The CloudQual model proposed by Jegadeesan and Karuppaiah (2016), has a Usage

Monitor, an Aggregate Manager, as well as a Prediction Manager that uses a

Generalized Pareto Distribution model (GPD) to envisage performance degradation.

The system modules for the Jegadeesan et al (2016) model are comprised of the

Cloud Manager which is in charge of interacting with users to comprehend their

service requirements. It is responsible for collecting all requirements as well as

performing detection and rating of better services.

Other components are the Monitoring module which does the discovery of services

that are capable of meeting user’s essential QoS needs. It also supervises the

performance of cloud solutions, like for IaaS it oversees scaling latency, memory, the

speed of VMs, network latency, storage performance, as well bandwidth. Further, it

maintains a record of how SLA needs of clients are being fulfilled by the service

provider. There is also the Prediction module for evaluating and modeling short term

CPU usage extreme values.

 52

From the reviewed literature, a high level architectural diagram depicting how a QoS

monitoring tool developed using the CloudQual model can interface with a cloud

provider’s infrastructure, is illustrated in Figure 12.

Figure 12: CloudQual High Level Architectural Diagram

Source: Makokha et all (2017)

CloudQual

User

Cloud Provider

Cloud
Provider’s API
for Developer’s

 53

Mathematically, CloudQual was modeled by Priyanka and Kumar (2016) as :

Let ‘B’ be the | Cloud Quality system at the final set

 B= {I, O, F, $}

 Identify the Functions/Modules as,

 F= {U, A, Rel, Resp,S, E}

 U=Usability

 A=Availability

 Rel=Reliability

 Resp=Responsiveness

 S=Security

 E=Elasticity.

 Identify the Inputs as,I= {c,co,d }

Where,

 c=Correlation

 co=Consistency

 d=Discriminative power

 Identify the outputs as,

 O= {uv,av,rv,resv,sv,ev }

 Where,uv=Usabilityval

 av=Availabilityval

 rv=Reliabilityval

 resv =Responsivenessval

 sv=Securityval

 ev=Elasticityval

 Identify the Constraints as, $= 1

 54

If cloud is secured with firewall then it is difficult to retrieve these parameters to

determine its quality. Each parameter was implementented through a separate module

as:

1st Module: Usability Module

 U= {g,f }

 g=gui,

 f=features

 2nd Module: Availability Module

 A= {t,ts,av}

 t=Uptime of operational period,

 ts=Total time of operational period.

 av=Availabiityval.

 Formula,av=t/ts

2nd Module: Availability Module

 A= {t,ts,av}

 t=Uptime of operational period,

 ts=Total time of operational period.

 av=Availabiityval.

 Formula,av=t/ts

3rd Module: Reliability Module

 Rel={n,ns,rv}

 Where,

 n=No. of failed operations,

 ns=Total operations occurred in a time interval.

 rv=Realiabilityval

 Formula,

 rv=1-n/ns

 55

4th Module: Responsiveness Module

 Resp={fi,ti,tmax,resv}

 Where,

 fi=Measure central tendency offset of data,

 ti=Time between submission and completion,

 tmax=Max acceptable time to complete request.

 resv=responsivenessval

 formula,resv=1-fin=1(ti)/tmax

5th Module: Security Module

S={FT(t),sv}

 Where,FT(t)=Cumulative distribution function of

 random variable T,

 t=Time until first security breach occurs.

 sv=securityval

 Formula,

 sv=1-FT(t)

6th Module: Elasticity Module

 E={ri1,ri2,n,ev}

 Where,

 ri1=Amount of resources allocated,

 ri2=Amount of resources requested,

 n=No. of required resources in operation period.

 ev=elasticityval

 formula,ev=∑ni1=1ri1/∑ni2=1ri2

 56

The functions ‘F’ are:

 F={Usability (), Availability (), Reliability (), Responsiveness (),
 Security (), Elasticity ()}

 Usability (h) =P’ :: takes the gui.
 P’ = { h | h takes the gui }

These modules are linked to the cloud provider’s API to monitor the various

information from the provided cloud services.

2.7.4. Adaptive QoS-driven Monitoring Model

This model has flexibility and offers QoS monitoring services that can be

reconfigurable dynamically which are able to adapt to different cloud features

(Serhani, Atif & Benharref, 2014). Its architecture has a cloud platform and a setup of

hardware functionalities (virtual machines, application servers, storage servers), as

well as entities for monitoring, inclusive of Applications Programming Interfaces for

smooth communications among numerous architecture’s modules as well as with

external units to simplify monitoring duties (Serhani et al, 2014).

Various modules are used in this model, they include monitors, SLA verifier, certifier

and the driver. According to Serhani et al (2014), the native and universal monitors

are responsible for realizing modules (or APIs), each with different functionalities.

The Monitor subsystem monitors performances based on given dimensions, detects

violations once they happen; the SLA verifier subsystem, examines the agreement

requirements (thresholds) for confirmation if the parameters can be assured before

commence of the service monitoring; the Certifier subsystem attests whether a SaaS

meets the SLA verification trials, then provides a certificate for the confirmed service

provider and the Driver initiates the monitoring process after scoring well in all the

required tests.

 57

Amalgamated cloud solutions combined from uniting various single cloud services

are watched over by a Multi-monitor-based monitoring platform. The single cloud

services could be from one cloud provider or to belong to different cloud operators. A

high level diagram depicting the architectural design for this model is as shown in

Figure 13.

Figure 13 : High Level Architectural Diagram for Adaptive QoS SaaS Model

Source: Serhan et al (2014)

Us
er

Pr
ov

id
er

Monitoring Views Report

Certificates SLA Verification
reports

Authentication

Monitoring
Repository

Monitors

SLA verifier Driver

Certifier

Cloud Computing Platform

 58

2.8. Vendor Neutrality of the Cloud Quality of Service Monitoring Models

An independent tool that is not tied to any particular vendor platform for checking

performance of heterogeneous platforms is a key capability most required by the

cloud paradigm (Cicotti et al, 2011)

The presence of trustworthy (timely and reliable) QoS examining tools would enable

entities to know whether a failure or performance problem they encounter is caused

by the cloud operator, network platform, or design of the software. This can play a

key role in the actual take up of cloud technology, since enabling users to get the

complete value of cloud facilities would augment the trust level placed in the cloud

technology (Cicotti et al, 2011).

A quality model intended for services in the cloud should be computable, unbiased

and confirmable, to enable cloud operators measure the QoS delivered, and cloud

clients can confirm the QoS experienced (Zheng et al, 2014).

According to Cedillo, Gonzalez-Huerta, Abrahao, & Insfran (2015), in cloud

solutions, amongst the shortcomings of QoS measuring tools is in their portability

capability. This supports the fact that most cloud service QoS tools are vendor

centric and commercial in nature, which makes the tools to be less flexible and

portable and this implies that their results are neither extensible nor comparable with

other platforms.

A closer look at the highlighted cloud QoS models depicts that they are closely

designed based on the internal architecture of the physical platform of the solution

provider and thus a performance measuring tool developed based on these models

can not be used across different cloud service providers.

 59

In instances where the tool is used across several vendors, it is as a result of the tool

being customized for the various cloud service providers through their open APIs.

This limits comparability of the measured QoS incase one is at cross roads on which

cloud vendor to use. Further incase one has procured various cloud providers for

redundancy, direct comparison of performance is not possible with tools developed

using this models.

Using the identified cloud QoS monitoring models and their associated monitoring

tools, it is possible to derive a QoS Monitoring Framework from which the models

are anchored on, thereby converting it from an implicit Conceptual QoS Monitoring

Framework to an Explicit Conceptual Monitoring Framework.

According to Vliet (2007), an implicit conceptual model is made of the background

knowledge shared by people in the Universe of Discourse. The fact that the

knowledge is widely shared leads to ‘of course’ assertions by those within the

Universe of Discourse, because this knowledge is taken for granted.

Part of the implicit conceptual model is not articulated and has tacit knowledge,

which is skillfully applied and functions in the background. According to Vliet

(2007), an implicit conceptual model contains habits, customs, prejudices and even

inconsistencies. The explicity in the Conceptual Monitoring Framework is by the fact

that it must be able to be communicated to the various stakeholders.

 60

2.9. Existing Cloud QoS Monitoring Framework Formulation

In the context of Information Systems, a framework can be viewed as a structuring of

ideas whose value arises from the arrangement it imposes on the ideas in a given

Information Systems field (Gorry & Morton, 1971).

An Information System Framework is therefore by definition, a still image, a portrait,

and which is not intended to explain how information systems are developed in the

various areas. For this purpose one would have to use a process model of information

system implementation (Gorry et al, 1971).

According to ISO 13236 on Information Technology -Quality of Service Framework,

the standard defines its QoS Framework as a well thought out pool of concepts and

how they are related that explains QoS (Quality of Service) thus enabling the

partitioning of, and relations between, the themes pertinent to QoS in Information

Technology (IT) to be communicated by a common means of explanation (ISO,

1998).

The ISO 13236 Information Technology -Quality of Service Framework states

vocabulary and thoughts for QoS in IT, defines how QoS needs can be stated, and

finds several QoS mechanisms like the three-party negotiation, usable as components

of managing QoS tasks to meet various kinds of QoS requirements, and offers a basis

for the description of enhancements and extensions to planned or existing standards

(ISO, 1998).

The ISO 13236 Information Technology -Quality of Service Framework does not

give a basis of specifying objectives on performance or network signaling of QoS in

public communications networks and excludes the detailed specification of QoS

mechanisms (ISO, 1998).

 61

ISO Guide 73:2009 on Risk Management -Vocabulary, describes a framework for

risk management as a suite of components containing the foundations and

arrangements for the organization used in planning, executing, monitoring, assessing

and continually refining risk management in the organization (ISO, 2009).

The ISO guide 73:2009 further expounds that the foundations are composed of the

policy, related goals, the firm’s mandate and its pledge to manage risk; while

organizational arrangements comprise of the plans, the relationships, the

accountabilities, the resources, the processes and related activities.

A framework can be considered as an integrating metamodel, providing a structure to

help in connecting a suite of concepts, models, and methodologies at a higher level of

abstraction for their linkages or differences to be displayed to assist in understanding

or decision-making (Jayaratna, 1994). The author further defines a methodology as

one’s thinking and actions that have been structured explicitly.

Frameworks therefore help in an important purpose of organizing ideas and

approaches to solving problems in the emerging information systems field (Lucas,

Clowes & Kaplan, 1973).

According to Lucas et al (1973), a framework helps structure ideas about systems and

facilitates communication among professionals. In Academia frameworks play a

critical role for teaching information systems concepts. Frameworks as well provide

new directions and trends for research.

https://www.iso.org/obp/ui/#iso:std:iso:guide:73:ed-1:v1:en:term:1.1

 62

Lucas et al (1973) further postulate that since Information Systems exist to support

decision making, and therefore a framework should be capable of accommodating

dissimilar types of decisions. It should make it possible to get any type of information

required for each different decision category in the framework. The same authors also

state that a framework should have a theoretical basis, which is the aim of the

framework.

Development of an Information System Frameworks needs to adhere to certain

guiding principles, namely global consistency to ensure one coherent framework to

ensure every concept is linked to every other one in a specific, well-established way;

generality to ensure that it is specialisable and extensible in certain situations, to cater

for the various specialized subfields; simple and straightforward as possible for easy

understanding.

An Information System Framework also needs to be anchored on information system

concepts in related fields to avoid creation of an isolated framework incompatible

with other related fields, and therefore provide a conceptual foundation, to enable it

serve as a foundation from which one can build other extensions. (Falkenberg, Hesse,

Lindgreen, Nilsson Han Oei, Rolland, Stamper, Van Assche, Verrijn-Stuart & Voss,

1998).

From one Information System Framework, the same solution can be described, for

different usages, in dissimilar ways, leading to different types of descriptions

(Zachman, 1987).

Thanh and Helfert (2007) in their work on a review of quality frameworks in

information systems, proposed an Information System Framework that is anchored on

Information System Architecture that considered the perspectives of the User and

Developer of the Information System.

 63

Vidgen, Wood and Wood-Harper (1994) suggested a framework to describe software

quality anchored on the multiview method of development (Wood, 1992; Wood-

Harper & Avison, 1992). The authors postulated that various viewpoints of software

quality are needed for one to evaluate product quality effectively. The framework is

anchored on user satisfaction, linking the product with its usage as well as the

services offered to support it.

Wong and Jeffery (2001) developed a framework for evaluation of software quality

based on the motivation behind the evaluation. It was grounded on the belief that

evaluators of software are swayed by their roles on the job. According to Wong and

Jeffery (2001), participants with dissimilar job roles were found to pay attention on

different characteristics sets of the software when assessing software quality.

The theoretical foundation for developing such a framework was anchored on the

theory retrievable from cognitive psychology, which was also embraced by Gutman’s

Means-End Chain Model, that postulates that connections between product features,

consequences created by use, and personal ethics of the users determine the process

of making decision or, in this instance, the process of software quality evaluation

(Wong & Jeffery 2001).

Based on the foregoing literature review on frameworks, this research defines a

framework as an encapsulation of ideas, rules, concepts and fundamental principles

of a particular domain or system in a static and structured way, and how they are

interrelated, to aid in better understanding of the system or domain and in decision

making processes.

 64

Further, it can be deduced from the literature reviewed that a framework factors in

various aspects of the domain, namely the different stakeholders which influences the

view perspective of the framework, the underlying theoretical basis (if any), the

various concepts of the system/domain, the underlying principles or set of rules of the

domain /system, the aim of the framework, methodologies and the problem to be

addressed by the framework.

Using the identified aspects of a framework, the formulation of the existing cloud

QoS monitoring framework involved listing all the identified aspects required for a

framework, reviewing the various models of QoS monitoring in the cloud and the

existing cloud QoS monitoring tools. After identification of the various aspects from

the models, an interrelationship between the identified aspects was deduced. The Key

aspects considered for the existing framework were stakeholders, view/perspective,

aim and concepts.

From the existing cloud QoS monitoring models reviewed, the stakeholders were

identified as Cloud solution Providers and the Cloud solution Users. The perspective

captured by the existing cloud QoS monitoring models is that of the Cloud Service

Providers. The QoS is monitored from the provider’s physical platform up to the

cloud virtual platform. The QoS from the cloud virtual platform to the end user is not

factored.

The aim of the models is to help in enforcement of the Service Level Agreements

signed by the Cloud Provider and those using their Cloud Services. The monitoring

also helps the Cloud Service providers to know the utilization level (load level) of

their physical resources and determine whether to increase or maintain the quantity.

The basic concepts addressed by the reviewed models are monitoring layers of the

cloud solutions, tests and metrics to be monitored, namely, computation based and

network based.

 65

Based on the reviewed Cloud QoS monitoring models an architectural diagram for

the existing framework under which monitoring is done, as derived by this research,

is as depicted in Figure 14.

Figure 14: Existing Cloud QoS Monitoring Framework

 66

2.10. Comparable Studies on Developing Multi Cloud QoS Monitoring
Frameworks

There have been efforts by other researchers in devising QoS monitoring frameworks

and models that can be used for monitoring the QoS of different cloud providers as

well as comparing their performance and subsequently ranking them in some

instances.

Zeginis, Kritikos, Garefalakis, Konsolaki, Magoutis and Plexousakis (2013) took

cognizant of the fact that examining the performance and functionality of services

actualized on various cloud providers platforms and modifying them to events

produced by various layers of the cloud (PaaS, IaaS and SaaS) in a managed way are

research problems for the research community.

To address the challenge, Zeginis et al (2013) proposed an Event Based Multi Cloud

Service Applications Framework, which is an events pattern concept for cross-layer

cloud services monitoring, which exploits dependencies among layers. The concept

distributes mechanism for monitoring across cloud providers by integrating

monitoring means in each cloud platform layer and across multiple cloud providers.

The events pattern concept is made of a Monitoring Engine for gathering cross-layer

events during service execution, as well as an Adaptation Engine for enabling cross-

layer variation actions, that in charge of communicating events via publish/subscribe

means.

The model comprises of a manager module, which retrieves results, and then keeps

them in a time-series database, after which it reports the noticed violations via the

publish/subscribe means to Adaptation Engine instance. The architecture of the Multi

Cloud Service Based Application Framework is shown in Figure 15.

 67

Figure 15: Event Based Multi Cloud Service Based Applications Framework

Source: Zeginis et al (2013)

The Multi Cloud Service Based Framework relies on existing tools, for example

cloudify and Amazon cloud watch to perform the actual monitoring. From the

description Zeginis et al (2013), it turns out the events pattern concept is a framework

that collates data monitored by various tools for analysis. Further, the open source

esper client used in monitoring events as captured by the different monitoring tools

has to be modified to interface with the various tools.

Since the tools in use are not vendor neutral, they end up monitoring only the clouds

for which they have been designed to monitor. Further, the results from these tools

cannot be used to compare various cloud providers’ performance for choice decision

making.

 68

Introducing multiple-cloud platforms like VMware, HyperV and OpenStack, and

measuring important features from a centralized location, according to Vicic and

Brodnik (2014), is a daunting task. Vicic and Brodnik (2014) argue that cross-cloud

monitoring leads to the challenge of upholding compatibility amongst dissimilar

properties in different clouds which is compounded by the fact that APIs of different

clouds are quite different. From Vicic and Brodnik (2014) it is concluded that every

cloud implementation model has unique requirements and needs unique approaches.

To solve the challenges of multi cloud monitoring, Vicic and Brodnik (2014)

developed a Multiple-Cloud Monitoring platform for IaaS cloud services that relied

on having access to the information concerning the hosts and virtual machines via

standardized interfaces namely installed probes and API links to the platforms.

The architecture consists of a control system that is in charge of collecting data and

making them available to the SLA control system and to the control dashboard. The

control system is capable of communicating directly with the available interface for a

virtual platform via additional software installed on the control system. Alternatively,

A gateway also known as a translation interface, is implemented for each virtual

platform between the virtual platform and the interfaces used by the control system.

The architectures of the two possible designs are shown in Figure 16 and 17

respectively.

 69

Figure 16: Architecture with Direct Communication

Source: Vicic and Brodnik (2014)

Figure 17: Architecture with Communication through Gateway

Source: Vicic and Brodnik (2014)

The shortcoming of this approach is that it relies on existing vendor specific tools like

the ganglia and nagios and collates the monitoring results from the different tools and

thus the results can not be used across various vendors for performance comparison.

It is thus designed around the architecture of the cloud provider. This approach also

introduces additional hardware (probes) in the networks increasing costs and possible

points of failure as well as point of attack.

 70

An evaluation and ranking framework, was proposed by Upadhyay (2017), namely,

the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), for

cloud services to aid in selection of which provider best satisfies the cloud

requirement of a customer. The framework is composed of a cloud administrator

which is in charge of communicating with the cloud data discovery component to

acquire the needed data for service parameter, cloud data discovery that is made up of

cloud services, cloud monitor component, history manager component and cloud

service discovery.

The cloud administrator component is in charge of evaluating the QoS of the cloud

service by ranking cloud services in the form of indices. The measuring component

of the cloud service receives the customer’s evaluation request for the cloud service.

Tracking of the customer’s SLA with the cloud provider is also done by the cloud

manager component as well as the fulfillment history of those SLAs. One of more

QoS parameters is used by the cloud service measurement component to produce

service index on which providers of cloud services best fit to the user service request

requirements.

The parameters monitored by this framework are speed of VM, memory, scaling

latency, storage performance, network latency and available bandwidth. With each

customer specifying their own SLA with regards to the listed parameters, the

framework keeps a history of what the customer requested and how the platform

performed with regards to those parameters.

The parameters monitored by this framework are speed of VM, memory, scaling

latency, storage performance, network latency and available bandwidth. With each

customer specifying their own SLA with regards to the listed parameters, the

framework keeps a history of what the customer requested and how the platform

performed with regards to those parameters.

 71

The modeling type used was mathematical modeling where equations were

developed from existing literature and on the weights and importance placed on

certain SLA parameters by clients, which the numerical technique of mathematical

modeling used in arriving at solutions to the equations.

The deficiency of this framework is in the fact that it relies on the advertised services

of the cloud service providers and the history of how the SLAs of previous customers

were met by the service provider. Figure 18 illustrates the architecture of the TOPSIS

framework.

Figure 18 : the TOPSIS Cloud Discovery and Ranking Framework

Source: Upadhyay (2017)

It is given that applications that are dependant on the combined usage of various

independent clouds front a challenge of controlling their security due to lack of

knowledge on the security measures put in place by the cloud providers, in addition

to the need to monitor simultaneously the behavior of various individual components

implemented in dissimilar clouds (Rios, Mallouli, Rak, Casola & Ortiz, 2016).

 72

It is on the premise of the security challenges that Rios et al (2016) developed an

SLA-led monitoring of multi-cloud application security compliance framework,

namely, the Multicloud Security Applications (MUSA) framework.

At design time, during the SLA creation process, security levels of the application, as

well as controls and metrics are specified and after the application components are

implemented over the multi-cloud they are continuously monitored at run time.

The MUSA framework distinguishes between multi-cloud and federated cloud set-

ups in that multi-cloud means the usage of various, sovereign clouds by a user or a

service while federated clouds refers to a scenario where a group of cloud service

providers willingly interlink their cloud platforms to enable sharing of resources

amongst themselves (Grozev & Buyya, 2012).

The monitoring of security service level agreements in MUSA is dependent on usage

of various solutions, which are either developed on an ad-hoc basis or are already in

existence as open-source or commercial products to get the metrics required and the

various indicators needed check their validity (Rios et al, 2016).

To give a holistic approach, the security monitoring is hinged on the Montimage

Monitoring Tool (MMT), which uses a combination of Deep Packet Inspection (DPI)

and data mining techniques at both network and application component levels to

collect and analyse measurements.

 73

The Montimage Monitoring Tool is comprised of monitoring agents positioned in

different cloud components for continuously capturing as well as analyzing network

communication in addition system status and monitoring libraries for combining data

captured from different agents, and computing security-related metrics to check the

conformity of service level agreement as well as triggering security alerts or

violations based on the event rules (Rios, Iturbe, Mallouli & Rak, 2017). The MUSA

architecture is shown in Figure 19.

Figure 19: The MUSA Security Assurance Architecture

Source: Rios et al (2017)

 74

The workflow for the MUSA security assurance framework is shown in Figure 20.

Figure 20 : The MUSA Framework Workflow

Source: Rios et al (2017)

The shortcoming of the MUSA framework is that it is limited to security only as the

feature of monitoring of the cloud services, it uses existing commercial tools which

are not vendor neutral, and due to the different tools used it is not possible to use it

for cross vendor performance appraisal.

Rizvi, Roddy, Gualdoni and Myzyri (2017) postulate that after a company makes the

decision to make use of cloud services, the major task ahead is not only choosing the

right cloud service provider, but also constantly monitoring the level of services as

supplied by the cloud service provider. Rizvi et al (2017) argue that this is due to the

fact that the signed cloud service pacts by the cloud user and the cloud service

providers can be inflexible and unmaintained.

 75

To abate the stated challenge, Rizvi et al (2017) proposed a third party auditor model

whereby a third-party auditing body like cloud brokers, cloud carriers, and cloud

auditors can help a cloud user in seeing to it that they receive the assured services

from their selected cloud provider. Similar efforts were also done by Mutulu and

Kahonge (2018) in their work on Mutlitenancy cloud model using QoS.

The model by Rizvi et al (2017) has a three step approach, consisting of an initial

appraisal of any treasured information useful to cloud service agreement, an

evaluation of explicit cloud metrics, and quarterly re-evaluations of the cloud service

agreements. The model’s ultimate goal is building trust amongst the cloud service

user and the cloud service provider. A high level diagram depicting the third party

auditor is shown in Figure 21.

Figure 21: Third Party Audit Model

Source : Rizvi et al (2017)

 76

The challenges posed by the model as proposed by Rizvi et al (2017) is that it

introduced overheads and costs in the cloud computing process, which are, the need

for cloud service brokers (CSB) to source for best cloud service providers (CSP) for

the clients and cloud auditors to perform quarterly review of the cloud services as

provided by the cloud providers.

Further, the Rizvi et al (2017) model relies on the tools of some of the cloud

providers to perform the actual cloud QoS monitoring, like, Intel’s Benchmark Install

and Test Tool, IBM’s CloudBench and Google’s PerfKit. This tools are not only

limited in the number of clouds they can monitor, but could pose trust issues in cases

where the cloud provider being monitored is the same one being monitored or a

competitor’s cloud is being monitored.

Because of service selection overload posed by a plethora of cloud applications,

Azubuike, Olawande and Adigun (2018), proposed a QoS-based rating and choosing

of SaaS applications by use of Heterogeneous Similarity Metrics (HSM).

The Heterogeneous Similarity Metrics (HSM) makes use of combined quantitative

and qualitative dimensions for QoS-based rating of cloud-based services by making

use of synthetically acquired dataset from cloud services.

The Metrics in the Heterogeneous Similarity Metrics are Heterogeneous Euclidean-

Lin Metric (HELM), Heterogeneous Value Difference Metric (HVDM),

Heterogeneous Euclidean-Overlap Metric (HEOM), Heterogeneous Euclidean-Eskin

Metric (HEEM), and Heterogeneous Euclidean-Goodall Metric (HEGM).

However, the Heterogeneous Similarity Metrics (HSM) shortcoming is based on the

fact that it uses artificially generated datasets on the HSM mathematical equations to

rank the various cloud services.

 77

According to Ibrahim, Wasim, Varrette and Bouvry (2018), the quality of the offered

services offered is not guaranteed by the service level agreement by the fact that it is

just a contract.

It is on this premise that Ibrahim et al (2018) proposed an automatic framework

named PeRformance Evaluation of SErvices on the Cloud (PRESENCE), to appraise

the QoS and service level agreement fulfillment by Web Services obtained from

several cloud service providers.

PRESENCE is based on the multi agent system, each agent is responsible for a

particular performance metric monitoring a certain aspect of the QoS. Other

components of PRESENCE are monitoring and modeling module which is

responsible for collecting the data from the agent, stealth module which is responsible

for dynamically modifying and balancing the pattern of the workload of the

amalgamated metric agents to make the resultant traffic similar to the routine traffic

from ordinary users from the cloud service provider viewpoint (Ibrahim et al, 2018).

PRESENCE has also a QoS aggregator virtual in nature and service level agreement

checker component, which is in charge of assessing the QoS and service level

agreement compliance of the service accessible from the considered cloud service

providers and PRESENCE client also known as Auditor that is in charge of relating

with the selected cloud service providers and assessing the QoS and service level

agreement observance of web services.

 78

An architectural diagram of PRESENCE depicting the various subcomponents is
shown in Figure 22.

Figure 22: PRESENCE Architectural Diagram

Source: Ibrahim et al (2018)

Whereas the framework can be of use in matching the performance of several cloud

service providers, it relies on artificially generated data, which travels alongside the

usual natural traffic of users. Further, the fact that the agents have to be customized

for each cloud provider, the credibility of comparisons is in doubt since the agents

taking the measurements do no have the same configurations and internal set ups.

 79

As acknowledged by Alhamazani, Ranjan, Jayaraman, Mitra, Liu, Rabhi,

Georgakopoulos and Wang (2019), contemporary cloud measuring frameworks are

by large incompatible across various cloud service providers.

To abate the shortcoming, they proposed Cross-Layer Multi-Cloud Application

Monitoring as well as Benchmarking as a Service (CLAMBS). CLAMBS has a

capability of service monitoring as well as benchmarking of specific individual

components of the application like databases and web servers, that are spread within

cloud layers (*-aaS), and spread among various cloud service providers.

According to Alhamazani et al (2019) CLAMBS makes use of an agent based

technique for cross-layer, multi-cloud resource or application monitoring plus

benchmarking. It is made up of three key components, which are the Monitoring

Agent, Manager and Benchmarking Agent.

The manager gathers QoS data from Monitoring Agents while benchmarking

information is obtained from benchmarking agents, which run on various virtual

machines (VMs) across multi-cloud providers as well as environments.

The monitoring agents reside in the virtual machines executing the application,

collecting and sending QoS data as required by the manager. The benchmarking

agent has standard functions for measuring network performance between the data

center(s) hosting the application service and the user of the application (Alhamazani

et al, 2019).

The benchmarking as well incorporates a load-generating component which generates

traffic to benchmark the application based on a given workload model. Figure 23

depicts the various components of the CLAMBS model.

 80

Figure 23: CLAMBS Architecture

Source: Alhamazani et al (2019)

Whereas CLAMBS is multi platform in nature in that it can monitor various cloud

platforms, it is not a purely vendor neutral model in the sense that the agents as

deployed is the various cloud platforms have to be modified to be able to integrate

various different cloud platforms. The user therefore will be limited to the cloud

vendors for which the CLAMBS model has already been customized for.

 81

2.11. Evaluating Trust in Information Systems

Works on social virtues and prosperity by Fukuyama (1995) states that trust is the

anticipation that ensues within a group of regular, sincere, and behavior that is

cooperative in nature, founded on generally shared norms, on a segment of the

members of the group.

In developing an integrative model for trust in organizations, Mayer, Davis, and

Schoorman (1995) describe trust in terms of the readiness of a party to be susceptible

to the actions of another party based on the anticipation that the other will implement

a particular action vital to the trustor, regardless of the ability to control or monitor

that other party.

Three features of another party in which opinions of trust can be founded, namely,

integrity, benevolence and ability were further identified by Mayer et al (1995). The

work on responses to crisis in organizations, by Mishra (1996), in particular on the

centrality of trust, lists four dimensions of trust, namely, competence, reliability,

concern and openness.

Based on the reviewed works, in the context of QoS measurements in Information

Systems, this research defines trust as the level of confidence a service user has over

the QoS measurements results presented by the service provider.

Trust is considered a non functional property of a service, according to Zainab, Perry

and Capretz (2011), which can be used in service selection, in cases where there are

similar services on offer.

 82

To evaluate the trustworthiness of a service or service provider, trust metrics are

required. Zainab et el (2011) define trust metrics as the information of an entity that

is required and used to evaluate the trustworthiness of the entity, with an entity being

a service or service provider.

A summary of the trust metrics developed by Zainab et el (2011) is depicted is Figure
24.

Figure 24 : Trust Metrics

Source: Zainab et el (2011)

Trust based approaches for online service choice, as proposed by Drogani (2009), are

Direct Experience, Third Party Trust, a Hybrid approach and Trust Negotiation. This

research focuses on the direct experience approach. The approaches are summarized

in Figure 25.

 83

Figure 25: Trust Based Approach for Service Selection

Source: Drogani (2009)

According to Chu, Harley and Xu (2016), key mechanisms for measuring the

trustworthiness of a computing platform includes usage of the system of concern and

related features, alongside states and behavior; threats comprising of errors, faults and

flops caused by intentional actions like attacks or unintentional actions; use of key

metrics of trustworthiness; and means to develop trustworthy systems and

relationships between assessment like vulnerability assessment, penetration testing,

red teaming, and submetrics or attributes of a metric for trustworthiness.

The concept of initial trust, which is trust granted in an unfamiliar entity, system or

person, in a setting where the actors do not yet have credible, meaningful information

about, or affective bonds with each other was introduced by McKnight, Cummings

and Chervany (1998). Credible information is acquired after parties interact with one

another for some time.

A trust model on how to Develop and Validate Trust Measures in e-Commerce

settings, using an Integrative Typology, containing trusting beliefs, as well as

disposition to trust, trusting intentions and institutional based trust, was proposed by

McKnight, Choudhury, and Kacmar (2000). The model is as shown in Figure 26.

 84

Figure 26 : Web Trust Model

Source: McKnight et al (2000)

A framework for measuring trust in organizations was developed by McEvilya and

Tortoriellob (2011), in their work on measuring trust in organizational research. The

framework is shown in Figure 27.

 85

Figure 27 : Framework for Measuring Trust.

Source: McEvilya and Tortoriellob (2011)

The turnaround trust model for measuring trust was postulated by Gholami and Arani

(2015). In the turnaround trust model, trust is computed based on equation 1 to 5 as

derived by Manuel (2013).

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑜𝑜𝑜𝑜 𝑅𝑅𝑘𝑘 = 𝑊𝑊1 ∗ 𝐴𝐴𝐴𝐴 + 𝑊𝑊2 ∗ 𝑅𝑅𝑅𝑅 + 𝑊𝑊3 ∗ 𝐷𝐷1 + 𝑊𝑊4 ∗ 𝑇𝑇𝑅𝑅

𝑤𝑤ℎ𝑒𝑒𝑇𝑇𝑒𝑒 W1 + W2 + W3 + W4 = 1 and 𝑅𝑅𝑘𝑘 = 𝑇𝑇𝑒𝑒𝑇𝑇𝑜𝑜𝑇𝑇𝑇𝑇𝑟𝑟𝑒𝑒 𝑘𝑘

Equation 1

The weight values (W) are assigned depending on their priority as well as trust

assessment criteria, with AV representing availability, while RE represents reliability,

followed by DI which is data integrity and finally TE is response time performance

 86

The availability of a given resource (Rk) is computed as a ratio of the accepted jobs

against the total number of jobs submitted per given time period.

Availability of (AV) of 𝑅𝑅𝑘𝑘 =
𝐴𝐴𝑘𝑘(total accepted jobs)
𝑁𝑁𝑘𝑘(total submitted jobs)

 Equation 2

Reliability of a given resource (Rk) is computed using a ratio of the total completed

jobs against the total accepted number of jobs.

Reliability (RE) of 𝑅𝑅𝑘𝑘 =
𝐶𝐶𝑘𝑘(total completed jobs)
𝐴𝐴𝑘𝑘(total accepted jobs)

 Equation 3

Data Integrity of a resource is a computation of the ratio of jobs completed with

integrity preserved by a given resource (Rk) against number of total jobs completed.

Data Integrity (DI) of 𝑅𝑅𝑘𝑘 =
𝐷𝐷𝑘𝑘(No of Integrity preserved)
𝐶𝐶𝑘𝑘(total completed jobs)

 Equation 4

Turnaround Efficiency for a job by a given resource (Rk), which is time taken to

complete a task computed as:

Turnaround Efficiency (TE) of Rk =
Promised Turnaround

Actual Turnaround time
 Equation 5

The pictoral resprentation of the turnaround trust model is depicted as shown in

Figure 28.

 87

Figure 28 : Turn Around Trust Model.

Source: Gholami et al (2015).

Trust has been noted to be dynamic concept dividable into three growth phases:

building of trust, which involves forming trust; stabilizing of trust, in a scenario

where trust already exists; and termination of trust, in which case trust ends (Grabner-

Kräuter & Kaluscha, 2008).

A Computationally Grounded Quantitative Trust with Time, by Nagat, Jamal and

Hongyang (2020), introduces a model for computing the degree of trust. The model,

known as the model of Trust Computation Tree Logic (TCTL𝐺𝐺) is defined as a tuple:

𝑀𝑀𝐺𝐺 = (𝑆𝑆𝐺𝐺, 𝐼𝐼𝐺𝐺, 𝑅𝑅𝐺𝐺, {∼𝑖𝑖→𝑗𝑗 |(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴𝐴𝐴𝑇𝑇2}, 𝐴𝐴𝐺𝐺) where: 𝑆𝑆𝐺𝐺 is a non-empty set of

attainable global states of the system; 𝐼𝐼𝐺𝐺 ⊆ 𝑆𝑆𝐺𝐺 is a set of initial global states; 𝑅𝑅𝐺𝐺 ⊆

𝑆𝑆𝐺𝐺 × 𝑆𝑆𝐺𝐺 is the conversation relation;

∼𝑖𝑖→𝑗𝑗 ⊆ 𝑆𝑆𝐺𝐺 × 𝑆𝑆𝐺𝐺 represents direct trust accessibility relation for each truster-trustee

pair of agents (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴𝐴𝐴𝑇𝑇2 defined by 𝑇𝑇 ∼𝑖𝑖→𝑗𝑗 𝑇𝑇′ iff: 𝑙𝑙𝑖𝑖 (𝑇𝑇)(𝜈𝜈𝑖𝑖 (𝑗𝑗)) = 𝑙𝑙𝑖𝑖 (𝑇𝑇′)(𝜈𝜈𝑖𝑖 (𝑗𝑗)),

and 𝑇𝑇′ is attainable from 𝑇𝑇 using transitions from the transition relation 𝑅𝑅;

 88

𝐴𝐴𝐺𝐺: 𝑆𝑆𝐺𝐺 → 2𝐴𝐴𝐴𝐴 is a labeling function, with 𝐴𝐴𝐴𝐴 being a set of non-divisible

propositions. The model starts by defining local and corresponding global states of

the agents in trustworthy states. Trust of i towards j, (∼𝑖𝑖→𝑗𝑗), exists only if the

element values of local and global states of the two agents are same.

This model has a shortcoming with regards to the need to define all possible states in

the system states that are considered to be trustworthy from the vision of agent 𝑖𝑖 with

regard to agent 𝑗𝑗. In a multi agent system with many agents, the combinations that

will result from this arrangement will be enormous.

The model is also limited to a multi agent system, which is under a single

administrative domain. In disparate systems under different domains, it is not

possible to define the trust worthy states to be used by agents from the disparate

systems.

A quantitative framework for accessing cloud security, using a dependency model

that validates both the offered services and customer’s requirements validated by

checking service conflicts and different Service Level Obligation compatibility

issues, is proposed by Taha (2018).

The proposed dependency model is composed of five stages, namely, Security

requirements definition, Requirements Quantification, Dependency management

approach, Structuring security SLA services using Dependency Structure Matrix and

Cloud Service Provider Evaluation.

The proposed framework and model suffers from the limitation of the fact that

customers are only able to trust the result of the proposed assessment as long as the

information taken as input is reliable (Taha, 2018).

 89

This calls for the use of an independent auditor to perform a third-party attestation of

the cloud provider’s security SLA through a scheme such as the Cloud Security

Alliance Open Certification Framework, as well as the fact that the model is limited

to security issues of the cloud based services only.

A composite trust metric, consisting of impression and confidence was introduced by

Yefeng, Ping, Lina and Arjan (2017). The authors advance the fact that trust can be

composed using algorithms by observing past events, such as good or bad evidence

or responses on social platforms.

The proposed framework by Yefeng et al (2017) is based on measurement theory,

Dempster –Shafer belief theory, and error propagation theory. The framework has

three phases, namely, trust modeling, where trust related information is mapped on

trust metrics. For example, reviews and proposition from users of epinions.com, likes

and dislikes from users of Facebook.

The second phase is trust inference, which focuses on spreading and combining the

collected metrics of trust over the entire network or the portion of interest, while

decision making using the measured trust is the final phase.

The widely used metrics for trust depiction are binary metrics, scaled metrics,

probability based metrics and similarity based metrics are used (Yefeng et al, 2017).

The proposed framework uses a model expressed as: T (m, c), where m measures

how trustworthy from truster’s point of view the trustee is, while, c which is

confidence measures to what extent the truster is in terms of believing in the

evaluation of impression/trustworthiness m.

 90

The modeling for the trust values for the epinios.com platform is computed as: To

obtain a relation with regards to trust from user A to user Z, the impression m is the

mean of assessments that A rates Z’s review articles. Which thereafter is converted

into a value in [0, 1] as:

For twitter, interactive tweets are used to build trust using sentiment analysis. Using

sentistrength, an analysis is constructed for each tweet, which gives a discrete score

from −4 to +4 for every tweet. This is then converted into discreet values into the

interval [0, 1], using the equation:

((Sentiment+4)/8).

Whereas this model develops measured values for trust, it is a highly subjective

process. The reviews, likes, dislikes are all assigned by users based on their

perceptions, moods, social cultural inclinations and subjective interpretations. These

user perceptions are likely to change with time, or as new information emerges and

are thus not objective hence not suitable for use in scientific modeling.

To address the highlighted shortcomings in existing trust models, Makokha, Chepken

and Opiyo (2021) proposed an End User Centric Quantitative Trust Model in Cloud

Computing. The quantification of trust is meant to evaluate trust and generate a

binary value of one (1), if true exists, and Zero (0), if there is no trust

 91

The proposed model is pictorially represented in Figure 29.

Figure 29 : Proposed Trust Quantification Model

 Source: Makokha et al (2021)

The End User Centric Quantitative Trust Model is premised on the fact that cloud

computing solutions have embedded capabilities to monitor and measure QoS. The

capability measures QoS as provisioned by the provider, the results are then available

for users to query from the providers’ systems.

A comparison can thus be made with the results from the same cloud platforms

obtained using a vendor neutral QoS monitoring model developed by Makokha et al

(2019), which measures QoS across all cloud providers. This comparison can then be

modeled quantitatively, resolving to one (1) if the results from the service provider

are within the 95% confidence interval of the results from the vendor neutral tool,

thus signifying trustable results and zero (0) otherwise.

 92

2.12. Research Gulf

From the synthesized literature with regards to QoS monitoring in cloud computing

solutions, there exists a gulf in so far development of non intrusive cloud QoS

monitoring tools is concerned. All existing models and the associated tools from the

models are anchored on the architecture of the cloud platform on which they measure

the QoS. This is realized by use of either APIs, customized agents or adaptation

layers between the cloud architecture and the monitoring tools

There also exists a gulf in so far as the perspective from which QoS is monitored in

cloud computing solutions, as depicted in the existing QoS monitoring framework.

The existing cloud QoS monitoring framework monitors QoS from a cloud service

provider perspective, making it a vendor centric framework. The existing framework

further helps cloud providers to know the utilization levels of the cloud platforms to

make decisions on whether to increase physical resources. Unfortunately, the cloud

user is left with no option but to rely on information as received from cloud

providers. The information received from cloud providers, about the performance of

their platforms during SLA evaluation, is not sufficient for the client to build

confidence in cloud platforms.

This research set out to address the research gulf of vendor intrusiveness of existing

cloud QoS models and tools as well as vendor centricity of the cloud QoS monitoring

framework and model, as evidenced by lack of classical and contemporary literature

addressing the two issues.

 93

2.13. Chapter Summary

This chapter reviewed existing knowledge in the realm of cloud computing, noting

the various cloud computing service models and the reasons as to why an

organization may or may not embrace cloud computing.

The chapter also reviewed the concept of quality of service monitoring in the broader

Information and Communication Technology sector, before narrowing down to the

quality of service monitoring in cloud computing platforms. This resulted in review

of various quality of service monitoring models in cloud computing platforms.

The concept of vendor neutrality in so far as quality of service monitoring is

concerned was reviewed, with the current framework within which quality of service

is monitored being derived. This chapter noted efforts by other researchers to solve

the problem of vendor neutrality in cloud quality of service having identified the

research gulf that exists.

 94

CHAPTER THREE: METHODOLOGY

A researcher’s adopted research methodology is anchored on a certain chosen

research philosophy. Whereas there is convergence on the definitions of research

methodology, it is difficult to define research philosophy with precision, and the

attempt to do so forms an interesting and important part of philosophy itself (Stewart,

Blocker & Petrick, 2013). A methodology as embraced by a researcher during a

research process, refers to the researcher’s own thinking and actions structured

explicitly (Jayaratna, 1994). This understanding is echoed by Kothari (2004), who

reasons that research methodology refers to the steps adopted by a researcher in

solving the research problem and the logic behind the steps taken. This involves

selection of certain steps over others, stating the criteria used in selection of those

steps and the reason for use of that particular criteria. The thinking, the logic and the

actions behind the research methodology, are guided by a research philosophy.

3.1 Research Philosophy

Philosophy has been defined as the use of a rational and reflective method in

attempting to get at the most basic underlying principles of a phenomenon and to

discover normative criteria (Stewart et al, 2013), while a research philosophy is what

a researcher perceives or believes to be truth, reality and knowledge about a

phenomenon under study (Gemma, 2018).

Research philosophy has four philosophical dimensions, namely, Ontology which

deals with the nature of reality, Epistemology which handles the nature of knowledge

and the relationship between the knower and that which would be known,

Methodology which deals with the appropriate approach to systematic inquiry and

Axiology dealing with the nature of ethics (Krishna, 2020).

 95

The research philosophical dimensions determine the various research paradigms,

with the paradigms being defined as set of basic beliefs (or metaphysics) that deal

with ultimates or first principles (Lincoln, 1994). They are basic in the sense that they

must be accepted simply on faith, however well argued, and there is no way to

establish their ultimate truthfulness. They therefore represent the researcher’s

standpoint and worldview on how the phenomenon under study should be interpreted

and understood.

The various paradigms under the Epistemology dimension are Positivism which deals

with observable facts, Realism which embraces the fact that what senses see is the

reality, Idealism believes that only the mind and its context exist, Interpretivitism

which postulates that we interpret phenomenon based on meanings we give to them

and Critical Theory which deals with research that challenges those conventional

knowledge bases, assumptions, beliefs held by a social group (Saunders, Lewis &

Thornhill, 2009).

The Ontology dimension has Objectivism which believes that Social entities exist in

reality external to social actors concerned with their existence, Subjectivism which

advances that Social phenomenon is created from the perceptions and consequent

actions of those social actors concerned with heir existence and Pragmatism which

advances the believe that one approach may be better than another in a given research

and its possible to work with more than one approach.

The methodology dimension has Case study, Quantitative and Qualitative as the

various paradigms, with the Axiology dimension taking into consideration ethics,

which is the theory of morality, and aesthetics, the theory of taste and of beauty, as

the paradigms.

 96

This research embraces a blend of research paradigms, namely, positivism, which

deals with observable facts as its research paradigm and is anchored on the

Epistemology dimension of research philosophy, as well as the case study and

quantitative research paradigms which are anchored on the methodology research

dimension philosophy.

At the generic level of deciding on the methodology, one has to determine whether

the research is quantitative or qualitative (Dawson, 2002). Qualitative involves

getting an in-depth opinion from research participants through methods search as

interviews, questionnaires and focus groups while quantitative research aims to

generate statistics.

This research aimed to achieve four main objectives, namely: to develop a high level

client trustable QoS monitoring framework for cloud computing systems, to design a

vendor neutral model that implements the designed framework for SaaS cloud

computing solutions, prototype and evaluate the new vendor neutral cloud

performance monitoring tool and finally to develop algorithms for implementing the

new vendor neutral cloud performance monitoring model. From the objectives, this

research adopted a quantitative research approach.

Kumar (2005) states that qualitative research approaches are often based on deductive

logic while quantitative research approaches are based on inductive logic. This

research being quantitative in nature will have an inductive logic approach. This

chapter highlights, the steps that were used to achieve the four research objectives,

how the steps were arrived at and why the chosen steps.

 97

3.2. Development of a Client Trustable Cloud QoS Monitoring Framework

Development of the framework was done through literature review of the existing

cloud QoS monitoring framework. The strengths and limitations of the identified

framework were analyzed. To aid in better understanding of the existing framework,

existing cloud SaaS monitoring models developed from this framework were

analyzed and their limitations documented.

Further, sample tools developed from existing cloud QoS monitoring models were

highlighted, their applicability, strengths and weaknesses noted. From the literature

review a conceptual framework that addresses the highlighted challenges and

limitations was designed. The process involved in the development of the client

trustable QoS monitoring framework for the cloud, as conceived by this research, is

illustrated in Figure 30.

 No

 Yes

Figure 30: New QoS Monitoring Framework Development Process

Explore how QoS is monitored in Cloud Solutions by
review of existing models and tools

Can a pattern be
established from
reviewed models and
tools

From the pattern derive the
existing framework

Analyze framework for
inherent

challenges/limitations

Design new framework that
resolves identified challenges

 98

3.3. Design of a Vendor Neutral Cloud QoS Monitoring Model

This phase involved both high level designing and low level design of the proposed

vendor neutral Quality of Service monitoring model. The proposed model was

developed from the proposed cloud QoS monitoring framework bearing in mind the

challenges identified in the existing framework of cloud QoS monitoring solutions.

The new framework proposed a change in the location of the QoS monitoring tool

from the provider’s infrastructure (the cloud) to the user’s computing device. This

informed the design of the new model by analyzing the access methods in accessing

SaaS cloud computing solutions.

Given the focus was on SaaS cloud computing solutions, it turned out the common

access method was through the browser, which is situated in the user’s computing

device. To design the proposed QoS monitoring model based on the browser as an

access method, an in depth analysis of the browser architecture and its sub

components was done.

From the browser architecture and its subcomponents, it was discovered that a

browser’s functionality could be augmented through browser extensions. This

discovery necessitated a thorough study of the architecture of browser extensions.

This led to a breakthrough on how to integrate a monitoring capability on the users’

terminal, with a functionality of monitoring SaaS cloud computing solutions. The

process involved in the design of the new SaaS QoS monitoring model, as conceived

by this research, is depicted in Figure 31.

 99

Figure 31: New SaaS Cloud QoS Monitoring Model Design Process

Study the new designed framework and note new key
changes: tool location, purpose of monitoring

Explore various service access methods for SaaS cloud
solutions: browser

Study browser architecture and sub components and
functionalities: browser extensibility

Study browser extension architecture and its
implementation:

Design SaaS QoS model

 100

3.4. Implementation the Designed Vendor Neutral Model

This stage involved developing a SaaS cloud QoS monitoring tool that is based on the

designed cloud QoS vendor neutral model. The preliminary steps were identification

of the cloud QoS parameters to be monitored and exploring if they can be

implemented on the new model.

The methodology used in development of the model was prototyping. The main

motivation for use of prototyping is based on the fact that prototypes unlock cognitive

association mechanisms related to visualization, prior experience, and interpersonal

communication in ways that favour iterative learning between peers in the product

development community (Berglund & Leifer, 2013).

According to Despa (2014), prototyping is an approach that progressed due to the

necessity to outline requirements in a better way, it involves constructing a

demonstration portion of the product that possesses the main functions. Early

requirements are stated to provide only enough information to construct the

prototype.

Further, the prototype helps to improve requirements since it acts as baseline for

interaction between project team and project owner. The prototype is therefore not for

developing into the final software system.

According to Sommerville (2011), a prototype is a first version of an application used

to express ideas and to enable try out of design choices, and discover more on the

problem and potential answers.

 101

This methodology was chosen because the main goal of this study is to gather

specifications as the model is implemented, to gather only sufficient functionality to

enable development of critical model functionality and given that the model to be

developed in not a final product but a prototype.

The development process was done through evolutionary prototyping. This was via

of browser extension developed using JavaScript and Database browser for SQLite

database. SQLite is a library that gets embedded inside the application that makes use

of it. Database browser for SQLite was chosen because it is a light weighted database

hence it can be easily used as an embedded software with devices like mobile phones

as it only loads the required data as opposed to loading entire file, it is fast in terms of

read write operations, and does not require installation on the computer on which it is

being used.

JavaScript was chosen as the development language because by virtue of it being

client-side it executes faster making it run instantly inside the client-side browser, it

is a free technology and does not require one to go through any installation or

configuration procedure and the fact that it is compatible with all modern browsers.

For purposes of this research the browser chosen was Google chrome. This is because

Google chrome is noted as the most extensively used browser having the largest

number of extensions that have been made for it (Sanchez-Rola, Satos & Balzarotti,

2017).

According to evaluations by Tamary and Feitelson (2015), using common

benchmarks for evaluating browser technical performance, Chrome’s rise to

supremacy is coherent with technical supremacy over its rivals and with shrewd

management of feature selection.

 102

The general prototype development processes adopted by this research are as shown

in the Figure 32.

 No

 yes

Figure 32: Evolutionary Prototyping

Develop abstract
system specifications

Document
system

Build Prototype Evaluate and
test

Prototype
adequate?

 103

The overall research process adopted by this study is depicted in Figure 33.

Figure 33: Research Process

Problem Definition and Objective setting

Develop a Cloud QoS monitoring framework that
addresses the noted challenges and limitations

Design a Cloud QoS Monitoring model that
implements the proposed new framework

Develop algorithms to Implement the proposed
model

Prototype and evaluate the proposed model

1. Study of existing cloud QoS monitoring
models and tools for pattern identification.

2. Study of other efforts in Cloud QoS
monitoring framework development

3. Note the challenges/limitations of the
existing frameworks

 104

3.5. Research Design

The arrangement of condition for collection and analysis of data in a research process

has been termed as the research design (Kothari, 2004). It explains how the research

will find answers to the research questions, and includes aspects of the research like

the study design per se and the logistical arrangements that you propose to undertake,

the measurement procedures, the sampling strategy, the frame of analysis and the

timeframe (Kumar, 2011). The research design adopted in this study was the

descriptive research design where variables are measured without influencing them.

In this case, the Internet speeds, and the identified cloud QoS parameters were

measured without being influenced by the researcher, since the aim was to find out

how each provider is performing along the selected parameters.

3.5.1. Sampling Strategy

According to the TechValidate Survey Report on SaaS Application Trends and

Challenges by Akamai (2016), there is a blend of horizontal and vertical applications

implemented as SaaS. Of the horizontal applications 47% were service and support,

41% were business intelligence and Analytics, 31% collaboration, 29% for marketing

and 24% were for sales.

 As for the vertical applications developed 15% were for e-learning applications, 12%

for Finance applications, and 10% for Human Resource applications. These statistics

are depicted graphically in Figure 34.

 105

Figure 34: Categories of Services Implemented on SaaS by Percentage.

Source: Akamai (2016).

According to Kazmi (2018), Horizontal SaaS purpose to offer a broad service that

can cover a broad scale of the market, in various different industries. It is a more

mature model of SaaS having been around for long. Examples comprise of

QuickBooks used in accounting, another is Salesforce as CRM service as well as

HubSpot used for marketing services.

Kazmi (2018) further postulates that vertical SaaS fabricate software that is meant for

use in a very specific industry, purpose-built for clear industry niches and being a

recent trend it is not as mature as horizontal SaaS.

Examples include BioIQ an application for testing ones health, Health Assurance

Plan an application that enables creation of membership plans for allows dental

practices and Guidewire an application used by the insurance sector (Kazmi, 2018).

 106

The other horizontal SaaS example is Office 365 cloud-based productivity tools

offered on a subscription basis (Kaplunou 2020). According to Churakova and

Mikhramova (2010), the various key providers per SaaS market segment are as

shown in Table 5.

Table 5: Key SaaS Providers per Market Segment

SAAS MARKET SEGMENT KEY PLAYERS
Content, Communication and
Collaboration (CCC)

Cisco WebEx, SumTotal, IBM
Lotus

Customer Relationship Management
(CRM)

Salesforce, Oracle, RightNow

Enterprise Resource Management
(ERM)

SAP, NetSuite, Workday

Supply Chain Management (SCM) Descartes, Ariba, Ketera
Office Suits Google, Zoho
Digital Content Creation (DCC) Youtube, Adobe

Source: Churakova and Mikhramova (2010)

From Table 5, and based on the most common application of SaaS from Figure 34,

the market segments that were considered for this research are Customer Relationship

Management and Office Suites, where the key providers chosen for testing were

Salesforce and Google respectively.

Oracle and RightNow were not chosen because they do not provide a platform for

trials but only provide an opportunity for demos to be carried out for potential buyers.

This would have been difficult for this research to monitor the QoS of the platforms

for a prolonged period of time.

Further, from the analysis of Horizontal and Vertical applications, this research

focused on horizontal SaaS applications, because they cut across different industries

and thus testing results based on them can be used for generalization of SaaS

performance.

 107

The most commonly implemented SaaS, namely service and support, Business

Intelligence and Analytics, Collaboration, and Sales & Marketing were considered.

From examples provided by Kazmi (2018), this research focused on Salesforce,

Hubspot Office 365, Google Office suites and Shopify which offers a platform for

setting up an online shop with full marketing and CRM features.

The choice of the cloud providers was also made using judgmental sampling where

the length of the trial period, presence of free software and the tasks that can be done

during the trial period were considered. The trial was performed using solutions from

four global SaaS service providers who are Salesforce, Hubspot, Google docs from

Google and Shopify.

The leading applications from the two main market segments for SaaS, namely,

Customer Relationship Management (CRM) and Office suites were selected, while

for performance comparison in the same market segment e.g. office suites, the top

two leading SaaS providers, Microsoft and Google were selected. The ranking

information was from Datanyze (2021).

The logic for testing with the leading player per market segment is that this would be

established firms, with their platforms having matured and therefore the QoS is also

expected to be to the satisfaction of the users. Hubspot was chosen because it offers a

free Customer Relationship Management System for small enterprises, albeit with

limited features. The tasks executed on Hubspot were configuring customers on the

Hubspot CRM, setting commodities for selling and configuring prices.

Shopify was chosen because it offers a free platform for setting up an online shop for

small enterprises. The tasks executed on Shopify were setting up an online store,

designing products and setting their prices and executing sales after generating

invoices.

 108

Salesforce.com was chosen because it has a 30 days trial version. The tasks executed

were product configuration, price quoting, billing and basic customer relationship

management tasks.

Google docs was chosen because the applications provided are part of open, web

enabled office software set provided by Google. The tasks executed were opening,

using, closing and re opening Ms Excel , Ms word, and Ms Power Point applications.

Microsoft office 365 was used for comparison purposes with Google docs.

3.5.2. Study Design

As pointed out by Kumar (2011), a research design should not be confused with a

study design, emphasized as study design per se, and involves the set up of the data

collection conditions, when to collect the data, how long or how often to collect the

data, what data to collect, and whether the researcher should vary the conditions of

the set up, whereas the research design also includes other parts which constitute the

research process.

This research sought to compare performance of various cloud service providers,

using quantitative data. In view of the quantitative nature of required data, the

research used cross sectional study design. Cross sectional study design are useful in

obtaining an overall picture as it stands at the time of the study (Kumar, 2011). For

comparing the performance of two providers offering similar services, like in the case

where Microsoft’s Ms office was compared with Google docs, the study design used

was comparative case study design.

Dimensions of QoS utilized during the testing were response time from the

application, availability of the application and application stability. This is because

the identified dimensions are the basic QoS metrics in any SLA between a cloud

provider and their clients.

 109

The time taken to respond by the service was measured as the time that lapses from

the time a user clicks the open button to the time the application is fully open and

ready for use. From this value, average response time was also computed.

The Service availability was computed by counting the number of instances when a

user clicks an open button and the application returns an error instead of opening the

application. Stability was computed from variations in service response time.

Timings were done and recorded during the execution of the tasks to ascertain how

long the application takes to initialize and counts were done to note how many times

during the execution period is the application not available.

The testing process involved execution of tasks throughout the day, to emulate

normal user activities on the cloud, for a period provided by the trial period offer of

the cloud service provider. The results were then stored in form of reports per each

instance the test was conducted and an average for the trial period computed. The

testing period was from 14th September to 27th October 2020, with thirty (30) runs on

each of the platforms, amounting to using the platform each working day of the

testing duration.

Throughout the testing process, factors that affect the upload and download speeds,

namely Internet speed, Internet service provider and the specifications of the

computer were kept constant. The only factor left out was the location of servers,

which is based on the Content Distribution Network provider used by the cloud

service provider.

 110

According to Arie (2021), a CDN, which is a Content Delivery Network, refers to a

worldwide network of distributed web servers also called Points of Presence (PoP),

aimed at providing faster delivery of content. The content is duplicated and made

available in the entire CDN so that users have access to the data stored at a locale

closer to them. Benefits of using CDN include reduction in costs of bandwidth, page

load times improvement, as well as increasing the global availability of the content.

In this research therefore, the Internet speed and the specifications of the testing

process platform were constant in all test and are therefore considered as the

independent variables. The QoS values obtained for the various cloud providers’

platforms would therefore vary with the Internet speed and are therefore considered

dependent variables.

The location of the Content Distribution Network servers used by the different cloud

providers is an aspect that affects the QoS values measured. This is based on the

providers’ choice of the cloud provider on whom to contract for the Content

Distribution Network services. This aspect was not part of the test but it affects the

values measured and is therefore considered as an extraneous variable.

 111

3.5.3. Testing Procedure

The actual tasks performed on the chosen SaaS cloud providers during the testing

process for the various cloud computing platforms involved usage of the platform in a

way an ordinary user would use the platform.

For Hubspot, the tasks performed were opening the platform and monitoring how

long it took for the platform to be fully initialized, configuring customers and

measuring the time used to update the details and configuring products while

measuring the time used for updating and loading of the respective tasks.

On the Shopify platform, the tasked involved opening the platform and monitoring

the duration taken to fully initialize the platform, creating an online shop and

monitoring the duration it took to update the details, configuring products and prices

and monitoring the time taken to update details and generating invoices while

updating sales, monitoring the time it took for the updates to be effected.

The Salesforce tasks involved opening the website monitoring how long it took

before the sales application was fully initialized, configuring product details,

monitoring how long it took for the various product details to be captured by the

system e.g. time taken for image upload, time taken to save captured details and

monitoring the time it took to generate invoice against a given number of orders.

The Google docs testing tasks involved opening the apps website while monitoring

the time it took for the apps to be fully initialized, opening the specific online app

namely, word, Excel or power point and monitoring the time it took for the app to be

fully initialized and ready for use, after using the app, the contents were saved and

time it took for the contents to be saved and the app ready for use was monitored as

well.

 112

The Office 365 platform testing tasks involved opening the apps website while

monitoring the time it took for the apps to be fully initialized, opening the specific

online app, namely word, Excel or power point and monitoring the time it took for

the app to be fully initialized and ready for use, and after using the app, the contents

were saved and the time it took to for the contents to be saved and the app ready for

use monitored.

For all the identified tasks, the QoS monitoring tool was capturing the Internet speeds

on the user terminal, from the time the user submits data, to the time control is

returned to the user for action, and the time taken for the user requests to be

responded to and control handed back to the user.

3.6. Verification and Validation Methodology

Within the context of modeling scientific knowledge, verification refers to internal

consistency, whereas validation refers to justification of knowledge claims (Barlas &

Carpenter, 1990).

The proposed framework was verified by checking for compliance with the general

principles of an Information System framework, namely, global consistency to ensure

one coherent framework so that every concept is linked to every other one in a

specific, well-established way; generality to ensure that it is specialisable and

extensible in certain situations, to cater for the various specialized subfields; and

finally simple and as straightforward as possible for easy understanding.

 113

Validation of scientific knowledge can take two approaches, the logical empiricist

validation, which is a strictly formal, algorithmic, reductionist, and confrontational

process, where new knowledge is either true or false; and the relativist validation,

which is a semiformal and communicative process, where validation is seen as a

gradual process of building confidence in the usefulness of the new knowledge with

respect to a purpose (Kjartan, Jan, Reid, Janet & Farookh, 2000).

The proposed framework was validated using the relativist approach, which

according to Kjartan et all (2000), is appropriate for open problems, where new

knowledge is associated with heuristics and non-precise representations.

The framework was therefore validated on whether it builds confidence in its

usefulness with regards to the purpose of cloud user centric QoS monitoring, and

whether it provides design solutions correctly (effectiveness) and whether the

designed solutions can be realized with less cost and time (efficiency).

The framework was found to build confidence due to its user centricity nature, and

the models from it could be realizable effectively through browser extensibility and

in an efficient manner due to open source web technology development tools.

According to Kung and Zhu (2008), Software verification and validation are quality

guarantee actions in the software development process whose aim to guarantee that

the application is made in accordance with a development process that satisfies the

user’s desires.

The major attributes of software quality are usability, reliability, testability,

efficiency, transportability, and maintainability (Adrion, Branstad & Cherniavsky,

1982). The verification and validation process for the model and the monitoring tool

derived from the model took place throughout the development processes.

 114

The main phases in the development were requirements phase, design phase and

implementation phase. The verification and validation at the requirements stage was

geared towards errors discovery in the specification of the requirements and the

models used for analysis. The techniques used were reviews of requirements, code

inspection, structured walkthrough, and prototyping.

The verification and validation at design phase involved assessing the level of

correctness, consistency level, and adequacy of the design with regards to the models

of requirements and analysis. This involved review, code inspection, structured

walkthrough, formal verification, and use of prototyping techniques.

The activities performed here included, checking for right use of design language,

adequacy of the design, non-redundancy, logical consistency and definition-use

consistency.

During the implementation phase, verification and validation was done to confirm

that the source code implements the right functionality, real time and security

constraints, properly handles exceptional instances, satisfies performance. The static

verification methods used were code review, inspection, walkthrough and desk

checking while testing was used as a dynamic validation method.

The quality of the tool developed was evaluated using the McCall’s model, developed

by McCall, Richards and Walters (1977). According to the Software Quality Metrics

Methodology Standard, by IEEE (2009), software quality is the extent to which an

application has a desirable combination of quality traits.

Software quality may also be stated as meeting openly specified functional and

performance constraints, openly acknowledged standards for development and

implied features that are accepted from all expertly created software (Suman &

Wadhwa, 2014).

 115

The McCall model was adopted because based on a comparison study done by Al-

Badareen, Selamat, Jabar, Din, and Turaev (2011), the McCall model scored higher

than the other models, namely the Boehm, ISO, Dromey and FURPS.

According to the McCall’s model, the factors to be considered when evaluating

software quality are: Correctness, Flexibility, Integrity, Reliability, Usability

Efficiency, Maintainability, Portability, Interoperability, Testability and Reusability.

The McCall’s model defined the identified metrics as shown in Table 6.

Table 6: Definitions of Software Quality Factors

No Quality Factor Definition

1. Correctness

Is the degree to which the application fulfills its
requirements and meets the clients’ objectives.

2. Reliability The level to which the application performs its designated
functionality with desired accuracy.

3. Efficiency The quantity of resources as well as instructions needed by
an application to execute a task.

4. Integrity To what extent can access to the application or data be
controlled.

5. Portability Effort needed to transfer an application from execution
platform to another.

6. Reusability The level to which a program can be re-used in other
applications.

7. Interoperability Effort needed to combine one application with another.

8. Usability Effort needed to use an application.

9. Maintainability Effort needed to fix errors

10. Testability Effort needed to test an application satisfactorily

11. Flexibility Effort needed to modify an application as desired.

 116

For purposes of this research, the quality factors considered were: level of

correctness, reliability level, efficiency, integrity, ease of use, ease of maintaining,

ease of testing and flexibility level.

Correctness was evaluated by comparing the expected output from the developed

specifications and the actual output from the system; reliability was evaluated by

comparing the variations in the output from the system under similar conditions,

namely internet speed at the user end; efficiency was evaluated by verifying the

amount of code required to perform a certain function in the system and exploring if

there are ways to reduce the code and achieve the same functionality (McCall et al,

1977).

The integrity of the system was evaluated based on whether the data from the system

can be accessed and modified externally; usability was evaluated by establishing the

average time required for one to learn how to use the system; maintainability was

evaluated based on the inline explanations provided in the code on what the code

does to enable one locate errors and fix them easily while flexibility was evaluated by

the extent of in line documentation that can enable one to understand what the system

does and thus modify it in case there is need to (McCall et al, 1977).

3.6.1. Case Study Validation

The overall validation of the developed tool was performed through a case study

approach. A case study is a pragmatic probe that explores a contemporary occurrence

in its actual-life setting (Yin, 1984). According to Vissak (2010), case studies do not

essentially have to depend on prior literature or prior experimental evidence.

It is on the basis of the strength of case studies as sighted by Vissak (2010), coupled

by the fact that this is a new research area with no previous empirical data for

comparison that a case study approach was used for validation.

 117

The results from the designed and implemented model were compared with those

from the vendor’s tool with regards to the same parameters measured by the new tool.

To validate the results obtained from the vendor agnostic tool and compare its

comparison from other cloud QoS tools, a case study was conducted using existing

tools on Gsuite, Salesforce, Hubspot, Shopify and Microsoft. The method for

conducting the case studies was through testing using cloud service owner’s platform.

The methodology used for testing involved creating a new account in the cloud

service owner’s platform and thereafter using the services in a manner that a

conventional user would use the cloud services. In instances where difficulties were

encountered or clarifications required during usage of system, video calls, online

chats, and emails were handy in getting aid from the cloud service providers. Sample

conversations with the sales and technical teams of the cloud providers are shown in

appendix 1.

On Gsuite, the procedure consisted of opening forms, sheets, Google docs, and slides.

The running apps were put into use in a manner that an ordinary user would initiate

and make use of the apps, close and re-open them.

Salesforce was used by making an account on the platform, configuring commodities

for sales, setting prices, giving clients quotations and giving feedback to questions

from buyers.

Hubspot usage consisted of creating a new account on the cloud service owner’s

platform and inputting customer details in the Hubspot Customer Relationship

Management system, inputting commodities for marketing and fixing their prices.

Shopify usage consisted of involved configuring a new account on the platform,

creating an online store, inputting products and setting their prices and as well as

executing sales and finally generating invoices.

 118

3.7. Chapter Summary

This chapter elaborated the research approach and actions taken during the research

for attainment of the solutions to the research objectives. The chapter mapped the

researcher’s actions and thinking to the existing research philosophies and therefore

anchoring the approaches on positivism, case study and quantitative research

paradigms, which are, based on Epistemology and Methodology research

philosophies, respectively.

From the research philosophy, the methodology used for developing the client

trustable quality of service monitoring in the cloud was highlighted, as well as the

research design for the development of the vendor neutral quality of service

monitoring model.

The chapter also highlighted how the model was implemented, how the quality of

service parameters were chosen, how the testing platforms were selected, how the

testing was designed and how the vendor neutral model was validated and all aspects

of the study design per se.

 119

CHAPTER FOUR: REALIZATION OF THE VENDOR NEUTRAL
MODEL

Design in itself being a problem solving activity, is a matter of trial and error, and

therefore, there should be no confusion between the product of the design process and

the process itself (Vlient, 2007). Whereas during the demonstration of a mathematical

proof, successive steps dovetail perfectly into each other and everything fits into

place at the end, the real discovery of the proof was possibly quite different (Vlient,

2007).

The outcome of the design progression is therefore a logical reconstruction of the

design process, with the design process being an imaginative one, and the quality and

expertise of the designers as well being a key determinant for its success.

This research used two research design techniques, namely, descriptive research

design and case study. The descriptive research design was used in conceptualization

of a user centric cloud QoS monitoring framework, based on the shortcoming of the

existing provider centric framework, and comparison of the vendor neutral QoS

monitoring results with those from the cloud provider’s integrated QoS monitoring

tool. It was also used in conceptualization of a vendor neutral SaaS cloud QoS

monitoring model based on the proposed cloud QoS monitoring architecture, testing

of the vendor neutral tool on select global SaaS cloud providers.

The case study research design was used for comparison of results from select global

SaaS cloud providers monitoring tools with the results from the vendor neutral tool

developed by this research.

 120

4.1 Formulation of A Client Trustable Cloud QoS Monitoring Framework

Based on the existing framework, depicted in Figure 13, it is noted that the existing

cloud-monitoring framework relies solely on the cloud provider’s perspective of QoS

monitoring. The monitoring is done by the cloud provider for the purpose of Service

Level Agreement management, cloud resources provisioning and billing.

The existing framework empowers the cloud provider, while the cloud user is left to

rely on the information from the cloud provider. To empower the cloud user as well,

the new framework proposes cloud monitoring with the user perspective considered,

and the location of the cloud QoS monitoring tool to enable end to end QoS

monitoring. Further, the aim of QoS monitoring shifts from cloud providers centric

goals to user centric goals, like cloud provider pre-selection comparison and cloud

provider QoS report validation.

The three aspects included in the new framework, namely, the tool location at the

cloud customer’s end for end node -to-end node QoS monitoring, the ability to

compare different clouds performance prior to selection of the cloud provider that

meets desired cloud user goals, and the ability to authenticate the QoS report from the

cloud solution provider’s monitoring tool, are aspects meant to empower the cloud

service user.

 121

The proposed Client Trustable Framework, by this research, is illustrated in Figure
35.

Figure 35: Proposed Client Trustable Cloud QoS Monitoring Framework.

 122

4.2. Appraisal of Trust in the New Framework

From the reviewed literature, this research focused on directly experienced trust

approach, since the user and the provider have no prior encounters that would form

the basis for any trust.

To enable quantitative comparison of trust among the global cloud service providers,

this research used an End User Centric Quantitative Trust Model in Cloud Computing

(Makokha, Chepken & Opiyo, 2021).

Using the results from the vendor agnostic QoS Monitoring solution for the cloud,

and applying the most widely used confidence interval of 95% proposed by Hazra

(2017), on the results from the vendor neutral tool, and comparing them with the

results from Google and Microsoft QoS tools, a quantitative value was realized based

on how close or far the results are from each other. The comparison was also

enhanced by the user experience during usage of the services.

4.3. Formulation of the Proposed Vendor Agnostic SaaS Cloud QoS

Monitoring Model

 According to Makokha, Opiyo and Okello-odongo (2017), the contemporary models

for QoS monitoring in the cloud currently in use are the Quality of Service

MONitoring as a Service Model (QoSMONaaS), CloudQual, Adaptive QoS-driven

Monitoring Model and the Agent Based Model. All the existing models are linked to

the physical platform of the cloud solution provider, and therefore a QoS measuring

solution derived from all the listed models cannot be used across multiple cloud

vendors. This implies that the major draw back of cloud monitoring tools is

portability.

 123

Cloud solution models can be grouped into three main categories: PaaS (Platform as a

Service), IaaS (Infrastructure as a Service), plus SaaS (Software as a Service)

(Gorelek, 2013). According to Kumar and Goudar (2012), these models can be

presented using an architectural diagram in the Figure 36.

Figure 36: Cloud Reference Architecture

Source: Kumar and Goudar (2012).

From the analysis done by Makokha and Opiyo (2018), the existing architecture

depicted from a bird’s eye view design, of contemporary cloud QoS monitoring

models is as illustrated in Figure 37.

 124

Figure 37 : A Bird’s Eye View of QoS Monitoring using Existing Models

Source: Makokha and Opiyo (2018)

From Figure 37, the developed tools for cloud QoS monitoring are situated within the

cloud, where they monitor the QoS as perceived by the client and keep the QoS

values in the provider’s platform for subsequent retrieval by the cloud client. This

indeed portends the likelihood of vendor bias in view of the fact that the cloud service

owner as well as the owner of the tool for measuring the cloud QoS is the same firm,

and further, the cloud service provider stores the QoS values in their platform, prior

the client querying the values. In an environment in which the Service Level

Agreements (SLA) is rigorous, issues of trust around the monitored QoS will arise.

In addition, based on the illustration 37, it is evident that the solution is tightly

coupled with the physical platform of the cloud facility from where it is executing.

This indicates that the QoS tool is not portable to any other dissimilar cloud

provider’s infrastructure and therefore in a scenario where the user of the service

would like to equate the QoS measures of various cloud providers of similar services,

it would not be feasible to use the same tool.

 125

To abolish potential instances of cloud owner bias, there is need for designing a

model which is not linked to the infrastructure of any particular cloud service

provider. Moreover, the QoS measurements as monitored has to be transmitted in real

time to the cloud service user with no requirement for prior storage on the cloud

provider’s infrastructure.

Using the new proposed framework, shown in Figure 35, the possible architecture

designed at high level for the solution to the challenge of non portability of cloud

QoS Monitoring tools due to vendor tied models, as visualized by Makokha and

Opiyo (2018) is depicted in Figure 38.

Figure 38: High Level Architecture of Cloud QoS Monitoring using a Vendor

Agnostic Model

Source: Makokha and Opiyo (2018)

From Figure 38, the QoS Monitor is located on the terminal of the user and monitors

the cloud service as the user interacts with the cloud. The results are stored on the

terminal which is being used by the user and thus no querying is needed. The tool

also measures end of service node to end of service node QoS. Given the tool is

located on the user’s terminal, it is not tightly coupled to the architecture of any cloud

provider. This makes the tool vendor neutral and thus usable across all cloud

providers.

 126

The solution to the puzzle on how to realize this architecture rests on the methods

used to access the cloud services. It is noted that the three identified cloud service

models, namely, IaaS, PaaS, and SaaS, are accessible by the cloud users through two

methods, which are by use of a cloud owner specific software running on the user’s

service access device and by use of a browser for accessing the web (Ashraf, 2014).

The named access techniques to the stated cloud configuration models are illustrated

in Figure 39.

Figure 39: Cloud Services Access Models

Source: Ashraf (2014)

A thorough review of this usage techniques depicts that usage of the cloud service

owner specific application approach is also reliant on the owner of cloud service and

is therefore not vendor agnostic. This leaves only one access method deemed to be

vendor agnostic which is access by browser method. According to Buyya, Broberg

and Goscinski (2011), cloud services that are offered by SaaS providers are

accessible to users via portals on the web.

 127

The web browser access method opens prospects for designing a vendor agnostic

model that can be used for measuring cloud solutions’ QoS. Actualizing this requires

a deeper analysis of the blueprint of different web browsers for a thorough

comprehension of the different architectural components that encompass the browser,

which will guide on third party tool integration in the browser for purposes of

extending browser functionality to contain cloud QoS measurement.

4.3.1. The Web Browsers Architecture

 According to Junghoon, Seungbong and Sangjin (2011), a browser for accessing the

web is an indispensible application required to be used for Internet access. A web

browser is an application that reads as well as fetches documents from local sites and

sites around the world through the Internet (Vetter, Spell & Ward, 1994).

Grosskurth and Godfrey (2005) define a web browser as an application that gets data

from the World Wide Web stored in distant storage servers then presents it in the

browser window on the user’s screen or passes the data to an external specialized

application for opening the particular document.

Taking cognizant of these definitions, this research defines a web browser as user

application with a graphical user interface from where the user interacts with Internet

content by indicating the location of the content using the content address.

 128

A generic high level design depicting a browser for the web is as illustrated as shown

in Figure 40.

Figure 40: High Level Architecture of the Web Browser

Source: Grosskurth et al (2005)

4.3.2. Web Browser Sub Components

According to Grosskurth et al (2005), each of the sub components listed in Figure 40

plays a critical role in the browser.

The User Interface subsystem resides amid the Browser Engine and user. It has

features like visually showing page-loading progress, printing, toolbars, smart

handling of downloads, and preferences. It is sometimes amalgamated in the desktop

environment for communication with other desktop seawares and browser session

management (Grosskurth et al, 2005).

 129

The Browser Engine subsystem is a module that is embeddable enabling it to provide

the Rendering Engine with a high level interface. It loads the user provided URI and

enables basic browsing functionalities like back, forward and reload features. It has

hooks used for observing different aspects in the browsing session like the status load

progress of the current page and alerts from JavaScript. It as well enables querying

and processing settings of the Rendering Engine (Grosskurth et al, 2005).

The Rendering Engine subsystem brings forth a visual representation of the provided

URI. It has capability of showing XML and HTML documents that have been by

option designed using Cascading Style Sheets (CSS), in addition to insert content like

imageries. Further, it is also in charge of page layout and it may also contain reflow

algorithms that are responsible for incrementally adjusting the location of elements

on the page. The HTML parser is also contained in this subsystem (Grosskurth et al,

2005).

The Networking subsystem executes protocols for transferring files like HTTP and

FTP. It converts from one character set to another, as well as resolving media types

like MIME for files. Also included is a cache of recently retrieved resources

(Grosskurth et al, 2005).

The JavaScript Interpreter is responsible for evaluating JavaScript, known as

ECMAScript code that is sometimes embedded in web pages. This scripting language

was developed by Netscape. Certain functionality of JavaScript like popup windows

opening, can be disabled for security purposes by the Engine of the Browser or the

Rendering Engine (Grosskurth et al, 2005).

 130

The other subsystem, XML Parser, analyses files that are in the XML format to a

tree like structure called the Document Object Model (DOM). It is among the

subsystems that are most reusable in the blueprint. Realizations of most browsers

make use of already in existence XML Parser, instead of rewriting theirs from scratch

(Grosskurth et al, 2005).

The Display Backend subsystem offers windowing and drawing primitives, a suite of

interface widgets for the user, including a set of fonts. It is sometimes tightly coupled

to the user device Operating System (Grosskurth et al, 2005).

The last subsystem, Data Persistence, collects for storage different data sets related to

the browsing session on disk including data that is high level in nature such as

bookmarks or toolbar locations and security certificates, cookies and cache data

which is lower level in nature (Grosskurth et al, 2005).

4.3.3. Browser Extensibility

According to Lerner (2011), an extensible platform is one that allows future

amendments to the formerly devised base system, which could be in form of new

additions, new improvements upon, or substitutions of current functions.

Contemporary browsers possess three techniques of enhancing these functionalities,

namely via plugins, or extensions, as well widgets.

In computer science, a plug-in , also called add-in or addin or plugin or extension or

add-on / addon) is an application segment which enhances a particular capability of a

currently in use software (Jain, 2015). A detailed differentiation of the terms

extension, plug-in, add-on and widget and patch, based on the literature reviewed by

this research is depicted in Table 7.

 131

Table 7: Noted Distinctions Between Plug-in, Widget, Add-on and Extension

No Term Description Examples Key feature
1. Plug in Application designed to

process and display
content that a web
browser is not by
default designed to
process and display
(non HTML content)

a. Adobe acrobat
b. QuickTime

Player
c. Real player
d. Winamp
e. Java

Works in
background
Not visible
to user

2. Widget Drag and drop Content
blocks that enhance site
layout and functionality
mostly used to display
dynamic content, such
as feeds of recent blog
posts, comments,
search boxes and blog
posts archives, as well
as the frontend display
of plugins that have
been activated. It is
implemented as a plug
in

a. A “purchase now”
icon on smart
phones, Weather,
maps, clock

b. A calendar
c. Search bar
d. Social media

sharing button

Visible to
user, drag
and drop

3. Extension An application meant
to increase the
functions a browser can
perform

a. DownThemAll
for Firefox

b. Firebug for
Firefox

c. Google Voice
extension for
Chrome

d. Let there be
Comic Sans for
Safari

Browser
specific

4. Add on Generic term for Extension, Plug in and Widget

5. Patch A segment of an application designed to update another
application or its supporting data and operating system, for
purposes of fixing or improving it

Source: Jain (2015)

http://www.downthemall.net/
http://getfirebug.com/
https://chrome.google.com/extensions/detail/kcnhkahnjcbndmmehfkdnkjomaanaooo
https://chrome.google.com/extensions/detail/kcnhkahnjcbndmmehfkdnkjomaanaooo
http://kanab.hys.cz/let-there-be-comic-sans/
http://kanab.hys.cz/let-there-be-comic-sans/

 132

An architectural diagram, containing a provision for an add-on, as visualized by

Vrbanec, Kirić and Varga (2013) is as shown in Figure 41.

Figure 41: Browser Architecture with Add-on Sub Structure.

Source: Vrbanec et al (2013)

The Generic arrangement on the interfacing between an add-on and a program

already in use is a shown in Figure 42.

Figure 42: Generic Interfacing of an add on to a host application

Source: Jain (2015)

 133

Based on the explanations provided in Table 7, a vendor agnostic model to be used

for monitoring cloud QoS is at best conceptualized and actualized as a software

extension. This is because the monitoring functionality will be incorporated in the

browser and it will monitor any cloud service accessed by that browser.

4.3.4. The Architecture of a Browser Extension

The basic blueprint of an extension of web browser, as conceived by Barth, Porter

Felt, Saxena and Boodman (2010) is as illustrated in Figure 43.

Figure 43: Sub Structures of a Browser Extension

Source: Barth et al (2010)

 134

Content scripts, as depicted in Figure 43, are constrained to relating with content

from the untrusted Web only and thus run without privileges; while the Extension

core is in charge of implementing features specific to the extension like modification

of browser User Interface (UI), relating with resources at system level via Chrome’s

Application Programming Interface (API) extension and in this regard runs using full

privileges of the extension; with the native binary code interacting with the computer

of the host.

According to Liu, Zhang, Yan and Chen (2012), a browser example, Chrome,

segregates privileges amongst various components of an extension. Case in point,

web contents can directly interact with content script of an extension. However,

naturally it lacks the authorizations to enable it access browser modules, save for the

fact that it can interconnet via postMessage to the core of the extension.

Despite the core of extension having the most allocated privileges, it is protected

from pages on the web. It therefore has to rely on content scripts as well as use

XMLHttpRequest for communicating with the content on the web. This native binary

of an extension, while running as an NPAPI plugin, contains the most privileges to

enable it execute any arbitrary code as well as to access any files (Liu et al, 2012).

The privilege segregation phenomenon with a multi component blueprint was

presented in contemporary browsers to mitigate the challenges of security in old age

browsers that were monolithic, and therefore whose extension code as well as the

code that was linking to Web page content were executing as a unified heap of

JavaScript (Liu et al, 2012).

 135

4.4. Proposed Vendor Neutral Cloud QoS Monitoring Model

To attain development of a vendor agnostic model which can be used for monitoring

cloud QoS, the desired model has to be realized as a software extension, that would

be anchored to a precise browser. Figure 44 depicts a high level blueprint, as

visualized by this research, of this proposed model.

Figure 44: A High Level Blueprint for the Proposed Vendor Agnostic Model

From Figure 44, the API is provided by the developer of the browser. They come

built-in with the browsers and allow developers to perform complex operations

without dealing with the sophisticated lower-level code. In this case it adds the QoS

monitoring functionality to the browser.

The Extension component contains the modules that comprise the functions to

monitor various metrics of the cloud QoS monitoring. The functions are linked to the

browser via the browser’s inbuilt APIs.

 Browser

Extension

API

 136

An expanded viewpoint of the sub component of the Extension, as designed by this

research, is as illustrated in Figure 45.

Figure 45 : A Zoomed-in Diagram of the Proposed Model for Cloud QoS Monitoring

From Figure 45, all configurations of the various parameters to be monitored are set

in the configurator. The terminal specifications sub component is used to obtain the

parameters of the system (computer) from where the extension is running like RAM

memory capacity and the speed of CPU.

The Network parameters module measures the user’s Internet speeds and any other

network parameters at the monitoring time. The significance of this is that in

scenarios where the QoS derived from the cloud is impacted by the end user device

that monitored the QoS values. The QoS parameter component measures the

particular parameter it is programmed to measure and keeps the values in the module

for reporting.

Extension

Terminal
Specifications

QoS Parameter 1
module

QoS Parameter 2
module

QoS Parameter n
module

Configurator
QoS

Measurement
Storage

Network
Parameters

 137

The QoS parameter Module contains functions that would measure the particular QoS

metric that has been coded, for example the service response time, availability and

stability in the case of this research. The monitored QoS metrics values are then

stored in the Storage module containing a database linked to the browser.

4.5. Actualization of the Proposed Vendor Neutral Model for Cloud QoS

The suggested vendor agnostic model was realized as a browser extension on the

Google chrome browsers. Designing and realization tools made use of comprised of

regular technologies use in web development like CSS, JavaScript, HTML, SQLite

database and Node JS.

4.5.1. Algorithms Development

The algorithms for the cloud QoS extension were derived from the developed

prototype after an iterative process that ensured the developed prototype achieved its

intended purpose. The QoS model has three main algorithms, namely, the algorithm

for recording terminal specifications, the algorithm for monitoring Internet

connections, and the algorithm for monitoring the time taken to accomplish various

tasks as configured in the configurator.

The terminal specification-monitoring algorithm collects the details of the terminal

on which the QoS extension has been installed. Algorithm 1 details the steps

involved.

 138

Algorithm 1: Terminal Specification Collecting Algorithm

START

 On Extension Installation

 Create and Assign Client_ID

 Get Client_ID details as

 cpu_numberOfCore

 cpu_archName

 cpu_modelName

 ram_size

 date_joined

 Create SQLite Database Table

 Log Client_ID

 Log Client_ID details

STOP

A sample JavaScript code snippet for the implementation is shown in appendix 2.

 139

The Internet monitoring algorithm monitors the network connection parameters and

log in the database. Algorithm 2 indicates the algorithm details.

Algorithm 2: Internet Connection Parameters Collection Algorithm

START

 While the monitoring status is turned on

 Create operation_ID

 Check supplied url

 Check internet connection status

 If Internet Connection is up

 Get and log connection parameters as:

 Round trip time

 Downlink

 EffectiveType

 Loop until monitoring status is turned off

 Compute average of the connection parameters collected

 Else

 Report no Internet Connection

 End if

 End While

 STOP

A sample JavaScript code snippet for the implementation is shown in appendix 3.

 140

The cloud QoS monitoring algorithm monitors the specific QoS parameter and logs

the metrics in the database. Algorithm 3 indicates the details.

Algorithm 3: QoS Monitoring Algorithm

START

 While url is valid and internet connection is ON

 While url is loading

 Log the start of loading time and end of loading time

 End while

 On complete of url loading

 Listen to user mouse and button events

 On user event executed:

 Log the start of user event and time of completion of user event

 At end of user events

 Compute:

 Average service response time as service response time.

 Compute variations in service response time using

standard deviation for service stability determination.

 Compute Service Availability using recorded system

outage instances due to inordinate response times.

 End While

STOP

A sample JavaScript code snippet for the implementation is shown in appendix 4.

 141

4.5.2. Tool Integration into the Browser

The installation of the vendor agnostic QoS monitoring tool for the cloud into the

chrome browser is triggered by typing “ chrome://extensions ” on the Google chrome

web browser:

Upon hitting the enter button, an option for either packaging an extension or loading

extension that is not packaged was provided. Noting that this is a trial session

extension one was required to choose loading an extension that is not packed and

then precede to the location of the package one wished to be load.

A screenshot from the interface shown at the time of integrating the developed tool

for QoS into chrome browser is illustrated by Figure 46.

Figure 46: Integration Interface for the QoS tool into Chrome Browser

 142

Upon integrating the tool, it appeared alongside other extensions previously installed

on Google chrome as illustrated in Figure 47.

Figure 47: Cloud QoS Service Monitor as Integrated in Google Chrome

 143

After having successfully installed, the service monitor was executed using the

computer terminal by using the command written as : npm run dev as illustrated by

Figure 48.

Figure 48: Starting the QoS Monitoring Tool

 144

4.5.3. Testing with the Vendor Agnostic Cloud QoS Tool

Based on Figure 48, it was noted that the monitoring tool was executing on port 8484

as local host accessible from the browser. On opening the application, it appears as

illustrated in Figure 49.

Figure 49: Active QoS Monitoring Platform on the Browser

Once the platform is executed to run, configurations were made for any cloud service

sites that required to be monitored. The tool measured and stored the results for set

parameters for QoS in the database created automatically at the time of tool

installation.

 145

4.6. Chapter Summary

This chapter detailed the research journey used in conceptualizing, visualizing and

realizing the client trustable cloud quality of service monitoring framework, the

vendor neutral cloud quality of service monitoring model, the associated quality of

service monitoring tool derived from the vendor neutral model and the algorithms for

realizing the quality of service monitoring tool. A thorough review of the architecture

of web browsers was presented and an explanation on how an extension can be

embedded into a web browser. The chapter, as well, highlighted the technique used in

quantitatively evaluating trust in the proposed cloud quality of service monitoring

framework.

 146

CHAPTER FIVE: RESULTS AND DISCUSSION

The testing set up consisted of a test platform and testing conditions that were

maintained constant for all tests and therefore were considered as independent

variables. The QoS metrics obtained from the tests were then considered to be

dependent variables, which are also affected by an extraneous variable, which is the

location of servers of the Content Distribution Network (CDN) providers procured by

the cloud service providers. The testing was conducted using the same end user

terminal, which was a laptop made by Apple with specifications of Intel(R)

Core(TM) i5-4288U CPU, of 2.60GHz speed categorized as a MacBook pro and the

same Internet conditions, namely, an average of Internet effective type 3G from the

same Internet service provider.

One of the key principles of cloud computing, as pointed out by Buyya, Brobger and

Goscinski (2011) is trust, and according to the said authors, the most critical issue to

address before cloud computing can become the preferred computing paradigm is that

of establishing trust, and therefore mechanisms to build and maintain trust between

cloud computing consumers and cloud computing providers, as well as among cloud

computing providers themselves, are essential for the success of any cloud computing

offering. The proposed QoS monitoring model by this research therefore provides a

platform to realize this principle.

With regards to QoS monitoring, the main principle of QoS monitoring as postulated

by the European Telecommunications Standards Institute (ETSI) is use of parameters.

The selected parameters may be used for various purposes like specifying the level of

quality of service in customer telecommunication service contracts or in the

description of terms and conditions of the service.

 147

Further the selected parameters may as well be used in comparing the quality of

service of different service providers, comparing the quality of service aspects of

different service offers and preparing long term studies on the quality of service

aspects of a specific service. This study has used parameters for specifying the levels

of QoS and for comparison of QoS of different cloud providers.

ETSI also mentions Data Collection Period as a principle of QoS measurement, with

recommendations being that for measurements to be used for long term comparisons,

it is recommended that QoS data should be collected and calculated on a quarterly

basis starting on 1 January, 1 April, 1 July and 1 October, while for shorter periods

being advisable for QoS aspects where frequent and fast changes in quality are likely

to occur.

Noting the nature of SaaS cloud services, this study used shorter periods in view of

the fact that frequent changes are likely to occur in the course of usage of SaaS

services.

5.1 Cloud QoS Monitoring with the Vendor Neutral Model Tool

With regards to the tests performed on Google docs, Salesforce, Shopify and Hubspot

cloud solution, under same platform and Internet conditions as independent variables,

the average results are as illustrated by Table 8.The number of tests done was thirty

(30) runs for all the cloud platforms, with the testing having been done between 14th

September 2020 to 27th October 2020, amounting to usage of each platform once per

working day of the duration of the test. Sample raw results from which the averages

were computed are shown in appendix 5.

 148

Table 8: Cloud Providers QoS Monitoring Results

Based on Table 8, response time of the service refers to the mean time taken from the

time the user requested for a service until the time the service was initialized and

ready to be used. Service availability was taken as the sum total of instances when the

user demanded for a service and got the service compared to the sum total of

instances the demanded service was not available. Stability refers to variations in the

service response time, computed using standard deviation from the average response

time.

The test results for Salesforce show that on average, during the entire test duration,

for all the tasks executed on its platform, the time taken for any of the requested

service to be initialized and ready for use by the user was 2.93 seconds.

As for Google, the results show that on average, during the entire test duration, for all

tasks executed on its platform, the time taken for any requested service to be

initialized and ready to for use by the user was 4.83 seconds.

For Hubspot, the results show that on average, during the entire test duration, for all

tasks executed on its platform, the time taken for any requested service to be

initialized and ready to for use by the user was 2.45 seconds.

Number Provider of the
Cloud

Response
Time Availability Stability

1. Salesforce 2.93 sec 100% 0.252 sec
(stable)

2. Google (docs) 4.83 sec 100% 1.654 sec
(stable)

3. Hub Spot
2.45 sec 100% 1.574 sec

(stable)

4. Shopify
2.59 sec

100%

1.3 sec
(stable)

 149

With regards to Shopify, the results show that on average, during the entire test

duration, for all tasks executed on its platform, the time taken for any requested

service to be initialized and ready to for use by the user was 2.59 seconds.

For service availability testing purposes, and to prevent a situation where the service

may take too long to load, the maximum load time was set to ten (10) seconds. Any

service response beyond ten (10) seconds the service was tagged as unavailable.

According to Munyaradzi, Maxmillan and Mutembedza (2016), the average website

load time must be eight (8) seconds in order to increase stakeholder satisfaction and

thus be perceived to be within desired Quality of service.

Further, according to tests done by Sukhpuneet, Kulwant and Parminder (2016),

using the Site Speed Checker, on the performance of identified websites showed a

maximum load time of 10.82 seconds.

Nielson (2007) advocates for a maximum waiting time of 10 seconds since this is the

limit time to keep the attention of the user to keep focusing on the dialogue. Longer

wait delays make users want to execute other tasks while awaiting for the computer

to conclude, so that requires that they be given feedback indications on when the

computer expects to be finish.

Having considered the three stated time frames, and considering that cloud

computing is not just about website content but specialized services, this research

settled on 10 seconds to factor in the specialized nature of the website content to be

loaded.

 150

Results from Table 8 show that during the entire testing period, all the cloud

platforms were available for use, indicated as an availability of 100%. This implies

that at any time during the test duration that user wished to use the service, it was

available to the user.

The stability of the Service was calculated using the standard deviation metric.

Getting a standard deviation value larger compared to the mean implies the platform

is not stable as compared to a standard deviation value found to be lower than the

mean which means the platform is stable.

From Table 8, Salesforce stability evaluated to 0.252 seconds, which is below the

average service response time of 2.93 seconds, and therefore the platform was

considered to be stable in so far as service response times are concerned.

The Google platform stability evaluated to 1.654 seconds, which is below the average

service response time of 4.83 seconds, and therefore the platform was considered to

be stable in so far as service response times are concerned

The Hubsport stability evaluated to 1.574 seconds, which is below the average

service response time of 2.45 seconds, and therefore the platform was considered to

be stable in so far as service response times are concerned.

Likewise, for Shopify, the stability evaluated to 1.3 seconds, which is below the

average service response time of 2.59 seconds, and therefore the platform was

considered to be stable in so far as service response times are concerned.

 151

5.2. Results from Existing Cloud Computing Platform Integrated Tools

The QoS monitoring results from cloud provider’s integrated QoS monitoring tools

for select cloud service providers obtained during the same time as when the vendor

agnostic cloud QoS monitoring tools, are detailed herein.

5.2.1. Gsuite

Gsuite is Software as a Service (SaaS) solution that amalgamates all the cloud-based

productivity and collaboration solutions established by Google used by enterprises,

institutions, and nonprofits firms. Alongside each subscription one gets access to

customized Gmail addresses, Sheets, Docs, Calendar, Slides and Drive, Sites.

G-suite provides its users with a dashboard that contains the present performance

status of the solution they are using, which is accessible using the link:

https://www.google.com/appsstatus#hl=en&v=status

The performance metrics for Gsuite are amalgamated as No Issues, Service

Disruption and Service outage. Gsuite users therefore look out on the dashboard for

any of these performance metrics whenever they are reported, and are therefore part

of the SLA with Google.

No issues means the solution is on and executing normally, Service Disruption means

the solution has been switched off briefly for the sake of maintenance while Service

outage means the solution is not operational due to a technical issue. A sample

snapshot for the dashboard is as illustrated in Figure 50.

https://www.google.com/appsstatus#hl=en&v=status

 152

Figure 50: QoS Monitoring Platform for Gsuite

The Google Service Level Agreement for Gsuite states that if Google fails to realise

the GSuite SLA, while the client realizes their responsibilities under this GSuite SLA,

the client will be eligible to get Service Credits (Google, 2019).

The SLA defines two key terms, namely, Downtime for a domain which refers to

when client error rate is greater than five percent. It is measured basing on server side

rate of error; and Monthly Uptime, measured in Percentage, which refers to sum total

of minutes in a month subtract the number of Downtime Minutes encountered in a

month, divided by the sum total number of minutes in a month. These are elaborated

as in Table 9.

 153

Table 9: Google Service Level Agreement based on uptime.

Monthly
Percentage
Uptime

Service days added to the Service end term (or monetary credit
equal to the value of days of service for monthly postpay billing
clients), at no charge to the client

< 99.9% - >=
99.0%

3

< 99.0% - >=
95.0%

7

< 95.0% 15

Whereas these percentages have been defined, the dashboard does not provide the

users with direct view of the uptime percentages. This means the user has to request

the information from Google or the reseller once they notice the service is down.

Upon receiving the percentages the user has no means of validating the percentages

as provided by Google.

5.2.2. Salesforce

Salesforce provides its customers a platform to confirm on the status of the services

to which they have subscribed. Four notable metrics are found on the platform,

namely Available, Performance degradation, Service disruption and Maintenance.

The dashboard is accessible using the link: https://status.salesforce.com/products/all,

while the terms of service can be accessed via the link:

https://c1.sfdcstatic.com/content/dam/web/en_ie/www/documents/services-training/

SSC-EU-%20Success%20Cloud%20Compare%20Plans%20-%20687-final.pdf.

Available refers to the fact that the service is on and in execution, Performance

degradation means the service is running but at below expected quality of service,

service disruption means the service is unavailable due to system failure, while

maintenance means the service is unavailable for maintenance purposes.

https://status.salesforce.com/products/all
https://c1.sfdcstatic.com/content/dam/web/en_ie/www/documents/services-training/%20SSC-EU-%20Success%20Cloud%20Compare%20Plans%20-%20687-final.pdf
https://c1.sfdcstatic.com/content/dam/web/en_ie/www/documents/services-training/%20SSC-EU-%20Success%20Cloud%20Compare%20Plans%20-%20687-final.pdf

 154

Whereas the platform informs the user of performance degradation, it does not

provide the exact level or extent of performance degradation. The user is therefore

not able to gauge or quantify the level performance degradation. Sample screen shots

from the platform are as shown in Figure 51.

 155

Figure 51: Sample Screenshot for Salesforce QoS Monitoring Platform

Further, Salesforce has plans that categorize its clients’ level of service level

agreement based on the pricing, namely standard, premier, premier plus and priority.

The standard client gets a response to a reported issue within 2 days and has 12 hours

5 days a week online support (12/5).

The premier client gets support within one hour of reported critical incident and has

24 hours, 7days a week (24/7) of phone and online support. The premier plus client

has similar support as premier plus an additional access to admin services. Priority

has a minute 15 critical response and has 24 hours, 7 days a week (24/7) of phone and

online support. The clients pay different prices for the various service level

agreements plans (Salesforce, 2019). In situations where the services are down the

Salesforce approach does not provide a cloud service user with the actual gauge of

the performance degradation.

 156

5.2.3. Hubspot

Hubspot offers a cloud solution where its clients can see the execution status of the

cloud solutions it is offering. The execution status are grouped in order as either

Operational but Degraded Performance, followed by Partial Outage, then Major

Outage and finally Maintenance. The platform is accessible using the link:

https://status.hubspot.com. A snapshot of the monitoring platform for Hubspot QoS is

illustrated by Figure 52.

The operational but degraded performance means the user is able to get all the

services but with low performance standards than the usual standards like longer load

times.

Partial outage means some services are not available and so the client should expect

to use only a fraction of the services they have subscribed to, while major outage

means all the services are not available to the users.

Maintenance is used when the platform is deliberately made unavailable for a

predetermined amount of time, which is communicated to users in advance, with the

aim of either fixing earlier identified issues or upgrading the platform.

https://status.hubspot.com/

 157

Figure 52: Hubspot Platform for QoS Monitoring

 158

The platform further summarizes the quantitative metrics as illustrated by Figure 53.

Figure 53: Summary of QoS Metrics Monitored by Hubspot Platform

The Platform also provides a summary of historical incidences as experienced by

users and actions taken by the provider to address the incidences. This is as shown in

Figure 54.

Figure 54: Summary of Hubspot Past Incidences

 159

5.2.4. Shopify

Shopify provides a platform from which customers can view any issues affecting the

platform at any particular moment. The platform also provides a quantitative metric

for the average time the platform took to reply to the requests from the user. Viewing

the functioning status of the platform is accessible using the link

https://status.shopify.com.

A snapshot of the platform is depicted by Figure 55.

Figure 55: Shopify Platform for QoS Monitoring

https://status.shopify.com/

 160

A screenshot for the Quantifiable metrics, namely service response time, is as

depicted in Figure 56.

Figure 56: Shopify Quantifiable QoS Metrics.

 161

The platform also provides users with a historical view of past incidences and the

actions taken to remedy the incidences. A screenshot is as shown in Figure 57.

Figure 57: Shopify Historical Incidences.

 162

A summary of the QoS aspects depicted by the Shopify platform are: No known

issues, Maintenance, Degraded, Partial Outage and Outage as shown in Figure 58.

Figure 58 : Shopify QoS Metrics

5.2.5. Microsoft

Microsoft provides an opportunity for users to check the health status of its services,

namely Microsoft services, consisting of Yammer, Microsoft Dynamics CRM, Office

on the web, and mobile device management cloud services, on the Service health

page accessible through the Microsoft 365 admin center.

It is used whenever one is experiencing a problem with a cloud service, to check the

service health to ascertain on whether this is a known issue whose resolution is in

progress before calling the support team or spending time in troubleshooting it.

 163

It is accessed via Microsoft 365 admin center at https://admin.microsoft.com, and the

health state of each cloud service is illustrated in a Table format as depicted in Figure

59.

Figure 59 : The Health Status of Microsoft Cloud Services.

From Figure 59, services currently up and running as expected as shown as healthy,

while the incidences tab will show services that have a reported problem and are thus

not functioning as expected.

Microsoft defines a service incident as an event that impacts on the delivery of a

service. These Service incidents may be occasioned by hardware or software failure

in the Microsoft data center or a faulty network connection between the client and

Microsoft, or even a major data center issue like regional catastrophe, flood, or fire.

https://admin.microsoft.com/

 164

Once an incident has been reported, Microsoft performs an impact assessment to

determine which specific features affected by the incident and how they are affected.

This is then posted as an advisory for the services that are available albeit with

degraded performance. A sample snapshot for the advisory page is as illustrated in

Figure 60.

Figure 60 : Advisory Page for Microsoft Services

5.3. Analysis of the Testing Results

From the case studies of the select global cloud service providers, summarized results

from the capability of different QoS measuring tools in use by the selected four

global cloud solution providers is depicted in Table 10.

 165

Table 10: Comparative Summary of Cloud QoS Monitoring Tools Capabilities

From Table 10, Gsuite, Salesforce, Hubspot and Microsoft QoS Monitoring tools

have a one QoS metric measuring capability, which is Service Availability. While

Shopify QoS Monitoring tool has capabilities of two metrics, which are service

response time and service availability.

Based on Table 10, a client on Gsuite, Salesforce and Hubspot who wishes to know

the service response time of the services they are receiving will not be able to know.

Further a client who wishes to compare the performance of the various providers will

not be able since the tools are provider specific and thus inter cloud comparison is not

possible. Fortunately, the vendor neutral tool, measures all three metrics, and can be

used for cross vendor comparison.

 166

5.4. Application of the Vendor Neutral Model Tool in Cloud Provider Choice

To equate the functioning of cloud service providers providing the same services, this

research focused on Microsoft Office 365 and Google docs for comparison purposes.

The selection was done based on the fact that the said providers offer similar office

applications, namely Word, Excel and PowerPoint and are the leading providers in

that market segment.

The comparative test was done using the same terminal, at the same times where the

applications are opened on different tabs of the same browser and under the same

Internet conditions.

The testing was done to resemble an ordinary user who would want to use the said

applications at random times of the day, between 6th October 2020 to 27th October

2020, with a sample size of sixty (60) runs having been used, amounting to platform

usage of the platform three times (morning, afternoon and evening) per working day

of the testing duration. This was aimed at emulating the way SLAs are evaluated after

a certain period of time, like quarterly or monthly before payments are done. The

average results for the comparison are as shown in Table 11. Sample raw results from

which the averages were computed are shown in appendix 6.

Table 11: Comparison Results Between Microsoft office and Google Docs

Platform Average Service

Response Time

(Seconds)

Average

Availability

Stability

Google 4.47 100% Stable

 (2.003 sec)

Microsoft 6.04 100% Stable

(5.966 sec)

 167

From the analysis in Table 11, the average service response time for Google is 4.47

while for Microsoft is 6.04 seconds. Both platforms had an availability of 100% since

at no time during testing did any of the platform report a platform failure leading to

outage of services.

Whereas the availability is 100%, the fluctuations in the service response time are

higher for Microsoft at 5.966 seconds than for Google at 2.003 seconds, meaning the

Google platform was more stable than the Microsoft platform.

In summary it is found that Google performed better than Microsoft. Where a

decision is to be made on whose services to procure, the user can factor in their

decision making process this performance measures.

The snapshot reports from the monitoring tool are shown in Figure 61 for Google and

62 for Microsoft respectively.

Figure 61: Google Performance Report

 168

Figure 62: Microsoft Performance Report

The QoS monitoring tools of the vendors also reported continuous system availability

of the services and thus the user could build trust to the results from the provider’s

tool due to similarity in the results from the vendor agnostic tool and those of the

cloud provider.

 169

5.5. Application of the Vendor Neutral Model Tool in Cloud Providers Trust

Computations

To compute trust based on the reported results by the chosen cloud providers, Google

and Microsoft, tests were done as from 6th October 2020 to 27th October 2020. The

results from the tests were subjected to the trust quantification model depicted in

Figure 29. The QoS results from the vendor agnostic tool, which were used for trust

quantification, are depicted in Table 12.

Table 12: Measured QoS Results by the Vendor Agnostic Tool

Platform

Average Response
Time

Average
Availability Stability

Google 4.39 100%

Stable (1.986 sec)

Microsoft 5.99 100% Stable (5.845 sec)

From the analysis in Table 12, the average service response time, time required to

process and complete a service request, for Google is 4.39 seconds while for

Microsoft is 5.99 seconds.

Both platforms had an availability of 100%, which means at no time during testing

period did any of the platform report a service failure leading to outage of services

and therefore making the user unable to access the services they wished to use.

Whereas the availability is 100%, the stability, fluctuations in the service response

time, computed using standard deviation, are higher for Microsoft at 5.845 seconds

than for Google at 1.986 seconds, meaning the Google platform was more stable than

the Microsoft platform.

 170

From the studies done by Makokha et al (2019), a common metric between the

vendor agnostic cloud QoS measuring solution and the cloud provider integrated QoS

measuring solutions is the service availability.

During the testing period, Google, using its QoS platform at:

https://www.google.com/appsstatus, reported no issues during the entire time,

translating to 100% availability.

Similarly, Microsoft, through its QoS monitoring platform,

https://admin.microsoft.com, showed the status of office suites to be healthy during

the entire time, translating to 100% availability.

The QoS value screenshots from the vendor neutral model for Microsoft and Google

platforms are as shown in Figure 63 and 64 respectively.

Figure 63: QoS Screenshot Results for Microsoft

https://www.google.com/appsstatus
https://admin.microsoft.com/

 171

Figure 64: QoS Screenshot Results for Google

Using the Quantitative Trust Model by Makokha et al (2019), and the service

availability QoS metric, which is the common QoS Metric between the vendor

agnostic solution and cloud providers’ integrated solutions, trust quantification values

are as in Table 13.

Table 13: Quantitative Trust Values

From Table 13, a cloud user can trust the results from the cloud providers due to the

fact that they are within the confidence interval of the vendor neutral tool. This is

critical for the trust building phase as highlighted by Grabner-Kräuter and Kaluscha,

(2008) and also augments the direct experience trust concept advanced by Dragoni

(2009) since the user will have experienced the services from the providers during the

usage phase.

 172

5.6. Summary of Results and Discussion

From the results highlighted the vendor neutral tool is capable of monitoring the three

vital QoS metrics of SaaS cloud providers, namely, service response time, service

availability and service stability. The results for the Google docs, Salesforce, Shopify

and Hubspot are indicated as 4.83 seconds, 2.93 seconds, 2.45 seconds and 2.59

seconds, respectively in so far as service response time is concerned. The tool as well

computed the availability and stability of the platforms and all were found to be

100% available and stable throughout the entire testing time.

For platforms offering similar services, case in point Google docs and Microsoft

office suite a performance comparison reveals that the Google platform is better in

terms of service response time and the stability of the platform, than Microsoft

platform.

Quantification of trust using the vendor neutral model evaluates to a trust value of

one (1) implying the user can trust the QoS values as reported by the cloud provider

by the fact that they are within the 95% confidence level of those measured by the

vendor neutral model.

5.7. Chapter Summary

This chapter highlighted the conditions and platform under which the testing was

done and the principles of cloud quality of service monitoring that were put in

consideration during the testing. The chapter also presented the testing results for the

four selected cloud computing platforms and the capability of the vendor neutral tool

as compared to cloud provider platform integrated tools. Application of the tool in

trust evaluation and cloud provider selection was also presented in this chapter.

 173

CHAPTER SIX: CONCLUSION AND FURTHER RESEARCH

This research aimed at addressing the problem of cross vendor cloud QoS

monitoring, and used four research objectives to solve the problem, namely, develop

a high level client trustable QoS Monitoring Framework for cloud computing

systems; design a Vendor Neutral Model that implements the designed Framework

for SaaS Cloud Computing solutions; Prototype and Evaluate the QoS Monitoring

tool developed from the new Vendor Neutral Cloud Performance Monitoring Model;

and Develop Algorithms for a SaaS monitoring tool that implements the new Vendor

Agnostic Cloud Performance Monitoring Model. In the course of carrying out this

research, five (5) publications in international journals were made, and are indicated

in the linked publications section of this report.

6.1 Conclusion

The first objective on development of a client trustable QoS Monitoring Framework

was met by first deriving the existing cloud QoS monitoring framework from existing

explicitly documented cloud QoS monitoring models. Upon deriving the existing

framework, and relying on identified shortcomings, a proposed framework with trust

factored, was introduced by developing a framework that is user centric and that

factors in the reason of QoS monitoring from the user perspective. The output of the

first objective was therefore a proposed client trustable cloud QoS monitoring

framework.

The second objective being development of a vendor neutral QoS monitoring model

for SaaS cloud solutions, was developed after review of existing SaaS QoS

monitoring models and noting their limitations. This aimed at transferring the

location of the monitoring tools from the cloud provider’s infrastructure and locating

it in the users’ devices used to access the cloud services. Enabling end-to-end QoS

monitoring. The output was a model anchored on the browser, and implemented as a

browser extension.

 174

Objective three involved prototyping, implementing and evaluating a vendor neutral

QoS monitoring tool from the proposed vendor neutral model. The output was a

prototype, and was developed using CSS, JavaScript, HTML, SQLite database and

Node JS, as the development tools. The prototype was implemented on chrome

browser and tested on Shopify, Google, Microsoft Hubspot and Salesforce SaaS

platforms. The selected platforms hold the larger market share of their respective

market segments and therefore have mature solutions. The tool was then validated

through a comparative case study by comparing its results with the results from the

cloud providers’ integrated tools.

After validation of the tool, objective four, which was development of algorithms that

implement the model, was realized by deriving the algorithms from the prototype

code. The output of this objective was therefore a set of algorithms that implement

the vendor neutral SaaS cloud QoS model.

From the evaluation done, the tool developed from the Client based Vendor Neutral

Model has an advantage in that it has the capability of providing monitoring results

for all the three key QoS parameters, comprising of response time of the service,

availability of the service and stability of the service.

The tools from the Vendor Neutral Model, being vendor agnostic also, can be used

for cross-cloud QoS performance comparison since they are not tightly coupled to the

underlying facility architecture of the cloud platform.

The tools could also be used to validate the reported QoS performance from the

provider’s tool. Further, the fact that the Client based Vendor Neutral tool is located

at user’s end, the results are trustable to the user. This is crucial in enhancing trust

between the cloud providers and clients. This is reinforced by the quantitative trust

model that if used and the results evaluate to one (1), then clients will develop trust in

the cloud providers platforms.

 175

6.2. Knowledge Contribution to Computer Science

This research advances new knowledge in QoS monitoring in the Cloud Computing

field of study, by introducing a novel perspective to cloud QoS monitoring, namely,

the user centric perspective of QoS monitoring that fosters trust in the cloud services

and the QoS values reported by cloud service providers. The new perspective is

anchored on the proposed client trustable QoS monitoring framework and the

associated vendor neutral SaaS QoS Monitoring Model.

This is a new realm that could be researched further in the field of Computer Science,

with the developed client centric QoS monitoring framework, acting as an anchor

framework for development of other cloud QoS monitoring models and their

associated tools.

6.3. Implications on Theory, Practice and Policy

This research introduces a new framework, dubbed the Client Trustable QoS

Monitoring Framework, from which future principles of cloud QoS monitoring can

be anchored on, especially with regards to monitoring from the client’s perspective,

cloud vendor pre-selection monitoring and validation of cloud provider reported QoS

results.

The proposed model, the Vendor Neutral SaaS QoS monitoring model, influences

future practice in that the practice of double QoS measurement in the cloud

computing set up, where there exists the provider integrated cloud QoS monitoring

tool and the vendor neutral tool, monitoring the cloud QoS simultaneously, will be

vital during SLA evaluation.

 176

For cloud provider pre-selection purposes, the procurement policy on cloud services

can benefit from the ability to perform testing on the performance of various cloud

QoS providers before making a choice on whose services to procure. The results from

the vendor neutral tool can therefore for part of the evaluation criteria with a certain

apportioned weight to the overall score. The SLA can also incorporate the concept of

validation using both the results from cloud provider QoS tools and the vendor

neutral QoS tools.

6.4. Future Studies

The developed model was limited to the Software as a Service (SaaS) cloud

applications. Additional studies could be done to extend or develop new models

based on the same Client Trustable Framework for Platform as a Service applications

(PaaS) and Infrastructure as a Service applications (IaaS).

The developed model was tied to the browsers on the user’s terminal, to extend this

research, explorations could also be done to identify common applications on user

terminals like the operating systems or user terminal utilities on which other new

vendor neutral QoS monitoring models could be pegged on, using the same client

trustable framework.

 177

References

Aceto, G., Botta, A., Donato, W. & Pescapè, A. (2013) Cloud monitoring: A survey,

Computer Networks: The International Journal of Computer and

Telecommunications Networking. Volume 57, Issue 9.

Adinolf, O., Cristaldi, R., Coppolino, L. & Romano, L. (2012). QoS-MONaaS: A

Portable Architecture for QoS Monitoring in the Cloud. Signal Image

Technology and Internet Based Systems (SITIS), 2012 Eighth International

Conference on, Napes, Italy. IEEE.

Adrian, W. R., Branstad, A. M. & Cherniavsky, C. J. (1982) Validation, Verification,

and Testing of Computer Software. Computing Surveys, Vol. 14, No. 2, June

1982.

Agrawal & Choubey (2015) Enhanced Agent Based Scheduling & Monitoring

 System in Cloud Computing. International Journal of Computer Science And

Technology. Vol. 6, Issue 1.

Akamai (2016). TechValidate Survey Report: SaaS Application Trends and

Challenges.

https://www.akamai.com/de/de/multimedia/documents/report/techvalidate-

saas-survey-results.pdf [accessed on 21st September 2020].

Ardagna, D., Casale, G., Ciavotta, M., Pérez, J. F., & Wang, W. (2014). Quality-of-

service in cloud computing: modeling techniques and their applications.

Journal of Internet Services and Applications 2014. Volume 5, Issue 11.

Al-Roomi, M., S Al-Ebrahim, S., Buqrais, S. & Ahmad, I. (2013). Cloud Computing

Pricing Models: A Survey. International Journal of Grid and Distributed

Computing.Vol.6, No.5.

https://www.akamai.com/de/de/multimedia/documents/report/techvalidate-saas-survey-results.pdf
https://www.akamai.com/de/de/multimedia/documents/report/techvalidate-saas-survey-results.pdf

 178

AL-Badareen A.B., Selamat M.H., A. Jabar M., Din J. & Turaev S. (2011) Software

Quality Models: A Comparative Study. In: Mohamad Zain J., Wan Mohd

W.M., El-Qawasmeh E. (eds) Software Engineering and Computer Systems.

ICSECS 2011. Communications in Computer and Information Science, Vol

179. Springer: Berlin, Heidelberg.

Alhamazani, K., Ranjan, R., Mitra, K., Rabhi, F., Jayaraman, P., Khan, S., Guabtni,

A. & Bhatnagar, V. (2014). An Overview of the Commercial Cloud

Monitoring Tools: Research Dimensions, Design Issues, and State-of-the-Art.

Computing. 97. 10.1007/s00607-014-0398-5.

Alhamazani, K., Ranjan, R., Jayaraman, P., Mitra, K., Liu, C., Rabhi, F.,

Georgakopoulos, D. & Wang, L. (2019) Cross-Layer Multi-Cloud Real-Time

Application QoS Monitoring and Benchmarking As-a-Service Framework,

in IEEE Transactions on Cloud Computing, vol. 7, no. 1, pp. 48-61, 1 Jan.-

March 2019.

Arie, D. (2021) Content Delivery Network Explained.

https://www.globaldots.com/resources/blog/content-delivery-network-

explained/ [accessed on 21st May 2021].

Armbrust, M., Fox, A., Griffithth, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee,

G., Patterson, D.A., Rabkin, A., Stoica, I. & Zaharia, M. (2009): Above the

clouds: A Berkeley View of Cloud Computing. Technical Report No.

UCB/EECS-2009-28. EECS Department, University of California, Berkeley.

Ashraf, I. (2014). An Overview of Service Models of Cloud Computing.

International Journal of Multidisciplinary and Current Research. Vol.2

(July/Aug 2014) issue.

https://www.globaldots.com/resources/blog/content-delivery-network-explained/
https://www.globaldots.com/resources/blog/content-delivery-network-explained/

 179

Barlas, Y. & S. Carpenter (1990). Philosophical Roots of Model Validation: Two

Paradigms. System Dynamics Review Vol. 6, No. 2, pp. 148-166.

Berglund, A. & Leifer, L. (2013) Why we Prototype! An International Comparison of

the Linkage between Embedded Knowledge and Objective Learning.

Engineering Education, 8:1, 2-15, DOI: 10.11120/ened.2013.00004.

Barth, A., Porter Felt, A., Saxena, P. & Boodman, A. (2010), Protecting Browsers

from Extension Vulnerabilities: Proceedings of the 17th Network and

Distributed Systems Security Symposium, San Diego, CA (Feb 28th – March

3rd, 2010).

Bardsiri, K. A. & Hashemi, M. S. (2014). QoS Metrics for Cloud Computing

Services Evaluation. International Journal of Intelligent Systems and

Applications, Vol. 6, No. 12.

Buyya, R. (Ed.), High Performance Cluster Computing: Architectures and Systems.

Volume 1, Prentice Hall, Upper Saddle River, USA, 1999.

Buyya, R., Broberg, J. and Goscinski, A. (2011) Eds. Cloud Computing: Principles

and Paradigms. Hoboken, New Jersey: John Wiley & Sons, Inc.

Chekfoung T., Kecheng L. & Lily S. (2013) A design of evaluation method for SaaS

in cloud computing, Journal of Industrial Engineering and Management,

JIEM, 2013 – 6(1): 50-72.

Cicotti, G., Coppolino, L., Cristaldi, R., D’Antonio, S. & Romano, L. (2011). QoS

Monitoring in a Cloud Services Environment: the SRT-15 Approach in 11th

Proceedings of the 2011 international conference on Parallel Processing,

Bordeaux, France. Springer-Verlag Berlin, Heidelberg. Pages 15-24.

 180

Cisco Systems (2002). Internetworking Technologies Handbook. Cisco Press,

Indianapolis, Indiana.

Cedillo, P., Gonzalez-Huerta, J., Abrahao, S., & Insfran, E. (2015). A Monitoring

Infrastructure for the Quality Assessment of Cloud Services. In D. Vogel, X.

Guo, C. Barry, M. Lang, H. Linger, & C. Schneider (Eds.), Information

Systems Development: Transforming Healthcare through Information Systems

(ISD2015 Proceedings). Hong Kong, SAR: Department of Information

Systems.

Churakova, I. & Mikhramova, R. (2010) Software as a Service: Study and Analysis of

SaaS Business Model and Innovation Ecosystems, M.Sc., Ghent University,

Belgium.

Cho, J., Hurley, P. M. & Xu, S. (2016). Metrics and Measurement of Trustworthy

Systems in MILCOM 2016 - 2016 IEEE Military Communications

Conference, Baltimore, MD, 2016, pp. 1237-1242, doi:

10.1109/MILCOM.2016.7795500.

Communications Authority of Kenya (2016) https://ca.go.ke/consumers/ca-

you/quality-of-service/ [accessed on 12th July 2016].

Dash, S. B., Saini, H., Panda, T. C., & Mishra, A. (2014). Service Level Agreement

Assurance in Cloud Computing: A Trust Issue. (IJCSIT) International Journal

of Computer Science and Information Technologies, Vol. 5 (3).

Datanyze (2021) Top competitors of Zoho CRM [online]

https://www.datanyze.com/market-share/customer-relationship-management--

33/zoho-crm-market-share [accessed on August 2021].

https://ca.go.ke/consumers/ca-you/quality-of-service/
https://ca.go.ke/consumers/ca-you/quality-of-service/
https://www.datanyze.com/market-share/customer-relationship-management--33/zoho-crm-market-share
https://www.datanyze.com/market-share/customer-relationship-management--33/zoho-crm-market-share

 181

Dawson, C. (2002) Practical Research Methods, UBS Publishers’ Distributors: New

Delhi.

Desai, A. Oza, R. Sharma, P. & Patel, B. (2013) Hypervisor: A Survey on Concepts

and Taxonomy. International Journal of Innovative Technology and

Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-2, Issue-3,

February 2013.

Despa, L., M. (2014). Comparative Study on Software Development Methodologies.

Database Systems Journal, Vol. V, No. 3.

Dhingra, M., Lakshmi, J., & Nandy, S. K. (2012). Resource Usage Monitoring in

Clouds in 12th Proceedings of the 2012 ACM/IEEE 13th International

Conference on Grid Computing. IEEE Computer Society: Washington.

Pages 184-191.

Dragoni, N. (2009). Toward trustworthy web services - approaches, weaknesses and

trust-by-contract framework. IEEE/WIC/ACM International Conference on

Web Intelligence and Intelligent Agent Technology, Volume 3, pp. 599–606,

2009.

Dumbill, E. (2012) Big Data Now. Sebastopol: O’Reilly Media, Inc.

Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P., Luo, M. and

Newling, T. (2004). Patterns: Service-Oriented Architecture and Web

Services. North Castle Drive Armonk, NY: IBM Corporation.

Esteves. R. (2011) A taxonomic analysis of cloud computing. In 1st Doctoral

Workshop in Complexity Sciences ISCTE- IUL/FCUL, Lisbon.

 182

European Telecommunications Standards Institute (ETSI) Speech Processing,

Transmission and Quality Aspects (STQ); User related QoS parameter

definitions and measurements, ETSI EG 202 057-1 V1.2.1 (2005-10), ETSI

Guide.

Ezenwoke, A., Olawande, D. & Adigun, M. (2018) QoS-based Ranking and

Selection of SaaS Applications using Heterogeneous Similarity Metrics.

Journal of Cloud Computing:Advances, Systems and Applications, 7:15.

Falkenberg, E. D., Hesse, W., Lindgreen, P., Nilsson, B. E., Han Oei, J. L. Rolland,

C., Stamper, R. K., Van Assche, F. J. M., Verrijn-Stuart , A. A. & Voss, K.

(1998) A Framework of Information System Concepts, The FRISCO Report

(Web Edition).

https://www.researchgate.net/profile/Frans_Van_Assche/publication/293745

0_FRISCO_A_framework_of_information_system_concepts/links/00b4951

e4051b019d0000000/FRISCO-A-framework-of-information-system

concepts.pdf [accessed on 1st October 2020].

Firdhous, M., Hassan, M., & Ghazali, O. (2013). Monitoring, Tracking and

Quantification of Quality of Service in Cloud Computing. International

Journal of Scientific & Engineering Research, Volume 4, Issue 5.

Foster, I., Kesselman, C. & Tuecke, S. (2001). The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. International Journal of High Performance

Computing Applications archive. Volume 15, Issue 3.

Fukuyama, F. (1995). Trust: The social virtues and the creation of prosperity. The Free

Press :New York.

https://www.researchgate.net/profile/Frans_Van_Assche/publication/2937450_FRISCO_A_framework_of_information_system_concepts/links/00b4951e4051b019d0000000/FRISCO-A-framework-of-information-system-concepts.pdf
https://www.researchgate.net/profile/Frans_Van_Assche/publication/2937450_FRISCO_A_framework_of_information_system_concepts/links/00b4951e4051b019d0000000/FRISCO-A-framework-of-information-system-concepts.pdf
https://www.researchgate.net/profile/Frans_Van_Assche/publication/2937450_FRISCO_A_framework_of_information_system_concepts/links/00b4951e4051b019d0000000/FRISCO-A-framework-of-information-system-concepts.pdf
https://www.researchgate.net/profile/Frans_Van_Assche/publication/2937450_FRISCO_A_framework_of_information_system_concepts/links/00b4951e4051b019d0000000/FRISCO-A-framework-of-information-system-concepts.pdf

 183

Ghanam, Y., Ferreira, J., & Maurer, F. (2012). Emerging Issues & Challenges in

Cloud Computing— A Hybrid Approach. Journal of Software Engineering

and Applications. Volume 5, No. 11A.

Garg, K. S., Versteeg, S. & Buyya, R. (2011). SMICloud: A Framework for Comparing

and Ranking Cloud Services. 2011 Fourth IEEE International Conference on

Utility and Cloud Computing.

Gholami, A. & Arani, M. G. (2015) A Trust Model Based on Quality of Service in

Cloud Computing Environment. International Journal of Database Theory

and Application, Vol. 8 No.5.

Google (online) Gsuite Service Level Agreement.

https://gsuite.google.com/terms/sla.html [accessed on 12th November

2019].

Gouda, K. C., Dwivedi, D., Patro, A. & Bhat, N. (2014) Migration Management in

Cloud Computing. International Journal of Engineering Trends and

Technology (IJETT) – Volume 12 Issue 9.

Gorelek, E.(2013) Cloud Computing Models Comparison of Cloud Computing Service

and Deployment Models. M. Eng., Massachusetts Institute of Technology

http://web.mit.edu/smadnick/www/wp/2013-01.pdf.

Gorry, G. A. & Morton, S. S. M. (1971) .A Framework for Management Information

Systems. Working Paper 510-71, Afred P. Sloan school of Management,

Massachusetts Institute of Technology

https://gsuite.google.com/terms/sla.html
http://web.mit.edu/smadnick/www/wp/2013-01.pdf

 184

Grabner-Kräuter, S (2000) Consumer Trust in Electronic Commerce: Conceptualization

and Classification of Trust Building Measures, in Kautonen, T. and Heikki

Karjaluoto, H (2008) Trust And New Technologies, Cheltenham, United

Kingdom.

Grabner-Kräuter, S. & Kaluscha, A. E.. (2008). Consumer trust in electronic commerce:

Conceptualization and classification of trust building measures, in Teemu K.

and Heikki K. (Eds.) Trust and New Technologies. Edward Elgar Publishing

2008, Cheltenham, United Kingdom.

Grozev, N. & Buyya, R. (2012) Inter-Cloud architectures and application brokering:

taxonomy and survey, Software - Practice and Experience, Vol. 44, no. 3,

pp. 369—-390, 2012.

Gurudatt, K., Maheshchandra, J., Sadanand, B. & Hemant, B. (2013) Communication

As Service Cloud. International Journal of Computer Networking, Wireless

and Mobile Communications (IJCNWMC). Vol. 3. Issue 1.

Grosskurth, A. & Godfrey, M. (2005). A Reference Architecture for Web Browsers.

Software Maintenance, 2005. ICSM'05. Proceedings of the 21st IEEE

International Conference Software Maintenance, Budapest, Hungary, IEEE

Computer Society, Los Vaqueros Circle, CA.

Habib, S. M., Hauke, S., Ries, S. & Mu ̈hlha ̈user, M. (2012) Journal of Cloud

Computing: Advances, Systems and Applications. 1:19.

Hazra, A (2017) Using the Confidence Interval Confidently. Journal of Thoracic

Disease, Volume 9 Issue 10.

 185

Hurwitz, J., Nugent, A., Halper, F. & Kaufman, M. (2013). Big Data For Dummies.

Hoboken, New Jersey: John Wiley & Sons, Inc.

Ibrahim, A. A. Z. A., Wasim, M. U., Varrette, S. & Bouvry, P. (2018) PRESENCE:

Monitoring and Modelling the Performance Metrics of Mobile Cloud SaaS

Web Services. Mobile Information Systems, Volume 2018, Article ID

1351386.

Institute of Electrical and Electronics Engineers (IEEE) (2009). Standard for a Software

Quality Metrics Methodology, IEEE Std 1061 TM-1998 (R2009), New Jersey,

USA.

International Telecommunication Union (2008) Series E: overall Network Operation,

Telephone Service, Service Operation and Human Factors. ITU-T E.800,

09/2008.

International Telecommunication Union (2015) Series Y: Global Information

Infrastructure, Internet Protocol Aspects and Next-Generation Networks:

Big data – Cloud computing based requirements and capabilities. ITU-T

Y.3600, 11/2015.

International Organization for Standardization (ISO) Information technology —

Quality of service: Framework, ISO/IEC 13236:1998(E): ISO/IEC

Copyright Office • Case postale 56 • CH-1211 Genève 20 • Switzerland.

International Organization for Standardization (ISO) Risk Management-Vocabulary,

ISO/Guide 73:2009(E): ISO/IEC Copyright Office • Case postale 56 • CH-

1211 Genève 20 • Switzerland.

 186

Jain, J. (2015) Security Plug-ins Handbook: A Student’s Guide, Chicago: InfoSec

Institute [Available at:

http://resources.infosecinstitute.com/wpcontent/uploads/Security-Plugins-

Handbook-1.pdf [viewed on 3rd November 2017].

Jayaratna, N. (1994). Understanding and evaluating methodologies. NIMSAD: A

systemic approach. Berkshire: McGraw-Hill.

Jegadeesan, J. & Karuppaiah, V. (2016) Quality of Service Monitoring and

Prediction in Cloud Computing Environments. International Journal of

Emerging Technology in Computer Science & Electronics (IJETCSE),

Volume 22, Issue 3.

Jones, D. (2010) Definitive Guide to Monitoring the Data Center, Virtual

Environments, and the Cloud. Nimsoft from the data center to the Cloud.

Realtime Publishers: San Francisco, CA.

Junghoon, O., Seungbong, L., & Sangjin L. (2011). Advanced evidence collection

and analysis of web browser activity: Proceedings of The Digital Forensic

Research Conference, DFRWS 2011 USA, New Orleans, LA (Aug 1st - 3rd).

Kaplunou , P (2020) The Difference Between Vertical SaaS and Horizontal SaaS

(online). https://smart-it.io/blog/vertical-saas-vs-horizontal-saas/

 [Accessed on 22nd September 2020].

Kjaratan, P., Jan, E., Reid, B. , Janet , K. & Farookh, M. (2000). Validating Design

Methods & Research: The Validation Square. Proceedings of DETC ’00 2000

ASME Design Engineering Technical Conferences, September 10-14, 2000,

Baltimore, Maryland

http://resources.infosecinstitute.com/wp-content/uploads/Security-Plugins-Handbook-1.pdf
http://resources.infosecinstitute.com/wp-content/uploads/Security-Plugins-Handbook-1.pdf
https://smart-it.io/blog/vertical-saas-vs-horizontal-saas/

 187

Kaur, R. R. (2015). A Review of Computing Technologies: Distributed, Utility,

Cluster, Grid and Cloud Computing. International Journal of Advanced

Research in Computer Science and Software Engineering. Volume 5, Issue 2.

Karim, R. (2015) Techniques And Tools For Secure Web Browser Extension

Development. PhD, The State University of New Jersey.

Kazmi, R. (2018) What Are Vertical and Horizontal SaaS? (Online)

https://www.koombea.com/blog/vertical-horizontal-saas/ [accessed on 22nd

September 2020].

Kothari, C. R. (2004) Research Methodology: Methods and Techniques. New Age

International (P) Ltd., Publishers: New Delhi.

Kumar, R. (2005) Research Methodology-A Step-by-Step Guide for Beginners, (2nd

ed.), Pearson Education: Singapore.

Kumar, R. (2011) Research Methodology-A Step-by-Step Guide for Beginners, (3rd

ed.), SAGE Publications Ltd: London.

Kumar, S. & Goudar, R. H. (2012) Cloud Computing – Research Issues, Challenges,

Architecture, Platforms and Applications: A Survey. International Journal of

Future Computer and Communication, Vol. 1, No. 4, December 2012.

Kung, D. & Zhu, H. (2008) Software Verification and Validation. In Wah, B. (Ed.)

Encyclopedia of Computer Science and Engineering, John Wiley & Sons, Inc.:

New Jersey.

Laskey, K. B. & Laskey, K. (2009), Service Oriented Architecture. WIREs Comp

Stat, 1: 101–105. doi:10.1002/wics.8.

https://www.koombea.com/blog/vertical-horizontal-saas/

 188

Lerner, B. S. (2011) Designing for Extensibility and Planning for Conflict:

Experiments in Web-Browser Design. PhD., University of Washington.

Liu, L., Zhang, Vuclip, I., Yan, G & Chen, S. (2012) Chrome Extensions: Threat

Analysis and Countermeasures, NDSS ’12: Proceedings of the 19th Network

and Distributed System Security Symposium. San Diego, California February

5-8, 2012.

Lucas, H. C., Clowes, K. W., & Kaplan, R. B. (1973) Frameworks for Information

Systems. Working Paper No. 142, Stanford Graduate Business School.

https://www.gsb.stanford.edu/faculty-research/working-papers/frameworks-

information-systems [accessed on 1st October 2020].

Makokha, F., Opiyo, E. & Okello-odongo (2017). Challenges of Quality of Service

 Monitoring in Cloud Computing Solutions. International Journal of

Computer and Information Technology Vol 06 Issue 06.

Makokha, F. & Opiyo, E. (2018). A Vendor Neutral QoS Monitoring Model for SaaS

Cloud Computing Solutions. International Journal of Computer and

Information Technology Vol 07 Issue 01.

Makokha, F., Opiyo, E. & Chepken, C. (2019) Browser Integrated Vendor Neutral

Cloud QoS Monitoring System. International Journal of Computer and

Information Technology, Vol 8, No 6.

Makokha, F., Chepken, C. K. & Opiyo, E. T. (2021) End User Centric Quantitative

Trust Model in Cloud Computing. American Journal of Computer Science

and Engineering. Vol. 7, No. 1, 2021, pp. 1-7.

https://www.gsb.stanford.edu/faculty-research/working-papers/frameworks-information-systems
https://www.gsb.stanford.edu/faculty-research/working-papers/frameworks-information-systems

 189

Manuel, P (2013) A trust model of cloud computing based on Quality of Service.

Annals of Operations Research. 233. 1-12. 10.1007/s10479-013-1380-x.

Mayer, R. C., Davis, J. H and Schoorman, F. D. (1995). An Integrative Model of

Organizational Trust, The Academy of Management Review, Vol. 20, No. 3.

Mcknight, D.H., Cummings, L.L. and Chervany, N. L (1998). Initial Trust

Formation in New Organizational Relationships. Academic Management

Review 23(3) 473–490.

McEvilya, B. & Tortoriellob, M. (2011) Measuring Trust in Organisational Research:

Review and Recommendations, Journal of Trust Research 1(1).

Meera, A. & Swamynathanb, S. (2013) Agent based Resource Monitoring system in

IaaS Cloud Environment. International Conference on Computational

Intelligence: Modeling Techniques and Applications, (CIMTA). Elsevier

Technology: Amsterdam, The Netherlands.

Mell, P. & Grance, T. (2011). The NIST Definition of Cloud Computing. NIST

Special Publication 800-145.

Mishra, A. K. (1996). Organizational Responses to Crisis: The Centrality of Trust. R.

M. K. and T. R. Tyler (eds), Sage, Thousand Oaks, CA, 261-287.

Mondal, K. R. & Sarddar, D. (2015). Utility Computing. International Journal of

Grid Distribution Computing, Vol. 8, No.4.

Mamoun, H. M. & Eslam M. I. (2014). A Proposed Framework for Ranking and

Reservation of Cloud Services. International Journal of Engineering and

Technology, Volume 4, No. 9.

 190

McCall, J. A., Richards, P. K. & Walters, G. F. (1977) Factors In Software Quality:

Concept and Definitions of Software Quality. RADC-TR-77-369, Vol. I (of

three) Final Technical Report. Massachusetts: Hanscom Air Force Base.

Meng, S. & Liu, L. (2013) Enhanced Monitoring-as-a-Service for Effective Cloud

Management. IEEE Transactions on Computers. Volume 62 No. 9.

Misra, A., Sharma, A., Gulia, P., & Bana, A. (2014). Big Data: Challenges and

Opportunities. International Journal of Innovative Technology and

Exploring Engineering (IJITEE) Volume-4 Issue-2.

Mutulu, M. P & Kahonge, M. A. (2018). A Multi-tenancy Cloud Trust Model using

Quality of Service Monitoring – a Case of Infrastructure as a Service

(IaaS). M.Sc. University of Nairobi.

Munyaradzi, Z., Maxmillan, G. & Mutembedza N. A. (2013). Effects of Web Page

Contents on Load Time over the Internet. International Journal of Science

and Research (IJSR), India Online ISSN: 2319-7064, Volume 2 Issue 9,

September 2013.

Murtaza, S. & Al Masud, R. (2012) An Extended and Granular Classification of

Cloud’s Taxonomy and Services. International Journal of Soft Computing and

Engineering (IJSCE). Volume 2, Issue 2.

Naeem, M. M., Memon, F. M. H., Siddique, M. & Rauf, A. (2016) An Overview of

Virtualization and Cloud Computing. Science International (Lahore),

Volume 28 Issue 4.

 191

Nagat, D., Jamal B. & Hongyang Q (2020) Computationally Grounded Quantitative

Trust with Time. Proc. of the 19th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS 2020), B. An, N. Yorke-Smith, A.

El Fallah Seghrouchni, G. Sukthankar (eds.), May 9–13, 2020, Auckland,

New Zealand© 2020.

National Institute of Standards and Technology (2011), The NIST Definition of

Cloud Computing (NIST Special Publication 800-145), Computer Security

Division, Gaithersburg, USA.

Navarro, A. C., Kahler, H. N., & Mateu, L. (2014). A Survey on Parallel Computing

and its Applications in Data-Parallel Problems Using GPU Architectures.

Communications in Computational Physics. Volume. 15, No. 2.

Nazir, M. (2012). Cloud Computing: Overview & Current Research Challenges.

IOSR Journal of Computer Engineering (IOSR-JCE) Volume 8, Issue 1.

Nielsen, J. (2000) Designing Web Usability: the practice of simplicity. Indianapolis:

New Riders.

Odun-Ayo, I., Ajayi, O. & Falade, A. (2018) Cloud Computing and Quality of

Service: Issues and Developments. Proceedings of the International Multi

Conference of Engineers and Computer Scientists, 2018. Vol I IMECS 2018,

March 14-16, 2018, Hong Kong.

Owansa, T. & Walubengo, J (2017) Regional Academic Network on IT Policy

(RANTIP) –Cloud Computing Research Case of Kenya (Cloud User

Perspectives) Nov 2017.

 192

Omwansa, T., Waema, T. & Omwenga, B. (2014). Cloud Computing in Kenya A

2013 Baseline Survey. University of Nairobi, School of Computing and

Informatics (SCI) & Computing for Development Lab (C4DLab).

http://erepository.uonbi.ac.ke/bitstream/handle/11295/77612/Omwansa%20[

at.al]_Cloud%20Computing%20in%20Kenya.pdf?sequence=1

Patel, P., Ranabahu, A. & Sheth, A. (2009). Service level agreement in cloud

computing, in: Cloud Workshops at OOPSLA09, Orlando, Florida, USA,

October 25–29.

Peuhkuri, M (2002). Internet Traffic Measurements – Aims, Methodology, and

Discoveries. M.Sc., Helsinki University of Technology.

Portnoy, M. (2012). Virtualization Essentials. Indianapolis, Indiana: John Wiley &

Sons, Inc.

Qi, H. & Gani, A. (2012). Research on Mobile Cloud Computing: Review, Trend and

Perspectives: in Proceedings of the Second International Conference on

Digital Information and Communication Technology and its Applications

(DICTAP), IEEE, Pages 195-202.

Ramad, H. H. & Kashyap, D. (2017) Quality of Service (QoS) in Cloud Computing.

(IJCSIT) International Journal of Computer Science and Information

Technologies, Vol. 8 (3).

Rios, E., Mallouli, W., Rak, M., Casola, V. & Ortiz, M. A (2016) SLA-Driven

Monitoring of Multi-cloud Application Components Using the MUSA

Framework, in 2016 IEEE 36th International Conference on Distributed

Computing Systems Workshops (ICDCSW), Nara, 2016, pp. 55-60.

http://erepository.uonbi.ac.ke/bitstream/handle/11295/77612/Omwansa%20%5bat.al%5d_Cloud%20Computing%20in%20Kenya.pdf?sequence=1
http://erepository.uonbi.ac.ke/bitstream/handle/11295/77612/Omwansa%20%5bat.al%5d_Cloud%20Computing%20in%20Kenya.pdf?sequence=1

 193

Rios, E., Iturbe, E., Mallouli, W. & Rak, M.(2017) Dynamic Security Assurance in

Multi-cloud DevOps, 2017 IEEE Conference on Communications and

Network Security (CNS), Las Vegas, NV, 2017, pp. 467-475.

Rizvi, S., Roddy, H., Gualdoni, J. & Myzyri, L (2017) Three-Step Approach to QoS

Maintenance in Cloud Computing Using a Third-Party Auditor, in Procedia

Computer Science 114 (2017) 83–92, Complex Adaptive Systems Conference

with Theme: Engineering Cyber Physical Systems, CAS October 30 –

November 1, 2017, Chicago, Illinois, USA.

Salesforce (2019) Trust Status. https://status.salesforce.com [accessed on 13th

October 2019].

Saravanan, K. & Kantham, L. (2013). An enhanced QoS Architecture based

Framework for Ranking of Cloud Services. International Journal of

Engineering Trends and Technology (IJETT), Volume 4, Issue 4.

Sanchez-Rola, I., Santos, I., & Balzarotti, D. (2017). Extension Breakdown: Security

Analysis of Browsers Extension Resources Control Policies: Proceedings of

the 26th USENIX Security symposium (2017), Vancouver, BC, Canada.

Serhani, M.A., Atif, Y. & Benharref, A. (2014). Towards an adaptive QoS-driven

monitoring of cloud SaaS. International Journal on Grid and Utility

Computing, Vol. 5, No. 4.

Sosinsky, B (2011). Cloud Computing Bible. Indianapolis, Indiana: Wiley Publishing,

Inc.

Sommerville, I. (2011). Software Engineering, 9th Ed. Boston: Pearson Education,

Inc.

https://status.salesforce.com/

 194

Subha, M. & Banhu, U. M. (2014). A Survey on QoS Ranking in Cloud Computing.

International Journal of Emerging Technology and Advanced Engineering.

Volume 4, Issue 2.

Suman, Wadhwa, M. (2014) A Comparative Study of Software Quality Models.

International Journal of Computer Science and Information Technologies,

Vol. 5 (4).

Sukhpuneet, K., Kulwant, K. & Parminder, K.(2016) An Empirical Performance

Evaluation of Universities Website. International Journal of Computer

Applications (0975 – 8887) Volume 146 – No.15, July 2016.

Taha, A. (2018) Quantitative Trust Assessment in the Cloud. MSc., Technische

Universität Darmstadt, Germany.

Tamary, J. and Feitelson, D. G. (2015) The rise of Chrome. PeerJ Computer Science

1:e28 https://doi.org/10.7717/peerj-cs.28.

Vetter, R. J., Spell, C., & Ward, C. (1994). Mosaic and the World Wide Web. IEEE

 Computer, Volume: 27, Issue: 10.

Thanh, T. P. T & Helfert, M (2007). A Review of Quality Frameworks in Information

Systems in proceedings of Information Systems Technology and its

Applications, 6th International Conference ISTA'2007, May 23-25, 2007,

Kharkiv, Ukraine.

Upadhyay, N. (2017) Managing Cloud Service Evaluation and Selection. Procedia

Computer Science 122 (2017) 1061–1068.

Vicic, J. & Brodnik, A. (2014) Multiple-cloud platform monitoring. Elektrotehnis Ki

Vestnik 81(3): 94–100, 2014.

https://doi.org/10.7717/peerj-cs.28

 195

Vidgen, R., Wood, J., & Wood-Harper, A. (1994). Customer satisfaction: The need

for multiple perspectives of information system quality. Chance of

Receiving Desired Consequences. Management II, Vol 1. Computational

Mechanics Publications.

Vissk, T. (2010) Recommendations for Using the Case Study Method in International

Business Research. The Qualitative Report, Volume 15 Number 2 March

2010 370-388.

Vliet, H. V (2007) Software Engineering: Principles and Practice. John Wiley &

Sons: New Jersy.

Vouk, A. M. (2008). Cloud Computing – Issues, Research and Implementations.

Proceedings of the ITI 2008 30th International Conference on Information

Technology Interfaces, June 23-26, Cavtat, Croatia.

Vidhya, V.(2013) Recent Trends in Cloud Computing: A Survey. International

Journal of Advances in Computer Science and Technology. Volume 2,

No.5.

Vrbanec, T., Kirić, N. & Varga, V. (2013) The evolution of web browser

architecture, in M Mokrys, S Badura, A Lieskovsky (Eds.), SCIENCOF

2013 :Proceedings of The 1st International Virtual Scientific Conference.

Publishing Society: Slovakia.

Vyawahare, D. G., Bende, R. B., Bhajipale, D. N., Bharsakle, R. D. & Salve, A. G.

(2016) A Survey on Security Challenges and Solutions in Cloud Computing.

International Journal of Innovative Research in Computer and

Communication Engineering. Vol. 4, Issue 3.

 196

Wong B. & Jeffery R. (2002) A Framework for Software Quality Evaluation. In:

Oivo M., Komi-Sirviö S. (eds) Product Focused Software Process

Improvement. PROFES 2002. Lecture Notes in Computer Science, Vol

2559. Springer, Berlin, Heidelberg.

Yahya, F., Chang, V., Walters, R. J. & Wills, G. B. (2014) Security Challenges in

Cloud Storage. In ￼2014 IEEE 6th International Conference on Cloud

Computing Technology and Science.

Yefeng R., Ping Z., Lina A. & Arjan D. (2017) Measurement Theory-Based Trust

Management Framework for Online Social Communities. ACM Transactions

on Internet Technology, Vol. 17, No. 2, Article 16, Publication date: March

2017.

Yin, R. (1984). Case study research: Design and methods (1st ed.). Beverly Hills, CA:

Sage Publishing.

Zachman, J. A (1987) A framework for information systems architecture. IBM

Systems Journal, Volume 26. No 3, 1987.

Zainab, A., Perry, M. & Capretz, M. A (2011). Trust Metrics for Services and Service

Providers in The Sixth International Conference on Internet and Web

Applications and Services ICIW 2011 March 20-25, 2011 - St. Maarten, The

Netherlands Antilles.

Zavol, F., Jung, J. J. & Badica, C. (2013). Intelligent Distributed Computing VII, in

Proceedings of the 7th International Symposium on Intelligent Distributed

Computing (IDC), Prague , Czech Republic. Springer: London.

 197

Zeginis, C., Kritikos, K., Garefalakis, P., Konsolaki, K., Magoutis, K. & Plexousakis,

D. (2013) Towards Cross-Layer Monitoring of Multi-Cloud Service-Based

Applications, In Proceedings of the 2nd European Conference on Service-

Oriented and Cloud Computing (ESOCC 2013), Malaga, Spain, 11-13

September 2013.

Zheng, X., Martin, P., Brohman, K. & Xu, L. D. (2014). CLOUDQUAL: A Quality

Model for Cloud Services. IEEE Transactions on Industrial Informatics, Vol.

10, No. 2.

Zia, A. Naeem, M. & Khan, A. (2012). Identifying Key Challenges in Performance

Issues in Cloud Computing. International Journal of Modern Education and

Computer Science, Volume 10.

 198

Appendix 1: Email Conversations and Chats with Cloud Providers

 199

 200

 201

 202

 203

 204

 205

 206

Appendix 2: JavaScript Code Snippet for Getting Terminal Specifications

 207

Appendix 3: JavaScript Snippet for getting Internet Connection Parameters

 208

Appendix 4: Sample JavaScript Snippet for Monitoring Cloud Platform QoS

 209

 210

 211

 212

 213

Appendix 5: Sample Raw QoS Monitoring Results For All Cloud QoS Platforms

 214

 215

 216

 217

 218

 219

 220

 221

 222

 223

 224

 225

 226

 227

 228

 229

 230

 231

 232

Appendix 6: Sample Raw QoS Results For Google and Microsoft Comparison

 233

 234

 235

 236

 237

 238

 239

 240

 241

 242

 243

 244

 245

 246

Linked Publications

Makokha, F., Chepken, C. K. & Opiyo, T. O. (2021). End User Centric Quantitative

Trust Model in Cloud Computing. American Journal of Computer Science

and Engineering. Vol. 7, No. 1, 2021, pp. 1-7.

Makokha, F., Chepken, C. K. & Opiyo, E. (2020). A Comparative Study of a Client

Based Vendor Neutral Cloud QoS Monitoring Tool and Cloud Providers’

Platform Integrated QoS Monitoring Tools. European Journal of Electrical

Engineering and Computer Science. 4, 1 (Jan. 2020).

Makokha, F., Opiyo, E. E. & Chepken, C. K. (2019). Browser Integrated Vendor

Neutral Cloud QoS Monitoring System. International Journal of

Computer and Information Technology Volume 08 – Issue 06, November

2019.

Makokha, F. & Opiyo, E. (2018). A Vendor Neutral QoS Monitoring Model for SaaS

Cloud Computing Solutions. International Journal of Computer and

Information Technology Volume 07– Issue 01, January 2018.

Makokha, F., Opiyo, E & Okelo-Odongo (2017). Challenges of QoS Monitoring in

Cloud Computing Solutions. International Journal of Computer and

Information Technology Volume 06– Issue 06, November 2017.

	Declaration
	Dedication
	Acknowledgments
	Abstract
	CHAPTER ONE: INTRODUCTION
	1.1. Background
	1.2. Definition of Research Discipline and Sub Discipline
	1.3. Problem Statement
	1.4. Research Objectives
	1.5. Research Questions
	1.6. Significance of the Study
	1.7. Justification
	1.8. Scope of the Research
	1.9. Assumptions
	1.10. Limitations of the Research
	1.11. Knowledge Contribution
	1.12. Operational Definition of Terms
	1.13. Chapter Summary
	CHAPTER TWO: LITERATURE REVIEW
	2.1. Cloud Computing Concepts
	2.2. Service Models of Cloud Computing
	2.3. Strengths of Cloud Service Computing
	2.4. Limitations of Cloud Computing
	2.5. Contemporary Research Trends in Cloud Computing
	2.5.1. Service Level Agreements (SLAs)
	2.5.2. Management of Data in the Cloud
	2.5.3. Access Controls
	2.5.4. Energy Resource Management
	2.5.5. Reliability and Availability of Service
	2.5.6. Common Cloud Standards
	2.5.7. Interoperability
	2.6. Quality of Service Monitoring
	2.6.1. Quality of Service in Telecommunications
	2.6.2. Quality of Service in Cloud Computing
	2.7. Quality of Service Monitoring Models in Cloud Computing
	2.7.1. Agent Based Model
	2.7.2. The QoS MONitoring as a Service Model (QoSMONaaS)
	2.7.3. CloudQual
	2.7.4. Adaptive QoS-driven Monitoring Model
	2.8. Vendor Neutrality of the Cloud Quality of Service Monitoring Models
	2.9. Existing Cloud QoS Monitoring Framework Formulation
	2.10. Comparable Studies on Developing Multi Cloud QoS Monitoring Frameworks
	2.11. Evaluating Trust in Information Systems
	2.12. Research Gulf
	2.13. Chapter Summary
	CHAPTER THREE: METHODOLOGY
	3.1 Research Philosophy
	3.2. Development of a Client Trustable Cloud QoS Monitoring Framework
	3.3. Design of a Vendor Neutral Cloud QoS Monitoring Model
	3.4. Implementation the Designed Vendor Neutral Model
	3.5. Research Design
	3.5.1. Sampling Strategy
	3.5.2. Study Design
	3.5.3. Testing Procedure
	3.6. Verification and Validation Methodology
	3.6.1. Case Study Validation
	3.7. Chapter Summary
	CHAPTER FOUR: REALIZATION OF THE VENDOR NEUTRAL MODEL
	4.1 Formulation of A Client Trustable Cloud QoS Monitoring Framework
	4.2. Appraisal of Trust in the New Framework
	4.3. Formulation of the Proposed Vendor Agnostic SaaS Cloud QoS Monitoring Model
	4.3.1. The Web Browsers Architecture
	4.3.2. Web Browser Sub Components
	4.3.3. Browser Extensibility
	4.3.4. The Architecture of a Browser Extension
	4.4. Proposed Vendor Neutral Cloud QoS Monitoring Model
	4.5. Actualization of the Proposed Vendor Neutral Model for Cloud QoS
	4.5.1. Algorithms Development
	4.5.2. Tool Integration into the Browser
	4.5.3. Testing with the Vendor Agnostic Cloud QoS Tool
	4.6. Chapter Summary
	CHAPTER FIVE: RESULTS AND DISCUSSION
	5.1 Cloud QoS Monitoring with the Vendor Neutral Model Tool
	5.2. Results from Existing Cloud Computing Platform Integrated Tools
	5.2.1. Gsuite
	5.2.2. Salesforce
	5.2.3. Hubspot
	5.2.4. Shopify
	5.2.5. Microsoft
	5.3. Analysis of the Testing Results
	5.4. Application of the Vendor Neutral Model Tool in Cloud Provider Choice
	5.5. Application of the Vendor Neutral Model Tool in Cloud Providers Trust Computations
	5.6. Summary of Results and Discussion
	5.7. Chapter Summary
	CHAPTER SIX: CONCLUSION AND FURTHER RESEARCH
	6.1 Conclusion
	6.2. Knowledge Contribution to Computer Science
	6.3. Implications on Theory, Practice and Policy
	6.4. Future Studies
	References
	Appendix 1: Email Conversations and Chats with Cloud Providers
	Appendix 2: JavaScript Code Snippet for Getting Terminal Specifications
	Appendix 3: JavaScript Snippet for getting Internet Connection Parameters
	Appendix 4: Sample JavaScript Snippet for Monitoring Cloud Platform QoS
	Appendix 5: Sample Raw QoS Monitoring Results For All Cloud QoS Platforms
	Appendix 6: Sample Raw QoS Results For Google and Microsoft Comparison
	Linked Publications

