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Abstract

High frequency financial data is characterized by non-normality, asymmetric, leptokurtic
and fat-tailed behaviour. The normal distribution is inadequate in capturing these
characteristics. To this end, various flexible distributions have been proposed. In this
Thesis we introduced a new class of distributions known as Normal Weighted Inverse
Gaussian distributions.

Weighted Inverse Gaussian distributions are special cases of Generalized Inverse Gaussian
(GIG) distribution which are related to Inverse Gaussian (IG) distribution. Finite mixtures
of these special cases are also weighted Inverse Gaussian (WIG) distributions. Using these
WIG distributions as mixing distributions to the Normal Variance Mean Mixture (NVMM)
we obtain a class of Normal Weighted Inverse Gaussian (NWIG) distributions.

The properties considered for these models are mean, variance, skewness and kurtosis.
For data analysis we consider three data sets: Range Resource Corporation (RRC), Shares
of Chevron Corporation (CVX) and s&p500 index. The period 3/01/2000 to 1/07/2013 with
702 observations for each data set is considered. Estimation of parameters of these models
are obtained using Expectation-Maximization (EM) algorithm. The EM algorithm is a
powerful technique for maximum likelihood estimation for data containing missing values
or data that can be considered as containing missing values. The mixing operation can be
considered responsible for producing missing values.

Two important risk measures in literature are Value at Risk (VaR) and Expected Shortfall
(ES). In this work we have obtained VaR and ES for the NWIG distributions. Backtesting
of this measures is also performed.

We have also considered dependence modelling of financial returns using copulas. The
marginal distributions are based on Normal Weighted Inverse Gaussian distributions.
We highlight the following contributions to this work

1. We have constructed a new class of Weighted Inverse Gaussian distributions.

2. We have used this class as a mixing distribution to the Normal Variance Mean Mixture
to obtain a class of Normal Weighted Inverse Gaussian distributions.

3. All works on parameter estimation of EM algorithm at the maximization step is based
on explicit solution to normal equations. Often this involves numerical techniques
which are difficult to implement. In this work, we show that the iterative schemes
are not necessarily based on explicit solutions. They can also be designed using
a representation based on the normal equations. This subtle approach is easily
programmable and preserves the monotonic convergence property of the EM algorithm
with each iteration increasing the likelihood.
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4. From the data sets used, this class of NWIG distributions is shown to be a good
alternative to the Normal Inverse Gaussian distribution. However, one special case of
the GIG distribution when used as a mixing distribution to NVMM outperforms the
NIG and one finite case when used as a mixing distribution outperforms all models.

5. Using backtesting procedures it can be shown that this class of distributions, NWIG,
which have heavy tailed, is an alternative candidate for financial risk management.

6. The models have also been used as marginals in dependence modelling using copulas

approach.
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Abbreviations and Notations

The general abbreviations and notations used in the thesis are given.

Modified Bessel function of the third kind
Inverse Gaussian

Reciprocal Inverse Gaussian

Generalised Inverse Gaussian

Weighted Inverse Gaussian

Normal Inverse Gaussian

Normal Reciprocal Inverse Gaussian
Generalised Hyperbolic Distribution
Normal Variance Mean Mixture

Normal Weighted Inverse Gaussian
Cummulative distribution function
Probability density function

Basel Committee on Banking Supervision
Value at Risk

Expected Shortfall

Bivariate Copula function of margins u and v
Method of Moment

Maximum Likelihood

Expectation Maximization

Akaike Information Criterion

Bayesian Information Criterion

Moment generating function of X
Moment generating function of Z

Range Resource Corporation

Shares of Chevron

Standard and Poor’s 500 index
Conditional distribution

Mixing distribution
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f(zlx)
N
Y2

Posterior distribution
Skewness

Excess Kurtosis
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1.1

1.2

INTRODUCTION

Background Information

Managing risk for the purpose of economic capital allocation is one of the main objectives
of financial institutions to guarantee solvency to their clients and counterparties. In
general, Risk measures are used to quantify risk to determine appropriate capital to
survive in extreme market conditions. Capital amounts therefore act as buffer against
insolvency.

There are many possible interpretations and different ways of quantifying investment risk.
In this work we focus on Value at Risk (VaR) and Expected Shortfall (ES). These are the
two main risk measures used in financial institutions and regulation.

For the purpose of VaR and ES analysis (for a single asset or a portfolio), a model for the
return distribution also known as profit and loss (P&L) distribution is important because
it describes the potential behaviour of a financial security in the future.

Definitions, Terminologies and Notations

Risk Measure
Let (Q,.#,P) be a probability space and V be a non-empty set of .%#-measurable real-
valued random variables. Then any mapping

p:V—RU{e} (1.1)

is called a risk measure.

Properties of Risk Measures

Let a € (0,1] be fixed and (Q,.7,P) be a probability space. Consider the risk measure
p on the set V of all the .# — measurable real-valued random variables. We have the
following Axioms:

1 Translation invariance:
XeVaeRX+acV=p(X+a)=pX)—a (1.2)

This defines a risk measure as the buffer capital needed to maintain a certain level of
risk.

2 Monotonicity:
X,YeV,X<Y = p(X)2>p(Y) (1.3)



Portfolio with higher guaranteed value will always be less risky.

3 Positive homogeneity:
XeV,h>0,hX € V= p(hX)=hp(X) (1.4)

to double the capital means to double the risk.

4 Law of invariance:

X,Y € V,P[X <1] = P[Y <t]forallt € R = p(X) = p(¥) (1.5)

5 Subadditivity:
X, YeV=p(X+Y)<pX)+p(Y) (1.6)

Two combined portfolios should never be more risky than the sum of the risk of the
two portfolios separately.

The most popular downside risk measure is Value at Risk (VaR). It is generally defined
as possible maximum loss over a given holding period within a fixed confidence level.
In statistical terms, VaR is a quantile of distribution for financial asset returns. More
formally, VaR is defined as

P{X < -VaR} )} =« (1.7)

where X represents the Asset’s returns for a symmetric distribution. In general, the integral
form can be expressed as
VaRy,
/ f(x)dx =« (1.8)
where f(x) is the profit-loss distribution.
Conditional Expectation

VaRy
E[X|X <VaRy| = / xﬁdx

—o0

(1.9)

is the Expected Shortfall denoted as ESy.

Weighted Distribution

Let X be a random variable with pdf f(x). A function of X, w(X) is also a random variable
with expectation

| worea
/°° w(x)

oo E[w(X)]

Ew(X)] (1.10)
o1

f(x)dx
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= fw(x) :%f(x),—oo<x<oo (1.11)

Normal Variance-Mean mixture
A Normal Variance-Mean mixture can be presented in integral form as:

© 1 [ (u+B2)?
XxX) = e 2z z7)dz 1.12
0= £(c) 12

with the conditional distribution,
X/Z=z~N(u+PBz2z) (1.13)

and g(z) being the mixing/averaging distribution. f(x) is called a Normal Variance Mean
Mixture.

Statement of Problem

Nadarajah et al., (2014) have given a detailed review of VaR and ES for various distributions.
One of the distributions considered is the Generalised Hyperbolic Distribution (GHD).
GHD is a Normal Variance Mean Mixture (NVMM) with the Generalised Inverse Gaussian
(GIG) mixing distribution. The GIG is a three parameter distribution denoted as GIG(A, 6, 7).
The GIG embraces a number of special case distributions. When the index parameter take

the value A = —% we obtain the Inverse Gaussian (IG) distribution. The Normal Inverse
Gaussian (NIG) distribution is a NVMM with 1G mixing distribution.
Other special cases of GIG can be obtained when A = %, A= —% and A = % These special

cases can be shown to be Weighted Inverse Gaussian (WIG) distribution. When used as
mixing distribution in NVMM we obtain a class of distribution known as Normal Weighted
Inverse Gaussian (NWIG) distributions. In constructing this new class of distributions
a number of issues arose and needed to be addressed. Thus, some of these issues have
formed part of the problem statement in terms of questions.

(i) A number of special cases of distributions can be obtained when the index parameter
of the GIG assume specific values such as A = —%, A= %, A= —% and A = % The
question therefore is; how are these special case distributions related to the 1G
distribution? What are their properties?

(if) The four special cases can be combined to construct Six finite mixtures. Can these
models be expressed in terms of 1G distribution? What are their properties?

(iii) The Ten special cases can be used as mixing distribution in NVMM. What are the
properties of these Mixtures?

(iv) The Expectation Maximization (EM) algorithm has been used to estimate parameters
of the mixed models since the mixing operation is considered responsible for producing
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missing data. What iterative schemes can be designed to estimate the parameters of
these models?

(v) How can these class of Normal Weighted Inverse Gaussian (NWIG) distributions be
compared to the Normal Inverse Gaussian (NIG)?

(vi) For the purpose of Value at Risk (VaR) and Expected Shortfall (ES) computation,
is the class of NWIG distributions of any economical value compared to the NIG
distribution?

(vii) The NIG has commonly been used for marginals in dependence modelling using
Copulas. What difference does it make using the "Best Model" identified for the class
of NWIG distributions?

Objectives

1.4.1 General Objective

The main objective is to measure Value at Risk (VaR) and Expected Shortfall (ES) based on
Normal Weighted Inverse Gaussian (NWIG) distributions for the purpose of economical

capital allocation and dependence modelling.

1.4.2 Specific Objectives

(a) To obtain the class of Weighted Inverse Gaussian distribution.

(i) Deduce the four special cases of GIG when the indexes are: —%, %, —% and %
(if) construct the six pairwise finite mixtures of the four special cases of the GIG.
(iii) express the ten special cases as Weighted Inverse Gaussian distributions.
(iv) Obtain the properties of the class of Weighted Inverse Gaussian distributions

(b) To use the class of Weighted Inverse Gaussian distributions as mixing distributions
in Normal Variance Mean Mixture to obtain the class of Normal Weighted Inverse
Gaussian distributions.

(c) To obtain the Maximum Likelihood parameter estimates for the class of Normal
Weighted Inverse Gaussian distributions via the Expectation Maximization (EM)
algorithm.

(i) find the posterior estimates for the missing value which are functions of the
random variable of the mixing distributions.

(ii) to design an iterative scheme for each Normal Weighted Inverse Gaussian
Mixtures based on the normal equations



(iii) identify initial values for the iteration

(d) To compute Value at Risk and Expected Shortfall of the fitted models for some financial
data

(e) To perform model selection and identify the "Best Model" for dependence Modelling
using Copulas.



1.5 Literature Review

Markowitz (1952) introduced the Modern Portfolio Theory based on Variance which
became the dominating risk measure. However, MPT has a number of Drawbacks:

1 Risks are random variables with finite variance

2 It implicitly assumes that their distribution are approximately symmetric around the
mean.

3 It does not necessarily corresponds to investors’ perception of risk.

The most popular downside risk measure is Value at Risk (VaR). VaR was proposed by
Till Guldimann in the late 1980s, and at the time he was the head of global research at J.
P. Morgan. It is generally defined as possible maximum loss over a given holding period
within a fixed confidence level.In statistical terms, VaR is a quantile of distribution for
financial asset returns. It has become the classic measure that financial executives use to
quantify market risk. When RiskMetrics announced Value at Risk as its measure of risk in
1996, the Basel Committee on Banking Supervision enforced financial institutions to meet
capital requirements based on VaR estimates.

However, the main shortcoming of VaR is that it fails to capture tail risk. It does not take
into account what happens beyond the threshold level. VaR also lacks a mathematical
property called subadditivity (Wimmerstedt, 2015). This implies that diversification could
increase risk.

These limitations have prompted the implementation of an alternative, coherent measure
of risk - the Expected Shortfall (ES).

The concept of Expected Shortfall (ES) was first introduced in Rappoport (1993). Artzner
et. al (1997, 1999) formally developed the concept.

1.5.1 Backtesting a Risk Measure

Backtesting a risk measure is the same as evaluating forecasting performance.

To achieve this directly, we exploit the mathematical property of elicitability introduced
by Osband (1985) and further developed by Lambert et al. (2008).

A statistical functional, such as the mean or median, is called elicitable if there’s a scoring
function such that the correct forecast of the functional is the unique minimizer of the
expected score. VaR can be shown to be elicitable. Although ES appears to be a more
suitable risk measure than VaR because of its coherence and tail sensitivity, it has been
shown that, in contrast to VaR, it lacks the property of elicitability (Gneiting, 2011). ES
has been shown to be conditionally elicitable (Emmer et al., 2015) and jointly elicitable
with VaR (Fissler and Ziegel, 2016). Therefore, VaR and ES can be backtested jointly. Deng



and Qui (2021) have conducted a comprehensive study of the performance of leading
procedures for ES with more than a dozen variation. The Basel Committee (2013) proposed
to replace Value at Risk with Expected Shortfall. The 2016 Basel IV framework for the first
time openly advocated the use of expected shortfall (ES) in risk management on a daily
basis (Basel Committee on Banking Supervision).

For the purpose of VaR and ES analysis, a model for the return distribution is important
because it describes the potential behaviour of a financial security in the future (Bams
and Wielhouwer, 2001). A Normal distribution supposedly underestimates the tail and
hence VaR.

1.5.2 Normal Mixtures

Nadarajah et al., (2014) have given a detailed review of VaR and ES for various distributions.
One of the distribution reviewed is the Generalized Hyperbolic Distribution (GHD)
introduced by Barndorff-Nielsen (1977). The GHD nest a number of special and limiting
case distribution. A number of researchers have studied these cases. They include:
Eberlein and Keller(1995) studied the Hyperbolic distribution, Barndorff-Nielsen (1997)
considered the special case of Normal Inverse Gaussian distribution, Madan and Seneta
(2005) considered the limiting case of Variance Gamma and Aas and Haff (2005,2006)
reviewed the NIG and studied the Generalised Hyperbolic Skew Student’s t distribution.

1.5.3 Estimation

The Mixing operation is considered responsible for producing missing values. The Expectation
Maximization algorithm introduced by Dempster et al. (1977) has been used to estimate
parameters of mixed models. Karlis (1995) applied the algorithm to estimate parameters
of mixed Poisson distribution, Karlis (2002) estimated the parameter of NIG, Aas and
Haff (2005,2006) applied the algorithm to the Generalised Hyperbolic Skew Student’s t
distribution.

1.5.4 Dependence Modelling

Dependence modelling of financial data using copulas has gained attraction in finance. A
number of researchers have used copulas to model dependent finacial data. Lo et al. (2013)
used canonical vine (C-vine) copulas. Kraus and Czando (2017) used D-vine copula and
Olechrin and Teteneva (2017) use hierachial copula to estimate VAR. Bynn and Sony (2021)
sought the best copula calculating VAR of a portfolio with many assets. They used the
vine copulas and hierachial copulas.The objective was to choose a proper copula function
to reflect the variance dependence structures in a portfolio and the performance was
computed by VAR of the portfolio.

As for the marginal distribution we can use different distributions to each asset in a
portfolio. It has been shown that the normal distribution is inappropriate to model



the return distribution of financial assets. The return distributions of financial assets
are slightly skewed and fat tailed. There has been extensive research on finding good
alternatives to the normal distribution in literature.

For example, Venkiataraman (1997) used a quasi-bayesian maximum likelihood estimation
procedure. Hull and White (1998) used a transform to multivariate normal distribution
which is updating schemes such as GARCH. Eberlein and Keller (1995) used hyperbolic
distribution. Modem et al. (1998) use Variance Gamma (VG) distribution. Bandorff-Neilsen
(1997) and Mabitreda et al. (2015) used Normal Inverse Gaussian distribution. Byun and
Sony (2021) Used NIG distribution as marginal distribution. The NIG is known to have
better return portfolio than VG distribution. (Ericksen et al. 2009, Gencil and Yeng 2010)
and the calculation of VAR using NIG is also better than other models such as GARCH or
VG. (Welhelmson, 2009, Kim and Song, 2011, Doric and Doric, 2011.)

Bolvinken and Benth (2000), Godin et al. (2012) have also used the NIG distribution for
modeling return distributions of financial assets.

Copulas are popular in modelling a joint distribution of several asset returns in finance.
With copulas we can construct a multivariate distribution with different marginal distributions
by separating the dependence from marginal distributions. Also, there are many copulas
that can incorporate the proper dependence structure of the data. Embrechts et al. (2002)
show that copulas are useful in identifying the dependence structure annually returns of
assets. Bynn and Song (2021) used copulas to identify the dependence structures and to
generate a multivariate distribution for returns of assets in a portfolio. The VAR of the
portfolio was computed using the resulting multivariate distribution.

Empirical copula include Gaussian (normal) copula and Students t copula and they are
commonly used in the field of finance. Archimedean copulas include Clayton, Gumbell,
and Frank copulas and they have a generator function that is useful in expressing
various dependence structures. Wu et al. (2007) use exchangeable Archimedean copulas
to calculate VAR. When there are more than two assets in a portfolio, elliptical and
exchangeable.

1.5.5 Value at Risk

According to Jorian (2007), Value at Risk (VAR) is defined as the worst loss over a target
region that will not be exceeded given a certain level of confidence. VAR is one of the most
common risk management tools in finance. It is simple and intuitive in the sense that it
summarizes the change in a value of a portfolio into a single number. Calculating VAR
of a portfolio of assets is important in finance because it has been widely accepted that
the investment in a portfolio of several assets has advantages over investment in a single
asset. (Markowitz, 1952). Different assets have different return distributions and they are
correlated in various ways. The key element in calculating VAR is to capture the

relationship among assets in the portfolio appropriately. In order to capture the relationship
among assets and calculate VAR of the portfolio, multivariate distributions can be used.



1.6

1.7

We may want to work with a univariate distribution from the history of returns from the
same portfolio because the returns of the portfolio itself is univariate. However, using a
multivariate distribution for a collection of assets that make up the portfolio will give us
more flexibility.

Significance of Study

Value at Risk and Expected Shortfall are the most popular measures of risk. For the purpose
of their estimation a model for the return distribution is important because it describes
the potential behaviour of a financial security in the future. Financial institutions allocate
economic capital, based on the risk quantified, to guarantee solvency to their clients and
counterparties. It has been shown that the normal distribution is inappropriate to model
such returns. The returns distributions of financial assets are skewed, leptokurtic and
fat tailed. There has been extensive research on finding good alternatives to the normal
distribution in literature. In this work, the class of Normal Weighted Inverse Gaussian
distributions has been proposed. The class nests some special cases of Generalised
Hyperbolic Distribution (GHD) that have dominantly featured in finance. The Normal
Inverse Gaussian (NIG) distribution has been applied extensively because of its analytical
tractability property.

Eberlein and Keller (1995) used hyperbolic distribution. Madam et al. (1998) use Variance
Gamma (VG) distribution. Bandorff Nielsen (1997) and Mabitseda et al. (2015) used
Normal Inverse Gaussian distribution. Byun and Sony (2021) Used NIG distribution
as marginal distribution. The NIG is known to have better return portfolio than VG
distribution. (Erikssen et al. 2009, Gencil and Yang 2010) and the calculation of VAR using
NIG is also better than other models such as GARCH or VG. (Welhelmson, 2009, Kim and
Song, 2011, Doric and Doric, 2011.)

Bolvinken and Benth (2000), Godin et al. (2012) have also used the NIG distribution for
modeling return distributions of financial assets. This work extends the NIG to NWIG to
improve the accuracy of the estimates. The NWIG models offer good alternative models
for NIG. For the purpose of Risk Managentment and financial modelling some NWIG
models have outperformed the NIG. The models are used to accurately quantify the risk
of financial assets to avoid underestimating or overestimating the economic capital.

Outline of the Thesis

The rest of the thesis is outlined as follows: In Chapter 2, Generalised Inverse Gaussian
distribution (GIG) and its special cases have been constructed. The properties of the
distributions have also been studied. In Chapter 3, the Weighted Inverse Gaussian (WIG)
class of distribution has been constructed. Finite mixtures of the special cases of GIG
have been constructed and their properties studied. Normal variance Mean mixtures with
WIG class of distributions has been covered in Chapter 4 and Chapter 5. The Properties
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of the mixed model have also been studied. In Chapter 6, we have presented the Iterative
schemes for the ten mixed models constructed in the previous two chapters. Parameter
estimation has been done in chapter 7. Chapter 8 deals with Risk Measures. The fitted
models are used to compute the Value at Risk and Expected Shortfall for the financial
data sets considered. Dependence Modelling of financial data using Copulas is done in
Chapter 9. Chapter 10 deals with Conclusion and Recommendations.
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2.1

2.2

GENERALISED INVERSE GAUSSIAN

DISTRIBUTION AND ITS SPECIAL CASES

Introduction

Generalized Inverse Gaussian Distribution is based on the modified Bessel function of
the third kind which is the most important mathematical tool used for this work. We

first consider the definitions and properties of the Bessel function. We then derive the
Generalised Inverse Gaussian (GIG) distribution using Barndorff-Nielsen (1977) parametrization.
Special cases of GIG distribution of interest are considered. These models will be fundamental

construction weighted distributions discussed in our next chapter.

Modiffied Bessel Function of the Third Kind
2.2.1 Definition 1 and its properties

Integral Representation

An alternative form of definition 1 is given in the following:
Proposition 2.1

1 ro\* [ w?
Kl(w):§<5> /Ot_’l_lexp{—t—z}dt

which is obtained when you let x = %

Property 2.1 (Symmetry)
Ky (0) =K_; (o)

Property 2.2 (Derivative I):

(2.1)

(2.2)
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Property 2.3 (Derivative Il):

Property 2.4 (Recursive relation):
EK)L((D) =K 11(0) = K1 (0)

Proposition 2.2
1 o]
K)(w) = E/ exp{—wcosht} cosh At dt

2.2.2 Definition 2 and Its Properties
o\t T'(s
K(0)=(3) = 2n L)

TR 1) e gy .
> (/1+%)/1 (" —1)""2e (2.3)

in terms of hyperbolic functions we have
Proposition 2.3

—)/ (Sinh O)ZAe—wCOShO de
0

obtained by letting t = cosh 0
Definition 2 can also be expressed in summation form as given in the following
Proposition 2.4

@Ky (@) = \/3ee @Y -
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Proof

Lety=w(r—1)

A Doeo e A= A-3
K (0) = <%> %qu 1/0 (%) (1+%) edy

8=

AT+ L +) (20)~ DA +141) +li2 T(A+1+i) @)
& i +4—i) TA+i-1DC2o) S iTA+1-i)
. T(A+)) +3flxx+§+o( -
 T(A-Hee) Sira+l-i
_1
__(z+%xx—%)+lzlxa+§+g(mmﬂ
1!2w) S ir@a+1-i
2 lf% 1
(402 —1) T(A+1+i) .
= et —( )
18w) ~ & ir(A+1-i)
Hence,
A—1
I (422 —1) 2 T(A+4+1i) .
K@) = /35¢ (H 11(80) ; /1+§—l)(2w)

similarly, expanding the summation for the case when i=2, we obtain

f A+i+i) A+ +15 T(A+1+i)
= /1+§—l)_3zr(/1—g)
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and therefore

/'L—l 1 .
_[m e, A1) @A2-)@A2-9) T4y
Ky (o) = 20f (1+ 1!(8w) 2!(8w?) +,Z§1'F(l+2—l)(2w)
Similarly
_1 7 A Ly
Zz A+3+)  (A+3)) iM( )"
— 'F;L+§—l)_3!l“(l—%)(2w)3 S iT(A+ 5 1)
hence
N (422 —1) (4A2—1)(4A2-9)
K (o) = o (1+ 1!(8w) 2!(8w?)
422 1)(4A2—9)(4A2 —25) 2 A+ +i :
AR T2 | LD )
31(8w3) = iT(A+5—i)
E: (412—1 2 (42— (2k—1)2 P 412 (2k—1))
= /3¢ (H +kr:[1 21(80?) +k131 soh)
4 4/12 (2k—1 l*%F/Hhr‘
H - 2, %(2@ >
U 1(8w?) = iT(A+5 i)
therefore
K@) = |/ e® 1+l§ s )
A =\ 26° =8
We state the following corollary
Corollary 2.4.1
DK (@) = ie—w -1+iM(2(0)_i
n+s 20 i=1 l'(n_ l)‘
n—1 ;
o T e M —i
bIK,_1(0) = /7€ 1+;i!(n—i—1)!(2w) ]

Proof
a) Where n is a positive integer
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From proposition 2.4 put A = n+%

T, ntacs (n+4—5+i)! »
Kosl@) = o "M & et 1o P
T

2w =il(n—i)
b) Where n is a positive integer
From proposition 2.4 put A =n— %
T - 'P%%(n——+l+0!
K _1(0) = —e @ |1+ Z 21 21 Qo)™
2 20 = il(n—54+5—10)!

we also state the following Corollary
Corollary 2.4.2

|
e

(2.4)

1
L+w> (2.5)

3
14+ — 2) (2.6)

(
o (s
w<l o1 ;;)
o (1
o

B
I

&
oY

B

Il

|>w

5

Il

ﬁﬁﬁﬁww

-0

B
[

-0

B
[

—

1+—

B
I

T Tt (28)

105 420 945 945
3 + 4 + 5
a) @ (0]

10 45 105 105)

-0

1++

B
[

(2.9)

2.2.3 Definition 3

1 o
K) (o) = 5/ exp{ —@cosht} cosh At dt (2.10)
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2.3

24

Generalised Inverse Gaussian Distribution

From equation (2.1)

Using the parametrization

=20y (2.11)
and the transformation
X = %z (2.12)
we obtain
o A 2
(N e 1 (8
Kx(5?’)—2/0 (6) z eXp{ 2(z +7v’z) vdz
o A -1 2
_[7(r\ _z 1
=, (6) m(awe"p{ 2( : ”ZZ)}‘”
Thus

A A—1 2
(Y Z 1/0o
0=(3) sanorl 3579}
is a pd f known as Generalised Inverse Gaussian (GIG) distribution. The r —th raw moment

of the GIG(A, 4, 7) distribution is given by

(8N K (8Y)
B2 = (Y) K, (8y) ®19

and this formula holds for positive and negative values of r.

Special Cases of Interest

24.1 Casel: GIG(—%,& )

2

5 2
g1(2) = %em(é@ﬂ exp{ & ﬁ)} 2.19)
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which is the Inverse Gaussian (IG) distribution with the following properties

0
EZ =—
2=
0
Var(Z) = 7
0
13(Z) :3$

2.4.2 Case 2: GIG(3,8,7)

. 2
0l =L ep@n:ten{ - 3170}

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

which is the reciprocal Inverse-Gaussian (RIG) distribution with the following properties

1+0y
E(Z)= 7
Var(z) = 227 ;57
38y+8
W (Z) = 3:6
36292 +278y+60
“4(2): Y ')/8 !

243 Case3: GIG(—%,S, )

)_%%exp{—%(gﬂfzz)}
- (3) o)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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which is the GIG(—%7 0,7) with the following properties

Mean
sKi1(6y)
EZ) = -2
)= Y6y
52
= o7 (2.25)
Variance
53 54
7) = _
TR R (R 7
63
BT 20
Third Central Moment
83 38° 286
Z) = 3— —
s (2) 7oy (+opp
3 3 2S5.2  S6
_ (1467’ -38% 593 227)

Y (1+37)°
Fourth Central Moment

(837 +38%+38%) (14 68y)> —48°Y2(14 87> + 687y (1 + 8y) —38%Y

Hi(z) =

P (1+67)*
1582 +38%° +128%y+38° 228
a P (1+8y)* '
2.4.4 Case 4: GIG(%,5, )
3,0y 2
Ye 1 1,6 }
— — (= + 229
g4(2) \/ﬁ(1+5}/)z eXp{ 2( . r'2) (2.29)
which is the GIG(%, 0,7) with the following properties
82y +38y+3
E(Z) = A +07) (2.30)
8P +68%y2 4128y +6
Var(Z) = AUL077 (2.31)
384 42583y +728%y2 4+ 728y + 24
us(Z) = v r 2 Y (2.32)
Y (1+67)
38990 +518%Y° +3368%y* + 1047837 +15128%92 + 100887+ 252

P(1+0y)*
(2.33)
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3.1

3.2

Weighted Inverse Gaussian Distributions

The concept of weighted distribution was introduced by Fisher (1934) and elaborated by
Patil and Rao (1978). Gupta and Kundu (2011) introduced the weighted inverse gaussian
distribution. The objective of this chapter is to show that the special cases discussed
in chapter 2 and their pairwise finite mixtures are Weighted Inverse Gaussian (WIG)
distributions.

Definition

Let X be a random variable with pdf f(x). Then a function w(X) is also a random variable
with expectation

Thus we have

w(x)

fW(X) = Wf(x), —oo0 L X < o0 3.1)

Weighted Inverse Gaussian Distributions

The following examples will be expressed in terms of inverse Gaussian distributions whose
pdf is given by formula (2.14)

o oy 3 1 52
ie.g1(z) = \/;—EZ gexp{ —E(?—H’ZZ)}

3.2.1 Reciprocal Inverse Gaussian (RIG)

The pdf of RIG is

LIl L)

- T 62
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Therefore
1 Y 1

that is, GIG(%, 0, ) is a weighted IG distribution with weight

w(Z)=Z
where
Z~GIG( — 1.8
797
Using formula
0
Ew(Z)] =E(Z2) = P

The RIG distribution is called length biased Inverse Gaussian distribution.

3.22 GIG(—3,8,7)

The pdf is given by

5357 s 1,682
g3(z) = mz ZCXp{—E(?—F}’zZ)}
82 [8e57 5 1,62
= ey Ly el e
62

= Gyep° 80

Thus GIG( — %, 0, }/) is a weighted inverse Gaussian distribution with weight

1
Z)=—=
wz) =~
and by formula
gLy 1oy
.. Z - 62

323 GIG(3,8,7)

(3.3)

(3.49)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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3.3

% 7 —é(‘f—i—yzz)
84(z) = mmﬂe

a 2[5657’ 3 { 1 62 H
= 2 —_ —(—
5(1-l-63/)Z \/277:Z =P 2( z 7
3
I G
= 6(1+5}/)Z g1(2) (3.10)
Thus GIG(%, 5,}/) is a weighted inverse Gaussian distribution with weight
w(Z) =7* @3.11)
and by formula
o(1+67y)
Ew(Z)] = s (3.12)

Cases of Finite Mixtures

Jorgensen, Seshadri and Whitmore (1991) introduced a finite mixture of Inverse Gaussian
and Reciprocal Inverse Gaussian distribution. They studied some properties. Further
characteristics were obtained by Akman and Gupta (1992), Gupta and Akman (1995);
Gupta and Kundu (2011).

Lindley distribution introduced by Lindley (1958) is a finite mixture of exponential and
gamma distribution. A detailed study of this one-parameter two component (finite)
mixture was given by Gitany et al. (2008). Sankara (1970) had used it as a mixing
distribution to Poisson distribution. Shanker, R. and Hogos, F. (2015) applied the Poisson-
Lindley distribution to Biological Science data.

Generalizations of the one-parameter Lindley distribution has been studied by researchers.
For example Zakerzadeh and Dolati (2010) generalized it to a three parameter Lindley
distribution. Mahmoudi and Zakerzadeh (2010) used this three parameter Lindley as a
mixing distribution to a Poisson distribution to come up with Poisson-Generalised Lindley
distribution.

We have shown that pairwise finite mixtures ofGIG(—%, 0,7), GIG(%, 0,7), GIG(—%, 0,7)
and GIG(%,S,}/) are also weighted Inverse Gaussian distributions. We have given SIX
finite mixtures including one case by Gupta and his colleagues. More cases can be
constructed to form a class called Weighted Inverse Gaussian distributions.

In fact Lindley distribution and its generalizations form another class of weighted distributions,

namely, a class of weighted Exponential distributions.
In the next section, we define g;;(z) for i, j = 1,2,3,4 but i # j to be a finite mixture of

gi(z) and g;(z).



3.3.1 Case 1
We consider finite Mixture of GIG for indexes —% and %

Let
Zi ~GIG(— %,6, )
and

1
Zy ~ GIG(E,S,Q/)
Then the pdf of the finite mixture is

g12(z) = pgi(z)+(1—-p)ga(z)
= Pa()+(1-p)fa)

= [p+(1-n{la) .13

Let
pP= ?,Ty5 (3.14)
- 812(2) = HLS(I +2)81(2) (3.15)

Thus the finite mixture of IG and RIG (length biased Inverse Gaussian) distribution is a
weighted Inverse Gaussian distribution with weight

wZ)=1+Z (3.16)
and by formula
Elw(Z)] = r+o (3.17)
Y
with the following properties
0+06y(y+9)
E(Z] = —"—~"—— (3.18)
A=)
and
24,2 2 3
var(z) = 38y+28%y +6y34g26 + 8%y 319
7 (8+7)

3.3.2 Case?2
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We consider finite Mixture of GIG for indexes —% and —%.

Let

Z3 ~GIG(— ;,5, )

Then
g13(2) = pg1(z) + (1 —p)gs(2)
2
= [p+(1—p)1+5y}g1(z)
Put
52
P = m (3.20)
52 1 1
c.813(2) = 1+52(1+ 1 +5yz)g1(z) (3.21)

Thus the finite mixture of GIG( — %,5, ) and GIG( — %,5,7) is a weighted Inverse
Gaussian distribution with weights

(Z)=1+ 1 3.22
M= T Syz @.22)
and using formula
1+6°
Elw(Z2)] = 52 (3.23)
The mean and variance for the weighted distribution are
82 [8(1+68y)+y
EZl= 1% { Y1+ 67) ] (3:24)
8% [67*+6(1+8y)? 52 (8(1+8y)+7v)?
var(Z) = -
1+62 P(1+6y) 1+62 y*(1+46y)?
_ S+ +8) 1 +8y S+ o
N r(1+87)2(1+8%)? '
3.3.3 Case3

We consider a finite mixture between GIG( — %, 5,}/) and GIG(%,& )

g14(z) = pgi1(z) + (1 — p)ga(z)
2

T(Sw}gl(Z)
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Put

p= y3};8 (3.26)
% 2
c.gu(z) = N (1 + 1+5y)g1(z) (3.27)

Thus the finite mixture of GIG( — %, 0, y) and GIG(%, 0, }/) is a weighted Inverse Gaussian
with weight

ZZ
w(Z)=1+ 107 (3.28)
and using formula
+6
Ebw(z)) - 7 @29
14
The mean and variance for the weighted distribution are
£z - Y [8Y(1+8y)+ 83y +38%y+36
+90 Y’(1+67)
SV (14 8y)+83y> +38%y+36
= (3.30)
P(1+87)(¥’ +9)
var(z) = (8Y°(14+87)% 4+ 8y +108*y® +4583y2 +1058%y+1058) (14 87) (> +9)
N P(1+87)*(r* +6)
(8Y'(146y)+ 8 +38%y+35)? 331
P(1+87)%(¥*+9) '
334 Case4d
We consider a finite mixture between GIG(%,S,}/) and GIG( — %,5,}/).
823(z2) = pga(z)+(1-p)gs(z)
_ a8t
= {p6z+(1 p)1+3”}g1(Z)
put
53
p= 63+'y (3.32)
‘ B ,},52 752 l}
. 823(2) = {53—}—}/Z+ 5172 g1(z)

y8°2 11
R G vy LIS 339
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Thus a finite mixture of GIG(%, 3,}/) and GIG( — %,5,}/) is a weighted inverse gaussian
distribution with weight

(Z2)=Z+ t 1 3.34
&)= 14+6yZ (3:34)
and using formula
8 +y
E[W(Z)] = W (3.35)
The mean and variance for the weighted distribution are
83(1468y)% + 8%y
E\Z = .
A= ey (430
and
S2((83P +38%y+38)(1+8Y) +8YH(1+68y) (8% +7) — 8*(S(1 +87)> +9°)?
var(Z) = 5753 5
Y (1+67)%(8° +7)
(3.37)
3.3.5 Case5
We consider a finite mixture between GIG(%,(S,}/) and GIG(%, 5,}/).
824(2) = pg2(z) + (1 = p)ga(z)
_ i,y N 2
Put
P
P = m (3.38)
, [ 7 Y Z 1
)= [ s a1
IR
=521 D) {z%— 1+5y]81(z) (3.39)

Thus we have a finite mixture of GIG(%,S,}/) and GIG(%,&}/) which is a weighted
Inverse Gaussian distribution with weights

ZZ
w(Z)=Z+ o7 (3.40)
and using formula (2.13)
2
Efw(z)] = 201 (3.41)

1},3
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The mean and variance for the weighted distribution are

2 2, 82,2
Y- (1+8y)°+6°y*+356y+3
E\Z .
7 Ao+ 1) o2
var(z) = (8> +38y+3)(1+87)¥* + (8P +68°y° +1587+15))(1+87) (¥ +1)
Y(1+67)2(r*+1)?
_ (P +8y?+8°F +35y+3)° (343
P(L+872 (P +1)2 '
3.3.6 Caseb6
We consider a finite mixture between GIG( — %, 8,7) and GIG(%,S,}/).
834(z2) = pg3(z)+(1—p)ga(z)
5% 1 vl o1 5
- {p1+5y2+(1_p)3(1+6y)z}
Put
7
p—m (3.44)
o [ree 1 et
"g34(z)_[1/5“+531+5yz+y3+631+6yZ $1)
re® 1, ,
o 834(2) = m {E +z }81(2) (3.45)

Thus a finite mixture ofGIG( — %,5,}/) and GIG(%, 5,)/) is a weighted Inverse Gaussian
distriburtion with weight

w(Z) = % +27° (3.46)

and using formula

+6°
Ew(Z)] = —Y; 52 (3.47)
The mean and variance for the weighted distribution are
1 30
E[Z] = §* :
A=0 (1+57+y2(73+53)) 649
and
283 3 3 3,9 6 9

var(zZ) = 3(1487)283 57 +28% + 839’ +28%° + 8%y (349

PP +89)2(1+87)
In this chapter we have proposed a new class of distribution known as Weighted Inverse

Gaussian (WIG) distributions. The class will be used as mixing distributions in the next
two chapters to a bew class of normal variance mean mixtures.
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4.1

4.2

Normal Weighted Inverse Gaussian Distribution Part
I

Introduction

A normal distribution has two parameters: the location parameter representing the mean
and the scale parameter representing the variance. For a continuous mixture, we can fix
the mean and vary the variance and vice-versa. Barndorff-Nielsen (1977) introduced a
normal mixture where the mean is a linear function of a varying variance. This is called a
Normal Variance-Mean mixture (NVMM).

The objectives of this chapter are:

i to give NVMM in a stochastic and hierarchial representation
ii to express the properties of NVMM in terms of properties of mixing distribution

iii to construct and obtain NVMMs with the following special cases of GIG distribution as
mixing distributions: GIG( — %, 0, }/) which is an Inverse Gaussian mixing distribution,
GIG( — %,5,}/) which is the Reciprocal Inverse Gaussian mixing distribution, GIG( —
%,5,}/) and GIG(%& )

Hierarchial Representation of NVMM
A stochastic representation of a Normal Variance-Mean mixture is given by

X=u+BZ+VZy
where
Y ~N(0,1)

and Z, independent of Y, is a positive random variable.
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4.3

4.4

Stochastic Representation of NVMM
If F(x) is a cdf of X, then

F(x) = prob{X <x}
x—p—Pz
VZ

x—pu—Pz

- /Ooo/j ¢(v)g(z)dydz

/Oootb()L\/z_BZ)g(z) dz

where ¢(-) and ®(+) are pdf and cdf of a standard normal distribution, respectively.

s = w%qb()Lﬁ‘ﬁz)g(z)dz

/°° 1 _[x—<u2+ﬁz>J2 (2)d 1)
g e 74 Z Z .
0 271z &

Thus we have a hierarchical representation as

= {r< ,0 < z<oo}

X/Z=z~N(u+pBzz2) (4.2)

being the conditional pdf and g(z) the mixing distribution.

When the mixing distribution is Generalized Inverse Gaussian (GIG), then the mixture is
called Generalized Hyperbolic Distribution (GHD) which nests a number of distributions
obtained as special and limiting cases. Special cases are obtained when the index parameter,
A takes specific values. When A = 1 we obtain the hyperbolic distribution which was
the first special case used in financial modelling (Eberlein and Keller, 1995). Later on
(Barndorff-Nielsen, 1999) introduced the case when A = —% which is the Normal Inverse
Gaussian (NIG) distribution. The NIG has been extensively studied in finance because of
its analytical tractability property. We extend this work by considering the other special
cases mentioned in chapter 4. These models will be alternative distributions to NIG for
application in finance.

Properties for Normal Variance Mean Mixtures

One of the features of constructing a distribution by mixing is that one can essentially
read off the properties of the distribution given the properties of the chosen weight.
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Proposition 4.4.1.

M (1) = *'My (i +) (13)
E(X) =+ BE(Z) (4.4)
Var(X) = E(Z) + B*Var(Z) (4.5)
u3(X) = 3Bvar(Z) + B*us(2) (4.6)
W (X) = B*1(Z) + 68> u3(2) + 6B°E[Z]var(Z) + 3E[Z°] (4.7)

Proof. Moment Generating Function

Mx() = [ e felxdx
_ /Ooo /_0; e fy(x; 1+ Bz,z)dxfz(z)dz

— 6“,/0°°exp Kﬁth) z} fz(2)dz

2

1

Mean
The mean of the mixed distribution, can be obtained by evaluating the first derivative of
(1) at t=0.

My (t) = eME [(B +t)Ze<ﬁt+t22>Z} +ueE {e(ﬁ”f)ﬂ

My (0) = p+BE(Z]

Therefore
E[X]=u+BE[Z] (4.8)

as obtained by (Paolella, 2007) using the conditional expectation approach.

Variance
t2 t2 t2
Mil) = E {(B +t)Ze(ﬁt+2)Z} + ue''E {(ﬁ +t)Ze<ﬁt+2>Z} +uleME [€<ﬁ’+z)z] +

Let'E [(3 +t)Ze(ﬁ’+122)Z]
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Therefore,

E[XY = My(0)
— E[Z]+ 12+ BE[2) + 2uBE[Z]

var(X) = E[Z]+p*+B*E[Z%]+2uBE[Z] — (u+ BE[X])*
= E[Z]+B*[E(Z*) - E(2)?]
= E[Z] +[32var(Z)

as obtained by (Paolella, 2007) using the conditional expectation approach.

Third Central Moment
Note that

prity)z Br+5 )z Br+2)z
MU (1) = 3peME [(3 1272 (P ]—|—3,ue“tE {Ze( +3) ]—|—3emE [(BH)Z%( +2) 1+
f2 t2 t2
oo 0] e ] e
Therefore

E[X?]) = u® + 3uBE[Z%] + 3uE([Z] + 3BE[Z%] + 3BU’E|Z] + B*E[Z?]
the terms,

E(X*)E(X) = (E[Z]+u*+B’E[Z°] +2uBE[Z])(u+ BE[Z])
= WE[Z]+p’ +uB’E(Z*)+ 20 BE(Z]) + BE[Z)* + p*BE[Z) + BPE[Z’|E(Z] +
2up’E(Z)?

E[X] =’ +3u*BE(Z]+3uB’E(Z)’ + B°E[Z]’
Since

ws(X) = E(X*) — 3E(X°)E(X) + 2E ()’
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We find that,

ws(X) = 3B(E[Z%)~E[Z])+ B> (E[Z°] - 3E[Z*|E[Z) +2E[2])
= 3Bvar(Z)+B’us(2)

Fourth Central Moment

We start by stating the following theorem,

Ha(X) = B a(Z) + 6B°u3(2) + 6B*E (Z)var(Z) + 3E(2?) (4.9)

Proof

MY (1) = 3u’e"E {(ﬁ +t)2z2e(ﬁ’+f)z] +3uetE {(B +t)3z3e(ﬁ’+%>z +2(B +t)ZZe<’”+’22>Zl +
3uleME {Ze (s ’*32)2} +3uet'E {(B +iyz2elP ”52)2} +3uetE {(B +0)72lf Htj)z} +
3eME {(p +t)2Z3e(ﬁl+r22>Z+Zze(ﬁl+r22>z] 3P E [(ﬁ +z)Ze(‘”+’22>Z] +
3u’e!'E {(ﬁ L2 PH)7 7, (’3”32)1 + ueME {(ﬁ - f)3Z3e<ﬁt+t22>Z} +
ME {(ﬁ + t)4Z4e<ﬁt+%>Z +3(B+ t)zz3e(ﬁt+t22>z] +uteME [e (ﬁ”f)Z} +
pieHE {(B +I)Ze<ﬁt+ 22)2}

Therefore

EXY = u*+4p’BE[Z)+ 6y BE(Z°] +4uBE(Z°] + 12uBE(Z°] + 64 E[Z] + 6B*E[Z°] +

3E[Z%)+ BYE[ZY)

Also note that

Ha(X) = E[X—E(x)]
— E[XY—4E[X’|E[X] +6E[X?]E[X)? - 3E[X]*

Where the terms:

EX)E(XY) = (u+BE[Z)) (1 +3up E[Z%) + 3uE(Z) + 3BE(Z’) + 3P E(Z) + BE(Z)

= ut3uPBPE[Z?)+ 3P E(Z) + 3uBE(Z) + 3 BE(Z) + uB E(Z’) + W BE(Z] +
3uB3E[Z?|E[Z) + 3uBE|[Z)* + 3B*E[ZYE[Z] + 3u’B*E[Z)* + B*E[Z}]E|Z]
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4.5

EXVE(X?) = WEZ)+pu*+uB’E[Z*)+ 20 BE[Z] + 2uBE[Z]* + 24° BE[Z) + 2uBE[Z]* +
2WBE(Z)+2uB’E[ZYE(Z] +4u* B E(Z) + B*E[Z]’ + u>B°E[Z]) +
B*E[Z*E(Z)” +2uB’E(Z)

EX]* = (u+BEQZ)
= ut+4u’BE(Z) +6u” + B2E[Z)* + 4uBE(2)? + B*E[2)*
Therefore,

uy(X) = B*E[Z*+6B%E|Z°) +3E[Z%] — 12B%E|Z°|E|Z] — 4B*E[Z*)E|Z] + 6B*E[Z)> +
6B*E[Z*|E[Z)* - 3B*E[Z]*
= B*E[z*) - 4B*E[Z|E[Z] + 6B*E[Z°|E|Z]> — 3B*E[Z]* + 6B*E[Z°] + 12B°E[Z]® -
18B%E[Z?|E|Z] + 6B2E|Z*E|Z] — 6B2E|Z)* 4 3E([Z?]

noting that;

E[(Z - E|Z))*] = E|ZzY — 4E|Z*]E(Z] + 6E[Z%|E|Z)* — 3E|Z]*

ui(X) = BU[E[2")—4E[Z|E[Z] + 6E[Z°|E[Z]* - 3E[2)"] + 6°[E[Z°] — 3E[Z*|E[Z] +
2E(Z)’] + 6B2E[Z][E[Z%] — E[Z)?] + 3E[Z?]

Finally then,

W(X) = B*ua(2)+6B2us(2) +6B%EZlvar(Z) +3E(Z)

Normal Inverse Gaussian Distribution

Let the mixing distribution of z be Inverse Gaussian distribution. The mixed model is
therefore,

Sl | (a—(u+B2))?
10 = | =

21z
SeOVeP(x—1)  foo 1 —u)2—-52
27 0 2 Z

R G B+ [ x—w)?-51
= o /Oz exp{— > {Z—F B2+ 1) z}}d
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Let

Therefore

denote o> = B2 + 792

—_

f@) =~ exp{8y/a> — B2~ Bu}exp{Br}o (x)*Ki (86 (1)) (1.10)

which is the Normal Inverse-Gaussian distribution, where

4.5.1 Properties of the NIG

Mean
E(X) =+ BE(Z)
Since here Z GIG(—%,8,7)

)_§K;(5?’) 8
-~ YK(8y) v

therefore

EX)=u+p— (a.11)
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Variance
var(X) = E(Z)+ B*var(Z)
Where
52 1 52
Z) = s |l+—|——=
vart) 72< +57> e
0
G
and hence
0 , 0
var(X) = —+p"—=
(X) ” B 7
a’s
= — (4.12)
Skewness
Note
Hx(3) = 3Bvar(Z) + B z(3)
Where
uz(3) = E(Z°)-3E(Z>)E(Z)+E2)}
0
hence
3BSa?
.uX(?’) ,)/5
Therefore, denoting skewness by y; we get
n = &)
(2(X))1=
— 3p (4.13)
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Excess Kurtosis

Using formula @.7),
a(X) = B*ua(2) + 6P*u3(2) + 6B°E(Z)var(2) +3E(Z°)
where for the IG distribution
us(Z) = E(ZY+4E(Z)E(Z)+6E(Z*)E(Z)*—E(Z)*

— 36_4L 1_|_i
ey 8y

Therefore

8t 1 1 8 5 (6 8 1
_ 4¥ - i 27 27 [ & il .
Ha(X) = 3B P52y (1+5y> + 188 " +6p y (y3) +3 2(1+6y)

Y
6B28%y3 + 18B28y° 4+ 387 +3B48%y+ 15846

/y7
then working out kurtosis gives
ua(X) 6[3262}/3+18B25y5+36}/‘+3ﬁ462y+15[345X 70
(m2(X))? Y als
6By +18B% Y + 3y +3B45y+ 158¢
B atsy

Denoting excess kurtosis by 7» we obtain

pa(X)
(2(X))?
6828y} + 182y’ + 374 +3B45y+ 158% —3a* 5y
otdy

%) -3

note a* = B4 + 2B +¢*

68287 + 188292 +387° + 374 +3B*8y+158* — 3(B* + 2By + v*) 8y
otdy

B2

as obtained by (Karlis, 2000). Therefore in summary
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Table 4.1: Properties of the NIG: GHD(A = —%, 0,7)

Item Description Expression
1 E(X) n+po
2 var(X) O‘y—i‘s
3B
3 Skewness, 1 T
a(dy)?
(+2)
3( 1445
4 Excess Kurtosis, 95 — 57

4.6 Normal Reciprocal Inverse Gaussian Distribution

Now suppose that the mixing distribution is the Reciprocal inverse Gaussian (RIG)

Distribution, the mixed model becomes,

xp(8y)ePO—H) o 2 X 246821
oy = TP [ty B g el
let

N C D
TN TR

) RN [Fo {_¢<ﬁ2+y2><x—u>2+52 (t+1)}d1

Y= 2T 0 P 2 t

_ yexp(67_7[:“)exp(ﬁx)KO(aS(p(x)é) (4.15)

which is the Normal Reciprocal Inverse-Gaussian (NRIG) distribution.

4.6.1 Properties of the NRIG distribution
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Mean

For the NRIG distribution, Z ~ GIG(%, 0,7)

therefore
s K3 (67y)
E(Z) = —-=2
= kG
1+0y
hence
1+6
E(X) = B( 2 Y)
Variance
var(X) = E(Z) + B*var(Z)
where
2 2
var(z) — 5y2+;6y+3_(1+;y)
2406y
A
hence
2 2 2 2
ey — EEA ST B
_ &(1+8y)+B°
el
Skewness
Note

5\ ° K1(37)
52) = (3) K,(37

83y + 68292 4158y +15
¥

(4.16)

4.17)
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and hence

3P 4682y + 158y +15-3(1 +87)(8%y> +38y+3) +2(1 + 8y)°
[.L3(Z) = 76

36y+8
I

therefore

3B(0y+2) n B3(35y+38)

X) =
_ 3Ba*(8y+2)+2p°
Y
We obtain skewness to be
2 3
— 3[3(1 (6’)/+2)—|—2B2 (4.18)
(a?(1+38y) +B?)2

Excess Kurtosis

Using formula (4.7),
54 410833 +458%9> +1058y+ 105 4(83Y° + 682> +1587+15) (14 87)
Ha(z) = - 7 T
& Y ¥
6(6°y* +38y+3) 3(1+8y)*
I I
_ 38%* 42787+ 60
a I

Using the theorem

[B48%72 +9B*8y+20B% + 12B287% +20829* +2B28%y* + 82Y° 4+ 35y + 37]

Ha(X) = 3 8

Therefore

_ 3[5B*8y+16B*+ 68287 + 16827 + 51 +2vY]
= (@(1+57)+ B

(4.19)

Therefore in summary

Table 4.2: Properties of the NRIG: GHD(A = %,5,}/)
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Item Description Expression
1 E(X) e
2 var(X) @ (1+6y)+5°
3 Skewness, 7 w
(@?(1+87)+p%)?
4 Excess Kurtosis, 7» 3[5.3457+16[3(40;6([131(363;3;1[362[?;7/%6;/5+2;/‘}

4.7 Normal Variance Mean Mixture with a GIG(—3,8,7) Mixing
Distribution

Let the mixing distribution of z be GIG(—%, 0,7). The mixed model is therefore,

< 1 (x—(u+B2))?
10 = [ =T

V27z
53 exp (8y)ePbh) = B2+ [ x—p)?+5821
2n(1+8Y) /Z3eXp{‘ 2 [” B2+ 7 E]}dz
Let
O
VB
Therefore
8exp (8y)ePH)  (BE4+97) = V(B2 + 1) (x—u)?+ 82
1) R e o | 2 :
1
{t—k;}}dt
3 ex oBl—1) 2 A2
B (e LRIy
denote > = B2+ y?
f) = Z8exp(8v/a7 B2~ rjexp(Bro (x) ' Ka(a69()?) @20
n(1+8+/a2—B2) '
(x—p)?
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4.7.1 Properties

Mean

E(X)=p+BE(Z)

Since here Z GIG(—%, 0,7)

therefore

Variance

Where

and hence

K1 (67)
E( — §2—
Y K3(87)
52
- 1+0y
2
E(X)=n+Bi sy @.21)

var(X) = E(Z)+ B*var(Z)

53 5
2 = sy (Tt er?
53
~ (11872
5 , &
var(X) = (1+5}/)+ﬁ y(1+ 87?2
52},_}_ 53(},2_,_[32)
y(1+8y)?
82(y+ a?é)

Y(1+87)2 "
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Skewness

Note
ux (3) = 3Bvar(Z) + Bz (3)
Where
uz(3) = E(Z°)-3E(Z°)E(Z)+E(Z)’
B 53 35° N 266
N 1'3 (146872 (1+67)°
8 (148723852 — 85y
N P(1+87)3
hence

3883 +[3(63(1+6y — 35592 — 8593)
y(1+87)2 (14 87)3
383y +3ﬁ64y3+[3363+3ﬁ364
P (1+87y)°
[3363+3ﬁ53y(7+a25)
P(1+87)°

pux(3) =

Therefore, denoting skewness by 7, we get

N = Ms(X)é
(2(X))2
_ 3RS 43S+ B8 43p8Yy pi(148y)
a P(1+87)° 83 (y+ a28)}
3By +a25y)+ﬁ363
- (P +a28y)3

Excess Kurtosis

Using formula (4.7),

Ha(X) = B*ua(Z) +6B*13(2) + 6B°E(Z)var(Z) +3E(Z?)

(4.23)



where for the GIG(—3,8,7) distribution

5_4Kg(57)
v K3(87)
548292 +38y+3 Oy
7 82y (1+67)
8y +384y+38°

P (1+67)

E(ZY =

Therefore

(8572 438%y+38%)(1487)3 —48°y*(1 + 8y)> + 687y (1 4+ 8y) —38%y°

)= P+ on

note;

(8P +38%+38%)(1+687)° = 198572 +156%7° + 6674+ 589 + 12577+ 35
487 (14 8y)° = 48y +38%° + 1287y +48%y°

hence
(2) = 158%y* +38%° 4+ 1284y + 3683

e = P+87)

Therefore
41585 6 4 3 3 3_285.2_ 86

LX) = B*158 y2+536 y3+1426 Y438 +6B26 (1+63;) 38 13/ 5 y3+

Y’ (1+67) Y (1+67)

83 &3

6B +3
Py er oy
3483 (583 Y2 + 83 +487+1) +6B2Y283 (1 +48y+38%7> + 822 + 839%) N

P(1+87)*
383V (1 +38y+38%y + 83p)
P(1+8y)!
then working out kurtosis gives
pa(X) <3B453(563y2+53y3+46y+1)+6B2y263(1+46y+452y2+63y3)+
(m2(X))* P (1+46y)*

387 (1+387+38%P +8°7)\ | P+
Y (1+6y)* 64 (y+ a2d)?
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noting that

2 52 4+ 9
at = Br4+2B% P+

R
I

then,
87 (y+a?8)> = 8y +2B°8%y +2°/° + B*8°Y +2B°8°Y + 877

Denoting excess kurtosis by 75 we obtain

3[5B82y +4B*Sy+ Bt +2B%Y2 +8B28Y +6B25%Y + v +287° + 5%
n= Y (1 + a?6)’
3lat(1+87)* +4B*5°y° +2B* 5y +4B>5y’ +4B>5%Y!]
SV (v+a2d)?
3[at(1+38y)2 +28y(a*(1+28y) — ¥ (y+2a28)))

- 57 (1+ a5 o

Therefore in summary

Table 4.3: Properties of the GHD(A = —%)

Iltem | Description Expression
E(X B
1 (X) B+ iTsy
52 (y+a25)
2 var(X) 7(i+57)2
3883 Bs
’ n VPasy) <\/<y2+a26y>>
4 3at (14+8y)*+28y(a* (1428y) -y (y+20%5))]
12 573 (y+025)2

4.8 Normal Variance Mean Mixture with a GIG(3,8,7) Mixing
Distribution

Now suppose that the mixing distribution is GIG(%,&}/), the special case of the GIG
becomes

8(z) = %Zé exp (67)exp { - % (6; + }’ZZ) } (4.25)
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4.8.1 Mixed model

The mixed model becomes

_ Pexp(8y)ePr) e B>+ [, (x—w)3?+821
o= sy ool - e
let
_ [ewprs
(B2+7%)
therefore
Pexp(8y—Bu)eP* [(x—p)*+ 82
K 2402 (x— )2+ 82
1) 5y By K (B R (8
8P exp (87— Bu)eP o (x) 2K (@89 (x)?)
= (4.26)
orn(1+9dy)
Which is the GH distribution for A = %
4.8.2 Properties
Mean
Since
32y +38y+3
E(Z) =
) = Taisy
E(X)= it B(8%y*+38y+3) @27)
Y2 (1+37) '
Variance
var(X) = E(Z) + B*var(Z)
where

var(Z) = E(Z°)—(E(2))?
3P +682y +1287+6
Y'(1+87)?
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hence

(827> +38y+3) (P2 +873) + B2(83Y + 652y + 1287 +6)
Y (1+687)
402 8%y> +2B%8% Y + 6?5y +6B%8y+ 30> +3B% + a? 83y
Y (1+687)
30%(1+8Y)* + a?8°y* (1 + 8y) +2B*6y(3 + 67) +3B>

- e o

var(X) =

Skewness

Note
3K, (67)
E(Z%) = (§> L
v/ K;(8Y)
54y + 108393 +458%92 410587+ 105
Yo(1+87)

It can easily be shown that

3844 42583y + 7282y + 728y + 24
Y(1+67)?

() =

therefore

3Ba2(1487)* +3B(1+8y)*(3a® +2B%) +6a*B(1 + 87)?
Y(1+87)°
+3052136}/(1 +68y) —2B8%y°
Yo(1+67)°

pu(X) =

we obtain skewness to be

3Ba%(1+8y)* +3B(1+687)°(Ba? +2B%) +6a*B(1+8y)?
302(1 + 87)2 + 028292(1 + 8y) +2B28y(3 + 8y) +3B2)?
N 3a2B8y(1+8y) —2B8%y
(302(1 + 87)2 + 282921+ 87) +2B25y(3 + 87) +3B2)2

n o=

(4.29)

Excess Kurtosis

Note

E(zY) = 3P + 15844 +10583y> + 42082 9> + 9458y + 945
B P(1+87)
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and after some simplification it can be shown that

38990 +518°9° +3365%y* + 1047832 15128%y> + 10085y + 252
P (1+68y)*

Ha(2) =
Using the theorem, excess kurtosis for the model can be shown to be

3[5B48%y) +52B484y* + 1938483y + 288452y + 192845y +48B* + 56325479
(Ba2(1+06y)? + a2d2y*(1+ 8y) +2B26y(3+ 6y) +3B2)?
3[192828%y° 4-288B28%y* +228B257° +6B25°y +48B%y> + 8%y +85%99]
(Ba2(1+6y)% + a282y2(1+ 8y) +2B26y(3+ 6y) +3B2%)2
N 3[258%y7 +3659° +2487° + 6y
(3a2(1+0y)% + a28%y2(1+ 6y) +2B28y(3+ 6y) +3B2%)?

o =

(4.30)

In this capture we have worked on Normal Variance Mean Mixtures when four special
cases of GIG are used as mixing distribution. The properties of these models have also
been derived. In the next chapter, we utilize the finite cases of the four special cases as
mixing distributions to extend the work on normal mixtures.
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5.1

Normal Weighted Inverse Gaussian Distribution Part
1

Introduction

In this chapter we extend the work on Normal Variance Mean Mixture by using finite
mixtures of the special cases of Generalised Inverse Gaussian as mixing distribution. There
are few works on finite mixtures as mixing distribution.

Lindley distribution introduced by Lindley (1958) is a finite mixture of exponential and
gamma distribution. A detailed study of this one-parameter two component (finite)
mixture was given by Gitany et al. (2008). Sankara (1970) had used it as a mixing
distribution to Poisson distribution. Shanker, R. and Hogos, F. (2015) applied the Poisson-
Lindley distribution to Biological Science data.

Generalizations of the one-parameter Lindley distribution has been studied by researchers.
For example Zakerzadeh and Dolati (2010) generalized it to a three parameter Lindley
distribution. Mahmoudi and Zakerzadeh (2010) used this three parameter Lindley as a
mixing distribution to a Poisson distribution to come up with Poisson-Generalised Lindley
distribution.

Bakouch et al (2012) have extended the Lindley distribution by exponentiated approach.
However, it has not been used as a mixing distribution. A transmuted exponential
distribution is a finite mixture of exponential distribution with parameter 6 and another
exponential with parameter 26.

Bhati et al (2015) used it as a mixing distribution to a Poisson distribution. The mixed
Poisson Transmuted Exponential distribution was applied to Health care data.

The skew normal distribution of Azzalini (1985) is one of the widely used probability
distribution for modeling skewed data. Independently Azzalini (1986) and Henze (1986)
showed that the skew normal distribution is a normal mixture with varying mean taking
the half-normal distribution as mixing distribution.

Negarestani et al (2018) generalised the mixing to be any positive random variable. They
specifically used the standard exponential distribution distribution and a finite mixture of
an exponential and half-normal distribution as mixing distribution.

The Skew normal (SN) distribution possess limited ranges of skewness and excess Kurtosis
coefficients given by (-0.995, 0.995) and (0, 0.869) respectively (Azzalini, 1985).

When the exponential distribution is the mixing distribution, the mean mixture of the
normal exponential distribution has intervals for the skewness and kurtosis coefficents as
(-2,2) and (0,6) respectively. These ranges are considerable wider than those for SN. The
ranges of the skewness and (excess) kurtosis coefficients for the finite mixture as a mixing
distribution are (0.995, 3.916) and (0.869,31.980) respectively.



The point of message we are conveying is that finite mixtures are more flexible (robust)
than single mixing distributions; a result that has been stated a lot in statistical literature.

In chapter 4 We have further shown that the pairwise finite mixtures of GIG(—%, 0,7),
GIG(%,6.7), GIG(—%, 0,7) and GIG(%, 0,7) are also weighted Inverse Gaussian distributions.
We have given SIX finite mixtures including one case by Gupta and his colleagues. More
cases can be constructed to form a class called Weighted Inverse Gaussian distributions.

In fact Lindley distribution and its generalizations form another class of weighted distributions,
namely, a class of weighted Exponential distributions.

The objective of this chapter is to model flexible distributions that can handle skewed
and heavy-tailed data by using a weighted inverse Gaussian finite mixture as a mixing
distribution to the normal variance mean mixture.

This idea is motivated by the fact that finite mixtures are more flexible than single
distributions. Nadarajah, Zhang and Chan (2014) have stated that finite mixtures of
normal distributions are flexible than single normal distribution; finite mixtures of stable
distributions are flexible than a single stable distribution; finite mixtures of student’s t
distributions are flexible than single student’s distribution.

The second motivation is that very few studies on continuous mixtures have used finite
mixtures as mixing distributions; with the exception of Lindley distribution and its
generalization in Poisson mixtures (e.g Sankaran, 1970; Mohamud and Zakerzadeh, 2010).
Lindley distribution and its generalizations are basically finite gamma mixtures.

The Mixing Mechanism

From chapter 4,the normal variance mean mixture is given by formula (4.1) expressed as

< ] (x—p—P2)?

= - 2z d

f@) /o N 8(z)dz
_ eB(X*lJ) Ooz_%e_% (ﬁ2z+ (x—;t)z)

V2w Jo

For the weighted inverse Gaussian distribution

g(z)dz

_ w2
where
g1 (Z) — Seéyzigef%(yz2+572)

V21

Hence

5edYeP 1) ° 82+ (x—u)?
fx) = - %/0 E[M}((Z;)]z2exp{—%((7f2+ﬁ2)z+—+(z W )}dz (1)
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5.3

Therefore a weighted Inverse Gaussian Mixture of a Normal Variance-Mean distribution
is

2
z Z} dz (5.2)

We now construct and obtain properties for the six cases of finite Inverse Gaussian
distribution derived in chapter 3. The posterior expectations which will be used in
parameter estimation in the next chapter are also given.

Note

The pdf of a posterior distribution is given by

f(x,2)
fx)
f(x/2)g(2)
f(x)
f(x/2)8(2)

= (5:3)

Jo f(x/2)g(z)dz

Let define fi;(z) fori,j =1,2,3,4 but i # j to be a mixed model for a mixing distribution
which is a finite mixture between g;(z) and g;(z).

fz)x) =

Model 1

5.3.1 construction

Suppose the mixing distribution follows formula (3.15). That is, the finite mixture of IG
and RIG distribution as a mixing distribution we have the NVM mixture given by

SeSYeB(x_H) b ’}/ {5 ¢,C+a2 }
f2(x) = 5 /0 y+5(1+z)z e 2 dz

87 B (x—1) 00 20,
_ g ;r }/15/0 (z_2+z_1)z_2e_%{5z¢ o’} dz

§yedTePmt) = —1{&+a2z}
— 2 z
227+ 9) /0 AL &

B SyedTePl—1) (7§ . .
- S (YO0 ka9 + ka5
(ad/¢(x))+Ko(ad/o( } (5.4)

6’)/66}/6[3()‘ u')

n(y+6) {6\/_

5.3.2 The log-likelihood function of the proposed mixed model
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| = logﬁf(xi)

n

= Zlogf xl

i=1
n 6’)/68}/8[3(

- foe { <y+5>)[5¢—x, (@5/3 ) +K0a5¢—x,”
Ki(ad/o(x;)) +

n

= )} {log(S}/) + 67+ B(xi—u)—log(m(y+9))+log [
(/90 |}
= nlog(37)+n5’}/+iﬁ(xi—u)—nlog(n(y+ 5))+ilog{

i=1 i=1
Ko<a6\/¢<xi>>]

Therefore

0/ (x)

Ki(ad+/9(xi)) +

o
8/ ¢ (xi)

, a o :
I = nlog(5}/)+n6y—|—n/3x—nﬁu—nlog(ﬂ(}/+5))+§log[amKl(aS\/d)(x,))—I—
Ko(a6\/¢(xi))] (5.5)

5.3.3 Properties of Model 1

Since !
__r =
then
0+ 6y(y+9)
EZl=———F— (5.6)
=0+
and
38y +28%y + 8y +28% + 8%y
var(Z) = (5.7)
= r(5+ 17
Therefore the mean and variance of the proposed model are
B(6+8y(r+9))
EX)=u+ (5.8)
= v e)
and
2,2 2 2 283 2
var(X) = PP (14+202) + 8y (14 o) + 283y + B25(3y+28) 59)

(8 +7)?
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5.3.4 Posterior Expectations

Jo 2f(x/2)g(z)dz
Jo f(x/2)g(z)dz

Lz 2z e Hole E 00 g
Lpe=(z2 +Z—1)e—%(a2z+7¢(X))dZ
%fg"( 0-1 4 711y, 1(a2z+52¢( ) gz
Lfeo(z-1-1 4 20-1), ~3(@2+26() 4,

and in terms of modiffied Bessel function of the third kind we can express the expectations
as:

EZ/X=x = Ko(08\/500) + V2 K, (05 /9(1))
5%K1(a5\/¢(x))+Ko(oc6w/¢(x))

5/ (0)Ko(8/9(0)) + 0k, (08/0 (%))
ok ( a5\/—+3\/_Ko ad\/¢(x))

a8+/9(x))Ko( a6\/ 52¢ VK1 (a8+/(x))
02K (ad+/o( +oc5\/ x)Ko(ad+/9(x))

a(s\W(x»Ko(asW(x))+62¢(x>K1<a6\Fz><x>>

= (5.10)

a8+/¢(x)Ko(a8+/(x)) + &K1 (a8 /¢ (x))
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5.4

Next

%fO( —2— ]+Z_l l)e 2(a+ ¢())a:Z

s K1 (08 /9() + Ko(08/9 ()

(5 o‘f(X)>2K2(a5\/W)+ <STW

1
) K1 (a8+/$0)

5 a—[ﬁ OC5\/——|—K() (XS\/_

)K2 (@8/50)) + (

) Ki( ocS\/_

5\/W)Kl (06+/9(x))+ Ko occS\/
asz(a5\/¢(x))+a5\/¢(x)l<1(a5\/¢(x))

08 \/P K1 (8/5(x)) + 829 () Ko (015 /9 (%))

a8 \/¢(x)K1(a8+/9(x)) + a’Ka (a8 +/9 (x))

08 \/O LK1 (8/0(x)) + 829 (x)Ko (015 /9 (%))

(5.11)

Suppose the mixing distribution follows formula (3.21), the mixed model becomes

1+0y

Blx—u) / 142y, 2,4 (02 28
1+89)° o U isy) e d

3,087 oo —2—1
O eﬁ(x—u)/ e
0

<

% (a2z+%) dz

([P25] meovim [2o] 50g)

1+8y

{w— (a8 ¢<’“>>+62¢< )
{aé\/_l(l(océ\/_)

Model 2
5.4.1 Construction
53667/
fiz(x) = o
~ 2n(1+82)
therefore
5360V eB(x—1)
fiz(x) = 214 87)
5307 eBx—1)
- w(1+6?2)
S0 eBx—1)
n(1+82)¢
where

_Jap

o2 K(ad\/9(x)) }

1+9dy

Kz(oc5\/_)} (5.12)
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5.4.2 The log-likelihood function

| = i{logfxl

- g;{mg5+5y+ﬁ¢n—u)—kg0d1+5%y-mg¢@gy+mg{a&VQIﬁx
(@8 V000) + 1 S s (a0 /5) | |

= nlog5+n5}/+[32x,—nﬁu—nlog n(1+8%)) Zlog x,)—i—élog{oﬁ%x

K1 (a8+/6()) + Kz(ocS\/_ )} 6.13)

5.4.3 Properties of Model 2

2
EX) = b 52[5(;<Tf§)§q -
_ & [8(+n+y
var(X) = 1+32{ y(1+67) }
B8 (P2 + (1+87)2)(1+8%)(1+8y) — 8*y(8(1+87) +7)?]
P(1+6Y)%2(1+ 82)2 (5.15)

5.4.4 Posterior Expectation

Jo 2f(x/2)g(z)dz
Jo f(x/2)g(z)dz

oo - 12 52¢<x)
fO z(htﬁ,)z_ze 2(a z+ )dZ

. , )
Jo (1+ 11«%7) 2 (02 ) 4

E(Z/X =x) =
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E(Z/X =x)

Similarly

E(%/sz) -

52¢( >)d
Z

o) 01 | 711y 1
Jo @ 1+Z1+5y)e 3 (ot

- . 1 82¢(x)
IS (Z—1—1+%)e (o224 20 )dz

a9+ (4D "l

(W) 1 (a8/0()) + (5\/_)‘“(?%@)
Kol /309) + (55f) 0

(e K (@0 V90) + e
829 (x)Ko(ad\/9(x)) + (aél}r/ﬁy_)Kl(aé\/_)

a5 /5 K1 (08 /() + (155, Ka(08 /5 ()
(1+87)8%0 (x)Ko (a5+/9(x)) + a8/ (1) K1 (a5+/9(x))

(14 87)ad /o (x)Ki (a8/9(x)) + 02Kr (a8 /9 (x))

_ a8/ (a8/9(x)) + (1 +87)8*9 (x)Ko(a8/9(x))

(1+67) aé\/_l(l(océ\/_) 02K (a8+/9(x))

Jo 2! f(x/2)g(z) dz
Jo f(x/2)g(z)dz

1
0 (1—1_14-6)/)Z e

2, 8%0()
Jo (U fgy)e e Ho2r ) g

| (024 P00 ot

o, o1 31y 1 (g2 0%00)
Jo @2 sy e (@ 2 4
oo 21y 1 520
I (z*1*1+z1+25;,)e L (0249700 )dz

) _
2 O‘f(x)> Kz(a8\/¢(x))+<8 j’(") (ﬁi{y_)

(
(5 ;i’(”)lmasm) (D) oo
(065\/_) oc3 K3(a8\/¢_x)

3 1+0y

o2 K3(065\/_)
8\/_1{1((16\/_) TS T4y

026\ /3Ky (06 \/31) + £ (20y/6)
829 (x)Ki (08+/9(x)) + 26/ ¢( Kz(oﬁ*gy_)

(5.16)
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5.5

Therefore

E(l/xzx) __ (1487)08/0WKx (a8/9(v) + &°K3 (a8 /9(v))
z (14 87)ad29(x)Ki (a8 /9 (x)) + 025 /¢ (x) Kz (5 1/9(x))

(14 87)a8/¢(x)K2 (008 /9(x)) + a*K3 (a5 /9 (x))

(1487)829(x)K1 (a8/9(x)) +ad /¢ (x)Kx (S /9 (x))

(14 87)ad /o (x)Kx(ad/9(x)) + K3 (a8 /9 (x))

= (5.17)

a8/9(X)K2 (aS/9(x)) + (1+87) 829 (x)K:i (a8+/9(x))

Model 3

5.5.1 Construction

Suppose the mixing distribution follows formula (3.27), the mixed model becomes

5')/ 00 2 20(x
fialx) = Sy'e PL— ﬂ)/ (1_|_ 2 >Z 2,~ %(a%-&%) dz
0

27r(y3+5) 1+6y
- L [ (g e
27(y3+9) 0 146y

fuy = S [OVOO] g . ) + [ 20| Bl )

(Y3 +9) o 1+ 8y
S (o 5./60
Y {s\ﬁ oy (@ Vo0)

5y eSveP 1)
— TP o)ao( o \/_{a (1+38y)+8%¢( (x)}Ki (ad+/o(x))

v -1
— et (Vo) {a*(1+87)+8%¢(x) }Ki (a8+/9(x)) (5.18)

an(y3+8)(1+dy)

5.5.2 The log-likelihood function
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n
I=logL = Zlogf(xi)
i=1

n

= Y {3logy+ 87+ Blxi— ) —log(am(y’ +8))(1+87) — 3 logd(x) +

i=1

log [ocz(l +8y)+ 82¢(x,~)] +logK; (a5\/¢(xi))}

n 1 n
= {3n10g}/+n3’}/+[3Zx,-—nﬁ,u—nlog(ocn'();’-l-5))(1+5}/)—5 log ¢ (x;) +
i=1 i=1
Y log [@®(1+8y)+ 8¢ (xi)] + Y logKi (ad/o(x:)) } (5.19)
i=1 i=1
5.5.3 Properties of Model 3
SYH(1+8y)+ 837> +38%y+36
E(XX) = .
(X) u+p P+80) (P +9) (5.20)
SYH(1+8y) +83y> +38%y+36
var(X) =
Y(1+67)(¥* +6)
g (8Y°(1487)% + 87 +108*y +4583y2 +1058%y+1058) (14 87) (> + 9)
Y(1+87)*(y*+6)
(8Y*(1+ 8y) + 83y> +38%y+36)?
. (5.21)
Y(1+687)*(¥* +9)

5.5.4 Posterior Expectation
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E(Z/X=x) =

Similarly,

E(

et et
Jo (1+ 1+57)Z’ze O ¢())dz

1( 2, 820()
3o (& 1+142r51y)e Hater ) g

R L

Ko(a§/000) + [6\/_]21{2056\/_

(1467)

[2Ve) g aw— S Ki(06/9T)
065\/_ K2a5\/_

a2 (I1+0y)

st + \{;}Kl NIE)

ad(1+87)\/¢(x)Ko(ad+/d( oc6\/
[a2(1+67)+62¢ ]K1 a6\/

<

(5 22)

257/)2 2 (@2t 72 4

) 2 %(“2””())&

<

. 1
2

:
I %P)*w(a ) 1K (@8 \/6()
62¢ Ky (a8+/0(x)) + ali\gy_
5o+ oty Ki(06/300)
o*Ka(a8\/9 (%)) + 1+6y 0(ad+/9(x))

[ad/9(x)+ (1+53, |Ki(08+/9
(14 8y)Ky (/o ( +oc62¢ )Ko( a5\/

_ (5.23)

[a28(1+87)v/¢(x)+83(p(x))? }Kl (ab+/9(
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Similarly
282 4 2
E(2/X =) = (1+8y)a"0-¢(x)Ki1(ad\/P(x))+ 67 (¢(x))"K3 (x6\/¢>(x)) 5.24)
[(1+6y)oc4+oc262¢ 1K1 065\/
5.6 Model 4
5.6.1 Construction
Suppose the mixing distribution follows formula (3.33), the mixed model becomes
o) = S (2
23 - \/ﬁ N g23 < Z
B y53 87 oB (x—1) o 22(Z+ agm)
= or 63+}/ /0 )z e dz
S xX— a
_ y8Pelrehl H) / ) T(Z+52¢<))dz
2n(83+7y) o 1+5y
_ y83edTePlh) o’ Kr(ad\/¢(x))
= 63—|—’y K() 066\/ 52¢ 1—|—6’}/
B GGl P o) . @K (@8V/6(x)
f23(x) = 7r¢(x)(83+}/) o) (X)K()(OC(S ¢(x))+ 1—|—5’}/
Y80V ePla—1) { 5
= 1+07y)0 Ko(ad+/
ocsz(océx/(Z)(x))} (5.25)
where
2
X —
o) =1+
and
ol =BE+ 9

5.6.2 The log-likelihood function



59

I=logL = Zlogf(xi)
’)/666Yeﬁ(x ‘LL)

= Z {log(&/) +8Y+ Bxi — Bu—log((1+ 87)7(8° + 7)) —log ¢ (x;) +
i=1

log{(1 +57)52¢(x)K0(a5\/¢(x)) -l-aZKz(aS\/ o(x)}}

= nlog(87) +n8y+B Y xi—npp —nlog((1+5Y)n(8*+ 7)) zlogm
i=1

i log {(1+87)8%¢(x)Ko(at8/9(x)) + o’ Kz (5+/9(x)) } (5.26)
i=1

5.6.3 Properties of Model 4

83(1487)2+ 8%y

B = w P aiy s ey

83(148y)2+ 8%y

Y (1487)(8% +7)

_ﬁ262((53y2+352y+36)(1+6y)+6}/‘)(1+5y)(53+y)—64(6(1+6y)2+7/3)2
Y1 +67)%(8° +7v)?

(5.27)

(5.28)

5.6.4 Posterior Expectations
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E(Z/X =x)

Similarly,

E(Z/X:x) =

(VR4 () (@8 /()
Ko a5\/_ ( o2 )Kz(aé\/M)

52¢ 1+87y

[(1+687)83(\/o(x +a26\/ X)|Ki(05+/9(

_ (5.29)

a(1+67)6%2¢(x) KO oc6\/ + 3K (ad+\/ 9

f5°z*1(z+%,)z’2e 2

Jo (Z+1I§y)2_ze Tl

« @ \3Ks(@8\/50)
sy K1 @8V + (5 7) = Teey

Ko( aé\/_x +( a )ZKz(aS\/tb(x))

146y

52¢ VK1 (ad\/¢ +]+57’K3 (ad+/0

(8+/600)Ko(d\/9(0)) + “IVED k(055
a52(1+6y)¢(x)K1(a5\/ )+ K3 a5\/ x))

(1+87)(8v/9(x))°Ko(ad/9(x)) + 0?81/ ¢ (x)Kr(ad1/9(x))

(5.30)
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2
R ar

a2 (,, 8%0(x)
5+ ig)e e ” (+252) .
a? 52 (x)
— %f(()x’ ((1+6’)/)Z2*1+1071)e— s (Z+ 9 )dz
— ] :
%f(;o ((1+5’}/) 0*1_|_Z—271)e7 g (z+ 29 )dz

(1+8y) S8k, ( (ad/9(x)) + Ko(aS+/9(x))
(1+6y Ko (8+/9(x)) + Ko (S /9 (x))

(1+687)8%¢ (x)K2 (a8 /9 (x)) + 02K (S /9 (x))
02(1+87)Ko(a8+/0(x)) + oKz (a8 /9 (x))

5.7 Model 5

5.7.1 Construction

Suppose the mixing distribution follows formula (3.39), the mixed model becomes

8e%7 > w(z) 1 g2y 9700
_ Blr—n) ~2,-4 (022 40)
fa(x) 2n ¢ /0 E[W(Z)]Z ¢’ dz

6 oo 2
_ 0 By Y / (z—l— < )Z—Ze—i(azﬂazfm)dz
0 Y

27 8(y?+1)

3 0 o _ .
= _re’ ! eﬁ(x”)/ <Zol+ < )e_a;<z+52g(z)>dz
2r(y* 4 1) 0

falx) = rere {KO(OC5\/_) \/_ (0‘5\/_)}

(P +1)
'y eSYeB(X ,U,)

- {a(1+5y)Ko(0¢5\/¢(x)) +6/0(x) x

arn(1+8y)(y2+1)

Kﬂa&/@)}

5.7.2 The log-likelihood

(5.31)

(5.32)
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Given a random sample of size n from from our proposed model the loglikelihood function

is given by

n
l=1logL = Zlogf(xi)
i=1

- Zn: {3logy+ 87+ B(xi — 1) —log(am(y* +1)(1+8y)) +
i=1

log [a(1+ 87)Ko(8/9(x)) +8/9 (0K (a8/9 (x))] }

= 3nlogy+ndy+p in —nBu—nlog(an(y’+1)(1487)) +
i=1

Zn: log [a(1+ 67)Ko(at8+/9(x)) + 81/ 9 (x)Ki (a8+/9(x))]  (5.33)
i=1

5.7.3 Properties of Model 5

Y2(1468y)2 4+ 8%y2 +387+3
P+ (P +1)
Y2(148y)2+ 8292 +387+3
Y(1+0y)(v¥*+1)
5 (82 +38y+3)(14+ 877> + (83 P + 682y + 158y + 15)) (1 +8y)(* + 1)
F P+ 7P+ 17
(P?(14+8y)> 4+ 829> +35y+3)?

B DL CCESE 33

(5.34)

E(X) = u+p

5.7.4 Posterior Expectation



oo 2\ e*%z (z+ 51%()‘))
E(Z/X=x) = Jo Z(Hltéy)Z ) dz
Jo (Z+]j5},)z 2077\ dz
- Jo (&' 1+1J2r61y)e %2(+6 ¢(Zx>)dz
Jo (@ + E)e T (e &)
N R e )
o8 /9 + Haym(aw— )
800 (1+ 8K (/9 (x)) + LI k) (005, /(x))
B a(1+87)Ko(at8+/9( )+6\/ Kl(oc&/ X))
_ a8/ 9 (x)(1+ 6Y)Ki (ad+/9(x)) + 8¢ (x)(1+ 6Y)Kr (06 +/9(x))
a2(1+87)Ko (a8 /0(x)) + a8 /9 (1)K (05+/9(x))
(5.36)
Similarly,
ot (e )2 T )
E(%/X:x) _ oi (z 1;87)2 e z
Jo (@t iigy)e2e VT @k M dz
R i) TR g
: foo( 0-14+ 12;317)@_0522(&62%(1)) dz
) [ﬁ} aw— ‘1‘15
Ko(ad+/¢ 1+67}K1 (ad+/¢(
E(l/X—x) = 3\;+_SY (089 (x) + aKo(ad /¢
Z' T a(1+8y)Ko(ad /9 (x +oc6\/ X)Ki ( aé‘\/ (x))
_ 062(1+57’)K1(065\/¢(X))+0€3\/¢(X)Ko(065\/¢>(X)) (5:37)
a8/ 9 (x)Ko(atS1/9(x)) + 82 (x) K1 (S /¢ (x))
Similarly
E(Z2/X = x) = a(1+38y)8°9 (x)K> 065\/ +(8/9(x) K3 (ad+/9(x)) (5.38)

o3(1+67)Ko(ad+/ 9 +a25\/¢(x)K1(a6\/¢(x))
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5.8 Model 6
5.8.1 Construction

Suppose the mixing distribution follows formula (3.45), the mixed model becomes

533 e87eBl—1) 1 7( 52¢( ))
= B d
f34()€) 53+y3 1"‘5'}’ 2 +Z 6 Z
— FpeTeP ) (Z 2-1 %2(”61%3))&

n(83+793) 1+5y2

B 53y3€67€ﬁx ) \/_

= 5 | o eI + Yk a3 V6T) |
539307 ePlr—u 3K2(OC5\/ x))+(8/0 3K1 (ad/¢(x))

ﬂ(53+?’3)(1+57’){ 0652(15(?6) }
gfeéyeﬁ(x—u)

- 0575¢(X)(53+?’3)(1+6}/){a3K2(a6\/¢(X))+(5\/¢(x))3K1<065\/¢(x_))}

(5.39)

5.8.2 The log-likelihood function

I=logL = ilogf(xi)

n 57 B (i 1)
N S L))

=1

= Z {3logy+log8+8y+B(x;— ) —log(am(8> +7’)(1+8y)) —log ¢ (x;) +

log{a3Kz(a5\/ (i) + (6v/0(x)’Ki (a8/(x)) } }

= 3nlog}/—|—nlog5—|—n5y+ﬁzn:(xi— ) —nlog(am (8> + 1) (14 87)) Zlogq) Xi)
i=1
ilog (&K (a8/9(x:)) + (89 (x:)) K1 (a8 / 9 (x1)) } (5.40)
i=1

5.8.3 Properties of Model 6



E(X) = u+BE(2)
1 30
= “+ﬁ62<1+6y+y2(y3+53)> (5.41)
var(X) = E(Z)+B*Var(Z)
3(1+87)283 [0 (P +8%) +B2(4y° + 8%)] +a(8,y)

- PP+ 821+ 877 o
where
a(8,7) =8V (a?8 +7)+ (27 +8%) 8 V[’ (1+87) - p?] (5.43)
5.8.4 Posterior Expectation
o (4 2290)
J5 2z M+ 2272 2 (22 dz
E(Z/X=x) = - )
Jo (@1 +22)z7% 2 w2 /) dz
2 X
Jo (! +z2_1)e7a72<”5ag(z>> dz
Jo (7! +z1*1)ew72 (4 62(;)) dz
B 6\/0:_ Ki(ad+\/¢( g: K>(06+/¢
62¢ K>)(ad+\/ ¢ ( a6\/
= a5 V(K1 (ady oc K>(a6+1/¢(x))
oc3K2 a8/ (x +53 (x SKI (a8/9(x))
_ OC35\/ X)K ( (X5\/ 52¢ 2K2(O{5\/¢(x)) (5.44)
OC4K2 OC(S\/ +0653 2K1 OC5\/W)
and
_? (9%
plxoy _ ettt T
A _a? (820
Jo e e T (62350 4
2 X
e e s S
Jo @2 T4zl he 2(ZJrézvfa;(z))dz

5\/—3 K3 066\/ ‘f—Ko a5\/
52¢!sz OCSV a a6\/




66

E(l/X:x) _ K3 (ad+/¢( 5\/ 3K0 ad+/¢(
z 02\/o()Ka( aa\/_ S a8\/_
a4K3 ad+\/¢(x)) 4+ o8/ (x)) Ko(ad /o (

= (5.45)

/O Kal aaxﬁ 62¢ 21<1<a6f¢<x>>

The loglikelihood and posterior expectations derived in this chapter, will be used in

maximum likelihood estimation of parameters via the Expectation-Maximization (EM)
Algorithm discussed in chapter 7.
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6.1

6.2

lterative Schemes Designs for NWIG Distributions
Based on EM Algorithm

Introduction

Parametric methods commonly used in parameter estimation are Method of Moments
(MoM) and Maximum Likelihood (ML) method. However, these methods have some
limitations. Equations obtained by these methods require complex numerical techniques
to solve in cases where the parameters are hard to separate.

Alternative simple methods have been sought. One such method is the Expectation-
Maximization EM — algorithm. In this chapter we apply this concept to the NWIG
distributions. In the next section we briefly define the theory behind this algorithm.

The Expectation-Maximization (EM) Algorithm

The EM-algorithm was introduced by Dempster et. al (1977) for ML estimation for data
containing missing values or data that can be considered as producing missing values.
Karlis (2002) pointed out that the mixing operation can be considered responsible for
producing missing data. The statistical beauty of the EM — algorithm is that it estimates
the unobserved values using the posterior expectations.

It becomes easier if we exploit the normal variance mean structure of the mixtures through
this algorithm. Assume that true data are made of observed part X and unobserved
part Z. This then ensures the log likelihood of the complete data (x;,z;),i = 1,2,3,...,n
factorises into two parts (Kostas, 2007). The EM — algorithm consists of two main steps:
the maximization step which optimises the loglikelihoods with respect to the parameters
and the Expectation step which estimates the unobserved values using the posterior
expectations. This implies that the joint density of X and Z is given by:

f(x,2) = f(x/2)8(2)
Therefore the likelihood function for the joint data becomes;
ocﬁ3u foz/zz Hfzz
and the log likelihood

l(a,B,8,u) = f{logf(xl'/zl')-l-ilogf(zi)
b i=1
= ll(uaﬁ)+12(57Y)
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6.3

For these models,

L, B)= ——log(27t ——Zlogzz—liw (6.1)

24 <

6.2.1 M-step

In this step the log likelihood of the conditional and mixing distributions are optimised
with respect to their parameters: u,,8 and 7. Since the conditional distribution is
common for all these models, we proceed as follows:

%h(u m:il( O
ih(u gy Lizk=Pa) ’._‘;_BZ")
i=1 i

Equating these equations to zero and solving simultaneously, we obtain

no X =vn 1
A Z:l—’_x ilz_i

B ZZZ 1z Z,

and hence
- fz
Therefore at the k-th iteration of the algorithm, the estimate for B and p are:

nxixnl

Rk+1) _ =i=lz =1z 6.2
B PR (62)
D) Z 5 gl (63)

In general the estimates are in terms of Values of random variables Zl, 7 z etc which are

unknown. So we estimate them by considering posterior expectations E(Z;/X;), E (%),

E(z?), and this amounts to the E-step.

Maximization of the mixing distribution for the Mixed Models

In this section we design the iterative schemes for the mixing distributions considered
before.
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6.3.1 Inverse Gaussian Distribution

P 3 1 52
g1(z) = mexp(&’)z 2 exp +7’2Z
Therefore
&1 P
L(4, y)—nlog5+n6y——zz——32zi

i=1

optimizing w.r.t 6 and v we get

n
8= n 1 _n
=1 Zi z
and
6
Y==
Z
E-step

We estimate the missing values z; and le by considering posterior expectations E (Z,-/Xi)

and E (Zi_l/Xi) respectively. For the NIG distribution the posterior distribution of Z/X

is

E[Z/X =x] = .

(%))
o K1(065\/¢(X))

Next

EZ7'/Xx=x = 3 ;
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Iteration

Defining s; = E(Z;/X;) and w; = E(Z;' /X;)) which are all functions of o, 3,8 and u for
computation we proceed as follows: for the k-th iteration we have

k ) K, .
s; = ) )20 (6.4)
and

wk) = . (6.5)

We then compute

; (K
A1) _ Zi_l(Xi—X)Wg ) (6.6)
—lyn 1s Zn IW
e e (©7)
Yo 1W W
A §(k+1)
,}/(k-i-]) — ]—(k) (6.8)
7 i1 S
A - 1 %
alk) — g Ig(k+1); ng") (6.9)
i=1
ak+1) — [(A(k+1))2 (3(k+1))2]7 (6.10)

Remark: When k = 0, we have the initial values.

6.3.2 Length Biased (Reciprocal) Inverse Gaussian Distribution

M-step

1 62
@) = en(@n: exp{ +72z}
52 n

.1 (6,7) =nlogy— —log(27r) +ndy— — Z ——= Z logz; (6.11)
< =1
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Differentiating w.r.t 6 and 7y and optimizing we obtain

2 n
5— Z”—Tl (6.12)
=1z
7= . (6.13)
Yz —n* (Xl Zli)*l .
E-step
We now wish to estimate z; and zi—1 using posterior expectation
_a (ﬁﬂ)
L ety
E[Z/X =x] = _ e (g a0
fO Z_]e 2 o2 =/ dz
Using the transformation z = g\/(p(x)t we obtain
E[Z/X:x] 5\/ K1 065\/(]5()6)
o Ko(ady/¢(x)
and
o0 72@ %2( %L)
E[Z_I/X:x] = 0 2 (. o2 o)
P
o Ki(@8/5W)
61/9(x) Ko(ad+/¢(x))
Let s; = E(Z;/X;) and w; = E(Zfl/Xi). For iteration we have
. (k
Bl _ Y (i — Dw 6.14)

n— %Z?:l Sl(k) Yig Wl(k)

o(k+1) _ n
14 J > NG (6.15)
i=1°i ¥y (%)

i=1 Wi
gy _ 1Y

(6.16)
1wl
1 n
SUerl) o plkern) (k)
il i—B ”lzisl (6.17)
G+ — (g2 g (B2 (6.18)
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6.33 GIG(3,8,7)

1
gale) = LT epy
Vaz (1567

y) = ilog@-)

LA 1 521
= Z_E —log(1+9d7y)+3logy+ 5y+§10g(zi) - Y—Zi

i=1 2z 2
n n 1 n 52 no1 ,},2 n
:Z———nlog(l+5Y)+3nlog}/+n5’y—|——logZ(zi)——Z———Zzi
= 2 2 "3 25w 25
d nd 3n
—b = 0— i
oy’ (ren v " YZZ
1
(1 )+ 2 Zi
(-tm) 5 7L
n52 n
- (1+38y) __YZZ’
nd*y 3n !
—bhL=0= +——7v) z=0 (6.19)
Y (1+87) v Z]
d * 1
5= TTray Ok
0 ny*s 4|
512—02>—1+5y— ,le_i_o (6.20)
6.3.4 E-STEP: Posterior Expectations
Using Formular we have
1 ’ o —7[0621—1— ¢()}
E(Z/X:x)zzfozzz e z
3 o | L W)}dz
2 X
B L2 1,3 [a2+ 0]
1o 11t [ 0]
81/0(0) Kal 06 \/0() o
@ Ki(adye(x))
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Next
1o 120} [o2er 2200]
E(%/X:x)zzfz 7z e22 o dz
Iy zzz_ze_f[a AT }dz
e e }d
1l -3 [@%+ X)}d

oKo(ad+/o(

= (6.22)
5\/¢(X)K1(065\/¢(X))
6.3.5 lterative Schemes
From posterior expectations let
E(Z/xi) = 0/ (x;) Kz (ad+/P(xi))
o Ki(ad\/o(x))
and
" :E[l/x} _ oKo(ad+/9(xi))
Zi 6/ 9 (x)Ki(ad/9(x))
The k-th iterations are
(k) ) § k) (k)
Sz(k) _ 0 PRV AIED) (00 Vo (x) (6.23)
o K1 (a950,/6®)(x))
and (k) (k) § (k) (k)
k .
wih) = @ T Ko(aT0T V91 (i) (6.24)

b 80o® (K (P8R /9K (x))

We also define

We now want to present various iterative schemes.
Scheme 1
This scheme depends on explicit solution to the simultaneous equations as described
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below.
From equation (6.19)

5 = SN 1 l
YXiciz
and equation (6.20)
)
AL n
1+069= nY ;
i=17

Substituting (6.25) and (6.26) in (6.19), we get the following quadratic equation

nooo n n 1) ?
Zi) —|Jtt+|n) — |t+ —] =0
(- Eexa) e (ge) (52)

where
=7
_ —bExVb>—dac
B 2a
where
n n 1
@ = 2-Yay !
i=1 =15
° 1
b = n) —
no1 2
c = —
(%)
Y=V
So we have the following iterative formulae
f/(kH) _ t(k)
. n o (k
S+ n( k+]))2_2i:1W§)
plkt1) yr_ Wl(k)
k k
Bl Zz—lxiwl( )—XZ?:1W§ )
N (k)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)
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The other schemes depend on the the following representations of 0 and
o[ 8% 3\1
Y ( ZA + 7) -

1+69 7Y/z

" 3(_ 5 >—1
= Z|<— ~
4 1+ 69

together with

Let us express equation (6.19) as

52 1
5 nxys— l" 1z
’}/Zl ]Zl
from equation (6.20)
Scheme 2:
Consider
yzl IZ[
and

X ( 529 3)1
Y= ~~T% ]z
1+67 V/z

The corresponding iterations are:

" k
S _ ,},(k ( )

PO “
and
,)A/(k—i-l) — M 3 L (6.36)
1+ §k+1) (k) f/<k) 5(k) '
In this scheme for (k+1) iteration we first obtain the estimate for delta, Sk+1) g given in

equation (6.35) and then use it to obtain FE+1) a5 given in equation (6.36). This P&+ g
used to obtain §**2) in updating equation (6.35) and so on until convergence is reached
using a certain stopping criterion.

This procedure of updating parameter estimates is the same for scheme 3, scheme 4 and
scheme 5 given below.

Scheme 3:
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Consider
52 1
A hxY _2?212—1.
o= ~ T
Yli=13
and

The corresponding iterations are:

Slern) _ ¥ (302 —yr wit
P Y Wz(k)
and
,57(](—1—1) _ <§(k)_ (3(k+1))2 )—1
k) 1+ 3(k+l)§,(k)
Scheme 4: We Consider
= (53
1467 /2
and
A nx7 —Z?:lzli
3: A/ 1
Yy p

Scheme 5: Consider

(6.37)

(6.38)



77

The corresponding iterations are:

3 (5%)2 N~

skt1) _ 2 [k _\O)"

Y (0 (s 15007 (k)> (6.39)
and

n k

gk _ (DR S v (640
W‘H i:lwi)
6.3.6 GIG(—3.,5,7)
53 s

80 = Zireyd ¢ p{ ( **Z)} (641

The loglikelihood of the mixing distribution I5(8,7) is also optimized with respect to 0
and 7.

L(s,y) = 3n10g6—glog(2ﬂ:)—gZIngi—nlog(1+5y)+n5}/—
i=1
1 &, 82
3 Z(_. +7%z) (6.42)
i=1 %

the derivative with respect to y is

0 né L
Sh(En) = -y

the derivative with respect to § is

d _ 3n ny "1

equating the first equation to zero and simplifying we obtain

8% —7
07

7=
where 7 = %Z?:l zi. Substituting for yin the second equation and equating and simplifying
we obtain

3n né% -y z . nd? -y z 21
= _ —’ 1+ —1’ S
3o (oo () oL
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note

1+0y= ——
4 1%

We therefore have

n

n n n 2
54<n2—2zizl.)+n522zi+(Zzi> =0
i—=1 i—=1 i—=1

i=1 i =

Letting # = 82, we obtain the quadratic equation

o BB (e (5 -

i=1 i=1 i=1

where
t_—bj:\/bz—4ac
- 2a
with
2 n n 1
e %
y & 2

therefore § = v/t hence, at the k — th iteration of the algorithm, the estimate for 6 and y
are

Sk — f (6.43)
(5(k+1))2 —z

k+1) . \Y ) %
N e (6.44)

These estimates involves computation of unknown values for random variables: Z, {Z;,i =
1,2,...,n} and {Zl._l,i = 1,2,...,n}. Estimation of the values of these random variables
amounts to performing the E — step.

E-step

The estimation of the random variables: Z, {Z;,i = 1,2, ...,n} and {Zi_l,i =1,2,...,n}is
achieved by computing the posterior expectation for E(Z;/X; = x;) and E(Z; ' /X; = x;)
using posterior distribution. One attractive and useful feature of the GIG distribution
in the mixing mechanism is that its conjugate for the Normal distribution. That is,
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given a conditional distribution X /Z ~ N(u + Bz,z) and the mixing/prior distribution to
be Z ~ GIG(A,8,7) the posterior distribution is Z/X ~ GIG(A — 1,1/8%+ (x— )2, @)
where @ = /B2 + Y2 It can easily be shown the moments around the origin of the
GIG(A,9,7) distribution are given by

§) ' Kl+r(6}/)
Y) Ki(6y)

and this formula hold for negative values of r,i.e for inverse moments too. When mixing

E(Z") = (

with Z ~ GIG(—3,8,y) posterior distribution becomes Z ~ GIG(—2,/82 + (x — 1)2, ).

The posterior expectation required can be computed as:

E(Z/X =) = \/62+ ) Ki(ay/ 0%+ (x—u)?)

Ky(oy/ 6%+ (x—p)?)

K_3(00y/8%+ (x— u)?)
\/62+ 2K 2(ay/6%+ (x—u)?)

These posterior expectation can now be used to compute the parameter estimates via the

E(Z /X =x)=

EM-algorithm for Maximum likelihood estimation of the parameters for the proposed
mixed model distribution. Let s; denote E(Z;/X; = x;, O(k)) and w; denote E(Z;I/X,- =
x;,0%)) where %) denote the k-th iteration values of the GIG(—%, 0,7). Therefore

N

§M¢® ()2 Ky (@ §® ¢®) (x;)2)
ol (a5 (x)2)

1
2
2

) — (k)2
fori=1,2,...,nand (p(k)(x) =1+ (x(s%)z)
Pseudovalues calculated at the E-step can now be used to update the other parameters as

follows:
S — t (6.45)
(+1\2 _ a1
Sy (OF)
% ST (6.46)
AkHl) Mg XiWi — XY Wi
B P R (6.47)
‘a(k+1) _ X—B(Hl)s' (6.48)
&(k—H) _ \/ ;y(k—i-l k+1))2 (6.49)

We now consider the Six Models of the finite Inverse Gaussian
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6.3.7 M-Step for the Mixing Distribution of Model 1
The mixing distribution given by equation (3.15) is

2(2) = ——(1+2)21(2)

Y+
oy
Y15(1+Z) 682 e (7
V27
oy 2
Therefore
L = ) logz (6.51)

= zn:{10g57’+57—llog(zm—10g(7’+5)+10g(1+zi) ;log(z, ( +y2z>}

= n5y—|—nlog3}/——log(27r)—nlog(y+6 +Zlog 1+2z)— Zlog Zi)
i=1

&1 P
7;2_52 (6.52)
Therefore
d ny n "1
362 =" 5y " yvs Ok
n n L |
Y+5_y+6 lz‘{z_,
0 n n |
S5 =0=nr+5 755 izlz—i—o
_ (y+8—-09) 1 l
KA () W
ny "1
Tt S£9) ;zi
n}/[l + ! } = z’l:l
8(}/+5) ,:1Zi
Therefore [ 1 }
AL T
6:¢t6) (6.53)
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Similarly
0 n n 4
—b=n0+(-— — ;
ayz n +(’}’ ’}’+3) ’)/i_ZIZ
né !
=no+ — Zi
Y(y+96) Yl-zi
i12:0:116[1+ ! }zyizi
dy Y(y+96) P
Therefore [ 1 ]
14+ ——
V=" HMM) (6.54)
7 Lie %
6.3.8 E-Step

Since Z and % are unobserved; they are therefore the missing values. Hence they are
estimated by posterior expectations

E(Z/X) and E(%/X)

as given in sub-section (6.5)

6.3.9 Iterative Schemes

Let
S; = E(Zi/Xi)
and
1
w; = E(z /Xi)

1

Then the k —th iterations are as follows:

w _ @W80 /oM () Ko(a®H) /oW (x;))

_|_
—~
=)
=
~—
)
<
—~
&
N—
=
—
)
=
[o%)
=
<
=
—
&
N—
N—

K o150 /0 (x)) Ko (0¥ 86) /9 (1)) + () Ky (06 88 /) (x;))
(6.55)
0 _ a®80GRK (a¥8H /9T () + (o)) Ko (¥ 50 /6T (1))

w.

" a®50\H (K (a5 E /9T (1) + (50920 8) (1) Ko (005 /6 ()
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For the log-likelihood function the k — th iteration is given as
1% = nlog Wy 4 Ky 4 pgkig_ gk k) nlog(ﬂ(}/(k) + 5(k))) +

- ok
log|— K (a0 /o®) (x;:)) + Ko (a® %) /o) (; }
i_Zl og 6(/6) ¢(k)(xi) l(a \/m)—F O(OC (b (x ))

Iterative Scheme 1

From equations (67) and (68), we obtain the iterative scheme

(k) 1
SU1) — rol 3<’<>(W>+6<k>)}
B Lyn wk
~(k 1
_ 7 )[1 + 5<">(?<k>+5<k>)}
B wk)
and
S(k+1 1
Sy O I Gogm e
B §(k)
where
Wi
W= ; p
and

n K oen (K
[;(k+1) Zi:lxiwg_) — XY Wz( )

i

Y (i — ol

n— sk) ?_lwl(k)
I
n(1 — s®pk)
pl) = g plerD i
GHD = [(pD)2 4 (pED)2)
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Iteration Scheme 2

Again, using equations (67) and (68) we can also obtain the following iterative scheme

§M1 4 #]

ok+1) 70 (70 40k
e = =0 (6.57)
Y(kJrl [1+Ak Akl ]
Skt _ S (r+D4+50) '
0 (6.58)
(k)
B+ = Liny (i — Ow; (6.59)
n(1 — sty )
pkr = g gk (6.60)
&(k+1) _ [( A(k+1)) (B (k+1 ) } (6.61)
6.3.10 M-Step for the Mixing Distribution for Model 2
The mixing distribution is presented by equation presented as
82 11
= 1 -
g(2) 1+62< +1+6”>g1(z)
2 0
= 0 (1+ ! 1) d¢ y{%[%(?’zﬁ%)
1+ 62 1+6yz/)2n
53 % 1 1 3 (P
_ 1 ) i t) 6.62
1+52\/27r( +1—i-51/z)Z ¢ (662
Therefore
L = Y logg(z)
i=1
“ | 3
= ) <3logé+8y—log(1+6 )—Elog(Zn)—Elogzﬁ-
i=1
1 1, ¥ 81
log(l—f-m—l) _?ZI_EZ_Z'}
_ _ 2y _ " 3% loes,
= 3nlogd +ndy—nlog(l+6°) 210g(27z:) 2i;logzﬂ-
n 1 1 yz n 52 noq
log(1+ ———) =Y z——) — 6.63
;0g(+1+5i’zi) 2;2 2;& (6.63)
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5 -2
d n —2(1+67) L
0 I L/
N i=1
n 1 n
! l; (14 67)%zi+ (14 6y) }/i;z
o ! 1 !

" (1+5y)zl+(1+5y)zi yl.;z

i=1

9 n o n 1
=L =0 i =no —
772 :VEZ T Uty ;1+(1+6y)z1~
§[n— 2 TS
-7 [ (1+8y) &i=1 1+(1+57’)Zz] (6.64)
l=1Zl
Next
d 3n ms & (1487 - 1
L, = —+ny——+Z - —52_
3n 2no < - 1
B A 1+5}’Zi 1+57) ai_zlz_i
3n 2né $ - 1
= —_— 6 -
5 1+52+Y[ 1+57,Z11+ 1+5?’) } i:zizi
3n+nd? | 1 -
— e - —-d6) —
5(1+52)+y{n 1+5y,-;1+(1+5?’)2z'] ,;Zi
3n+nd? 1 n 1
TV~ sy i=l T (1872
112_0:>6 _ 8(1+8% [n - 1:87/1 11+(1+6y)zj (6.65)
"do Zii]z_i
E-Step

Values of random variables Z; and ZL are not known. So we estimate them by considering

posterior expectations
E(Zi/X:) and E (7 /X;)
Let

= E(Z;/X;) and w; = E(Zii/Xi)



Iterations

n a®§® (p(k)(xl.)Kl((X(lc)(s(lc)w /oW (x;)) +A(xi; @, 8,7) (6.66)
L (14 80y a0\ /6T (x)K, (28K /9B (x))) + B(xisat,8,7)
" (1+ 50y g0 50 ¢(k)(xl)K2(a(k)5(k) ,

k 1 i
8 |n— gt Lt sy

S(k+1)
Y (6.68)
Z?:lsl(k)
" o (k
Rk+1) _ i= 1(x X)Wz() (6.69)
lzz 1S z 'zlwgk)
where
Axpa,8,y) = (1+8WyRN§29W (x) Ko (a®8®/o®) (x;))
Bxi;a,8,7) = (a(k))sz(a(k)g(k) ¢(k)(xi))
Cla,8.y) = (a¥)Ks (6o (x))
D(x;0.,8,y) = (1_|_5(k)y(k))(5(k))2¢(k)(xi)1(l(a(k)g(k) o0 (x;))
A n s(k)
‘a(kJrl) — 5 B(k+1) Z 17 (6.70)
i=1
d(k—i—l) _ K,},(k—H))Z_'_ B(k-i—l))Z]% (6.71)
6.3.11 M-Step for the mixing distribution for Model 3
The mixing distribution follows equation (3.27) presented as
§y3edY 7 3 1P )
1+ “2e2\FEty 6.72
814(z) = \/ﬁ(y3+5)< 1+6y)z e (6.72)

with loglikelihood function
I, = nlogd+3nlogy+ndy— glog(Zn) —nlog(1+8y) —nlog(y’ +8) +

n 5 3 n 62 n 1 ,)/2 n
log(14+87+2) —>Vioez -y Ly, .
i; og(1+8y+z;) 2; 0gzi — = i:Z:IZi 5 i:lel (6.73)
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Maximizing with respect to 0 and y we have the following representation

3nd

< 1+87) ;z,)szrZHSYH P+o
2 n n
ny 1\ o oy ny’
Y Z2ls —
(1+5y i—ZlZi> +;1+67+z§+y3+6

Both equations are quadratic in y and 0 respectively.

6.3.12 E-Step
Posterior Expectation

2 X
e i) e
Jo (U i53)a 2 Horer ) g

1(,2 3¢&)
3o (& 1+142r§1y)€ Hater2)

Ly (1 e 3 o

Ko(a§/000) + [5\/_]219055\/_

(1467)

E(Z/X=x) =

dz

2Ok aw— A CENIE)
065\/_ K2a5\/_

a2 (I1+0y)

[5\/— 1—0—57/}[(] 065\/

ad(1+8Y)\/¢(x)Ko(ad+/d( Ky(ad+\/o(

[oﬂ(l +87)+ 62¢ 11<1 aaxﬁ

(6.74)

(6.75)

(6.76)
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Similarly,

E(z/X:x)

a22+5 ¢( )

)dz

Tz Jdz

P\ 1

1+6y]K1 O£5\/
Ko(ad+/¢

1+6y

)

Similarly

(14 8y)a?8%¢ (x)K{ (a8+/¢(x)) + 8*(¢

(d+/9(x))

[5\/“_
02Ky (08 /9 (x)) + 2 1+57 0(08+/9(
) ]Kl a5\/

[065\/ + (1+8y
(14 8y)Ky(ad+/¢ +o¢52¢ )Ko( a5\/
[a28(1+67)\/¢ +63( x))? }Kl (ad+/0(

1+6y ]

(6.77)

2K3 065\/ ¢(x))

E(Z/X=x)=

6.78
[(1+6y)a4+a262¢ K1 065\/ (€7

The posterior expectations for the k —th iteration are:

(k) _ l+5 %

k) / KO

a®§® /oW (x)) +A(xi;, 8,7)

" [( 2(14 8k

(k) _

( )’ (1+ 8% 7“‘ Kz

w 0¥ (51K (D51 / ) o

(")5 VoW (x) +Clxis e, 8,7)

Wi

()25 (14 5%

V(k): 1—|—6 ’}’<k

[\ST{9%]

)OI + (5002 (900 () ? | Ki (@50

9)2(8" )2¢

i

Y(k

[1+ 8k

where

A(X,';Ot, 67’}/)

C(xi; «, 87 /}/)
E(xj;,0,7)

(k)4 (k)(

OC




Now, define the iterative scheme as follows:

let
k+1 _ - ()
( oyl A )
plkr1) — i (k)
i=11 + 5 (k)
D) 3nsk )
b (p0)3 4 50)
let
(k+1) (k+1) (k+1) (k+1)
k1) — N \/<b1 ) day e (6.82)
2a§k+1)
using the square root transformation, we have
P = /(1) (6.83)
Similarly, define
k—H n
ang) ( y< k+1 -) Wl(k)) (6.34)
7< i=1
n k+1)
(k+1) _ §Hy
by = ; Wy 1 (6.85)
(k+1) 3
k+1) _  n(P)
let
(k+1) (k+1) (k+1) _(k+1)
glkF1) — —h \/(b 4 o (6.87)
2a§k+l)
using the square root transformation, we have
Sk = /s(k+1) (6.88)
and the k — th iteration for the loglikelihood is given by
1% = 3nlogy® 4+ ns® Z 9y —nloga®m —nlog(1+ 8Fyk)) —
i=1
log(#9)? +8%) — £ ¥ 1ogo® (x) + Y log [(¥)2(1 + 80 7%) 1
i=1 i=1
(5(k))2¢(k) (xi)} + Z log K} (a(k)S(k) ¢ *) (x)i) (6.89)
i=1
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6.3.13 M-Step of the mixing distribution for Model 4

From formula (3.33)

782 1
g(2) 53+y( L )81(2)
N Ch L 8% 5 (2 1p)
St Ty Iy e
3,6
vore? ! zfl)z*%e_%(gﬂzz) (6.90)

Therefore

n
L = Y logg(z)

& 1 3

= ) {logy+3logd+8y— 510g(27t) —log(8° 4+ 7) —log(1+487) — Elog(zi) —
i=1
821 ¥y

1
P EZi‘HOg((l +07)zi + Z_l)}

= nlogy+3nlogd +ndy— 210g(27r) —nlog(8® +7) —nlog(1+48y) — ; Zlog(zi) -

i=1

72;—%2 Z og((14+06y)zi+ Z.) (6.91)
Differentiating w.r.t ¥ we obtain
N L S zz+z
v’ ¥ F+y 1+57 TrEET 1+5m
L waz—
vy &+ 1+6y ==

néd? nyd? 1 n 872
— -+ — i+ o
¥Y(83+7vy) 146y Y.Z'Z l;l—i—(l—k&/)ziz

i=1

(% = 0 implies that

n33 n n

y(53+y> 1+5y Zl Zl +5y>

=0 (6.92)

Similarly

0 3n 3n8? ny yz2

nl n
- = = — —
08 ° 5§ T F ey 1oy ;z .Z 1+6y)

l:

B 3ny néy? i i
N 6(63+y)+1+6y Z{z, ; 1+5y)

1




3‘9—5 = 0 implies that

=0 (6.93)

3ny n5}/
6(63+y) 1+8y le, Zl+1+6y)

1

6.3.14 E-Step

Values of random variables Z;, ZL and Zi2 are not known. So we estimate them by
considering posterior expectations

E(Z;/x:), E(le/xl) and E(Z?/x;)
Let
=E(Zi/xi),wi = E(le/xl) and v; = E(Z;/x;)

The k —th iterations are as follows

o _ (89PN W) (VoW (k) ki (¢80 /9B () + Al 0,87
l <><1+6<kw>><6<k>> k)(xz)Ko( 1150 /9® (x;)) + B(xi: 0, 8,7)
NOR o®) (5021 4+ 8@y 0o ®) () Ky (oK) §®) ¢(k)(x,-))+C(x,-;a,5,y)(6.95)
’ (14800 (50) /¢ 10 (x ))3K0( (015()\/9® (x;)) + D(xi; @, 8, 7)
o _ (st %k (829 (x)K < W8 oW w) +Es e 8y)
’ (0)2(1+ 80 Y0 Ky (1 50 /9 (x)) + F (xis , 8, 7)

where

Alxipo,8,y) = (a®)28W, /o0 (x) Ky (a@P8W /0¥ (x;))
B(xi;,8,7) = (aM)’Ky(a®50/¢®)(x;))
Clara,8,y) = (a¥)K3(aM80/9®) (x))
D(xi,8,7) = (a®)?6W/¢W (0K (M50 1/9® (x:))
E(x;0,8,7) = (a®)Ko(a®s®/¢®)(x;))
Flxpa,8,y) = (a®)2k(a®s®, /o0 (x,))



For the log-likelihood, the k — th iteration is given as
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19 = nlog(8WyW) +ns®y®) 1+ B Y xi —nB® u® —nlog((1+ 80 y¥)m((8©)3 + y))
i=1
Y 1og¢™ (xi) + Y log { (1 +8W4M)(6®)?0 M (x) Ko (a®8W /9 ) (x)) +
i=1 i=1
(a(k))sz(a(k)6(k) oM (x))} (6.97)
6.3.15 Iterative Scheme
From equations and (6.93), we obtain the following iterative scheme
n(8®))3 ny® (8 (k) 5022
p) = FIEIY 7 18" W‘) +):i:1 (14600 (6.98)
Z?:lsi
3n7(k+l) n5(k)(y<k+l))2 n 7,(kwtl)ziz
6(k+]) B 5(k)((5(k))3+y<k+l)) 1+5(k)31,(k+1)k i=1 1+(1+5(k)y(k+1))zlz (6.99)
i=1 Wi
with
" N —wn k
Bl = Zi:lxiwg)_xzizlwz() (6.100)
ST |
alt) — g glerng) (6.101)
sl — [(}A,(k+l))2_|_(l§(k+l))2]% (6.102)

6.3.16 M-Step of the mixing distribution for Model 5

Consider formula (3.39) presented as

824(2)

,},3 ZZ
SR +1) {” 1+5y]gl(z)

PV z S 1(24)
Vi e

(6.103)

with the loglikelihood

I 3n10g}/—|—n5}/—Elog(27r)—nlog(}/z—l—l)—nlog(l—|—5y)—%210gzi+
i=1
n 2 n 6 n o]
Zlog1+57+z, —%Z _TZZ_ (6.104)
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Maximizing with respect to 0 and y we have the following representation

3n+2ndy u B

A58 (y 7 +Zz,> +5(”+Z 1+57+Zl> =0 (6.105)
ndy? B
1+<‘5y+yZ 1+6y+z, Z_ B (6.106)

There is need to estimate the values for Z;, ZL and Zi2 using the posterior expectations as
follows:
Posterior Expectation

a 329 (x
Jo z(z+ %,)z’ze T (25

NA

E(Z/X=x) =

oo 2 o
fo (Z+ ]_‘Z__57/>Z_2€ 2

a2 (., %)
IS ( 1- 1+1i8‘y)e % (Z+ )
9(x)

s (ZO | ) *aTZ(Z+ o2z )dz
0 1+8y

VD K<aw—> [af 2 aledyec)

146y

Ko(ad\/9(x)) + 1+5y Kl(aé\/_)

5/0@)(1+8y)Ki (ad/0(x)) + LU k) (05 /5(x))
(1+8}/K0(a5\/_)+6\/_l(1(oc5\/_)

a8/ (x) (14 87)K;i (a8+/9(x)) + 8¢ (x)(1+ 87) Kz ( oc5\/_)
a2(1+5yK0(a5\/_)+a6\/_K1(a6\/_) o7

dz

Similarly,

2 (4 8%
Joz !zt 1587)1_2@_% (%5 4

I3 (et ri57)7 % 4 (4 252)

_a? (800
%fo (71 l+1-(|)-81y)e ) (z+ s
1y - 529(x)
Ly @1+ e % o

[E} aw— o

T 146y

Ko(at8+/0( 1+57,][(1 (aS+/ ¢

dz
) 4




1 B 5\;ﬂ/ 1(08+/0(x)) + aKo(ad+/ ¢

o(14+6y)Ko(ad\/¢(x)) +ad/¢(x)Ki(ad/¢(x))
_ 1+ 89)Ki(ad/9(x)) +ad /9 (x)Ko(ad /9 (x))
ad/9(x)Ko(d+/¢(x)) + 8¢ (x)K1 (a8 /¢ (x))

(6.108)

Similarly

E(Z2/X = x) = a(1+87)8%¢ (x)Kz 065\/ +(0/9(x))’Ks3(a8+/9(x))
a3(1+87)Ko(0d+/¢ +a25\/WK1(a6\/W)

Now let s; = E(Z;/X;), wi = E(ZL,/XI) and v; = E(Z%/X,-) and

(6.109)

||
oM: oM:

S|

s
I
SHRS

Therefore the k-th iterations are:

(k) a® 80 /oM (x) (14 Wy K (a®§W /o®) (x)) +A(xi;; 00, 8, 7)
i (a®)2(1+ 80y 0) Ko (a® 50 /9®) (x)) + B(x;; @, 8, 7)
(6.110)
) _ (a ()) (1+5 y(k Kl((x(k)ﬁ()«/(])(k)(X))—FC(Xi;O‘,&Y) (6111)
i \/7[{0 ak) §k) /K )( ))—i—D(x,';OC,(S,Y)
S () 1+5 Jy®)(80)2® (x) Ky (¥ k)V¢(k)(x))+E(xi;a’5’y>
i (o 1+5 W‘ VKo (o §K) /&) (x)) + F (x;; 0, 8,7)
(6.112)
(6.113)
where
A xi;a767
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These can be used to obtain the (k+ 1) —th values as follows

(k) (k)
—y(1<3+1255k 7,<—+5(k {1 + i

1
1+5(")y(")+s§k>}

# = (6.114)
{ﬁ +S_(k)}
YUHI;I 1) /},<k+1 1 T
3(k+1) _ 1+8 {k+1) l 1+6 + '
0 (6.115)
Bl yi o — ey wi (6.116)
n—f(k+1) Z?:1W§k+l) .
,ﬂ(kH) _ X_B(kﬂ)s-(kﬂ) (6.117)
&(k-ﬁ-l) _ \/ k+1 y(k-i-l (6.118)
The (k+ 1) —th iteration of the log-likelihood function becomes
(4D 3plogytl) | gk yken) 4 gler1) Z":xi ) k1)
i=1
nlog(a(k+1)n((,},(k+l)) + 1)(1 +5 (k+1) k+1 _|_ Zlog k+1
(1 + 6(k+l)}/<k+1))K0(a(k+1)5(k+l) ¢(k+1)<x)) + 5(k+1) %
o) (x)K, (a(k+l)5(k+l) ¢(k+l)(x))] (6.119)
6.3.17 M-Step for the mixing distribution of Model 6
We now consider the the mixing distribution given by formula (3.45) expressed as
62’}’3 -1 2
&) = Gayenirey© T
52 S Sy
T 1 e3 r (' +2) - L2, 82
F+89)(1+67) Vo te W)
3,3,07 2
Oy (! +z2)z_%e_%(7’zz+67) (6.120)

V21 (y3 + 83)(1 + 87)
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Therefore

L =

Hence

n
Y logg(z)
i=1

1 1
{3log5+310g7+57——log(27r)—10g (Y’ +8%)( 1+5)/))+10g( —i—z,)

i=1
3 Y 581
~Stog(a)- o= 511

1
3n10g5+3n10g)/—|—n6}/—glog(Zﬂ:)—nlog (Y + 8% (1+8y) +Zlog +Z,)
i=1

,)/2 n noq
__Z’log % _El;z’ 5 ;Z, (6.121)
d 3n 3ny? no !
Fra 7+"5_53+y3_1+6v_yi21Zi
=3 (1_7_2)+ 5(1— Z 6.122
- T 1+6 T (6.122)
d (PP +8°—79) 1+8y—1 "
2 =3 B —yY z
a7 ey T sy ) Y,.:Zf
3n83 nd%y
- y<y3+63>+1+6fy,-_2f’
3né3 1 né?
T (P48 _Y(Z;Z"_ 1+6y)
d 1 nd? 3nd?
dy* Y(i;z 1+6y) Yy + 83)
3»3n(‘53g
y(y°+38°)
Y = - 3
(Zi:ﬂi_%)
B 3nd?
YR +8) (75— 1255)
B 368°
o 3 3\ (5_ 82
VY +6°)(E— 1757)
3
Y o= 30°(1+97) (6.123)

V(P +8)((1+87)7-8%)
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Similarly

2572

I

(%)

3n 3n8? ny |
P S e 7 R M
1 52 1 o
WG e ti- ) kg
(PP +8%-8% 14+8y—1 1

3n (P +03) +ny( 110y )_5;zi

3ny? ny*s ” 1
sV =
5(P+8%) T 145y gzi

n 2
L
o(y3+63) Sz 1+6y

2

71 ny
0=—96 —— =
[,; Zi 1+5Y] 5(v*+8%)

o5 (1)

i=lz ~ T+8y
33(1+687)
8(r+8%) [FPEL 7
373 (1+37y)

6.124
5+ 8% [(1+ 57w — 7] (6:124)

6.3.18 E-Step and Iterations

Values of random variables Z; and Zi are not known. So we estimate them by considering

posterior expectations

Let

and

E(Zi/X:) and E (7 /X;)

S; :E(Zi/Xl') and wi :E(Z%/Xz)

T|J|
oM: oM:

S|

I
I
S |3
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Therefore the k-th iterations are

v _ (@989 /6F 0K (aW8W6T) + (510 W () Ka(@V5Y V6T
” (a®)4 K (ot <>6<k> 0 (x)) + B (8013 () (x)) 2K, (08 ¢ ®(x))

(a())4[<3( (k) § (k) ¢()(x))+a()( ,/ (k) x))31<0(ak)5 (k)(x))”m
B ()3 /9B () Kz (08 /9T (x)) + ((60))29® (x))2K; (D 51 /9

These can be used to obtain the (k+ 1) —th values as follows

(K)\3
gt 3(8W)3(1+8W )_ (6.127)
PO ((FH)3 + (W) (14 8®yH)5®) — (81)2)
A ) k)
Sthk+1) . ) Y( ) (1+6 }/( (6.128)
O ((r0)? +(8®)3) [(1+ 80 yR)wlh) — (y10))2]
The k —th iteration of the log-likelihood function becomes
1M = 3nlogy™® +nlog§® 4+ ns® Z DY — nlog(a®r((6®)3 +

=1

() (1 + 80y — Zlog¢(k)(xz') +
=1

EZkg{ O3 Ky (W80 4 /9 (x)) + (8% 1 /90 (x)) 3Ky (D 8H) /90 (5329

Remark

The method of moment (MoM) estimates for these models are difficult to obtain directly.
We suggest to use the moment estimates for NIG as initial values as presented by Karlis
(2002) formulation. This is motivated by the fact that all models are related to the NIG.
That is, they are Normal Weighted Inverse Gaussian distributions. Thus, the NIG MoM
estimates are within the admissible range.

Moment estimators for NIG distribution obtained by Karlis (2002) are as follows:

Y

N:X—ﬁ)?/

5 _oF
oy

A 1S

ﬁzy!

- 3

" WVoR oY)

where ¥ is the sample mean, s? is the sample variance, while 7 = ,LL3/,u§/2 and p =
pa/u3 =3, with g =n"1¥" | (x; — %)X, i.e. the sample skewness and kurtosis respectively.



therefore it can be easily shown that:

3
sv/ (3% —51%)

’?:

The other parameters can be obtained sequentially by substituting the value of 7. In this
chapter we have constructed the iterative scheme designs for the normal mixtures to be

used in Maximum Likelihood parameter estimation via the Expectation maximization
(EM) Algorithm applied in the next chapter.

98
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7

7.1

EM ALGORITHM ESTIMATION USING NWIG
DISTRIBUTIONS TO FINANCIAL DATA

In this chapter we estimate the maximum likelihood (ML) parameters for the NWIG
distributions via the EM-algorithm using iterative schemes developed from the previous

chapter.

Introduction

In this section we consider three data sets for data analysis: Range Resource Corporation
(RRC), Shares of Chevron Corporation (CVX) and S&P500 index. The period 3/01/2000
to 1/07/2013 with 702 observations for each data set is considered. The histogram for
the weekly log-returns in Figure 7.1, 7.2 and 7.3 for these data sets shows that the data
is negatively skewed and exhibiting heavy tails.The Q-Q plot show that the normal
distribution is not a good fit for the data especially at the tails. This is typical for the other
data sets.

Table 7.1 provides descriptive statistics of the data sets for the return series in consideration.
We observe that the excess kurtosis that indicates the leptokurtic behaviour of the returns.
The log-returns has a distributions with relatively heavier tails than the normal distribution.

We observe skewness for the data sets which indicates that the two tails of the returns

behave slightly differently.

Table 7.1: Summary Statistics for the data sets weekly log-returns.

dataset Minimum Standard.dev skewness exc.kurtosis Maximum Mean

N

RRC -14.4465 2.824736 -0.1886714 2.768252 13.9830 0.2333
CVX -13.76112 1.480436 -1.297339 11.10113 6.71410 0.08711
s&p500 -8.722261 1.157893 -0.7851156 6.408709 4931805  0.006697

702
702
702
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7.1. Histogram and Q-Q plot for s&p500 weekly log-returns
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Figure 7.2. Histogram and Q-Q plot for RRC weekly log-returns
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7.2

Histogram of data Normal Q-Q Plot

0.30
|
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I
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Theoretical Quantiles
1.480436

Figure 7.3. Histogram and Q-Q plot for CVX weekly log-returns

We use Karlis (2002) formulation to obtain the initial values for the EM algorithm. For
this dataset, the values obtained are

Table 7.2: Method of Moment estimates of NIG for the data sets.

dataset (0% B 5 i

RRC  0.3722511 -0.02456226  2.950864  0.4284473

CVX  0.4190067 -0.1054991 0.8324058 0.3036691

s&p500 0.6556607 -0.1257455 0.8310044 0.1690855

The stopping criterion is when

(k) _ j(k=1)

10 < tol (7.1)

where tol is the tolerance level.
Parameter Estimation for the Normal Inverse Gaussian
MoM and EM parameter estimates at different tolerance levels are presented in table

below. The loglikehood value, number of iterations are also given. The monotonicity
property of the EM algorithm can be seen from table.

Table 7.3: Maximum Likelihood estimate of NIG for RRC
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Parameter | Starting Values | EM(tol = 107°) | EM(tol = 107%) | EM(tol = 10~%)
(04 0.3722511 0.4203574 0.4214410 0.4215579
B -0.02456226 -0.03578018 -0.03585363 -0.03586155
5 2.950864 3.277072 3.284293 3.285072
il 0.4284473 0.5132705 0.5137393 0.5137899
Loglikelihood -1696.347 -1695.549 -1695.855 -1695.888
No. iteration 79 129 228
AIC 3400.694 3399.098 3399.71 3399.776

Figure 7.4 and 7.5 below shows the fit for NIG to the RRC data set.
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7.3

Parameter Estimation for the Normal Reciprocal Inverse Gaussian

The Table below shows the maximum likelihood parameter estimates for NRIG using the

RRC data set.

Table 7.4: Maximum likelihood parameter estimates for NRIG using RRC

Parameter | Starting Values | EM(tol = 1073) | EM(tol = 107%) | EM(tol = 1073%)
& 0.3722511 0.5479919 0.5490824 0.5491998
3 -0.02456226 -0.03894518 -0.03903887 -0.03904892
) 2.950864 2.413854 2.423925 2.425010
il 0.4284473 0.5356479 0.5362332 0.5362960
Loglikelihood -1777.218 -1696.095 -1696.414 -1696.449
No. iteration 101 154 259
AIC 3400.189 3400.829 3400.898

Figure 7.6 and 7.7 show the fit and Q-Q plot to the RRC data set.
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7.4 Parameter Estimation of the GHD when the index parameter is —5

3

Table 7.5: Parameter estimates at different tolerance level using RRC

Parameter | Starting Values | EM(tol = 1073) | EM(tol = 107%) | EM(tol = 1073%)
(04 0.3722511 0.277191 0.2777899 0.2778586
3 -0.02456226 -0.0323062 -0.03234023 -0.03234413
5 2.950864 4.095578 4.098373 4.098694
il 0.4284473 0.4880231 0.4882531 0.4882795
Loglikelihood -1695.205 -1695.459 -1695.488
No. iteration 104 147 235
AIC 3398.41 3398.918 3398.976
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7.5

Parameter Estimation of the GHD when the index parameter is 5

3

Table 7.6: Maximum likelihood estimates of GHD(A = %) for RRC weekly
log-returns using iteration scheme 1

Parameter | Starting Values | EM(tol = 1073) | EM(tol = 107%) | EM(tol = 10~%)
o 0.3722511 0.6718806 0.6724 0.6724594
B -0.02456226 -0.04170169 -0.04177134 -0.04177928
) 2.950864 1.409413 1.417213 1.418104
il 0.4284473 0.5541088 0.5545578 0.554609
Loglikelihood -1696.843 -1697.156 -1697.192
No. iteration 87 139 245
AIC 3401.686 3402.312 3402.384

Table 7.7: Maximum likelihood estimates of GHD(A = %) for RRC weekly
log-returns using iteration scheme 2.

Parameter | Starting Values | EM(tol = 1073) | EM(tol = 107%) | EM(tol = 10~%)
& 0.3722511 0.6716031 0.672372 0.6724591
B -0.02456226 -0.04168266 -0.04176951 -0.04177926
5 2.950864 1.403473 1.416612 1.418098
o 0.4284473 0.5539407 0.5545414 0.5546088
Loglikelihood -1696.738 -1697.146 -1697.192
No. iteration 125 191 325
AlIC 3401.476 3402.292 3402.384




Table 7.8: Maximum likelihood estimates of GHD(A = %) for RRC weekly
log-returns using iteration scheme 3.

Parameter | Starting Values | EM(tol = 1073) | EM(tol = 107%) | EM(tol = 10~%)
(04 0.3722511 0.6716851 0.6723834 0.6724592
B -0.02456226 -0.04169365 -0.04177095 -0.04177927
5 2.950864 1.404576 1.416776 1.418099
il 0.4284473 0.5540067 0.5545504 0.5546089
Loglikelihood -1696.754 -1697.149 -1697.192
No. iteration 122 186 313
AlIC 3401.508 3402.298 3402.384

Table 7.9: Maximum likelihood estimates of GHD(A = %) for RRC weekly
log-returns using iteration scheme 4.

Parameter | Starting Values | EM(tol = 1073) | EM(tol = 107%) | EM(tol = 10~%)
& 0.3722511 0.6735225 0.6725625 0.672461
3 -0.02456226 -0.04192363 -0.04179333 -0.04177949
5 2.950864 1.43292 1.419544 1.418127
] 0.4284473 0.5555022 0.554696 0.5546104
Loglikelihood -1697.662 -1697.238 -1697.193
No. iteration 195 263 397
AlIC 3403.324 3402.476 3402.386




Table 7.10: Maximum likelihood estimates of GHD(A = %) for RRC weekly
log-returns using iteration scheme 5.

Parameter | Starting Values | EM(tol = 1073) | EM(tol = 107%) | EM(tol = 10~%)
& 0.3722511 0.964887 0.6725535 0.6724609
B -0.02456226 -0.06772162 -0.04179207 -0.04177948
) 2.950864 4.799672 1.419435 1.418126
Q 0.4284473 0.7313935 0.5546888 0.5546103
Loglikelihood -1754.313 -1697.236 -1697.193
No. iteration 49 303 431
AlIC 35166.626 3402.472 3402.386
Remark:

Parameter estimates can been obtained without updating. For example in scheme 2 we

now have the following iteration.

o (P02 —

Q(k+1) _
oS g0y Wl
and
A(k+1):i(§(k)_ (60)2 )l
k) 14 60k

We should note that the estimate #**1) now depends on 5®) and not §*+1),
Applying this to all the 5 schemes we obtain the following

Table 7.11: Iteration schemes at (fol = 10~%) without updating of parameters.

Parameter scheme 1 scheme 2 scheme 3 scheme 4 Scheme 5
a 0.672459 0.6724575 0.6724577 0.6724575 0.6724577
B -0.04177924 | -0.04177905 | -0.04177907 | -0.04177905 | -0.04177907
5 1.418096 1.418077 1.418079 1.418077 1.418079
i 0.5546087 0.5546076 0.5546077 0.5546076 0.5546077
Loglikelihood -1697.192 -1697.191 -1697.191 -1697.191 -1697.191
No. iteration 355 432 413 432 413
AlIC 3402.384 3402.382 3402.382 3402.382




Figure 7.10 and 7.11 shows the fit and Q-Q plot to RRC data.
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Figure 7.10. Fitting GHD(A = %) to RRC weekly log-returns
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Figure 7.11. Q-Q plot of GHD(A = %) for RRC Weekly log-returns

We now show the fit of the Normal Mixture models with Finite inverse Gaussian mixing
distributions.



7.6

Parameter Estimation of Model 1

Table 7.12: Maximum likelihood Parameter Estimates of Model 1 for RRC weekly
log-returns based on Iterative scheme 1

Parameter | Starting Values | EM(tol = 107°) | EM(tol = 107%) | EM(tol = 107%)
(01 0.3722511 0.4990739 0.5443183 0.5448038
B -0.02456226 -0.03450044 -0.03884595 -0.03887937
5 2.950864 2.287431 2.68337 2.687818
il 0.4284473 0.5067461 0.5349165 0.5351374
Loglikelihood -1701.816 -1696.447 -1696.404
No. iteration 16 136 264
AIC 3411.632 3400.894 3400.808

Table 7.13: Maximum likelihood Parameter Estimates of Model 1 for RRC weekly
log-returns based on iterative Scheme 2.

Parameter | Starting Values | EM(tol = 1073) | EM(tol = 107%) | EM(tol = 10~%)
(01 0.3722511 0.5570388 0.5569838 0.5448147
B -0.02456226 -0.03913063 -0.03942849 -0.03888028
) 2.950864 2.796674 2.790291 2.687908
[ 0.4284473 0.536258 0.5380866 0.535143
Loglikelihood -1695.589 -1695.597 -1696.403
No. iteration 20 22 239
AlIC 3399.178 3399.194 3400.806

The maximum likelihood estimates for the NIG distribution using Karlis (2002) EM-
algorithm formulation are

& = 0.4215579, f = —0.03586155, 5 = 3.285072, fi = 0.5137899.
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Figure 7.12. Fitting Model 1 to RRC weekly returns

Remark:The Proposed model can be presented as

_ Y J
flx)= o x NIG + . x NRIG (7.2)

Note that the parameter estimates used here are those of the Proposed model. Figure 2
illustrates the Fit of the Proposed model model and its components.
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Figure 7.13. Combined plot for model 1 and its components

Using the estimates, p = 0.1681738 and 1 — p = 8318262. From Figure 2, NRIG fits the
data well compared to NIG. The Proposed model puts sufficient weight on NRIG compared
to NIG.

Parameter Estimation for Model 2

Table 7.14: Maximum likelihood estimates of Model 2 for RRC Weekly
log-returns

Parameter  Starting Values EM(tol = 107°) EM(tol =107%) EM(tol =1073)

a 0.3722511 0.5422119 0.5669625 0.5735228
3 -0.02456226 -0.04351162 -0.04569187 -0.04626743
5 2.950864 4.135342 4.279309 4.3181
(1 0.4284473 0.561554 0.575256 0.5789067
Loglikelihood -1698.1 -1697.796 -1697.745
No. iteration 55 110 271
AIC 3404.2 3403.592 3403.49

Table 7.15:Maximum likelihood estimates of Model 2 for CVX Weekly log-returns
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EM(tol = 1079)

EM(tol = 1078)

Parameter  Starting Values EM(tol = 107)
a 0.4190067 1.342608 1.382169 1.612872
3 -0.1054991 -0.3551768 -0.3718762 -0.4751398
3 0.8324058 2.491154 2.536825 2.805817
il 0.3036691 0.7494867 0.7756322 0.9361947
Loglikelihood -1226.209 -1226.186 -1226.962
No. iteration 48 55 490
AlC 2460.418 2460.372 2453.912

Table 7.16: Maximum likelihood estimates of Model 2 for s&p500 index Weekly
log-returns

Starting Values EM(tol =107) EM(tol =1077) EM(tol = 1073)

Parameter
(04 0.6556607 1.305925 1.644426 1.644773
[§ -0.1257455 -0.1979512 -0.2684969 -0.2685751
5 0.8 1.633107 1.907611 1.90791
il 0.3036691 0.2371093 0.308193 0.3082736
Loglikelihood -1047.278 -1049.191 -1049.194
No. iteration 27 270 357
AIC 2102.556 2106.382 2106.388

The Figures below show that the proposed models is a good fit for the data sets.
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Figure 7.15. Fitting Model 2 to CVX log weekly returns



117

7.8

Proposed Model & Normal

—— Proposed Model M
Normal
<
S 7] —
o
@
2
I
c
[
0 «
S
o -
2
:
o _| ——
o
T T T T T T 1
-8 -6 -4 -2 0 2 4

s&p500 weekly log-returns

Figure 7.16. Fitting Model 2 to s&p500 index log weekly returns

Remark:
Expressing the proposed model in terms of its components we have

52

1 3
X NIG+ ——= X GHD(—E,a,S,ﬁ,u)

) =11 1162

Using the estimates we obtain the estimates of p for the data sets to be

Table 7.17: estimates of p for the data sets.

dataset p
RRC 0.94910
CVX 0.88729

s&p500 0.78449

Parameter Estimation for Model 3

(7.3)

Table 7.18: Maximum likelihood Parameter Estimates of Model 3 for s&p500

index
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Parameter | Starting Values | EM(tol = 1073) | EM(tol = 107>) | EM(tol = 10~10)

(04 0.6556607 1.025172 1.025056 1.025061

B -0.1257455 -0.082968 -0.082969 -0.082988

5 0.8310044 0.8571405 0.8570473 0.8570354

il 0.1690855 0.1506045 0.150692 0.1507229

Loglikelihood -1048.305 -1048.288 -1048.301
No. iteration 9 12 32

AIC 2104.61 2104.576 2104.602
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Figure 7.17. Fitting Model 3 to s&p500 index weekly log returns

The proposed model fits the data set well. Expressing the proposed model in terms of its

components we have

f(X):Y3+5

NIG
MO

xGHD(%,Oc,S,ﬁ,u)

(7.4)

Using the parameter estimates p = 0.242793. Therefore, the finite mixture for these data
sets is more weighted to the GHD when A = % than to the NIG.
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7.9 Parameter Estimation for Model 4

Table 7.19: Maximum likelihood parameter estimates of Model 4 for RRC

Parameter  Starting Values EM(tol =107) EM(tol =107%) EM(tol = 1078)

a 0.3722511 0.5144623 0.5144017 0.5144511
B -0.02456226 -0.03578978 -0.0357382 -0.03571578
5 2.950864 2.26434 2.264649 2.265279
Q 0.4284473 0.5176135 0.5172807 0.5171165
Loglikelihood -1696.862 -1696.873 -1696.844
No. iteration 43 47 78
AlIC 3401.724 3401.746 3401.688

Table 7.20: Maximum likelihood parameter estimates of Model 4 for CVX

Parameter  Starting Values EM(tol = 107) EM(tol =107%) EM(tol = 1073%)

a 0.4190067 1.167283 1.167218 1.167188
3 -0.1054991 -0.2492112 -0.2491672 -0.2491203
5 0.8324058 1.631138 1.631156 1.631209
i} 0.3036691 0.5692185 0.5691717 0.5691122
Loglikelihood -1222.955 -1222.962 -1222.956
No. iteration 37 41 66
AIC 2453.91 2453.924 2453.912

Table 7.21: Maximum likelihood estimates of Model 5 for s&p500 index
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Parameter  Starting Values EM(tol = 107) EM(tol =107%) EM(tol =1073%)
a 0.6556607 1.569046 1.568931 1.568897
3 -0.1257455 -0.2078989 -0.20787 -0.2078466
5 0.8 1.466964 1.466918 1.466935
i} 0.3036691 0.2425692 0.2425475 0.2425306
Loglikelihood -1042.372 -1042.386 -1042.385
No. iteration 36 42 65
AlC 2092.744 2092.772 2092.77
Proposed Model & Normal
—— Proposed Model
Normal
E ]Z
S i
v
.
s | :,_.s__p/x/
© [ T T T T T
-15 -10 -5 0 5 10

Figure 7.18. Fitting Model 4 to RRC log weekly returns

RRC weekly log-returns
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Figure 7.19. Fitting Model 4 to CVX log weekly returns
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Figure 7.20. Fitting Model 4 to s&p500 index log weekly returns
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Remark:
Expressing the proposed model in terms of its components we have

53

_ 9 4 3
f(¥) = g3 X NRIG+ 55— x GHD(—7, 0.8, B,1) (7.5)

Using the estimates we obtain the estimates of p for the data sets to be

Table 7.22: Estimates of p in Model 6 for the data sets.

dataset p

RRC  0.95772
CVX  0.79194
s&p500 0.66996

The finite mixture for these data sets is more weighted to the NRIG than the other special
case of the GHD when A = —%.

7.10 Parameter Estimate for Model 5

Table 7.23: Maximum likelihood parameter estimates of Model 5 for RRC data set.

Parameter  Starting Values EM(tol = 107%) EM(tol =107%) EM(tol = 1078%)

a 0.3722511 0.6090961 0.60882855 0.6088255

3 -0.02456226 -0.03574201 -0.03559926 -0.03559527

5 2.950864 1.33822 1.33576 1.335739

il 0.4284473 0.5176707 0.516677 0.5166471
Loglikelihood -1697.415 -1697.81 -1697.814
No. iteration 32 50 67

AIC 3402.83 3403.62 3403.628




Table 7.24: Maximum likelihood parameter estimates of Model 5 for CVX data set.

Parameter  Starting Values EM(tol =107%) EM(tol =107%) EM(tol =1078)
a 0.4190067 1.368124 1.394767 1.395091
3 -0.1054991 -0.2778858 -0.297205 -0.2974406
8 0.8324058 1.452515 1.480648 1.480994
il 0.3036691 0.6180421 0.6452299 0.6455598
Loglikelihood -1224.464 -1223.515 -1223.504
No. iteration 30 77 126
AlC 2456.928 2455.030 2455.008

Table 7.25: Maximum likelihood parameter estimates of Model 5 for s&p500 index

Parameter  Starting Values EM(tol =10"%) EM(tol =107°) EM(tol =1073)
a 0.6556607 2.172327 2.32012 2.727979
3 -0.1257455 -0.2766788 -0.3220001 -0.4674433
5 0.8310044 2.026605 2.190487 2.627292
(1 0.1690855 0.3394356 0.3866598 0.5386185
Loglikelihood -1061.985 -1061.673 -1063.643
No. iteration 31 43 510
AlC 2131.970 2131.346 2135.286

Figures below show how the proposed models fit the data sets. It is clear that the proposed
model is a good fit compared to the normal distribution and hence a good alternative to
the Normal Inverse Gaussian distribution.



124

Density

Density

Proposed Model & Normal

—— Proposed Model
~—— Normal

0.05
|

RRC weekly log-returns

Figure 7.21. Fitting Model 5 to RRC weekly log-returns
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Figure 7.22. Fitting Model 5 to CVX weekly log-returns
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Figure 7.23. Fitting Model 5 to s&p500 index weekly log-returns

Remark:
Expressing the proposed model in terms of its components we have

xGHD(%,a,S,[B,u)+ xGHD(%,oc,S,[B,u) (7.6)

r+1

Table 7.26: Estimates of p in Model 5 for the data sets.

A

dataset p

RRC 0.26975
CVvX 0.65008
s&p500 0.878395

The finite mixture therefore is flexible in determining between GHD(%,O{,(S,ﬂ,,u) and
GHD(%, o, 9,3, 1) depending on the nature of the data.

7.11 Parameter Estimation for Model 6

For the purpose of comparison, we start by giving the maximum parameter estimates of
NIG in the table below.
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Table 7.27: Maximum likelihood parameter estimates of NIG for the data sets.

dataset (0% [§ ) Q loglikelihood No. iterations
RRC 0.4215579 -0.03586155  3.285072 0.5137899 -1695.888 228
CVX  0.9265284 -0.2429664 1.7323 0.5578459 -1221.667 119

s&p500 0.7671588 -0.1299129  0.9661878 0.1727121 -1035.403 74

We now wish to obtain the maximum likelihood parameter estimates for the proposed
model via the EM algorithm. Tables 4-6 illustrate monotonic convergence at different
levels. The loglikelihood and AIC for each data sets are also provided.

Table 7.28: Maximum likelihood parameter estimates of Model 6 for RRC data set
at different levels of tolerance.

Parameter  Starting Values EM(tol =107%) EM(tol =10~7) EM(tol = 1078)

a 0.3722511 0.7895924 0.6931385 0.6931218

B -0.02456226 -0.05281212 -0.04211019 -0.04210727

5 2.950864 2971323 1.982277 1.982127

Q 0.4284473 0.6242585 0.5562482 0.5562297
Loglikelihood -1677.033 -1683.709 -1683.713
No. iteration 50 280 334

AIC 3362.066 3359.418 3359.426
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Table 7.29: Maximum likelihood parameter estimates of Model 6 for CVX data set
at different levels of tolerance.

Starting Values EM(tol =107%) EM(tol =1077) EM(tol = 1078)

Parameter
(04 0.4190067 1.426509 1.426399 1.426388
3 -0.1054991 -0.2628444 -0.2627827 -0.2627765
) 0.8324058 1.768069 1.767947 1.767935
il 0.3036691 0.5909337 0.5908452 0.5908363
Loglikelihood -1191.741 -1191.752 -1191.753
No. iteration 131 159 187
AIC 2391.482 2391.504 2391.506

Table 7.30: Maximum likelihood parameter estimates of Model 6 for s&p500 data
set at different levels of tolerance.

Starting Values EM(tol = 10~%) EM(tol =107°) EM(tol =107%)

Parameter
a 0.6556607 1.349555 1.351381 1.351351
3 -0.1257455 -0.1370256 -0.1372949 -0.1372904
5 0.8310044 1.206995 1.208541 1.208515
i} 0.1690855 0.1788236 0.1789885 0.1789858
Loglikelihood -1035.351 -1035.18 -1035.183
No. iteration 44 66 87
AIC 2078.702 2078.36 2078.366

Comparing the loglikelihood and the AIC, the proposed model fits the data better than

the NIG distribution in all the three data sets.
Figures 2, 3 & 4 show how the proposed models fit the data sets. It is clear that the

proposed model is a good alternative to the NIG.
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Figure 7.24. Fitting Model 6 to RRC weekly log-returns
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Figure 7.25. Fitting Model 6 to CVX weekly log-returns
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Figure 7.26. Fitting Model 6 to s&p500 index weekly returns

Remark:
Expressing the proposed model in terms of its components we have

53 3 7 3
fx) = FENw R GHD(5,a,0,B,p)+ FENRvE. GHD(-7,a,0,B,n)  (1.7)

Table 7.31: Estimates of p in Model 6 for the data sets.

dataset p
RRC 0.04079
CVX 0.33275

s&p500 0.57922

The finite mixture therefore is flexible in determining between GHD(%,OC,S,B,/.L) and
GHD(%, o,9,B, 1) depending on the nature of the data.
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8

RISK ESTIMATION USING NWIG DISTRIBUTIONS

In this chapter we consider the two leading measures of risk: Value at Risk (VaR) and
Expected Shortfall (ES). Using the financial data sets, we measure the VaR and ES and
perform the backtesting procedures.

In statistical terms, VaR is a quantile of distribution for financial asset returns. More
formally, VaR is defined as
X
P{X < -VaR|_,} =« (8.1)

where X represents the Asset’s returns. In integral form it can be expressed as

VaR%,
/ fx)dx =« (8.2)

—00

where f(x) is the profit-loss distribution.
Expected Shortfall measures the expected loss in the tail of the distribution. From equation
(8.2)

1 VaRy
[ rwax=1 (83)

fx)
a
Conditional Expectation

Therefore is a pdf for —eo < x < VaRy and we refer to it as "Tail loss distribution".

VaRy
)

E[X|X <VaRy] = / p” dx (8.4)

—o00

is the Expected Shortfall denoted as ESy. This version was used by Yamai and Yoshima
(2002) to obtain the ES for a normal distribution.

Equation (8.2) can be expressed in a different version as follows: Defining F(x) as the cdf
of the random variable X, let

u=F(x)=x=F '(u) (8.5)
codu = f(x)dx

X=—c0o=—u=0

x=VaRqy —u=u«

1o
S ESy = —/ F~ (u)du (8.6)
aJo



131

8.1

8.2

1 a
ESy = —/ VaR,du (8.7)
aJo
as presented by Zhang et al. (2019).

Emmer et al. (2015) proposed quantile approximation for equation (8.7) that takes the
following form:

1
ESq ~ 1 [VaRq +VaRy 7504025 + VaRo 5a+0.5 + VaRo.250+0.75] (8.8)

Kratz et al. (2018) generalize equation (13) to VaR levels of
Jj—1 :
(Xj:a+T(1—(X),J:1,...,N,N€N (8.9)
When N =5,

1
ESq ~ 3 [VaRq + VaRo 30a-+0.20 + VaRo 6a+0.4 + VaRo 40a+0.60 + VaRo 20a+080]  (8.10)

Risk Estimation and Backtesting

We use the parameter estimates for our proposed model to determine the VaR and ES at
levels o € {0.001,0.01,0.05,0.95,0.99,0.999}. The first three level are used to measure the risk

of long position, while the last three levels are used to measure the risk of short positions.

We apply the Kupiec Likelihood Ratio (LR) test (Kupiec, 1995) which test the hypothesis
that the expected proposition of violations is equal to &. The method consist of calculating
7(@) the number of times the observed returns, x; falls below (for long position) or above
(for short position) the VaR, estimates at level «; i.e, x;<VaRy or x;<VaR|_, and compare
the corresponding failure rate to .

The likelihood ratio statistic is given by

T(O‘))f(a)(l _ @

)nf‘L'((x) _ zlog(af(a) — (] — a)nff(a)) (8.11)
n n

2log(

where 7(a) is the number of violations. Under the null hypothesis this statistic is
distributed as 2 distribution with one degree of freedom.

Risk Estimation and Backtesting for the Special Cases of
Generalised Hyperbolic Distribution

In this section we refer to the NIG as GHD(A = —3), NRIG as GHD(A = 3), the special
case of GHD when A = —% as GHD(A = —%) and the special case of GHD when A = %
as GHD(A = %)

From the previous chapter, the ML estimates for the RRC data set via the EM-algorithm
is summarized in the table below
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Table 8.1: Estimates for the special cases of GHD.

Parameter & 5 ,3 Q

GHD(A = —%) 0.4215579 3.285072 -0.03586155 0.5137899
GHD(A = %) 0.5491998 2.425010 -0.03904892 0.536296
GHD(A = —%) 0.2778586 4.098694 -0.03234413 0.4882795
GHD(A = %) 0.6724609 1.418126 -0.04177948 0.5546103

The Kolmogorv-Smirnov and Anderson-Darling test performed on the models produce
high p-values, a strong evidence that we can not reject the null hypothesis that the returns
data follow the proposed models.

Table 8.2: Goodness of Fit Test

Parameter Kolmogorov-Smirnov Anderson-Darling
statistic p-value statistic p-value
GHD(), = —%) 0.0168 0.9890 0.24765 0.9716
GHD(A = +1) 0.0166 0.9904 0.23564 0.9775
GHD(), = —%) 0.0165 0.9912 0.26102 0.9643
GHD(?L = —I—%) 0.0155 0.9958 0.27744 0.9541

Table below presents values of Alkaike Information Criterion (AIC), Bayesian Information
Creterion (BIC) and Log-likelihood. The values illustrate that the models are alternative
to each other.

Table 8.3: AIC, BIC and Log-likelihood Values for the special cases of GHD.

Model GHD(A=-1) GHD(A=1) GHD(A=-3) GHD(L=3)
AIC 3399.776 3400.898 3398.976 3402.382
BIC 3417.992 3419.114 3417.192 3420.598

Log-likelihood -1695.888 -1696.449 -1695.488 -1697.191
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Model 3 has the lowest AIC and BIC with the highest log-likelihood. It is the best fit for
the data. This special case outperforms the Normal Inverse Gaussian distribution.

We use the parameter estimates for RRC for our proposed models to determine the VaR
and ES at levels o € {0.001,0.01,0.05,0.95,0.99,0.999}. The first three level are used to
measure the risk of long position, while the last three levels are used to measure the risk
of short positions. We apply the Kupiec Likelihood Ratio (LR) test (Kupiec, 1995) which
test the hypothesis that the expected proposition of violations is equal to o. The method
consist of calculating (@) the number of times the observed returns, x; falls below (for
long position) or above (for short position) the VaR, estimates at level «; i.e, x;<VaRy or
x;<VaR|_y, and compare the corresponding failure rate to c.

The likelihood ratio statistic is given by

r(oc)y(a)(l _ M

)nfr(oc) _ 210g(06r(a) — (1 — a)”ff(a)) (8.12)
n n

2log(

where 7(a) is the number of violations. Under the null hypothesis this statistic is
distributed as 2 distribution with one degree of freedom.

Table 8.4: VaR Values of RRC weekly log-returns for Normal and Proposed
Models GHD special cases.

0.001 0.01 0.05 0.95 0.99 0.999

Normal -8.495775  -6.33803 -4.412962 4.879592 6.804634 8.962406
GHD(A = —%) -12.175020 -7.483157 -4.387882 4.621687 7.300979 11.305172
GHD(A = %) -11.676119  -7.396380 -4.414590 4.635737 7.248426 10.976183
GHD(A = —%) -12.770428 -7.524902 -4.344605 4.605084 7.328694 11.666360
GHD(A = %) -11.206503 -7.271316 -4.422422 4.646686 7.176342 10.659890

Table 8.5: ES Values of RRC log-returns Based on Normal and GHD special cases.

0.001 0.01 0.05

GHD(A = —%) -14.31580521 -9.51044987 -6.32267305
GHD(A = %) -13.54898243 -9.25410370 -6.26915453
GHD(A = —%) -15.35943879 -9.77595177 -6.35304744
GHD(A = %) -12.88318596 -8.98494206 -6.18936754
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Table 8.6: Number of violations of VaR for Each Distribution at Different levels.

0.001 0.01 0.05 0.95 0.99 0.999

Normal 5 9 33 24 12 3
GHD(A=-3) 2 5 33 28 11 1
GHD(A = 1) 2 5 33 28 10 1
GHD(A=-3) 2 5 33 27 1 1
GHD(A = 3) 2 5 33 27 1 1

GHD(A = —%) has the highest VaR and ES value indicating that it perform well than the
other models at the tails.

Table 8.7: P-value for the Kupiec Test for Each Distribution at Different levels.

0.001 0.01 0.05 0.95 0.99 0.999

Normal 8.8068 x 10™*  0.471717  0.7134756 0.04196382  0.086239  0.0422255
GHD(A = —%) 0.2067157 0.4191802 0.7134756 0.20316 0.1632629 0.7381375
GHD(A = %) 0.2067157 0.4181802 0.7134756  0.144112  0.1632629 0.7381375
GHD(A = —%) 0.2067157 0.4191802 0.7134756 0.20316 0.287939  0.7381375
GHD(A = %) 0.2067157 0.4181802 0.7134756  0.1444112  0.1632629 0.7381375

Remark: At 5 percent level of significant, the Normal distribution is rejected at levels:
0.001, 0.95 and 0.999. In addition it is also rejected at level 0.99 at 10 percent level of
significant. The Normal weighted Inverse Gaussian distributions were all effective and well
specified on all levels of VaR. It can be noted GHD(A = —%) (NormaI-GIG(—%, 0,gamma))
outperforms the other models at level 0.99.

In this section we obtained VaR using NWIG distributions. We considered: GHD(—%, 0,7),
GHD(3,8,y), GHD(—3,8,y) and GHD(3,8,y). We have shown that these mixing
distribution are NWIG distributions.

The parameter of these mixed models were estimated using EM-algorithm. The iterative
schemes used are based on explicit solutions of normal equations. We used method of
moments estimates of NIG as initial values and obtained monotonic convergence.

We used AIC, BIC and loglikelihood for model selection. NormaI—GIG(—%, 0,7) was found
to be the best model. The results show that the three NWIG distributions are as good as
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8.3

NIG for VaR computation.

Risk Estimation and Backtesting for Normal Finite Weighted
Inverse Gaussian Distribution

In this section we consider the Six models constructed based on finite weighted inverse
Gaussian mixing distribution. The data used in this research is the Shares of Chevron
(CVX) weekly returns for the period 3/01/2000 to 1/07/2013 with 702 observations. The
histogram for the weekly log-returns in shows that the data is negatively skewed and
exhibiting heavy tails.The Q-Q plot shows that the normal distribution is not a good fit
for the data especially at the tails.

Table 8.8 provides descriptive statistics for the return series in consideration. We observe
that the excess kurtosis of 2.768252 indicates the leptokurtic behaviour of the returns. The

log-returns has a distributions with relatively heavier tails than the normal distribution.

We observe skewness of -0.1886714 which indicates that the two tails of the returns behave
slightly differently.

Table 8.8: Summary Statistics for CVX weekly log-returns.

Minimum Standard.dev skewness exc.kurtosis Maximum  Mean N

-13.76000 1.480436 -1.297339 8.10113 6.71400 0.08711 702

The proposed models are now fitted to CVX weekly log-returns. Using the sample estimates
and the NIG estimators to the RRC data we obtain the following estimates as initial values
for the EM algorithm Karlis (2002).

& = 0.4190067, = —0.1054991, 5 = 0.8324058, i = 0.3036691.

The initial values were used in all the proposed models to obtain the maximum likelihood
estimates as shown in table below
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Table 8.9: Maximum likelihood parameter estimates for Model 1-6

Parameter

& ) B i

Model 1
Model 2
Model 3
Model 4
Model 5
Model 6

1.124238 1.574226 -0.2517274  0.572402
1.612872  2.805817 -0.4751398 0.9361947
0.976286 0.9163648 -0.1451396 0.4193146
1.167188  1.631209 -0.2491203 0.5691122
1.395091 1.480994 -0.2974406 0.6455598
1.426388 1.767935 -0.2627765 0.5908363

The parameter estimates from table 8.9 are now fitted to RRC weekly log-returns. Figures
8.2, 8.3, 8.4 and 8.5 show the histogram and Q-Q plots of the RRC returns fitted with the
proposed models.  Figure 2-7 show that the proposed model fit the data well.
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Figure 8.1. Fitting Model 1 to CVX weekly log returns

The table below presents values of Alkaike Information Criterion (AIC), Bayesian Information

Creterion (BIC) and Log-likelihood. The values illustrate that the models are alternative

to each other.
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Figure 8.2. Fitting Model 2 to CVX log-weekly returns
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Figure 8.3. Fitting Model 3 to CVX log-weekly returns
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Figure 8.4. Fitting Model 4 to CVX log-weekly returns
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Figure 8.5. Fitting Model 5 to CVX log-weekly returns
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Figure 8.6. Fitting Model 6 to CVX log-weekly returns

Table 8.10: AIC, BIC and Log-likelihood Values for Model 1-6.

Model Model 1 Model 2 Model3  Model 4
AlIC 2453.276  2461.924  2473.254 2453912
BIC 2471.492  2480.140 2491.47 2472.128

Log-likelihood -1222.638 -1226.962 -1232.627 -1222.956

Model Model 5 Model 6
AIC 2455.008 2391.506
BIC 2473.224 2409.722

Log-likelihood -1223.504 -1191.753

Remark:

Model 6 has the lowest AIC and BIC with the highest log-likelihood. It is the best
fit for the data. Using Karlis (2002) formulation, the Normal Inverse Gaussian (NIG)
parameter estimates for the EM — algorithm are: & = 0.9265284, 5= 0‘9265284,3 =
—0.2429664, i = 0.5578459. The loglikelihood = —1221.667 at tol = 1078 with 119
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iterations. Therefore a finite mixture of GIG(—%,S,}/) and GIG(%,S,)/) is versatile

compared to Inverse Gaussian (IG) distribution.

Table 8.11: VaR Values of CVX log-returns Based on the Normal and Model 1-6.

0.001 0.01 0.05
Normal -4.487787  -3.356904  -2.347995
Model 1 -6.373158  -4.008336  -2.376487
Model 2 -5.603337  -3.706563  -2.321636
Model 3 -6.6614465 -4.1473175 -2.4303994
Model 4 -6.1845506 -3.9279027 -2.3550354
Model 5 -6.005398  -3.881535  -2.358399
Model 6 -5.618886  -3.685542  -2.286172

Table 8.12: ES Values of RRC log-returns Based on the Normal and Model 1-6.

0.001 0.01 0.05
Model 1 -7.417996 -5.033958 -3.392502
Model 2 -6.417102 -4.532881 -3.181197
Model 3 -7.776542 -5.236823 -3.499916
Model 4 -7.177348 -4.907374 -3.333809
Model 5 -6.918954 -4.805581 -3.304015
Model 6 -6.450259 -4.527236 -3.154907
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Table 8.13: Number of violations of VaR for Model 1-6 at Different levels.

0.001 0.01 0.05
Normal 3 10 42
Model 1 1 5 41
Model 2 1 6 42
Model 3 1 4 39
Model 4 1 6 42
Model 5 1 6 42
Model 6 1 6 42

Model 3 has the highest VaR and ES value indicating that it perform well than the other

models at the tails.

Table 8.14: P-value for the Kupiec Test for Each Distribution at Different levels.

0.001

0.01

0.05

Normal
Model 1
Model 2
Model 3
Model 4
Model 5
Model 6

0.04222549 0.2879388

0.7381375
0.7381375
0.7381375
0.7381375
0.7381375
0.2067157

0.4191802
0.691514

0.2126411
0.691514
0.691514
0.691514

0.245805
0.3190668
0.245805
0.5066538
0.245805
0.245805
0.245805

Remark:

At 5 percent level of significant, the Normal distribution is rejected at levels at the level
0.001. The Normal weighted Inverse Gaussian distributions were all effective and well

specified on all levels of VaR.

In this work we constructed a class of weighted inverse Gaussian Distribution by considering
a finite mixture of two special cases of Generalized Inverse Gaussian distribution. We
considered the cases when the indexes are —

weighted inverse Gaussian distributions.

22 72

1 1 3

and % These special cases are also
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We further used the class as mixing distributions to construct the Normal Variance-Mean
Mixtures. The parameter estimates were obtained using the Expectation Maximization
(EM) algorithm. We obtained a monotonic convergence for the iterative schemes of the
models using the method of moments estimates of NIG as initial values.

We used AIC, BIC and loglikelihood for model selection. The model with the mixing
distribution based on a finite mixture for GIG(—%, 0,7) and GIG(%,&}/) was found to be

the best model. The results show that the six models are sufficient for VaR computation.

8.3.1 Hypothetical Example

Suppose a company invest 100 million dollars in RRC, the absolute terms of economic
capital to be set aside at & = 0.001 will be

Table 8.15: Economical Capital.

VaR(%) ES (%) VaR(Amount) ES (Amount)

Normal 8.50 10.2 8,500,000 10,200,000
Model 1 12.1 14.3 12,100,000 14,300,000
Model 2 11.7 13.5 11,700,000 13,500,000
Model 3 12.8 15.4 12,800,000 15,400,000
Model 4 11.2 12.9 11,200,000 12,900,000

Remark: The Normal distribution underestimate risk and hence the required
economic capital. Comparing with Model 3, the NIG distribution underestimate
risk by more than 1.1 million dollars for ES.
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9.1

DEPENDENCE MODELLING

Introduction

The joint distribution combines the information from the marginal distribution and the
way in which the variables depend on each other.However it expresses this dependence
implicitly. We cannot immediately see the nature of the Independence simply by looking
at the formula for the joint distribution function. Copulas provide an alternative approach
that expresses the interdependence between the variables explicitly. They allow us to
deconstruct the joint distribution of a set of variables into compliments that can be
adjusted individually.

9.1.1 Definition of a Copula
A copulais a function that expresses a multi variable cumulative distribution in terms of the
individual marginal cumulative distribution. For a bi-variate distribution the cumulative

distribution function

Fxy(x,y) =Prob(X =x,Y =y) =Cxy(Fx(x),Fr(y))

Thus the copula function Cx,y is usually written in the more compact form
C(M,V) = Fx,y (xvy) (9.1)

Where;

u=Fx(x)andv=Fy(y)

The definition cab be extended to the multivariate case where we have;
Cluy,uz,...;ug) = Fy, vy x,(X1,%2, ..,Xg)

Where
u; = FXi (xi) (9-2)
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9.1.2 Three Properties of Copula

Copulas must also satisfy three properties to ensure that they correctly capture the
properties we would expect of a joint distribution in all circumstances.
Propety 1: A copula is an increasing function of its inputs.

*

Clup,ugy.eoytty ycoyttg) > Cluy,Up,y ooy Uiy ..oy lly)

For;
u; >uii=1,2,....d (9.3)
Property 2
C(1,1,....,up, 1,.,1)=u; (9.4)
Property 3
C(uy,uz,..,uy) € [0,1] (9.5)

Sklar’s Theorem

Sklar(1959) annotated that the dependent structure of a set of random variables can be
captured independently using copulas.

Sklar’s Theorem

Let F be joint cumulative distribution function with marginal cumulative distribution
functions: F1,F3, ..., Fy.

Then there exists a copula function C such that for all x,x3,...,x4 € (—o0,00)

F(xl,XZ, ..,xd) = C(Fl (xl),Fz(xz), ...,Fd(xd)) (9.6)

in the case of variables that have a continuous distribution, the copula is unique.

The Converse of Skalar’s Theorem

If Cis a copula and Fi,F>,...,F; are uni-variate cumulative distribution functions, then
the function F defined above is a joint cumulative distribution with marginal cumulative
distribution functions Fi, F,, ..., F3.

i.e

C(Fl,Fz, ...,Fd) = FXI’XZ,,.de(xl,xz, ...,xd)

9.2.1 Associations in Variables
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Variables are said to be associated is there is some form of statistical relationship between
them; whether causal or not. to facilitate comparison, measures of association can be
constructed.

Coefficients of association are generally designed so that their values vary between -1
and +1. their absolute values increase with the strength of the relationships.

They have +1 (or -1) when there is perfect positive (or negative) association.

Any one particular type of coefficient of association measures a particular form of association.
For example, Pearson’s Correlation Coefficient measures the degree to which there is
linear relationship between the variables.

Concordance is another particular form of association. Broadly, two random variables
are considered concordant if small values of one are likely to be associated with small
values of the other and vice versa. Spearman’s Rho and Kendell’s Tau are two examples of
measures of concordance.

Remarks:

1) A positive association between two variables does not necessary imply that one is
dependent on the other. For example both might be dependent on the third(perhaps
unobserved ) variable with neither being directly dependent on the other.

2) A common pitfall is to forget that correlation does not imply Association.

Pearson’s rho measures how strongly the variables are related.

Pearson’s rho is defined as

_ Cov(X,)Y)
Pxr = v VarXVarY

The estimate is given by

Yo (xin — X) (xp — %)

Pxy = = —
VI (i —x1)2 X (ki — %2)?
Where;
=Y %1,36_2 = % =Y" ,x2 For arandom sample [x;1,x;2,i =1,2,...,n]
Remark.

Desirable properties of a measure of concordance or association between two variables
should have a number of properties. these include in-variance which requires that the
measure of concordance does not change if we apply the same monotone function to the
value of each variable. Pearson’s rho does not have this property. Remarks; Correlation
Coefficients.

The commonly used measures of concordance that are more robust than Pearson’s rho
and are more invariant are Spearman’s rho often called the rank correlation and Kendells
tau.
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Measures of rank correlation look at the association between the position (or rank) of
observations in a data series when they are arranged in order.

Spearmans rho S, can be calculated as;
N
o 2
So=— V'
P N(N2—1) ;; l

N is the number of (pairs of) observations and d; the difference in the rank for the ith
observation

Where ;

Both Kendell’s tau and Spearmans rho are dependence measures which are rank based
and therefore invariant with respect to monotone transformations of the marginals. Their
range of values is the interval [-1, 1]. Additionally they can be expressed solely in terms
of their associated copula and therefore their values does not depend on the marginal
distribution. often there are closed-form expressions in term of the copula parameters
available.

Kendels Tau denoted by T, is defined as the probability of discordance of two variables X
and X»

T(X],XQ) = prob((x11 —sz)(Xlz —XZz) > 0) —prob((x11 —XZz)(xlz —X22> < 0) 9.7)

where (x11,x12) and (x21,x22)are independent and identically distributed co™** of (x1,x2)
non parametric estimation of Kenddel’s T is treated in details in chapter 8 of Mollander et
al., (2014)

In particular to estimate Kendells’s T from a random sample [x;1,x;2,i = 1,2,...,n| of size
n from the joint distribution of (x,x2) we consinder all

—1
g = %unordered pairsx; = (x;1,x;2) and x; = (x;1,x,2) fori, j=1,2,m,n. =0

Tail Dependence
The correlation measure described above each try to summarize the nature and extend of

the associations between variables into a single statistic. Two key shortcomings of such
statistics are;

1. Information lost in the summarization process
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9.4

2. They capture the interdependence through the whole distribution. This may be of less
interest than the inter-dependency in the tails of the distributions.
it is often the case in insurance and investment application that large losses tend to
occur together.

So the relationships between the variables at the extremes of the distributions are of
particular importance. These can be measured using the coefficients of upper and lower
tail dependence.

9.3.1 The coefficient of upper tail dependence

The coefficient of upper tail dependence is given as

Ay = lim Prob(X > - NU) Yy >FRH©))
u—

1-2
= lim ut Clu,u) (9.8)
u—1 1—u

The coefficient is a probability so it is a value between 0 and 1. The coefficient of upper
tail dependence indicates whether high values of one random variable X tend to be linked
with high values of another random variable Y. Specifically, the coefficient of upper tail
dependence is the limiting value of this probability as y — 1 — 1;that is as we move from
below into the upper tail.

9.3.2 The Coefficient of Lower Tail Dependence

AL = lim Prob(X <=Fx '(U)/Y <=F'(U))

u—0t

= lim C(u,u)

u—0t

Again, this coefficient is a probability so it takes a value between 0 and 1. The coefficient
of lower tail dependence indicates whether low values of one random variable X are linked
with low values of another random variable Y. Specifically, the coefficient of lower tail
dependence is the limiting value of the probability as;

U — 07 i.e are more further into the lower tail from above.

Types of Copulas

1. Fundamental Copulas

(a) Independence (product) copula
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(b) Co-monotonic (minimum) copula

(c) Counter-monotonic (maximum) copula
2. Implicit Copulas

(a) Gaussian Copula

(b) Student’s t Copula
3. Explicit Copulas (Archimedean copulas)

(a) Gumbel Copula
(b) Clayton Copula
(c) Frank Copula

Archimedean copulas are inadequate for more than 2 variables since they do not allow
different dependence patterns between pairs of variables, Vine copulas or hierarchical
copulas can be considered.

Lo et al. (2013) used canonical vine (C-vine) copulas. Kraus and Czando (2017) use D -vine
copula and Olechrin and Teteneva (2017) use hierachial copula to estimate VAR. Bynn
and Sony (2021) sought the best copula calculating VAR of a portfolio with many assets.
They used the vine copulas and hierachial copulas. As for the marginal distribution we
can use different distributions to each asset in a portfolio. It has been shown that the
normal distribution is inappropriate to model the return distribution of financial assets.
The return distributions of financial assets are slightly skewed and fat tailed. There has
been expensive research for good alternatives to the normal distribution in literature.
For example, Venkiataraman (1997) used a quasi-bayesian maximum likelihood estimation
procedure. Hull and White (1998) used a transform to multivariate normal distribution
which is updating schemes such as GARIH. Ebercein and Keeler (1995) used hyperboli8c
distribution. Modem et al. (1998) use Variance Gamma (VG) distribution. Bandoff Nelsen
(1997) and Mabitreda et al. (2015) used Normal Inverse Gaussian distribution. Byun and
Sony (2021) Used NIG distribution as marginal distribution. The NIG is known to have
better return portfolio than VG distribution. (Ericksen et al. 2009, Gencil and Yeng 2010)
and the calculation of VAR using NIG is also better than other models such as GARCH
or VG. (Welhelmson, 2009, Kim and Song, 2011, Doric and Doric, 2011.) Bolvinken and
Benth (2000), Godin et al. (2012) have also used the NIG distribution for modeling return
distributions of financial assets.

Copulas are popular in modelling a joint distribution of several asset returns in finance.

With copulas we can construct a multivariate distribution with different marginal distributions

by separating the dependence from marginal distributions. Also, there are many copulas
that can incorporate the proper dependence structure of the data. Embrechls et al. (2002)
show that copulas are useful in identifying the dependence structure annually returns of
assets. Bynn and Song (2021) used copulas to identify the dependence structures and to
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9.5

Plot for s&p500 and RRC: GHD best Models
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Figure 9.1. Cumulative returns plot for RRC and S&p500 index

generate a multivariate distribution for returns of assets in a portfolio. The VAR of the
portfolio was computed using the resulting multivariate distribution. Wu et al. (2007)
use exchangeable Archimedean copulas to calculate VAR. When there are more than two
assets in a portfolio, elliptical and exchangeable.

Fitting Bivariate Returns Using Copulas with GHD (Model 3)

In this section we consider bivariate returns for the RRC and s&p500 index. The scatter

plot for the returns is present in the figure below

We Have used the special case of the GHD when index parameter is —% to model the
univariate distribution for the individual returns.

9.5.1 Parameter Estimation for selected Copulas

The copula parameter estimation of RRC and s&p500 index, for "best model" is obtained
using maximum likelihood method as follows: Gaussian Copula

0~ () 97" () 1 —(s? —20st +1?)
Cluy,up;0) = /oo /w 27r(1—92)% 2167 dsdt  (9.9)




150

6 =0.4211174

t-copula
0142
) () 1 2 9@t 21" 7
C(ul,uz;el,ez) = 1 _— 1+ﬂ dsdt
1 2
—oo — 27(1—63)2 v(1-65)
(9.10)
6, = 04217174
6, = 4.210349
Clayton Copula
C(ul,uz;e):(ul’ejtufe—l)% (9.11)
6, = 0.639253
Gumbel Copula
Clut,u2;0) = exp{—[(—Inuy)® + (—Inu»)?]# } (9.12)
6, = 1.35326
Frank Copula
1 Ou; 1 —0Ouy 1
C(uy,uy;0) = —5ln(1 +4 e_)ge_ 7 )) (9.13)
6, = 2.69309

Joe Copula The maximum likelihood parameter estimate

6, = 1.418371

9.5.2 Goodness of Fit Test

We now perform goodness of fit test based on Kendall’s process for bivariate copula
data as investigated by Genest and Rivest (1993) and Wang and Wells (2000). We have
also computed the Cramer-von Mises (CvM) and Kolmogorov-Smirnov test statistics,
respectively, as well as their corresponding p-values using bootstrapping.
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Gaussian Copula

statistics p-value

CvM 0.1143797 0.17

KS  0.7894206 0.29

Clayton Copula

statistics p-value

CvM 0.1527572 0.08

KS 1.004526 0.07

Gumbel Copula
statistics p-value
CvM 0.472664 0
KS  1.434981 0
Frank Copula
statistics p-value
CvM 0.3074956 0
KS 1.334435 0
Joe Copula
statistics p-value
CvM  5.29647 0
KS  1.334435 0

The best copula using the AIC technique for this data was found to be the Student’s t

Copula.

9.6 Fitting Bivariate Returns Using Copulas with Model 6

In this section we consider bivariate returns for the RRC and s&p500 index. The scatter

plot for the returns is present in the figure below
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Plot for s&p500 and RRC: Models 6
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Figure 9.2. Cumulative returns plot for RRC and S&p500 index
We Have used Model 6 to model the univariate distribution for the individual returns.
9.6.1 Parameter Estimation for selected Copulas

The copula parameter estimation of RRC and s&p500 index, for "best model" is obtained
using maximum likelihood method as follows: Gaussian Copula

0 (w) o~ (u2) —(s2— 2
C(u],uz;e) = / 1 / ’ ! T (s 20st 11 ) dsdt  (9.14)
o S 2m(1—02)2[  2(1-62)

6 = 0.4213349

t-copula
R CVRECY 1 P26t +12]7 T
C(ur,uz;01,60) = / / 1 dsdt
—o Jee 2m(1—62)2 v(1-6;)
(9.15)
0, = 0.4243634

6, = 4.765168

Clayton Copula

C(uy,up;0) = (,ul_e +,u1_9 —1)7® (9.16)
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Gaussian Copula

statistics p-value
CvM 0.1425418 0.15
KS  0.9674326 0.14

6, = 0.6188705

Gumbel Copula

Clut,u2;0) = exp{—[(—Inuy)® + (—Inu»)?]# } (9.17)
6, = 1.350768
Frank Copula
1 Ou; 1 —0Ouy 1
C(uy,uy;0) = —5ln(1 +4 e)(ge_ ] )) (9.18)

9, = 2.700615

Joe Copula The maximum likelihood parameter estimate

6, = 1.408573

9.6.2 Goodness of Fit Test

Clayton Copula
statistics p-value
CvM  0.116485 0.2
KS 0.8321657 0.24
Gumbel Copula

statistics p-value

CvM 0.4794335 0

KS 1.440484 0
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Frank Copula

statistics p-value

CvM 0.3082723 0

KS 1.332006 0

Joe Copula

statistics p-value

CvM 5.033468 1

KS  3.230643 1

The best copula using the AIC technique for this data was found to be the Student’s t

Copula.
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10

10.1

10.2

CONCLUSION AND RECOMMENDATIONS

The objective of this research was to construct a new class of distribution known as Normal
Weighted Inverse Gaussian (NWIG) distributions for Value at Risk (VaR) and Expected
Shortfall (ES) computation.

Normal Weighted Inverse Gaussian Distribution based on Special
Cases of Generalised Inverse Gaussian

Generalized Inverse Gaussian distribution with parameters: 1,8,y denoted by GIG(A,9,7)
nests a number of special cases by varying the parameter A. When used as a mixing
distribution in the Normal Variance Mean Mixture (NVMM) we obtain the Generalised
Hyperbolic Distribution (GHD). The Normal Inverse Gaussian (NIG) distribution is obtained
using Inverse Gaussian (IG) as the mixing distribution. It can also be obtained as a special
case of GHD when the index parameter A = —%. In literature, the other special cases
have been assumed if not neglected. The Inverse Gaussian is obtained as a special case of
GIG when A = —%. When A = %, we have GIG(%,&}/) which is the Reciprocal Inverse
Gaussian (RIG) distribution. Other cases we have considered in our work are when —%, %,
—% and % We have further shown that these special cases are weighted Inverse Gaussian
distribution.

These special cases have been used as mixing distribution for the NVMM to obtain the
other special cases for the GHD. We obtained the properties of the mixed models. The
cases when A = % and % have been found to be alternatives to the NIG. The case when
—2 = 3 has outperformed all the other models in application to the three financial data
set considered in our research.

Normal Weighted Inverse Gaussian Distribution based on finite
Cases of Generalised Inverse Gaussian

We extended the class of NVMM by using finite mixtures of Weighted Inverse Gaussian
(WIG) as mixing distribution. This idea is motivated by the fact that finite mixtures are
more flexible than single distributions. The four special cases of the GIG distribution when
—%, %, —% and % give Six can be combined in six different ways. Therefore we obtain Six
finite mixtures of the special cases. We also showed that these cases can be expressed as
Weighted Inverse Gaussian distributions.

We obtained Normal Variance Mean Mixtures using the six cases as mixing distributions
and obtained their mean and variance. One case in particular, when the mixing distribution

is a finite mixture GIG with indexes —% and %, had the least AIC compared to the other
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10.3

10.4

10.5

cases. The Model performed better than the "best" special case of the GHD identified in
the section above.

Parameter Estimation

The most common Parametric method of estimation are Method of Moment (MoM) and
Maximum Likelihood (ML) method. Of all the 10 proposed methods, its only the NIG that
MoM estimates can be obtained directly. Numerical techniques are required to obtain the
estimates for the other models.

We obtained ML estimates via the EM-algorithm. We identified iterative schemes based
on explicit solution to the normal equation for the special cases of the GHD. In cases where
the normal equation were quantities difficult to solve, a subtle approach was adopted. We
designed iterative schemes based on a representation of the normal equations. This new
approach, when applied to the special cases of the GHD gave same results. The approach
preserves the properties of the EM-algorithm and we obtained a monotonic convergence
for all models. The MoM estimates for the NIG were used as initial values for all the
proposed models.

Application

We have used three data sets for this work: Range Resource Corporation (RRC), Shares of

Chevron Corporation (CVX) and s&p500 index weekly log returns with 702 observations.

The data sets exhibit non-normal characteristics: Skewed, fat tailed and leptokurtic. The
Proposed Models fit the data sets well. The Kolmogorv-Smirnov and Anderson-Darling
test performed on the models produce high p-values, a strong evidence that returns data
follow the proposed models. Using the loglikelihood and AIC, the proposed models are
found good alternative to NIG. outperforms the NIG. In particular, the special case of the
GHD with A = —% outperforms the NIG. Intrestingly, the NVMM with a finite mixture
of GIG of indexes —% and % outperforms all the proposed models.

Risk Measures

The most popular measures for financial risk are Value at Risk (VaR) and Expected Shortfall
(ES). For the purpose of VaR and ES analysis, a model for the return distribution is

important because it describes the potential behaviour of a financial security in the future.

We used the class of Normal Weighted Inverse Gaussian distribution to perform VaR and

ES for the RRC, CVX and S&p500 index. Backtesting for VaR and ES was also performed.
The (Normal—GIG(—%, 0,7)) turned to be the best model for economical capital allocation.
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10.6 Dependence Modeling

Copulas provide an alternative approach that expresses the interdependence between the
variables explicitly. We have used the NormaI—GlG(—%, 0,7) and Model6 as marginals
for the asset returns. A goodness of fit procedure has been performed for the elliptical

copulas and Archmedian copulas used.
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