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Abstract

The concept of de�ciency theory plays a pivotal role in understanding the dynamics
of chemical reaction networks. This research explores the concept of de�ciency theory
in chemical reaction networks(CRNs) and its analogy with models of infectious disease
transmission.

In this study, we begin by introducing the fundamental principles of CRNs and the con-
cept of de�ciency, which is a combinatorial parameter that measures the network’s po-
tential for complex dynamical behavior. Chemical reaction networks are commonly stud-
ied through their reaction rate equations, which are typically described by mass action
kinetics. These reactions can be mathematically represented using systems of ordinary
di�erential equations (ODEs), where the de�ciency theory characterizes the topological
properties of the network. The de�ciency, determined by the stoichiometry matrix, pro-
vides valuable insights into the network’s stability and its capacity to exhibit complex
dynamics

Interestingly, infectious disease transmission models, particularly those based on com-
partmental frameworks e.g. SIR, also involve systems of ODEs to describe the interac-
tions between di�erent compartments representing susceptible, infected, and recovered
individuals. These models employ parameters that de�ne the transmission and recovery
rates, analogous to the reaction rates in chemical kinetics.

This comparative analysis between de�ciency theory in chemical reaction networks and
infectious disease transmission models o�ers a fresh perspective on both domains and
presents a promising avenue for interdisciplinary research at the interface of mathemat-
ics, chemistry, and epidemiology.
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1 Introduction

Deficiency theory is a fundamental concept in the study of chemical reaction networks. It
describes how the number of reactions in a network can influence its dynamics and stabil-
ity. Here, we aim to explore the various aspects of deficiency theory, particularly focusing
on complex balancing and the deficiency zero and deficiency one theorems. These the-
orems provide a powerful framework for analyzing the qualitative behavior of chemical
reaction networks. The most significant results are the Deficiency Zero Theorem and the
Deficiency One Theorem. All other content here can be considered either as groundwork
for the theorem statements or as additional clarification on the theorems themselves.

We explore the elements of reaction network structure, specifically introducing key ter-
minology such as the standard basis, complexes, reaction vectors, rank, linkage classes,
deficiency, reversibility, weak reversibility, strong linkage class and terminal strong link-
age classes of a reaction network that are significant by defining them and providing
examples. Thorough exploration of these elements of reaction network structure, defin-
ing them clearly, will provide a solid foundation for understanding the intricate dynamics
and behaviors that arise within reaction networks.

Epidemiology is the study of the distribution and determinants of health-related states
or events in specified populations, and the application of this study to the prevention and
control of health problems (John, 2001). Epidemiology and CRNs can be linked through
the concept of disease transmission. In epidemiology, the spread of diseases within a
population is of central importance. This spread can be analogous to chemical reactions
occurring within a system. By using CRNs, researchers can model the transmission dy-
namics of diseases, capturing the interactions between infected and susceptible individ-
uals in a population.

CRNs allow epidemiologists to simulate various scenarios, study the impact of di�erent
interventions, and gain insights into the factors influencing disease transmission. This
modeling approach helps in understanding how diseases propagate, identifying critical
points for intervention, and evaluating the e�ectiveness of public health measures. Both
deficiency theory in chemical reaction networks and epidemiology share the idea of un-
derstanding the behavior of complex systems in their underlying structures. By under-
standing the underlying structure of a chemical reaction network or a disease spread, we
can be�er predict and control their behavior.

The dynamics of disease transmission are then typically modeled with di�erential equa-
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tions that describe the flow of individuals to and from the compartments as the popu-
lation mixes, the disease is spread/contracted, and infected individuals progress through
the stages of the disease(Simon, 2020). Di�erential equations o�er a logical option since
we can make sensible assumptions regarding the rates of infection and the progression of
individuals through di�erent disease stages. This article emphasizes the connection be-
tween compartmental dynamic models of disease transmission in this case the SIR model
and chemical reaction kinetics.

1.1 Problem statement

Deficiency theory is a mathematical framework which focus on two important results:
complex balancing and the deficiency zero and deficiency one theorems.

Complex balancing refers to the behavior of chemical reaction networks as they ap-
proach equilibrium. For a system to exhibit complex balancing, it must meet a series
of requirements that guarantee the existence of a singular and stable equilibrium point.
The requirements include:

• Detailed balance: The system must satisfy the principle of detailed balance, which
requires that for every pair of reversible reactions, the ratio of the forward and reverse
reaction rates must be equal to the ratio of the products and reactants’ concentrations
at equilibrium.

• Deficiency zero: The deficiency of the system must be zero or less than zero. A system
with deficiency zero or less than zero has a unique and stable equilibrium point.

• Non-intersecting stoichiometric compatibility classes: The stoichiometric compati-
bility classes of the network must not intersect, meaning that no two classes share
a common non-zero vector. Stoichiometric compatibility classes are sets of reactions
that have identical stoichiometric coe�icients for all species involved.

• Weak reversibility: The system must satisfy the principle of weak reversibility, which
requires that for every pair of reactions, there must exist a reaction pathway that
connects the products of one reaction to the reactants of the other reaction. (Horn,
1972)

Our investigation delves into the implications of complex balancing and its significance
in the study of chemical reaction networks.

The deficiency zero theorem provides a necessary and su�icient condition for a chem-
ical reaction network to admit a complex balanced equilibrium. The significance of the
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deficiency zero theorem and its applications in predicting the behavior of chemical reac-
tion networks is key in this study.(Anderson et al., 2010)

The deficiency zero theorem outlines the criteria for the existence of positive steady states
in chemical reaction networks. It is used to determine the existence of positive steady
states in such networks. We will explain the Deficiency One Theorem and its relevance
to chemical reaction networks.

The Chemical Reaction Network (CRN) is a study on the dynamics of biochemical re-
actions in a system. In the context of disease transmission, the CRN can be used to
model the interactions between pathogens, host cells, and immune responses. By using
the CRN, we can analyze the behavior interactions and predict how they might lead to
the spread of disease. The Deficiency Theorem in chemical reaction networks will help
identify potential bo�lenecks or vulnerabilities in the system that could be targeted to
prevent or mitigate the spread of disease.

In this work, we o�er illustrations and practical implementations of chemical reaction
networks by reviewing work in epidemiology. Furthermore, we examine potential devel-
opments of deficiency theory and areas for future research.
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2 Preliminaries

Our aim in this section is to provide definitions with examples with which reaction net-
work structure and deficiency theory can be discussed. We will introduce terminology in
an informal manner, emphasizing examples over strict definitions.

2.1 Reaction Networks

2.1.1 Definition

A chemical reaction network (CRN) is a network of three components {S ,C ,R} com-
posed of the following;

• Species(S ) refer to the various chemical substances that participate in a reaction,
whether it be as reactants, products, or both. The set of chemical species involved in
a given reaction network can be represented as S = {S1, · · · ,Sn}.

• Complexes(C ) are defined as vectors comprised of non-negative values representing
the quantities of each chemical species involved in the reaction. These vectors are
derived from linear combinations of the participating species, and together, they form
the set of complexes given by C = {yn}. The source vector and the product vector are
denoted by yn and y′n respectively. (Anderson et al., 2020)

• Reaction (Rn) is defined as a process that results in the transformation of one or more
species into one or more di�erent species. It is given by Rn = {yn→ y′n} where yn is
the source complex and y′n is the product complex. A set of all reactions therefore is
given by Rn = {yn→ y′n|yn,y′n ∈ C } (Shi, 2020)

For example, consider the following network for the SIR model:

S+ I→ 2I

S→ I→ R

Then we have

• Species, S = {S, I,R}
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• Complexes, C = {S+ I,2I,S, I,R}
In the above network where the number of species is N = 3 and the number of com-
plexes is n = 5, the vectors associated with each complex are as follows;
For complex S + I, we associate the vector e1 + e2 = [1,1,0]
For complex 2I, we associate the vector 2e2 = [0,2,0]
For complex S, we associate the vector e1 = [1,0,0]
For complex I, we associate the vector e2 = [0,1,0]
For complex R, we associate the vector e3 = [0,0,1]
These form a set of complex vectors for the SIR model. In general, for a network
with N species and n distinct complexes we obtain a set of n complex vectors in RN .
(Feinberg, 1987).

• Reactions, R = {S+ I→ 2I,S→ I, I→ R}
For the reaction S+ I → 2I, the corresponding reaction vector in R3 is 2e2− (e1 +

e2) = e2− e1 = [−1,1,0], for the reaction S→ I, the corresponding reaction vector
is e2− e1 = [−1,1,0] and for the reaction I→ R the corresponding reaction vector is
e3−e2 = [0,−1,1]. The complete set of reaction vectors for the SIR model network is

{2e2− (e1 + e2),e2− e1,e3− e2}

The chemical reaction network above is SIR model. It is used to describe the spread of
infectious diseases in a population. In a population, we can have; susceptible (S), in-
fected (I), and recovered (R). The model assumes that individuals in the population move
between these categories over time, based on their interactions with others in the popu-
lation. (Rodrigues, 2016)

The disease can spread from infected individuals to susceptible individuals through in-
teractions, such as through physical contact or sharing of objects. The chance of trans-
mission depends on the contagiousness of the disease and the frequency and type of
interactions between individuals. With time, some of the susceptible individuals will be-
come infected. This increases the number of infected individuals (I) and decreases the
number of susceptible individuals (S).

A�er a period of time, infected individuals recover and become immune to the disease.
Once an individual is in the recovered category, they cannot be infected again hence re-
moved from epidemiological system.

The exact rates of transmission and recovery can be estimated based on data, assump-
tions about the disease and the population. By simulating the dynamics of the SIR model,
estimation of the expected number of people infected can be done, the timing and mag-
nitude of the epidemic peak, and the impact of interventions such as vaccination or social
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distancing measures. The model can be used to evaluate control strategies to eliminate
the disease in the population.

2.1.2 Reaction network as an embedded graph

Chemical reaction networks can be represented as a graph, where the nodes are the dif-
ferent species involved in the reactions, and the edges are the reactions that connect
them. To represent a reaction network as an embedded graph, we need to assign posi-
tions to the nodes and edges in a way that reflects the underlying chemical reaction.

A reaction network with n species can be embedded in Zn
≥0 in which the directed graph

G = (V,E) where V ⊆ Rn and E ⊆V ×V and (y,y) /∈ E for any y ∈V . Reactions can be
represented by vectors. Since vertices are points in Rn, then an edge can be regarded as
a vector in Rn (Craciun et al., 2020)

For example, the following chemical reaction network with three species and four re-
actions;

2A→ A+B

A+B→C

C→ A+B

C→ 2A

can be represented in an embedded graph as follows;

Figure 1. A reaction network represented as an embedded graph

The embedded graph representation can be used to analyze the structure of the reaction
network, identifying important nodes or edges, and understanding the overall connectiv-
ity and dynamics of the system. It can also be used for further mathematical analysis or
simulations to study the behavior of the chemical reaction network.

In epidemiology, reaction networks are used to model the spread of infectious diseases
within a population. In this context, the nodes in the network represent individuals within
the population, and the edges represent the possible ways that the disease can be trans-
mi�ed from one individual to another.
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2.2 Some key definitions

2.2.1 Standard basis of a reaction network

In the context of chemical reaction networks, the standard basis refers to a set of linearly
independent vectors that form a basis for the stoichiometric subspace of the network.
The stoichiometric subspace represents all possible combinations of reactants and prod-
ucts that can be formed through the reactions in the network while satisfying the law of
mass action.

For example, consider the network for the SIR model above. If N is the number of species
in a network under consideration, the in our case N = 3. By RN we shall mean the usual
vector space of N-tuples of real numbers. The standard basis for RN will be denoted
{e1,e2, · · · ,eN}, (Feinberg, 1987) where

e1 = [1,0,0]

e2 = [0,1,0]

e3 = [0,0,1]

2.2.2 Stoichiometric coe�icient of species within a complex

The stoichiometric coe�icient of a species refers to the numerical coe�icient that appears
in front of the chemical formula of that species.

For example, in the SIR model, the stoichiometric coe�icients of species S and I in the
complex S+ I are each 1, while that for the species R is 0. For the complex 2I, the stoi-
chiometric coe�icient of the species I is 2 while that for the species S and R within this
complex are all zero. This implies to all other complexes in the SIR model. It is impor-
tant to take note that the stoichiometric coe�icients of the species within the various
complexes are all non-negative numbers. (Feinberg, 1987)

2.2.3 The rank of a reaction network

The rank of a reaction network refers to the number of linearly independent reactions in
the network. It represents the maximum number of reactions that can occur indepen-
dently of each other within the network. That is, the rank of a network is the number
of elements in the largest linearly independent set of reaction vectors for the network.
(Feinberg, 1987)
The rank of the network is the rank of the stoichiometric matrix of a network which can
be computed by standard methods in matrix theory.
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2.2.4 Stoichiometric subspace of a reaction network

The linear subspace S = spanR(y
′− y | y→ y′ ∈ G) generated by all reaction vectors is

called the stoichiometric subspace of the network. Denote dim(S) = s (Craciun et al.,
2020). The stoichiometric subspace, s, for the network is just the line in RN that passes
through the origin and contains the reaction vectors (Feinberg, 1987). In much simpler
terms s is the rank of the stoichiometric matrix of the reaction network.

2.2.5 Compatibility class of reaction network

A compatibility class is a set of reactions that can coexist without violating the conserva-
tion laws of the network. Conservation laws refer to the principle of mass conservation in
chemical reactions. This principle states that in any chemical reaction, the total amount
of each element present in the reactants must be equal to the total amount of that ele-
ment present in the products. (Pantea & Voitiuk, 2022)
A positive compatibility class is a subset of reactions that can coexist with non-negative
concentrations of all species. In other words, if we start with non-negative concentrations
of all species in a positive compatibility class, the concentrations will remain non-negative
for all time. i.e. from the second definition above if we have any positive vector x0 ∈Rn

≥0,
then (x0 +S)> = (x0 +S)∩Rn

≥0 is called the stoichiometric compatibility class of x0 (Yu
& Craciun, 2018)

2.2.6 The linkage classes of a reaction network

Linkage class is grouping together sets of reactions that are connected through shared
reactants or products. Specifically, the linkage class is the set of all reactions in the net-
work that share a common reactant or product. A linkage class is a set of complexes of a
given reaction in a chemical reaction network.

For example

2A→ A+B

A+B 
C

C→ 2A

According to Feinberg(1987), the network above is composed of three separate pieces; the
first containing complexes {2A,A+B}, the second containing complexes {A+B,C} and
the last one containing complexes {C,2A}.

Disregarding the directions of reaction arrows, we observe that the complexes within
the set {2A,A+B} are interconnected with each other, but not with any other complex.
Similarly, the complexes in the set {A+B,C} are interconnected with each other but not
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with any other complex. The same applies to the complexes in {C,2A}. We designate the
sets {2A,A+B}, {A+B,C} and {C,2A} as the linkage classes of the above given network.

The standard reaction diagram of a network provides a quick and easy means of deter-
mining both the number of linkage classes and their respective compositions. The count
of linkage classes corresponds directly to the number of distinct pieces comprising the
diagram. Each individual piece represents a linkage class, which can be associated with
the set of complexes present within that specific component. We consider a linkage class
as simply a collection of complexes. While the reaction arrows within a given network
determine its linkage classes, the linkage classes themselves are solely sets of complexes
without any inherent arrow structure.

2.2.7 The strong linkage classes of a reaction network

A strong linkage class is a subset of species in the reaction network that are strongly con-
nected to each other. This means that for any two species within a strong linkage class,
there exists a path of reactions that can convert one species into the other.
Two di�erent complexes in a reaction network are strongly linked if there exists a directed
arrow pathway pointing from one complex to the other and a directed arrow pathway
pointing from the second complex back to the first. Moreover, for reasons that will soon
become apparent, we adopt the convention that every complex is strongly linked to itself.
(Feinberg, 1987)

To understand the concept of strong linkage, let us consider the reaction network in
Figure 1 represented in an embedded graph;

Complex 2A, is strongly linked to complex C, since there is a directed arrow pathway from
2A to C via complex A+B and a directed arrow pathway from C back to 2A. Similarly,
2A is strongly linked to A+B. Complexes A+B and C are also linked.

This then means that the strong linkage class for the reaction network is {A+B,2A,C}.
{A+B,C} is not a strong linkage class because although complexes A+B and C, are
strongly linked, they are both strongly linked to 2A complex that lies outside the set
{A+B,C}.
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A set of complexes in a reaction network is considered a strong linkage class if the fol-
lowing conditions hold:

• All pairs of complexes within the set are strongly linked.

• No complex in the set is strongly linked to a complex outside the set.

To identify the strong linkage classes of a given reaction network, one can examine the
associated reaction diagram, which allows for the unique determination of these classes.

2.2.8 The terminal strong linkage classes of a reaction network

By a terminal strong linkage class in a reaction network we mean a strong linkage class
containing no complex that reacts to a complex in a di�erent strong linkage (Feinberg &
Horn, 1977). A strong linkage class is terminal if there is no exit from it along a directed
arrow pathway. In simpler terms, we can say that the terminal strong linkage classes
refer to sets of species that are mutually linked and cannot participate in any further re-
actions within the network. These classes represent groups of species that are stuck and
cannot be transformed into other species through any sequence of reactions.

The strong linkage class {A + B,2A,C} in the reaction network above is the terminal
strong linkage of the network because no member of {A+B,2A,C} react to form any
other complex outside {A+B,2A,C}.

2.2.9 Rate constants

Rate constants are numerical values that describe the rate of a chemical reaction. They
represent the proportionality of the reaction and the concentration of the reactants. Rate
constants are usually denoted by k.
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3 Reversibility and weak reversibility

Reversibility is a fundamental concept that plays a pivotal role in understanding the dy-
namics of systems in chemical reaction networks. However, not all reactions exhibit com-
plete reversibility, giving rise to the concept of weak reversibility. In this chapter, we
discuss reversibility and weak reversibility in chemical reaction networks.

3.1 Definition

A reversible network refers to a network of reactions where both forward and reverse
reactions can occur. In other words, a reversible network involves reactions that can pro-
ceed in both directions.
A reaction network {S ,C ,R} is deemed weakly reversible when every connected com-
ponent exhibits strong connectivity (Boros, 2019), which means that there can be several
reactions from A+B to C if a reaction C→ A+B exists within the network. According to
Feinberg(1987), a network is weakly reversible if, whenever there exists a directed arrow
pathway (consisting of one or more reaction arrows) pointing from one complex to an-
other, there also exists a directed arrow pathway pointing from the second complex back
to the first.
For example, consider the reaction network below with four species and four reactions;

A+B→C

C→ A+B

C→ D

D→C

The reaction A+B→ C represents the formation of C from A and B, and the reaction
C→ A+B represents the breakdown of C into A and B. Similarly, the reactions C→ D
and D→C represent the conversion of C to D and vice versa. We can see from this net-
work that it consists of two connected components: one with species A, B, and C, and
one with species C and D. Each connected component exhibits strong connectivity, which
means that there is a path from any species to any other species within the component.

It should be clear from the discussion above that every reversible network is also weakly
reversible. Thus, any theorem statement about weakly reversible networks applies to
reversible networks as a special case. (Feinberg, 1987)
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3.2 Weakly reversible system

A weakly reversible system is a chemical reaction network that can be converted into a
reversible system by introducing at least one additional reaction in the opposite direction
of one or more of the reactions in the original network. In other words, a weakly reversible
system can be made reversible by adding at least one new reaction.(Craciun et al., 2020)
An example of a weakly reversible system is shown in the following reaction network:

A→ B

B→C

C→ D

This reaction network is weakly reversible because it can be converted into a reversible
system by adding the reaction

D→C

which is the reverse of the reaction
C→ D

Once this additional reaction is introduced, the system becomes reversible and can reach
equilibrium. Not all reaction networks can be made reversible by adding just one reac-
tion, some systems may require the addition of multiple reactions to become reversible.

The SIR model is an example of a system which is not weakly reversible system. To
make the SIR model weakly reversible, we can add an additional compartment to repre-
sent individuals who have recovered from the disease and become susceptible again. This
compartment is called the SIRS model. In the SIRS model, individuals who have recov-
ered from the disease and become susceptible again can transition back to the infected
compartment upon being infected again.

This can be represented using a diagram as follows:

S+ I→ 2I

S→ I→ R

From the explanation above, we can make this model weakly reversible by adding the
reaction;

R→ S

This will give us the SIRS model which is weakly reversible.
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4 Kinetics and the Corresponding Di�erential
Equations of a Reaction Network

A chemical reaction network, when combined with a specification of reaction rate func-
tions, leads to a system of ordinary di�erential equations, typically nonlinear. Within this
section, we will demonstrate how these equations can be expressed in vector form, en-
abling certain basic geometric relationships to become clearer, connecting the structure
of the reaction network with the characteristics of the equation solutions. Once these
connections are grasped, we will be able to ask more precise and penetrating questions.

4.1 Kinetics for a reaction network

Kinetics of a reaction network refers to the study of the rate at which chemical reactions
occur. In a reaction network, which consists of multiple interconnected reactions, the
kinetics of each individual reaction within the network can be determined. To formu-
late di�erential equations that describe how the various species concentrations evolve in
time, we must first specify how the instantaneous occurrence rates of the individual re-
actions in the network depend upon the instantaneous composition state (Feinberg, 1987)

When referring to the kinetics of a reaction network consisting of N species, we define a
kinetics assignment for each reaction, denoted as y→ y′ of a rate function ky→y′(·). This
assignment involves assigning a rate function to each reaction, which yields non-negative
values. In this context, the rate of the reaction y→ y′ at composition c is represented by
the non-negative number denoted as k.

We will need the following properties from the rate functions of kinetics: For every reac-
tion, y→ y′, in the network.

• ky→y′(·) is continuous and di�erentiable
and

• ky→y′(c)> 0 if and only if supp y is contained in supp c.

In the second property above supp y is just the set of species in the reactant complex y
and supp c is the set of all species that exist within the system if c represents the current
composition state of the mixture. In more general terms, the second property says that
reaction y→ y′ will exhibit a sluggish rate only when the species comprising the reactant
complex y are indeed present within the system.
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Note:
By a reaction system we shall mean a reaction network taken together with a kinetics.
By a mass action system we shall mean a reaction system for which the kinetics is mass
action.(Feinberg, 1987)

4.2 The di�erential equations for a reaction network system

When considering a reaction network, we o�en want to describe how the concentrations
of the chemical species change over time. This can be achieved by formulating a system
of ordinary di�erential equations (ODEs) that govern the dynamics of the system. The
ODEs describe how the concentrations of the species vary as a function of time.

Consider the SIR model

S+ I→ 2I

S→ I→ R

The molar concentrations of the species are represented as cS(t), cI(t) and cR(t), and we
use the composition vector c(t)·∗ to abbreviate this list of numbers.

We aim to formulate the di�erential equations governing the progression of the three
molar concentrations. Given that alterations in composition arise from chemical reac-
tions, comprehending the methodology to construct these di�erential equations hinges
on discerning the respective rates at which multiple reactions take place. The commonly
held assumption is that the instantaneous rate of occurrence for each reaction is depen-
dent on the instantaneous mixture composition vector, c, in a unique manner.

For instance, if there exists a non-negative real-valued rate function, denoted as kS+I→2I(·),
such that kS+I→2I(c) represents the instantaneous rate at which reaction S+ I→ 2I oc-
curs when the vector c represents the instantaneous mixture composition. Similarly, for
the reaction S→ I. kS→I represents the instantaneous rate at which reaction S→ I occurs
when the vector c represents the instantaneous mixture composition and for the reaction
I→ R, kI→R represents the instantaneous rate at which reaction I→ R occurs when the
vector c represents the instantaneous mixture composition.

For the instantaneous change of cS, we lose S when the reaction S+ I → 2I and S→ I
occur and we write

ċS =−kS+I→2I(c)

For the instantaneous change of cI , we gain I when the reaction S+ I → 2I and S→ I
occur and lose I when the reaction I→ R and we write

ċI = kS+I→2I(c)+ kS→I(c)− kI→R(c)
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For the instantaneous change of cR, we gain R when the reaction I → R occur and we
write

ċR = kI→R(c)

The system of di�erential equation governing the reaction network for the SIR model is
as follows:

ċS =−kS+I→2I(c)

ċI = kS+I→2I(c)+ kS→I(c)− kI→R(c)

ċR = kI→R(c)

Suppose that the instantaneous occurrence rate of S+ I→ 2I is proportional to the in-
stantaneous value of cS and cI then

kS+I→2I(c) = βcScI

Similarly, in the reactions S→ I, we have

kS→I(c) = βcS

and in the reaction I→ R, we have

kI→R(c) = γcI

where β and γ are positive constants.
Therefore, employing mass action kinetics results in rate functions for the network that
are expressed as follows:

kS+I→2I(c) = βcScI

kS→I(c) = βcS

kI→R(c) = γcI

Assuming mass action kinetics for this network, the corresponding set of di�erential
equations can be expressed as follows:

ċS =−βcScI

ċI = βcScI− γcI

ċR = γcI

In the preceding chapter, we will solve the above system of di�erential equations that
represents the SIR model, along with the initial conditions. This will allow us to examine
the dynamics of the epidemic. We will demonstrate the concept of deficiency theory
by analyzing the steady states and stability of the equilibrium points. Furthermore, the
solution analysis will incorporate the numbers discussed in the following section.
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4.3 The replacement and basic reproduction numbers

The dynamics of the SIR model are characterized and understood by two significant num-
bers: the replacement number, r, and the basic reproduction number R0.

The replacement number, r = r(t), is the expected number of individuals directly in-
fected by a typical infectious individual, mixing in the population, over the course of
their infectiousness(Simon, 2020). The concentration of susceptible individuals, denoted
as cS = cS(t) directly a�ects the rate at which a typical infectious individual comes into
contact with a susceptible individual. Consequently, the value of r varies over time. In
the SIR model, a typical infectious individual remains infectious for a duration of γ−1

and, within this period, generates βcS(t) new infections per unit time (incidence rate per
infectious individual). As a result, the replacement number can be expressed as follows:

r = r(t) =
β

γ
cS(t)

In epidemiology, the basic reproduction number represents the average number of sec-
ondary infections caused by a single infected individual in a completely susceptible pop-
ulation. It is a measure of the contagiousness of a disease. R0 in the SIR model is the
replacement number when cS ≈ 1:

R0 =
β

γ

The relationship between these two number is;

r(t) = R0cS(t)

If the basic reproduction number R0 is high or low, the duration of infectivity is prolonged
or shortened respectively, the disease transmission is/is not easily facilitated, and/or the
interaction between susceptible individuals and infectious individuals is/is not intense.
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5 Deficiency Theory

In this chapter, we discuss the deficiency of a chemical reaction network, complex bal-
ancing and the most important results contained in this article. These are the Deficiency
Zero Theorem and the Deficiency One Theorem. We will provide the statements of the
theorems and further elaboration on the theorems themselves.

5.1 Definition of deficiency of a chemical reaction network

The deficiency of a chemical reaction network {S ,C ,R} is denoted by δ which is de-
fined by;

δ = |C |− `− s

where

• |C | is the number of vertices (complexes)

• ` is the number of connected components(linkage classes) and

• s is the dimension of the stoichiometric subspace of the network as defined in the
section above. (Anderson et al., 2010)

For example, if we consider the SIR model

S+ I→ 2I

S→ I→ R

The number of complexes, |C | is 5, the number of linkage classes, ` is 3 and the dimension
of the stoichiometric subspace or the rank of the stoichiometric matrix is 2. This means
that the deficiency of the SIR model is zero.

The deficiency, δ , of any chemical reaction network satisfies 0 ≤ δ ≤ |C |− `− s, where
|C | is the number of complexes, ` is the number of linkage classes and s is the dimension
of the stoichiometric subspace. (Gunawardena, 2003). The deficiency of every network is
always non-negative.

According to Feinberg(1987), any two reaction networks with the same complexes and
the same linkage classes also have the same rank. It follows easily that any two reaction
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networks with the same complexes and the same linkage classes also have the same de-
ficiency. (TWO such networks have the same rank; it is obvious that they also have the
same number of complexes and the same number of linkage classes.) Thus, the precise
nature of the reaction arrows in a network a�ects the deficiency of the network only in-
sofar as the reaction arrows determine the linkage classes of the network.

Put simply, deficiency measures the number of potential dimensions that are missing
from a chemical reaction system due to linear dependence among reactions. A set of
chemical reactions is said to be linearly dependent if one or more of the reactions can
be expressed as a linear combination of the other reactions in the set. This means that
one or more of the reactions can be wri�en as a sum of multiples of the other reactions
in the set. Deficiency can also be calculated as the di�erence between the number of
complexes and the sum of the number of linkage classes and the dimension of the stoi-
chiometric subspace, where |C | represents the maximum dimension and s represents the
actual dimension.

5.2 Complex balancing

Complex balancing refers to the process of determining the stoichiometric coe�icients
of chemical species in a set of chemical reactions such that mass is conserved and the
reaction rates are balanced.

A complex balanced equilibrium is a special type of equilibrium state that has some im-
portant properties which include being a steady-state solution where the net flux of each
chemical species in the network is zero and being stable, meaning that if the system is
slightly perturbed from the equilibrium state, it will tend to return to that state. And the
equilibrium is called complex because the concentrations of the reactants and products
are related in a particular way. The equilibrium is balanced because the rate at which
reactants are consumed is exactly balanced by the rate at which products are formed.
This means that the total concentration of all chemical species in the system remains
constant at the equilibrium state. (Johnston et al., 2013)

The concept of complex balanced equilibrium is used to predict the behavior of chem-
ical reaction networks. If a system has a complex balanced equilibrium, it is more likely
to exhibit stable behavior and to resist fluctuations in concentrations of reactants and
products.

A chemical reaction network is said to be complex balanced if there exists an equilib-
rium concentration x0 ∈Rn

+ called the complex-balanced equilibrium satisfying, (Yvinec,
2016)

∑
y:y→z∈R

ky→zx
y
0 = xz

0 ∑
y′:z→y′∈R

kz→y′
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where x0 is the equilibrium concentration, k is the vector of rate constants ky→z and kz→y′

for the inflow and the outflow concentrations respectively and y, y′ and z are the com-
plexes in the reaction network.

Not only the species but also the complexes remain constant. (Van der Scha� et al.,
2015). This means that the total concentration of a complex remains constant in a chem-
ical reaction network, i.e. the rate of formation of the complex is equal to the rate of
breakdown of the complex, so the concentration of the complex does not change over
time. This is o�en referred to as the principle of detailed balance or the steady-state
assumption. Detailed balance implies complex balance.

5.3 Principle Theorems

In this section, we will present two theorems that o�er prompt and insightful qualitative
insights into nonlinear di�erential equations related to complex reaction systems. These
theorems can be e�ectively utilized by individuals who are familiar with the aspects of
reaction network structure we have previously discussed. Specifically, a working knowl-
edge of calculating network rank and deficiency is essential for applying these theorems.

5.3.1 Deficiency Zero

A chemical reaction network (CRN) is said to have deficiency zero if its deficiency is zero
as illustrated in the following example;
Consider the following chemical reaction network which has deficiency zero and is not
weakly reversible;

A+2B→C+D

B+E→ F

This network has six species: A, B, C, D, E and F , four complexes and two reactions. To
find the deficiency of the network, we need the rank of stoichiometric matrix which can
be obtained from the given chemical reaction network using the following steps:

• Write down the balanced chemical equations for all the reactions in the system.
The equations are as follows

A+2B→C+D (1)

B+E→ F (2)

• Identify all the reactants and products involved in each reaction.
In reaction (1), the reactants are A and B and the products are C and D.
In reaction (2), the reactants are B and E and the product is F .
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• Write down a row for each chemical species, with each column representing a reaction
in the system.

Chemical Species Reaction (1) Reaction (2)

A

B

C

D

E

F
Table 1. Stoichiometric matrix format

• Fill in the entries of the matrix by pu�ing the stoichiometric coe�icients of each
species in the appropriate column for the reaction it is involved in.

Chemical Species Reaction (1) Reaction (2)

A 1 0

B 2 1

C 1 0

D 1 0

E 0 1

F 0 1
Table 2. Pu�ing stoichiometric coe�icients in appropriate columns

• If a species is a reactant in a particular reaction, the stoichiometric coe�icient will be
negative. If it is a product, the coe�icient will be positive.

Chemical Species Reaction (1) Reaction (2)

A -1 0

B -2 -1

C 1 0

D 1 0

E 0 -1

F 0 1
Table 3. Assigning appropriate signs to the stoichiometric coe�icients
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The stoichiometric matrix for this network is:

−1 0

−2 −1

1 0

1 0

0 −1

0 1


In this matrix, the rows represent the chemical species A, B, C, D, E and F , and the
columns represent the two reactions in the system resulting into a 6×2 matrix. The en-
tries in the matrix show the stoichiometric coe�icients of each species in each reaction.
For example, in the first reaction, A has a coe�icient of −1, B has a coe�icient of −2, C
has a coe�icient of 1, D has a coe�icient of 1 and there is no E and F , hence the entries of
the first column. And the second column is generated in a similar way using the second
reaction.

The rank of the above matrix is 2, the number of complexes is 4 and the number of inde-
pendent reactions is also 2.
This then means that |C |= 4, `= 2, and s = 2
Therefore, the deficiency of this network is:

δ = |C |− `− s = 4−2−2 = 0

Theorem 5.3.1. (The de�ciency zero)
If a chemical reaction network is weakly reversible and has de�ciency zero and the rate con-
stants are positive then, the rate equations will have precisely one �xed point in each positive
stoichiometric compatibility class (Anderson et al., 2010).

(i) The theorem states that the solution is complex balanced, and any solution within the
same stoichiometric compatibility class, which is su�ciently close to the initial solution,
will eventually approach the equilibrium over time. Furthermore, there are no other pos-
itive periodic solutions.

(ii) For any choice of rate constants, if a network has de�ciency zero, is not weakly re-
versible, and the rate constants are positive, then the equation does not admit a positive
solution or a positive periodic solution.

(iii) For any parameter values, de�ciency zero predicts the presence of distinct �xed points
and factorized steady states..



22

From parts (i) and (ii) of the theorem we can quickly conclude that, no ma�er what the
rate constants might be, the di�erential equations for the corresponding mass action sys-
tem cannot admit a positive steady state, nor can they admit a cyclic composition trajec-
tory along which all species concentrations are positive. (Feinberg, 1987) To demonstrate
the application of the Deficiency Zero Theorem, we will provide an illustrative example.
Initially, we will review the SIR model and assume, for the purpose of discussion, that the
network operates under mass action kinetics. As a consequence, the resulting mass action
system can be described by a set of three interrelated polynomial di�erential equations,
representing the concentrations of three di�erent species in the system. A key inquiry
arises: Does this system possess a positive steady state or a cyclic composition trajectory
in which all species concentrations remain positive?

We will answer these questions by solving the di�erential equations corresponding to
the SIR model and analysing the behaviour of the system at the stationary points subject
to the following initial conditions:

cS(0) = (cS)0

cI(0) = (cI)0

cR(0) = 0,

with cS(0)+ cI(0) = 1, cS(0),cI(0)> 0, and cI(0)<< 0

MATLAB will be used to come up with the solution curves and phase portrait for di�erent
values of the parameters β and γ where β is the infection rate and γ is the recovery rate.
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Solution Curves for the SIR model

Using two sets of values of β and γ , we obtain the following diagrams for the solution
curves for the SIR model;

Figure 2. Solution curve for the SIR model for β = 0.5 and γ = 0.1

Figure 3. Solution curve for the SIR model for β = 0.8 and γ = 0.3
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The curve representing the susceptible population shows the number of individuals who
are susceptible to the disease at each point in time. Initially, the susceptible population is
high, but as the infection spreads, the number of susceptible individuals decreases. The
curve will typically exhibit a decreasing trend until it reaches a minimum value.

The curve representing the infected population shows the number of individuals cur-
rently infected with the disease at each point in time. Initially, the infected population
is low, but it starts to increase as the disease spreads. The curve will typically show an
increasing trend until it reaches a peak, representing the maximum number of infected
individuals. A�er reaching the peak, the curve will start to decline as individuals recover
from the disease.

The curve representing the recovered population shows the number of individuals who
have recovered from the disease and gained immunity at each point in time. Initially, the
recovered population is 0, but it starts to increase as individuals recover from the disease.
The curve will continue to rise until it reaches a plateau, indicating that most of the pop-
ulation has recovered and gained immunity.

By analyzing the shape and behavior of these solution curves, you can gain insights into
the progression of the epidemic. For example:

• The peak of the infected population curve represents the maximum number of indi-
viduals infected at any given time, indicating the severity of the outbreak.

• The point at which the infected population curve starts to decline signifies the begin-
ning of the recovery phase and the decline of new infections.

• The point at which the susceptible population curve reaches a minimum indicates
a potential turning point, where the majority of individuals have been infected or
gained immunity.

We can also compare di�erent sets of parameter values (such as di�erent values of β and
γ) to observe their e�ects on the shape and dynamics of the solution curves. This analysis
can help in understanding the impact of various factors on the spread and control of the
epidemic.

Orbits and phase portrait of the SIR system

The orbit of a di�erential equation refers to the trajectory followed by a solution in phase
space.
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The orbits of the SIR system can be determined using a calculus-based technique we are
familiar with. To accomplish this, we rewrite the SIR system as follows:

dS
dt

=−βSI

dI
dt

= βSI− γI

By dividing the first equation into the second equation, we obtain a di�erential equation
that describes the orbits in SI-space traced by the solutions. Thus, we have:

dI
dS

=−1+
γ

βS

Integrating, we get the following;

I =−S+
γ

β
lnS+C

The maximum value for all these curves will be at S = γ

β
. The figure below shows one of

such curves when R0 > 1.

Figure 4. One orbit of the SIR system

In the figure above, we have one orbit of the SIR system with R0 =
β

γ
= 3, which means

that γ

β
= 1

3 .

A phase portrait of ẋ = f (x) is a sketch of phase space that shows all unusual orbits
and examples of typical orbits, together with arrows on the orbits that indicate the di-
rection of movement(López-Flores et al., 2021).
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The SIR system exhibits unconventional equilibria along the S-axis and a distinct vertical
orbit along the I-axis, which can be considered atypical. Conversely, the curves described
by the equation for I are regarded as typical. Notably, the phase portrait of the SIR system
is solely influenced by the ratio γ

β
or, equivalently, by R0 =

β

γ
.

Figure 5. Phase Portrait for the SIR system

The figure above illustrates the phase portrait of the SIR system for two scenarios: R0 < 1
and R0 > 1. In (b), γ

β
= 1

3

Orbital interpretation

If R0 > 1, many orbits of the SIR system resemble the one depicted in first Figure above.
These orbits connect an equilibrium

(S, I) = (S−,0),
γ

β
< S− ≤ 1

to an equilibrium

(S, I) = (S+,0), 0 < S+ <
γ

β

This type of orbit can be interpreted as follows:
Initially, an epidemic begins with a population state near (S, I) = (S−,0)with γ

β
< S−≤ 1,

where the population fraction S− is susceptible and no one is infected yet. The remaining
fraction of the population, R−= 1−S−, is not susceptible. When the disease is introduced
and the number of infectives (I) becomes slightly positive, the number of infected indi-
viduals increases, causing a decline in the number of susceptibles. Eventually, the number
of susceptibles falls below γ

β
, and the number of infectives begins to decrease, leading to
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the extinction of the disease.

Hence, it is important to look at the computation of S+ when S− is given. This can be
accomplished using the following method:

If the curve I =−S+ γ

β
lnS+C intersects the point (S−,0), then

0 =−S−+
γ

β
lnS−+C ⇒ C = S−−

γ

β
lnS−

And if it again intersects the point (S+,0), we get

0 =−S++
γ

β
lnS++C =−S++

γ

β
lnS++S−−

γ

β
lnS−

This implies that

−(S+−S−)+
γ

β
(lnS+− lnS−) = 0

We can find S+ given S− by

F(S) =−(S−S−)+
γ

β
(lnS− lnS−) = 0

and obtaining the value of S through numerical computation.

The value of particular interest is S+ when S− = 1, which represents the scenario where
the entire population is initially susceptible to the disease. In this case, 1−S+ indicates
the fraction of the population that becomes infected during the epidemic.

The SIR model has deficiency zero, but is not weakly reversible. According to the The-
orem for general kinetics there are no positive equilibria or positive nontrivial periodic
orbits.
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5.3.2 Deficiency One

Deficiency one in chemical reaction networks refers to a property of a network of chem-
ical reactions, where there is exactly one linearly independent conservation law. The
conservation law in this case is a mathematical expression that describes a quantity that
remains constant throughout a chemical reaction network. e.g. the total number of atoms
of each element must remain constant in a closed system. If a reaction network has a de-
ficiency of one, it means that there is exactly one linear combination of the stoichiometric
vectors that is non-negative and can be wri�en as a linear combination of the conserva-
tion laws.

The Deficiency One Theorem extends the information provided by the Deficiency Zero
Theorem, but it does not o�er any dynamical insight. Its focus is solely on issues related
to the existence and uniqueness of positive steady states(Farinas et al., 2020). However,
it applies to a more diverse set of networks than the Deficiency Zero Theorem. The fol-
lowing is the statement of the Deficiency One Theorem, and further examples and appli-
cations will be explored in subsequent sections of this work.

Theorem 5.3.2. (The de�ciency one)
Consider a mass action system for which the underlying reaction network has ` linkage
classes, each containing just one terminal strong linkage class. Suppose that the de�ciency
of the network and the de�ciencies of the individual linkage classes satisfy the following
conditions:

i. δθ ≤ 1, θ = 1,2, · · · , `

ii.
`

∑
θ=1

δθ = θ .

Then, no matter what positive values the rate constants take, the corresponding di�erential
equations can allow no more than one steady state within a positive stoichiometric compati-
bility class. If the network is weakly reversible, the di�erential equations allow precisely one
steady state in each positive stoichiometric compatibility class.

For networks having just one linkage class condition ii. is satisfied trivially leading to the
following corollary.

Corollary: A mass action system for which the underlying reaction network has just
one Iinkage class can admit multiple steady states within a positive stoichiometric com-
patibility class only if the deficiency of the network or the number of its terminal strong
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linkage classes exceeds one.(Feinberg, 1987)

Consider the following mass action system which is an example of a system with de-
ficiency one and weakly reversible:

A
k1−−⇀↽−−
k2

2A

A+B
k3−−⇀↽−−
k4

C
k5−−⇀↽−−
k6

B

To confirm the assumption above we compute the deficiency of the system as follows
where the stoichiometric matrix for this given system is:

1 −1 −1 1 0 0

0 0 −1 1 1 −1

0 0 1 −1 −1 1


Where, the number of rows is the number of species and the number of columns is the
number of reactions in the system. The rank of this matrix is 2. The number of linkage
classes and complexes are 2 and 5 respectively. Therefore, the deficiency of this network
is:

δ = |C |− `− s = 5−2−2 = 1

To explain the concept of deficiency, we need to search for the equalibria and whether
they are complex balanced or not. We solve the di�erential equations corresponding
to the system and plot the solution curves to analyse the behaviour of the mass action
system. The system of di�erential equations are:

ċA = k1cA− k2c2
A− k3cAcB + k4cC

ċB =−k3cAcB + k4cC + k5cC− k6cB

ċC = k3cAcB + k6cB− (k4 + k5)cC

At equilibrium points, we have ċA = 0, ċA = 0 and ċA = 0. This implies that

k1cA− k2c2
A− k3cAcB + k4cC = 0

−k3cAcB +(k4 + k5)cC− k6cB = 0

k3cAcB + k6cB− (k4 + k5)cC = 0

From the third equation above, we get

cC =
k3cAcB + k6cB

k4 + k5
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Substituting in the first equation, we have

k1cA− k2c2
A− k3cAcB + k4

k3cAcB + k6cB

k4 + k5
= 0

k1cA− k2c2
A−
(

k3−
k3k4

k4 + k5

)
cAcB +

k4k6

k4 + k5
cB = 0

cB

(
k4k6

k4 + k5
−
(

k3−
k3k4

k4 + k5

)
cA

)
=−k1cA + k2c2

A

cB =
−k1cA + k2c2

A
k4k6

k4+k5
−
(

k3− k3k4
k4+k5

)
cA

Plugging cB in cC to get cC in terms of one variable cA only gives

cC =
k3cA + k6

k4 + k5
·

−k1cA + k2c2
A

k4k6
k4+k5

−
(

k3− k3k4
k4+k5

)
cA

Therefore, the equilibria for the system above is given by the points;cA,
−k1cA + k2c2

A
k4k6

k4+k5
−
(

k3− k3k4
k4+k5

)
cA

,
k3cA + k6

k4 + k5
·

−k1cA + k2c2
A

k4k6
k4+k5

−
(

k3− k3k4
k4+k5

)
cA

= (0,0,0)

if we set cA = 0

It should turn out that there is one equation that the rate constants need to satisfy to get
complex balancing. We use this fact to obtain the equilibria in terms of the rate constants.

Consider A
k1−−⇀↽−−
k2

2A which gives us the following;

k1cA = k2c2
A

(k1−2k2cA)cA = 0

This implies that

cA = 0 OR cA =
k1

2k2

It follows that
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(
cA,

−k1cA+k2c2
A

k4k6
k4+k5

−
(

k3−
k3k4

k4+k5

)
cA
, k3cA+k6

k4+k5
· −k1cA+k2c2

A
k4k6

k4+k5
−
(

k3−
k3k4

k4+k5

)
cA

)

=

 k1

2k2
,
−k1

(
k1

2k2

)
+ k2

(
k1

2k2

)2

k4k6
k4+k5

−
(

k3− k3k4
k4+k5

)(
k1

2k2

) , k3

(
k1

2k2

)
+ k6

k4 + k5
·
−k1

(
k1

2k2

)
+ k2

(
k1

2k2

)2

k4k6
k4+k5

−
(

k3− k3k4
k4+k5

)(
k1

2k2

)


=

 k1

2k2
,

−k2
1

2k2
+

k2
1

4k2

k4k6
k4+k5

−
(

k3− k3k4
k4+k5

)(
k1

2k2

) , k3

(
k1

2k2

)
+ k6

k4 + k5
·

−k2
1

2k2
+

k2
1

4k2

k4k6
k4+k5

−
(

k3− k3k4
k4+k5

)(
k1

2k2

)


=

 k1

2k2
,

−k2
1

4k2
k4k6

k4+k5
− k1k3k4

2k2(k4+k5)

,

−k3
1k3−2k2

1k2k6
8k2

2

k4k6− k1k3k5
2k2


=

 k1

2k2
,

−k2
1

4k2
k4k6

k4+k5
− k1k3k4

2k2(k4+k5)

,

−k3
1k3−2k2

1k2k6
8k2

2

k4k6− k1k3k5
2k2


=

 k1

2k2
,

−k2
1

4k2
2k2k4k6−k1k3k5

2k2(k4+k5)

,

−k3
1k3−2k2

1k2k6
8k2

2
2k2k4k6−k1k3k5

2k2


=

(
k1

2k2
,
−k2

1(k4 + k5)

4k2k4k6−2k1k3k5
,
−k3

1k3−2k2
1k2k6

4k2(2k2k4k6− k1k3k5)

)
For all positive values of the rate constants the set of equilibrium points will be repre-
sented by; (

k1

2k2
,
−k2

1(k4 + k5)

4k2k4k6−2k1k3k5
,
−k3

1k3−2k2
1k2k6

4k2(2k2k4k6− k1k3k5)

)
Using Python, we can solve the system of di�erential equations by se�ing the initial
conditions

cA(0) = 0.1, cB(0) = 0.1 and cC(0) = 0.1

and assigning random positive values to the rate constants as follows:

k1 = 1, k2 = 0.5, k3 = 0.2, k4 = 0.3, k5 = 0.4 and k6 = 0.1
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Figure 6. Phase Portrait showing equilibrium points

The 3D phase portrait shows how the concentrations of the three chemical species A,B,
and C change with respect to each other over time. Each point in the 3D plot represents
a state of the system at a specific time, with the x-coordinate representing the concen-
tration of A, the y-coordinate representing the concentration of B, and the z-coordinate
representing the concentration of z.

The trajectory of the system in the 3D phase portrait indicates how the concentrations
evolve over time, depending on the initial conditions and the parameters of the reac-
tion network. The equilibrium points of the system, where the concentrations remain
constant over time, are represented by red line in the plot and it is clear that there are
infinitely many such points.

The system fails condition i. of the deficiency one theory because the phase portrait
shows that there exists a choice of physical kinetics such that the system has multiple
positive equilibria on some stoichiometry class. This means that there exists a subset
of its constituent species that can produce another non-empty set of species in a single
step. This situation can lead to cycles and multi-stationarity in the system. As a result,
the system may have multiple steady states, and it becomes challenging to predict the
behavior of the system accurately.
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By mass action kinetics: there exists a choice of rate constants and inflows and out-
flows such that the system fails condition ii.. This indicates that the network structure
may not support a unique positive steady-state concentration vector. The system could
have multiple positive steady states, making it more complex to analyze its behavior and
predict its dynamics.



34

6 Conclusion

We have provided definitions and brief discussions of key concepts related to reaction
networks, including weakly reversible system, complex balancing, deficiency zero and
deficiency one theorems. The SIR model has been used to explain some of these concepts
to show how chemical reaction networks can be used in epidemiology.

This research has also shown that the application of deficiency theory, originally de-
veloped for chemical reaction networks, can o�er valuable insights into the dynamics
of infectious disease transmission models. Through the examination of the parallels be-
tween chemical kinetics and disease transmission, the research underscores the shared
principles underlying complex systems with interacting components. Deficiency theory,
which characterizes the ability of a system to exhibit multiple equilibria, turns out to be
applicable to both chemical reactions and disease spread dynamics. The analysis reveals
that the deficiency of a network can provide meaningful information about the potential
for stability in both chemical and epidemiological contexts.

This research establishes a strong connection between deficiency theory in chemical re-
action networks and models of infectious disease transmission. It demonstrates that de-
ficiency theory’s application can uncover deep insights into the stability, bifurcation, and
equilibria behavior of both systems. This convergence of concepts and the fact that the
analysis is always di�icult for systems which are not weakly reversible enriches the the-
oretical framework for understanding complex systems and invites further exploration
into how we can make systems which are not weakly reversible to be weakly reversible
by using network translation.
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Appendix A: MATLAB Code for the Solution Curves and
Phase Portrait of the SIR model

% SIR model parameters
beta = 0.3; % Infection rate
gamma = 0.8; % Recovery rate

% Time span for simulation
tspan = [0 100];

% Initial conditions
S0 = 0.9; % Initial susceptible population
I0 = 0.1; % Initial infected population
R0 = 0; % Initial recovered population

% Define the SIR model di�erential equations
sirODEs = @(t, y) [-beta*y(1)*y(2); beta*y(1)*y(2) - gamma*y(2); gamma*y(2)];

% Solve the di�erential equations
[t,y] =ode45(sirODEs, tspan, [S0, I0, R0]);

% Extract solution components
S = y(:, 1);
I = y(:, 2);
R = y(:, 3);

% Plot the solutions
figure;
plot(t, S, ’b’, ’LineWidth’, 2);
hold on;
plot(t, I, ’r’, ’LineWidth’, 2);
plot(t, R, ’g’, ’LineWidth’, 2);
xlabel(’Time’);
ylabel(’Population’);
legend(’Susceptible’, ’Infected’, ’Recovered’);
title(’SIR Model Solutions’);

% Generate the phase portrait figure;
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plot(S, I, ’b’, ’LineWidth’, 2);
xlabel(’Susceptible’);
ylabel(’Infected’);
title(’Phase Portrait of SIR Model’);
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Appendix B: Python Code for Solving a System of
Di�erential Equations

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint

def di�erential_equations(y, t, alpha, beta, gamma, epsilon, theta, eta):

# Define the di�erential equations here
dydt = alpha*y[0] - beta*y[0]**2 - gamma*y[0]*y[1] + epsilon*y[2]
dzdt = -gamma*y[0]*y[1] + epsilon*y[2] + theta*y[2] - eta*y[1]
dxdt = gamma*y[0]*y[1] + eta*y[1] - epsilon*y[2] - theta*y[2]
return np.array([dydt, dzdt, dxdt])

# Define time points to integrate over
t = np.linspace(0, 10, 1000)

# Define initial conditions
initial_conditions = [0.1,0.1,0.1]

# Define parameter values
alpha = 1.0
beta = 0.5
gamma = 0.2
epsilon = 0.3
theta = 0.4
eta = 0.1

# Solve the di�erential equations
solution = odeint(di�erential_equations, initial_conditions, t, args=(alpha, beta, gamma,
epsilon, theta, eta))

# Extract the variables from the solution
y_values = solution[:, 0]
z_values = solution[:, 1]
x_values = solution[:, 2]
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# Plot the 2D phase portrait with arrows
plt.figure(figsize=(8, 6))
plt.plot(y_values, z_values, x_values, label=’Phase Portrait’)
plt.sca�er(y_values, z_values, x_values, color=’red’, label=’Equilibrium Points’)

# Add arrows to indicate the direction of flow
for i in range(0, len(t), len(t) // 20):
plt.arrow(y_values[i], z_values[i], x_values[i], (y_values[i+1] - y_values[i])*0.1, (z_values[i+1]
- z_values[i])*0.1, (x_values[i+1] - x_values[i])*0.1,
head_width=0.05, head_length=0.01, fc=’blue’, ec=’blue’)

plt.xlabel(’y’)
plt.ylabel(’z’)
plt.legend()
plt.title(’2D Phase Portrait’)
plt.grid()
plt.show()
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