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Abstract
Diagnostic and prognostic models based on machine learning models can improve  diagnosis and

identification  of  patients  at  risk  of  adverse  health  outcomes.  Healthcare  delivery  can  thus  be

improved in low and middle income countries (LMIC) settings, where making accurate diagnosis

remains a challenge because of lack of essential laboratory tests and trained medical staff. Training

machine learning models requires large labelled datasets which are often unavailable in LMICs.

Moreover,  models developed in say high-income settings/countries may not be generalizable to

LMICs because of  differences in  setting/context  where underlying data was collected.  Transfer

learning, which stores knowledge gained in solving one problem and incorporates that knowledge

while solving a different but related problem, can overcome the challenges of training machine

learning models using small labelled datasets. Transfer learning can extract knowledge from large

un-labelled datasets or dataset from a different setting and incorporate that knowledge when training

models using small labelled datasets, making it potentially applicable to settings with sparse or un-

labelled data such as in LMIC. Transfer learning has been applied to natural images and natural

language processing, but performance on healthcare data such as medical images, bio-signals and

tabular datasets (e.g. clinical signs and symptoms) has not been evaluated. 

This study evaluates the use of transfer learning in improving the performance of diagnostic and

prognostic  models  fitted using small  labelled datasets.  Three types  of  datasets  were  evaluated.

Firstly, paediatric chest x-rays were classified into WHO standardized categories for diagnosis of

pneumonia.  Secondly,  physiological  signals  from  a  pulse  oximeter  were  used  to  predict

hospitalization status, and lastly, tabular data comprising clinical signs and symptoms were used to

predict  positive  blood culture  results  (bacteremia).  The  performance of  models  fitted  with  and

without transfer learning were compared for each dataset.

Transfer  learning  approaches  using  multi-task  learning  and  pre-trained  models  (supervised  and

unsupervised pre-training) were used to leverage a large chest x-ray dataset from a high income

setting to improve performance of models trained on a small chest x-ray dataset from seven LMICs.

A novel method incorporating annotation from multiple human readers/annotators of chest x-rays is

proposed and evaluated. Self-supervised learning (SSL) methods were used to extract features from

pulse  oximeter  signals  and  to  initialize  end-to-end  deep  learning  models  for  predicting

hospitalization status (unsupervised pre-training). Features extracted using SSL were used to predict
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hospitalization using logistic regression. Finally, deep learning models for predicting bacteremia

using  clinical  signs  and  symptoms  were  compared  with  logistic  regression  models.  The  deep

learning  models  were  either  initialized  randomly  or  using  weights  from  auto-encoders

(unsupervised pre-training).

Supervised  and  unsupervised  pre-training  improved  classification  performance  of  chest  x-rays

marginally  (accuracy 0.61  vs  0.59  and 0.60  vs  0.59,  respectively).  Multi-task  learning did  not

improve classification of chest x-rays, while incorporating annotations from multiple human readers

had higher performance (accuracy 0.62 vs 0.61). Features extracted from pulse oximeter signals

using SSL models  were  predictive  of  hospitalization.   The AUCs of  logistic  regression  model

trained on features extracted using SSL models were 0.83 and 0.80 for SSL model trained using

labelled data only and  SSL model trained using both labelled and unlabelled data, respectively.

End-to-end  deep  learning  models  had  AUCs  of  0.73  when  initialized  randomly,  0.77  when

initialized using SSL model trained using labelled data only, and 0.80 when initialized using both

labelled and unlabelled pulse oximeter signals. Logistic regression models for predicting positive

blood cultures performed better than deep learning for small training datasets (AUC 0.67 vs 0.62)

and marginally worse for large datasets (AUC 0.70 vs 0.71). Initializing deep learning models using

weights  from auto-encoders  did  not  have  any  effect  on  performance  on  models  for  predicting

bacteremia.

Our  results  suggest  that  transfer  learning  can  improve  performance  of  models  trained  on

homogenous  data  types  such  as  medical  images  and  bio-signals  but  may have  no  effect  on  a

heterogeneous tabular data. SSL can be is an effective technique for extracting features from bio-

signals that could be used to predict various physiological parameters such as respiratory rate. Deep

learning models perform worse than logistic regression in predicting bacteraemia using clinical

signs and symptoms when the dataset is small.   
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1 Introduction

1.1 Background

Diagnostic and prognostic models developed using machine learning models can improve diagnosis

and prediction of clinical outcomes (F. S. Collins & Varmus, 2015; Yadav et al., 2021). Diagnostic

models predict the presence or absence of a medical condition of interest,  presence of disease-

causing organism (etiology), or abnormality. Prognostic scores predict the likelihood that a patient

will  experience  an  outcome (e.g.  discharged  alive/dead  or  experiencing  an  adverse  event  after

receiving a treatment). Diagnostic and prognostic models can be useful in low and middle income

countries (LMICs) where diagnostic laboratories are poorly equipped and medical specialist are

often  few  or  lacking  (Yadav  et  al.,  2021).  Accurate  machine  learning  models  for  medical

applications are  difficult  to  develop because training the models  require  large labelled datasets

(Althnian et al., 2021; Raghu et al., 2019; Sordo & Zeng, 2005). 

Large training datasets are often difficult to obtain in medical settings and confidentiality concerns

has been cited as a major cause (Price & Cohen, 2019). Furthermore, there are cost constraints of

labelling medical  data because that requires specialists  or  expensive and time consuming tests.

Medical  images  for  instance  may require  trained radiologists  to  annotate  each image which is

expensive and time-consuming. Data collected in routine healthcare setting may not lend itself in

forms fit for training machine learning models because they are often intended for administrative

purposes. Available data have frequent missingness and lack standardized definitions of various

clinical outcomes and procedures, undermining their utility for machine learning (Lujic et al., 2014;

Rumisha et al., 2020).

Training of machine learning models using small datasets is challenging because it may limit the

complexity of models that can be derived without over-fitting, i.e., the model performs well on the

training dataset but poorly on unseen/test data (Kohavi, 1996; Luxburg & Schölkopf, 2008).  Model

complexity  refers  to  how flexible  the  model’s  decision  boundary  can  be.  More  complexity  in

machine learning models is desirable because it allows capturing the complex relationship between
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the predictors and the outcome (Gilad-Bachrach et al., 2003). More complexity is useful with highly

structured datasets such as images and physiological signals where the relationship between the raw

data and the output cannot be captured by simpler models (LeCun et al., 1999). Lack of sufficient

model complexity may results to models with high bias, whereby the difference between the

observed and predicted values are large on average.

Training  machine  learning  models  with  small  dataset  is  also  challenging  when the  number  of

predictor variables is large relative to the number of observations, a phenomenon known as curse of

dimensionality (Bellman, 1961). Datasets such as medical images, omics and physiological signals

are high dimensional. The higher the dimensions of the input data, the larger the size of training

data required to train the models.  The number of observations required in the training datasets

increases exponentially with the dimensions of the inputs. The exponential growth in number of

observations required can be illustrated using a simple classifier formulated such that the input

space is split into cells of unit size and prediction for a new point is obtained by averaging the class

of training data points in the cell containing the new point. The number of cells would increases

exponentially with increase in number of dimension reducing the average number of points in each

cell, and increasing the number of cells without any training data points. Furthermore, it has been

shown that in high dimension, any new observation is likely to lie at the boundary rather than within

the rest of the data points (Balestriero et al., 2021). Therefore, making predictions in tasks involving

high dimensional  input  space  often  involves  extrapolation  as  opposed to  interpolation,  making

generalization more difficult.

The challenges of training machine learning models using small labelled datasets are compounded

by model development pipelines that require splitting the data into training, validation and test sets,

which further reduces the number of data points available for estimating the parameters and fine-

tuning machine learning models. The test data is required for estimation of model performance on

yet unseen data, and give an indication of how well the model will perform once deployed. The

validation  data  is  required  for  hyper-parameter  optimization  which  cannot  be  estimated  when

training the model. For instance, finding optimal hyper-parameters for regularization can not be

estimated  during  training  because  hyper-parameter  configuration  that  result  to  the  highest

performance on the training dataset would be selected, which would likely result to over-fitting.
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Large training datasets are often available in high income settings, however, models fitted using

data from high income setting may not generalize to LMICs because datasets from different settings

may  follow  different  distributions  (Shimodaira,  2000).  There  are  external  validation  studies

showing degradation of model performance on datasets originating from settings different from

those the training data originate (G. S. Collins & Altman, 2009; Ogero et al., 2023). Differences in

the distribution of the outcome such as differences in prevalence of a condition of interest manifests

as poor model calibration. Poor calibrated models with acceptable discriminative performance can

be  corrected  using  calibration  techniques  (Kull  et  al.,  2017),  but  calibration  cannot  address

covariance shift,  where the distribution of  predictors  change.  Covariance shift  can arise due to

differences in populations sampled or differences in equipment used to measure the predictors (e.g.

differences  in  chest  radiographs  machines  used,  or  procedures  used  in  preparing  the  medical

images). Furthermore, even within the same context, the distribution of data can change over if

there  is  concept  drift,  wherein  models  trained using data  from the  setting  of  interest  may not

generalize to the same setting after a while (Gama et al., 2014). Concept drift can occur in medical

diagnostic  models  where  new interventions  are  implemented  from time  to  time.  For  example,

introduction of pneumococcal and other vaccines can change the distribution of causes/etiologies of

infectious diseases such as pneumonia and invasive bacterial diseases. Therefore, if the performance

of a prediction model is sensitive to changes in etiologies, then any intervention that changes the

distribution of etiologies would degrade the performance of such models.

Lack of transferability of models fitted in one setting to other settings can have adverse effects to

certain patient populations; It has been argued that pulse oximeters, whose development require

calibration using data, may not be as accurate for patients with dark skin because data from such

minorities is not included in calibrating the devices during the development stage (Sjoding et al.,

2020). Variation in performance of machine learning models due to race has also been observed in

dermatology  (Adamson  &  Smith,  2018;  Navarrete-Dechent  et  al.,  2018).  Race  disparity  in

performance of the models for dermatology can be explained by variability in skin complexion, but

performance disparities have also been observed in medical images where information about race is

not expected to be present  (Seyyed-Kalantari et al.,  2021). Banerjee  (2021) was able to predict

patients’ race from chest X-rays despite there being no known clinical features related to race in the

medical images. The models could still predict patients’ race after data augmentation, despite data

augmentation  being  recommended as  solution  for  developing  more  generalizable  models.  Data

augmentation involves generating new data point by perturbing existing data with random noise. 
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Issues that affect transferability of models from one context to another may require refitting the

models in each context the model will be used, and thus require training data from each context.

Collecting sufficient training data in each context of interest may be unfeasible due to cost and time

constrains.  This  study  investigates  transfer  learning  using  large  unlabelled  datasets  or  labelled

dataset from different contexts to address the lack of transferability of machine learning models

across different contexts. Transfer learning may improve performance of models fitted using small

labelled  datasets  by  incorporating  knowledge  obtained from  models  fitted  using  data  from  a

different context or models trained to solve a different but related tasks  (Farahani et  al.,  2021;

Zhuang et al., 2020). Model trained using data from one context can be modified to work in a

different  context  through domain adaptation  (Sukhija et  al.,  2016).  A different  form of transfer

learning involves modifying models trained to solve one task (source task) to perform a different

task (target task). For instance, a model developed to classify chest radiographs for one condition

can be adapted to classify chest radiographs for a different condition. The inputs for the source and

target tasks can come from the same distribution but most observations may be missing the target

outcome. Such scenarios where most of the observations are missing the outcome of interest can

arise in many medical applications where the inputs/predictors are collected as part of routine care

but obtaining the outcome requires specialists or expensive tests. For instance, large databases of

chest radiographs may arise naturally from digital chest x-ray machines, but specialists such as

radiologists  may  be  required  to  annotate  each  image.  Clinical  notes  accompanying  such  chest

radiographs may not be suitable labels for training machine learning models because of lack of

standardization.

In this study we evaluated the use of transfer learning in improving diagnostic and prognostic

models trained using small labelled datasets. Transfer learning was used to extract information from

large unlabelled datasets  or  large  datasets  from a  different  context  with  the  aim on improving

models fitted using small labelled datasets from LMICs. Three datasets available in LMIC settings

with potential of improving delivery of care were used: bio-signals, medical images and tabular

data. The bio-signal dataset comprised of photoplethysmogram (PPG) signals obtained using a pulse

oximeter, a cheap and non-invasive device used routinely in clinical practice to measure oxygen

saturation and heart rate. We trained machine learning models to predict hospitalization of children

seeking  care  at  an  outpatient  department  of  a  public  hospital  in  Kenya  using  PPG signals  as

predictors.  The medical images dataset comprised of chest radiographs (CXRs) used in diagnosis of
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various chest conditions. We trained machine learning models to classify the CXR images according

to World Health Organization (WHO) standardized methodology of classifying CXR for pneumonia

diagnosis  in  children.  The  tabular  dataset  comprised  of  clinical  signs  and  symptoms  (fever,

diarrhoea, difficulty breathing, e.t.c) commonly evaluated by clinicians during assessment to aid in

making various clinical decisions including diagnosis. We used the clinical signs and symptoms as

predictors of bacteremia (measured using a blood culture test), a life-threatening condition where

bacterial infections enter the bloodstream and cause disease. For each of the three data sets, a larger

unlabelled data-set or a data-set from a different settings was obtained with the aim of improving

performance of classification models fitted with the smaller labelled dataset. A larger unlabelled

PPG signals datasets was obtained from the Smart Discharge (SD) study in Uganda (Wiens et al.,

2021a).  Additional publicly available CXR dataset from a high income settings and comprising

mostly  of  adult  CXRs was downloaded from the internet,  while  an unlabelled tabular  data  on

clinical  signs and symptoms was obtained from Clinical  Information Network (CIN),  a  dataset

collected from 14 public hospitals in Kenya (Tuti et al., 2016).  

1.2 Statement of the problem

Machine  learning  models  can  improve  the  accuracy  of  making  diagnoses  and  hence  result  in

improved healthcare delivery in LMICs, where clinical teams often encounter problems making

correct and timely diagnosis.  For example, clinicians can be provided with timely and accurate

determination  of  possible  etiologies  for  common  ailments  such  as  pneumonia,  meningitis  and

sepsis, and accurate and rapid interpretation of medical images such as chest x-rays.

Large datasets required to fit  machine learning models with high sensitivity and specificity are

however often unavailable, incomplete,  or originate from different contexts.  For instance, when

fitting models for predicting etiology using a set of clinical signs and symptoms, the clinical data

may be easy to collect from medical records, but the laboratory results may be unavailable because

the required laboratory facilities are lacking in low resource settings. As a result, majority of the

observations in the training data are unlabelled. Large datasets may be available in high income

settings, but machine learning models work best when the training and testing data come from

similar distributions, limiting generalizability of models fitted using data from high income settings

to LMICs.  Transfer learning might circumvent issues arising from insufficient  labelled datasets
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while fitting machine learning models (MLMs) in LMICs by incorporating knowledge gained when

fitting similar models using data from high income settings or large unlabelled datasets.

1.3 Objectives of the study

General objectives

This  study  seeks  to  use  transfer  learning  to  leverage  large  unlabelled  datasets  to  improve

performance of paediatric diagnostic and prognostic models when only small labelled datasets are

available. The study considers three types of datasets: physiological signals, medical images, and

clinical signs and symptoms. 

Specific objectives

The specific objectives of the study are to:

i. Develop MLMs for predicting pediatric admission based on physiological signals obtained

from a pulse oximeter (Photoplethysmograph, i.e. PPG).

ii. Develop  models  for  classifying  paediatric  chest  x-ray  images  into  WHO  standardized

classification for pediatric chest x-rays.

iii. Predict positive blood cultures using clinical signs and symptoms for children admitted in

public hospitals in LMICs.

1.4 Significance of the study

The results  of  this  study can inform on how performance of  diagnostic and prognostic models

developed  in  LMICs can  be  improved  using  transfer  learning.  Such  models  may be  useful  in

standardizing interpretation of medical images such as chest x-rays, improving estimation of the

burden of  pneumonia as well  as evaluation of  efficacy of  interventions for  pneumonia such as

vaccines. 

The methods developed here for classifying pulse oximeter signals can allow novel uses of pulse

oximeters beyond estimation of oxygen saturation and heart rate. Featured extracted from raw pulse
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oximeter signals using the approaches developed here may improve the development of prediction

models for diverse medical outcomes such as hospitalization and classification of severity of illness.

The diagnostic models can provide accurate diagnoses that are provided by medical specialists such

as radiologists or medical tests that can be expensive, unavailable, or results come after several

days.  In  such  cases  the  model  would  prevent  delay  in  provision  of  potentially  lifesaving

interventions. Such models can be especially useful in low income settings where essential medical

tests are often unavailable or too expensive for most patients exacerbating inequalities in access to

healthcare (Petti et al., 2006; Wilson et al., 2018). For example, lack of diagnostic services has been

associated  with  over-use  of  antimicrobials  which  is  associated  with  anti-microbial  resistance

(Ayukekbong et al., 2017). Machine learning models may also offer alternatives to medical tests

that require invasive procedures and therefore reduce discomfort or infection to patients.

This study also seeks to demonstrate how large unlabeled datasets can be leveraged to improve

performance of prediction models when labeled data is scarce, given that high quality medical data

is often expensive to collect with respect to time and monetary cost.
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2 Literature Review

2.1 Introduction

This review describes existing literature on the types of MLMs, application of MLMs in diagnostic

and  prognostic  models,  and  various  types  of  semi-supervised  and  transfer  learning  methods.

Sections   and  2.3 describes the main branches of machine learning and applications of machine

learning models in healthcare, while sections  2.4 and  2.5 describe semi-supervised learning and

transfer learning methods that can be used to leverage unlabelled data-sets to improve performance

of models fitted using small labelled data-sets.  Applications of transfer learning models in bio-

signals, medical images and tabular data are described in section 2.6.

2.2 Machine learning models

MLMs are developed by learning a function that accomplishes a task of interest. using data known

as the training set. The generalizability of MLMs is determined by assessing their performance on

test dataset. Inductive machine learning models such as logistic regression learn general rules using

the training data that can later be applied to yet unseen test data. On the other hand, transductive

learning model such as Transductive Support Vector Machine (TSVM), require the model to be

refitted every time a new test observation is encountered (Kondratovich et al., 2013; Vapnik, 1998).

Machine learning models can broadly be classified into supervised learning, unsupervised learning,

and reinforcement learning models (Awad & Khanna, 2015).

Supervised learning involves training machine learning models with input-output pairs  and learns a

function that maps the inputs to outputs. Such models performs a classification task if the output is

categorical  or  regression  if  continuous.  Supervised  learning  algorithms  are  categorized  into

generative and discriminative algorithms  (Ng & Jordan, 2002). Given a set of inputs  X  and an

outcome  y, generative models learn the class conditional probabilities  p( X | y ) and apply Bayes

theorem to make predictions of the outcome given the inputs  p( y | X ).  Examples of generative

supervised learning algorithms are naive bayes classifier and linear discriminant analysis (H. Zhang,

2004). Discrimination models avoid the challenge of estimating class conditional probabilities by

estimating the conditional distribution p( y | X ) directly. Examples of discriminative models include

logistic regression and artificial neural networks.
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Unsupervised  learning  models,  sometime  referred  to  as  self-supervised  learning  models,  are

provided with the inputs only and learn a compressed representation of the inputs. The compressed

representation  may  be  distributed  or  non-distributed  (I.  Goodfellow  et  al.,  2016).  For  non

distributed representation, each input in mapped to a single category. Clustering algorithms such as

the K-means clustering that assigns each input into one of several categories are examples of non-

distributed representations. On the other hand, distributed representation learning algorithms such

as Principal Component Analysis (PCA), map each input into a space with multiple dimensions.

Each dimension can be thought of as representing different latent attributes of the inputs. 

Reinforcement learning models learn the optimal sequence of actions in a given environment that

maximizes a reward (Sutton, 1998). Unlike supervised learning where each input is paired with an

output, rewards in reinforcement learning are only available at the end of an episode (series of

steps). The model, often referred to as an agent, takes in measurements of the environment at each

step and makes a prediction on the optimal action. At the end of an episode, the models receives

feedback on whether the actions taken resulted in a desirable outcome. Reinforcement learning is

widely used in robotics (Kormushev et al., 2013).

2.3 Machine learning models in healthcare

Predictive  models  in  healthcare  have  traditionally  been  developed  using  linear  and  logistic

regression models for continuous and categorical outcomes, respectively. However, linear models

are  sub-optimal  for  non-linearly  separable  data,  and  their  use  might  result  to  under-fitting.

Moreover,  the  relationship  between  the  inputs  and  the  outcomes  cannot  be  captured  by  linear

models for highly structured datasets such as medical images and bio-signals (LeCun et al., 2015).

For such datasets, extensive feature engineering is required to extract hand-crafted features from the

inputs  in  order  to  use  such  features  as  predictors  with  linear  models.  Hand-crafted  feature

engineering requires extensive domain knowledge about the relationship between the inputs and the

outcomes which may hindering the development of models for novel outcomes/tasks. For instance,

classification of images involved hand crafted feature extractors for edges, corners, blobs and ridges

(Mahony et al., 2020). In addition, hand-crafted features are often task specific and therefore require

development  of  new  features  for  different  tasks.  For  example,  features  that  are  relevant  in

classifying images of animals may not be relevant for classifying medical or satellite images. The

development  of  hand  crafted  features  for  bio-signals  requires  knowledge  on  signal  processing
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techniques and intimate knowledge about human physiology  (Supratak et al., 2016; Tomé et al.,

2013).  In  contrast,  over-parameterized  machine  learning  models  such  as  deep  learning  do  not

require hand-crafted features and these allow models with similar architecture to classify images

from different domains without requiring any modification. Furthermore, deep learning models used

with tasks involving images can also be used for tasks involving physiological signals, natural text,

or time series data.

MLMs  have  been  applied  in  all  aspects  of  healthcare  delivery  including  administrative  tasks,

disease  outbreak  prediction,  drug  development,  development  of  diagnostic  devices,  treatment

recommendations  and  prediction  of  disease  progression  and  other  endpoints  such  as  re-

hospitalization and mortality  (Cutillo et al., 2020; Davenport & Kalakota, 2019; Rajkomar et al.,

2019). MLMs can ease administrative burden arising from management of patient records through

automatic transcription of unstructured clinician notes or audio recordings into data formats that are

compatible with electronic health records (Kaufman et al., 2016; Willyard, 2019). MLMs can also

be used to link medical records stored in diverse databases, and thus enable tracking of patients

across visits or points of care (Redfield et al., 2020; Sauleau et al., 2005). MLMs have also been

used to automate medical  insurance claims processing and detect  fraudulent  claims,  which has

hastened processing of claims and reduced operational costs (Singh & Urolagin, 2021).

MLMs have been used in pharmaceutical industry to identify new drug candidates by predicting

properties of various compounds using their molecular structures (Pham et al., 2021). MLMs have

been used to model pharmaco-kinetics and toxicological properties of drug candidates, hastening

pre-clinical and clinical stages of drugs development (McComb et al., 2021; Miljković et al., 2021).

MLMs can benefit  drug manufacturing by predicting properties  of  chemical  reactions which is

essential for drug manufacturing (Schwaller et al., 2018, 2021). Moreover, machine learning models

have been used to identify new uses for approved drugs by identifying related disease pathology

(Rodriguez et al., 2021; Urbina et al., 2021; F. Yang et al., 2022). 

MLMs for clinical decision making have been applied at population or individual level. Population

level MLMs aim at making predictions on groups of individuals at a given time or/and geographical

location. On the other hand, individual level MLMs make predictions about a single individual

given that individual’s characteristics. Individual level models are behind research in personalized

medicine.
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MLMs have enhanced population level prediction by enabling analysis of unstructured and semi-

structured data types such as images, videos, text and audio, which classical statistical models are

not equipped to handle. For instance, machine learning models for natural language processing

(NLP) have been used to predict disease outbreaks using media articles and social media posts, thus

enabling fast and cheap detection of possible disease outbreaks  (Ghosh et al., 2017; Kim & Ahn,

2021; Şerban et al., 2019; Y. Zhang et al., 2020). MLMs have been used to model the distribution of

disease vectors to shed light on the dynamics of infectious diseases transmission (Ding et al., 2018;

G.  Ren & Wang,  2014;  Tripathi  et  al.,  2020).  MLMs have also been used in  public  health  to

estimate burden of non-communicable diseases and public health surveillance  (Brownstein et al.,

2009; Haneef et al., 2021; Mooney & Pejaver, 2018).

Machine learning models for individual clinical decision making utilize individual level predictors

such as demographic information, clinical signs and symptoms, biomedical images, bio-signals,

omics, wearable sensors, and laboratory measured biomarkers as inputs  (L. Chen, 2020). These

models can be classified as diagnostic or prognostic models. Diagnostic models predict the presence

of a condition while prognostic model predict an outcome of interest at a future time (Hendriksen et

al., 2013). Diagnostic models are useful in diagnoses of diverse conditions ranging from infectious

diseases,  oncology,  dermatology,  and  mental  health  (Jaimes  et  al.,  2004;  Y.  Liu  et  al.,  2017;

Navarrete-Dechent et al., 2018). There are over 138 machine learning applications that have been

approved for clinical use by the Food and Drugs Administration (FDA), most of which are related

to radiology  (Wald et al., 2021).The complexity of diagnostic and prognostic models range from

systems that make predictions about a single medical condition/disease to decision support systems

systems covering multiple aspects of clinical care (Giordano et al., 2021; Lynn, 2019). 

The performance of most machine learning models depend on how the input data is represented

(Bengio et al., 2014). Therefore, extensive feature engineering is often necessary before training the

machine learning models. Feature engineering in clinical prediction modeling often requires domain

knowledge about the relationship between the inputs and the outcome of interest (Roe et al., 2020).

Such domain knowledge can be lacking in novel applications, and thus hinder the use of machine

learning methods. 
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Structured data such as clinical signs and symptoms have be analyzed using a wide spectrum of

machine learning models including linear/logistic models, decision trees, random forest, artificial

neural networks, boosted trees, and support vector machines  (Christodoulou et al., 2019). On the

other hand, developing machine learning models using inputs that are not structured is challenging.

Text, medical images and bio-signals require extensive feature engineering to transform them into

feature vectors, which limits the types of machine learning models that can be used. As a result,

machine learning methods that have been used to develop diagnostic and prognostic models depend

heavily on the structure of input data. Machine learning models for analysis of bio-signals have

relied on classical signal processing techniques to extract features from raw signals  (Krishnan &

Athavale, 2018; Rajoub, 2020). The extracted features are then used as predictors of outcomes of

interest using diverse regression and classification models. Features are extracted in time domain or

from the frequency domain following signal decomposition using Fourier or wavelet transforms

(Krishnan & Athavale,  2018).  Recent  approaches  of  analyzing bio-signals  and medical  images

avoid manual feature engineering by using deep learning (Wu et al., 2018).

Deep learning models are inspired by biological neurons and consist of artificial neurons that are

stacked to form layers such that the outputs of one layer acts as inputs for the subsequent layer (I.

Goodfellow et  al.,  2016).  Each  artificial  neuron  performs  a  linear  transformation  of  the  input

followed by a non-linear transformation. The stacked layers of a deep learning model enables the

model to approximate highly non-linear functions, and are capable of representing any continuous

function given enough artificial neurons in the hidden layers (Cybenko, 1989). Consequently, deep

learning models are capable of approximating the relationship between the inputs and the outputs

regardless of structure of the inputs. There are different architectures of deep learning model that

can be broadly classified as fully connected neural networks, convolutional neural networks

(CNNs), recurrent neural networks (RNNs), and graph neural networks (GNNs). CNNs are often

used to classify images, while RNNs are used in analysis of time-series data (Barragán-Montero et

al., 2021; Erickson et al., 2017; S. K. Zhou et al., 2021). GNNs are used to analyze data that can be

organized in graphs where entities are represented by the node of the graphs and the relationship

between entities are represented as edges (J. Zhou et al., 2020).

CNNs have been used to analyze chest radiographs (CXRs), Magnetic Resonance Imaging (MRI),

Computed  Tomography  (CT)  scans,  and  pathology  slides  (Castiglioni  et  al.,  2021).  Machine
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learning applications for medical images can be classified into detection and segmentation tasks.

Detection tasks involve recognizing presence of conditions of interests on medical images such as

pneumonia from chest radiographs. Segmentation of medical images involve creating a bounding

box of a region of interest that can be overlayed on the original image. Such regions may include an

organ such as liver or abnormalities like tumors.

Machine learning models that have been developed for diagnostic and prognostic models have often

employed supervised learning algorithms that require each observation in the training data to have a

corresponding outcome (labels). However, obtaining labels for every observations in the training

data is often expensive and not feasible at scale. There are many situations where a large dataset

exist but only a small fraction of the dataset is labelled. In such cases, semi-supervised learning can

be used to exploit the unlabelled data to improve performance of fitted models.

2.4 Semi-supervised learning

Semi-supervised learning fall between supervised and self-supervised learning in that not all inputs

are labelled (Chapelle et al., 2006; Zhu, 2005). Semi-supervised learning models are believed to be

useful  if  the  marginal  distribution of  the  inputs p(X )  is  informative of  the  distribution of  the

outcome given the inputs p( y | X ) . Semi-supervised learning algorithms make implicit assumptions

about the relationship between data points that are close to each other in the input space (Chapelle

et al., 2006). The smoothness or continuity assumption states that data point that are close to each

other in the input space are also likely to share the same outcome (same label for classification tasks

or  similar  values  for  regression  tasks).  The  smoothness  assumption  gives  rise  to  clustering

assumption  which  states  that  points  in  the  same cluster  are  likely  to  have  the  same outcome.

Clustering assumption does not imply that each cluster consists of observations from the same class,

but the decision boundary of the classifier should lie in low density regions. Other semi-supervised

learning algorithm assume that the data lie on a low dimensional manifold, and data points that are

closer in the low manifold are likely to have similar labels.

2.4.1 Self-training

Self-training is among the first semi-supervised learning method described in literature (Agrawala,

1970; Chapelle et al., 2009; Fralick, 1967; Scudder, 1965). A self-training models is first developed

using the labelled data only, and the model is then used to predict the outcome on the unlabelled

data to create pseudo-labels. A fraction of the unlabelled data which the model is most confident
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about and corresponding pseudo labels are added to the training data. Self-training is based on the

assumptions that predictions with high confidence are also more likely to be correct. For instance,

in binary classification, predictions with probabilities close to 0 or 1 are more likely to be correct

compared to predictions with probabilities close to 0.5. The machine learning model is then refitted

with  the  expanded training  data.  The process  of  adding more  observations  from the  yet  to  be

labelled  dataset  is  repeated  until  all  unlabelled  data  is  added  to  the  training  set  or  model

performance does not improve. Self-training is easy to implement because any supervised learning

algorithm can be used as a base learner. However, self-training models can over-fit to incorrect

pseudo labels due to confirmation bias (Arazo et al., 2020). 

2.4.2 Co-training

Co-training is a semi-supervised learning method closely related to self-training. Co-training

assumes that the input variables can be divided into two views such that each view is sufficient for

predicting the outcome (Blum & Mitchell, 1998; National Research Council, 2004). Ideally the two

views should be conditionally independent given the outcome. Co-training has been used to classify

web pages where hyperlinks pointing to a page and the text in the web page were treated as two

views (Blum & Mitchell, 1998). Two classifiers are fitted using the two views and predictions are

then made on random and disjoint observations from the unlabelled data. For each classifier, the

observations the model is most confident about are added to the labelled data. The process of fitting

the two classifiers and adding observations to the labelled data dataset  is  repeated like in self-

training.  Co-training can still  be useful if  a natural  split  in the inputs is  not known in what is

referred to as single view co-training (J. Du et al., 2011) . However, it is not clear whether the

assumption that the two views are conditionally independent given the outcome can be relaxed

without  compromising  performance  of  co-training,  and  the  method  is  only  useful  if  the  two

classifiers give differing predictions in some observations where one classifier is correct (Krogel &

Scheffer, 2004).

2.4.3 Graph-base self-supervised learning

Other approaches for semi-supervised learning are based on graph algorithms (Bengio et al., 2006).

A graph in constructed using both labelled and unlabelled data, with node representing observations

and edges representing similarity between observations. Labels are then propagated from labelled

nodes to all nodes in the graph. For a graph with a weight matrix W , with elements wij representing

the similarity between two inputs xi  and x j , edges are constructed for all nodes with wi , j>0 . The
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weight matrix can be constructed by computing the distance (e.g. euclidean) between each element

and all other elements in the dataset, resulting in a dense graph where each node is connected to all

other nodes. However, such an approach is computationally expensive and not feasible for large

datasets. A sparse graph can be constructed using KNN such that for each node the weights of k

nearest neighbours are assigned a value of one and all other nodes are assigned a weight of zero

(Ebert et al., 2011; P. Zhang et al., 2015). The label of each unlabelled nodes can be obtained by

using weighted mean of all labelled neighbours, with weights obtained from the weight matrix (Zhu

& Ghahramani,  2002).  Graph based semi-supervised  learning methods are transductive learning

algorithms,  where the model cannot be used to label new observation that  are not present during

model training. As a result, graph-based algorithms are computationally expensive and unsuitable

for many real life applications.

2.4.4 Self-supervised deep learning

The flexibility of deep learning has seen a wide array of semi-supervised learning methods in recent

years (Ouali et al., 2020; Vanyan & Khachatrian, 2021; X. Yang et al., 2021). Some approaches of

semi-supervised deep learning are based on pseudo labels and extend self-training, co-training, and

label propagation on a graph (Arazo et al., 2020; Iscen et al., 2019; Qiao et al., 2018). In teacher-

student algorithms, a teacher neural network is trained on the labelled data only and a student neural

network is  trained on both labelled and unlabelled data, with predictions of  the teacher  neural

network acting as pseudo labels for both labelled and unlabelled observations (Xie et al., 2020). The

teacher neural network is often smaller than the student network to avoid over-fitting on small

labelled  datasets.  Others  have  fitted  teacher-student  algorithms  in  iterative  manner  where  the

student network becomes the teacher network in the next iteration, and the size of the student neural

network is increased at each step  (M. Tan & Le, 2020).  Ke  (2019) proposed using two neural

networks of  same size instead of having teacher and student networks. In what they termed as dual

students, the student network that had stable predictions at each training iteration provided pseudo

labels for the other network. Stability was defined as root mean square between model prediction of

perturbed  and  unperturbed  inputs.  Self-training  has  also  been  extended  by  simultaneously

optimizing the values of pseudo-labels alongside model parameters (Shi et al., 2018). The labels of

unlabeled observations are treated as variables/parameters to be estimated during model training.

Other approaches of semi-supervised learning using deep learning rely on the cluster assumption,

where small perturbations of the inputs are not expected to change the labels (Zhu, 2005). The
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cluster assumption is enforced by having a regularization term that forces an unlabelled input and

its perturbed version to have the same label. For instance, given a neural network classifier f θ (.) ,

we can compute the distance between the neural network output for unlabelled inputs X  and their

perturbations X̂ , d ( f θ(X ) , f θ( X̂)) . Some of the commonly used distance functions are mean square

error (MSE), Kullback–Leibler (KL) divergence and Jensen-Shannon divergence. A regularization

term is then added to the supervised loss computed on the labelled data (e.g. cross-entropy loss).

Ladder  networks  enforce  the  clustering  assumption  via  regularization  by  ensuring  that  small

perturbations of the inputs of hidden layers do not change their outputs  (Rasmus et al., 2015). A

network is trained to classify the labelled data. The trained neural network models is then extended

to accommodate unlabelled data by adding a decoder network that reconstructs the outputs of the

hidden layers that have been perturbed using Gaussian noise. The mean squared error between the

the decoded outputs of perturbed and unperturbed hidden layer activations is added to the cost

function as a regularization term. Pi-Model is a simplification of ladder network where instead of

have a decoder network, the regularization term is obtained by computing the mean square error

between the output of hidden layers of perturbed and unperturbed inputs  (Laine & Aila, 2017).

Temporal ensembling of model predictions are used instead of the model prediction at each training

iteration to reduce model optimization difficulties arising from noisy predictions. Tarvainen (2018)

proposed applying exponential moving average to the neural network weights instead of applying

temporal ensembling to the predictions. The model derived from exponential averaging of the

weights is treated as a teacher network, and was shown to be robust to confirmation bias observed

in self-training.

Another variation to semi-supervised deep learning is based on Generative Adversarial Networks

(GANs)  (X. Liu & Xiang, 2020). GANs are generative models that learn the distribution of the

inputs using two neural networks, where one network known a generator G is trained to generate

fake inputs and the other network known as a discriminator D is trained to distinguish between real

and fake inputs  (I.  J.  Goodfellow et al.,  2014).  The generator and the discriminator are trained

simultaneously until the fake inputs generated by the generator are similar enough to real inputs for

the discriminator to tell them apart. Once trained, the generator network G should be able to

generate fake observations sampled from the distribution of the inputs given a vector of random

noise z .  Some  GANs  for  semi-supervised  learning  follow  extensions  of  GAN  that  have

discriminators  that  predict  the  class  of  the  input  alongside  whether  the  input  was  generated

(Salimans et al.,  2016).  Given a classification task with k classes, the discriminator network is
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trained to classify inputs into k+1  classes, where the additional class is for whether or not the input

was generated or real. Li (2017) observed that the discriminator network had challenges performing

both classification and discriminating real  observations from fake and instead added a separate

neural network for classification. A variation of GAN for semi-supervised learning is based on the

manifold assumption, where the decision boundary of the classifier is expected to be smooth in the

low dimension manifold. GANs have been shown to learn the low dimension manifold of the inputs

(Radford et al., 2016), and thus can be used to enforce smoothness of the decision boundary of

classifiers by providing manifold regularization approximations  (L.  Chen,  2020;  Lecouat  et  al.,

2018). The regularization ensures that the fake observations generated by the generator given a

vector of  random noise z  will  be  classified the  same as  observations  generated from slightly

perturbed values of z .

Sometimes it is possible to obtain labels for some of the unlabelled observations, but cost and other

constrains limit the number of observations that can be labelled. Active learning can be used to

identify unlabelled observations that if labelled would improve the performance of the classification

or regression models the most (Budd et al., 2021; Cohn et al., 1996; P. Ren et al., 2021). A model is

trained on the labelled data and ranks the unlabelled data to determine which observations should be

labelled next. The highest ranked observations are labelled (e.g., by having a radiologist annotate

the selected medical images) and added to the labelled dataset. The model is then refitted or fine-

tuned using the now larger training dataset. The procedure of identifying which observations should

be labelled and retraining the model is repeated until the labelling budget is exhausted. Two main

ways of ranking observations for labelling are used: uncertainty sampling and diversity sampling.

Uncertainity  sampling selects  unlabelled observations whose predictions are  most  uncertain for

labelling (Tong & Koller, 2000; Y. Yang et al., 2015). Therefore, the model has to be able to

represent the uncertainty of predictions in unlabelled data, which limits the type of models that can

be  used.  For  instance,  bayesian  neural  network  have  been  used  to  estimate  uncertainty  in  the

predictions of neural networks  (Gal et al., 2017; Tong & Koller, 2000; Tsymbalov et al., 2019).

Diversity sampling aims at selecting observations that are as dissimilar as possible by exploiting the

distribution of the data (Brinker, 2003; Xu et al., 2007). Diversity sampling identifies observations

that would increase the representativenes of the labelled data in relation to the distribution of the

entire data-set  (B. Du et al., 2019). For instance, unsupervised clustering methods can be used to

identify observations in clusters that do not have any labelled data (Ienco et al., 2013). Yang (2015)

observed that unlabelled observations obtained using uncertainty sampling are often very similar
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limiting  the  additional  information  that  can  be  extracted.  Therefore,  some  active  learning

approaches incorporate both uncertainty and diversity sampling (Shao et al., 2019; G. Wang et al.,

2017). Uncertainty sampling is first used to identify candidate observations and a second algorithm

is used to select a subset of identified observations that are as diverse as possible.

The key assumption  in  semi-supervised  and active  learning is  that  the  labelled  and unlabelled

datasets  have the same distribution,  and thus the unlabelled data can be considered as missing

completely  at  random  (MCAR)  (Wasserman  &  Lafferty,  2008).  Therefore,  the  large  datasets

available in high income settings (or different contexts) cannot be used to improve performance on

models fitted using small datasets in low income settings (or dissimilar contexts). The limitations of

datasets originating from different settings may be overcome using transfer learning.

2.5 Transfer learning

Transfer  learning,  sometimes referred  to  as  domain  adaption,  aims  at  improving  a  task  with

insufficient data using data originating from a different setting (Farahani et al., 2021; Weiss et al.,

2016; Zhuang et al., 2020). Transfer learning can also use model trained to solve one or more tasks

that are not of interest to improve performance of models for similar tasks which are of interest.

Transfer learning is inspired by human learning where learning a task can be easier if  one has

already learned a similar task. In transfer learning, we hope to use knowledge from a source domain

to improve performance on a task in the target domain.

Formally, given a domain D consisting of feature space X having marginal distribution p(X ) , i.e.

D={ X , p( X )} . A task T is defined on a domain D and consists of a label space Y and a decision

function f (.) that maps the inputs to the labels .i.e T={ Y , f ( .)} . The source and target domains

can thus be defined as  Ds={ X s, p(X s)} and Dt={ Xt , p( Xt)} respectively. Likewise, the source

and  target  tasks  can  be  defines  as  T s={ Y s , f s(.)}  and T t={ Y t , f t(.)} ,  respectively.  Transfer

learning aims at improving the target task  Tt in the target domain  Dt using knowledge obtained

from the source domain Ds and the source task T s . Where the source domain is not the same as the

target domain or/and the source task is not the same as the target task. Data-sets originating from

different  contexts/settings  are  expected  to  have  different  distributions  and  can  therefore  be

considered to originate from different domains.
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Pan  (2010) categorized transfer  learning into  inductive,  transductive,  and unsupervised transfer

learning. Inductive transfer learning has different source and target tasks T s≠T t , but the domain

can be the same or different. The source and the target domains in transductive transfer learning are

different Ds≠Dt , but the source and target tasks are the same. The source domain can have a lot of

labelled data while the target domain has little or no labelled data. On the other hand, unsupervised

transfer learning has no labelled data in either the source or target domains. Transfer learning can

also be categorized into heterogeneous and homogeneous transfer learning depending on whether or

not feature/input spaces are the same in source and target domains (Farahani et al., 2021; Weiss et

al., 2016) .

Heterogeneous transfer learning is used when the feature space in the source and target domains are

not  the same  X s≠Xt ,  and involves transforming the feature space of  the source and/or  target

domain to a common feature space (Day & Khoshgoftaar, 2017; Iqbal et al., 2018). Heterogeneous

transfer learning can be categorized into symmetric or asymmetric depending on how the input

features are transformed. In symmetric transfer learning, both the source and target features are

transformed  into  a  common  feature  space.  Asymmetric  transfer  learning  transforms  either  the

features in the source or target domain to match features in the other domain. For instance, Sukhija

(2016) illustrated the used random forest to derive the relationship between features in the target

and source domains by leveraging the common labels in the source and target domains.

In homogeneous transfer learning, the input space is the same in both source and target domains

X s=X t, and its either the marginal distribution of the features that differ Ds≠Dt or the source and

target tasks  T s≠T t. Algorithms that implement homogeneous and heterogeneous transfer learning

can be categorized into instance-based, feature-based, or parameter-based transfer learning Figure 1.

2.5.1 Instance-based transfer learning

Instance-based transfer learning is a homogeneous transfer learning method where the source and

target  tasks  are  the  same  but  the  marginal  distributions  of  the  source  and  target  features  are

different.  Instance-based transfer learning is  suitable for  problems where there is  large labelled
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datasets from one or more source domains and large unlabelled data in the target domain. Instance-

based  transfer  learning  overcomes  differences  in  marginal  distributions  by  careful  sampling  of

observations in the source domain or finding optimal weights to assign to observations in the source

domain (Farahani et al., 2021). Each observation in the source domain can be weighted using ratio

of probability distribution functions  β=Pt( x , y) /Ps(x , y ) , where Pt( .)  and Ps(.)  are the joint

distributions  of  observations  from  the  target  and  source  domains,  respectively.  Estimating  the

probability density functions is challenging and thus β  is often approximated during model training

by minimizing the discrepancy between the source and target distributions. Discrepancy between

the source and target distributions can be quantified using Maximum Mean Discrepancy (MMD)

(Huang et al., 2006; Müller, 1997). Chattopadhyay (2012) introduced a technique for instance-based

transfer learning from multiple source domains whereby a classifier is first fitted in each source

domain and weight calculated for each source domain by computing the discrepancy between the

distribution of each source domain and the target domain. All the classifiers are then used to make

predictions on unlabelled data in the target domain and pseudo-labels are obtained by computing a

weighted average of the predictions. Finally, a classifier is fitted on the target domain using both the

labelled data and the unlabelled  data (using pseudo labels for unlabelled data).

2.5.2 Parameter-based transfer learning

Parameter-based transfer learning algorithms are homogeneous transfer methods where parameters

of models trained on the source domains are incorporated into models trained on the target task.

Tommasi  (2010) transferred  information  on  support  vector  machine  (SVM)  hyper-planes  of

multiple source domains to the target task. Weights obtained using “leave one out” cross-validation

were applied to parameters from each domain such that source domains that were more closely

related to the target domain had larger weights. Other approaches use Bayesian methods where the

parameters of both the source and target domains have shared prior distribution (Sultan et al., 2016;

Xuan et al., 2021). Parameter-based transfer learning methods for deep learning are discussed in

details later in this chapter.

2.5.3 Feature-based transfer learning

Feature-based  transfer  learning  algorithms  are  used  for  both  homogeneous  and  heterogeneous

transfer learning. Feature-based transfer learning aims at transforming the inputs in source and/or

target domains such that the extracted features are similar in both target and source domains. A

classifier  is  then fitted using datasets  from both source and target  domains,  with the extracted
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features  acting  as  inputs  to  the  machine  learning  model.  Homogeneous  feature-based  transfer

learning can be achieved by identifying features that have the same distribution in both source and

target domains and using the identified features as predictors for classifiers fitted using data from

both the target and source domains. For instance, Uguroglu (2011) used convex optimization to

identify features that produce the least maximum mean discrepancy between the source and target

domain. 

2.5.4 Transfer learning using deep learning

Parameter-based and feature-based transfer  learning methods have been applied widely in deep

learning  (C.  Tan  et  al.,  2018).  A neural  network  is  trained  to  solve  the  source  task  and  the

parameters or predictions of the network can be used for either feature-based or parameter-based

transfer learning. In feature-based transfer learning, the activations of hidden layers of the neural

neural network trained on the source task/domain are used as inputs for models performing the

target task. The inputs from the target domain are passed through the network trained on the source

task and outputs of hidden layers are extracted and used as inputs for the target task. On the other

hand,  parameter-based transfer  learning is  carried  out  by  using the  parameters  on  the  network

trained on the source task to initialize the neural  network trained to solve the target  task.  The

architecture  of  the  neural  networks  in  the  source  and  target  domains  have  to  be  identical  for

parameter-based transfer learning. In many cases, the source and target tasks are different, but the

features necessary for successfully solving the source task are expected to be relevant in solving the

target task. 

The source tasks can be classified into supervised or unsupervised/self-supervised depending on

whether the dataset from the source domain is labelled (C. Tan et al., 2018). Initializing the weights

of neural networks using parameters from a neural network trained on a labelled source domain is

referred to as supervised pre-training. For instance, convolutional neural networks that are trained to

classify  Imagenet  dataset  have  been  used  to  initialize  neural  networks  for  various  image

classification  tasks  including  classification  of  CXR,  satellite  images,  and  micro-structures  in

material science  (Rajpurkar et al., 2017; D. Wang et al., 2022; White et al., 2022). On the other

hand, self-supervised pre-training involves using unlabelled data to train the neural network for the

source domain. The source task is often referred to as the pretext task, while the target task is

referred  to  as  the  downstream  task.  The  pretext  tasks  can  be  classified  into  generative  or

discriminative tasks. 
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In generative self-supervised models such as auto-encoders, a deep learning model is trained to

predict  the  inputs  by  learning the  identity  function  f (X )=X̂ .  Auto-encoders  comprise  of  two

neural  networks,  where  one  neural  network  (the  encoder)  transforms  the  inputs  into  latent

representation g(X )=z ,  and  the  second  neural  network  (the  decoder)  transforms  the  latent

representation back to the input space  h(z )=X̂ .  Therefore  f (X )=h(g (X )) .   Regularization is

used to ensure that the function f  learns useful representation/features from the inputs. Denoising

auto-encoders apply regularization by adding noise to the inputs and having the model reconstruct

the inputs without noise (Vincent et al., 2010). Sparse auto-encoders apply regularization by forcing

the latent representation to be sparse (Le et al., 2012). Other generative models such as generative

adversarial networks (GANs) and variational auto-encoders (VAEs) are trained to sample from the

distribution of the inputs (I. J. Goodfellow et al., 2014; Kingma & Welling, 2013).

Generative models such as auto-encoders are difficult to train when the input space is large and may

not be necessary in learning useful representations of the inputs.  Discriminative self-supervised

algorithm avoid such difficulties by deriving pretext labels from unlabelled data and training a

supervised learning model. For instance, each image in an unlabelled dataset can be split into tiles

and a model trained to solve a jigsaw puzzle (Noroozi & Favaro, 2017). Labels can also be derived

from images by treating each image in the dataset as a separate class. Multiple instances of each

class/image  can  be  derived  by  applying  data  augmentation.  The  common  data  augmentation

techniques for images include rotating/flipping the image, random cropping, random brightness and

contrast  adjustment,  and changing the aspect  ratio  (Shorten & Khoshgoftaar,  2019).  Training a

classification model where each image is a different class is not feasible if the number of images is

large. Therefore, a contrastive learning models can be trained to map the latent representation of

each  input  such  that  latent  representations  of  two  related  inputs  are  closer  compared  to

representations of unrelated inputs (Saunshi et al., 2022). 

A major drawback of feature-based transfer learning is that aspects of the inputs that are relevant to

the  downstream  task  may  be  lost  when  training  on  the  source  task.  Multi-task  learning  can

overcome loss of information that is relevant to downstream tasks by training both the source and

target  tasks  simultaneously  (Crawshaw,  2020;  Y.  Zhang & Yang,  2017).  Multi-task  learning  is

achieved by having neural networks for solving multiple tasks share parameters/weights. There are
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two  major  branches  of  multi-task  learning  for  deep  learning  models:  hard  and  soft  parameter

sharing (Caruana, 1993; Duong et al., 2015). Hard parameter sharing enforce weights for some of

the hidden layers of neural networks for different task to be equal. The layers close to the inputs are

shared while those close to the output are not. While it is difficult to over-fit with hard parameter

sharing, the performance of the models for the various tasks can be dismal if  all  tasks are not

closely related (Baxter, 1997). In soft parameter sharing, each task has a separate neural network.

The shared hidden layers have identical architecture and corresponding layers are initialized to with

the same values. A regularization term quantifying the differences in weights of shared layers is

added to the cost function during model training (Ruder, 2017). Common regularization terms that

have  been  used  in  literature  include  the  L2  distance  and  the  trace  norm  between  weights  in

corresponding shared layers (Duong et al., 2015; Y. Yang & Hospedales, 2017).

The cost function of deep multi-task learning models is derived by summing the losses of all tasks.

However, the training process can favors tasks whose loses have large magnitudes if the losses of

different tasks have different magnitude, thus exhibiting poor performance  (Vandenhende et al.,

2021). Chen  (2018) proposed using gradient descent to learn optimal weights for different tasks,

and Lin (2021) showed that assigning random weights to losses of different tasks at each training

iteration can also perform well.
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Figure 1: Transfer learning methods. Transfer learning can be categorized into three: instance 

based, feature based or parameter based transfer learning. Feature based transfer learning can 

further be divided into two depending on whether the source task learns the distribution of inputs 

(generative tasks) or solves a discriminative task using pseudo-labels generated from the inputs.

2.6 Transfer learning for medical images, bio-signals and clinical 
data

Parameter-based transfer learning using supervised pre-training has been applied to CXR images,

whereby parameters  of  CNNs trained on the ImageNet  dataset  are  used to initialize  CNNs for

classifying CXR images  (Avola et  al.,  2021; Ponomaryov et  al.,  2021; Rajpurkar et  al.,  2017).

Unsupervised pre-training, where weights of models trained using self-supervised learning have

also been used to initialize deep learning models for classifying CXRs. For instance, Gazda (2021)

used self-supervised model trained used contrastive learning to initialize a convolutional neural

network  for  classifying  CXR images.  Self-supervised  using  contrastive  learning  has  also  been

applied  to  computed  tomography  (CT)  scans,  magnetic  resonance  (MRI)  imaging  and

ultrasonography (Ghesu et al., 2022).

Transfer learning has also been used in analysis of bio-signals. Weimann and Conrad (2021) used

pre-trained convolutional neural networks for classification of heart  arrhythmia using raw ECG

signals. Others have applied transfer learning on bio-signals by first transforming the raw signal

into  an  image/spectrograph  using  Fourier  or  wavelet  transform and  then  use  transfer  learning
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techniques commonly used for computer vision (Khan et al., 2021; Salem et al., 2018; Venton et al.,

2020; Wu et al., 2018).  

Transfer learning has also been applied to tabular medical data (Ebbehoj et al., 2022). Waldi (2021)

used data from an electronic health records (EHR) database from one hospital to pre-train a neural

network for classification of sepsis at a different hospital, outperforming a similar model without

transfer learning in external validation. Supervised and unsupervised pre-training have been used to

improve  classification  in  subgroup  of  patients  from  minority  ethic  groups  that  were  under-

represented in the training data (Gao & Cui, 2020).

In  conclusion,  while  transfer  learning  has  been  applied  successfully  in  natural  images,  similar

applications in medical images are scarce. Pre-training machine learning models for medical images

using natural images may be sub-optimal. Successful classification of natural images might depend

on model’s ability to detect edges, while classification of medical images might rely of changes in

color texture or other latent features. Transfer learning from source domains that are not closely

related to target domain might cause negative transfer, where models trained with transfer learning

perform worse on the target domain compared to model trained without transfer learning (W. Zhang

et al.,  2021). In addition, augmentation techniques – which are at the heart of transfer learning

algorithms such as contrastive learning - used for natural images might be inappropriate for medical

images. For instance, image cropping could leave out parts of medical images that are relevant to

making diagnosis,  given that  some medical  conditions may occupy only a  small  region of  the

medical image. There is limited literature on use of transfer learning on tabular clinical data. In

addition,  diagnostic  and  prognostic  models  developed  using  of  tabular  have  relied  on  logistic

regression. Logistic regression models are linear models (that describe the log odds of the outcome

as a linear combination of one or more explanatory variables) which are not expected to perform

well if the dataset is not linearly separable. While a systematic review of the benefit of machine

learning over logistic regression showed that machine learning models don’t perform better, the

reported  models  did  not  employ  transfer  learning  and  the  effect  of  dataset  size  on  model

performance was not evaluated (Christodoulou et al., 2019). Analysis of bio-signals have relied on

traditional  signal  processing  techniques  to  extract  features  from  raw  signals.  Such  techniques

require domain knowledge of the relationship between the raw signal and the outcome of interest,

limiting the use of PPG signals in predicting novel outcomes. Deep learning has been shown to be
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useful in classification of various signals without requiring extensive feature engineering. While

end-to-end deep learning models require large labelled datasets, self-supervised learning (SSL) may

improve the performance of end-to-end deep learning models by providing end-to-end models with

optimal weight initialization. Classification of PPG signals may benefit from self-supervised

learning methods such as contrastive learning. But it is also not clear which contrastive pre-text

tasks would be relevant for bio-signals.
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3 Methods

3.1  Analysis of Bio-signals

The aim of this analysis was to predict hospitalization of children seeking care at the outpatient

department of a public hospital using bio-signals (PPG) obtained using a pulse oximeter. We sought

to find out whether transfer learning incorporating an unlabelled PPG signals dataset could improve

the performance of classification models fitted using a small labelled PPG dataset. We used Self-

Supervised Learning (SSL) models trained using contrastive learning to perform transfer learning.

We compared prediction performance of features extracted using SSL model fitted with labelled

PPG signals only with features extracted using SSL model fitted using both labelled and unlabelled

PPG signals. Furthermore, we compared performance of end-to-end deep learning models

initialized randomly, with models initialized with weights from the SSL models. An overview of

steps used to analyze the PPG signals are outlined in Figure 2.

3.1.1 Data sources 

Labelled PPG signals

Labelled data was collected by a study nurse at the paediatric outpatient department of Mbagathi

sub-county hospital between January and June of 2018. The study nurse used a pulse oximeter

connected to an android tablet to collect PPG signals from recruited patients after obtaining

informed consent from the caregivers. The study nurse also collected demographic information and

clinical signs and symptoms of all recruited children. The facility clinician, who was not part of the

study and without access to the study data made decision on whether children were hospitalized.

The  study  nurse  collected  PPG  signals  from  1,031  children,  125(12.2%)  of  whom  were

hospitalized. We set aside 20% of the PPG signals for final model validation and used the rest for

model training and validation.

Unlabelled PPG signals

We sourced additional PPG signals from the Smart Discharge (SD) study in Uganda (Wiens et al.,

2021a, 2021b). The study nurses collected two PPG recordings from each patient at both admission

and discharge. The models are meant to be used for triage and therefore require the training data to

be collected at triage or as soon as a patient arrives at the hospital. Therefore, the data from SD
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study was treated as unlabelled despite being collected from hospitalized children because the status

of the child may have changed between the time they arrived at the hospital (triage) and the point of

admission/discharge.

PPG signal acquisition

PPG signals were sampled at a rate of 80 Hertz (80 samples per second) for 60 seconds for both

Mbagathi and SD study. The pulse oximeters were developed by Lionsgate Techonlogies medical

(Vancouver, Canada) and utilized the red and infrared wavelengths.

3.1.2 Signal pre-processing

The red and infra-red PPG signals were normalized by subtracting the mean and dividing by the

standard deviation computed from all PPG segments in Mbagathi study. The signals were then split

into 10 second segments with two second sliding window (two second overlap between consecutive

segments).
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Figure 2: Schematic overview of the analysis of PPG signals. PPG signals were normalized using 

mean and standard deviation of the entire dataset and the signals from each patient sere split into 

segments of 10 seconds with 2 second sliding window. Data augmentation was applied to PPG 

signals in the training dataset only before signals were analyzed using supervised and self-

supervised deep learning models. Features extracted using SSL models were classified using 

logistic regression. Weights of SSL models were also used to initialize end-to-end deep learning 

models
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3.1.3 Data Augmentation

We applied data augmentation to normalized PPG signals in the training dataset to reduce over-

fitting as part of model training pipeline. Data augmentation is a technique of generating more data

by applying random perturbations to existing data. We applied data augmentation to PPG signals by

adding Gaussian noise and applying signal slicing and permutation  (Um et al., 2017). Gaussian

noise augmentation was applied by element-wise addition of  noise sampled from the Gaussian

distribution to the PPG signals. For each of the red and infrared channels of the PPG signal, random

values numbering the length of samples in a PPG segment were drawn from a normal distribution

with a  mean of  zero and standard deviation sampled from the log uniform distribution with a

minimum and maximum values of 0.00001 and 0.01, respectively. Signal slicing and permutation

augmentation  was  applied  by  splitting  the  PPG  segment  into  n  slices  of  equal  length  and

concatenating the slices after permuting their order. Hyper-parameters for proportion of training

PPG signals with augmentation and the number of slices were optimized during model training. An

example of PPG segment data augmentation is shown in Figure 3.
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Figure 3: PPG data augmentation. a) Noise sampled from the Gaussian distribution is added to the 

original signal. b) Signal slicing and permutation was implemented by splitting the signals into 

multiple segments and combining the segments in random order.
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3.1.4 Models

We fitted models to predict whether a child would be hospitalized given PPG signals collected

during triage. We used deep learning models to either classify hospitalization given the raw PPG

signals (end-to-end models) or to extract features from raw signals that could then be classified

using  logistic  regression  (self-supervised  feature  extraction).  We  used  convolutional  neural

networks (CNNs) for all deep learning models. CNN is an architecture of artificial neural networks

(ANNs) that widely used for datasets with a spatial or temporal structure (LeCun et al., 1999).

ResNet50 deep learning architecture was used for both end-to-end models and encoders with slight

modification necessitated by differences between PPG signals and images. In particular, we used

two  channels  in  the  first  convolutional  layer  instead  of  three  because  PPG  signals  have  two

channels (red and infrared) as opposed to the red, green and blue channels in color images (He et

al., 2015). In addition, all convolutional layers were modified to be one dimensional because the

PPG signals are one dimensional (time) as opposed to the height and width dimensions of an image.

Max pooling was applied after every convolutional block to reduce computation cost and increase

the receptive field of the model. 

SSL models based on contrastive learning were used to perform feature-based and parameter-based

transfer learning. Feature-based transfer learning was implemented by using the trained SSL models

to transform PPG signals into feature vectors that could be classified using logistic regression to

predict hospitalization. On the other hand, parameter-base transfer learning was implemented by

using the parameters of the SSL models to initialize the parameters of end-to-end deep learning

models for predicting hospitalization.

3.1.5 Feature extraction using SSL

Encoder architecture and training

The encoder model consisted of two functions. The first function  f :ℝ2 x 800
→ℝ

32 , was a ResNet

model  that  transformed  a  PPG  segment  into  a  latent  representation hi .  The second  function

g :ℝ32
→ℝ

32
, was a multi-layer perceptron (MLP) with a single hidden layer that transformed the

output of the first function into a compressed representation ki . The encoder was trained such that

given two PPG segments Xi  and X j , the distance between compressed representations ki and k j

was closer if the PPG segments were sampled from the same patient compared to PPG segments
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sampled from different patients (Figure 4). We trained the model using noise contrastive estimation

(NCE) loss shown in equation (1) and used dot product to characterize the distance between two

compressed representation (Gutmann & Hyvärinen, 2010). 

l j=−log
exp (q . k+ / τ)

∑
i=0

2 (N−1)

exp(q . ki /τ )

(1)

where N is the mini-batch size, q  is a query embedding, k+  is the embedding from the positive

pair,  ki  are  the  embeddings  of  2(N−1)  negative  and  one  positive  segments,  and  τ  is  a

temperature hyper-parameter.

We trained two SSL models: one was trained on labelled PPG signals only and the other on all PPG

signals (both labelled and unlabelled)

Model training and Hyper-parameter optimization

Hyper-parameter  optimization  was  done  using   Asynchronous  Successive  Halving  Algorithm

(ASHA) using the  ray-tune library in Python  (L. Li et al., 2020; Liaw et al., 2018). ASHA was

implemented  by  randomly  sampling  300 hyper-parameter  configurations  and  stopping  poorly

performing configurations after 20, 40, 80, 160, 320, and 640 epochs. A list of all hyper-parameters

and the search space is shown on Table 1. The models were trained for a maximum of 700 epochs

using Adam optimizer (Kingma & Ba, 2017). 

Table 1: Hyper parameter search space

Hyper-parameter Search space

Dropout ~loguniform(0.01,0.5)
Batch size {8,16,32,64}
NCE temperature ~loguniform(0.0001,0.5)
Learning rate of convolutional layers ~loguniform(0.00001,0.5)
Weight decay parameter for convolutional layers ~loguniform(0.000001,1.0)
Learning rate for fully connected layers ~loguniform(0.00001,0.5)
Weight decay for fully connected layers ~loguniform(0.000001,1.0)
Proportion of signals with Gaussian noise augmentation {0.0,0.2,0.5,0.8,1.0}
Number of slices for with signal slicing and permutation augmentation {2,5,8,10}
Proportion of signals with signal slicing and permutation augmentation {0.0,0.2,0.5,0.8,1.0}
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Feature extraction

The hidden layer and the output layers of the MLP had 32 units each. We discarded the last layer of

the MLP after training the encoder because previous studies have shown that features extracted

using the last layer perform poorly on downstream tasks because they are heavily tuned to solving

the pretext task (T. Chen et al., 2020; He et al., 2020). Given a 10 second PPG segment, the model

extracted 32 features, which were later used as predictors of hospitalization.

For comparison purposes, we also extracted features using principal component analysis (PCA), a

traditional dimensionality reduction technique. PCA was used to reduce the dimensionality of raw

PPG signals from 2x800 to 32. We qualitatively assessed the quality of extracted features using a

scatter plot of the first and second PCA components and coloured the points using values of heart

rate, respiratory rate and SpO2.

3.1.6 Classification and regression using Linear models

We tested correlation of extracted features with physiological parameters know to be present in PPG

signals (heart rate, respiratory rate, and SpO2) using linear regression, and hospitalization using

logistic regression. These physiological parameters were not of clinical interest but served as a

measure of quality of features extracted using SSL.  
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Figure 4: Contrastive learning. The function f(.) is a ResNet model that transforms 

raw PPG signals into an intermediate representation hi, while the g(.) is a MLP 

that transforms the intermediate representation to the final representation ki.
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We used Bayesian linear and logistic regression fitted using the Pyro library in python (Bingham et

al., 2018). Horseshoe priors were used  to induce sparsity in the coefficients of the linear/logistic

regression models to prevent over-fitting, given that the dimensionality of the extracted features was

large when second order polynomials (including all pairwise interactions) of the predictors were

included (Carvalho et al., 2009). Hamiltonian Monte-Carlo algorithm was used to obtain samples of

regression  parameters  from  the  posterior  distribution  (Neal,  2011).  The  algorithm  was  run  to

produce 5000 samples from the posterior distribution with a burn-in of 1000 samples. The 5000

samples were were used to generate 5000 predictions for each observation in the test data-set, and

the final prediction for each observation was obtained using unweighted mean. 

We also evaluated the utility of the extracted features in improving logistic regression models for

predicting hospitalization using clinical features identified from previous analyses  (Mawji et al.,

2021). Features extracted using SSL models were concatenated with eight clinical features: weight,

mid-upper arm circumference (MUAC), restlessness, inability to drink/breastfead, temperature,

heart rate, SpO2 and difficulty breathing. 

3.1.7 End to end deep learning

The model architecture used for the end-to-end deep learning model was similar to the encoder in

section 3.1.5. The ResNet function f (.)  was identical but the MLP function g(.)  had one output at

the last layer instead of 32. The model was trained to predict hospitalization using Adam optimizer

and binary cross-entropy loss. The binary cross entropy loss between the target  yi  and predicted

probability of admission ŷi can be describe as:

li=− yi ⋅ log ŷi+(1− yi)⋅ log(1− ŷi)

and the loss of a mini batch of n  observations was obtained by computing the mean:

L=1/n .∑i=1

n

li
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During training, observations from the minority class (hospitalized) were up-sampled to address

class imbalance. That is, the probability of an observation xi  with a given outcome being included

in a mini-batch was equal to the reciprocal of number of observations with that outcome. Label

smoothening was applied to reduce the negative effect of noise in the outcome. Given an outcome

label yi  and a smoothening parameter α , the smoothened label was computed as:

ysmooth=(1−α )∗yi+α /K

where K  is the number of classes (2 for binary classification).

We compared three methods of initializing weights in the  f (.)  function of the end-to-end deep

learning  model:  Random initalization,  initializing  using  weights  of  the  SSL model  trained  on

labelled PPG signals only, and initialization using weights of SSL model trained using all PPG

signals (both labelled and unlabelled). We used the same hyper-parameter optimization procedure as

the SSL models in section 3.1.5.

 

3.2  Analysis of medical images (Chest radiographs)

We  used  transfer  learning  to  improve  classification  accuracy  of  machine  learning  models  for

classifying  paediatric  CXR images  from the  PERCH study.  We used  parameter  based  transfer

learning where models for classifying PERCH CXR images were initialized using weights from

models trained to perform other computer vision tasks. We compared transfer learning using model

trained on natural images (ImageNet dataset) with model trained on CXR images (Chestray -14

CXR images).  We  also  explored  transfer  learning  using  multi-task  learning  where  models  for

classifying PERCH and Chestray-14 CXRs were trained simultaneously. Finally, we explore a novel

multi-task learning approach where a  model  is  trained to simultaneously classify how multiple

human readers would classify a given CXR. Such models can be trained on data-sets where multiple

readers annotated the training data. The predictions of all readers for a given CXR are aggregated to

obtain the final prediction. The performance of models classifying PERCH CXRs were evaluated

using multi-label accuracy and AUC (one verses the rest).
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3.2.1 Data

The PERCH dataset  contains  CXR images  collected  in  nine  sites  from seven low and middle

income countries: Kilifi, Kenya;  Basse, The Gambia; Nakhon Phanom and Sa Kaeo, Thailand;

Bamako, Mali; Soweto, South Africa; Lusaka, Zambia; and Dhaka and Matlab, Bangladesh. The

CXRs were  obtained from children  aged 2-59 months  hospitalized  with  severe  or  very  severe

pneumonia.  PERCH  CXR  images  are  classified  into  five  categories  according  to  WHO

classification  of  CXR  for  diagnosis  on  pneumonia:  consolidation;  other  infiltrate;  both

consolidation and other infiltrate; normal or uninterpretable  (Cherian et al., 2005). Normal CXR

category accounted for almost half of images in all sites except for South Africa and Zambia (28%

and 31%, respectively). The proportion of images in each site that were classified as uniterpretable

ranged between 4% and 20% (Figure 5).

There were 18 readers (annotators), 14 initial readers (nine paediatricians and five radiologists) and

four arbitrators (all radiologists). The initial readers consisted of two readers from each country who

received training on the WHO methodology from the arbitrators. Whenever the two initial readers

gave conflicting interpretations, two arbitrator with extensive WHO methodology experience were

randomly chosen to review the image. If the two arbitrators still came to conflicting interpretations,

the two arbitrators held a consensus discussion to make a final decision. Finally, the arbitrators

reviewed 10% of images with initial concordance for quality control (Fancourt et al., 2017a). 
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The Chestray-14 data-set comprises of 112,120 CXRs obtained from 30,805 patients. The data-set

was obtained from the  Picture Archiving and Communication Systems (PACS) database of the

National Institutes of Health (NIH). The data-set is classified into 14 common chest pathologies one

of which is  pneumonia.  The 14 classes were obtained from radiological  reports  using machine

learning methods for natural language processing. All patients in the data-set originate from one

high income country and less than 1% of CXRs are obtained from children below five years. 

CXRs from PERCH and Chestray-14 have significant differences. These include age of patients,

ailment and technology used to acquire images. PERCH images from Zambia and the Matlab site in

Bangladesh were obtained using analog means and the films scanned into digital format (Ominde et
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Figure 5: Number (percentage) of chest radiographs (CXRs) from each country by WHO 

category (label). Images were from Bangladesh (BAN), South Africa (SAF), Mali (MAL), 

Zambia (ZAM), Kenya (KEN), Thailand (THA), and Gambia (GAM).



al., 2018). Some CXRs in PERCH data-set do not occupy the entire image, while other include

body parts beside the chest such skull, limbs, and stomach (Figure 6).

Both PERCH and Chestray-14 data-set were split once to obtain the training and test data-set as

opposed to K-fold cross-validation. The PERCH dataset was split such that 20%  (802/4008) of

patients were set aside for final model evaluation (test set), while the official train-test split was

used for Chestray-14 dataset  (X. Wang et al., 2017). The training data-set was further split into

training and validation datasets as part of model training for optimal hyper-parameter search. The

final  performance of  all  models  was evaluated on the same test  dataset  so that  comparison of

different modeling approaches was not affected by differences in test images.
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3.2.2 Baseline models

For  simplicity,  we  used  ResNet18,  ResNet34  and  ResNet50   model  architectures  from  the

torchvision version 0.8.2 library for all our experiments (He et al., 2015; Marcel & Rodriguez,

2010; Paszke et al., 2019). The ResNet models' last fully connected layer was replaced with a fully
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Figure 6: A random sample of PERCH CXR images. Some images do not occupy the entire film and

images of very small children contain other body parts besides the chest.



connected  layer  with  five  output  units  – one  for  each  WHO category.  The  ResNet  models  in

torchvision library are either  initialized randomly or  using weights  from models trained on the

ImageNet dataset  (J. Deng et al., 2009). We used models initalized using ImageNet weights as a

baseline because they have be shown to perform better on CXR datasets than randomly initialized

models (Rajpurkar et al., 2017).

We used ASHA algorithm (described in details in section 3.1.5) to select optimal hyper-parameters

for dropout, batch size, learning rate, weight decay and proportion of images with augmentation.

The models were trained for 150 epochs, with learning rate halving after 50 and 100 epochs. We

trained the models using Adam optimizer and cross entropy loss. For a classification problem with

C classes, the cross entropy loss of on an observation i  with correct class k  is defined as:

li=−log (
exp (x [k ])

∑
j=1

C

exp (x [ j ])

)

where x  are the unnormalized scores for each class. The loss for a mini-batch of n  observations

was obtained using unweighted mean:

L=∑
i=1

n

li

Weighting the loss function by class frequencies to address class imbalance did not improve model

performance and was not implemented in all subsequent analyses.

3.2.3 Pre-trained models

We initialized the weights of models for classifying PERCH CXRs using weights of deep learning

models with the same architecture but trained on different tasks. We tested initializations using

weights from supervised model trained to classify Chestray-14 CXRs (supervised pre-traning) and

unsupervised/self-supervised  model  trained  using  both  PERCH  and  Chestray-14  CXRs

(unsupervised pre-training).

Supervised pre-training

We  trained  models  for  classify  Chestray-14  CXRs  using  ResNet  models  with  varying  sizes

(ResNet18,  ResNet34  and  ResNet50).  The  models  were  identical  to  the  baseline  model  for
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classifying PERCH images except for the final fully connected layer, which classified each image

into 15 binary classes. Given that Chestray-14 dataset contains 15 binary labels, the loss function

was a weighted sum of 15 binary cross entropy losses. We weighted the losses of each of the 15

binary classification tasks by the homoscedastic uncertainty of each loss (Kendall et al., 2018). The

aggregated loss function for the 15 tasks was defined as: 

li=∑
j=1

15
1

σ j

2 lij+log(σ j

2
)

where σ j
2  were the weights of the 15 losses and were parameters optimized during model training.

ASHA algorithm was used for hyper-parameter optimization and Adam optimizer was used to train

the models. 

After training the model to classify Chestray-14 images, the weights of the best model was used to

initialize models for classifying PERCH images. The training procedure for PERCH image was

identical to the baseline model described in section 3.2.2.

Self-supervised pre-training

We trained a SSL models using contrastive learning which is described in details in section 3.1.5.

We used instance classification pretext task, where the encoder was trained such that embeddings of

two views of the same CXR were closer than embeddings of two views of different CXRs (Figure

7a). Multiple views of a single CXR were created by apply random augmentations to the CXR. The

augmentation pipeline was composed of random resized crop, random color jitters (random contrast

and brightness adjustments), random horizontal and vertical flips, and random affine transformation

(Figure 7b). 

We used Population Based Training (PBT) to find optimal hyper-parameters for augmentation and

model  training  (Jaderberg  et  al.,  2017).  PBT was  carried  out  as  follows:  Eight  models  were

initialized with  eight  random hyper-parameter  configurations.  The models  were  then trained in

parallel  for five epochs after which four of the poorest  performing models were discarded and

replaced  with  clones  of  the  four  best  performing  models  and  hyper-parameters.  The  hyper-

parameters were then perturbed and the models trained for another five epochs. The process was

repeated until none of the model improved after fifty epochs. The best performing models was then

taken as the final model.
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The weights of the best model were used to initialize CNN models for classifying PERCH images.

The model was then trained in a manner similar to the baseline model.

3.2.4 Multi-task learning

Multi-task learning involve training models that can perform two or more tasks simultaneously.

Multi-task models have multiple outcomes with each outcome corresponding to a task. Two ResNet

models were trained simultaneously to classify PERCH and Chestray CXRs. The two models had

the same architecture for all layers except the final fully connected layer, which had five and fifteen

output units for PERCH and Chestray models, respectively. Constraints were placed on the weights

41

Figure 7: SSL using contrastive learning. a) The contrastive learning model  was trained such that 

embeddings of different view of the same image were closer in distance compared to embeddings of 

views of two different images. b) Example of augmentation of 5 CXR images. Each column shows 

two views of the same CXR obtained by applying multiple augmentations.
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of all layers except the final fully connected layer during training such that corresponding weights

of  the  PERCH and Chestray  models  would  be  equal  or  have  small  mean absolute  differences

(Figure 8).

Two multi-task learning approaches were compared. The first multi-task approach forced the

weights of the shared layers to be equal but varied the number of shared layers (hard parameter

sharing). The extent of weight sharing (Resnet block1, ResNet block2 ….) was a hyper-parameter to

be optimized during model training. The model for classifying Chestray-14 CXR images had 15

binary outcomes and the loss was computed as the mean of 15 binary cross-entropy losses. On the

other hand, the outputs of the model for classifying PERCH images were the probabilities of a CXR

belonging to each of the 5 WHO categories and the loss was the cross entropy loss. The losses for

models classifying PERCH and Chestray-14 images were combined using a weighted sum where

the weights were parameters to be estimated during model training. That is:

L=
LPERCH

σ1
2 +

LChestray−14

σ2
2 + log(σ1

2
)+ log(σ2

2
)

where  σ1
2 and σ2

2 are the weights of PERCH and Chestray-14 models losses respectively and the

term log(σ1
2
)+ log(σ2

2
) prevented the values of weights from becoming arbitrary large during model

training, given that the optimizer can take a shortcut and reduce the overall loss by making the

values of σ1
2  and σ2

2  arbitrarily large.

The second multi-task learning approach constrained the weight of the shared layers by adding a

penalty to the loss function during model training (soft parameter sharing). The penalty was the

mean absolute difference (MAD) between weights in corresponding layers of the two networks. The

loss function including the MAD term was:

L=
LPERCH

σ1
2 +

LChestray−14

σ2
2 + log(σ1

2
)+ log(σ2

2
)+ λ

P
∑

i=i

P

|W 1i−W 2i|

where  λ is  a  hyper-parameter  controlling  the  strength  of  regularization,  W 1  and W 2 are  the

weights of the models for classifying PERCH and Chestray-14 CXR images respectively, and P  is

the total number of weights shared by PERCH and Chestray models.
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3.2.5 Incorporating individual reader annotations

We extended the PERCH model by adding an embedding layer for reader identifiers. An embedding

layer maps a categorical variable into a vector of fixed size (Guo & Berkhahn, 2016). Once trained,

the vector/embeddings should contain semantic information about the category it embeds. That is,

categories that are similar should produce embeddings that are closer as measured using distance

metrics  such  as  cosine  similarity  compared  to  embeddings  of  categories  that  are  unrelated.

Embeddings are widely used in language models where each word is embedded into a vector of

fixed size  (Mikolov et al., 2013). In our case, readers who classify CXR in the same way should

have embeddings that are closer that embeddings of readers who don’t. The addition of a reader

embedding  layer  meant  that  the  modified  PERCH  model  could  classify  a  given  CXR  image

conditional on reader identifier.

The ResNet models have a global average pooling (GAP) after the final convolutional layer. The

outputs of the GAP are mapped to model predictions using a single fully connected layer. Therefore,

the neural network layers from the input layer to the GAP can be considered as a feature extractor

whose outputs  act  as  inputs  to  a  linear  classifier  (the  fully  connected layer).  We extended the

ResNet  models  by  combining  reader  embeddings  with  image  embeddings  using  element  wise

multiplication. Given that the reader embeddings had dimensions of 32 units, a fully connected
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Figure 8: Multi-task learning for classifying PERCH and Chestray-14 images. Constraints were 

placed on the weights during training such that the weights would either be the same or similar
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layer was used to project reader embeddings to have the same dimensions as the image embeddings.

We applied hyperbolic tangent (tanh), sigmoid or identity activation function to the projected reader

embeddings, with the choice of activation function was tuned as a hyper-parameter during model

training. A fully connected layer with 5 units was appended to the network to classify the CXRs into

one of the five WHO categories (Figure 9).

The resulting model was equivalent to the PERCH model without reader embeddings if all  the

values of reader embedding have value one. If we consider image embeddings as features extracted

from a given image, then the learned reader embedding allowed different readers to assign different

weights to each of the extracted image features. We used the same model training procedures as

supervised pre-training (we used the same image augmentation techniques, learning rate schedule,

regularization and optimization algorithms).

While the training CXR images were the same for models with and without reader embeddings,

each  CXR  appeared  multiple  times  in  each  training  epoch  depending  on  how  many  readers

classified it. We used each reader’s classification as labels during training, unlike in models without

reader embeddings where the final classification was used. There were 18 readers in total. Thus, 18

predictions could be made for every CXR image. The 18 predictions were aggregated to obtain the

final prediction using unweighted mean. 
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3.3 Analysis of clinical data (Prediction of positive blood cultures)

The aim of this analysis was to predict blood culture results of hospitalized children using clinical

signs and symptoms. We sought to evaluate the utility of transfer learning and semi-supervised

techniques that leveraged an unlabelled dataset from 14 public hospitals in improving prediction

accuracy on a labelled data from a single hospital. We compared a baseline models trained using

logistic regression with parameter based transfer learning models based on deep learning and semi-

supervised learning models  based on self-training.  Model  performance was primarily evaluated

using AUC,  but  we also  report  performance  based on recall  (sensitivity),  specificity,  precision

(positive predictive value), F1 (geometric mean of recall and precision) and accuracy. We compared

models  fitted  using labelled data  only  with  models  that  incorporated the  unlabelled data  using

transfer learning. The labelled data was collected for over 15 years and can be considered relatively

large. Therefore, we tested the performance of models fitted on subsets of different sizes ranging

from 5% to 100% of the labelled dataset.
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Figure 9: Model classifying PERCH CXRs conditional on reader. The model had two inputs: A CXR

image and an identifier for the reader who classified the image. The output of the global average 

pooling of the ResNet models acted as image embeddings while the reader identifier were embedded

into a vector of 32 units. The reader and imaged embeddings were combined using element wise 

multiplication and a single fully connected layer classified the combined embeddings into one of the

five WHO categories.



3.3.1 Data sources

The study utilized two data-sets from two studies described in the sections below. We restricted our

analysis to dataset of children aged 2-59 months. The following predictor variables were included:

acidotic  breathing,  bulging  fontanelle,  ability  to  drink,  capillary  refill,  convulsions,  number  of

convulsions, cough, duration of cough, crackles, central cyanosis, decreased skin turgor, diarrhoea,

diarrhoea  duration,  presence  of  blood  in  diarrhoea,  difficulty  breathing,  fever,  fever  duration,

indrawing, jaundice, lymphadenopathy, oedema, oxygen saturation, pallor, partial fits, weak pulse,

pulse  rate,  respiratory  rate,  stiff  neck,  stridor,  sunken  eyes,  temperature,  temperature  gradient,

thrush, vomiting, vomiting everything, wasting, and wheeze. The following variables were excluded

because they were not available in both datasets: AVPU (alert, voice, pain, or unresponsive) scale,

irritability,  flaring,  grunting,  body  condition  score  (BCS),  and  head  nodding.  The  following

variables were excluded due to high proportion of missingness: blood pressure, and mid upper arm

circumference (MUAC).

Labelled data

Labelled data was sourced from Kilifi county hospital which is located at the Kenyan coast. Kilifi

county hospital  is  part  of the Kilifi  Health and Demographic Surveillance System (KHDSS), a

surveillance system established in 1989 and embedded within Kenya Medical Research Institute

(KEMRI) – Wellcome Trust Research Programme (Scott et al., 2012).  Given the central role the

hospital plays in various research studies, the laboratory facilities are likely to be better compared to

typical public hospitals in low resource settings. The laboratory facilities are fully accredited by

Qualogy UK limited for Good Clinical Laboratory Practice (GCLP) (Gumba et al., 2019). As part of

the surveillance, all peadiatric patients admitted to the hospital except those admitted with minor

trauma or those undergoing elective surgery are investigated with blood cultures. In addition, the

dataset consists of demographic and clinical variables (clinical signs and symptoms). The data-set

spans  15  years  and  was  collected  between  2002  and  2017.  The  dataset  consists  of  44,493

observations of which 40,840 have known blood culture results. 

Unlabelled data

The unlabelled data was sourced from the Clinical Information Network (CIN), a network of 14

public tertiary hospitals located in the western and central regions of Kenya (Tuti et al., 2016). The

study  aims  at  improving  the  quality  of  data  collected  on  quality  of  care  provided  to  children

admitted in public hospitals. The study does not provide additional resources to the participating

public hospitals above funding for data entry clerks and computers for data entry. The data was
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abstracted from medical  records of  children admitted in paediatric  wards after  discharged.  The

hospitals receive quarterly reports on performance of selected documentation and quality of care

indicators.  The dataset  contains information on demographic,  clinical  signs and symptoms,  and

outcome at discharge, but no reliable data on blood cultures. The lack of reliable blood culture

results data is indicative of lack of reliable laboratory facilities in low resource settings. The dataset

consist  of  58,723  observations  and  was  collected  between  2013  and  2017.  The  location  of  of

hospitals in CIN and KHDSS are shown in appendix A.

3.3.2 Data imputation and pre-processing

Predictor  variables  with  more  than  50% missingness  were  dropped  from further  analysis.  For

simplicity,  we performed a single imputation using K-nearest  neighbors.  Predictor variables for

each imputed variable were selected by picking variables with the highest mutual information with

the variable being imputed. The number of neighbors,  k , and the number of predictors to keep,

were selected using K-fold cross-validation. Performance of imputation models was evaluated using

F1 score and root mean square error for categorical and continuous variables, respectively.

Data pre-processing

Categorical predictor variables were converted into numeric variables using one-hot encoding with

dummy variables for the first category in each variable dropped. The data was then re-scaled using

min-max scaling such that all values ranged between -1 and 1.

3.3.3 Baseline model for predicting blood culture results

We fitted a logistic regression model with L2 weight decay as baseline.  Nested five-fold cross

validation was used to obtain confidence intervals for AUC (Figure 10). The inner loop was used to

find optimal hyper-parameter value for L2 regularization using randomized search, while the outer

loop was used to estimate model performance.  We sampled values of  L2 regularization hyper-

parameter from a log uniform distribution with a minimum and maximum values of 0.0001 and 100

respectively. There was high imbalance in the outcome due to positive blood culture result being

rare. Therefore, the loss of the logistic regression was weighted by the inverse of class frequencies

during model training.
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3.3.4 Multi-layer perceptron (MLP)

We used multi-layer perceptrons (MLPs) with three hidden layers for all deep learning models.

Each layer of the MLP consisted of a fully connected layer, batch normalization and LeakyRELU

activation (Figure 11a). A fully connected layer is a linear function f with weight matrix parameters

W and a bias parameters b such that for an input x  , f (x)=Wx+b . Batch normalization was used

to center and scale the outputs of the fully connected layer to fasten model convergence (Ioffe &

Szegedy,  2015) .  For  a  vector  of  inputs  x with  mean  E[ x ]  and  variance  var [ x],  batch

normalization was computed as:

y=
x−E[ x ]

√Var [x ]+ϵ
∗γ+β ,
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Figure 10: Nested K-fold cross-validation with a four fold outer loop and three fold inner loop. The 

inner loop is used to choose optimal hyper-parameters while the outer loop is used evaluate model 

performance.



where  γ  and β are  parameters  estimated  during model  training and  ϵ is  a  very  small  positive

number to prevent dividing by zero. LeakyRELU activation function allowed the MLP to learn a

non-linear  function  that  can  be  useful  in  classification  on  non-linearly  separable  data.  The

LeakyRELU function is defined as:

LeakyRELU ( x)={ x  if x≥0
α∗x  otherwise}  

where α  is the negative slope. We applied negative slope of 0.2 in all our experiments. Multiple

forms of regularization were applied during model training to reduce over-fitting. We applied L1

and L2 regularization on model weights and dropout on the output of each MLP block. 

We used binary cross-entropy loss and ADAM optimizer, a first order gradient based optimization

algorithm  to  train  the  models  (Kingma  &  Ba,  2017).  Gradient  based  optimization  algorithms

iteratively update the parameters of the model by taking a step in a direction opposite to the partial

derivatives of the loss with respect to model parameters. The loss is a measure of how well the

model  predictions  agree  with  the  observed  values.  The  loss  function  including  L1  and  L2

regularization was defined as:

L( y , ŷ )=
−1
N

×∑i=1

N

wi[ yi log( ŷi)+(1− yi) log(1− ŷi)]+λ1|W|+λ2‖W‖

where y is the observed outcome, ŷ is the predicted outcome, N is the number of observations in

a mini-batch,  wi is the weight of each observations in the mini-batch, and  λ i  and λ2 control the

strength of L1 and L2 regularization, respectively, on a model parameters W . we applied weights

wi to  each  observation  to  address  class  imbalance  in  blood  culture  results.  Observations  with

negative blood cultures had a weight of 1.0 while those with a positive results were assigned a

weight larger than 1.0 so that the models was penalized more for false negative predictions as

compared to false positives. 

Optimal hyper-parameters for weight assigned to observations with positive blood culture results,

regularization,  and  learning rate  for  ADAM optimizer  were  tuned  using  the  ASHA algorithm.

ASHA  hyper-parameter  optimization  was  carried  out  by  sampling  500  hyper-parameter

configurations from the hyper-parameter search space resulting in 500 trials. The trials were then

run in parallel with the number of trials halved after 50, 100 and 200 epochs by stopping trials with
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low AUC on the validation dataset. The trial with the highest validation AUC after 250 epochs was

chosen to be the final model. The procedure was repeated 5 times with different splits of the the

training data (5 fold cross-validation). 
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Figure 11: Multi-layer perceptron (MLP) used as backbone for classifiers and auto-encoders. The 

MLP model was made up of multiple fully connected blocks shown in (a). Figure (b) shows an 

example of an MLP model consisting of 4 fully connected blocks and a sigmoid activation layer for 

converting the outputs of last fully connected block into probabilities.
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3.3.5 Self-supervised pre-training

Parameter  based  transfer  learning  was  implemented  using  self-supervised  pre-training.  Self

supervised pre-training involved fitting a self-supervised model and using the weights of the self-

supervised models to initialize MLPs models for predicting positive blood cultures. Therefore, part

of the self-supervised model had the same architecture as the final model for predicting positive

blood culture. We used sparse and denoising auto-encoders to train self-supervised models and then

used the weights of the auto-encoders to initialize MLPs for predicting blood culture results.

A bottleneck is applied to the networks to prevent the auto-encoder network from simply copying

the inputs to the outputs, hence failing to learn useful representations of the inputs. Sparse auto-

encoders enforce such a bottleneck by having the dimension of the latent representation  z being

smaller that X or applying regularization on the latent representation layer Figure 12b. 

We fitted three types of sparse auto-encoders. The first sparse auto-encoder enforced a bottleneck

by having the dimensions of the latent representation being much smaller than the dimensions of the

inputs (16 units compared to input dimension of 39). The second and third sparse auto-encoders had

latent representation with much larger dimensions than the inputs and enforced a bottleneck by

adding  regularization  term to  the  cost  function  that  encouraged  the  latent  representation  to  be

sparse. We explored two types of regularization terms: L1 and KL. L1 regularization was

implemented by adding the L1-norm of the latent representation  z to the mean square error loss

MSE( X , X̂)+λ|z| . Where λ is a hyper-parameter controlling the strength of regularization. On the

other hand, KL regularization term were computed by calculating the KL divergence between the

latent representation and a Bernoulli distribution with probability ρ . Sigmoid activation was first

applied to the latent representation to restrict the values of the latent representation to between 0 and

1. 

KL(ρ ||ρ̂ j)=ρ log
ρ

ρ̂ j

+(1−ρ) log
1−ρ

1−ρ̂ j

where ρ̂ j=1/ (1+exp(−z j)) . The hyper-parameter ρ controls the level of regularization with values

closer  to  zero  corresponding  to  sparse  latent  representation  and  was  optimized  during  model
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training.  Therefore,  the  total  loss  for  auto-encoder  with  KL  regularization  was

MSE( X , X̂)+KL(ρ || ρ̂) .

Denoising auto-encoders learn latent representation of the inputs by training the model to predict

the inputs given the same inputs but corrupted in some way Figure 12a. We corrupted the inputs by

adding random noise sampled from Gaussian or Bernoulli distributions depending on whether the

input variable was categorical or continuous.  For categorical variables, noise was added to the

inputs by randomly flipping the sign of the dummy variables (the dummy variables had values 1 or

-1 after min-max scalling). Noise was added to continuous variables by adding Gaussian noise with

a mean of zero. The standard deviation of Gaussian noise and the proportion of categorical values

with flipped sign were hyper-parameter optimized during model training. 

Hyper-parameters for both sparse and denoising auto-encoders were optimized using ASHA

algorithm. Sparse auto-encoders had the following hyper-parameters: mini-batch size, learning rate

and momentum for the stochastic gradient descent optimizer, L2 regularization parameter for model

weights, and dropout proportion. Denoising auto-encoders had additional hyper-parameters for level

of noise added to input variables (proportion of flipped sign and Gaussian standard deviation for

categorical and continuous variables respectively).

  

3.3.6 Self-Training

We explored semi-supervised learning using self-training. Semi-supervised learning assumes that

the labelled and unlabelled data originate from the same distribution. The assumption that both

labelled and unlabelled datasets originate from the same distribution was not unreasonable given

that both datasets were obtained from public hospitals in Kenya. Self-training was performed in two

steps. In the first step, a classification model was fitted using the labelled data. Pseudo labels for the

unlabelled data were then generated by making predictions on both labelled and unlabelled data

using the model fitted in the first step. In the second step, a linear regression model was fitted to

predict the pseudo-labels using the unlabelled data.

We used the baseline logistic regression model in section 3.3.3 in the first step of self-training. The

logistic regression model was used to predict the log odds of positive blood culture results on the
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unlabelled data. The predicted log odds were then used as pseudo-labels for a linear regression

model. The predictions  of  linear  regression models  were  converted into  probabilities  using the

sigmoid function:

σ( x)=
1

1+exp(−x)
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Figure 12: Self-supervised models. a) A denoising auto-encoder predicts the inputs given corrupted 

inputs. b) A sparse auto-encoder learns useful representations of the inputs by applying 

regularization on the latent representation to encourage sparse latent representation
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4 Results

4.1 Analysis of bio-signals

4.1.1 Feature learning using contrastive learning

Contrastive learning model trained on both labelled and unlabelled PPG signals had lower noise

contrastive estimation (NCE) loss and higher accuracy on the validation dataset compared to model

trained on labelled data  only.  Contrastive  learning model  trained on labelled data  only had an

accuracy (classifying whether two PPG signals originated from the same patient) of 0.73 compared

to an accuracy of 0.91 for model trained using both labelled and unlabelled dataset (Figure 13).

Table 2 shows optimal hyper-parameters for SSL models identified using the ASHA algorithm.

Table 2: Optimal hyper-parameters for SSL models

Hyper-parameter
Self-supervised: Labelled 
and Unlabelled

Self-supervised: 
Labelled only

Proportion of signals with Gaussian noise 
augmentation 1 0.8
Number of slices for with signal slicing and 
permutation augmentation 10 2
Proportion of signals with signal slicing and 
permutation augmentation 0.2 0.8
Batch size 32 16
Dropout proportion 0.02 0.01
NCE temperature 0 0
Weight decay parameter for convolutional layers 0 0
Weight decay parameter for fully connected 
layers 0 0
Learning rate for convolutional layers 0 0
Learning rate for fully connected layers 0 0.01
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Scatter  plot  of  first  and  second  components  of  t-SNE dimensionality  reduction  show that  the

extracted features are highly correlated with the physiological parameters (heart rate, respiratory

rate and SpO2). In addition, features extracted using SSL model trained using all PPG signals were

better as separating patients according to the values of the physiological parameters compared to

features extracted using SSL model trained on labelled PPG signals only (Figure 14). For instance,

patients with high values of heart rate appear on the left side of tSNE plot of SSL model trained

using all  PPG signals.  A plot  of  first  and second components  of  the  PCA shows that  features

extracted using PCA were not discriminative of any of the physiological parameters (Figure 15).
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Figure 13: Validation accuracy and NCE loss of SSL model trained 

using contrastive learning. The models are trained to predict whether 

two PPG segments originate from the same patient.
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Figure 14: Dimensionality reduction of featured extracted using contrastive learning using t-SNE. 

Points are shaded by values of heart rate, respiratory rate and SPO2. Contrastive model is trained 

using labelled data only in (a) and both labelled and unlabelled data in (b). Lighter color represent 

larger values.

(a) Labelled PPG signals

(b) Labelled and unlabelled PPG signals



4.1.2 Classification and regression models using extracted features

Features extracted using SSL models trained using both labelled and unlabelled PPG signals were

better  at  solving  classification  and  regression  tasks  compared  to  features  extracted  using  SSL

models trained on labelled PPG signals only. Table 3 show that features extracted using SSL model

trained on both labelled and unlabelled data were better at predicting heart rate (R2 0.82 vs 0.71),

respiratory rate (R2 0.36 vs 0.24), and SpO2 (R2 0.70 vs 0.18). Features extracted using PCA were

not predictive of heart rate, respiratory rate or SpO2. Table 4 shows that logistic regression models

for predicting hospitalization had the highest prediction performance when trained using clinical

features and features from SSL models trained using both labelled and unlabelled PPG signals

(AUC 0.89). Models trained on clinical feature only had an AUC of 0.86, while models trained on

heart-rate and SpO2 only (obtained using a pulse oximeter) had an AUC of 0.72.
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Figure 15:  Dimensionality reduction or raw PPG signals using PCA. Points are shaded by values 

of heart rate, respiratory rate and SPO2. PCA model is fitted using labelled data only in (a) and 

both labelled and unlabelled data in (b).

a) Labelled data only

b) labelled and unlabelled data



Table 3: Root mean square error (RMSE) and coefficient of determination (R2) of regression models

fitted using features extracted using contrastive learning and PCA.

Metric

Contrastive learning PCA

Labelled
Labelled & 
unlabelled Labelled

Labelled & 
unlabelled

SpO2
R2 0.18 0.70 -0.01 -0.02
RMSE 4.0 2.4 4.4 4.4

Heart rate
R2 0.71 0.82 -0.01 -0.01
RMSE 14.3 11.4 26.7 26.7

Respiratory rate
R2 0.24 0.36 0 0
RMSE 13.2 12.1 15 15.1

…….
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Figure 16: RMSE and R2 of linear regression models for predicting heart rate, respiratory rate and 

SpO2 using features extracted from SSL models. SSL models are fitted using labelled PPG signals 

only in (a) and all PPG signals in (b).



4.1.3 End to end Deep Learning

We compared different initialization schemes for end-to-end deep learning models for predicting

hospitalization.  End-to-end  model  initialized  randomly  had  an  AUC of  0.73,  while  end-to-end

models initialized using weights of SSL models had AUCs of 0.80 and 0.77 for SSL models trained

using all PPG signals and labelled PPG signals, respectively Table 4.

Table 4: Performance of logistic regression and end-to-end models for predicting hospitalization. 

Logistic regression models were trained on clinical features, SSL features, or both. Deep learning 

models were initialized either randomly, using weights of SSL models trained on labelled data only, 

or using weights of SSL models trained using both labelled and unlabelled PPG signals.

Model Initialization/Features Precision Sensitivity Specificity AUC

Deep
learning

Random 0.20 0.73 0.58 0.73
SSL(Labelled & Unlabelled) 0.27 0.85 0.67 0.80

SSL(Labelled) 0.21 0.81 0.56 0.77
Logistic

regression
Clinical 0.34 0.81 0.77 0.86

Clinical & SSL(Labelled &
Unlabelled) 0.33 0.85 0.75 0.89

Clinical & SSL(Labelled) 0.36 0.81 0.79 0.87
SPO2 & heart rate 0.22 0.69 0.65 0.72

SPO2, heart rate & SSL(Labelled &
Unlabelled) 0.24 0.77 0.64 0.80

SPO2, heart rate & SSL(Labelled) 0.20 0.88 0.50 0.83
SSL(Labelled & Unlabelled) 0.23 0.73 0.64 0.80

SSL(Labelled) 0.20 0.88 0.50 0.83

Table 5 show optimal hyper-parameters for all end-to-end models. End-to-end models initialized

using weights of the SSL model reached convergence in fewer epochs
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Table 5: Optimal hyper-parameters for end-to-end models with different initialization schemes

Hyper-parameter
SSL: Labelled 
& Unlabelled SSL: Labelled Random

Dropout proportion 1.00E-2 1.35E-5 5.00E-3
Batch size 64 128 16
Label smothething parameter 0.01 0.01 0
Learning rate for convolutional 
layers 2.08E-3 1.92E-4 2.99E-4
Weight decay parameter for 
convolutional layers 5.92E-6 3.35E-2 2.79E-6
Learning rate for fully connected 
layer 1.28E-4 8.25E-3 1.48E-3
Weight decay for fully connected 
layer 2.75E-05 4.45E-3 5.18E-4
Proportion of segments with 
Gaussian augmentation 0.8 0.5 0
Number of slices for signal slicing 
and permutation augmentation 10 20 2
Proportion of signals with slicing 
and permutation augmentation 0.5 0.3 0.9
Number of training iterations 100 50 150

4.2 Analysis of chest radiographs

4.2.1 Supervised Pre-training models

Table 6 shows AUCs of ResNet18, ResNet34 and ResNet50 models trained to classify Chestray 14

dataset. Each model could make 15 binary predictions. Model architecture did not have any effect

on performance of models trained to classify Chestray-14 dataset. The average AUC (over the 14

conditions)  was  0.79  for  ResNet18,  and  0.8  for  both  ResNet34  and  ResNet50.  The  AUC for

different conditions ranged from 0.69 for infiltrates to 0.90 for hernia. ResNet34 model architecture

had the best performance for 9 of the 14 conditions.

Table 6: AUC of models fitted on Chestray 14 dataset. AUCs are for binary classification 

comparing each class against all the rest (one vs rest). 

condition ResNet18 ResNet34 ResNet50

Atelectasis 0.76 0.76 0.77
Cardiomegaly 0.88 0.87 0.87
Effusion 0.81 0.82 0.82
Infiltration 0.69 0.68 0.7
Mass 0.81 0.83 0.81
Nodule 0.74 0.74 0.76
Pneumonia 0.71 0.71 0.7
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Pneumothorax 0.83 0.84 0.84
Consolidation 0.75 0.75 0.74
Edema 0.83 0.84 0.83
Emphysema 0.84 0.88 0.88
Fibrosis 0.81 0.81 0.8
Pleural Thickening 0.75 0.77 0.77
Hernia 0.9 0.88 0.87

Average 0.79 0.8 0.8

4.2.2 Unsupervised pre-training

Unsupervised pre-trained models were trained using contrastive learning to classify whether two

CXR images were obtained by applying augmentation on the same or different CXR images. The

SSL model embedded each CXR into a compressed representation of 32 units. For visualization

purposes,  the  dimensions  of  the  compressed  representation  was  reduced  to  2  using  t-SNE

dimensionality reduction technique. The first and second components of t-SNE were plotted in a

scatter plot and the points colored by values of children’s age, WHO categories (labels), and site.

The t-SNE plots show that features extracted using self-supervised models had information about

the age of patients but could not distinguish between images with different WHO categories or from

different sites (Figure 17). Clustering of embedding by age was evident for both SSL model trained

using PERCH dataset and model trained using all dataset (PERCH and Chestray-14).
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Table 7: Accuracy and AUC of models trained to classify PERCH CXRs. The baseline model is 

initialized using ImageNet weights, while the supervised and unsupervised models are initialized 

using weights of models trained on Chest-ray14 dataset.

ResNet18 ResNet34 ResNet50

Includes 
Chestray 14
dataset

Reader 
embedding
s AccuracyAUC AccuracyAUC AccuracyAUC

Baseline

No No 0.59 0.84 0.57 0.82 0.59 0.84

No Yes 0.61 0.86 0.6 0.86 0.6 0.86

Supervised 
Pre-training

Yes No 0.61 0.84 0.6 0.84 0.61 0.84

Yes Yes 0.62 0.86 0.6 0.86 0.62 0.87

Unsupervised
Pre-training

No No 0.58 0.83 0.59 0.81 0.6 0.84

No Yes 0.59 0.84 0.57 0.83 0.59 0.85

Yes No 0.6 0.84 0.6 0.85 0.59 0.83

Yes Yes 0.6 0.86 0.62 0.86 0.59 0.84
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Figure 17: t-SNE plot of hidden representation learned using self-supervised learning (ResNet50 

encoder). The points are shaded by age (1-11 months vs 12-59 months), labels (one of the five WHO 

categories), and site (one of seven countries). Legends are excluded for clarity.



Models with reader embeddings (ensemble) had higher overall AUCs for all initialization schemes

(Figure 18). All models had lower AUCs for infiltrates compared to other categories. The average

AUC was 0.832 for consolidation, 0.791 for other infiltrates, 0.874 for both consolidation and other

infiltrates, 0.869 for normal, and 0.856 for uninterpretable. 

Boxplots  of  AUCs  showed  that  models  fitted  using  ResNet18  model  architecture  had  slight

advantage  over  the  larger  models  fitted  using  ResNet34  and  ResNet50  architectures  but  the

difference  was  not  statistically  significant  (Figure  19).  Incorporating  reader  embeddings  had

statistically significant improvement on AUCs (mean 0.854 vs 0.834, p-value = 0.002). The mean

AUC  increased  from  0.834  for  models  initialized  using  weights  from  the  torchvision  library
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Figure 18: Dis-aggregated AUCs of models trained to classify PERCH CXRs. The baseline models 

are initialized using Imagenet weights. Models are categorized by initialization scheme (supervised 

vs unsupervised), model size (ResNet50, ResNet34, or ResNet18), and whether reader embeddings 

were included (ensemble). 



(Imagenet) to 0.84 for models initialized using weights from the self-supervised models trained on

both PERCH and Chestray-14 datasets and 0.853 for models initialized using supervised models

trained on Chestray-14 (p=0.07). The inter-quantile range for all boxplots were too wide given the

small number of points used to construct each boxplot. 
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Figure 19: Boxplots of model performance on PERCH dataset categorized by model architectures 

and initialization schemes. The p-value (p) is used to test for difference in means (t-test for 

variables with two categories and analysis of variance for variables with more that two categories).



4.2.3 Multi-task Analysis

Table 8 shows performance of multi-task learning models trained to simultaneously classify

PERCH and Chestray-14 CXR images. Two approaches of multi-task learning were compared. The

first approach had shared weights for models classifying PERCH and Chestray-14 datasets (hard

parameter sharing). The number of layers with shared weights was a hyper-parameter. The second

approach used soft parameter sharing where the mean absolute difference between corresponding

layers  of  model  classifying  PERCH  and  Chestray-14  images  was  added  to  the  loss  function,

encouraging the two networks to have similar parameter values. The accuracy on PERCH CXRs for

both multi-task models ranged between 0.57 and 0.59, while the mean AUCs ranged between 0.82

and 0.84. For multi-task learning model with soft parameter sharing, the optimal number of shared

blocks was 2 out of 4 for ResNet18 and 3 out of 4 for both ResNet34 and ResNet50.

For multitask model with hard parameter sharing, the mean AUCs for Chestray-14 dataset were

0.71, 0.68, and 0.73 for ResNet18, ResNet43 and ResNet50 respectively. The AUCs of multi-task

learning models with soft parameter sharing were 0.73, 0.75, and 0.66 for ResNet18, ResNet34 and

ResNet50 respectively.

Table 8: PERCH dataset classification accuracy and AUCs for models trained using multi-task 

learning 

Hard parameter sharing Soft parameter sharing
Model Accuracy AUC Accuracy AUC

ResNet18 0.59 0.83 0.58 0.83
ResNet34 0.59 0.82 0.59 0.84
ResNet50 0.57 0.83 0.59 0.84

4.2.4 Model with highest performance on PERCH CXRs

The best performing model in classification of PERCH CXR images had an accuracy of 0.62 and

average AUC of 0.87. The model had ResNet50 architecture, was initialized using weights of CNN

model  classifying Chestray-14 CXR (supervised  pre-training)  and had reader  embeddings.  The

model had an AUC of 0.85 for consolidation, 0.82 for infiltrated, 0.90 for both consolidation and

infiltrates,  0.87  for  normal  and  0.88  for  un-interpretable.  The  classification  accuracy  for  any

consolidation (consolidation or  consolidation and other  infiltratres)  was 0.87 while  that  of  any

infiltrates  was  0.76.  There  was  high variability  in  model  performance  across  sites.  The model
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accuracy was 0.65 in Bangladesh, 0.70 in Gambia, 0.66 in Kenya, 0.60 in Mali, 0.56 in South

Africa, 0.67 in Thailand and 0.52 in Zambia. Figure 20b shows that model accuracy increased by

age. Model accuracy increased sharply from below 50% for children below 8 months of age to

above 65% and then stagnated for older children. The model had an accuracy of 0.60 for children

below 12 months of age and 0.65 for older children.

A confusion matrix of the observed versus predicted WHO categories of the PERCH test CXR is

shown on Figure 20a. The model had the best accuracy for CXR images that were normal. Eighty

percent of normal CXR were correctly classified while the rest were miss-classified as infiltrates.

For CXR with both consolidation and infiltrates, 40% were miss-classified as consolidation only

and 30% as infiltrates only. Forty percent of CXR images that were un-interpretable were miss-

classified as normal.

A Grad-CAM visualization of the model showed that the model used the correct regions of the CXR
images in making predictions Figure 21.
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Figure 20: Confusion matrix and lowes plot of classification accuracy against age of model with 

highest accuracy and AUC. 



4.3 Analysis of clinical data

Distribution of predictor variables

Table 9 shows the distribution of predictor variables in the CIN and Kilifi datasets. Hypothesis tests

for differences in distribution of predictors between CIN and Kilifi  dataset are computed using

independent  sample t-test  for  continuous variables and chi-square test  for  categorical  variables.

There was strong evidence of differences in CIN and Kilifi datasets for all variables except presence

of  convulsion,  cough  greater  than  two  weeks,  and  difficulty  breathing.  There  was  high  class

imbalance  with  majority  class  accounting  for  more  than  95% of  observations  in  variables  for

bulging fontanelle, capillary refill greater than 3 seconds, cough duration greater than two weeks,

cyanosis, bloody diarrhoea, diarrhoea duration greater than two weeks, jaudice, lymphadenopathy,

oedema, partial fits, weak pulse, stiff neck, stridor, and thrust.

Table 9: Distribution of predictor variables. Percentages are reported for the presence of 

categorical sign/symptom and mean for continuous variables. P-values for differences in 

distribution between CIN and Kilifi datasets were computed  using Chi-square test for categorical 

variables and independent sample t-test for continuous variables. 

Predictor Category All CIN Kilifi p-value
Acidotic breathing Yes 6307(6.11%) 1511(2.57%) 4796(10.78%) <0.001
Bulging fontanelle Yes 934(0.90%) 604(1.03%) 330(0.74%) <0.001
Can drink Yes 71123(68.91%) 45998(78.33%) 25125(56.47%) <0.001
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Figure 21: Grad-CAM visualization of randomly selected images that were correctly classified by 

the best model. The top row shows the original CXR images while the bottom row shows heat-maps 

of regions the model considered important in making the prediction. The model was able to identify 

the relevant regions of the CXRs when making preditions.



Cap refill >3 Sec 1030(1.00%) 672(1.14%) 358(0.80%) <0.001
Convulsions No 78611(76.16%) 44050(75.01%) 34561(77.68%) 0.052
Convulsions number mean(sd) 0.3(1.1) 0.4(1.1) 0.2(1.0) <0.001
Cough Yes 55696(53.96%) 33760(57.49%) 21936(49.30%) <0.001
Cough duration mean(sd) 2.7(6.5) 2.8(6.3) 2.6(6.6) <0.001
Cough duration > 2wks Yes 4056(3.93%) 2298(3.91%) 1758(3.95%) 0.847
Crackles Yes 19712(19.10%) 12379(21.08%) 7333(16.48%) <0.001
Cyanosis Yes 638(0.62%) 429(0.73%) 209(0.47%) <0.001
Decreased skin turgor Yes 13673(13.25%) 9830(16.74%) 3843(8.64%) <0.001
Diarrhoea Yes 29380(28.46%) 18646(31.75%) 10734(24.13%) <0.001
Diarrhoea bloody Yes 916(0.89%) 742(1.26%) 174(0.39%) <0.001
Diarrhoea duration mean(sd) 0.8(2.6) 1.1(2.7) 0.3(2.2) <0.001
Diarrhoea duration > 14 days Yes 727(0.70%) 644(1.10%) 83(0.19%) <0.001
Difficulty breathing Yes 36893(35.74%) 20718(35.28%) 16175(36.35%) 0.555
Fever Yes 76686(74.30%) 43013(73.25%) 33673(75.68%) <0.001
Fever duration mean(sd) 2.7(5.1) 2.5(4.6) 3.0(5.6) <0.001
Indrawing Yes 29859(28.93%) 16573(28.22%) 13286(29.86%) 0.003
Jaundice Yes 2027(1.96%) 1091(1.86%) 936(2.10%) 0.025
Lymphadenopathy Yes 1247(1.21%) 461(0.79%) 786(1.77%) <0.001
Oedema Yes 3129(3.03%) 1101(1.87%) 2028(4.56%) <0.001
Oxygen saturation mean(sd) 96.3(4.2) 94.4(4.7) 97.4(3.4) <0.001
Pallor Yes 18768(18.18%) 8544(14.55%) 10224(22.98%) <0.001
Partial fits Yes 3028(2.93%) 1507(2.57%) 1521(3.42%) <0.001
Pulse Weak 4314(4.18%) 2617(4.46%) 1697(3.81%) <0.001
Pulse rate mean(sd) 142.7(30.7) 129.8(29.3) 154.5(26.9) <0.001
Respiratory rate mean(sd) 39.1(9.7) 39.8(9.8) 38.4(9.5) <0.001
Stiff neck Yes 1724(1.67%) 1332(2.27%) 392(0.88%) <0.001
Stridor Yes 1693(1.64%) 1431(2.44%) 262(0.59%) <0.001
Sunken eyes No 87022(84.31%) 48542(82.66%) 38480(86.49%) <0.001
Temperature mean(sd) 37.7(1.2) 37.6(1.2) 37.8(1.2) <0.001
Temperature gradient Yes 7022(6.80%) 2254(3.84%) 4768(10.72%) <0.001
Thrust Yes 2038(1.97%) 1296(2.21%) 742(1.67%) <0.001
Vomiting No 62775(60.82%) 31192(53.12%) 31583(70.98%) <0.001
Vomiting everything No 46832(45.37%) 13089(22.29%) 33743(75.84%) <0.001
Wasting Yes 5726(5.55%) 1505(2.56%) 4221(9.49%) <0.001
Wheeze Yes 5897(5.71%) 3855(6.56%) 2042(4.59%) <0.001

4.3.1 Missing data and imputation

The proportion of missing data in the predictor variables ranged between 56% and less than 1%.

Variables  for  vomiting everything,  oxygen saturation,  and severe wasting  had more than 50%

missing in the CIN dataset. Variable for vomiting everything had the highest level of missingness in

the combined dataset (CIN and Kilifi) with 41% missingness.
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Table  10 show  the  performance  of  KNN  imputation  models  for  each  predictor  variable.  The

performance of the imputations were assessed using F1 score for categorical variables and root

mean squared error (RMSE) for continuous variables. Low F1 scores were observed for categorical

variables with high class imbalance because missing values in those variables were predicted to

belong to the majority class. Therefore, imputation for predictors with high class imbalance was

similar to univariate imputation using the majority class.

Table 10: Performance of KNN imputation model. Imputation model was assessed using F1 score 

for categorical variables and root mean square error (RMSE) for continuous variables.

Predictor Metric CIN Kilifi

Convulsions number

RMSE

0.33 0.23
Cough duration 0.33 0.32
Diarrhoea duration 0.35 0.21
Fever duration 0.29 0.28
Oxygen saturation 0.28 0.35
Pulse rate 0.27 0.25
Respiratory rate 0.26 0.25
Temperature 0.27 0.24
Acidotic breathing

F1

0.03 0.31
Bulging fontanelle 0.01 0.05
Can drink 0.91 0.98
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Figure 22: Proportion of missing data in the predictor variables



Cap refill 0.08 0.05
Convulsions 0.41 0.5
Cough 0.74 0.74
Cough duration > 2wks 0.2 0.34
Crackles 0.43 0.49
Cyanosis 0.02 0.03
Decreased skin turgor 0.43 0.65
Diarrhoea 0.57 0.63
Diarrhoea bloody <0.01 0.01
Diarrhoea duration > 14 days 0.05 0.13
Difficulty breathing 0.67 0.79
Fever 0.86 0.89
Indrawing 0.65 0.8
Jaundice 0.05 0.03
Lymphadenopathy <0.01 0.03
Oedema 0.04 0.22
Pallor 0.23 0.3
Partial fits 0.02 0.03
Pulse 0.22 0.33
Stiff neck 0.04 0.02
Stridor 0.03 0.01
Sunken eyes 0.45 0.66
Temperature gradient 0.21 0.25
Thrust 0.02 0.05
Vomiting 0.6 0.62
Vomiting everything 0.54 0.27
Wasting 0.12 0.31
Wheeze 0.15 0.21
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4.3.2 Auto-encoders

Figure 23 shows performance of  sparse and denoising auto-encoders  on the validation data.  A

comparison is made between auto-encoders trained on Kilifi data only with auto-encoders trained

on both CIN and Kilifi datasets. Auto-encoders fitted with both CIN and Kilifi data-sets had lower

reconstruction loss compared to those fitted using Kilifi data alone. The lowest reconstruction loss

was  attained  by  a  sparse  auto-encoders  with  latent  representation  of  dimension  128  and  L1

regularization.
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Figure 23: Performance of sparse and denoising auto-encoders on the validation set. The models 

were trained for a maximum of 300 epochs. Sparse auto-encoders had the lowest reconstruction 

loss.



4.3.3 Prediction of blood culture results

Table 11shows the AUCs of models trained to predict blood cultures results. Standard deviation of

the performance measures were derived using 5-fold cross validation. Six models were fitted for

each  experiment  with  varying  amount  of  data  (5%,  10%,  30%,  50%,  70%,  and  100%)

corresponding  to  training  dataset  of  sizes  (1,633,  3,267,  9,800,  16,336,  22,870,  and  32,672

respectively). The test dataset had 8,168 observations regardless of the size of training dataset.

The AUCs of the baseline logistic regression model ranged between 0.666 for model trained using

5% of the training data and 0.705 for model trained using full training dataset. Self-training model

based on logistic and linear regression had sightly higher AUCs than baseline logistic regression for

models  trained  using  smaller  datasets  but  identical  results  for  larger  datasets.  However,  the

differences in performance for small dataset sizes were within the margin of error. Models based on

MLPs had significantly lower AUCs when trained on smaller datasets compared to models based on

logistic/linear regression. On the other hand, all model based on MLPs had higher AUCs compared

to  models  based  on  logistic/linear  regression  when  the  full  training  dataset  was  used  but  the

difference was within the margin of error. Results of accuracy, F1, precision, recall and specificity

and presented in appendix B.

Table 11: AUCs of all models predicting blood culture results

Proportion of labelled data used

0.05 0.1 0.3 0.5 0.7 1

Model datasets 

Logistic (Baseline) Kilifi 0.666± 
0.019

0.679± 
0.018

0.698± 
0.014

0.701± 
0.016

0.704± 
0.015

0.705± 
0.015

Logistic: Self Training Kilifi 0.663± 
0.019

0.676± 
0.020

0.694± 
0.017

0.699± 
0.017

0.704± 
0.016

0.705± 
0.015

Kilifi & CIN 0.673± 
0.024

0.685± 
0.022

0.697± 
0.016

0.702± 
0.015

0.704± 
0.016

0.705± 
0.015

MLP:Denoising auto-
encoder

Kilifi 0.621± 
0.017

0.674± 
0.014

0.693± 
0.018

0.700± 
0.017

0.709± 
0.016

0.710± 
0.015

Kilifi & CIN 0.623± 
0.040

0.669± 
0.020

0.690± 
0.014

0.702± 
0.012

0.704± 
0.013

0.706± 
0.014

MLP:Random
inititalization

Kilifi 0.622± 
0.036

0.664± 
0.015

0.690± 
0.017

0.705± 
0.011

0.705± 
0.016

0.710± 
0.012

MLP:Sparse auto-encoder Kilifi 0.631± 0.670± 0.692± 0.699± 0.701± 0.710± 
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0.026 0.013 0.014 0.011 0.015 0.013
Kilifi & CIN 0.594± 

0.037
0.655± 
0.017

0.696± 
0.008

0.702± 
0.013

0.703± 
0.012

0.709± 
0.012

MLP:Sparse auto-encoder
(KL)

Kilifi 0.602± 
0.019

0.655± 
0.021

0.690± 
0.009

0.703± 
0.017

0.703± 
0.016

0.712± 
0.012

Kilifi & CIN 0.605± 
0.035

0.660± 
0.009

0.692± 
0.011

0.697± 
0.015

0.705± 
0.012

0.711± 
0.012

MLP:Sparse auto-encoder
(L1)

Kilifi 0.597± 
0.036

0.664± 
0.023

0.689± 
0.016

0.697± 
0.018

0.706± 
0.015

0.708± 
0.012

Kilifi & CIN 0.636± 
0.018

0.656± 
0.011

0.688± 
0.007

0.699± 
0.016

0.704± 
0.013

0.707± 
0.014

There were large disparities in performance of MLPs on the test data compared to validation data

for  models  trained  using  small  datasets  suggesting  that  the  models  were  over-fitting  to  the

validation set. Figure 24 shows performance of MLPs for predicting blood culture results models on

the validation data.  The validation AUC ranged between 0.57 and 0.7 for models fitted using 5% of

training data while the validation AUCs of models trained using the full  training data-set were

almost identical. Furthermore, the performance of MLPs trained on all training data was similar for

both validation and test data.
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Figure 24: Performance of MLPs with different initialization schemes on the validation data during 

model training by proportion of labelled data used. There was large variation in performance of 

MLPs trained using smaller labelled data. 



Table 12 shows tests of association between model performance and both data size and whether the

unlabelled CIN data was leveraged using transfer learning. Two sets of linear regression models

were  fitted.  One  set  of  models  regressed  whether  or  not  CIN  data  was  used  against  each

performance metric while the second set of models regressed log of proportion of labelled data used

against each performance metric. There was no evidence of association between whether CIN data

was used with any of the metrics. On the other hand, data size was positively correlated with AUC

and F1 (p-value <0.001 and 0.011 respectively). A unit increase in log of proportion of training data

increased AUC and F1 score by 0.025 and 0.006 respectively. Further inspection of effect of data

size  on  AUC showed  evidence  of  effect  modification  by  whether  the  classification  model  for

predicting bacteremia was based on MLP or linear model (interaction p-value <0.001). A unit

increase in log of proportion of training data used increased AUC by 0.013 for linear models and

0.03 for MLPs.

Table 12: Effect of data size and sources of data used on model performance. Coefficients and p-

values are obtained using linear regression

CIN data-set included using transfer
learning

Data size

Metric Coefficient p-value Coefficient p-value

AUC -0.001 0.860 0.025 <0.001
Accuracy -0.085 0.078 0.007 0.748

F1 -0.008 0.127 0.006 0.011
Precision -0.005 0.083 0.002 0.099

Recall 0.060 0.094 0.028 0.083
Specificity -0.091 0.078 0.006 0.792
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5 Discussion

5.1 Analysis of bio-signals

Parameter based transfer learning improved classification of raw PPG signals using end-to-end deep

learning  models.  The  end-to-end  deep  learning  model  had  auc  of  0.80  when  initialized  using

weights from SSL model trained with the entire PPG dataset, 0.77 when initialized using SSL model

trained on labelled data only, and 0.73 when initialized randomly. Therefore, initializing end-to-end

models using weights from SSL models may still be beneficial when all PPG signals are labelled.

Moreover, features extracted using the SSL models could be used as predictors of hospitalization

using logistic  regression.  Features  extracted using the SSL model  trained on both labelled and

unlabelled PPG signals were less predictive of hospitalization compared to features extracted using

SSL model trained on labelled PPG signals only (AUC 0.80 vs 0.83). However, features extracted

using  SSL models  trained  on  both  labelled  and  unlabelled  data  had  higher  performance  when

combine with clinical features (AUC 0.89 vs 0.87).  Furthermore, SSL models trained with larger

PPG dataset (both labelled and unlabelled) learn better representations producing features that are

more predictive of heart rate, respiratory rate and SpO2, suggesting that unlabelled data is beneficial

to transfer learning.  

The results of this study agree with a previous study that showed that PPG signal are predictive of

hospitalization and may therefore be used to classify patients according to severity of illness (Garde

et al., 2016). The study used logistic regression model trained on hand-crafted features extracted

from PPG signals using signal decomposition techniques, and achieved an AUC of 0.75. Such hand-

crafted  features  required  extensive  domain  knowledge  in  signal  processing  hindering  their

application on novel tasks. In this study, we were able to achieve better model performance using

automatic feature learning and a smaller labelled dataset (1,031 vs 3,374). Features extracted from

PPG signals using SSL performed poorer that clinical features (AUC 0.86 vs 0.83). However, most

clinical signs and symptoms are subject and required effort to collect compared to the objective

measurements of a pulse oximeter. 

SSL models were trained to classify whether two PPG segments are obtained from the same patient

as a  pre-text  task.  Such a pretext  task could learn useful  representations of  PPG signals  if  the

underlying physiological parameters contained in the PPG signals do not change much within a
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short period of time, and the differences between segments from the same patient are due to motion

artifacts and other sources of noise. Dimensionality reduction of PPG signals using PCA did not

extract features that were predictive of the outcomes. Poor performance of features extracted using

PCA might be explained by the model being a linear transformation of the inputs and therefore

unable to learn the complex structure of PPG signals. In contrast, deep learning models like the SSL

models are universal function approximators capable of learning non-linear functions of the inputs

(Hornik et al., 1989).

The manufacturer of the pulse oximeter does not provide information on any pre-processing applied

to  the  PPG  signals  (closed  source  software).  Such  pre-processing  may  be  beneficial  for

measurements  of  heart  rate  and  SPO2  but  may  lose  information  beneficial  to  prediction  of

hospitalization.  In  addition,  PPG  signals  collected  using  pulse  oximeters  from  a  different

manufacturer may have different pre-processing steps hindering generalization of fitted models.

However, the models fitted here do not require knowledge on signal pre-processing to be applicable.

This research demonstrates that transfer learning using self-supervised learning can be successfully

applied to bio-signals. While, self-supervised learning has been applied widely for natural images,

the type of pre-text tasks used in images may not be suitable for bio-signals. A novel pre-text task

involving classifying whether two segments of PPG signals belong to the same patient is proposed

and evaluated. We show that the proposed pre-text task can extract features from raw PPG signals,

eliminating the need for feature engineering using traditional signal processing techniques.  The

deep  learning  models  proposed  here  may  also  be  more  advantageous  that  traditional  signals

processing techniques if  the signals  are  noisy  (Yoon et  al.,  2019).  PPG sensors  are  cheap and

miniaturized, allowing development of cheap and non-invasive wearable sensors. The methods

proposed in this research could enhance development of novel applications using such sensors for

continuous and non-invasive monitors for various physiological parameter involving respiratory and

cardiovascular systems. 

In conclusion, we have shown that SSL models can extract features from raw PPG signals and

provide better initializations for end-to-end deep learning models. In addition, features extracted

from PPG signals using SSL models can be used for various classification and regression tasks
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using linear models. Furthermore, SSL models can incorporate unlabelled bio-signals to improve

extracted features thus enhancing models fitted using small labelled datasets.

5.2 Analysis of chest radiographs

We evaluated transfer learning using two parameter based and two multi-task learning techniques.

Parameter-based transfer  learning involved initializing CNNs with weights  from a CNN model

trained to classify Chest-ray14 dataset (supervised pre-training) and weights from a self-supervised

learning  (SSL)  models  (unsupervised  pre-training).  We  also  evaluated  the  utility  of  multitask

learning where models were trained to classify PERCH and Chestray 14 dataset simultaneously.

Finally, we proposed a new multi-task learning technique where CNN models are trained to classify

CXR images conditional on reader identifier.

The baseline CNN models had an accuracy of 0.59 for models with ResNet18 architecture, 0.57 for

ResNet34 and 0.59 for ResNet50. Initializing the CNN models using weights from CNNs trained to

classify Chestray-14 CXRs (supervise pre-training) improved the model performance marginally.

The accuracy increased to 0.61 for  ResNet18,  0.6 for  ResNet34 and 0.61 for  ResNet50.  CNN

models  initialized  using  weights  from  SSL  models  (unsupervised  pre-training)  had  better

performance for SSL model trained on both PERCH and Chestray 14 dataset for ResNet18 and

RestNet34 but worse performance for ResNet50. Self-supervised weights of models trained using

both PERCH and Chestray-14 improved performance of  ResNet18 (Accuracy 0.6 vs 0.58) and

ResNet34 (0.6 vs 0.59), but had detrimental effect for ResNet50 (0.59 vs 0.6). 

The SSL models were trained to predict whether two CXR images were obtained by applying data

augmentation  on  two different  CXR images  or  applying data  augmentation  on  the  same CXR

image. A t-SNE visualization of embeddings extracted from CXR images using the SSL models

showed that the embeddings were clustered by children’s age and not by WHO category or site.

Therefore,  the  SSL model  did  not  learn  representations  that  were  useful  in  predicting  WHO

categories. It is possible that images of children of different ages had different aspect ratios which

the SSL model used as a shortcut whenever the model was presented with CXR images of children

with different ages. Effective data augmentation can prevent SSL models from taking such shortcuts
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and  improve  the  learned  representation,  but  it  is  not  clear  what  are  the  appropriate  data

augmentation techniques for medical images. We used random resizing, color jitters, image flipping,

and affine transformation augmentation procedures which have been shown to work well for natural

images (Shorten & Khoshgoftaar, 2019). However, such augmentation may be counter-productive

for medical images. For instance, random cropping may exclude the part of the image that contains

the pathology of interest. Therefore, more research on data augmentation for medical images is

required. Another approach that may prevent the SSL models from taking shortcuts might be mining

of hard negative examples  (Kalantidis  et  al.,  2020).  For a given query image,  mining negative

examples involves computing the distance between embeddings of the query image and all other

images  and  selecting  the  image  with  the  smallest  distance.  The  limitation  of  mining  negative

examples is that computing the distance between each query example and the rest of the dataset is

computationally expensive.

Multi-task learning models trained to simultaneously classify PERCH and Chestray-14 datasets

performed either at  per or worse than models trained to classify PERCH only and consistently

worse that models trained to classify Chestray-14 dataset only. Multi-task learning is thought to

improve  performance  across  tasks  by  exploiting  commonality  between  tasks  using  shared

representation  (Caruana,  1997).  However,  training  multi-task  learning  models  successfully  is

challenging  and  multi-task  models  that  perform  worse  than  single  tasks  have  been  reported

elsewhere  (Parisotto et al., 2016; Rusu et al., 2015). First, one has to decide how much weight

should  be  placed  on  each  task  (Lin  et  al.,  2021).  Choosing  appropriate  weights  is  especially

challenging when the magnitude/scale of the losses for different tasks differ significantly. When the

scale of one task is significantly higher than that of the others, the combined loss of all tasks may be

dominated by the task with the large loss. In our case, the loss for the model classifying PERCH

images accounted for most of the total loss hindering improvement of model classifying Chestray-

14 dataset. Second, multi-task learning is beneficial when there is similarity among tasks. Both

Chestray-14 and PERCH had classes for consolidation and infiltrates which makes a case for multi-

task learning. However, there were 12 other tasks in Chestray-14 that might not be similar to the

tasks in PERCH dataset. Yu (2020) hypothesized that the difficulty in optimizing multi-task learning

stems from gradients of different tasks conflicting. Gradients are considered to be conflicting if the

cosine similarity between gradients of two tasks is negative.
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Models with reader embeddings had consistently higher performance compared to corresponding

models  without  reader  embeddings.  The higher  performance was observed regardless  of  model

initialization techniques or  architecture.  Models  with reader  embeddings aggregated predictions

(one for each reader) to get the final prediction for each CXR image which might explain the

increase  in  performance.  The aggregation technique is  similar  to  staking,  an ensemble  method

where predictions from multiple models are aggregated. Model ensembles are on average expected

to perform as well as the best model  (I. Goodfellow et al., 2016). Unlike stacking, our approach

does not require multiple models to be fitted reducing the cost of training the models. However, the

model had extra parameters for the embedding layer and the linear layer that projected the reader

embeddings to have the same dimensions as image embedding. The increase in parameters was

minimal  given the large size of  the models.  ResNet50 had 67,416 additional  parameters  while

ResNet18 and ResNet34 had 16,928 additional parameters each. Given that the models have tens of

millions of parameters, the increase in parameter was less than 1%.  

The best performing model for classifying PERCH CXR had an Accuracy and AUC of 0.62 and

0.87, respectively. The model had an embedding layer for readers and was initialized using weights

from the supervised learning model for classification of Chestray-14 CXR images. The model had

higher accuracy for children older than 12 months compared to children aged between 1 and 11

months (accuracy 0.65 vs 0.60). Model accuracy increased rapidly for children aged one to eight

months from less 50% to more than 65% and then remained the same for older children suggesting

that the model may only be suitable for children older than 8 months. The poor performance for

younger children could be explained by lower agreement between readers for that age group and not

a  limitation  of  machine  learning  models.  Both  model  accuracy  and  human  reader  agreement

increased with age. The low agreement between human readers for younger children is likely due to

difficulties in obtaining good quality CXRs in younger children. Low agreement may be indicative

of high level of miss-classification noise in the outcome which has been shown to be detrimental to

model performance  (Nettleton et al., 2010; Pechenizkiy et al., 2006). Model performance ranged

between 0.52 and 0.7 across sites. The large variation in model performance across sites could be

explained by differences in distribution of  labels.  South Africa and Zambia,  the two sites with

accuracy below 0.6, had the lowest proportion of normal CXR images (28% and 31% respectively),

and the model was better at classifying normal CXR compared to other categories. Sites that did not

have  digital  CXR  machines  and  scanned  analogue  images  had  high  accuracy  suggesting  that

machine learning models are useful in setting that lack modern CXR equipment. CXR with both
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consolidation and infiltrates were more likely to be misclassified compared to other categories.

Forty percent were misclassified as consolidation only while 30% were misclassified as infiltrates

only.  It  is  possible that re-framing the outcome as multiple binary outcomes (one outcome per

condition) instead of a single outcome with five categories might reduce miss-classification of

images with both consolidation and infiltrates.

The best model had an AUC of 0.85 for consolidation, 0.82 for infiltrates, 0.9 for both consolidation

and infiltrates, 0.87 for normal and 0.88 for un-interpretable. The accuracy for any consolidation

(consolidation or consolidation and infiltrates) was 0.87 while that of any infiltrates was 0.76. The

lower predictive performance for infiltrates as compared to other categories has been reported for

Chestray-14 dataset  (Rajpurkar et al., 2017; X. Wang et al., 2017; Yao et al., 2018).  The poor

performance in classifying infiltrates is likely due to difficulty in identifying infiltrates from CXR

images. Other medical imaging techniques such as CT scans and ultrasound are more accurate for

diagnosis of pneumonia compared to CXR images. CT scans have higher accuracy compared to

both CXRs and ultrasound but they are expensive and exposes patients to higher levels of radiation

making then unsuitable for low income settings (Brenner & Hall, 2007; Syrjälä et al., 1998). On the

other hand, ultrasound have been shown to be more accurate in diagnosis on pneumonia compared

to CXR images in high-income settings but  have not  been widely evaluated in in low income

settings where there is high prevalence of tuberculosis and chronic obstructive pulmonary disease

(Amatya et al., 2018; Sippel et al., 2011). Deep learning models have been shown to be highly

sensitive  and  specific  in  classification  of  lung  ultrasounds  for  diagnosis  on  pneumonia  (Diaz-

Escobar et al.,  2021; La Salvia et al.,  2021).  Therefore, CNN models trained using ultra-sound

images may still be useful if CXRs are replaced with ultra-sound.

The low sensitivity in classifying CXR by human readers may stem from some features of CXR

images being too subtle for human readers rather than the information being absent from the CXRs.

For instance, it has been shown that machine learning models can predict race using CXR image

despite no know features of race on the images (Banerjee et al., 2021). Machine learning models for

classifying CXR images have relied on labels derived from human readers interpreting the CXRs.

Such models  may be negatively affected by misclassified training CXRs if  human readers  are

unable to detect all features relevant in the CXRs. An alternative means of obtaining labels for CXR

images might be to use labels derived from CT scans to train models for classifying CXR images. In
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such a study, images would be obtained using both CT scans and CXR. Machine learning models

would then be trained to classify CXR images using the labels derived from CT scans. The CT

scans would not be required during deployments of the models and the model can be used in low

income settings where CXR equipment are widely available.

Our approach of including reader embeddings could be considered as a form of multi-task learning.

However, unlike conventional multi-task learning where each forward pass would have produced

multiple  predictions  depending  on  number  of  readers,  our  model  was  provided  with  reader

identifiers along side CXR images. The advantage of our approach is that it can be used when not

all readers annotated each image, which was the case in our dataset. In addition, the difficulty of

finding optimal weights for different task that arise in conventional multi-task learning was not

present in our approach. 

Model size did not influence model performance. The total number of parameters for the baseline

model  was  11,179,077  for  ResNet18,  21,287,237  for  ResNet34  and  23,518,277  for  ResNet50.

Raghu  (2019) showed  that  small  models  perform just  as  well  as  large  one  for  retinal  fundus

photographs and CXR medical images but performed worse on natural images in ImageNet dataset.

However,  initializing  the  weights  using  weights  from  model  classifying  ImageNet  dataset

(supervised pretraining) improved performance of large models marginally but did not have an

effect on small models. Moreover, the benefit of supervised pre-training for larger models was more

pronounced in small data regiments (smaller dataset of medical images). The differences in effect of

model  size  on  performance  observed  between  natural  images  and  medical  images  may  be

suggestive  of  need to  develop neural  network architectures  specific  to  medical  images.  Unlike

natural images where edges are important in recognizing an object, classification of medical images

may be more reliant on the image texture. Transformer based deep learning architectures have been

suggested as alternative for CNNs, but such models require large dataset that are often lacking in

medical settings (Matsoukas et al., 2021). Transformer based model may also be more advantageous

for  medical  images because their  attention maps offer  a  means of  visualizing decision making

mechanism of the model improving model explain-ability, which is essential in adoption of machine

learning in medical applications.
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The baseline models were initialized using weights from models trained to classify ImageNet, a

database on natural images such as airplanes, wildlife, dogs, etc. Therefore, we expected models

initialized using tasks derived from CXR images to perform better that models initialized using

weights from tasks involving natural images. However, the improvement in models classifying

PERCH CXR images as a result of supervised and unsupervised pre-training was modest at best. It

is  possible  that  the  PERCH dataset  was too large  to  benefit  significantly  from supervised and

unsupervised pre-training.

5.3 Analysis of clinical data

We compared performance of models based on multi-layer perceptrons (MLPs) with linear models

in predicting blood culture results given clinical signs and symptoms. We assessed the utility of

incorporating unlabelled data using transfer learning in improving performance of MLPs and linear

models fitted with varying amount of labelled data. We varied the amount of labelled data used to

train the models to assess the effect of transfer learning on dataset size. We used training datasets of

approximately 1,633, 3,267, 9,800, 16,336, 22,870, and 32,672 observations, accounting for 5%,

10%, 30%, 50%, 70% and 100% of labelled data respectively. For linear models, we compared a

logistic  regression  model  with  self-training  model  based  of  logistic  and  linear  regression.  For

MLPs, we compared MLPs initialized randomly with MLP initialized using weights of sparse and

denoising auto-encoders.

Transfer  learning  and  semi-supervised  learning  did  not  significantly  improve  prediction  of

bacteraemia  using  clinical  signs  and  symptoms.  Semi-supervised  learning  models  using  self-

training  and logistic  regression had marginally  higher  AUCs compared to  the  baseline  logistic

regression for models trained using 5% and 10% of the data (0.673 vs 0.666 and 0.685 vs 0.679,

respectively). The baseline logistic regression had slightly higher AUC that the self-training model

based on logistic regression when the models were trained using 30% of the data (0.698 vs 0.697).

Models based on self-training and logistic regression had identical performance when trained with

70% and 100% of the data. Models based on MLPs had higher performance compared to models

based on logistic regression (baseline and self-training) for models trained with 50% of the data or

more. MLP model initialized randomly had the best performance for models trained using 50% of
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the dataset (AUC=0.705), while MLPs initialized using weights from the L1 and KL regularized

sparse auto-encoders had the best performance for models trained using 70% and 100% of the

training data (AUC = 0.706 and 0.712, respectively). In general, models based on logistic regression

were more predictive of bacteraemia compared to models based on MLP when small training

datasets were used. The AUCs of logistic regression models ranged between 0.663 and 0.673 for

models trained on 5% of training data compared to AUCs ranging between 0.597 and 0.636 for

MLPs trained using similar sized training dataset. However, models based on MLPs had marginally

higher AUCs that model based on logistic regression when 100% of training data was used. The

best MLP model had an AUC of 0.712 compared with AUC of 0.705 for logistic regression models.

However, the differences in performance were within the margin of error. 

Models based on MLPs had challenges classifying smaller datasets because the models were over-

fitting to the validation data. There was high disparity between test and validation AUCs for models

trained using 5% of labelled data.  On the other hand, the disparity between test and validation

AUCs was minimal for models trained using 100% of labelled dataset. The validation AUCs for

models trained using 5% of the training dataset ranged between 0.57 and 0.7 compared to test AUCs

that ranged between 0.597 and 0.636. The disparity in AUCs between validation and test dataset

could be explained by the validation data being much smaller than the test set. We used the same

test data for all experiments regardless of size of training dataset while the validation set was set to

20% of  the training dataset.  The standard deviation of  test  AUCs obtained using 5-fold cross-

validation had a range of  0.017 – 0.04 for models trained using 5% of the training dataset and

0.012-0.015 for models trained using 100% of training datasets. Therefore, the standard deviations

for the test dataset were small for models trained using small and large dataset indicating that the

test dataset was large enough to evaluate the performance of all models with high precision. It is

possible that ASHA, the hyper-parameter selection technique used may not be suitable for small

datasets. ASHA was implemented by running 500 trials in parallel with each trial consisting of a

hyper-parameter configuration sampled from the hyper-parameter search space.  Given the large

number of trials, it is possible that one trial might perform well on the small validation data by

chance and fail to generalize to the test dataset.

There was strong evidence that AUC increased by size of training data. A unit increase in log of

proportion  of  training  data  used  increased  AUC  by  0.025  (p-value  <0.001).  Moreover,  the

relationship between data size and AUC was different for MLP models compared to linear models.

A unit increase in log of proportion of data used increased AUC by 0.013 for logistic regression
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models  and  0.03  for  MLPs  (p-value  <  0.001).  If  the  observed  differences  between  logistic

regression  and  MLP holds  for  datasets  larger  than  the  labelled  dataset  (n=32,672),  then  the

performance of MLPs is expected to be significantly better than that of linear models for larger

datasets. 

The  challenges  of  MLPs over-fitting  on  small  datasets  might  be  overcome by  using  Bayesian

networks (Charnock et al., 2020; Jospin et al., 2022). Traditional neural network tend to be over-

confident on data point outside the distribution on training dataset, and models fitted using smaller

dataset are more likely to encounter out of distribution observations during testing (Guo et al., 2017;

Nixon et al., 2020). Neural networks can be converted into Bayesian neural networks by having

stochastic weights, such that weights are represented as distributions instead of point estimates.

Consequently, Bayesian  neural  network  can  give  an  estimate  of  the  confidence  of  a  given

prediction. Having neural networks that provide precision for a given prediction is useful in medical

diagnosis because the model can flag instances where human intervention is needed, enhancing

safety  (Amodei  et  al.,  2016).  Bayesian  neural  networks  are  also  well  suited  for  small  dataset

because  they  don’t  require  cross-validation  for  hyper-parameter  optimization,  but  can  instead

average out the hyper-parameters. During hyper-parameter optimization, 20% of training data was

put  aside  for  model  validation,  reducing  the  size  of  the  training  dataset.  Test  AUC increased

approximately  linearly  with  log  of  proportion  of  labelled  dataset,  suggesting  that  the  price  of

holding out the validation dataset on model performance was steeper for smaller dataset.

We used denoising and sparse auto-encoders for SSL models instead of contrastive learning models

used for CXR and PPG signals. Auto-encoders model the joint distribution of the inputs which can

be difficult when different variables have different units. Therefore, continuous variables such as

temperature and oxygen saturation were scaled to have a range of -1 to 1 using min-max scaling.

The self-supervised learning methods used relied on the ability of the model to reconstruct the

inputs. Such methods may have challenges with datasets consisting of clinical signs and symptoms

where the variables have high class imbalance. That is because the models can take shortcuts and

learn to minimize the loss during training by simply predicting the majority class for each input

variable, and fail to learn useful representations of the inputs. Data augmentation techniques such as

adding random noise and randomly switching the class of an input variable might not be sufficient

to prevent such shortcuts.
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The overall performance of all models may be too low to have clinical utility. While an AUC of 0.7

is indicative of the models being able to rank patients according to risk of bacteremia, the AUC is

too low to be useful in making decisions on clinical management of patients. The models might still

be useful for determining the prevalence of bacteremia in various setting, but external validation

using  data  from  other  hospitals  would  be  required  to  assess  generalizability.  This  study

demonstrates that the low performance in models for classifying bacteremia is not due to use of

simple linear models. MLP models which have been show to work well in many machine learning

applications performed either worse or at per with linear models. 

Results of blood culture results were used as an indicator of bacteremia. Blood cultures have low

sensitivity and specificity because of difficulties in culturing the micro-organism (Bloos et al., 2012;

Westh et al., 2009). The poor sensitivity act as noise in the outcome/label which has been shown to

hinder training of machine learning models. Polymerase chain reaction (PCR) tests are highly

sensitive alternative test for bacteremia that could reduce noise in the labels. However, the high cost

of PCR tests hinders its use in public hospitals.  

The use of clinical signs and symptoms as predictors of bacteremia has several limitations. First,

multiple diseases with different etiologies/causes have similar presentation. For instance, severe

malaria which is cause by protozoa and bacterial meningitis have overlapping clinical signs and

symptoms limiting the utility of the clinical signs. In addition, assessment of clinical symptoms is

subjective and may vary from one clinician to another which introduces measurement noise in the

predictors. Su (2011) was able to predict bacteremia using logistic regression with an AUC of 0.854

by incorporating laboratory measured biomarkers for lymphocyte counts (Lymphopenia), C-reactive

proteins, and procalcitonin. Jaimes  (2004) was able to predict bacteremia with an AUC of 0.718

using leukocyte  count  and other  clinical  signs  and symptoms as  predictors.  Such models  with

predictors that require well equipped laboratories may not be feasible in low income settings. An

alternative source of predictors for bacteremia might be near infrared (NIR) spectrometry (Ciurczak

& Igne,  2014).  Application  on  NIR spectrometry  in  medicine  include  measurements  of  blood

glucose, oxygen, and haemoglobin (Sakudo, 2016). Recent advances in NIR spectroscopy have seen

the devices become portable and miniaturized, which has improved their usability  (Alcalà et al.,

2013). In addition, NIR spectrometers like pulse oximeters are non invasive and can be used by the
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bedside without requiring presence of well equipped laboratories. Deep learning model work well

with  high  dimensional  data,  and  hence  are  ideal  for  developing  models  using  NIR  signals.

Furthermore, CNNs might exploit the spatial aspects of NIR to achieve higher performance.

Only 4 % of blood cultures were positive. Therefore, there was high imbalance in the outcome

which made model training difficult. We weighted the loss using the inverse of class frequencies for

logistic  regression  and  up  sampled  the  minority  class  for  MLPs.  Consequently,  metrics  for

sensitivity and specificity in logistic regression and MLPs are not comparable. Having only a few

observations with positive blood cultures also made model evaluation difficult. The class imbalance

informed  the  choice  of  AUC  -  which  measure  of  how  well  the  classifier  can  rank  any  two

observation according to the risk of the outcome - as the evaluation metric. 

Deep learning methods don’t perform as well as tree based models such as boosted trees on tabular

data (Shwartz-Ziv & Armon, 2022). However, incorporating unlabelled data while training tree

based models is difficult except by using self-training. Consequently, successful transfer learning

methods based on deep learning may remain sub-optimal until significant progress has been made

in deep learning architectures for tabular data.
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6 Conclusion and Recommendations

This study addresses the application of transfer learning to medical data.  Most of the previous

efforts in transfer learning have concentrated on either natural images or text. We applied transfer

learning to the three types of datasets available for diagnostic and prognostic models in low income

setting:  medical  images,  bio-signals  and tabular  data.  There are  significant  differences between

medical images and natural images that might affect suitability of transfer learning methods that

have been applied to natural images. For instance, data augmentation methods such as cropping that

used for natural images might be inappropriate for medical images.

The study makes significant contribution to transfer learning for medical data. First, it introduces a

pretext task for bio-signals where a model is trained to classify whether two bio-signal segments

originate from the same patient. Secondly, the study demonstrates improvement in classification of

medical images when the pre-text task utilized another data-set of medical images instead of natural

images. Lastly, the study confirmed previous research on the limited utility of clinical signs and

symptoms in developing diagnostic models (Christodoulou et al., 2019). The study shows that the

poor performance of models classifying bacteremia using signs and symptoms is not due to using

linear models that have limited complexity. 

  

Transfer learning techniques improved models fitted on pulse oximeter signals and CXRs but had

little  effect  on  models  fitted  using  clinical  signs  and  symptoms.  The  observed  differences  in

improvement might be due use of deep learning, whose application on heterogeneous tabular data

such as clinical signs and symptoms is often challenging (Borisov et al., 2022). The hidden layers of

deep learning models learn latent representations of the inputs, making deep learning models ideal

for transfer learning when combined with unsupervised/self-supervised learning. Furthermore, deep

learning models are currently the state of art for developing machine learning models using highly

structured data such as images and signals.

There were limitations in  the study relating to the scope of  models  used due to limitations in

computing resources. Deep learning models are computationally intensive and require computers
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fitted  with  accelerators  such  as  graphical  processing  units  (GPUs)  or  tensor  processing  units

(TPUs). The models reported in this study were fitted using three desktops, each having 24GBs

random access memory (RAM) and an NVIDIA 1080Ti GPU (11GB memory). The size of memory

in the GPUs limited the size of deep learning models and batch sizes that could be processed at a

time. Consequently, we could not train models with large batch size, which has been shown to

beneficial for contrastive learning (He et al., 2020). Furthermore, limitations in computing resources

hindered exploration of alternative deep learning architectures such as transformers for medical

images and recurrent neural networks for bio-signals.  Extensive hyper-parameter search require

fitting  many  models  with  varying  hyper-parameter  configurations  which  is  computationally

expensive. As a result, we used ASHA algorithm instead of grid search hyper-parameter selection

algorithm for the deep learning models. Unlike grid search algorithm where all hyper-parameter

configurations  are  tested,  ASHA  algorithm  samples  a  fixed  number  of  hyper-parameter

configurations,  and  stops  poor  performing  hyper-parameter  configurations  early.  While  early

stopping reduces the amount of computation required to fit the models, there is a risk of stopping

well performing hyper-parameter configurations prematurely. For instance, models trained using

small learning rates might be stopped early despite possibility of having lower loss at the end of

training because their loss decreases too slowly and consequently have high loss during the initial

epochs.

Each data  type  –  medical  images,  bio-signals,  and tabular  data  –  was  represented  by  a  single

dataset, and only one classification task was tested for each data type. Consequently, the findings of

this study may not generalize to all tasks for any data type. There are a variety of other medical

images such as MRI scans, CT scans, and ultra-sounds which might have different modalities. For

instance, MRI and CT scans are 3-dimensional images while CXR images are 2-dimensional. In

addition, transfer-ability may depend on how closely related the tasks are, and therefore be task

dependent. It is also possible that there are other large unlabelled datasets that are better suited for

tasks explored in this study. However, this study provides evidence for benefits of transfer learning

in development of diagnostic and prognostic models and serves as a baseline for transfer learning

for prognostic and diagnostic models.

Further research is needed in development of appropriate data augmentation for medical datasets.

Data augmentation is central to self-supervised learning using contrastive learning and denoising
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auto-encoders. Data augmentation is also key to deep learning models in general, and is used widely

to prevent over-fitting. Therefore, it is essential to develop data augmentation techniques specific

for various medical data types. Such techniques might rely on domain knowledge about sources of

noise for various data types. For instance, PPG signals contain motion artifacts and interference

from ambient light. As such, data augmentation techniques that can add motion and ambient light

noise to signals may improve transfer learning for PPG signal datasets. It might be worthwhile to

explore generative adversarial networks for data augmentation given that developing a model for

the noise generating process from domain knowledge might be difficult (Sandfort et al., 2019).

There is limited research on the impact of diagnostic and prognostic models on clinical outcomes.

Fitting the models is only the first step and more research in needed for the implementation of the

models  in  clinical  practice.  Interventions  involving  technology  might  be  challenging  in  low

resource settings which might render good performing models unusable (McCool et al., 2020).

In conclusion, performance of diagnostic and prognostic models can be improved using transfer

learning. However, the improvement in performance of the models might depend on the task and

data type used. For data types that deep learning models excel such as medical images and bio-

signals, transfer learning models based on deep learning are beneficial. On the other hand, simpler

linear models perform better than deep learning for smaller tabular datasets. 
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Figure 25: Location of 14 CIN hospitals and Kilifi county hospital. Labelled data for blood culture 

was only available in Kilifi hospital



Appendix B: Performance of models predicting blood 
culture results using clinical signs and symptoms

Table 13: Accuracy, F1, precision, recall, and specificity of models predicting blood culture results 

using clinical signs and symptoms

Proportion of labelled data used

0.05 0.1 0.3 0.5 0.7 1

Metric Model datasets 

Accuracy Logistic
(Baseline)

Kilifi 0.765± 
0.021

0.745± 
0.033

0.728± 
0.011

0.721± 
0.009

0.717± 
0.006

0.710± 
0.005

Logistic:
Self

Training

Kilifi 0.780± 
0.038

0.755± 
0.012

0.718± 
0.011

0.726± 
0.013

0.716± 
0.008

0.711± 
0.005

Kilifi & CIN 0.777± 
0.024

0.750± 
0.041

0.733± 
0.015

0.707± 
0.011

0.720± 
0.006

0.712± 
0.007

MLP:Denoi
sing auto-
encoder

Kilifi 0.170± 
0.186

0.052± 
0.015

0.438± 
0.303

0.147± 
0.145

0.370± 
0.292

0.514± 
0.161

Kilifi & CIN 0.300± 
0.313

0.181± 
0.259

0.394± 
0.312

0.394± 
0.292

0.268± 
0.267

0.245± 
0.265

MLP:Rand
om

inititalizatio
n

Kilifi

0.499± 
0.362

0.178± 
0.131

0.554± 
0.262

0.426± 
0.252

0.367± 
0.292

0.714± 
0.009

MLP:Spars
e auto-
encoder

Kilifi 0.747± 
0.128

0.520± 
0.308

0.380± 
0.331

0.352± 
0.226

0.604± 
0.169

0.490± 
0.275

Kilifi & CIN 0.480± 
0.367

0.340± 
0.248

0.233± 
0.257

0.435± 
0.326

0.321± 
0.345

0.376± 
0.298

MLP:Spars
e auto-
encoder

(KL)

Kilifi 0.446± 
0.370

0.392± 
0.265

0.569± 
0.283

0.519± 
0.274

0.398± 
0.256

0.596± 
0.215

Kilifi & CIN 0.377± 
0.310

0.137± 
0.157

0.296± 
0.149

0.274± 
0.239

0.267± 
0.221

0.581± 
0.160

MLP:Spars
e auto-
encoder

(L1)

Kilifi 0.433± 
0.095

0.166± 
0.166

0.457± 
0.254

0.045± 
0.008

0.296± 
0.231

0.400± 
0.327

Kilifi & CIN 0.436± 
0.292

0.328± 
0.262

0.367± 
0.289

0.302± 
0.265

0.388± 
0.291

0.345± 
0.215

F1 Logistic
(Baseline)

Kilifi 0.135± 
0.011

0.140± 
0.010

0.142± 
0.006

0.141± 
0.006

0.141± 
0.005

0.138± 
0.006

Logistic:
Self

Training

Kilifi 0.139± 
0.018

0.141± 
0.008

0.139± 
0.006

0.141± 
0.006

0.140± 
0.006

0.139± 
0.005

Kilifi & CIN 0.140± 
0.013

0.138± 
0.014

0.140± 
0.007

0.139± 
0.007

0.141± 
0.005

0.139± 
0.007

MLP:Denoi
sing auto-
encoder

Kilifi 0.081± 
0.006

0.078± 
0.001

0.111± 
0.028

0.083± 
0.009

0.109± 
0.032

0.117± 
0.022

Kilifi & CIN 0.089± 
0.021

0.088± 
0.020

0.109± 
0.031

0.108± 
0.027

0.095± 
0.023

0.094± 
0.025

MLP:Rand
om

inititalizatio

Kilifi
0.076± 
0.014

0.084± 
0.007

0.121± 
0.023

0.113± 
0.033

0.107± 
0.030

0.144± 
0.004
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n
MLP:Spars

e auto-
encoder

Kilifi 0.116± 
0.022

0.114± 
0.027

0.107± 
0.031

0.101± 
0.023

0.127± 
0.021

0.117± 
0.027

Kilifi & CIN 0.089± 
0.022

0.097± 
0.025

0.092± 
0.020

0.115± 
0.033

0.106± 
0.036

0.108± 
0.030

MLP:Spars
e auto-
encoder

(KL)

Kilifi 0.091± 
0.020

0.100± 
0.020

0.124± 
0.027

0.120± 
0.026

0.106± 
0.023

0.129± 
0.022

Kilifi & CIN 0.094± 
0.016

0.082± 
0.008

0.094± 
0.011

0.094± 
0.019

0.096± 
0.021

0.126± 
0.022

MLP:Spars
e auto-
encoder

(L1)

Kilifi 0.089± 
0.003

0.085± 
0.010

0.114± 
0.029

0.077± 
0.000

0.096± 
0.019

0.112± 
0.035

Kilifi & CIN 0.099± 
0.018

0.094± 
0.018

0.103± 
0.025

0.102± 
0.032

0.107± 
0.029

0.101± 
0.021

Precision Logistic
(Baseline)

Kilifi 0.079± 
0.007

0.081± 
0.008

0.081± 
0.004

0.080± 
0.004

0.080± 
0.003

0.079± 
0.004

Logistic:
Self

Training

Kilifi 0.083± 
0.012

0.082± 
0.005

0.079± 
0.003

0.081± 
0.004

0.079± 
0.003

0.079± 
0.003

Kilifi & CIN 0.083± 
0.009

0.081± 
0.010

0.080± 
0.004

0.079± 
0.004

0.081± 
0.003

0.079± 
0.004

MLP:Denoi
sing auto-
encoder

Kilifi 0.043± 
0.004

0.041± 
0.001

0.061± 
0.018

0.044± 
0.005

0.060± 
0.020

0.064± 
0.014

Kilifi & CIN 0.049± 
0.016

0.047± 
0.012

0.060± 
0.020

0.059± 
0.016

0.051± 
0.014

0.050± 
0.015

MLP:Rand
om

inititalizatio
n

Kilifi

0.054± 
0.012

0.044± 
0.004

0.068± 
0.014

0.062± 
0.022

0.059± 
0.019

0.082± 
0.003

MLP:Spars
e auto-
encoder

Kilifi 0.070± 
0.013

0.066± 
0.020

0.060± 
0.021

0.055± 
0.015

0.071± 
0.014

0.065± 
0.017

Kilifi & CIN 0.052± 
0.015

0.053± 
0.017

0.049± 
0.013

0.064± 
0.021

0.059± 
0.023

0.059± 
0.019

MLP:Spars
e auto-
encoder

(KL)

Kilifi 0.057± 
0.017

0.055± 
0.014

0.072± 
0.020

0.067± 
0.017

0.058± 
0.015

0.072± 
0.014

Kilifi & CIN 0.052± 
0.012

0.043± 
0.005

0.049± 
0.006

0.050± 
0.012

0.051± 
0.013

0.070± 
0.014

MLP:Spars
e auto-
encoder

(L1)

Kilifi 0.048± 
0.001

0.044± 
0.006

0.063± 
0.019

0.040± 
0.000

0.051± 
0.011

0.063± 
0.023

Kilifi & CIN 0.055± 
0.013

0.051± 
0.012

0.056± 
0.016

0.055± 
0.020

0.059± 
0.018

0.054± 
0.013

Recall Logistic
(Baseline)

Kilifi 0.457± 
0.019

0.512± 
0.018

0.562± 
0.014

0.570± 
0.016

0.580± 
0.015

0.579± 
0.015

Logistic:
Self

Training

Kilifi 0.433± 
0.019

0.501± 
0.020

0.565± 
0.017

0.561± 
0.017

0.576± 
0.016

0.582± 
0.015

Kilifi & CIN 0.451± 
0.024

0.493± 
0.022

0.543± 
0.016

0.589± 
0.015

0.576± 
0.016

0.581± 
0.015

MLP:Denoi
sing auto-
encoder

Kilifi 0.896± 
0.017

0.998± 
0.014

0.753± 
0.018

0.949± 
0.017

0.822± 
0.016

0.753± 
0.015

Kilifi & CIN 0.772± 
0.040

0.906± 
0.020

0.788± 
0.014

0.800± 
0.012

0.875± 
0.013

0.885± 
0.014

MLP:Rand Kilifi 0.571± 0.925± 0.680± 0.795± 0.823± 0.600± 
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om
inititalizatio

n 0.036 0.015 0.017 0.011 0.016 0.012
MLP:Spars

e auto-
encoder

Kilifi 0.410± 
0.026

0.649± 
0.013

0.777± 
0.014

0.837± 
0.011

0.663± 
0.015

0.735± 
0.013

Kilifi & CIN 0.587± 
0.037

0.796± 
0.017

0.890± 
0.008

0.761± 
0.013

0.825± 
0.012

0.811± 
0.012

MLP:Spars
e auto-
encoder

(KL)

Kilifi 0.638± 
0.019

0.764± 
0.021

0.648± 
0.009

0.712± 
0.017

0.802± 
0.016

0.673± 
0.012

Kilifi & CIN 0.736± 
0.035

0.943± 
0.009

0.884± 
0.011

0.873± 
0.015

0.905± 
0.012

0.701± 
0.012

MLP:Spars
e auto-
encoder

(L1)

Kilifi 0.690± 
0.036

0.938± 
0.023

0.764± 
0.016

0.999± 
0.018

0.872± 
0.015

0.780± 
0.012

Kilifi & CIN 0.695± 
0.018

0.803± 
0.011

0.800± 
0.007

0.867± 
0.016

0.795± 
0.013

0.852± 
0.014

Specificity Logistic
(Baseline)

Kilifi 0.777± 
0.022

0.754± 
0.035

0.735± 
0.013

0.727± 
0.009

0.723± 
0.007

0.716± 
0.005

Logistic:
Self

Training

Kilifi 0.795± 
0.040

0.765± 
0.014

0.724± 
0.012

0.733± 
0.015

0.721± 
0.009

0.717± 
0.005

Kilifi & CIN 0.790± 
0.026

0.760± 
0.045

0.741± 
0.017

0.712± 
0.012

0.726± 
0.007

0.717± 
0.007

MLP:Denoi
sing auto-
encoder

Kilifi 0.140± 
0.200

0.013± 
0.016

0.425± 
0.324

0.114± 
0.154

0.351± 
0.312

0.504± 
0.173

Kilifi & CIN 0.281± 
0.337

0.150± 
0.277

0.378± 
0.333

0.377± 
0.311

0.243± 
0.285

0.218± 
0.282

MLP:Rand
om

inititalizatio
n

Kilifi

0.496± 
0.395

0.147± 
0.140

0.549± 
0.280

0.411± 
0.268

0.348± 
0.311

0.719± 
0.009

MLP:Spars
e auto-
encoder

Kilifi 0.761± 
0.140

0.515± 
0.332

0.363± 
0.355

0.331± 
0.241

0.601± 
0.181

0.480± 
0.294

Kilifi & CIN 0.475± 
0.397

0.320± 
0.266

0.206± 
0.275

0.421± 
0.347

0.300± 
0.368

0.357± 
0.318

MLP:Spars
e auto-
encoder

(KL)

Kilifi 0.438± 
0.400

0.376± 
0.284

0.566± 
0.304

0.511± 
0.294

0.381± 
0.274

0.592± 
0.230

Kilifi & CIN 0.362± 
0.334

0.103± 
0.168

0.271± 
0.158

0.249± 
0.255

0.241± 
0.234

0.576± 
0.172

MLP:Spars
e auto-
encoder

(L1)

Kilifi 0.423± 
0.104

0.133± 
0.177

0.444± 
0.271

0.005± 
0.008

0.272± 
0.246

0.384± 
0.349

Kilifi & CIN 0.425± 
0.315

0.308± 
0.281

0.349± 
0.309

0.278± 
0.282

0.371± 
0.311

0.324± 
0.230
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