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ABSTRACT 

The push-pull technology (PPT) as an alternative to conventional pesticide use in the control 

of fall armyworm (FAW) and stemborer pests in maize production has received considerable 

attention in the recent past. However, the impact of adoption of PPT on the productivity of 

smallholder maize farmers in Eastern Rwanda where the technology was introduced in 2017 

remains largely unknown. This study assessed the intensity of adoption of PPT in Nyagatare 

and Gatsibo districts of Rwanda using a fractional logit model (FLM) and evaluated the impact 

of adoption of PPT on maize productivity using a multinomial endogenous switching 

regression (MESR). The study applied a 2019 survey data from a sample of 398 households 

operating 967 maize plots selected using a stratified random sampling technique.  

 

The results of the fractional logit model revealed that while only 5 percent of the maize farmers 

had adopted the technology, on average, farmers practiced PPT on 26 percent of their maize 

plots. The results of the Fractional Logit Model (FLM) showed that the perceived PPT benefits, 

perceived PPT effectiveness in control of pests, livestock ownership, gender and group 

membership had positive significant influence on the intensity of adoption of PPT in Rwanda. 

Overall, 25, 20, and 14 percent of the households adopted traditional, PPT and pesticides 

respectively in the control of stemborer and fall army worms. In addition, 8 and 7 percent of 

the households adopted a combination of pesticides and traditional, and a mix of PPT and 

traditional practices respectively. The results of the MESR model revealed that perceived cost 

of technology, perceived technology effectiveness, wealth status, perceived pest severity, 

perceived soil fertility and group membership significantly influenced the adoption of pest 

control practices in the Eastern Rwanda. Furthermore, the MESR results revealed that adopting 

PPT and its combinations had a significant positive impact on maize yields while using 

pesticides or traditional and its combinations had a negative impacts on maize yield. The study 
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recommends investment in awareness creation to improve farmers understanding on the 

perceived PPT benefits while using group methods (such as farmer-farmer, farmer field 

schools, demonstrations etc) that are gender disaggregated to enhance adoption of push-pull 

technologies. The study also recommended promotion of push-pull technology as a low cost 

pest control management practices in controlling FAW and stemborer pests in maize to 

improve agricultural productivity. 

Key words: Fall armyworm, Stemborer, Push Pull Technology, Adoption, Impact, Fractional 

Logit Model, Endogenous Switching Regression Model, Rwanda 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

The push-pull technology (PPT) refers to a stimuli-deterrent technology developed by the 

International Centre of Insect Physiology and Ecology (icipe) and its partners as an integrated 

pest management technology to control cereal pest. Khan et al. (2010) and Khan et al. (2014) 

distinguished two types of PPT namely conventional and climate-smart PPT. The conventional 

PPT involves intercropping of maize with silver leaf Desmodium (push component) acting as 

a repellent to the pest moths and suppressing Striga weed and Napier grass (pull component) 

acting as a predisposed pulling crop which is planted around the plot crop (Khan et al., 2008a). 

 

Conversely, Climate-smart PPT involves intercropping of maize with drought-tolerant green 

leaf Desmodium acting as a push component to the pest moths and Brachiaria planted 

surrounding the farm plot acting as a pull component (Khan et al., 2014; Chepchirchir et al., 

2017). However, the use of conventional PPT is found to demonstrate high profit with a benefit-

cost ratio of about 2.2:1 relative to 0.8:1 for farmer’s individual practice of maize mono-

cropping and 1.8:1 for pesticide use (Khan et al., 2001; 2008a).Khan et al. (2008b) also found 

the technology to have a sustainable increase in maize yield and higher labour returns. 

 

 For instance, maize farmers in Uganda and Kenya using PPT reported yield increment by 1.54 

and 2.2 times higher compared to those farmers planting maize without PPT (Khan et al., 

2008a; Chepchirchir et al., 2018). Furthermore, PPT has been found to be effective in control 

of stemborer and Striga weed in maize fields simultaneously and even recently documented to 

control fall armyworm (FAW) although pathway through which this technology minimize the 

pest still under investigation (Khan et al., 2008a; Murage et al., 2015a; Midega et al., 2015; 

2018; Hailu et al., 2018; Kumela et al., 2018; icipe, 2019a).  
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The secondary importance of PPT comprise of reducing soil erosion and pesticides usage, 

provision of fodder for increasing milk productivity as well as improving soil fertility through 

soil shading and nitrogen fixation (Pickett et al., 2014; Chepchirchir et al., 2017; Kassie et al., 

2018a; Maina et al., 2020). PPT has also reduced the usage of herbicides and costly synthetic 

insecticides that are unaffordable and costly to resource poor farmers thus enhancing human 

health and increasing biodiversity (Pickett et al., 2014). Although primary establishment of the 

PPT is labour intensive, the labour demands reduce significantly once the crop system is 

established (Muriithi et al., 2018). Moreover, evidence from sub-Saharan Africa (SSA) 

indicates that PPT can double or even, in other cases, triple cereal yields and livestock fodder 

(Cook et al., 2006; Khan et al., 2001; 2008a and b; Murage et al.,2015a,b).  

 

However, low agricultural productivity emanating from both abiotic and biotic constraints 

remains a key challenge for smallholder farmers in SSA despite the numerous benefits of PPT 

(Murage et al., 2015a; Midega et al., 2015; Hailu et al., 2018; Kumela et al., 2018; icipe, 

2019b). Biotic factors specifically FAW and stemborer pest are ranked to be most important 

constraints with economic impacts caused by these pests in the field being of particular concern 

to policy makers and researchers in East African countries (icipe, et al., 2019b). 

 

 For instance, FAW pest is estimated to cause annual maize yield losses in African countries 

ranging from 21-53 percent under no control technologies (Day et al., 2017). These losses are 

estimated at 8.3-20.3 million metric tonnes of produce, valued at US dollars 4334 million lost 

annually (Day et al., 2017). Although studies have found losses to vary from country to 

country, in Kenya and Ethiopia is estimated at 32 and 47 percent respectively (Kumela et al., 

2018) .In Zimbabwe the yield losses was estimated at 9.4 percent (Baudron et al., 2019) while 

40 and 45 percent of maize produce is lost in Ghana and Zambia respectively (Day et al., 2017).  
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Conversely, maize stemborer pest is estimated to cause a loss of about 44-50 percent of 

potential maize output in Kenya (Nyukuri et al., 2014; IITA, 2019). However, with the recent 

outbreak of fall armyworm (FAW) in African countries, Rwanda is even expected to have huge 

economic impacts on maize productivity. Specifically, Rwanda‘s maize sub-sector loses up to 

44 percent of potential maize output to pest infestation (Rukundo et al., 2020). These losses 

raised a major concern especially with maize being one of the prioritized crops under crop 

intensification program (CIP) and engine to the Rwandan economy (Uwizeyimana et al. 2018). 

Thus, without appropriate interventions in Rwanda, FAW and stemborer pests can derail effort 

towards the attainment of the Sustainable Development Goals number 1 and 2 of poverty 

reduction and ending hunger by the year 2030. 

 

Smallholder farmers in Rwanda have used various approaches to control FAW and stemborer 

pests (Rukundo et al., 2020). These approaches comprise of handpicking and elimination of 

larvae and caterpillars of the pests, soil/ash, plant extracts, sawdust or pepper mixture, use of 

cattle urine, mixed cropping, and use of pesticide (Midega et al., 2018; Kumela et al., 2018; 

2019; Kassie et al., 2020; Rukundo et al., 2020). Although some of these approaches are 

deemed efficient on small maize plots, the efficacy is questionable in Rwanda where most 

maize plots are scattered (Rukundo et al., 2020). Pesticides on the other hand, continue to be 

the most preferred pest control method for FAW and stemborer accounting for 87 percent 

among smallholder maize farmers in Rwanda (Tambo et al., 2020). However, the over-reliance 

on pesticide application has elicited pest resistance and harmful influence on animals, human 

and raises environment health concerns (Nicolopoulou-Stamati et al., 2016; Kim et al., 2017; 

Sharma and Singhvi, 2017). Furthermore, the accessibility of pesticides and highly specialized 

safety equipment for their application remains a challenge to smallholder farming households 

in SSA (Day et al., 2017; Kumela et al., 2018).  
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This has been evident in situation where majority of farmers in Rwanda failed to use personal 

protective gears such as goggles, gloves, masks and overalls during application of highly 

hazardous pesticides resulting to incidences of acute pesticide poisoning among them (Day et 

al., 2017; Rukundo et al., 2020). In an attempt to reduce the high maize yield-related production 

losses associated with FAW and stemborer pests, icipe in collaboration with the Government 

of Rwanda implemented PPT pilot project in 2017 (icipe, 2019a). The technology involved a 

system where maize is intercropped with drought tolerant green leaf Desmodium acting as a 

push component through production of chemical compounds some of which repel the fall 

armyworm and stemborer while the Brachiaria acting as a pull component through production 

of other chemical substances such as dusts that attracts the FAW and stemborer moths to lay 

eggs there (Chamberlain et al., 2006). The pest’s larvae are then trapped by gummy substance 

produced by Brachiaria and only less number survives reducing their population (Khan et al., 

2001; 2008a).  

 

The project aimed at controlling FAW and stemborer and eventual reducing maize yield losses 

as well as improving agricultural productivity (icipe, 2019a, and b). The project was conducted 

in two districts of Eastern province of Rwanda: Nyagatare and Gatsibo districts. The 

government of Rwanda, through the Rwanda Agricultural Board (RAB) recommended local 

partners (Food for the Hungry/ Rwanda organization) who undertook farmer identification, 

training and establishment of demonstration plots (icipe, 2019a; Niassy et al., 2020). Other 

farmers would later learn from demonstration plots before adopting and receiving necessary 

support through extension visits from both icipe field monitors and government extension 

officers. The program was supposed to stem low productivity, which is key in moving with 

pace of high population growth.  
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1.2 Statement of the research Problem 

With the outbreak of FAW and stemborer pests, the availability of effective control pest 

management technology become a serious concern, especially for resource poor smallholder 

maize farmers. Pesticide use, one of the most commonly preferred pest control methods among 

smallholder farmers in Rwanda is limited due to pest resistance and negative human, animal 

and environmental health effects (Nicolopoulou-Stamati et al., 2016; Sharma and Singhvi, 

2017). However, the adoption rate of PPT in Rwanda still remains low since its introduction in 

2017 despite the combined efforts from both government of Rwanda and the icipe, PPT 

developers to promote its adoption (icipe, 2019a). Moreover, the impact of adoption of PPT on 

maize productivity in Rwanda remains largely unexplored. 

 

Previous empirical studies have evaluated the impact of adoption of PPT on household welfare, 

farm level economic benefits and aggregate welfare. The impact of adoption of PPT on maize 

productivity has received minimal attention while these studies did not incorporate the key 

drivers of technology adoption such as perceived PPT benefits, its perceived effectiveness, 

perceived cost and wealth category of the household yet they are pre-requisite for PPT 

adoption. Subsequently, previous studies on impact of agricultural technology focused on 

single technology in isolation without incorporating its combinations which might results to 

underestimation or overestimation of the results of the same technologies. Khonje et al., (2018) 

and Kassie et al., (2018b) argued that smallholder farmers rarely adopts single technology but 

rather sequentially adopts a combination of technologies jointly as complements. 
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1.3 Objectives of the Study 

The overall objective of this study was to examine the impact of adoption of push-pull 

technology (PPT) on farm productivity among smallholder maize farmers in Nyagatare and 

Gatsibo districts of Eastern Rwanda. The specific objectives of this study were: 

1. To assess the factors influencing the intensity of adoption of PPT amongst maize 

farmers in Nyagatare and Gatsibo districts. 

2. To evaluate the impact of adoption of PPT on maize productivity amongst maize 

farmers in Nyagatare and Gatsibo districts. 

 

1.4 Hypotheses 

The hypotheses tested were:  

Ho: The perceived benefits of PPT effectiveness in pest control have no influence on the 

intensity of PPT adoption among smallholder maize farmers in Nyagatare and Gatsibo districts. 

Ho: Push-pull technology has no influence on maize productivity among smallholder maize 

farmers in Nyagatare and Gatsibo districts. 
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1.5.  Justification for the study 

Evaluating the impact of adoption of PPT is important as an alternative and affordable pest 

control method to synthetic pesticides option in control of FAW and stemborer pests. Rwanda, 

specifically, Nyagatare and Gatsibo districts are classified as potential maize producing areas 

and were pilot areas for PPT that are facing high infestation of FAW and stemborer pests (icipe, 

2019a). Information collected from this study will play vital role in decision-making for 

farmers, international organization such as icipe and the Government of Rwanda (GOR) (both 

at national and districts levels). Information on the impact of adoption of PPT will play a vital 

role to farmers in making informed investment decisions and acting as a motivation to choosing 

the low cost pest control method in controlling FAW and stemborer on maize production. 

 

Scientist in icipe, other stakeholders and extension agents in Rwanda will also benefit from the 

results of this study in identifying key indicators needed in designing and formulating training 

extension platforms that can be used in widespread promotion and dissemination of PPT. The 

GOR can also utilize all the information to design and formulate policy briefs that would 

enhance investment on the factors influencing intensity of adoption and impact of adoption of 

PPT as an effective pest control technologies which in turn enhances reduced yield losses and 

improves productivity. The results on increasing maize productivity will contribute towards 

attainment of global sustainable development goals (SDG) , namely goal 1 on poverty 

eradication, goal 2 on ending hunger and goal 12.3 on reducing food waste and food losses 

(United Nations, 2017). Achievement of food security is also in line with strategies under the 

Economic Development and Poverty Reduction Strategy (EDPRS) and Crop Intensification 

Program (CIP) identified as an engine to the Rwandan economy. The results are also in line 

with the GOR’s fourth Strategic Plan for Agriculture Transformation (PSTA IV, 2018-2024) 

that purposes to improve agricultural productivity and commercialization (MINAGRI, 2018).  
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1.6 Organization of the thesis 

This thesis is structured into six chapters. The first chapter one introduces the study, states the 

research problem and justification of the study along with the overall objective, the objectives 

and hypotheses. Chapter two explains the reviews of relevant literature and the review on 

methodology respectively. Chapter three describes the methodology comprising of the 

theoretical framework, empirical methods, data sources and sampling procedure and 

measurement of key variables. Furthermore, chapter four and five explains empirical analysis, 

results, discussions and key conclusions presented in paper format, which focused on each 

specific research objective. Lastly, chapter six presents summary of key results, conclusions 

and policy implications. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Approaches for analyzing impact of agricultural technologies on productivity 

Impact evaluation aims at establishing if or not an intervention yields its intended effects 

(African Impact Evaluation Initiative (AIEI), 2021). Wainaina et al., (2012) distinguished two 

ways of evaluating the impact of a particular project, namely “with and without” and “before 

and after” methodologies. “With and without” approach matches the behavior of the main 

variables in a sample of a program group of the treatment (intervention) to that of controlled 

(non-program group) of the intervention. The approach is applicable when baseline data is 

missing and contrast group is used as a proxy to measure whatever could have taken place 

before the program. 

 

The “before and after” approach matches the performance of main variables during and after 

the intervention with variable earlier to the program (Wainaina et al., 2012). The approach 

entails conducting a baseline survey for the program and non-program group before the 

intervention and follow up after the intervention and uses statistical methods in measuring if 

there is substantial variation in a number of important variables over time (Gittinger, 1984). 

However, the method fails to explain the outcome of the confounding variables on the variation 

resulting in biased estimate. 

 

Impact evaluation assess the impact of the project has on beneficiaries through comparison of 

outcome between the members and non-members group (AIEI, 2021). The approach relies on 

both econometrics and statistical models. Baker, (2000) grouped impact evaluation designs into 

three, namely experimental, non-experimental and quasi-experimental, which are related with 

comparison, non-participants and control group. An experimental or randomized design 

involves random selection of a set of sample into treatment (intervention) and control group. 
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On the other hand, non-experimental or quasi-experimental designs are applicable when it is 

not easy to construct treated and controlled group through experimental designs. In such 

situation, econometric method is applied to create comparison group that is related to the 

treatment group basing on observable characteristics. Econometric technique has been put in 

place to overcome problem of counterfactual and self-selection bias. These econometric 

approaches include matching method, difference in difference (DD), reflexive comparison and 

instrumental variable (Baker, 2000; Wainaina et al., 2012). 

 

The DD method is applicable when using longitudinal or panel data. The method involves 

making comparison between the treated and untreated groups before and after program (Baker, 

2000; Wainaina et al., 2012). The total impact of program involves computation of the 

differences in outcomes for the treated and untreated group after project implementation less 

prior change in outcome of treated and untreated group before the project (AIEI, 2021). 

Although the method removes biases coming from comparisons overtime in the treated group, 

it requires baseline information for the two groups, which is not easy to get as intervention may 

have started without doing baseline study. The DD approach does not account for time-

invariant selection bias (Kibira et al., 2015). 

 

Propensity score matching (PSM) is a non-parametric technique that is applied to relax 

selectivity bias. The method involves association of the beneficiaries (adopters) and non-

beneficiaries (non-adopters) of the intervention using similar recognizable features assumed to 

influence participation in the program (Kassie et al., 2011; Maina et al., 2020). However, it 

fails to account for the difference of unobservable characteristics that could have influenced 

the program intervention (Kassie et al., 2018a). 
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Reflexive comparison method is applicable in quasi-experimental design where there is prior 

baseline survey and follow-up survey after the intervention. It entails construction of 

counterfactual on basis of characteristics of participants before the intervention, which are 

compared among them before and after intervention. The method is useful in evaluating 

policies that cover entire population since no control group is used. However, it fails to account 

for scenarios of members, which may vary owing to the various factors irrespective of the 

intervention (Baker, 2000). It is not easy to differentiate between external effects and 

intervention resulting in unpredictable outcomes (Morton, 2009). 

 

Instrumental variable (IV) method entails using one or more variables that affects the treatment 

but not the outcome of intervention (Shiferaw et al., 2014; Khonje et al., 2015). The method 

identifies exogenous variant in outcome attributed to intervention, knowing that its occurrence 

is purposive but not by chance. The approach helps to account for selectivity bias on 

unobserved features through use of a variable (for instance instrument) that is associated with 

participation but uncorrelated with unobservable characteristics influencing the outcome 

(Shiferaw et al., 2014). 

 

The IV entails two-stage regression model where the additional variable (instrument) in the 

second step of the model introduces element of randomness into the equation yielding 

consistent and unbiased estimation in the existence of hidden biases. This accounts for 

endogeneity problem through estimation of selectivity and outcome equations concurrently 

(Lokshin and Sajala, 2004). The limitation of the approach is difficult to select the instrument. 

The method is extensively employed since it relaxes the selectivity and endogeneity problem. 

The approach is sub-divided into endogenous switching regression (ESR) and two stage least 

square (2SLS) regression. 
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 2.2 Review of Empirical Approaches for modelling agricultural technologies  

2.2.1 Review of Empirical approaches for modelling intensity of adoption of 

agricultural technologies 

Several empirical studies assessing the intensity of adoption of PPT have used the Tobit 

regressions, truncated regressions and censored models (Murage et al., 2015b; Gwada et al., 

2019)  and fractional response model (Papke and Wooldridge, 1996, 2008;). In such analysis, 

the dependent variable that are continuous are normally proportions (restricted) in nature. The 

censored models, truncated regressions, or Tobit regressions are usually restricted when the 

dispersion of the dependent variable is both below and above and a large share of the sample 

observation falls at one of the borders (Papke and Wooldridge, 1996). Therefore, the 

application of truncated regression, censored models, and Tobit regressions are considered 

restrictive by some empirical studies (Papke and Wooldridge, 1996; 2008; Gallani et al., 2015). 

 

To overcome this restriction of the Tobit models, Papke and Wooldridge (1996) proposed a 

fractional response model (FRM), which are flexible and allows modelling of continuous 

bounded dependent variable that are linked with non-linear methods. The FRM captures the 

non-linearity of the data while predicting unbiased and consistent estimates when the 

dependent variable are bounded from both below and above and yielding response values that 

fall inside the interval bounds of the dependent variable. The current study was specifically 

interested in assessing the intensity of adoption of PPT defined as the number of acres of maize 

under PPT per household divided by the total maize acreage per household, which is a fraction. 

The FRM overcomes the restrictive assumption of bounded dependent variable and provides a 

material number of corner observation (Wooldridge, 2012). Therefore, FRM is considered 

suitable for this current study and has been used by preceding empirical studies to assess the 

intensity of adoption of agricultural technologies (Papke and Wooldridge, 1996, 2008; 

Ramalho et al., 2011; Pokhrel et al., 2018; Ogoudedji et al., 2019; Nyabaro et al., 2019). 
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2.2.2 Review of Empirical Approaches for Modelling Impact of Adoption of 

agricultural technologies 

Most empirical studies analyzing impact of adoption of agricultural technologies use the 

difference in difference methods (DiD) (Wainaina et al., 2012; Nakano et al., 2018; Zhou et 

al., 2020), propensity score matching (PSM) (Kassie et al., 2011; Maina et al., 2020), 

endogenous switching regression (ESR) (Wainaina et al., 2012; Kassie et al., 2018a,; 2018b; 

Khonje et al., 2018; Marwa et al., 2020; Kanyenji et al., 2022) and Average treatment effect 

(ATE) method. In such analysis, the dependent variables relies on “with and without” and 

“before and after” approaches (Wainaina et al., 2012). The “before and after” approach which 

usually utilizes the DiD model to control fixed time invariant are usually restricted when the 

baseline data is missing (Kassie et al., 2018b; AIEI, 2021). Therefore, the application of DiD 

models are considered restrictive by some empirical studies especially where the program was 

implemented without the prior baseline data (Kassie et al., 2018b). 

 

To overcome this limitation of DiD model, Wainaina et al. (2012) proposed a “with and 

without” approach, which utilizes a counterfactual as a proxy to measure what could have 

happened without the intervention (when there is missing baseline data). The approach 

extensively uses the PSM and ESR models, which removes the restriction arising from 

selectivity bias when using cross-sectional data (Wainaina et al., 2012; Teklewold et al., 2013; 

Kassie et al., 2018a). The PSM method relaxes selectivity bias, but fails to account for 

difference of unobservable characteristics (endogeneity) (Asfaw et al., 2012; Shiferaw et al., 

2014; Khonje et al., 2015; Kassie et al., 2018a; Maina et al., 2020). To remove this restriction 

of PSM model, Shiferaw et al. (2014) proposed an ESR model, which are flexible and allows 

modelling of cross-sectional data that are linked to restrictions of endogeneity and self-

selection bias. The ESR involves a two-stage estimation process consisting of adoption 

equation and outcome equation (Shiferaw et al., 2015; Khonje et al., 2015; 2018).  
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The current study was specifically interested in evaluating the impact of adoption of PPT on 

maize productivity. The dependent variable of the adoption equation in the first stage was 

measured as a categorical variable influencing the choice of the pest control practices, which 

is a set of eight choice set. On the other hand, the dependent variable of the outcome equation 

of the second stage was measured as yield for instance the kilograms of maize harvest per acres. 

However, an extension of ESR, the multinomial endogenous switching regression (MESR) was 

preferred since the dependent variable had more than two categories (Teklewold et al. 2013; 

Kassie et al., 2015a, b; Khonje et al., 2018). 

 

 The MESR overcome the restriction of self-selection bias arising from the choice of potentially 

interdependent and combined technology packages such as pest control practices and their 

interactions (Khonje et al., 2018). Therefore, a MESR which comprises a two-stage estimation 

procedure is considered suitable for this current study and has been used by previous empirical 

studies to evaluate the impact of adoption of agricultural technologies on maize productivity 

(Teklewold et al. 2013; Kassie et al., 2015a, b and 2018b; Khonje et al., 2018).  

 

The first-stage is modelled using a multinomial logit model thus allowing farmers to make 

choices of either individual or combined pest control practices while considering interactions 

between them (Kassie et al., 2015a; Khonje et al., 2018). In the second-stage, the outcome 

equation which utilizes the ordinary least squares (OLS) with selection control is used to 

evaluate the impacts of single and joint technology practices combinations on maize yield 

(Khonje et al., 2018). 
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2.3 Review of Empirical Studies 

2.3.1 Review of Empirical Studies on intensity of PPT adoption  

Most empirical evidence on PPT in Eastern Africa has focused either on gender and adoption 

(Murage et al., 2015a and b, Muriithi et al., 2018), the effectiveness of its dissemination 

pathways (Murage et al., 2012), willingness to pay (Niassy et al., 2020) and its welfare benefits 

(Kassie et al., 2018a). Murage et al. (2012) assessed the effectiveness of different 

dissemination pathways the in adoption of PPT among smallholder maize farmers in Western 

Kenya using a two-limit Tobit model based on the proportion of land under PPT as a proxy for 

effectiveness. While the use of the proportion of land under PPT is an appropriate measure of 

the intensity of adoption, it obscures the intensity of PPT adoption on maize since it is an 

aggregate measure for the entire farm that in practice is committed to multiple crop enterprises. 

The current study overcome  this limitation by defining the intensity of adoption of PPT as the 

number of acres of maize under PPT per household divided by the total maize acreage per 

household, which is a fraction. 

 

Murage et al. (2015a) applied a multinomial logit model (MNL) to evaluate the determinants 

of adoption of PPT in Eastern Africa. The MNL model estimates the probability of adoption 

but is inappropriate in analyzing the intensity of adoption. Murage et al. (2015b) assessed the 

gender specific perceptions and the extent of adopting climate-smart PPT in controlling 

stemborer in Eastern Africa using a Tobit model. The Tobit model is only suitable for analyzing 

the intensity of adoption when the dependent variable is bounded on one extreme (e.g., land 

area) but is inappropriate when the dependent variable is bounded on both extremes (e.g., 

between 0 and 1).  
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Moreover, Chepchirchir et al. (2017) evaluated the impact of PPT adoption on smallholder 

maize household’s welfare in Eastern Uganda using a generalized propensity score method 

constructed on the absolute area allocated to the technology. The current study employed a 

fractional logit model based on the proportion of the maize area under PPT to overcome the 

econometric limitations with such estimations when the dependent variable is a fraction that is 

bounded between 0 and 1. 

 

Muriithi et al. (2018) examined gender differences in PPT adoption and other sustainable 

agricultural practices (SAPs) on smallholder maize farmers’ fields in Western Kenya using an 

ordered probit model. This study though insightful, generalizes the estimation to that of the 

intensity of adoption of SAPs and is not specific to PPT. Kassie et al. (2018a) employed a 

pooled probit model and an economic surplus model to evaluate the probability and welfare 

impacts adoption of PPT in smallholder maize farms in Kenya. The binary probit model is 

suitable for assessing the probability of adoption, but does not capture the difference in 

households regarding allocating land to PPT.  

 

Gwada et al. (2019) assessed the factors influencing the extent of PPT expansion among 

smallholder resource-poor maize farmers in Homabay County, Kenya, using a censored Tobit 

model. The farm-wide measure of the intensity of adoption of PPT used in the Gwada et al. 

(2019) suffers from the same aggregation problems cited under Murage et al. (2012). Niassy 

et al. (2020) used a binary logit model to evaluate the probability of adoption and willingness 

to pay for PPT amongst smallholder maize farmers’ in Rwanda. However, while the binary 

logit model is suitable for analyzing the probability of adoption, it is inappropriate for 

evaluating the intensity of adoption.  
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2.3.2 Review of empirical studies on impact of adoption of PPT on agricultural 

productivity 

Several empirical studies on impact of agricultural technologies on maize productivity in SSA 

have focused on either impact of PPT (Chepchirchir et al., 2017; Kassie et al., 2018a), maize 

production technologies (Kassie et al., 2018b; Khonje et al., 2018), Brachiaria a component of 

PPT (Maina et al., 2020), FAW and its management strategies (Kassie et al., 2020) and soil 

carbon enhancing practices (SCEPs) (Kanyenji et al., 2022). 

 

 For instance, Chepchirchir et al. (2017) evaluated the impact of adoption of PPT on 

smallholder maize household’s welfare in Eastern Uganda constructed on the absolute area 

allocated to push-pull technology using a combination of econometric methods (generalized 

propensity score (GPS) and dose-response function (DRF). The use of an absolute area as the 

dependent variable in evaluating the impact of PPT and its combinations is inappropriate since 

such a measure is a categorical variable and is best measured as the number of pest control 

practices chosen by a farmer’s s in controlling FAW and stemborer pests. 

 

Kassie et al. (2018a) estimated the probability and welfare impacts of adoption of PPT amongst 

smallholder maize farmers in Kenya using a combination of econometric methods (pooled 

probit and pooled OLS model) and an economic surplus model. This study though insightful, 

the use of binary probit and OLS models ignores important aspects of adoption such as 

perceived benefits, its perceived effectiveness in pest control, wealth status and perceived cost 

of the technology and its impacts of combinations of using other inter-related pest control 

technologies used by smallholder farmers which might lead to either underestimation or 

overestimation.  
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Maina et al. (2020) assessed drivers of adoption and the impact of climate-smart Brachiaria 

grass adoption on milk productivity and feed sufficiency among dairy farmers in Western and 

Eastern regions of Kenya using propensity score matching (PSM). Although Brachiaria is a 

component of PPT, the evaluation of impact of Brachiaria is not specific to maize productivity. 

However, while the PSM is suitable for analyzing the impact of a single technology, it is 

inappropriate for evaluating the impact of multiple pest control technology. More so, the binary 

probit model in assessing propensity scores of the likelihood of adoption used in the Maina et 

al. (2020) suffers from the same problems cited under Kassie et al. (2018a). The use of PSM 

although solves selectivity bias, but fails to account for unobserved characteristics 

(endogeneity) making it inappropriate under the current criterion. 

 

Kanyenji et al. (2022) evaluated the impact of soil carbon enhancing practices (SCEPs) 

adoption on maize yields in Western Kenya using a combination of a multinomial endogenous 

treatment effect (METE) and a multi-valued treatment effect (MVTE) model. Although, METE 

and MVTE are suitable for measuring impact of multiple agricultural technologies, Kanyenji 

et al. (2022) study is not specific to PPT and its heterogeneity in terms of FAW and stemborer 

pest control technologies.  

 

Khonje et al. (2018) used a multinomial endogenous switching regression (MESR) to evaluate 

the impact of multiple agricultural practices (conservation agriculture and improved maize 

varieties) on maize yield, income and poverty in eastern Zambia. Although this study is 

insightful, it is not specific to PPT. More so, this current study builds on the same methodology 

of using MESR approach in evaluating the impact of PPT and its combinations on maize yield 

in Eastern Rwanda. The dependent variable under the current scenario had eight option which 

is a categorical variable thus using the MESR model. 
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Kassie et al. (2018b) assessed both farm-level and market level economic impacts of maize 

production practices (improved maize seeds, chemical fertilizer and legume diversification of 

maize-legume intercropping or rotation) on maize yield and maize production costs using a 

combination of economic surplus and the MESR model. However, while the use of MESR is 

suitable for evaluating the impact of multiple agricultural technologies, it’s not specific to PPT 

and its combinations in terms of pest control technologies. The current study builds on Kassie 

et al. (2018b) on evaluating the impact of PPT and its combinations on maize productivity in 

Eastern Rwanda since the dependent variable is a categorical variable with eight choice sets. 

 

2.4 Summary 

While the foregoing review of past evaluations on the adoptions of PPT in Eastern Africa 

provide useful insights on the drivers of adoption, only a few (e.g., Murage et al. (2012) and 

Gwada et al. (2019)) attempted to analyze the intensity of adoption using the censored Tobit 

models that are appropriate when the dependent variable is proportional. However, these two 

studies used an aggregate measure of the intensity of adoption that obscures the actual intensity 

of adoption of PPT among maize farmers. The current study employed a fractional logit model 

based on the proportion of the maize area under PPT to overcome the econometric limitations 

with such estimations when the dependent variable is a fraction.  

 

Furthermore, studies on impact of PPT on the agricultural productivity have focused either on 

single technology framework for instance PPT and Brachiaria a component of PPT while others 

have focused on multiple technology framework such as maize production technologies and 

SCEPs. However, Kassie et al. (2018a) provide insightful information on the impact of PPT 

on maize productivity, although in their analysis ignores combinations of other inter-related 

pest control management technologies that might results in underestimation or overestimation. 
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The current study employed a MESR model based on the decisions of the multiple choices of 

technologies faced by the smallholder farmers in controlling FAW and stemborer pests to 

overcome the econometric limitations associated with such estimations when the dependent 

variable is a categorical in estimating the impact of single and joint pest control practices on 

maize yield in Eastern Rwanda.  

 

This study contributes to the body of knowledge on the intensity of PPT adoption and its impact 

on maize productivity in Rwandan household. The study improves on previous studies on PPT 

adoption through inclusion of technology specific attributes such as perceived PPT benefits, its 

perceived effectiveness of technology, wealth status and perceived cost of technology. This 

study further builds on previous studies through analysis of the impact of PPT and its 

combinations rather than PPT in isolation which might results to either underestimation or 

overestimation but jointly to solve this problem in estimation. This information would help in 

identification of the weak linkages in the formulation of strategies that can be promoted to 

ensure wider dissemination and adoption of PPT among smallholder maize farmers in Rwanda.  

 

Furthermore, the study underscored the positive impact of PPT, combination of PPT and 

traditional practices and lastly combination of pesticide and traditional practices on maize 

yield. Such information will be vital to smallholder farmers in making decisions on 

effectiveness of different pest control management technologies in controlling FAW and 

stemborer unlike previously similar technology that was promoted in western Kenya in curbing 

Striga weed. This would lead to increased agricultural productivity and reduce fall armyworm 

and stemborer pests that are major biotic constraints to maize production in Rwanda among 

smallholder maize farmers.  
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CHAPTER THREE: METHODOLOGY 

3.1. Theoretical Framework 

The random utility theory (RUT) of McFadden (1974) provides the theoretical framework of 

this study. Greene (2012) pointed that a farmer who is a consumer of any agricultural 

technology always select the alternative that maximizes his or her utility when faced with a set 

of mutually exclusive choices. A rational farmers when faced with a set of different alternatives 

then pursues the alternative that gives maximum expected utility (Baltas and Doyle, 2001; 

Mercer, 2004). Following Greene (2002), we specify the utility function for the adoption of 

pest control practices as follows: 

𝑈𝑎  = 𝑥𝑖𝑝𝑡
′ ⍺ + ս𝑖𝑝𝑡  

𝑈𝑏  = 𝑥𝑖𝑝𝑡
′ ⍺ + ս𝑖𝑝𝑡 ………………………………………………………………….…… (3.1) 

 

where 𝑈𝑎 is the utility derived from adopting the 𝑘𝑡ℎ pest control management practice: where 

k represents choice of push-pull method (PPT); 𝑈𝑏 is the utility derived by the farmers using 

another pest control management practices such as pesticide method or traditional methods. On 

the other hand,  𝑥𝑖𝑝𝑡
′  are the observed independent variables (farm, farmer, pest and technology-

specific attributes), ⍺ are the parameter to be estimated and ս are the error term. The farmer 

decides to adopt the 𝑘𝑡ℎ pest control management practice on plot 𝑝 if 𝑌𝑖𝑝𝑘𝑡
∗ = 𝑈𝑘

𝑎−𝑈𝑏 > 0. 

The observed measure of adoption is equivalent to one if 𝑈𝑎 > 𝑈𝑏 and equivalent to zero when 

𝑈𝑎 = 𝑈𝑏. Therefore, following RUT, farmers chooses to adopt the 𝑘𝑡ℎ pest control 

management practice when the net benefit (𝑌𝑖𝑝𝑘𝑡
∗ ) (latent variable) is higher compared from 

adopting the alternative technologies such as synthetic pesticides or traditional method in 

controlling FAW and stemborer pests. 
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3.2. Empirical Methods 

3.2.1  Objective 1: Assessing the factors influencing the intensity of adoption of PPT 

To assess the factors influencing the intensity of adoption of PPT, a Fractional Logit Model 

(FLM) was applied using the number of acres of maize under PPT per household divided by 

the total maize acreage per household as the dependent variable (proportion) which is bounded 

between 0 and 1. The dependent variable in this case is a fraction. The independent variable 

included in the FLM regression are as follows; perceived PPT benefits, perceived PPT 

effectiveness, age, gender, education, family size, off-farm income, group membership and 

livestock ownership. 

 

Following Papke and Wooldridge (1996), the functional form of FLM was specified as follows; 

𝐸(𝑌𝑖|𝑋𝑖) = 𝑍(𝛽𝑋𝑖) ………………………………..……………..….………..…….....….. (3.2) 

where  𝑌𝑖 refers to the intensity of adoption of PPT, 𝑋𝑖 is a vector of farmers, farm and 

technology-specific characteristics (Table 3.1) and 𝛽 a vector of unknown parameters to be 

approximated. Z (·) is a cumulative distribution function that follows a logistic distribution 

function representing a nonlinear link function satisfying 0 ≤ Z(·)  ≤ 1, ensuring that the 

approximated values ranges from 0 and 1 and E is the expectations operator. 

 

Equation 3.1 is approximated using a quasi-maximum likelihood estimation method where the 

likelihood for an observation is specified as the Bernoulli likelihood as follows; 

𝐿𝑖 = [𝐹(𝛽𝑋𝑖)]𝑌𝑖 [1 −  𝐹(𝛽𝑋𝑖)]1− 𝑌𝑖……………………...……..……………….....…….. (3.3) 

Equation 3.3 was applied to evaluate intensity of adoption of PPT and the exogenous variables 

incorporated in the model follows the use-diffusion theory and previous studies hypothesized 

by (Kassie et al., 2011; Murage et al., 2012; 2015b; Ghimire et al., 2015; Obuobisa-darko, 

2015; Chepchirchir et al., 2017; Maina et al., 2020; Kolady et al., 2020) 
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3.2.2  Objective 2: Evaluating the impact of adoption of PPT on maize productivity 

To evaluate the impact of adoption of PPT on maize productivity, a multinomial endogenous 

switching regression (MERS) model was used. Maize productivity was measured in terms of 

yield i.e., kilograms of maize harvested per acre (kgs/acre). Following Teklewold et al. (2013), 

the MESR model employed a two-stage approximation technique to evaluate the impact of PPT 

on maize productivity. In the first stage of MESR, a multinomial logit (MNL) model was 

applied to evaluate the factors influencing the choice of pest control practices in Eastern 

Rwanda. The dependent variable in the MNL model was a categorical variable of 8 choice sets 

and specified following Teklewold et al. (2013) as follows: 

𝑃𝑖𝑗 = p(ƞ𝑖𝑗 < 0|𝑋𝑖𝑗) =
exp (𝑋𝑖𝑗𝛽𝑗)

∑ exp (𝑋𝑖𝑗𝛽𝑚)
𝑗

𝑚=1

  ………… ……..…….……………………..…. (3.4) 

 

where 𝑃𝑖𝑗 denotes a categorical dependent variable for the pest control practices (comprising 

of 1.traditional method, 2. pesticides, 3. push-pull, 4, combination of PPT and traditional, 5. 

combination of pesticides and traditional methods, 6. Combination of pesticides and PPT, 7. 

combination of traditional, pesticides and PPT and lastly 8 is non-adopter(control) which is 

neither adoption of traditional, or pesticides or PPT used in controlling FAW and stemborer 

pests, 𝑋𝑖 is a vector of farm (farm size), farmers (age, gender, education of household head, 

wealthy category and group membership), pest attributes (perceived FAW severity, perceived 

stemborer severity) and technology-specific attributes (perceived cost of technology, perceived 

effectiveness) (Table 3.1) and 𝛽 a vector of unknown parameters to be approximated. 

 

In second stage of MESR model, an OLS was used to evaluate the average treatment effect 

arising from the adoption of PPT in the control of FAW and stemborer pests’ infestation on 

maize productivity and specified as follows:  
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Following Teklewold et al. (2013), the possible category for each yield functions are specified 

as in equation S=1 for a non-adopter and S=j for an adopter as follows: 

{

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦  1 (𝑁𝑜𝑛 − 𝑎𝑑𝑜𝑝𝑡𝑒𝑟𝑠): 𝑌𝑖1 = ⍺1𝑋𝑖 + ս𝑖1 𝑖𝑓 𝑆 = 1  

⁞       ⁞            ⁞           
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦  𝑗 (𝑎𝑑𝑜𝑝𝑡𝑒𝑟𝑠):            𝑌𝑖1 = ⍺𝑗𝑋𝑖 + ս𝑖𝑗  𝑖𝑓 𝑆 = 𝑗  

 j=2, 3, 4, 5, 6……...….. (3.5) 

where 𝑌𝑖𝑗’s are the outcome equations of the ith farmer in category, j, and the disturbance terms 

(ս’s) that are normally distributed with zero mean (𝐸(𝑢𝑖𝑗|𝑋, 𝑍 = 0) and constant variance 

[𝑣𝑎𝑟(𝑢𝑖𝑗|𝑋, 𝑍)= 𝜎𝑗
2. 𝑌𝑖𝑗 is observed if, and only if, control technology j is chosen and happens 

when 𝑈𝑖𝑗
∗ > 𝑚𝑎𝑥𝑚≠𝑗(𝑈𝑖𝑚

∗ ). The OLS will be biased if the ε’s and ս’s are not exogenous in 

equation (3.5) and therefore incorporation of the selection correction terms of the different 

choices are ideal for a consistent estimation of the ⍺𝑗 .  

 

The MESR model follows Durbin and McFadden (1984) (henceforth denoted to as DM model) 

and Bourguignon et al. (2007) to correct for selectivity bias. The advantage of the approach 

evaluates the individual technologies as well as alternative combinations of technologies while 

capturing the selectivity bias and the interactions between sets of different practices (Mansur 

et al., 2008; Wu and Babcock, 1998). The linearity assumption is assumed in the DM model 

as follows:  

𝐸(𝜀𝑖𝑗 |ս𝑖1 … … ս𝑖𝑗 ) = 𝜎𝑗 ∑ 𝑟𝑗(ս𝑖𝑚 − 𝐸(ս𝑖𝑚 ))

𝑗

𝑚≠𝑗

 

where the correlation between ε’s and ս’s totals to zero by construction, that is ∑ 𝑟𝑗 = 0
𝑗

𝑚=1
.  

 

{

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦  1: 𝑌𝑖1 = ⍺1𝑋𝑖 + σ1λ1 + 𝜔𝑖1 𝑖𝑓 𝑆 = 1   (3.6𝑎) 

⁞       ⁞            ⁞           
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦  𝑗: 𝑌𝑖𝑗 = ⍺𝑗𝑋𝑖 + σjλj + 𝜔𝑖𝑗  𝑖𝑓 𝑆 = 𝑗     (3.6𝑏) 

    j=2, 3, 4, 5, 6 ……..…..…. (3.6) 
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where σj denotes covariance between ε’s and ս’s while inverse mills ratio (IMR) denoted by 

λj is calculated from the estimated odds in equation (3.4) as follows: 

λj = ∑ ⍴j[ 
Ŝim𝐼𝑛(Ŝim)

1−Ŝim
+ 𝐼𝑛(Ŝij)

𝑗
𝑚≠𝑗 ]………………………………………………………..(3.7) 

where ⍴ is the correlation coefficient of ε’s , ս’s and 𝜔′𝑠 are disturbance terms with an expected 

value of zero. In the multinomial choice setting, there are j-1 selection correction terms, one 

for single different pest control technology. Bootstrapping of standard errors in equation (3.6) 

is used to control for the heteroscedasticity arising from the generated regressor (λj). Equation 

(3.6) is improved by addition of plot characteristics (perceived soil fertility) and plot varying 

covariates such as seed rate, average fertilizer use, pesticide and labour use. According to 

Wooldridge (2002), plot-varying covariates are incorporated to control for unobserved 

heterogeneity. 

 

The average treatment effect (ATT) of treatment was computed by making comparison in 

expected outcomes of adopters and non-adopters of pest control technologies. However, 

Teklewold et al. (2013) argued that the problem of estimating the counterfactual with the use 

of observational data in impact evaluation (outcome adopters could have received had they not 

adopted the pest control technologies) is problematic.  

 

Following Teklewold et al. (2013), the average treatment effect (ATT) on the treated was 

computed as the difference between the actual scenarios for adopters and counterfactual 

scenarios for non-adopters in equation 3.8 and 3.9 as follows: 

Actual adoption observed in the sample (Adopters with adoption) 

{

 𝐸(𝑌𝑖2|𝑆 = 2) = ⍺2𝑋𝑖 +  σ2λ2    (3.8𝑎)

⁞       ⁞            ⁞           
  𝐸(𝑌𝑖𝑗|𝑆 = 𝑗) = ⍺𝑗𝑋𝑖 +  σjλj     (3.8𝑏)

    j=2, 3, 4, 5, 6 …………………….……..… (3.8) 
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The counterfactual unobserved in the sample (Adopters, had they decided not to adopt) 

{

 𝐸(𝑌𝑖1|𝑆 = 2) = ⍺1𝑋𝑖 +  σ1λ2    (3.9𝑎)

⁞       ⁞            ⁞           
  𝐸(𝑌𝑖1|𝑆 = 𝑗) = ⍺1𝑋𝑖 +  σ1λj     (3.9𝑏) 

  j=2, 3, 4, 5, 6 ……………...…….….…… (3.9) 

The unbiased estimates of the ATT was then derived from the expected values in equation 3.8 

and 3.9. The ATT is expressed as the difference between equation (3.9a) and (3.8a) or equation 

(3.8b) and 3.9b) as follows: 

 

𝐴𝑇𝑇 =

{

𝐸(𝑌𝑖2|𝑆 = 2) − 𝐸(𝑌𝑖1|𝑆 = 2) = (⍺2𝑋𝑖 +  σ2λ2) − (⍺1𝑋𝑖 +  σ1λ2)       (3.10𝑎)
    𝑜𝑟       

𝐸(𝑌𝑖𝑗|𝑆 = 𝑗) − 𝐸(𝑌𝑖1|𝑆 = 𝑗)  =  (⍺𝑗𝑋𝑖 +  σjλj)  − (⍺1𝑋𝑖 +  σ1λj)        (3.10𝑏) 
… … …(3.10) 

𝐴𝑇𝑇 = {

𝐸(𝑌𝑖2|𝑆 = 2) − 𝐸(𝑌𝑖1|𝑆 = 2) = Xi(⍺2 − ⍺1) + λ2(σ2 −  σ1)       (3.11𝑎)
    𝑜𝑟       

𝐸(𝑌𝑖𝑗|𝑆 = 𝑗) − 𝐸(𝑌𝑖1|𝑆 = 𝑗) =    Xi(⍺j − ⍺1) +  λj(σj −  σ1)       (3.11𝑏) 
 ... (3.11) 

When adopters have similar attributes as non-adopters, the estimated variation in adopters’ 

mean outcome are represented by first term on the right-hand side of equation 3.11. The 

remaining term (λj) denotes selection term capturing all possible effects of variance in 

unobserved variables. 

 

3.3. Data Sources and Sampling Procedures 

The study employed a survey data obtained from the Eastern Province of Rwanda conducted 

in 2019 by icipe as part of the attempt to assess the adoption and impacts of adoption of PPT 

on farmers’ yield outcomes. The survey data was obtained from a sample of 398 households 

(194 PPT adopter and 204 PPT non-adopter) in the Gatsibo and Nyagatare districts of Rwanda. 

A stratified sampling procedure was used to draw respondents. In the first stage, two districts 

out of seven (Gatsibo and Nyagatare) were purposively selected since they formed the pilot 

places where PPT project was implemented (icipe, 2019a).  
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Within each district, the project intervention had been conducted in one sector from the Gatsibo 

and Nyagatare districts respectively were purposively selected. A simple random sampling 

technique was then used in the second stage to select a total of 398 maize farmers comprising 

of 194 PPT adopters and 204 non-adopters from two sampling frames provided by the RAB. 

The selected households were then interviewed using pre-tested semi-structured questionnaires 

programmed into CSpro. The data was analyzed in STATA version 14. 

 

3.4. Measurement of Key Variables 

Table 3.1 presents the description and measurement of the variables used in the FLM and 

MESR model analysis. The dependent variable of the FLM used in this study is the intensity 

of adoption of PPT among smallholder maize farmers in Rwanda (proportion of land allocated 

to PPT). On the other hand, the dependent variable of the MESR, in the first stage of the MNL 

used in this study is the pest control practices (comprising of 1. Traditional method, 2. 

Pesticides, 3. PPT, 4. Traditional and PPT, 5. Pesticides + traditional, 6. Pesticides + PPT, 7. 

Traditional + pesticides + PPT and 8. Control which is neither adoption of traditional or 

pesticides or PPT) in the control of FAW and stemborer among smallholder maize farmers in 

Eastern Rwanda.  The MNL was tested to ensure it does violate the independence of irrelevant 

alternatives (IIA) although assumes categorical variable have same order. The second stage of 

the outcome equation of the yield function of the OLS used in this study is the maize 

productivity measured in kilograms per cares (kgs/acre) among smallholder maize farmers in 

Eastern Rwanda. 
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Table 3.1: Description of variable used in the FLM and MESR analysis 

Variable Description Unit of 

measurement 

 

Sign 

Dependent variable  

Intensity of 

adoption of PPT 

Acres of maize under PPT divided by 

the total acreage under maize per 

farm 

Proportion  

Pest control 

practices 

Technology used by the farmers to 

control FAW and stemborer pest 

Categorical with 8 

options 

 

Maize productivity Maize yields in kilograms per acre Kgs/acre  

Exogenous Variables  

Perceived PPT 

Benefits 

Farmers perceptions on PPT’s ability 

to increase maize yields 

Dummy (1 = Yes, 0 

otherwise) 

+ 

Perceived PPT 

Effectiveness 

Farmers perceptions on the 

effectiveness of PPT to control FAW 

and stemborer 

Dummy (1 = 

Effective, 0 

otherwise) 

+ 

Age Age of the farmer in years Years +/- 

Gender  Gender of the farmer Dummy (1 =Male, 0 

Female 

+/- 

Education Number of years spent in school Continuous  + 

Family size Number of persons in the household Continuous + 

Off-farm income Participation in off-farm income 

activity 

Dummy (1 = Yes, 0 

otherwise) 

+ 

Group membership Membership to farmer groups Dummy (1 = 

Member, 0 

otherwise) 

+ 

Livestock 

ownership (TLU) 

Livestock ownership Continuous  + 

Farm size Area under maize cultivation in acres Continuous (acres) +/- 

Perceived cost of 

technology 

Farmers perceptions of the cost of 

pest control practice 

Dummy (1=costly, 0 

otherwise) 

+/- 

Wealth category Household asset index Continuous (-1 to +1) + 

Perceived pest 

severity 

Percent of maize plot that farmers 

perceived to be severely infested by 

FAW and stemborer pest 

Dummy (1=Severe, 0 

otherwise) 

- 

Perceived 

effectiveness 

Perceived technology effectiveness in 

the control of FAW and stemborer 

Dummy (1=effective, 

0 otherwise) 

 

Perceived soil 

fertility 

Farmers perceptions on plot soil 

fertility 

Dummy (1=fertile, 0 

otherwise) 

+ 

Perceived soil 

depth 

Farmers perceptions on plot soil 

depth 

Dummy (1=shallow, 

0 otherwise) 

+ 

Perceived plot 

slope 

Farmers perceptions on plot soil 

slope 

Dummy (1=gentle, 0 

otherwise) 

+ 

Cost of seed Costs of seed per acre RWF/acre +/- 

Cost of pesticides Costs of herbicides and insecticides RWF/acre +/- 

Fertilizer Fertilizer used in kilograms per acre Kgs/acre +/- 

Labour Labour usage for both family and 

hired in person days per acre 

Person day per acre +/- 
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3.5.  Model diagnostic tests 

3.5.1.  Model Goodness of Fit test 

To test for the goodness of fit of Fractional Logit model (FLM), a deviance tests for unequal 

dispersion was used to confirm if the model fitted the data well (Appendix1). On the other 

hand, to test for the goodness of fit of Logit model, Hosmer Lemeshow was used and rejected 

probit in favour of Multinomial Logit model (MNL) (Appendix 2). 

 

3.5.2.  Multicollinearity 

Multicollinearity exist when there is linear association between explanatory variables. To test 

for multicollinearity in the data, variance inflation factor (VIF) and Pearson partial correlation 

tests of all variables included in FLM and multinomial endogenous switching regression 

(MESR) models were calculated. The mean Variance Inflation Factor (VIF) score for both 

FLM and MESR was 1.12 (critical value 10) while the Pearson partial correlation coefficients 

for all the explanatory variables were less than 0.5 indicating that multi-collinearity of the 

explanatory variable was not a problem in both models included in the analysis (O’brien, 2007; 

Gujarati, 2009). (See appendixes 1 FLM (Appendix 3 and 5) and MESR (Appendix 4 and 6) 

 

3.5.3.  Heteroscedasticity 

Following Wooldridge (2010), the Breusch-Pagan test was used to test existence of 

heteroscedasticity if constant variance existed across error terms in the FLM and MESR 

models. The results failed to reject the null hypothesis of homoscedasticity (Chi2 (1) = 0.01; 

Prob > chi2 = 0.907) ruling out the presence of heteroscedasticity in the FLM (Appendix 7). On 

the other hand, the results rejected the null hypothesis of homoscedasticity (Chi2 (1) = 15.67; 

Prob > chi2 = 0.0001) in the MNL model indicating the presence of heteroscedasticity that was 

corrected using robust standard errors (Appendix 8).  
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3.5.4.  Test for Independence of Irrelevant Alternatives (IIA) Property  

Following Mwololo et al. (2019), the IIA assumption was confirmed using the Hausman and 

Suest-Based Hausman tests to validate the assumption that error terms were independently and 

identically distributed. The results of Hausman test and Suest-based Hausman tests failed to 

reject the null hypothesis concluding that the IIA assumption was not violated and the estimated 

results from MNL were unbiased, consistent and reliable (Appendix 9a, b and c). 
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CHAPTER FOUR: PAPER I 

Intensity of Adoption of Integrated Push-Pull Pest Management Practices in Rwanda: A 

Fractional Logit Approach1 

Abstract 

The push-pull technology (PPT) is considered as an alternative integrated pest management 

strategy for the control of fall armyworm and stemborer, among smallholder maize farmers in 

sub-Saharan Africa to conventional pesticides. However, the extent of PPT use in Rwanda 

where the technology was introduced in 2017 remains largely unexplored. This study employed 

a fractional logit regression model to assess the factors influencing the intensity of adoption of 

PPT among smallholder maize farmers in Gatsibo and Nyagatare districts of Rwanda using 

survey data obtained from 194 PPT adopter households selected using a cluster sampling 

technique. While only 5 percent of smallholder farmers in Rwanda have adopted PPT as an 

integrated pest management strategy, on the average, these farmers cultivated 26 percent of 

their maize plots to the technology. The results show that the perceived benefits of PPT, its 

perceived effectiveness in pest control, group membership, livestock ownership, and gender of 

the household head had significant influences on the intensity of adoption of the PPT in 

Rwanda. These findings give compelling evidence to recommend that development initiatives 

should focus on creating awareness on the perceived benefits of PPT adoption using group 

approaches that are gender disaggregated. 

Key words: Fall armyworm, Fractional Logit model, Intensity of Adoption, Push-pull 

technology, Stemborer. 

                                                           
Misango, V.G., Nzuma, J.M., Irungu, P. and Kassie, M., (2022). Intensity of adoption of integrated pest 
management practices in Rwanda: A fractional logit approach. Heliyon, 8(1), e08735. . 
https://doi.org/10.1016/j.heliyon.2022.e08735. 
1  

https://doi.org/10.1016/j.heliyon.2022.e08735
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4.1.  Introduction 

Low agricultural productivity emanating from both biotic and abiotic constraints remains a key 

challenge for smallholder rural farmers in sub-Saharan Africa (SSA) (Murage et al., 2015a; 

Midega et al., 2015). Abiotic constraints such as droughts, unpredictable weather patterns, 

climate change and limited access to quality inputs (seeds, fertilizer and chemicals) have 

continuously limited agricultural productivity in the region (AGRA, 2014). Biotic constraints 

(living organisms that shape the ecosystem and comprise of soil organisms) include on the one 

hand pest (both storage and field) and disease incidents such as the maize lethal necrotic disease 

(MLND) and predators such as mites, moles, locust, birds etc. and on the other hand field pest 

specifically the fall armyworm and stemborer pests (AGRA, 2014; Midega et al., 2015). The 

low productivity among smallholder maize farmers in SSA is exacerbated by high post-harvest 

losses that are estimated at 24 percent of output minus any intervention (Affognon et al., 2015). 

 

Fall armyworm (FAW) and stemborer pests remain the most important field pests in Eastern 

Africa owing to their negative economic impacts on maize production, the main food staple in 

the Eastern African region (Midega et al., 2015; Kumela et al., 2018; IITA, 2019). The FAW 

moth (Spodoptera frugiperda,) originated from the tropics and sub-tropics of America in early 

2016 and spread to West and Central Africa in late 2016 and even later to other parts of Eastern, 

Northern, and Southern Africa (Goergen et al., 2016; Midega et al., 2018). The moth lays eggs 

hatching into larvae that feeds on leaves at night and hide in the maize funnel during the day 

(Day et al., 2017). Stemborer (Chilo partellus) is a native of Asia that spread into Eastern, 

Southern, and Central Africa in the early 1930s and is now endemic in SSA (Harris, 1990; 

Midega et al., 2015). The larvae of the stemborer moth burrows in the maize stem as they grow, 

competing with the plant for the food that is necessary to produce quality grain (Kumela et al., 

2019). 
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According to Khan et al. (2014), FAW and stemborer losses are on average estimated at 37 

and 80 percent respectively of annual maize production in Africa under no control 

technologies. These losses are valued at US$ 4.3 billion annually (Day et al., 2017). Recent 

studies in Kenya and Ethiopia have estimated losses of 32 and 47 percent respectively of maize 

production due to FAW (Kumela et al., 2018). The pest is also estimated to cause losses of 40 

and 45 percent of maize production in Zambia and Ghana, respectively (Day et al., 2017). 

Conversely, maize stemborer pest is estimated to cause a loss of about 44-50 percent of 

potential maize output in Kenya (Nyukuri et al., 2014; IITA, 2019). 

 

Smallholder farmers in Rwanda and other parts of SSA have applied various approaches to 

control FAW and stemborer pest. These methods consist of handpicking, plant extracts, 

sawdust/pepper and soil/ash mixture, mixed cropping, and use of pesticide (Midega et al., 

2018; Kumela et al., 2018; Kumela et al., 2019; Kassie et al., 2020). Pesticides continue to be 

the most widely applied method in controlling FAW and stemborer. However, the continued 

use of pesticides has elicited pest resistance and has harmful human, animal, and environmental 

effects (Nicolopoulou-Stamati et al., 2016; Sharma and Singhvi, 2017). Furthermore, the 

accessibility of pesticides and highly specialized safety equipment for their application remains 

a challenge to resource-poor farmers in SSA (Day et al., 2017; Kumela et al., 2018). 

 

In cognizance of the negative effects of pesticides and in an attempt to reduce the high maize 

production losses associated with pests in SSA, the International Center of Insect Physiology 

and Ecology (icipe) and its allies established a habitant management technology well-known 

as the push-pull technology (PPT) (Khan et al., 2001). PPT is an integrated pest management 

method encompassing the intercropping of cereal crops such as maize with Desmodium that 

“pushes” the pest away from the cereal while Brachiaria is planted as a border crop to “pull” 
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the pest (Khan et al., 2008a; 2014; Chepchirchir et al., 2017). The secondary benefits of PPT 

include improvement of soil fertility through nitrogen fixation, reduced soil erosion and lower 

use of pesticides, and provision of high-quality fodder for livestock production (Pickett et al., 

2014; Kassie et al., 2018a; Maina et al., 2020). This biological pest control technology 

concurrently reduces the impact of four major production constraints in Africa’s cereal-

livestock farming system: weeds, pests, poor soil health, and fodder shortage (Chepchirchir et 

al., 2017). 

 

Introduced in 2017 in Rwanda, the PPT has been widely used in East and Southern Africa to 

control stemborer pests, Striga weed, and currently FAW pests (Murage et al., 2015a; Midega 

et al., 2018; Kumela et al., 2018; icipe, 2019a). Previous studies from SSA reveals that cereal 

yields and livestock fodder can be twofold or even, in other cases, threefold with use of PPT 

(Khan et al., 2001; 2008a, b; Cook et al., 2006; Murage et al., 2015a, b). Although the use of 

PPT technology is labour demanding during initial establishment, the labour requirements 

decrease substantially after the cropping system is well established (Muriithi et al., 2018). PPT 

was found to have a benefit-cost ratio of about 2.2:1 relative to 0.8:1 for mono-cropping of 

maize (Khan et al., 2008a). Yields for maize farmers using the PPT in Uganda and Kenya have 

been reported to be 1.54 and 2.2 times higher than planting maize without PPT (Khan et al., 

2008a; Chepchirchir et al., 2018). 

 

In Rwanda, icipe, in collaboration with the Government of Rwanda, introduced a PPT pilot 

project in 2017 to control FAW and stemborer pests (icipe, 2019a). The government of 

Rwanda, through the Rwanda Agricultural Board (RAB) recommended local partners (Food 

for the Hungry/Rwanda organization) who undertook farmer identification, training and 

establishment of demonstration plots (icipe, 2019a; Niassy et al., 2020).  
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Other farmers would later learn from demonstration plots before adopting and receiving 

necessary support through extension visits from both icipe field monitors and government 

extension officers. However, despite the promotion efforts by icipe and the government of 

Rwanda, the adoption of PPT remains low at only 5 percent (icipe, 2019a; Niassy et al., 2020). 

Moreover, the intensity of adoption of the technology in Rwanda remains largely unexplored. 

 

While several recent empirical studies (e.g., Murage et al., 2012; 2015a and b, Muriithi et al., 

2018; Chepchirchir et al., 2017; Kassie et al., 2018a; Gwada et al., 2019; Naissy et al., 2020) 

have evaluated the adoption of PPT among maize farmers in SSA, we only find one study 

(Naissy et al., 2020) from Rwanda. However, a majority of these studies are limited to the 

analysis of adoption using linear econometric models. This study contributes to the existing 

knowledge by evaluating the intensity of adoption of PPT using a fractional response model 

that is specific to the maize area under PPT in the Nyagatare and Gatsibo districts of Rwanda. 

The study’s answers a fundamental but often ignored research question, “do the perceived 

benefits of a technology influence the intensity of its adoption?” and answers this question in 

the affirmative for the case of PPT in Rwanda.  

 

The study find that the perceived PPT benefits, perceived PPT effectiveness, livestock 

ownership, group membership, and gender of the farmer had a significant influence on the 

intensity of adoption of the PPT in Rwanda and recommends awareness creation as a reliable 

pathway to increasing usage of new agricultural technologies. The rest of this study is arranged 

as follows; Section 4.2 presents study’s methodology, which explain data sources, the 

conceptual and empirical framework. Finally, the study’s findings are discussed in section 4.3 

while the conclusions and policy recommendations in section 4.4 respectively. 
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4.2.  Study Methods 

4.2.1.  Conceptual Framework 

The use-diffusion (UD) theory proposed by Shih and Venkatesh (2004) has been widely used 

to explore farmers’ decision-making process on whether to adopt new technology and how 

much of that technology to adopt (Hu, 2007; Turner et al., 2010). It is an extension of the 

adoption-diffusion (AD) theory of Rodgers (1995), which examines the process by which an 

innovation reaches a high number of adopters, the diffusion is expedited, and the innovation is 

considered successful (Mahajan, et al., 1990: Rodgers, 1995). The UD theory addresses the 

limitation of AD theory that fails to account for the diffusion process with discontinued 

behavior (Golder and Tellis, 1998; Turner et al., 2010). It provides an understanding of both 

the rate of use (high/low) and the variety (intensity) of using a technology. It can be applied to 

model the drivers of technology adoption and the outcomes of technology adoption. 

 

 

Figure 4.1: Use-diffusion model adapted from Shih and Venkatesh (2004) 
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The theoretical basis of the AD model comprises of an S-shaped diffusion curve that integrates 

the speed of penetration and a critical number of users in a two-stage model of diffusion 

(Theotokis and Doukidis, 2009). The corresponding theoretical components of the UD model 

are the progressing nature of use (variety and rate), sustained uninterrupted use (disadoption), 

and technology outcomes (perceived usefulness and integration) (Shih and Venkatesh, 2004). 

While the variable of interest in the AD model is the rate or time of adoption, the return variable 

in the UD model is the rate of use and variety of use. Shih and Venkatesh (2004) proposed the 

use of two distinct measures (variety of use and rate of use) to estimate the degree (intensity) 

of use of new technology. The rate of use indicates the time a person spends using the product 

during a designated period. Variety of use signifies the different ways the product is used (Shih 

and Venkatesh, 2004). Figure 4.1 presents the conceptual framework of the UD theory on 

which this study is based. 

 

The UD model comprises of threefold important elements: (1) factors of UD model, (2) patterns 

of UD, and (3) outcomes of UD model. Factors that affect variety and rate of usage constitute 

UD factors (household social-context, personal aspect, technological aspect, and external 

aspect). Combining rate and variety of usage (high/low) produces a four-way typology of usage 

(specialized usage, intense usage, non-specialized usage, and limited usage), henceforth UD 

patterns (Figure 4.1). Intense usage deal with the individuals who apply product of innovation 

to an important degree in relation to both rate of usage and variety of usage. Non-specialized 

usage deal with the individuals who apply numerous roles of the product, however, take little 

time in using the product. Finally, limited usage deal with the individuals who apply the product 

of innovation to a minor degree in relation to both rate of usage and variety of usage; 

specifically, user’s discover small, if any, worthy potential application and hence commit the 

product to a quite negligible function, even to the level of "disadoption" (Lindolf, 1992).  
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Different types of users have different experiences of the UD outcomes of the technology 

(perceived impact, degree of satisfaction, interest in future features of the technology, etc.). In 

practice, the drivers of technology adoption are modeled using discrete choice (e.g., logit, 

probit) models and their extensions such as Tobit, censored and truncated regressions, and 

discriminant analysis methods (Maddala, 1991; Noreen, 1998; Wooldridge, 2002; Wooldridge, 

2012). The binary choice models (probit and logit models) estimate the likelihood of event’s 

occurrence and are appropriate for binary response-dependent variables (Greene, 2003). 

 

A number of empirical models have been applied to evaluate the intensity of adoption of new 

technologies including Poisson (Awuni et al., 2018; Mahama et al., 2020; Kolady et al., 2020), 

Tobit (Murage et al., 2015b; Gwada et al., 2019) and fractional response (Papke and 

Wooldridge, 1996, 2008; Ramalho et al., 2011; Pokhrel et al., 2018; Ogoudedji et al., 2019; 

Nyabaro et al., 2019). The choice of model to use depends on the nature of the dependent 

variable. Continuous variables that are restricted (proportions) in nature are normally assessed 

using truncated or censored models,  Tobit regression, and fractional models (Papke and 

Wooldridge, 1996; 2008; Gallani et al., 2015).  These methods, though, suffer from some 

constraints, specifically wherever the dispersion of the variable is restricted both below and 

above and a quantifiable share of the sample observations falls at one of the borders. The 

Fractional Response Models (FRM) offer a feasible option to addressing several of the 

econometric restrictions associated with nonlinear methods presently used in modelling 

continuous bounded dependent variables (Papke and Wooldridge, 1996). The FRM yield 

estimates of higher fit compared to other linear approximation models through control of 

dependent variable that is bounded from both below and above, predicting response values that 

fall inside the interval bounds of the dependent variable while capturing the nonlinearity of the 

data. Additionally, the FRM allow a direct approximation of the conditional expectation of the 
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dependent variable given the predictors and thus do not need special data transformations at 

the corners.  The FRM control for limitations of the existing methodologies for the statistical 

analysis of bounded dependent variables and provide a material number of corner observations. 

Given their simplicity in computation, FRM provide high levels of flexibility in its application 

to longitudinal, panel, and cross sectional data. Furthermore, the FRM control for nonlinearity, 

and solve the various restricting assumptions that are crucial in traditional econometric results. 

The FRM extend the general linear models (GLM) to a class of functional forms that overcome 

the restrictions of the outdated econometric models for variables that are bounded in nature 

(Wooldridge, 2012). 

 

The approximation of the parameters in the model is grounded on a quasi-maximum likelihood 

method (QMLE), generating estimates that are proportionately efficient and entirely robust 

under the GLM circumstances (Papke and Wooldridge, 1996). According to Gillani and 

Krishnana (2016), the FRM offers a better fit whereas controlling for the non-constant returns 

of the dependent variable along the range of the predictors and the nonlinearity in the data. 

Moreover, the estimation of average partial effects at different levels of the independent 

variables indicate that the FRM affirms more precise inferences, specifically in circumstances 

where observations at the end of the distribution are of specific interest for the researcher. 

Given the incremental explanatory power and the simplicity in computation, the use of the 

FRM should be contemplated at least as an option to other traditional econometric approaches 

applied in survey-based research. 

 

4.2.2  Empirical Framework 

This study employed a fractional logit model (FLM) to evaluate the intensity of adoption of 

PPT among smallholder maize farmers in Rwanda. The intensity of adoption of PPT is defined 
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as the number of acres of maize under PPT per household divided by the total maize acreage 

per household, which is bounded between 0 and 1. Following Papke and Wooldridge (1996), 

the specification follows the functional form for the expectation of the intensity of adoption of 

PPT 𝑌𝑖 of the ith household conditional on 𝑋𝑖, (a vector of explanatory variables):  

𝐸(𝑌𝑖|𝑋𝑖) = 𝑍(𝛽𝑋𝑖) ………………………………..……………..…………..…….....….. (4.1) 

where  𝑌𝑖 refers to the intensity of adoption of  PPT, 𝑋𝑖 is a vector of farm, farmers and 

technology-specific characteristics (Table 4.1) and 𝛽 a vector of unknown parameters to be 

approximated. Z (·) is a cumulative distribution function that follows a logistic distribution 

function representing a nonlinear link function satisfying 0 ≤ Z(·)  ≤ 1, ensuring that the 

approximated values lie in the interval of 0 and 1 and E is the expectations operator. 

 

Equation 4.1 is approximated using a quasi-maximum likelihood estimation method where the 

likelihood for an observation is specified as the Bernoulli likelihood as follows; 

𝐿𝑖 = [𝐹(𝛽𝑋𝑖)]𝑌𝑖 [1 −  𝐹(𝛽𝑋𝑖)]1− 𝑌𝑖……………………...……..……………….....…….. (4.2) 

The QMLEs of 𝛽 are consistent provided that the conditional expectation in equation 4.1 is 

properly stated even if the Bernoulli specification is incorrect (Papke and Woolridge, 2008). A 

FLM constructed on the logistic conditional mean function and quasi-likelihood method is 

advantageous (Murteira and Ramalho, 2016). Following Hausman and Leonard (1997), the 

asymptotic variance-covariance of the matrix of the QMLE estimates is approximated, with 

maintenance of only first momentum assumptions without any additional second momentum 

assumptions. 

4.2.3. Data sources and sampling procedures 

The study applied survey data collected in 2019 from a sample of 194 PPT adopter households 

in the Nyagatare and Gatsibo districts in Rwanda. A cluster sampling technique was used to 
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select the respondents. In the first step, the two districts (Gatsibo and Nyagatare) were 

purposively selected since they were the pilot areas for the PPT project. Within each district, 

the pilot had been conducted in one sector, and thus, Gatunda and Nyagihanga sectors, from 

the Nyagatare and Gatsibo districts were selected, respectively. A simple random sampling 

procedure was used in the second step to select 240 adopter households from a sampling frame 

of households who had participated in the pilot provided by the Rwanda Agricultural Board in 

the two districts. However, 46 of the selected households had stopped using the technology in 

the preceding 12 months and were therefore dropped from the sample resorting to a sample 

size of 194 adopters farming households who were interviewed using a pre-tested semi-

structured questionnaire. The 194 adopter households selected comprised of 133 and 61 

farmers from the Gatsibo and Nyagatare districts respectively, were then interviewed with a 

pre-tested semi-structured questionnaire. The data was then analyzed using Stata version 14. 

 

4.2.4 Measurement of Variables 

Table 4.1 presents the description and measurement of the variables used in the analysis. The 

dependent variable of the FLM used in this study is the intensity of adoption of PPT among 

smallholder maize farmers in Rwanda. It is derived by dividing the number of acres of maize 

under PPT per household by the total maize acreage owned by a household. It is a fractional 

variable bounded between 0 and 1. To derive the proportion of land area under PPT, farmers 

were asked two successive questions: i) how many acres of land have you set aside for maize 

production? The second question asked was: ii) of the total acreage you have set aside for 

maize production, how many acres have you allocated to push-pull technology (acres)?  

The use-diffusion theory and preceding studies (e.g., Kassie et al., 2011; Murage et al., 2012; 

2015b; Ghimire et al., 2015; Obuobisa-darko, 2015; Chepchirchir et al., 2017; Maina et al., 



42 
 

2020; Kolady et al., 2020) inform the choice of the independent variables (Table 4.1) used in 

the analysis. They included the perceived benefits of PPT use, the perceived effectiveness of 

PPT use as compared to other pest control methods, group membership, off-farm income 

sources, education level, gender, tropical livestock units (TLU), age and family size. 

Table 4.1: Description of variables used in the Fractional Logit Model 

Variable Description Unit of measurement 

Dependent variable 

Intensity of adoption 

of PPT (Proportion) 

Acres of maize under PPT divided by 

the total acreage under maize per farm 

Proportion 

Independent variables 
Perceived PPT 

Benefits 

Farmers perceptions on PPT’s ability 

to increase maize yields 

Dummy (1 = Yes, 0 

otherwise) 

Perceived PPT 

Effectiveness 

Farmers perceptions on the 

effectiveness of PPT to control FAW 

and stemborer  

Dummy (1 = Effective, 

0 otherwise) 

Age Age of the farmer in years Years 

Gender  Gender of the farmer Dummy (1 =Male,  0 

Female 

Education Number of years spent in school  Continuous  

Family size Number of persons in the household Continuous 

Off-farm income Involvement in off-farm income 

activity 

Dummy (1 = Yes, 0 

otherwise) 

Group membership Member to a farmer groups Dummy (1 = Member, 0 

otherwise) 

Livestock ownership 

(TLU) 

Livestock ownership  Continuous  

Note: TLU is tropical livestock unit. TLU equivalents for different livestock were computed as 

cattle=1, camels=1, donkeys=0.8, goats and sheep=0.2 and poultry=0.04 (WISP, 2010) 

 

Farmer’s assessment of maize yields with PPT adoption as compared to the yields before PPT 

adoption was used to proxy for the perceived PPT benefits. Farmers were asked to compare 

their maize yields before and after the adoption of PPT. Their responses were grouped into a 

dummy outcome variable equivalent to 1 if households perceive PPT increased yields and zero 

otherwise. Positive relationships have been reported between the perceived benefits of new 

technologies and their adoption (Ghimire et al., 2015; Kolady et al., 2020).  

Similarly, PPT’s perceived effectiveness control stemborer and FAW relative to other methods 

was also measured as a binary response variable, equal to one 1 if  PPT was effective and zero 
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otherwise. Group membership was another important variable used as a representation for 

sources of information sharing on PPT, procuring inputs, and marketing output. It was 

measured as a dummy variable equivalent to one if a farmer was a member of an agricultural 

group and zero otherwise. Social networks such as groups or farmer associations facilitated the 

exchange and gathering of information related to PPT and provided platforms through which 

farmers accessed inputs and marketed output. Previous studies have revealed positive 

associations between group membership and PPT adoption (Kassie et al., 2011; Ghimire et al., 

2015; Obuobisa-darko, 2015; Chepchirchir et al., 2017). Off-farm income played a key role in 

providing financial resources necessary for investment in PPT and was measured as a dummy 

variable equivalent to one if a farmer had an off-farm income source and zero otherwise.  

 

Gender, education, age, livestock ownership, and family size were also used as control 

variables following preceding studies (see Murage et al., 2012; 2015b; Maina et al., 2020).  

Gender was measured as a dummy variable equivalent to 1 if the household head was male and 

zero otherwise. The available literature on the influence of gender on the PPT adoption is 

mixed. Age was used as a proxy of farmers’ experience.  

 

Education was measured by the number of schooling years spent by the respondent, while age 

was measured in years. Several previous studies have shown positive relationships between 

age and education on one side and the adoption of PPT on the other (Obuobisa-darko, 2015; 

Mahama et al., 2020). The number of livestock owned was used as a proxy for wealth status 

and measured in TLU. Family size was also incorporated as a proxy for available family labour 

and measured as the entire number of persons per household. 
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4.3 Results and Discussion 

4.3.1 Descriptive results 

Table 4.2 presents the demographic characteristics of PPT adopter maize farmers in Rwanda. 

Average farm sizes for PPT adopters were 3 acres, which was slightly higher than the national 

average at 2.6 acres (MINAGRI, 2018). The adopter household’s allocated approximately 

1.035 acres (35 percent) of their farms to maize production, out of which 0.269 acres was under 

PPT to yield an intensity of adoption of 0.26. On average, the PPT adopter farmers were middle 

aged (50 years) with about 6.42 years of schooling corresponding to the attainment of a primary 

school level of education. 

 

Table 4.2: Demographic characteristics of PPT adopter maize farmers in Rwanda 

Variables Mean 

(n=194) 

SD Minimum Maximum 

Farm size (Acres) 3.115 3.252 0.250 24.700 

Land area under maize (Acres) 1.035 1.059 0.100 5.100 

Maize area under PPT (Acres) 0.269 0.279 0.050 1.250 

Age (Years) 50.02 10.76 24 85 

Education (Years)   6.42   2.97   0 18 

TLU (Number)   1.91   4.09   0 39 

Family size (Number)   5.24   2.04   2 13 

Frequencies Count Percent   

Gender of household head (% Male) 146 74.74   

Off-farm income source (% accessing) 91 46.91   

Group membership (% belonging) 118 60.82   

Perceived PPT benefits (% positive) 112 57.73   

PPT effectiveness in stemborer control (%) 117 60.31   

PPT effectiveness in FAW control (%) 115 59.28   

Note: TLU is tropical livestock unit were computed as cattle=1, camels=1, donkeys=0.8, goats 

and sheep=0.2 and poultry=0.04 (WISP, 2010) 

 

The average family size in the study area was 5.24 persons, which compares favourably with 

the national average at 4. Three quarters of the respondents were male, which was expected 

given the patriarchal nature of the society. Moreover, 61 percent of the households belonged 

to farmers’ groups through which they share information on PPT, procured inputs and marketed 

output. Almost all households in the study area owned livestock with an average TLU of 1.91, 
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which is understandable given the small land holding sizes. As expected with adopters of any 

technology, maize farmers in Rwanda had a positive perception of PPT use. Fifty-eight percent 

of the respondent’s perceived PPT use to increases maize yields, while 60 percent of the 

farmers perceived the technology to be effective in the control of FAW and stemborer relative 

to other methods. Moreover, 47 percent of the respondents undertook other off-farm income 

earning undertakings, which was used to complement farm incomes required to cover the initial 

labour costs for setting up the PPT plots that can be a hindrance to adoption. 

 

4.3.2 Econometric results 

Table 4.3 presents the quasi-maximum likelihood estimates (QMLE) of the intensity of 

adoption of PPT from the fractional logit model. The mean Variance Inflation Factor (VIF) 

score was 1.12 (critical value 10) while the partial correlation coefficients for all the 

independent variables were less than 0.5 suggesting that multi-collinearity of the explanatory 

variables was not problematic (Kennedy, 1985; O’brien, 2007). 

 

Table 2.3: Fractional Logit QMLE of the intensity of adoption of PPT in Rwanda 

Variable Coefficient Robust 

Std 

deviation 

Marginal 

effects  

Robust 

Std 

error 

Perceived PPT benefits   0.292*** 0.113  0.0632*** 0.024 

Perceived effectiveness of PPT  0.301*** 0.112  0.0648*** 0.024 

Age  -0.004 0.005 -0.001 0.001 

Gender 0.274** 0.132  0.058** 0.027 

Education  0.018 0.018  0.004 0.004 

Family size  -0.024 0.023 -0.005 0.005 

Off-farm income  0.037 0.105 0.008 0.023 

Group membership  0.246** 0.113 0.053** 0.024 

Livestock ownership (TLU) 0.074** 0.033 0.016** 0.007 

Constant -1.364*** 0.341   

Number of observations 194    

Wald Chi2 (9) 58.630 0.000   

Pseudo R2 0.021    

Log pseudo likelihood -120.012    

Breusch-pagan/Cook-Weisberg  Chi2 (1)=0.011  Prob > Chi2=0.907 
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Mean Variance inflation factor 1.120 

Deviance 4.468 

Pearson 4.468 

Note: ***, ** and * denotes 1%, 5% and 10% level of significance respectively. 

The Breusch-pagan test fails to rejects the null hypothesis of homoscedasticity (Chi2 (1) = 0.01; 

Prob > chi2 = 0.907) ruling out the presence of heteroscedasticity. The Wald statistic was 

significantly at the one percent level signifying a high prediction power of the model (Mwololo 

et al., 2019). Finally, the Pearson and deviance tests for unequal dispersion were not significant 

(p > 0.05) suggesting that the FLM fitted the data well. The results show that the perceived 

PPT benefits and effectiveness, group membership, livestock ownership, and gender had a 

significant positive effect on the intensity of adoption of PPT in Rwanda. Gender, education, 

age, livestock ownership, and family size were also used as control variables but were 

insignificant in explaining the intensity of adoption of PPT in Eastern Rwanda. The quasi-

maximum likelihood estimates of the FLM are consistent as long as the conditional expectation 

of the intensity of adoption of PPT is correctly specified even if the Bernoulli specification is 

inappropriate. Thus they are more reliable than recent estimates of the intensity of adoption of 

agricultural innovations using both linear and non-linear models of estimation. 

 

Farmer’s perceptions of the ability of PPT use to increase maize yields had significant positive 

influence on the intensity of adoption and was significant at the 1 percent level signifying that 

the intensity of adoption increased with a respondents’ positive perception of the benefits of 

the technology. Farmers who perceived PPT use to increase yields had higher intensities of 

adoption of the technology of 6.32 percent than their counterparts who thought otherwise. This 

finding is in agreement with the result of previous studies (Meijer et al., 2014; Ghimire et al., 

2015; Murage et al., 2015a, b and Kolady et al., 2020). Meijer et al., (2014), which reported 

that farmer’s initial information of the benefits of the technology increased the probability of 
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adoption. Ghimire et al. (2015) reported that positive perception of technology’s superiority in 

yield increased intensity of adoption of improved maize technologies.  

 

In conformity with the expectations, the perceived effectiveness of PPT in control of FAW had 

a significant positive influence on the intensity of adoption of PPT at the 1 percent level. 

Positive perceptions on the effectiveness of PPT increased the intensity of adoption by 6.48 

percent. Maize farmers would readily adopt a technology that effectively controls pests 

compared to the alternative pesticides that have been linked with the negative environmental 

effects. This finding supports the results of Gwada et al. (2019), who reported a positive 

association between farmers’ perceptions on the severity of stemborer infestation and the 

intensity of adoption of PPT in Kenya. Similar result were reported by Kolady et al. (2020) in 

South Dakota, who observed that positive perceptions of profitability increased producers’ 

intensity of adoption of precision agriculture technologies. 

 

Group membership had a positive and significant influence on the intensity of adoption of PPT 

at the 5 percent level. Belonging to a farmers group increased the intensity of adoption of PPT 

by 5.8 percent. Groups play an important role in transferring information and knowledge and 

availing inputs (Okello et al., 2021). Often, smallholder farmers procure inputs, market outputs 

and acquire information through farmers' groups that are used to leverage the benefits of 

economies of scale. Obuobisa-Darko (2015) find a positive association between group 

membership and intensity of adoption of cocoa research innovations in Ghana. A similar result 

was reported by Ghimire et al. (2015) who find maize farmers belonging to groups and local 

cooperatives in Nepal were exposed to numerous information sources, enabling the farmers to 

evaluate the risks, benefits and take advantage of new agricultural innovations. Group 

membership acts as a proxy for social capital and farmer-based extension support methods such 
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as field days, farmer-teacher, and farmer-farmer are modelled on group learning methods 

where social capital forms the basis for interactions and information exchange among members 

and other extension agencies (Wossen et al., 2017). Thus, social capital not only provided 

social networks but also facilitated in information flow and provided opportunities for peer 

learning where farmers shared experiences and information about PPT adoption. This means 

dissemination of PPT reached more farmers when conducted through farmer groups and was 

more likely to increase intensity of adoption (Kassie et al., 2011; Chepchirchir et al., 2017). 

 

Livestock ownership had a positive significant influence on the intensity of adoption of PPT at 

the 5 percent level. A positive relationship between livestock ownership and the intensity of 

adoption is expected given that Napier grass and Desmodium spp are used as animal feeds, and 

thus the technology compliments livestock production. Livestock ownership is indicative of a 

farmer’s wealth status, an important component of technology adoption. A one percent increase 

in the TLU increased the intensity of adoption of PPT in Rwanda by 1.6 percent. A similar 

result was reported in Maina et al. (2020) who observed that farmers with a higher number of 

livestock assets were more willing to adopt and increase land acreage under Brachiaria grass 

and Desmodium that are components of PPT. Other studies noted a direct association between 

livestock ownership and adoption of agricultural technologies due to the utilization of fodder 

and crop residues as animal feeds (Khan et al., 2014; Murage et al., 2015a; Kassie et al., 2018). 

 

Male farmers in Rwanda committed larger maize acreage to PPT relative to their female 

counterparts. The significant positive association between gender and the intensity of adoption 

of PPT is expected given the limited access of female-headed households to productive 

resources such as land, credit and extension. Male headed households had 5.8 percent more 

likelihood of allocating their maize plots to PPT relative to their female counterparts. This can 
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be due to number of socio-cultural factors (Mbugua et al., 2020). This finding is in agreement 

with the result by Murage et al. (2015b), who observed a positive correlation between gender 

and intensity of adoption of climate-smart PPT in Kenya.  

 

4.4 Conclusions and policy implications 

This study evaluates the factors influencing the intensity of adoption of PPT among smallholder 

maize farmers in Gatsibo and Nyagatare districts of Rwanda. Cross-sectional survey data from 

194 PPT adopter maize farmers was analyzed using a fractional logit model. Overall, fifty-

eight percent of the respondent’s perceived PPT use to increase yields, while 60 percent of 

them perceived PPT to be effective in the control of both FAW and stemborer relative to other 

methods. The results revealed that the perceived PPT benefits, the perceived effectiveness of 

PPT in control of FAW, group membership, livestock ownership and gender had a significant 

positive effect on the intensity of adoption of PPT among smallholder maize farmers in 

Rwanda. The study concludes that farmer’s perception of technology attributes and sources of 

information play crucial roles in technology adoption decisions. 

 

Therefore, given these findings, development initiatives in Rwanda should focus on strategies 

that create and disseminate information that enhances farmer awareness on the perceived 

benefits of the technology and its effectiveness in pest control relative to other existing methods 

such as pesticides. Such strategies could include the use of extension methods (e.g. farmer field 

schools, demonstrations etc.) that disseminate information on PPT and focus on farmer groups 

especially those whose members own livestock. Furthermore, efforts to disseminate PPT 

information should target male farmers differently from female farmers given their different 

access to productive resources that are important drivers of technology adoption. 
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Lastly, while the biological and societal background has been eloquently discussed, a direct 

comparison against other (or similar) models has not been elaborated. Moreover, despite the 

rigorous econometric methods validating the results on intensity of adoption of PPT, the study 

recognize the limitations in approximation. First, the study used cross-section data that does 

not capture the dynamics changes in integrated pest management used by smallholder maize 

farmers. Secondly, the study’s limitation pertains to small sample size conducted when the 

technology was being disseminated among smallholder farmers. Thirdly, although the 

estimates demonstrate the factors influencing intensity of adoption of PPT, the study did not 

take into account plot-varying characteristics and institution factors such as credit and 

extension accessibility. Fourth, the non-adopters of PPT were not part of the analysis as the 

technology attributes questions were biased to only PPT adopters reducing the sample size. In 

view of overcoming this weakness, the study recommends future studies to include additional 

variables and years of sampling to validate the study’s findings and get results that are more 

robust.  
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CHAPTER FIVE: PAPER II 

Impact of Adoption of Fall Armyworm and Stemborer Pest Control Practices on Maize 

Productivity in Rwanda: An Endogenous Switching Regression 

Abstract 

The use of push-pull technologies (PPT) as an alternative to pesticides in the control of fall 

armyworm and stemborer pests among smallholder maize farmers has recently received 

considerable global attention. However, the impact of adoption of PPT on the maize 

productivity remains largely unexplored. This study employed a multinomial endogenous 

switching regression (MESR) to evaluate the impact of adoption of PPT on smallholder maize 

farmer’s productivity in Gatsibo and Nyagatare districts of Rwanda. The MESR model was 

estimated on sample of 398 households operating 967 maize plots selected using a stratified 

random sampling technique. Overall, 25, 20, and 14 percent of the households used traditional 

methods, PPT and pesticides respectively in isolation to control stemborer and fall armyworm 

pests in Eastern Rwanda. Another 8 and 7 percent of the households used a combination of 

pesticides and traditional methods and a mix of PPT and traditional methods respectively to 

control the pests while none of the farmer used a combination of pesticides and PPT and a 

mixture of pesticides, PPT and traditional practices. The econometric results revealed that 

traditional practices was the commonly used technology. Furthermore, adopting PPT in 

isolation, and its combination had a positive significant impact on maize yields while using 

traditional methods and pesticides in isolation and a combination of pesticides and traditional 

method had negative impacts on maize yield. Thus, the study recommends promotion of PPT 

as an alternative low cost pest control method and optimal technology combination in 

controlling fall armyworm and stemborer pests in maize. 

Key words: Multinomial Endogenous Switching Regression, Impact Evaluation, Pests, 

Rwanda, Push-Pull Technologies, Productivity   
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5.1 Introduction 

Improving agricultural productivity in Sub-Saharan Africa (SSA) remains a critical 

developmental goal with efforts being directed towards meeting the food demand of the present 

as well as the future generation (icipe, 2019b). Thus, agricultural productivity must grow above 

the current population growth rate to match with the ever rising food demands (FAO, 2017). 

However, agricultural productivity in SSA is continuously constrained by both abiotic and 

biotic factors that cause substantial yield losses (Midega et al., 2018; Hailu et al., 2018; Kumela 

et al., 2019; icipe, 2019b). Abiotic factors such as climate change, drought, land fragmentation, 

low soil fertility, limited access to quality farm inputs and inefficient production methods are 

common among smallholder farmers in SSA (Getu et al., 2013; Kumela et al., 2019; Kanyenji 

et al., 2020). On the other hand, biotic factors such as diseases (maize lethal necrotic), parasitic 

Striga weed, insect pests (both storage and field), predators such as locusts, birds, termites etc. 

are the most prevalent (Getu et al., 2013; Kumela et al., 2019).  

 

Among the biotic constraints to crop productivity , fall armyworm (FAW) and stemborer pests 

are of high economic importance and cause huge maize yield losses (Kumela et al., 2018; 2019; 

icipe, 2019b; Omwoyo et al., 2022). The FAW and stemborer yield-related losses in SSA and 

Kenya are estimated on average at 37 and 47 percent respectively of the total annual maize 

production under no control technologies (Khan et al., 2014; Day et al., 2017; IITA, 2019). In 

Rwanda, FAW induced yield losses are estimated to range from 15 to 73 percent of total maize 

production (Rukundo et al., 2020). Thus, without appropriate interventions, FAW and 

stemborer pests could derail efforts towards attainment of the Sustainable Development Goals 

number 1 and 2 of poverty reduction and ending hunger respectively by the year 2030 in 

Rwanda (United Nations, 2017). 
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This use of improved agricultural technologies has been proposed as a viable alternative in 

reversing the yield losses caused by abiotic and biotic constraints and increasing agricultural 

productivity (Kassie et al., 2018a and b; icipe, 2019b; Maina et al., 2020). Over the past half-

decade, smallholder maize farmers in Rwanda have relied on use of synthetic pesticides in 

controlling FAW and stemborer pests (Tambo et al., 2020). However, smallholder farmers 

have to content with the costly pesticides and specialized safety gears for pesticide application 

(Day et al., 2017; Kumela et al., 2018; Tambo et al., 2020; 2021).  

 

The heavy reliance on pesticide application causes pesticide resistance while excessive use of 

pesticides has negative effects to human, animal and environment health (Nicolopoulou-

Stamati et al., 2016; Sharma and Singhvi, 2017; Tambo et al., 2020; 2021). Conventionally, 

maize farmers use other traditional pest control management technologies such as hand 

picking, application of soil/ash and sawdust/pepper mixture, use of plant extracts and 

intercropping which are cost-effective and environmentally friendly but are less effective 

(Hailu et al., 2018; Midega et al., 2018; Kumela et al., 2018; 2019; Kassie et al., 2020; 

Rukundo et al., 2020; Tambo et al., 2021; Omwoyo et al., 2022). 

 

As an alternative, the “push-pull” technology (henceforth PPT), an integrated pest management 

(IPM) practice designed by the International Center of Insect Physiology and Ecology (icipe) 

and its partners has been promoted in the control of FAW and stemborer infestation in maize 

(Khan et al., 2001; icipe, 2019a; Niassy et al., 2022). PPT comprises intercropping of cereal 

crops such as maize with Desmodium repelling (“pushes”) the pest away from the cereal while 

Brachiaria or Napier grass planted as a border crop attracting (“pull”) the pest (Khan et al., 

2008a; 2008b; 2014; Pickett et al., 2014; Chepchirchir et al., 2017). Additionally, PPT 

improves soil fertility through increasing nitrogen use efficiency, decreases soil erosion, lowers 
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pesticide use, controls the spread of Striga weed and provides quality fodder for livestock 

(Pickett et al., 2014; Kassie et al., 2018a; Maina et al., 2020; Niassy et al., 2022). Despite being 

labour intensive at establishment, the labour demands of PPT decline significantly once the 

crop is well established (Muriithi et al., 2018). Recent studies have revealed an increase in 

average maize yields from 1 to 3 metric tonnes/hectare (MT/Ha) with the use of PPT (Midega 

et al., 2015; icipe, 2019b). Other studies have reported a reduction in the use of herbicides and 

synthetic insecticides in maize production with use of PPT thus enhancing human health and 

increasing biodiversity (Pickett et al., 2014). However, despite the apparent benefits and 

promotion efforts made by icipe and the government of Rwanda since 2017, the adoption of 

PPT remains low at 5 percent while its impact on maize productivity in Rwanda is largely 

unexplored (icipe, 2019a; Niassy et al., 2020; Misango et al., 2022).  

 

While numerous recent empirical studies (e.g., Chepchirchir et al., 2017; Kassie et al., 2018a; 

Maina et al., 2020 ; Kassie et al., 2020) have evaluated the impact of PPT among maize farmers 

in SSA, we only found one study (Kassie et al., 2018a) from Kenya and none from Rwanda. 

However, the bulk of these studies are restricted to the analysis of impact assessment using 

linear econometric models. This study evaluates the impact of adoption of PPT practices on 

maize productivity in Rwanda using a MESR model. It contributes to the literature by 

evaluating the impact of adoption of single and joint pest control practices on maize yields. 

The study pursues a fundamental but often ignored research question, “does PPT adoption 

increase maize productivity?” and answers it to the affirmative in the case of smallholder maize 

farmers in Eastern Rwanda. The remainder of this study is structured as follows; Section 5.2 

presents study’s methodology, which explain data sources, theoretical and empirical 

framework. The study’s findings are discussed in section 5.3 while the conclusions and policy 

recommendations are presented in section 5.4 respectively. 
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5.2 Methodology 

5.2.1 Analytical Framework 

The Theory of Change (ToC) of Weiss (1995) provides the analytical basis of this study. The 

ToC describes how an intervention or set of interventions bring forth developmental changes 

from a casual analysis based on the evidence. Gertler et al. (2016) pointed that ToC provides a 

blueprint of how intended activities result to a chain of outcomes with a logical explanation of 

the necessary conditions. The ToC has been widely used in impact evaluation studies due to its 

ability to accounts for underlying assumptions and risks in program implementation process  

 

According to theory of change, the inputs or activities include treatment/intervention such as 

PPT project while the expected outputs include either a decrease or increase in productivity or 

consumption of maize. The outcome variables of interest include intermediate variables such 

as productivity or incomes and long-term welfare or impacts i.e. food security, poverty health 

and nutrition (Funnell and Rogers, 2011; Mayne and Johnson, 2015; Thornton et al., 2017).  

 

Following Khonje et al. (2015), given the treatment group 𝑌1𝑖 and a control group 𝑌0𝑖 then the 

Average Treatment effect (ATT) is specified as: 

𝐴𝑇𝑇 = 𝐸(𝑌1𝑖 − 𝑌0𝑖|𝑃𝑖 = 1)……………………………………...….……………….…… (5.1) 

where Y1i represents the yield when ith farmer adopts PPT (actual productivity), Y0i is the yield 

of ith farmer when he/she does not adopt PPT (productivity had they not adopted PPT) and Pi 

represents the PPT adoption, 1=adopted; 0=otherwise. ATT presents the conditional mean 

impact or Average Treatment effect on Treated (ATT) as based on PPT participation. The mean 

difference between treatment and control after expanding equation (5.1) following Khonje et 

al. (2015) is specified as:   

𝐷 = 𝐸(𝑌1|𝑃𝑖 = 1) − 𝐸(𝑌0|𝑃𝑖 = 1) = 𝐴𝑇𝑇 .……………………………….……. (5.2) 
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According to Weiss (1995), the expected impact of a project is evaluated on the basis of a “with 

and without project” or “before and after project” analysis. The ToC is analyzed using 

treatment effect models such as propensity score matching, difference in difference, and 

instrumental variable models (Khonje et al., 2015; Kirchweger and Kantelhardt, 2015; Aker 

and Ksoll, 2016; Marwa et al., 2020; Ogutu et al., 2020; Adeyanju et al., 2021). A number of 

empirical models have been used to evaluate the impact of agricultural projects within the 

framework of the ToC.  These include difference-in-difference (DiD) (Nakano et al., 2018; 

Zhou et al., 2020), propensity score matching (PSM) (Kassie et al., 2011; Chepchirchir et al., 

2017; Maina et al., 2020), and endogenous switching regression (ESR) models (Teklewold et 

al., 2013; Shiferaw et al., 2014; Khonje et al., 2015; 2018; Kassie et al., 2015a and b; 2018a 

and b; Kanyenji et al., 2022). The choice of which model to use in impact evaluation depends 

on whether a “with and without” or a “before and after” approach is adopted (Wainaina et al., 

2012). The “before and after” approach requires both pre and post-intervention data for both 

treatment and control groups to enable utilization of statistical methods such as DiD to 

eliminate fixed variations in key variables over time (AIEI, 2021). 

 

The “with and without” approach to impact analysis on the other hand is appropriate where 

baseline data are missing and a counterfactual is used as a proxy to measure what could have 

happened without the intervention (Wainaina et al., 2012; AIEI, 2021). The methodology has 

extensively employed PSM and ESR to overcome the econometric limitations that arise when 

the baseline data are missing while solving for the selectivity bias that arises from the use of 

cross-sectional data (Wainaina et al., 2012; Teklewold et al., 2013; Kassie et al., 2018a).  

 

The PSM method relaxes the self-selection bias by comparing beneficiaries and non-

beneficiaries but fails to account for unobservable variables (endogeneity) that affect the choice 
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of the technology and outcome variable that are not accounted for directly (Asfaw et al., 2012; 

Shiferaw et al., 2014; Khonje et al., 2015; Kassie et al., 2018a). On the other hand, the ESR 

offers a viable solution for addressing the restrictions of self-selection bias and endogeneity 

between adopters and non-adopters (Teklewold et al., 2013; Shiferaw et al., 2014; Kassie et 

al., 2018a). The model uses conditional means in estimating actual and counterfactual 

outcomes while accounting for limitations of the existing methodologies for statistical analysis 

for both observed and unobserved heterogeneities. ESR involves a two-stage estimation 

process comprising a first-stage (adoption equation) and second-stage (outcome equation) 

(Shiferaw et al., 2015; Khonje et al., 2015; 2018). 

 

However, in situations where more than two categories exist (for instance more than two 

categories of adopters and non-adopters of pest control technologies), an extension of ESR, 

multinomial endogenous switching regression (MESR) model is mostly preferred to be used 

(Teklewold et al. 2013; Kassie et al., 2015a, b; Khonje et al., 2018). According to Teklewold 

et al. (2013), MESR model accounts for the self-selection arising from the choice of potentially 

interdependent and combined technology packages such as pest control practices and their 

interactions. The modelling comprises of a two-stage estimation procedure. The first-stage is 

modelled using a multinomial logit model thus allowing farmers to make choices of either 

individual or combined pest control practices while considering interactions between them 

(Kassie et al., 2015a; Khonje et al., 2018). In the second-stage the ordinary least squares (OLS) 

with selection control is used to evaluate the impacts of single and joint technology practices 

(Khonje et al., 2018). 
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5.2.2 Empirical Model 

This study employed a multinomial endogenous switching regression (MESR) model to 

evaluate the impact of adoption of PPT on maize productivity among smallholder farmers in 

Rwanda. Productivity was measured in terms of yield i.e. the kilograms of maize harvested per 

acres (kgs/acre). The MESR model was applied to control for selection bias and 

interdependence between the outcomes variables (Teklewold et al., 2013; Kassie et al., 2015a). 

Following Teklewold et al. (2013), the MESR was estimated in two-stages. 

 

In the first stage, a multinomial logit model (MNL) was used to evaluate the factors influencing 

the choice of pest control practices in Eastern Rwanda using mlogit command in STATA 

version 14. The pest control practices considered included; traditional methods, pesticides, PPT 

and their combinations. Given the three major pest control technologies used in control of FAW 

and stemborer pests in Rwanda, namely, traditional methods, pesticides and push-pull 

technologies, there are eight possible combinations. These comprise of (1) maize plots that did 

not adopt any of the three technologies, which is the base category (non-adopters) and other 

maize plots controlled FAW and stemborer using either: (2) traditional methods only, (3) 

pesticides only, (4) push-pull only, (5) traditional methods + pesticides, (6) traditional methods 

+ push-pull, (7) pesticides + push-pull, and (8) traditional methods + pesticides + push-pull. 

However, the combination 7 and 8 respectively were not observed from the maize plots using 

the data under the current study resorting to 6 possible combinations used for the analysis. The 

multinomial logit model with identically and independently Gumbel distributed error terms, 

𝜀𝑖𝑗, is specified following Teklewold et al. (2013) as: 

𝑃𝑖𝑗 = p(ƞ𝑖𝑗 < 0|𝑋𝑖𝑗) =
exp (𝑋𝑖𝑗𝛽𝑗)

∑ exp (𝑋𝑖𝑗𝛽𝑚)
𝑗

𝑚=1

  ………………..…….………………………. (5.3) 
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where 𝑃𝑖𝑗 denotes dependent variable for the pest control management technologies (comprises 

of traditional methods, pesticides, push-pull, combination of PPT and traditional jointly and a 

combination of pesticide and traditional jointly) used in controlling FAW and stemborer, 𝑋𝑖 is 

a vector of farm (farm size) , farmers (age, gender, education of household head, family size, 

wealthy category; livestock ownership and group membership), pest-specific attributes 

(perceived FAW severity, perceived stemborer severity) and technology-specific attributes 

(perceived cost of the pest control practice, perceived effectiveness, etc) (Table 5.1) and 𝛽 a 

vector of unknown parameters to be estimated. The estimation of the MESR utilizes the 

maximum likelihood method. 

 

Following Kassie et al. (2018b) adoption of the three pest control technologies (Traditional 

methods, pesticides and push-pull) gives eight possible combinations (no technology, single or 

a combination of the technologies) that are then analyzed using MNL model giving eight OLS 

equations. In the base category, non-adoption of pest control technology, was represented as 

j=1. In the second stage, eight pest control technologies (j=1, 2, 3, 4, 5, 6, 7, 8) which represents 

traditional methods only, pesticides only, push-pull only, combination of pesticide and 

traditional methods and lastly combination of push-pull and traditional methods on condition 

that at least one of the pest control technologies was used per every maize plot in the household 

were analyzed.  

 

The OLS model in the second stage of each outcome equation for both adopters and non-

adopters of pest control practices are specified following Teklewold et al. (2013) as: 

{

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦  1 (𝑁𝑜𝑛 − 𝑎𝑑𝑜𝑝𝑡𝑒𝑟𝑠): 𝑌𝑖1 = ⍺1𝑋𝑖 + ս𝑖1 𝑖𝑓 𝑆 = 1  

⁞       ⁞            ⁞           
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦  𝑗 (𝑎𝑑𝑜𝑝𝑡𝑒𝑟𝑠):            𝑌𝑖1 = ⍺𝑗𝑋𝑖 + ս𝑖𝑗  𝑖𝑓 𝑆 = 𝑗  

 j=2, 3, 4, 5, 6, 7, 8….….. (5.4) 
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where 𝑌𝑖𝑗’s are the outcome equations of the ith farmer in category, j, and the error terms (ս’s) 

that are distributed with zero mean (𝐸(𝑢𝑖𝑗|𝑋, 𝑍 = 0) and constant variance 

[𝑣𝑎𝑟(𝑢𝑖𝑗|𝑋, 𝑍)= 𝜎𝑗
2. 𝑌𝑖𝑗 is observed if, and only if, control technology j is chosen and happens 

when 𝑈𝑖𝑗
∗ > 𝑚𝑎𝑥𝑚≠𝑗(𝑈𝑖𝑚

∗ ). The OLS will be biased if the ε’s and ս’s are not independent in 

equation (5.4) and therefore addition of the selection correction terms of the different choices 

are ideal for a consistent estimation of the ⍺𝑗 . The MESR model follows Durbin and McFadden 

(1984) (henceforth referred to as DM model) and Bourguignon et al. (2007) to correct for 

selectivity bias. The advantage of the approach is that it evaluates the individual practices as 

well as alternative combinations of practices while capturing the selectivity bias and the 

interactions between choices of different practices (Mansur et al., 2008; Wu and Babcock, 

1998). The linearity assumption is assumed in the DM model as follows; 𝐸(𝜀𝑖𝑗 |ս𝑖1 … … ս𝑖𝑗 ) =

𝜎𝑗 ∑ 𝑟𝑗(ս𝑖𝑚 − 𝐸(ս𝑖𝑚 ))
𝑗

𝑚≠𝑗
 

where the correlation between ε’s and ս’s sums to zero by construction, that is ∑ 𝑟𝑗 = 0
𝑗

𝑚=1
.  

 

Therefore, equation (5.4) was re-specified for adopters and non-adopters following Teklewold 

et al. (2013) as: 

{

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦  1: 𝑌𝑖1 = ⍺1𝑋𝑖 + σ1λ1 + 𝜔𝑖1 𝑖𝑓 𝑆 = 1   (6𝑎) 

⁞       ⁞            ⁞           
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦  𝑗: 𝑌𝑖𝑗 = ⍺𝑗𝑋𝑖 + σjλj + 𝜔𝑖𝑗  𝑖𝑓 𝑆 = 𝑗     (6𝑏) 

    j=2, 3, 4, 5, 6, 7, 8 ……..…. (5.5) 

where σj denotes covariance between ε’s and ս’s while inverse mills ratio (IMR) denoted by 

λj is computed from the estimated probabilities in equation (5.3) as follows: 

 λj = ∑ ⍴j[ 
Ŝim𝐼𝑛(Ŝim)

1−Ŝim
+ 𝐼𝑛(Ŝij)

𝑗
𝑚≠𝑗 ]………………………………………..…………….. (5.6) 
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where ⍴ is the correlation coefficient of ε’s , ս’s and 𝜔′𝑠 are error terms with an expected value 

of zero. In the multinomial choice setting, there are j-1 selection correction terms, one for each 

alternative pest control technology. Bootstrapping of standard errors in equation (5.5) is used 

to control for the heteroscedasticity arising from the generated regressor (λj). Equation (5.5) is 

augmented by addition of plot characteristics (perceived soil fertility) and plot varying 

covariates such as seed rate, average fertilizer use, pesticide and labour use. The plot-varying 

covariates such as plot soil fertility are included to control for unobserved heterogeneity 

(Wooldridge, 2002). 

 

The average treatment effect (ATT) of treatment was then computed by making comparison in 

expected outcomes of adopters and non-adopters of pest control technologies. However, 

Teklewold et al. (2013) argued that the problem of estimating the counterfactual with the use 

of observational data in impact evaluation (outcome adopters could have received had they not 

adopted the pest control technologies) is problematic. Following Teklewold et al. (2013), the 

average treatment effect (ATT) on the treated was computed as the difference between the 

actual scenarios for adopters and counterfactual scenarios for non-adopters in equation 5.7 and 

5.8 as follows: 

Actual adoption observed in the sample (Adopters with adoption) 

{

 𝐸(𝑌𝑖2|𝑆 = 2) = ⍺2𝑋𝑖 +  σ2λ2    (5.7𝑎)

⁞       ⁞            ⁞           
  𝐸(𝑌𝑖𝑗|𝑆 = 𝑗) = ⍺𝑗𝑋𝑖 +  σjλj     (5.7𝑏)

    j=2, 3, 4, 5, 6, 7, 8 ………………………..… (5.7) 

 

The counterfactual unobserved in the sample (Adopters, had they decided not to adopt) 

{

 𝐸(𝑌𝑖1|𝑆 = 2) = ⍺1𝑋𝑖 +  σ1λ2    (5.8𝑎)

⁞       ⁞            ⁞           
  𝐸(𝑌𝑖1|𝑆 = 𝑗) = ⍺1𝑋𝑖 +  σ1λj     (5.8𝑏) 

   j=2, 3, 4, 5, 6, 7, 8 …………………...….…… (5.8) 
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The unbiased estimates of the ATT was then derived from the expected values in equation 5.7 

and 5.8. The ATT is expressed as the difference between equation (5.8a) and (5.7a) or equation 

(5.7b) and 5.8b) as follows: 

𝐴𝑇𝑇 = {

𝐸(𝑌𝑖2|𝑆 = 2) − 𝐸(𝑌𝑖1|𝑆 = 2) = (⍺2𝑋𝑖 +  σ2λ2) − (⍺1𝑋𝑖 + σ1λ2)       (5.9𝑎)
    𝑜𝑟       

𝐸(𝑌𝑖𝑗|𝑆 = 𝑗) − 𝐸(𝑌𝑖1|𝑆 = 𝑗)  =  (⍺𝑗𝑋𝑖 + σjλj)  − (⍺1𝑋𝑖 + σ1λj)        (5.9𝑏) 
.. (5.9) 

𝐴𝑇𝑇 = {

𝐸(𝑌𝑖2|𝑆 = 2) − 𝐸(𝑌𝑖1|𝑆 = 2) = Xi(⍺2 − ⍺1) + λ2(σ2 −  σ1)       (5.10𝑎)
    𝑜𝑟       

𝐸(𝑌𝑖𝑗|𝑆 = 𝑗) − 𝐸(𝑌𝑖1|𝑆 = 𝑗) =    Xi(⍺j − ⍺1) +  λj(σj −  σ1)       (5.10𝑏) 
 .... (5.10) 

When adopters have similar attributes as non-adopters, the expected change in adopters’ mean 

outcome are represented by first term on the right-hand side of equation 5.10. The remaining 

term (λj) denotes selection term capturing all potential effects of difference in unobserved 

variables. 

 

5.2.3 Data Sources and Sampling technique 

The study used survey data collected in 2019 from a sample of 398 households operating 967 

maize plots in the Nyagatare and Gatsibo districts of Rwanda (Figure 5.1). A stratified 

sampling method was used to select the respondents. In the first step, Nyagatare and Gatsibo 

districts were purposively selected since they were the pilot sites for the PPT project. Within 

each district, the pilot had been conducted in one sector and thus, Gatunda and Nyagihanga 

sectors from the Nyagatare and Gatsibo districts respectively were purposively selected. A 

stratified sampling procedure was used to draw the sampling frames for adopters and non-

adopters of PPT at the sectoral level. In the second step, a simple random sampling procedure 

was used to select 194 PPT adopter and 204 non-adopters from the sampling frames provided 

by the Rwanda Agricultural Board (RAB). 
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Figure 5.1: Map of the study area 

Source: Icipe GIS Section 

 

The selected households were then interview using pre-tested semi-structured questionnaires 

programmed into CSpro. Adopters in this study referred to maize farmers who had used PPT 

continuously for more than a year at the time of data collection. The data collected comprised 

of both household, plot and technology characteristics as well as pest constraints, pest 

management technologies and maize productivity. The data was analyzed in Stata version 14.  

5.2.4 Measurement of Variables 

Table 5.1 presents the description and measurement of the variables used in the analysis. The 

outcome variables of interest in this study are the choice of pest control practices and maize 

yields. The pest control practices used to control FAW and stemborer pests in maize are 

represented as a categorical variables with eight (8) options. The dependent variable for the 

MNL model had eight (8) categories which comprised of 1= pesticides, 2= Traditional 

methods, 3= PPT, 4= a combination of pesticides + traditional methods, 5= a combination of 
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pesticides+ PPT, 6= a combination of PPT + traditional, 7= a mixture of pesticides + traditional 

+ PPT and lastly 8= None of pesticide, PPT or traditional practices is adopted in the maize 

plot.. On the other hand, maize yields a proxy for productivity measured in Kgs/acre was used 

as a dependent variable in the OLS model. The choice of the independent variables for both 

models were informed by previous empirical studies (Teklewold et al., 2013; Kassie et al., 

2015a and b; 2018a; 2020; Khonje et al., 2015; 2018; Diiro et al., 2018; Maina et al., 2020; 

Gebre et al., 2021; Manda et al., 2021; Kanyenji et al., 2020;  2022; Niassy et al., 2020; 2022). 

Table 5.1: Description of variables used in the Multinomial Endogenous Switching Model 
Variable  Description of the variable Unit of Measurement 

Dependent Variables 

Choice of pest control 

practice 

Technology used by the farmers to control 

FAW and Stem borer pest 

Categorical with 8 

options 

Maize productivity Maize yields Kgs/acre 

Exogenous Variables 

Perceived cost of 

technology 

Farmers perceptions on the cost of pest control 

practice 

Binary (1=costly, 

0=Otherwise) 

Wealth category Household asset index computed from PCA Index (-1 to +1) 

Perceived 

effectiveness 

Perceived technology effectiveness in the 

control of FAW and stemborer pests 

Binary (1=effective, 0= 

otherwise) 

Perceived pest 

severity 

Percent of maize plot that the farmer perceived 

to be severely infested by FAW and stemborer 

pest 

Binary (1=Severe, 0 

otherwise) 

Group membership Membership to a farmer group Binary (1=Yes, 0 

otherwise) 

Family size Number of persons in the household Number 

Farm size Area under maize cultivation Acres 

Perceived soil fertility Farmers perceptions on plot soil fertility Binary (1=fertile, 0 

otherwise) 

Age Age of the household head Years 

Gender Gender of the household head Binary (1=Male, 0 

Female) 

Education  Number of years spent in school Years 

Livestock ownership 

(TLU) 

Livestock ownership Number 

Cost of seed Costs of seeds per acre RWF/acre 

Cost of pesticides Costs of pesticides RWF/acre 

Fertilizer use Fertilizer used in kilograms per acre Kgs/acre 

Labour cost Labour usage in maize production Man days per acre 

Note: TLU is tropical livestock unit. TLU corresponding for different livestock were computed 

as camels=1, cattle=1, donkeys=0.8, goats and sheep=0.2 and poultry=0.04 (WISP, 2010); 

Rwandese Franc (RWF), Kilograms (Kgs). 
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Farmer’s perception on the cost of pest control practices measured as a dummy variable 

equivalent to 1 if households perceived pest control practice to be costly and zero otherwise 

Farmers were asked about their perceptions of the cost of pest control practice whether it was 

a constraint to its adoption. . The available literature on the influence of perceived cost of 

technology on the technology adoption is mixed (Mwangi and Kariuki, 2015; Muzira et al., 

2021; Otieno et al., 2023). 

 

Farmers were asked to compare the effectiveness of the pest control practice with other 

methods in terms of controlling FAW and stemborer. Their responses were measured as a 

dummy variable, equivalent to one if the pest control practice was rated effective and zero 

otherwise. Positive associations have been reported between the perceived effectiveness of new 

practices and their technology adoption (Gwada et al., 2019). 

 

Household asset index was used as a proxy for wealth category in measuring resource 

constraint. Following Davila et al. (2022) farmers were asked six questions categorized into 4 

levels comprising of the asset ownership of beds and mobile phones, house construction 

material such as the roofing and wall materials, access to water/sanitation and source of lighting 

(Table 5.2). A principal component analysis (PCA) was then used to compute a wealth index 

based on the household assets ownership which was weighted to generate an index that 

measured the wealth index status of the household. The household wealth index computed was 

measured as a continuous variable. Available literature on the influence of wealth category on 

the technology adoption is positive (Cavanagh et al., 2017; Nyangau et al., 2020; Kanyenji et 

al., 2022). 
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Farmers were asked of the percentage of maize plot perceived to be severely infested by FAW 

and stemborer pests. Their responses were measured as a dummy variable equivalent to one if 

the farmer perceived the plot to be severely infested by the pest and zero otherwise. Available 

literature on the effect of FAW and stemborer pest perception and adoption of agricultural 

technologies is positive (Murage et al., 2015a; Kassie et al., 2015b; Gwada et al., 2019).  

 

Table 5.2: Household asset ownership 

Asset Category Question Unit of measurement 

 

Asset Ownership 

Does a household own more than 

three beds? 

Dummy (1=Yes, 0 otherwise) 

Does a household own more than two 

mobile phones? 

Dummy (1=Yes, 0 otherwise) 

 

 

Housing 

construction 

material 

What is the main material used for 

roofing the house? 

Dummy (1=improved if made 

of metal sheets/corrugated iron 

or concrete), 0 otherwise) 

 

 

What is the main construction 

material of the external walls 

Dummy (1=Improved if made 

of mud bricks with cement, 

oven-fired bricks, logs with 

mud and cement, stones, 

cement blocks or wooden 

planks), 0 otherwise) 

Access to water 

and sanitation 

A proxy for access was distance to 

the drinking water source 

Continuous (Walking minutes) 

Source of 

Lighting 

What is the main source of lighting in 

the residence of the household? 

Dummy (1=Yes if using 

electricity, generator or solar, 0 

otherwise) 

 

Farmer’s perceptions of their maize plot fertility was used as a proxy for soil fertility. Farmers 

perceiving plots to be of low fertility and susceptible to soil erosion increases investments in 

agricultural technologies to restore fertility. Their responses were later grouped into dummy 

variable, which took value of one if a farmer perceived soil to be fertile and zero otherwise. 

The available literature shows positive relationship between soil fertility perception and the 

adoption and impact of agricultural technologies on the other side (Muriithi et al., 2018; Kassie 

et al., 2018a; 2020; Kanyenji et al., 2020; Gebre et al., 2021). Gender, age, education, family 
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size, group membership and farm size were also included as control covariates following 

previous studies (see Kassie et al., 2015a and b; 2018a, and b; 2020; Khonje et al., 2015; 2018; 

Diiro et al., 2018; Maina et al., 2020; Gebre et al., 2021; Manda et al., 2021; Kanyenji et al., 

2020; 2022). Gender was measured as a binary variable taking a value of one if the household 

head was male and zero female. Several previous studies have shown indeterminate 

relationship between gender and adoption of agricultural technologies (Murage et al., 2015a; 

Kassie et al., 2015b; 2020). On the other hand, family size was also included as a proxy for 

family labour and measured as the total number of persons per household. Several previous 

studies have shown positive associations between family size on one side and the PPT adoption 

and its impact on the other (Kassie et al., 2015b; 2018a; Maina et al., 2020). 

 

Age was measured in years. Education on the other hand, was measured as the number of years 

of formal schooling spent by the household head. A number of previous studies have shown 

positive association between the age and education on one side and the adoption of agricultural 

technologies on the other (Asfaw et al., 2012; Teklewold et al., 2013; Kassie et al., 2011; 2018; 

Niassy et al., 2020; Maina et al., 2020).  

 

Group membership was measured as a binary variable with a value of one if a farmer was a 

member of an agricultural group and zero otherwise. Previous studies have shown a positive 

association between group membership and adoption of agricultural technologies (Kassie et 

al., 2011; Teklewold et al., 2013; Maina et al., 2020; Niassy et al., 2020; Gebre et al., 2021).  

Farm size was also incorporated as a source of land availability for enhancing adoption of 

agricultural technologies and measured as a continuous variable (number or acres farmer owner 

household). Available literature have shown positive relationship between farm size and 

adoption of agricultural technologies (Teklewold et al., 2013; Kassie et al., 2015b). On basis 
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of the outcome equation in the yield functions, cost of seeds, cost of pesticides, fertilizer and 

labour were incorporated. Cost of seeds was measured as a continuous variable by taking actual 

costs in Rwandese Franc spent in purchasing the seeds per acre. Cost of pesticides was used as 

a proxy for the control of pests and weeds in crop production. It was measured by summing up 

the total costs incurred for insecticides and herbicides used per acre by maize farmers in control 

of pests and weeds infestation. Later the costs of pesticides and seed cost were summed together 

and included in the yield function analysis as one variable. 

 

Fertilizer use was measured as the number of kilograms of DAP and Urea used per acre. Labour 

on the other hand, was measured in man-days per acre. Labour plays an important factor of 

production in doing farming activities from ploughing, planting, weeding, harvesting to 

threshing and is one of the major constraints in the adaptation of new agricultural technologies. 

Available literature have shown a positive relationship between input variables that is seeds, 

fertilizer, labour and pesticides on one side and maize productivity on the other side (Teklewold 

et al., 2013; Kassie et al., 2015a; 2018a and b; 2020; Kanyenji et al., 2020; Gebre et al., 2021; 

Diiro et al., 2018; Niassy et al., 2022). 

 

5.3. Results and Discussions 

5.3.1 Descriptive Results 

Table 5.3 presents the distribution of pest management technologies used in the control of FAW 

and stemborer infestation by smallholder maize farmers in Rwanda. Above a quarter of the 

maize farmers in Rwanda did not control for FAW and stemborer in their maize plots. The 

most widely used pest control practices in declining order of importance included traditional 

methods, PPT and pesticides as reported by 25, 20 and 14 percent of the respondents 

respectively Another 8 percent of the households in Eastern Rwanda used a combination of 
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pesticides and traditional methods while 7 percent of the respondents used a combination of 

PPT and traditional methods. However, none of the households reported to use the combination 

of pesticides + PPT, and a mixture of pesticides+ traditional + PPT practices since PPT was 

used under trials to affirm its effectiveness in control of FAW pest. 

 

Table 5.3: FAW and Stemborer pest control practices in Nyagatare and Gatsibo districts 

of Rwanda 

Strategy set T1 T0 Pe1 Pe0 PP1 PP0 Frequency Percent 

(%) 

No technology 

method 

  √  √  √ 249   25.75 

Traditional methods  √      238   24.61 

Pesticides only   √    140   14.48 

PPT only     √  196   20.27 

Pesticides+ 

Traditional method 

√  √    74     7.65 

PPT + Traditional 

method  

√    √  70     7.24 

Pesticides+ PPT 

method  

  √  √  0     0.00 

Pesticides+ PPT+ 

Traditional method  

√  √  √  0     0.00 

Total       967 100.00 

Note: T, Pe and PP denotes Traditional, Pesticide and Push-pull technologies respectively. 

Subscript 0 denotes non-adoption and 1 adoption of that pest management technology in 

controlling FAW and stemborer pests. 

 

The results (Table 5.4) show that eighty percent of the respondent were male-headed with 

significant differences observed between the non-adopters and PPT adopter. The average age 

of the household heads was statistically different across the adopters and non-adopters on PPT. 

On average, the maize farmers were middle aged (48 years) with PPT adopters being slightly 

older compared to the non-adopters. The PPT adopters (6.42) were relatively more educated 

compared to the non-adopters (4.84) with an average of 5 person per household. Further, the 

PPT adopter maize farmers were coming from wealthy households with an average wealth 

index of 1.86 compared to the non-adopters who had an average wealth index of 1.13.  
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Table 5.4: Demographic characteristics of maize farmers in Rwanda differentiated by 

adopters and non-adopters of PPT 

Variables  PPT adopter 

(n=500) 

PPT non 

adopter 

(n=467) 

Pooled 

(n=967) 

Statistic 

Continuous variables Means (Standard errors) T test 

Age (Years) 50.54 (11.43) 45.12 (11.72) 47.92 (11.88) 7.28*** 

Education (Years) 6.42 (2.89) 4.84 (3.00) 5.65 (3.05) 8.36*** 

Family size (Number) 5.35 (2.50) 4.94 (1.92) 5.15,(2.25) 2.89*** 

Farm size 1.04(0.87) 0.89(1.50) 0.97(1.22) 1.92* 

Wealth Index 1.86 (2.94) 1.13(3.35) 1.51(3.17) 3.62*** 

Maize yield 1688.82 

(1660.82) 

617.50 

(719.60) 

1171.34 

(1400.51) 

12.86*** 

Seed cost 2602.39 

(3343.68) 

7897.08 

(13127.52) 

5159.39 

(9793.67) 

8.72*** 

Fertilizer rate 20.20(40.99) 22.28(45.95) 21.21 (43.45) 0.74 

Cost of labour (man days per 

acre) 

49.45(59.70) 61.95(78.79) 55.19 (69.82) 2.79*** 

Pesticide cost 3507.82 

(9471.03) 

4179.32 

(30959.27) 

3832.11 

(22557.02) 

0.46 

Categorical variables Percentages Chi2 test 

Perceived technology cost  46.80 70.24 58.12 54.48*** 

Perceived technology 

effectiveness 

60.20 24.84 43.12 123.10*** 

Group membership  60.80 53.96 57.50  4.62*** 

Gender of the household 

head (% Male) 

74.80 86.30 80.35 20.21*** 

Perceived FAW pest severity 

(% severe) 

88.80 79.44 84.28 15.96*** 

Perceived stemborer pest 

severity (% severe) 

65.60 50.75 58.43 21.92*** 

Perceived soil fertility 

(percentage fertile) 

94.60 80.09 87.59 46.80*** 

Note: ***, ** and * denotes level of significance at 1%, 5% and 10% respectively. 

 

About 58 percent of the respondent in the study area were belonging to a farmer group through 

which they procured inputs, marketed output and acquired market information on both markets 

and PPT. A majority of the non-adopters perceived the cost of technology (70 percent) to be a 

constraint towards adoption of pest control practices compared to the adopters of the 

technology (47 percent).  
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About 43 percent of the farming households perceive the pest control practices to be effective 

in the control of FAW and stemborer pests with significant differences observed between the 

adopter and non-adopter of agricultural technologies. Furthermore, eight-four and fifty-eight 

percent of the maize plots were reported to have been infested with FAW and stemborer pest 

respectively, with significant differences observed between the maize plots for adopters and 

non-adopters of PPT. Moreover, eighty-eight percent of the maize plots were rated to be fertile 

with significant difference observed between the adopter and the non-adopter. 

 

The average yield for PPT adopter’s plots (1689 kgs/acre) was significantly higher compared 

for the non-adopters plots (618 kgs/acre). The PPT adopter maize farmers were also owning 

larger acreages of maize farm sizes (1.04 acres) compared to the non-adopters (0.89 acres). 

Moreover, the non-adopters spends significantly higher costs of seeds per acre (7897 Rwandese 

Franc) and more labour days per acre (62 days) compared to the adopters of PPT using 2602 

Rwandese Franc and forty-nine days respectively.  

 

The labour use in person days per acre on maize plots farming activities was significantly 

higher for non-adopters compared to the adopters of PPT. The possible reason being that PPT 

had already established in most farm maize plots at the time of survey unlike labour intensive 

at the time of initial establishment which reduces substantially one the cropping system is 

established (Muriithi et al., 2018).  
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4.3.2  Econometric Results 

Table 5.5 presents the MNL maximum likelihood estimates (MLE) of the factors influencing 

adoption of FAW and stemborer pest control practices among smallholder maize farmers in 

Eastern Rwanda. The control group (no technology) was used as the base scenario for 

comparison with all other scenarios. The Breusch-pagan test rejected the null hypothesis of 

homoscedasticity (Chi2 (1) =15.67 Prob > Chi2=0.0001) indicating the presence of 

heteroscedasticity that was corrected using robust standard errors.  

 

The generalized Hosmer-Lemeshow statistic (Chi2 (8) = 12.47 Prob > Chi2=0.131) was 

insignificant indicating that the model fitted the data well while Wald statistic was significant 

at one percent to affirm the results. Furthermore, the results of the Hausman test (Chi2 {44} = 

4.862; p-value=1, for all alternatives), Suest-based Hausman tests (Chi2 {44} = 31.554; p-

value=1) and small-Haiao test (Chi2 {44} = 56.203; p-value=1, for all alternatives) indicated 

that the IIA was not violated and the estimated results were consistent, efficient and reliable 

(Mwololo et al., 2019). Therefore, the results of the marginal effects of the MNL model 

indicated that perceived cost of technology, perceived effectiveness, wealth index, perceived 

pest severity, perceived soil fertility and group membership significantly influenced adoption 

of pest control practices.  

 

The perceived cost of technology, a proxy for technology adoption constraint, positively and 

significantly influenced the adoption of traditional methods, but negatively influenced adoption 

of PPT in isolation and a mix of PPT and traditional methods at the one and 5 percent level 

respectively. A farmer perceiving the cost of pest control practice to be higher were more likely 

to adopt traditional methods by 5.5 percent. 
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Table 5.5: Multinomial Logit (MNL) MLE of the adoption of FAW and Stemborer pest 

control practices in Eastern Rwanda 

Variables  Traditional Pesticides Push-Pull 

(PPT) 

Pesticides 

and 

Traditional 

PPT and 

Traditional 

Perceived 

technology 

cost 

0.0600 

(0.0256)** 

-0.0554 

(0.0211)*** 

-0.0857 

(0.0235)*** 

-0.0355 

(0.0184)** 

-0.0377 

(0.0165)** 

Perceived 

technology 

effectiveness 

-0.3020 

(0.0283)*** 

0.1058 

(0.0185)*** 

0.1453 

(0.0216)*** 

0.0327 

(0.0148)** 

0.0391 

(0.0148)*** 

Wealth Index 0.1050 

(0.0755) 

0.0249 

(0.0642) 

0.1841 

(0.0810)** 

0.0198 

(0.0555) 

0.0249 

(0.0547) 

Perceived 

FAW severity 

-0.0650 

(0.0316)** 

0.0707 

(0.0349)** 

0.0241 

(0.0366) 

-0.0139 

(0.0223) 

0.0525 

(0.0310)* 

Group 

membership 

-0.0876 

(0.0245)*** 

-0.0684 

(0.0203)*** 

0.1137 

(0.0255)*** 

-0.0379 

(0.0169)** 

0.0497 

(0.0189)*** 

Farm size -0.0375 

(0.0159)** 

0.0412 

(0.0071)*** 

0.0153 

(0.0104) 

-0.0146 

(0.0108) 

-0.0073 

(0.0090) 

Age  -0.0017 

(0.0010)* 

-0.0059 

(0.0010)*** 

0.0048 

(0.0011)*** 

0.0001 

(0.0007) 

0.0015 

(0.0007)** 

Gender  -0.0863 

(0.0317)*** 

0.1289 

(0.0379)*** 

-0.0269 

(0.0302) 

0.0359 

(0.0252) 

0.0022 

(0.0211) 

Education  -0.0119 

(0.0043)*** 

-0.0111 

(0.0036)*** 

0.0149 

(0.0041)*** 

-0.0002 

(0.0030) 

0.0000 

(0.0028) 

Perceived soil 

fertility 

-0.0629 

(0.0405) 

0.0458 

(0.0296) 

0.1374 

(0.0358)*** 

0.0303 

(0.0229)*** 

-0.0891 

(0.0471)* 

Constant 1.0928 

(0.5695)** 

-1.1815 

(0.8240) 

-4.6502 

(0.7446)*** 

-2.4909 

(0.9043)* 

-4.7897 

(1.0318)*** 

Number of 

observations 

    967 

Wald chi2 (65)     478.430 

Prob > chi2          0.0000 

Pseudo R2          0.1469 

Log pseudo-

likelihood 

  -1392.6531 

Breusch-

pagan/Cook-

Weisberg 

Chi2 (1)=15.67  Prob > Chi2=0.0001 

Mean VIF 1.12 

Note: Marginal effects of coefficients and robust standard error in parenthesis. ***, ** and * 

denotes level of significance at 1%, 5% and 10% respectively 
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On the other hand, farmers perceiving the cost of technology to be expensive, were less likely 

to adopt pesticides and PPT in isolation, and their combinations with traditional methods by 

6.0, 8.6, 3.6 and 3.8 percent on their maize plots respectively. Muzira et al. (2021) noted that 

cost of hired labour was a major constraint to farmers investing in adoption of soil fertility 

management and conservation technologies in potato production systems in Uganda. Contrary, 

Otieno et al. (2023) also reported that mango farmers in Kenya were more likely to adopt IPM 

technology when the benefits of the technology outweighed the cost of adoption. 

Perceived technology effectiveness positively and significantly influenced the adoption of 

pesticides, PPT, a mix of PPT and traditional methods, and a combination of pesticides and 

traditional methods at the one and 5 percent level respectively, but negatively and significantly 

influenced the adoption of traditional practices at the one percent level. Farmer perceiving the 

technology to be effective were likely to use pesticides, PPT, a mix of PPT and traditional 

methods, and a combination of pesticides and traditional methods by 10.6, 14.5, 3.9 and 3.3 

percent respectively, but less likely to use traditional practices by 30.2 percent. Intuitively, 

farmers will use a pest control practice that effectively controls FAW and stemborer. Gwada 

et al. (2019) find a positive relationship between perceived technology effectiveness and 

adoption of PPT. 

 

The wealth status (wealth index) positively influenced the adoption of PPT in isolation at the 

5 percent level but was insignificant for all other technology combinations. Wealthier farmers 

were more likely to adopt PPT in the control of FAW and stemborer than their poor 

counterparts by at least 18 percent. Source of wealth provides avenues of resource endowments 

that plays key role in adoption of agricultural practices (Kanyenji et al., 2022). The possible 

reason is that PPT requires huge capital investments during its initial establishment but reduces 

sequentially in the subsequent seasons. Cavanagh et al. (2017) reported that wealth farmers 
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were in position of adopting more climate smart agricultural practices in Kenya that needed 

huge capital investments for implementation compared to their counterparts. Kanyenji et al. 

(2022) also reported that wealthy farmers in Kenya were less likely to adopt farmyard manure 

due to availability of capital that enabled them to purchase farm inputs such as inorganic 

fertilizer.  

 

Farmer’s perception about the severity of FAW positively and significantly influenced the 

adoption of pesticides and a mix of PPT and traditional methods at the 5 and 10 percent level, 

but negatively and significantly influenced the adoption of traditional methods at the 5 percent 

level. Farmers perceiving FAW to be more severely infested on their maize plots were more 

likely to use pesticides and a mix of PPT and traditional methods by 7.1 and 5.3 percent, but 

less likely to use traditional methods by 6.5 percent respectively. Intuitively, farmers always 

will always choose the pest control practices that will effectively control for the FAW and 

stemborer constraints. The results corroborates the findings of Murage et al. (2015a) in East 

Africa, who reported that farmers perceiving Striga infestation as severe problem on their farm 

plots were more likely to adopt agricultural practices compared to their counterparts. Kassie et 

al. (2018a) and Gwada et al. (2019) in Kenya, also observed a positive relationship between 

stemborer pest severity and adoption of agricultural technologies. 

 

Social capital through being a member to a group dealing with agricultural activities positively 

influenced the adoption of PPT and a mix of PPT and traditional methods, but negatively 

influenced the adoption of traditional methods, pesticides method and a combination of 

pesticides and traditional methods at the one and 5 percent level respectively. The groups 

provides platform for availing farm inputs, transfer of new information and knowledge to 

farmers (Okello et al., 2021; Kanyenji et al., 2022).  
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Farmers belonging to a group dealing with an agricultural activity were more likely to adopt 

PPT method and a mix of PPT and traditional methods by 11.4 and 5.0 percent, but less likely 

to adopt traditional methods, pesticides usage and a combination of pesticide and traditional 

methods by 8.8, 6.8 and 3.8 percent respectively. The results are in agreement with the findings 

of preceding studies (Chepchirchir et al., 2017; Kanyenji et al., 2011). The results finds support 

with Chepchirchir et al., (2017) who observed that farmers belonging to social groups were in 

position of gathering more information through their contacts and accessed market for both 

inputs and outputs that increased chances of adopting new agricultural technologies. A similar 

results was reported in Kanyenji et al. (2022) in Kenya, who observed that group membership 

provided platform for farmers on information sharing on the advantages and disadvantages and 

required inputs for the adoption of two technologies and other innovations. 

 

The age of the farmer positively and significantly influenced the adoption of PPT method and 

a mix of PPT and traditional methods, but negatively influenced the adoption of pesticides and 

traditional methods in isolation at the one, 5 and 10 percent respectively. Age plays a key role 

in technology adoption as older farmers are more knowledgeable, wealthy and experienced 

therefore having higher chances of adopting new agricultural technologies (Kassie et al., 2013). 

A year increase in age increased the probability of a farmer adopting PPT method and a mix of 

PPT and traditional methods on their maize plots by 0.5 and 0.2 percent, but reduced the 

adoption of pesticides and traditional method in isolation by 0.6 and 0.2 percent respectively. 

Maina et al., (2020) reported in Kenya a positive association between age and adoption of 

brachiaria that is a component of PPT. Teklewold et al. (2013) also reported in Ethiopia that 

older farmers who had experience were more likely to adopt combination of sustainable 

agricultural practices (SAPs) compared to their counterparts. 
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The gender of the farmer positively and significantly influenced the adoption of pesticides 

method, but negatively and significantly influenced the adoption of traditional methods at the 

one percent level. Being a male increased the likelihood of adopting pesticides method by 12.9 

percent, but reduced the adoption of traditional methods by 8.6 percent respectively. This result 

although mixed but are in agreement with the results of the previous studies (Murage et al., 

2015a; Kassie et al., 2015b; 2020; Mahoussi et al., 2021). Mahoussi et al. (2021) in Benin in 

West Africa, who observed a positive relationship between gender and adoption of improved 

maize seeds. A similar results was reported by Murage et al. (2015a) observed a negative 

relationship between gender and adoption of PPT stating that the agricultural technologies 

favored women preferences compared to their male counterparts. 

 

Education of the farmer positively and significantly influenced the adoption of PPT method, 

but negatively influenced the adoption of traditional method and pesticide usage in isolation at 

the one percent level respectively. Education plays key role in decoding information related to 

agricultural technologies and even interacting effectively with other information sources that 

facilitate in adoption and dissemination of similar technologies (Maina et al., 2020; Niassy et 

al., 2020). A year increase in the level of education of the farmer increased the likelihood of 

adopting PPT method by 1.5 percent, but reduced the likelihood of using traditional method 

and pesticides usage by 1.2 and 1.1 percent respectively. These results tally with those of Maina 

et al. (2020) who reported that more educated farmers had higher chances of adopting 

Brachiaria that is a component of PPT through integrating new information and assessing the 

advantages of using the Brachiaria in Kenya. 

 

Plot covariates such as perceived soil fertility play key role in the adoption of pest control 

practices (Kassie et al., 2018a; Maina et al., 2020). The perceived soil fertility positively 
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influenced the adoption of PPT method and a combination of pesticides and traditional 

methods, but negatively influenced the adoption of using a mix of PPT and traditional methods 

at one percent level respectively. This is possible as farmers adopts agricultural technologies 

that increases soil fertility (Kanyenji et al., 2020). Farmers perceiving the plot to be fertile 

increased the adoption of PPT method and a combination of pesticides and traditional methods 

by 3.0 and 13.7 percent, but reduced adoption of using a mix of PPT and traditional methods s 

by 8.9 percent respectively. These results supports the findings of Kanyenji et al. (2020), who 

reported that farmers increased the adoption of soil carbon enhancing practices in Kenya stating 

that mulching increased soil organic matter which later improved the soil structure and soil 

fertility. Kassie et al. (2018a) also observed that farmers perceiving positive plot soil fertility 

increased the probability of adopting PPT in Kenya relative to their counterparts. 

 

Farm size positively and significantly influenced the adoption of pesticides method, but 

negatively and significantly influenced the adoption of traditional method at the one and 5 

percent level respectively. An increase in the size of the farm size by one acre increased the 

likelihood of using pesticides method in control of FAW and stemborer by 4.1 percent, but 

reduced the likelihood of using traditional method by3.8 percent respectively. The results are 

in support with the findings of the previous studies (Teklewold et al., 2013; Kassie et al., 

2015b). Teklewold et al. (2013) in Ethiopia, who reported that farmers who were having larger 

farm sizes had higher chances of adopting sustainable agricultural practices due to increased 

demand for labor-saving technologies. A similar result was reported in Kassie et al. (2015b) in 

Eastern and Southern Africa, who observed a positive relationship between farm size and 

adoption of sustainable intensification practices. 
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Table 5.6 presents the MESR estimates of the impact of adoption of alternative pest control 

practices on maize yields in Eastern Rwanda. The results indicate that the adoption of PPT and 

a mix of PPT and traditional methods significantly increased maize yield while adoption of 

pesticide, traditional methods in isolation and a combination of pesticides and traditional 

methods significantly decreased maize yield for both adopters and non-adopters. The adoption 

of PPT increased maize yield by 59 percent (607 kilograms per acre per season 

(kgs/acre/season)) while a mix of PPT and traditional methods increased by 70 percent (571 

kgs/acre/season). On the other hand, adoption of pesticides methods decreased maize yield by 

46 percent (646 kgs/acre/season), traditional methods by 7 percent (36 kgs/acre/season) while 

a combination of pesticides and traditional methods reduced by 24 percent (182 

kgs/acre/season). 

 

After comparison with their counterfactuals, there was significant differences in the maize yield 

of the adopters of the pest control practices compared to their non-adopters counterparts.  

Furthermore, the maize yield difference between the average treatment effect on the treated 

(ATT) and average treatment effect on the untreated (ATU) translating to total heterogeneity 

effect (HT) revealed that an average increment in maize yield per acre by 137 and 112 

kilograms (kgs)  with adoption of PPT in isolation and a mixture of PPT and traditional methods 

respectively. However, on the other hand, adoption of traditional methods, pesticides in 

isolation and a combination of pesticides and traditional methods reduced the maize yield per 

acre per season by 6, 443 and 201 kgs respectively. An increment in maize yield by 59 and 70 

percent through adoption of PPT in isolation and a mix of PPT and traditional methods 

respectively are consistent with recent study in Malawi and Kenya, which reported a 47 and 61 

percent increment with adoption of PPT respectively (Niassy et al., 2022; Kassie et al., 2018a). 
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Table 5.6: MESR estimates of the impact of alternative FAW and Stemborer pest control 

practices on maize yields in Eastern Rwanda 

Sample To adopt 

(Actual 

outcome) 

Not to adopt 

(counterfactual 

outcome) 

Average 

Treatment 

effect 

Changes 

(%) 

Adopters Average Treatment Effect for the Treated (ATT) (Kgs/acre) 

Traditional only   507.86   544.26   -36.40   -6.69% 

Pesticides only   763.59   1409.09 -645.50*** -45.81% 

Push-pull (PPT) only 1635.44 1028.67 606.77***   58.99% 

Pesticides & 

Traditional combined 

  585.61   767.72 -182.11*   -23.72% 

Push-pull & Traditional 

combined 

1382.01   811.15 570.86***   70.38% 

Non-adopters Average Treatment Effect for the Untreated (ATU) 

(Kgs/acre) 

Traditional only   584.06    626.41   -  42.35***   -  6.76% 

Pesticides only   424.11    626.41   -202.30***   -32.30% 

Push-pull (PPT) only 1096.63    626.41    470.22***    75.07% 

Pesticides & 

Traditional combined 

  645.48    626.41      19.07      3.04% 

Push-pull & Traditional 

combined 

1085.72    626.41    459.31***    73.32% 

Total Heterogeneity 

Effect  (HT) 

HT=ATT –ATU (Kgs/acre) 

Traditional only    -36.40      -42.35***    .5.95***  

Pesticides only  -645.50***    -202.30***   -443.20***  

Push-pull (PPT) only   606.77***     470.22***    136.55***  

Pesticides & 

Traditional combined 

  -182.11*     19.07   -201.18***  

Push-pull & Traditional 

combined 

  570.86***   459.31***    111.55***  

Note: the ATET and ATEU estimates are computed based on the selectivity corrected yield 

equations (MESR), details equations under each pest control technologies conditions are 

presented in appendices. ***, ** and * denotes level of significance at 1%, 5% and 10% 

respectively 

 

This findings also supports the results of Kassie et al. (2018a) in Kenya, who observed that 

farmers adopting PPT increased their maize yield by 61.9 percent translating to 619 kilograms 

per acre. Kanyenji et al. (2022) in Kenya, also reported an increment in maize yield by 162 kgs 
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per acre (18 percent), 288 kgs per acre (35 percent) and 260 kgs per acre per season (33 percent) 

with adoption of farmyard manure, intercropping and a combination of both farmyard manure 

and intercropping. Similarly, a study by De Groote et al. (2010) using long-term researcher 

managed trial data and partial budget and marginal analysis in Kenya, observed PPT to be more 

profitable compared to other pest control technologies used in controlling stemborer and Striga 

weed. Furthermore, a study by Teklewold et al. (2013) and Muriithi et al. (2018) in Ethiopia 

and Kenya, observed that adoption of multiple sustainable agricultural practices (SAPs) 

increased maize yield and net income among the adopting farmers in their respective countries. 

 

However, the low impact of pesticides on maize productivity could be justified by farmers 

having limited information on pesticide application at the time data was collected. Furthermore, 

previous studies have revealed farmers perceiving pesticides not to be effective in control of 

FAW in Kenya and Ethiopia, and even others not following technical guidance during 

pesticides application (Kumela et al., 2019). This recommends application of pesticides using 

technical guidance at the recommended time and rate could lead in a higher maize yield impact. 

 

5.4.  Conclusions and Policy Recommendations 

This study evaluates the impact of adoption of PPT on maize productivity among smallholder 

maize farmers in Gatsibo and Nyagatare district of Rwanda. The study used a multinomial 

endogenous switching regression (MESR) model on a survey data obtained from 398 

households operating 967 maize plots. The study considered the adoption decision of eight pest 

control practices choice sets and the outcome variables of maize yields as a result of the 

adoption of the pest control practices in control of FAW and stemborer pests’ infestation.  

The MESR was used for accounting of selectivity bias as well as capturing differential impacts 

of adopting pest control technologies on adopters and non-adopters of the eight technologies. 
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The results of MNL model revealed that the perceived cost of technology, perceived 

technology effectiveness, wealth status, perceived pest severity, perceived soil fertility and 

group membership significantly influenced the adoption of pest control practices in Eastern 

Rwanda. The study concludes that technology attributes and wealth status of the household 

play key role in the adoption decisions of pest control practices. The results of MESR further 

revealed that the adoption of PPT in isolation and a mixture of PPT and traditional methods 

resulted to an increment in maize productivity.  

 

On the other hand, the adoption of pesticides and traditional practices in isolation and a mixture 

of pesticides and traditional practices resulted to a decrease in maize productivity. Therefore, 

the adoption of PPT and its combination with traditional practices had the highest impact on 

maize yield (70 percent), followed closely by adoption of PPT in isolation (59 percent), while 

traditional methods, pesticides in isolation and a combination of pesticides and traditional 

methods had the lowest impact on maize yield of –7, -46 and -24 percent respectively. 

Nevertheless, pesticide would lead to higher maize yield when correctly followed by the 

technical guidance. 

 

The study recommends the promotion of PPT among maize farmers as an alternative low cost 

pest control practices to pesticides in controlling FAW and stemborer pests. Developing 

countries should also enhance investment and training farmers on the direct advantages of the 

PPT effectiveness in control of FAW and stemborer and indirect advantages on the increment 

in maize yield (positive impact of PPT on maize yield). Furthermore, capacity building should 

be enhanced by making the PPT available and affordable to improve the net incomes and 

reduce the amount of pre and postharvest losses due to FAW and stemborer infestation. 

Information dissemination using maize farmers belonging to groups is also important while 
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introducing cost efficient PPT and subsidy program to reduce the use of pesticides in control 

of FAW and stemborer pests. Therefore, policies that are directed towards information-seeking 

through use of extension platforms such as group membership, icipe field monitors and 

government of Rwanda extension officers are highly encouraged. 
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CHAPTER SIX 

General Summary, Conclusions and Recommendations 

6.1 General Summary 

The FAW and stemborer are ranked most important biotic field pests due to the huge economic 

losses caused in the production of maize. To control these pests, maize farmers have used 

various approaches that are deemed unsustainable management technologies such as widely 

used synthetic pesticides and traditional practices. In recognizing the negative effects of 

pesticides and with the view of reducing the maize yield losses, icipe developed and promoted 

PPT to enhance the effectiveness of the technology in control of FAW and stemborer. 

 

This study evaluated the impact of adoption of PPT on smallholder maize farmer’s productivity 

in the Eastern Rwanda. The specific objectives were two: to assess factors influencing intensity 

of PPT adoption and to evaluate the impact of adoption of PPT on farm level maize 

productivity. The study used survey data obtained in 2019 from the 394 households operating 

967 maize farming plots in Eastern Rwanda. The intensity of PPT adoption was assessed based 

on proportion of land allocated to PPT which was bounded between 0 and 1 and analyzed using 

a fractional logit model. The descriptive results showed that 5 percent of the smallholder maize 

farmers in Eastern Rwanda had adopted PPT as an integrated pest management technology 

while on average, these farmers had allocated 26 percent of their maize plots to the technology. 

The empirical results indicated that perceived benefits of PPT, its perceived effectiveness in 

pest control, group membership, livestock ownership and gender had a positive influence on 

the intensity of adoption behavior of smallholder maize farmers in Eastern Rwanda. 

 

The results on objective two evaluating the impact of adoption of PPT on maize productivity 

showed that the maize farmers who had adopted PPT and its combination reported highest 

increase in maize yield. Compared to the control group, the adoption of PPT and a mix of PPT 
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and traditional method had a positive impact on maize yield while using traditional methods 

and pesticides in isolation and a combination of pesticides and traditional method had negative 

impacts on maize yield. Further, adoption decision of the pest control practices was determined 

by perceived cost of technology, perceived technology effectiveness, wealth status, perceived 

pest severity, perceived soil fertility and group membership. 

 

6.2 Conclusions 

In general, the study concludes low intensity of adoption of PPT amongst maize farmers in 

Eastern Rwanda as revealed by average land allocated to the technology. The results further 

showed the key role of farmer perceptions of technology attributes and source of information 

in facilitating households’ technology adoption decisions. For instance, awareness of perceived 

benefits of the technology is likely to enhance wider adoption and up-scaling of the technology.  

Furthermore, results also demonstrated the potential of PPT as an alternative low cost pest 

control practice in controlling FAW and stemborer pests as revealed by the positive impact of 

adoption of PPT on maize yield. The findings validates the contribution of PPT adoption in 

terms of reduction of yield losses as well as controlling FAW and stemborer pests’ infestation. 

Therefore, there is potential of upscaling to other parts through training farmers on the direct 

and indirect advantages of the pest control practices. Additionally, the findings illustrated that 

perceived cost of technology and wealth status play key role in technology adoption behavior 

of smallholder farmers. Even though the perceived cost of technology was a determinant for 

the adoption of pest control practice among the maize farmers, it has a negative impacts on the 

upscaling and wider adoption of the technology. 
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6.3 Recommendations  

6.3.1 Policy Recommendations 

The PPT should be made affordable and easily available to promote its adoption as a low cost 

pest control practices. Capacity building of maize farmers through training on the perceived 

benefits on the effectiveness of PPT in control of FAW and stemborer pests is highly 

recommended to enhance wider adoption and dissemination of the technology. This calls for a 

need of technology developers (icipe field monitors) in collaboration of the government of 

Rwanda (extension field officers) investing in training maize farmers on the direct  and indirect 

advantages of PPT especially its contribution to maize yield while controlling FAW and 

stemborer pests using the extension platforms and farmer groups on the key role of the 

technology. This can also be done through use of group approaches such as field days, farmer-

teacher, farmer demonstration and farmer-farmer which forms group learning extension 

support methods and social capital for farmer interactions and information sharing platform 

about PPT adoption 

 

Building the capacity of maize farmers through availability and promotion of affordable PPT 

packages to enhance net household maize incomes and reduce the huge share of pre and post-

harvest losses due to FAW and stemborer infestation. This can be done through factoring of 

farmers’ perceptions of technology attributes especially on perceived cost of technology and 

promotion of subsidy program in development of the PPT package to ensure promotion of 

adoption of low-cost efficient pest control management technology through simultaneously 

reduction of the infestation of FAW and stemborer pests among the smallholder maize farmers.  
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Base on the findings from this study, there is also a need for more investment in policy 

formulation that seek to enhance capacity building and knowledge on the benefits of PPT 

adoption. This calls for an information dissemination channels using maize farmer group that 

are important in reducing on the use of pesticides. Therefore, policies geared towards 

information-seeking using both Rwanda extension field officers and icipe field monitors, as 

well as farmer groups through creation of awareness and platform for helping farmers 

understand the perceived benefits and perceived technology effectiveness in pest control is 

highly recommended. The fact that group membership influences PPT adoption implies that 

the Government of Rwanda should formulate policies that seek to strengthen existing farmer 

groups in order to ensure smooth dissemination of PPT information on the advantages and 

disadvantages of adopting the PPT and other pest control practices. Strengthening farmer 

groups provides avenues for farmer interactions and sharing experiences on the benefits of the 

technology and relaying feedback for extension support services thus scaling up its adoption. 

 

6.3.2 Recommendations for Further Research 

Although these results provides worthwhile intuitions into the adoption of single as well as 

combinations of different pest control practices, the study lacked sufficient data for empirical 

panel analysis due to limitation on the use of cross-sectional data that doesn’t permit rigorous 

use of panel models such as difference in difference (DiD) models. Therefore, further research 

should focus on the empirical impact assessment of the different combinations of pest control 

practices using panel data and inclusion of time-varying variables for rigorous empirical 

analysis and getting more robust coefficient estimates. Secondly, the study’s limitation 

concerns the low impact of pesticide method used in control of FAW and stemborer pests 

conducted when the pests had infested Rwanda and most farmers lacked technical guidance on 

the right and efficient pesticides to apply which calls for validation of the findings.  
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APPENDICES 

Appendix 1: Model Goodness of Fit Test; Results of the Calculation of deviance 

Pearson and Deviance test for unequal dispersion for Fractional Logit model 

Deviance 4.468 

(1/df) Deviance 0.0243 

Pearson 4.468 

(1/DF) Pearson 0.0243 

Observations 194 

Source: Survey data, 2019 

  

Appendix 2: Results of Hosmer-Lemeshow of Probit Model using estat gof command 

Hosmer-Lemeshow for the Logit model in favour of MESR model 

Hosmer-Lemeshow Chi2(8) 12.47 

Prob>Chi2 0.1313 

Number of groups 10 

Observations 967 

Source: Survey data, 2019  

Note: The study failed to reject the null hypothesis and concluded that Fractional Logit and 

MESR fitted the data well respectively. 

Appendix 3: Test for Multicollinearity; VIF of Fractional Logit Model 

Results of Variance Inflation Factor (VIF) of Fractional Logit Model 

Variable VIF 1/VIF 

Perceived PPT benefits 1.07 0.931 

Perceived PPT effectiveness in control of FAW 1.31 0.762 

Perceived PPT effectiveness in control of Stemborer 1.34 0.744 

Age of the household head  1.08 0.926 

Gender of the household head 1.06 0.947 

Education of the household head 1.09 0.916 

Family size 1.03 0.969 

Off-farm income of the household head 1.09 0.920 

Ground membership of the household head 1.06 0.941 

Livestock ownership (TLU) 1.05 0.956 

Mean VIF 1.12  

Source: Survey data, 2019 

 

Appendix 4: Results of VIF of Multinomial Endogenous Switching Regression (MESR) 

Variable VIF 1/VIF 
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Perceived cost of technology 1.03 0.969 

Perceived technology effectiveness 1.07 0.938 

Wealth index 1.15 0.867 

Perceived FAW severity 1.15 0.870 

Perceived Stemborer severity 1.16 0.863 

Perceived soil fertility 1.08 0.925 

Age of the household head  1.09 0.919 

Gender of the household head 1.15 0.872 

Education of the household head 1.14 0.877 

Family size 1.18 0.845 

Group membership 1.10 0.907 

Farm size 1.10 0.906 

Mean VIF 1.12  

Source: Survey data, 2019  

 

Appendix 5: Pearson partial Correlation Matrix of independent variables in FLM 

 1 2 3 4 5 6 7 8 9 10 11 

1 1.000           

2 0.240 1.000          

3 0.254 0.159 1.000         

4 0.198 0.225 0.464 1.000        

5 0.235 0.083 0.148 0.109 1.000       

6 0.091 -

0.032 

0.108 0.127 0.035 1.000      

7 0.123 0.022 0.058 0.039 -

0.008 

0.182 1.000     

8 0.205 0.029 0.080 0.081 0.140 0.068 0.096 1.000    

9 0.205 0.079 0.062 0.074 0.117 0.142 0.126 0.055 1.000   

10 -

0.043 

-

0.018 

0.116 0.112 -

0.034 

-

0.100 

-

0.147 

0.075 -

0.014 

1.000  

11 -

0.050 

0.004 0.039 0.071 -

0.028 

-

0.014 

0.101 -

0.002 

0.067 0.095 1.000 

Note: Names of explanatory variables from number 1 to11 

1. Intensity of adoption of PPT (proportion) 7. Education  

2. Perceived PPT benefits 8. TLU 

3. Perceived PPT effectiveness in control of FAW 9. Gender 

4. Perceived PPT effectiveness in control of Stemborer 10. Age 

5. Group membership 11. Family size 

6. Off-farm income  

NOTE: The mean VIF score were 1.12 and 1.09 (critical value 10) while the partial correlation 

coefficients for all independent variables were less than 5 ruling out the presence of 

multicollinearity. 
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Appendix 6: Pearson partial correlation matrix of independent variables in MESR model 

 1 2 3 4 5 6 7 8 9 10 11 12 

1 1.000            

2 -0.018 1.000           

3 -0.002 0.111 1.000          

4 0.003 0.077 0.055 1.000         

5 -0.027 0.031 0.119 0.321 1.000        

6 -0.055 0.018 0.150 0.036 0.107 1.000       

7 0.004 0.133 0.205 0.116 0.059 0.047 1.000      

8 0.089 0.063 -0.067 0.035 0.008 0.064 0.006 1.000     

9 0.013 -0.069 0.117 0.062 0.005 0.066 0.018 -0.190 1.000    

10 -0.062 0.140 0.245 0.099 0.052 0.126 0.204 -0.071 0.112 1.000   

11 -0.122 0.131 0.121 0.068 0.154 0.090 0.113 0.028 -0.028 0.121 1.000  

12 0.035 0.074 0.158 0.100 0.009 0.232 0.122 0.101 0.246 0.067 0.035 1.000 

Note: Names of explanatory variables from number 1 to12 

1. Perceived cost of the technology 7. Farm size 

2. Perceived technology effectiveness 8. Age 

3. Wealth index 9. Gender 

4. Perceived FAW severity 10. Education 

5. Perceived stemborer severity 11. Perceived soil fertility 

6. Group membership 12. Family size 

 

Note: Explanatory variables were less than 0.5 implying that multicollinearity of the 

independent variables was not a problem. However, perceived PPT effectiveness in control of 

stemborer dropped from the FLM analysis due to high correlation with perceived PPT 

effectiveness in control of FAW. Moreover, in MESR, perceived stemborer severity was 

dropped from analysis due to high correlation with perceived FAW severity. 

Appendix 7: Test for Heteroscedasticity; Results heteroscedasticity of Fractional Logit 

Model 

Breusch-Pagan / Cook-Weisberg test for heteroscedasticity 

 H0: Constant Variance 

 Variables: fitted values of X1 

 Chi2 (1) = 0.01 

 Prob> chi2 = 0.907 
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Source: Survey Data (2019) 

Note: Breusch –pagan test failed to reject the null hypothesis of homoscedasticity and 

concluded the absence of heteroscedasticity. 

 

Appendix 8: Results of heteroscedasticity of MESR model 

Breusch-Pagan / Cook-Weisberg test for heteroscedasticity 

 H0: Constant Variance 

 Variables: fitted values of X1 

 Chi2 (1) = 15.67 

 Prob> chi2 = 0.0001 

Source: Survey data, 2019 

Note: Breusch –pagan test rejected the null hypothesis of homoscedasticity and concluded 

the presence of heteroscedasticity that was corrected using robust standard error in analysis. 

 

Appendix 9a: Test of Independence of Irrelevant Alternatives (IIA) Property for MNL 

Results of Hausman tests of IIA assumption (N=967) 

H0: Odds (Outcome-J vs Outcome-K) are independent of other alternatives 

Dependent variables Chi2 df P> Chi2 

No Technology (Null set)   4.862 44 1.000 

Traditional Technologies 15.480 44 1.000 

Pesticides Technologies   0.204 44 1.000 

Push-Pull Technologies   3.900 44 1.000 

Combination of Pesticides and Traditional Technologies 11.266 44 1.000 

Combination of Push-Pull and Traditional Technologies   0.054 44 1.000 

Source: Survey data, 2019 

Note: A significant test is evidence against H0  

 

Appendix 9b: Results of Suest-Based Tests of IIA assumption (N=967) 

H0: Odds (Outcome-J vs Outcome-K) are independent of other alternatives 

Dependent variables Chi2 df P> Chi2 

No Technology (Null set) 31.554 44 0.920 

Traditional Technologies 26.765 44 0.981 
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Pesticides Technologies 33.925 44 0.864 

Push-Pull Technologies 37.256 44 0.754 

Combination of Pesticides and Traditional Technologies 38.349 44 0.712 

Combination of Push-Pull and Traditional Technologies 27.060 44 0.979 

Source: Survey data, 2019 

Note: A significant test is evidence against H0  

Appendix 9c: Results of Small-Hsiao Tests of IIA assumption (N=967) 

H0: Odds (Outcome-J vs Outcome-K) are independent of other alternatives 

Dependent variables InL(full) InL(omit) Chi2 df P> 

Chi2 

No Technology (Null set) -454.102 -426.001 56.203 44 0.103 

Traditional Technologies -493.523 -466.951 53.145 44 0.162 

Pesticides Technologies -545.873 -522.118 47.510 44 0.332 

Push-Pull Technologies -501.474 -472.945 57.058 44 0.190 

Combination of Pesticides and Traditional 

Technologies 

-568.470 -545.845 45.251 44 0.420 

Combination of Push-Pull and Traditional 

Technologies 

-597.335 -574.906 44.859 44 0.436 

Source: Survey data, 2019 

Note: A significant test is evidence against H0  

Appendix 10: Random Effects Generalized Least Squares (GLS)  

 

Factors influencing maize productivity in Eastern Rwanda (Dependent variable =Log 

maize yield of non-adopters) (base category) 

 

 

 

 

Variables Yield with 

Traditional 

technologies 

Yield with 

Pesticide 

technologies 

Yield with PPT 

technology 

Yield with 

Pesticides & 

traditional 

combined  

Yield with PPT & 

traditional 

combined 

Log of Seeds and 

pesticides costs 

-0.1930 

(0.1365) 

-0.0479 

(0.0672) 

-0.2179 

(0.0647)*** 

-0.2861 

(0.1405)** 

-0.2038 

(0.0633)*** 
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Fertilizers in 

kilograms per 

acre 

0.0253 

(0.0309) 

0.0195 

(0.0467) 

0.0386 

(0.0388) 

0.0598 

(0.0678) 

0.0330(0.0814) 

Perceived FAW 

severity 

-0.2027 

(0.2572) 

0.2851 

(0.2676) 

0.5131 

(0.3825) 

0.1066 

(0.5265) 

0.05443(0.8232) 

Perceived 

stemborer 

severity 

-

0.5604(0.23

54)** 

0.0943 

(0.2333) 

-0.4258(0.3073) -0.2984(0.4579) 0.9940(0.5524)* 

Age of the 

farmers 

0.02318 

(0.0091)*** 

-0.0016 

(0.0076) 

0.0051 

(0.0105) 

-0.0104 

(0.0141) 

0.0047(0.0183) 

Gender of the 

household head 

-0.1429 

(0.2081) 

0.6165 

(0.4219)* 

0.4774 

(0.2237)** 

0.7750 

(0.4419)* 

0.1996(0.3794) 

Inverse Mills 

Ratio 1 

0.0406 

(0.04812) 

0.0743 

(0.0589) 

0.0905 

(0.0707) 

-0.0930 

(0.1192) 

0.0586 

(0.1060) 

Inverse Mills 

Ratio 2 

-0.0212 

(0.0377) 

0.0046 

(0.0338) 

-0.0246 

(0.0341) 

0.0667 

(0.0627) 

0.0040 

(0.0413) 

Inverse Mills 

Ratio 3 

-0.0873 

(0.0246)*** 

0.0570 

(0.0242)** 

0.0104 

(0.0254) 

0.0131 

(0.0493) 

-0.0050 

(0.0376) 

Inverse Mills 

Ratio 4 

0.1150 

(0.0432)*** 

0.0855 

(0.0465)* 

0.1278 

(0.0479)*** 

0.1031 

(0.0971) 

0.0856 

(0.0984) 

Inverse Mills 

Ratio 5 

-0.0865 

(0.0264)*** 

-0.0934 

(0.0220)*** 

-0.0369 

(0.0307) 

-0.0521 

(0.0444) 

-0.0338 

(0.0602) 

Inverse Mills 

Ratio 6 

-0.1275 

(0.0531)** 

-0.0699 

(0.0358)** 

-0.1426 

(0.0522)*** 

-0.0212 

(0.0850) 

-0.1105 

(0.0992) 

Constant 6.3268 

(1.6893)*** 

5.5142 

(1.3592)*** 

6.8133 

(1.4002)*** 

8.9345 

(2.1475)*** 

7.0335 

(2.3120)*** 

Sigma_u 0.5549 

 

0.6536 0.5047 0.8224 0 

Sigma_e 0.5103 

 

0.3315 0.7766 0.2834 0.9173 

Rho 0.5417 0.7953 0.2969 0.8938 0 

Model: 

Observation 

Wald chi2 (12) 

Prob > chi2 

234 

127.20 

0.0000 

140 

119.87 

0.0000 

196 

41.67 

0.0000 

74 

45.94 

0.0000 

70 

22.05 

0.0369 

R Squared: 

Within 

Between 

Overall 

0.2385 

0.3783 

0.3663 

0.1616 

0.4543 

0.4506 

0.0030 

0.2226 

0.2013 

0.0014 

0.3144 

0.3164 

0.0198 

0.2867 

0.2541 

Corr (u_i, X) 0 0 0 0 0 

Observation per 

group 

Minimum 

1 1 1 1 1 

Average 1.2 1.2 1.2 1.0 1.1 

Maximum 3 3 3 2 3 

Coefficients and robust standard error in parenthesis. ***, ** and * denotes level of 

significance at 1%, 5% and 10% respectively 


