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ABSTRACT 

 

The most active research currently in the field of semiconductors is the determination of the most 

efficient materials for application in photovoltaics and optoelectronics. Semiconductors 

compounds have attracted great attention, and the most interesting type is the ternary 

semiconductors whose potential has not been fully realized. The work being reported here 

studied the structural, electronic, mechanical, elastic and optical properties of K2SbAu pnictide 

ternary semiconductor.Density functional theory (DFT), a first-principles method, was employed 

to compute the structural, electronic, elastic and optoelectronic properties. Ground state 

structural properties were obtained using the generalized gradient approximation exchange-

correlation potential with ultrasoft Perdew-Burke-Enzerhof (PBE) and Perdew-Burke-Enzerhof 

for solids (PBEsol) as the exchange-correlation functionals. Another functional used was the 

Perdew-Zunger for the Local Density Approximation (LDA) exchange-correlation potential. The 

equilibrium lattice parameters were the key structural properties of the material derived from the 

computed equation of state (EOS). Moreover, mechanical stability was tested on elastic constants 

which were obtained to be 6.60149Ȧ for GGA , 6.19105 Ȧ  for LDA and 6.39519 Ȧ for PBEsol. 

The deduced direct band gaps were obtained from the calculations as 0.9430 eV, 0.9060 eV, and 

0.8482 eV for PBE, PBESol and LDA, respectively. In all cases, Au-3d orbitals were observed to 

be dominant at the top of the valence band. Lastly, frequency-dependent optical spectra were 

calculated with the aid of microscopic dielectric tensors. The optical properties were calculated 

as refractive index, absorption coefficient, energy loss, and reflectivity. The K2SbAu material 

optical bandgap on average was found to be 2.5 eV, suggesting that it can be a potential for solar 

photovoltaic applications.The results obtained were in agreement with the experimental values 

for structural properties, and this investigation should trigger further research interests to broaden 

the knowledge base on these materials from a theoretical perspective.  
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CHAPTER ONE: INTRODUCTION 

   

1.1 Background to the Study 

 

Semiconductors are widely used in electronic devices such as integrated circuits, diodes, LEDs, 

transistors, solar cells, electronic/electrical actuators, and sensors. Because of their related 

optoelectronic qualities spanning from narrow to wide bandgap and high electrical conductivity, 

compound semiconductors  have seen tremendous device development (Pan and Zhu, 2015). For 

example, group III-V compounds such as gallium arsenide (GaAs) can be used in several 

optoelectronic devices such as in telecommunications in optical fibre, solar cells, and infrared 

detectors/sensors, among others (Mokkapati and Jagadish, 2009). Semiconductors are tuned to 

produce various groups of intermediate binary or ternary semiconductors in order to gain 

features suitable for diverse uses. The crystal structure of a compound semiconductor material is 

made up of elements which may possess ordered and or disordered atomic phases that are 

substituted in the parent structure as illustrated in figure 1 (Pan and Zhu, 2015). 

 

 

Figure 1.1: Parent structure of zinc blende crystal structure (Peter et al, 2005) 

 

Pseudo-binary alloys are also known as ternary semiconductor alloys and are formed by 

combining the anions of AC and BC which are a constituent of two binary semiconductors.  
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The resulting material compounds take the form A1−xBxC commonly known as ternary 

semiconductors. It is assumed that the cations are randomly distributed in the respective fcc 

sublattices where A1−xBxC represents a cation-substituted alloy (Bell, 2018). 

Compound semiconductors are categorized as binary, ternary, and quaternary, and their alloys 

are known as pnictide ternary semiconducting materials (Peter et al, 2005). These materials, 

specifically pnictide semiconductor compounds, have diverse applications in several areas such 

as nuclear energy, optoelectronics, thermoelectricity and magnetism (Boublenza et al., 2021). 

Semiconductor radiation detectors require compounds that can withstand extremely high 

temperature and pressure conditions, thus compound semiconductors are more suitable 

compounds since they have a large atomic number with a corresponding higher density 

(Boublenza et al., 2021). 

Ternary ABC2-type semiconductors are categorized into two groups; one group consists of AI 

BIII C2
VI named ternary chalcopyrite compounds. This group are alloys of binary and their 

isoelectronic frame forms the group II-VI binary compounds (Jaffe and Zunger, 1984). 

Therefore, the binary compounds have similar properties to that of group  II-IV-V2 pnictide 

ternary semiconductor (John, 2007). However, ternary chalcopyrites are CuGaS2, CuInSe2, 

AgInS2, etc (Hao et al., 2014). These compounds have been theoretically studied extensively due 

to their unique features and wide range of applications (Mallmann et al., 2019). 

   

For the Grimm-Somerfield rule, the conductivity for such semimetal compounds is deduced by 

the systematic replacement of groups II and IV by group III (Koitabashi et al., 2010). The name 

given to group II compounds is ternary pnictides which contain AII BIV C2
V constituent elements. 

The resulting material compounds exhibit similarity with group III-V compound (Boublenza et 

al., 2021).  

However, compounds such as CdGeP2, CdSnAs2 and ZnSiP2 are pnictide ternary semiconducting 

materials (Jaffe and Zunger, 1984). Regarding their crystal geometry, they are generically similar 

to the ternary structure of zincblende (Martins and Zunger, 1985). 

Chalcopyrite ternary pnictides have become an interesting area of concern for many researchers 

as a result of their unique structural, mechanical, optoelectronic, and vital physical properties 

such as melting point, a high index of refraction and nonlinear susceptibility among others 
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(Chen, 2013). These materials therefore form potential raw materials for solar energy, and 

thermoelectricity (Es-smairi etal., 2022).  

There is a lack of both experimental as well as theoretical studies of K2SbAu pnictide 

semiconductor material in the literature however there exist similar compounds studied in the 

literature having the same properties. K2SbAu pnictide material is mechanically stable and has a 

narrow band gap that matches the solar U-V spectrum. This makes it a potential candidate for 

optoelectronic application. Thus, this work analyses the structural, electronic, mechanical and 

optical properties of K2SbAu using the Density Functional Theory approach. 

 

1.2  Statement of the Problem 

 

Ternary pnictide semiconductors' mechanical and optoelectronic characteristics have been 

studied. Pnictide ternary semiconductors have been the subject of several theoretical and 

experimental studies, but little is known about their optoelectronic characteristics. The main 

driving force behind this research is the fact that, despite the presence of other compounds with 

comparable properties, the K2SbAu compound has received comparatively little experimental 

and theoretical attention. The current theoretical computation investigations will lay the 

foundation to further theoretical and practical research on the K2SbAu compound in the future. 

Due to the stability under the mechanical stress of K2SbAu, it is important to investigate the 

viability of using it in optoelectronics applications. In this work, the structural, electrical, 

mechanical, and optical properties of the pnictide ternary semi-conductor compound K2SbAu are 

revealed, and prospects for optoelectronic applications are investigated. 

 

1.3 Objectives 

1.3.1 Main Objective 

 

To perform first-principles calculations of structural, electronic, mechanical and optical 

properties of K2SbAu pnictide ternary semiconductor  
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1.3.2 Specific Objectives 

 

1. To study the structural and electronic properties of K2SbAu pnictides ternary semiconductor 

2. To investigate the mechanical properties of K2SbAu pnictides ternary semiconductor 

3. To determine the optoelectronic properties of K2SbAu pnictides ternary semiconductor 

 

1.4 Justification and Significance of the Study 

 

Semiconductor materials play an important role in the optoelectronic industry where such 

materials find a wide range of applications. Among the chalcopyrites, the chalcogenides have 

received a lot of attention more than the pnictides and to this juncture, many of the pnictides 

remain less studied despite their potential for application in the optoelectronic industry.  

Theoretical study on pnictide ternary semiconductors reveals structural, electronic, optical, and 

mechanical properties of the material essential for optoelectronic applications. Therefore, since 

the K2SbAu compound has similar properties as the existing ternary compounds and there is no 

literature reporting on the same, hence makes it worth for study. This research work will be 

useful in future experimental and theoretical investigations. These will explore more potential of 

K2SbAu compounds for optoelectronics applications and hence provide more knowledge for 

reference. The outcome of the research will serve as an upgrade for pnictide ternary 

semiconductors in the fields of optoelectronics. 
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1.5 Scope of the study 

  

The structural, electronic, mechanical and optoelectronic properties of  K2SbAu are studied using 

the first-principles computational method (DFT),  The work is arranged in the order as indicated; 

Chapter one deals with the introduction of Semiconductors, types of ternary semiconductors and 

various applications. Chapter two gives a detailed review of the literature on related materials. 

Chapter three gives the theoretical framework scope.  

Chapter four gives an elaborate methodology. Chapter five provides work results with a 

discussion of the obtained data in comparison to different approximation methods used. Chapter 

six provides conclusions and recommendations and future gaps. 
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CHAPTER TWO: LITERATURE REVIEW 

 

2.0 Introduction 

 

Currently, many body interaction problems in material science are being solved by 

Computational methods. The method is able to control inventions and examine new but complex 

material for research (Knauth, 2002). The method’s applicability benefits numerous disciplines 

like solid state physics and quantum chemistry thus being an interdisciplinary approach. For a 

better understanding of detailed knowledge of this technique, simulation approaches are vital and 

have led to a greater impact on material designers who benefit fully from the computations 

method. The technique has been used to bridge the gap between theory and experiments hence 

providing an alternative to interrogating a vast range of materials. The results obtained forms a 

basis for future research reference. 

  

2.1 Semiconductors and their Alloys 

 

In solid-state physics, materials are classified as metals, semiconductors, and insulators. The 

semiconducting materials can be further classified in terms of their electrical conductivity and 

energy bandgap range. This classification states that a semiconductor’s electrical conductivity 

ranges from  10-9 -102 S/m while the energy band gap lies in the range of 0 to 6 electron volts 

(eV)  (Adachi, 2017). Some materials have small energy gaps such as silicon and Germanium 

while others have large band gaps such as Zinc Sulphide (ZnS) and Diamond (Adachi, 2017). 

The elements or compounds with overlapping valence and conduction bands have no band gaps 

and therefore are termed metals, while those with large band gaps are considered insulators 

(Sturge, 2020).  

Studies characterize materials to possess either direct or indirect bandgap semiconductors 

according to the types of band structures (Chen, 2013). 



  

7 
 

 Technological advancement in semiconductor alloys attracts the most attention because of the 

tunability of optoelectronic properties such as the bandgap through varying alloy compositions 

(Peter et al, 2005). Optoelectronic device applications depend on the materials’ energy band gaps 

and their abilities to conduct electricity either by use of electrons as the majority of the charge 

carrier or hole (Peter et al, 2005). 

Basic alloys such as GexSn1 and SixGe1-x  are compounds formed by two groups of five elements 

in the periodic table (Guevara et al., 2007). Ternary alloys take the form ABxC1-x  and are 

determined by replacing some atoms B in basic compound(binary) AB with C atoms which are 

usually in the same group as B in the periodic table (Chen and Dongguo, 2013). These 

compounds have been theoretically and experimentally studied and hence act as the reference 

point. Similarly, the synthesis of alloys that are quaternary in nature has been experimentally 

done, where the replacement of atoms is done by other atoms from the neighbour columns of the 

periodic table (Koitabashi et al., 2010).  

 

2.2 Narrow Band Gap Alloys and their Applications 

 

Material alloys whose bandgap is termed narrow are those whose bandgap is smaller than silicon 

(Chen and Ravindra, 2019). The band gaps of such alloys are found in the infrared region. The 

ranges of wavelength for infrared categorizes into near, mid and far-infrared ranges as 0.78-3 μm 

, 3-50 μm and50-1000 μm(Chen and Ravindra, 2019). The narrow bandgap, for such compounds 

as GaAsSb and HgCdTe are useful in thermoelectric and detection by infrared radiation 

(Rogalski, 2005). 

Among the narrow bandgap semiconductors, the GaAsSb system allows the operation of bipolar 

transistors which are heterojunction that operate in a frequency of terahertz range (Rogalski, 

2005). The lining up of bands that stagger in the GaAsSb/InP is an example which not only 

launches electrons at the collector with high initial energies but also eliminates the problem of 

electron blocking (Chen and Ravindra, 2019). However, GaAsSb can be used in place of 

traditional THz application material as it is grown at low temperatures. The narrow bandgap field 

in semiconductors of  II-VI group dominates in applications such as solar devices (Hegedus and 

McCandless, 2005). 
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 The main infrared material has a wide bandgap which covers all infrared regions with varying 

compositions. Secondly, there is no change in variation of the composition as depicted by the 

lattice constant. Lastly, the direct bandgap of the material allows a hundred per cent efficiency 

due to its large coefficient of absorption(McCandless, 2005).  

Additionally, its low thermal noise allows high-performance detectors which results from long 

minority carriers making the highest operating temperature detectors (Peter et al, 2005). 

Previously, researchers have investigated chalcopyrite-type ternary semiconductors which have 

unique properties for thermoelectric properties both theoretically and experimentally (Fan et al., 

2017). Results from theoretical studies have shown the maximum power factor of p-type 

AgInTe2  as 0.91 and AgGaTe2  as 1.38 at a temperature of 800K.  While efficiency ZT is up to 

0.22 at 675K (Fan et al., 2017). The group I-II-VI semiconductors known as ternary alloys have 

been extensively researched (Es-smairi et al., 2022). The researchers have revealed 

thermoelectric and optoelectronic properties that ensure such compounds are key in the 

application of optoelectronic and photovoltaic devices (Es-smairi et al., 2022). 

 

2.3 Wider band gap of the semiconductor alloy 

 

The alloys termed semiconductors are said to have a wide band gap if the energy gap is beyond 

2.5eV. Therefore such compounds experience extensive application as a result of their ability in 

conducting electricity and field break down (T.D.Moustakas, 1992). In many research done on 

semiconductors, wider band gap semiconductor has contributed immensely since various 

materials possess such properties and are readily available for study. 

Group III-V nitrides have a wide band gap. Thus, most scientists have focused on it as an 

interesting area of immense concern, due to their applicability in photodetectors and light-

emitting diodes. The advantage of such a photodiode is that dark current is minimum as a result 

of having a large potential barrier. Moreover, it regulates quantum efficiency as the thickness of 
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the intrinsic layer is controlled. With such applications related to wider-gap semiconductors, 

many technological developments have been initiated in improving the existing devices. 

Materials that possess wide band gap semiconducting properties have numerous range of 

applications in developing and fabricating solid state devices which are technologically 

important. 

 For instance, ZnSxTe1-x compounds and like ZnSxSe1-x are essential in developing devices 

useful in various spectral regions because its constituent has direct band gaps in the range over 

2.75eV (Haase et al., 1991). Some of the semiconductors can be transformed and matched to 

produce wonderful technological advancements such as blue light-emitting diodes and lasers. 

 

2.4 Solar Cells Application 

 

The alloys of semiconductors have important applications in Solar cells (Al., 2016). So far the 

leading material that is abundant with high conversion efficiency is silicon thus suitable for solar 

cell production (Al., 2016). However; the use of silicon materials in the solar cells industry is 

hindered by the fact that silicon solar cells are economically unfavourable (Hegedus and 

McCandless, 2005). This is because of their high cost of production resulting from the high 

temperatures required to extract silicon from its earth occurrence. Ternary pnictide 

semiconductors are the latest alloy that most researchers have shifted focus on due to their good 

structural, electronic and optical properties. This enables them to be a potential candidate for 

optoelectronic usage (Irfan et al., 2021). 

  

2.5 Optoelectronic Properties 

 

The ternary semiconductors crystallize to form a chalcopyrite structure that is tetragonal in 

nature (Beloš et al., 2013). Such ternary compounds are widely studied as potential materials for 

applications in nonlinear optical devices and photovoltaic cells (Sheng et al., 2018). K2SbAu is 

an example of a ternary material in which many important properties are not yet known. 
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 The dielectric constants of the material compute other spectral properties which are key for 

optoelectronics applications (Koitabashi et al., 2010). 

With the real dielectric constant we are able to deduce a number of optoelectric properties, that 

is, coefficient of absorption, energy loss, material’s reflectivity constant, and refractive index 

which are expressed mathematically as indicated in the equations(C.kittle, 1996).  

With equations, one can easily fix in the expression with obtained data from the dielectric 

constants hence computing optical properties which are essential in optoelectronic applications 

              

                                         𝛼(𝜔) = √2𝜔 ቆට𝜀𝑟𝑒
ଶ (𝜔) + 𝜀𝑖𝑚 

ଶ (𝜔) − 𝜀𝑟𝑒(𝜔)ቇ

భ

మ

     1.2 

                                                      

Absorption coefficient α(ω),related with real and imaginary part of dielectric constant expression 

𝑛(𝜔) =

⎝

⎛
ට𝜀𝑟𝑒

ଶ (𝜔) + 𝜀𝑖𝑚 
ଶ (𝜔) + 𝜀𝑟𝑒(𝜔)

2

⎠

⎞

ଵ
ଶ

          2.2     

                                          

Refractive index of the material n(ω),expressed as an equation 

R(ω) =  
[𝜀

𝑟𝑒
(𝜔) + 𝑗𝜀𝑖𝑚 (𝜔)]1/2 − 1

[𝜀
𝑟𝑒

(𝜔) + 𝑗𝜀𝑖𝑚 (𝜔)]1/2 + 1
        3.2 

 

Reflectivity R(ω), 

L(ω) =
𝜀𝑖𝑚 (𝜔)

𝜀௥௘
ଶ  (ω) + 𝜀௜௠

ଶ (𝜔)
                                 4.2 

                                                                                     

Energy loss L(ω) expressions 
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2.6 Thermoelectric Properties 

  

We can deduce materials' performance by investigating thermoelectric properties. Seebeck 

coefficient and power factor are important for binary alloys (Mahan et al., 1997). These 

characterize the efficiency of the thermoelectric materials which include the ternary 

semiconductors (Madsen and Singh, 2006). The obtained electronic energy bands have a direct 

link to the Seebeck coefficient, for instance, such parameters are useful for thermal and 

electronic conductivity (Madsen and Singh, 2006). 

 Seebeck constants was obtained which depend on relaxation time and the BoltzTraP code was a 

fundamental tool for deducing the parameters (Yousuf and Gupta, 2019). Thermoelectric defines 

the ability of a material to aid in the re-use of heat energy produced to useful electrical energy 

which researchers are concerned about (Yang, 2005).  Thus, the energy crisis problem can be 

addressed by studying and proposing materials with good thermoelectric properties. 

In establishing the relationship among various coefficients of transport properties, the material’s 

structure of band at the high symmetry zone of Brillouin and density of states are employed.  

 See beck coefficient with many other abilities of a material to conduct both thermal and 

electrical, thermoelectric scientific scenario is developed. The Seebeck coefficient variation 

shows the n-type behaviour of heat carriers. 

 

2.7 Empirical Studies on Semiconductors 

 

Most crystal structures for ternary semiconductors are related to that of zinc-blende binary 

structure but with tetragonal strain parameters (Shiyou et al., 2009). In this case, group five II-

IV-V2  chalcopyrite-structure and electronic properties calculations are reported for such 

semiconductors  (Jaffe and Zunger, 1984).  

The trends in their properties also involve the distribution of charge, bonding and band structure 

that were analysed from the chemical composition of the compound (Jaffe and Zunger, 1984).  
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The clarity of the zinc 3d orbitals and their role is also clarified for such group five II-IV-V2 

compounds. Additionally, the structural distortion and bonding together with the band gaps of 

the zinc-blende parent crystal structure of ternary compounds were investigated. 

In addition, the optical and electronic characteristics of Cu2ZnGeSe4and Cu2ZnGeTe4 quarternary 

semiconductor structures have been studied which depicts characteristics similar to ternary with 

variation of band gaps and the nature of curves obtained (Shiyou et al., 2009).   

Material’s reflectivity, coefficient of absorption, refractive index, and dielectric function were 

studied for such compounds hence useful knowledge in interpreting bandgaps of material 

classified under pnictide ternary semiconductors. 

 The interband transitions assigned by optical spectra form critical points that are calculated as 

per band structure. Thus, the behaviour of such properties concerning the structure of the crystal 

and anion atoms were investigated qualitatively (Jaffe and Zunger, 1984). 

Recently authors described an ab-initio study on chalcopyrite’s compounds of group I-III-VI2 

makes the Empirical Pseudopotential Method (EPM) difficult. In these studies, the calculations 

were extended to the ternary pnictides structure of group II-IV-V2 semi-conductor compounds 

(Jaffe and Zunger, 1984). 

The ordering in the structure of ternary systems was studied with the same functional and results 

obtained (Hao et al., 2014). Such similarity between groups of semiconductor alloys was found 

to be thermodynamically preferred (Hao et al., 2014). 

 The most recent research done on this related compound was the first-principles calculation, on 

two newly designed ABC2   ternary pnictides semiconductors. Where structural, optoelectronic, 

and mechanical properties of the named compounds, K3Cu3P2 and K3Ni3P2 were studied (Irfan et 

al., 2021). 

 The properties were obtained theoretically by an ab initio study, which was used in the most 

accurate FPAW and modified BJP (Irfan et al., 2021). The exchange interactions and electronic 

correlation in compounds K3Cu3P2 and K3Ni3P2 were accounted for, as employed in GGA 

together with GGA + U method, respectively (Fan et al., 2017). 
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 These compounds were found more stable and hence could be synthesized. The band structure 

was calculated and the nature of semiconductor nature identified with band gap values of order 

1.7 eV and 1.82 eV were predicted.  

In summary, from the review of the previous work done on pnictide ternary semiconductors, it 

can be deduced that pnictide ternary semiconductors are useful for mechanical and 

optoelectronic properties. Even though, there is insufficient literature on the studies of K2SbAu 

pnictide ternary semiconductor material, similar compounds with sufficient literature are 

available for comparison.  

Thus, this study seeks to solve the gap in knowledge by studying for the first time it’s structure, 

electronic, optical and mechanical properties of K2SbAu using DFT for potential applications in 

mechanical and optoelectronic fields. 
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CHAPTER THREE: THEORETICAL FRAMEWORK 

 

3.1 Introduction 

 

Material properties can be best described in terms of interactions within an electronic system. 

The system’s contents are atoms which form the basic component of matter.  In performing ab 

initio calculations of materials, structural and electronic properties are important aspects of 

material sciences (Sholl and Steckel, 2011). 

The condensed matter properties depend on the electrons and nuclei of the materials by 

providing necessary knowledge about the structural, electronic, mechanical and optoelectronic 

properties of various materials (Salah Daoud et al., 2019). Many studies are ongoing on many-

body system theories, which involve the solution of the fundamental equation, the Schrödinger 

equation.  The equation is such that there is interaction between the system’s electrons and the 

external Coulombic field. For instance, the interaction occurs as a result of atomic nuclei and 

other fields from outside the atom (Schrödinger, 1926).  

 

3.1.1 The Schrödinger Equation 

 

The properties of matter are described from theoretical methods by starting with Hamiltonian for 

N electrons and P nucleus for the interacting systems. The Hamiltonian explicit equation takes 

the form of equation 5.3 below. 

  

𝐻෡ = −
ℏଶ

2𝑚ୣ
෍ ∇୧

ଶ

୒

୧ୀଵ

− ෍ ෍
Z୧e

ଶ

|R୍ − r୧ |

୒

୧ୀଵ

୔

୍ୀଵ

+
1

2
෍ ෍

eଶ

หr୧ − r୨ห

୒

୧ୀଵ

୒

୨ஷଵ

− ෍
ħଶ

2M୍

୒

୍ୀଵ

∇୍
ଶ +

1

2
෍ ෍

Z୍Z ୎e
ଶ

| R୍ − R୎|

୔

୎ஷ୍

୔

୍ୀଵ

 

     

Where R and r are nuclear and electron coordinates respectively.  The fundamental constants are 

plancks constant ħ, mass of electron m and electron charge e. H is the Hamiltonian operator, 
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while Ψ is a set of Eigen states or solutions for the Hamiltonian, and each has  an associated 

eigenvalue 𝑬𝒏 which satisfies the Eigen equation (Sholl and Steckel, 2011). 

 The wave function Ψ, for many-body systems, relies on the nucleus in the system and the 

position of each electron (Gidopoulos and Gross, 2014). The electrons are denoted by i subscript 

while nuclei are denoted by I subscript with their corresponding charges and mass of nuclei. 

The general Hamiltonian equation can be thus simplified to take the form of equation 6. 

Ĥ = Ť௡ + 𝑉௡௡ + Ť௘ + 𝑉௘௡ + 𝑉௘௘                                                                           6.3 

The first term Ť௡ in equation 6 indicates the kinetic energy of the nuclei N of the system, 

while 𝑉௡௡, which is the second term, stands for potential energy as a result of repulsion among 

the nuclei. 

 Ť௡ = − ෍
ħଶ

2M୍

୒

୍ୀଵ

∇୍
ଶ                                   7.3 

𝑉௡௡ =
1

2
෍ ෍

Z୍Z ୎e
ଶ

| R୍ − R୎|
                     8.3                 

୔

୎ஷ୍

୔

୍ୀଵ

 

 

The other terms represent electronic kinetic energy as well as electronic potential energy which 

result from electrons-nuclei interaction energy and electron-electron interactions. 

Equation 9 represents electronic kinetic energy. 

Ť௘ = −
ħଶ

2mୣ
෍ ∇୧

ଶ

୒

୧ୀଵ

                9.3 

 

Equation 10 stands for electronic-nuclei interaction potential energy 
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𝑉௘௡ = − ෍ ෍
Z୧e

ଶ

|R୍ − r୧ |
           10.3

୒

୧ୀଵ

୔

୍ୀଵ

 

                                                                         

 

Equation 11 represents electron-electron repulsion potential energy 

         

𝑉௘௘ =
1

2
෍ ෍

eଶ

หr୧ − r୨ห

୒

୧ୀଵ

୒

୨ஷଵ

                        11.3 

                                

3.2 Density Functional Theory 

 

The energy at the ground state for many-electron systems is represented as a function of its electron 

density. The ground-state electron density can, therefore, be obtained by first calculating the ground-state 

energy by minimizing the total energy of the system (Sholl and Steckel, 2011). Therefore, instead of 

solving the many-electron wave function, N non-interacting electrons with the same ground-state density 

are considered, and energy E(n) is minimized to yield the ground-state density n(r)  (Sholl and Steckel, 

2011). 

Given the complexity of interactions between the electrons and nuclei, several approximation 

methods have been used. Among them is the Born-Oppenheimer Approximation, which gives a 

separate treatment to the electrons and nuclei of an atom.  

3.2.1 Born-Oppenheimer Approximation 

 

The Born-Oppenheimer approximation decouples electrons and nuclei into separate 

mathematical problems (Spohn and Teufel, 2001). Thus, the full-wave functional is given by this 

number of electrons multiplied by the corresponding 3-dimensional problem when solving it. 
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Oppenheimer Approximation states that the wave function of electrons relies on the nuclei’s 

position RI  but not velocities, which means the motion of nuclear is slower than electrons i.e. 

treated as fixed (Peter et al., 2005). For any particle in the interacting system, its motion is a 

unique function of all other particle’s motion hence solutions of the Schrödinger equation 

become more complicated prompting various approximations. 

቎෍
𝒑ଶ

2𝑀𝟏
+ ෍

𝒑ଶ

2𝑚௘

𝒏𝒆

௜

ே

௜

+ ෍
𝑒ଶ

|𝑟௜ − 𝑟௝|
𝒊வ௝

+ ෍
𝑒ଶ

|
௜வ௝

𝑧௜𝑧௝

𝑹𝒊 − 𝑹𝒋
− ෍

𝑒ଶ

|
௜,௝

𝑧௜

𝑹௝ − 𝑟௜|
቏ = ΕΨ                 12.3 

 

Where𝑟௜, 𝑟௝ are the ith and jth positions of electrons. Zi, Zj are the Ith and Jth atomic numbers of 

ions while RI, Rj are the Ith and Jth positions of ions with their corresponding m omentum p. 

The wave function for this approximation takes the form Ψ (𝐑𝐈, 𝐫𝐢 ) and expressed as 

R୍, r୧ ) = 𝛹௘(R୍, r୧ )𝛹௡(R୍)       13.3 

 

The electron’s wave function and the corresponding nucleus wave function are generated.  When 

fitted back to equation 7 we obtain two distinct Hamiltonian equations; One for the nucleus and 

the other for the electron. Now since the nucleus is treated as fixed the approximation ignores it 

and thus the approximation reduces to electronic Hamiltonian alone as shown 

                                                     Ĥ = Ť௘ + 𝑉௘௡ + 𝑉௘௘            14.3 

 

In a detailed way, it can be written as shown below, where nuclear interaction is decoupled out. 

   

Ĥ = −
ħଶ

2mୣ
෍ ∇୧

ଶ

୒

୧ୀଵ

− ෍ ෍
Z୧e

ଶ

|R୍ − r୧ |

୒

୧ୀଵ

୔

୍ୀଵ

+
1

2
෍ ෍

eଶ

หr୧ − r୨ห

୒

୧ୀଵ

୒

୨ஷଵ

      15.3 
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3.2.2 Hartree-Fock Theory 

 

The decoupled Hamiltonian equation for many body systems by the first approximation, Hartree-

Fock theory considers that the wave function is depicted by a single state determinant of N spins-

orbits. It is expressed as follows, 

 

𝛹   =  𝛷1(𝑥1)   𝛷1(𝑥1) … … 𝛷1(𝑥𝑛)   

𝛷2(𝑥2)    𝛷2(𝑥2) … 𝛷2(𝑥𝑛)      

                                                              𝛷𝑁(𝑥1)  𝛷𝑛(𝑥2 ) … … 𝛷(𝑥𝑛)               (16.3)  

   

Variable x is the electron’s coordinates and φ wave function of the electron which is normalized. 

Substitution of φ in (3) minimizes Hamiltonian with the use of multiplier ε to φ yielding: 

𝜎

𝜎∅
൤< 𝛨 > − ෍ ∈ I න|∅𝑗| 2𝑑𝑟൨ = 0                   (17.3) 

 

Further simplification yields a simpler Hartree equation which is a set of one-electron equations 

denoted as follows; 

−
1

2
∆∅𝑖 (𝑟) + 𝑉௜௢௡(𝑟→)∅௜(𝑟→) + 𝑈(𝑟→)∅௜(𝑟→) = 𝜀௜𝜑(𝑟→)     (18.3) 

 

𝑉௜௢௡  𝑈(𝑟→)  represents local and non-local potential respectively.  

Equation (16) converts the Hamiltonian of the many-body system to several single Hamiltonian 

which again assumes the correlation of electrons (Sholl and Steckel, 2011). This theory yields 

small widths of band gaps but larger in semiconductors. Therefore, the many-body Hamiltonian 

equation is converted to various single-electron Hamiltonians and neglects the electronic 

correlations. 
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3.2.3 Hohenberg-Kohn Theorems 

 

Hohenberg-Kohn is the existing simple theory that makes DFT possible. It proves that in many 

systems of particles that interact, the external potential is a unique function of the density and 

thus density is uniquely determined (Perdew et al., 1996). The theorem determines the many-

electron system problem by the particle's density, not its motion. 

Originally the theory framework was developed by Fermi and Thomas in 1927, and named as the 

Thomas Fermi model(Chen and Dongguo, 2013). The DFT theory was further improved by 

Hohenberg and Kohn through the formulation of theorems.  

The first considered theorem was that the ground state energy is a special functional of the 

density of a particle(𝐸𝑂 = 𝐸{𝑛(𝑟→)})(Sholl and Steckel, 2011). The theorem considers correlations 

of an electron as compared to the Hartree theorem. Its equation is expressed as;  

𝐸{𝑛(𝑟→)} =  F{𝑛(𝑟→) } + න 𝑛(𝑟→) 𝑉௘௫௧(𝑟→)  dr     19.3 

 

The solution of the equation was determined by Kohn and sham who separated the second term 

of the equation into three distinct parts.  

Hohenberg-Kohn Theorem's first theory states that potential acting externally corresponds to a 

functional of n(r) since external potential fixes the Hamiltonians operator. Similarly, it is rare for 

an electronic system to comprise of similar charge density that consists of different potentials 

that act upon it. Thus, such an operator (Hamiltonian) is simplified for charge density, hence 

used for many body problems (Manfredi, 2020).  

The use of charge density can replace the tedious calculations based on wave functions by 

substituting the usual descriptions based on wave functions. However, there exist two major 

challenges in the application of this theorem; 

First, there is the unknown part, which prompts us to first get it in order to obtain and fulfil the 

second requirement once the unknown is accepted as ground state charge distribution.  
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Second, the consideration of Lagrange multipliers is ignored even though it is the second part of 

the problem. The first part of the problem was addressed by (Kohn, 1995), as discussed in the 

next part, 

3.2.5 Kohn-Sham Theorem 

 

Kohn and Sham organized problems that deal with many-body system interactions into a detailed 

and familiar form which enhanced the practical application of DFT (Sholl and Steckel, 2011). 

The resulting equation generates similar density as given systems of interacting particles 

neglecting non-existing systems.  

The K-S equation illustrates the non-interacting particles and how they freely move by a local 

effective potential acting externally (Sholl and Steckel, 2011). They, however, made two 

assumptions; first, the real exact density of state (ground) can be taken as the density of particles 

that don’t interact. Secondly, the formed Hamiltonian consists of kinetic energy and an effective 

local external potential Vs (r) that acts on an electron at point r. 

The Hamiltonian is then expressed as; 

                   

ቜ
−ħଶ

2𝑚௘
𝛻(௥)

ଶ + 𝑣௦(𝑟)ቝ 𝛹௜ =  𝐸௄ௌ𝛹௜          20.3 

                                                                       

Generally, the expression for KS total energy is written as: 

𝐸௞௦ = Ť௦(𝑛) + න 𝑑𝑟𝑉௦(𝑟)𝑑𝑟 + 𝐸ு(𝑛) + 𝐸௑஼(𝑛)     21.3 

 

Where   Ť௦(𝑛)   is the kinetic energy of  electronic particles (non-interacti𝑛𝑔), 𝐸ு(𝑛)  Hartree- 

energy and 𝐸௑஼(𝑛) is the exchange-correlation energy function (J.Griffiths, 2000). The ground 

state energy and particle density can only be solved by a single electron Schrödinger equation as 

shown in equation 22. 
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 𝐸௑஼(𝑛)  is known as exchange–correlation. Apart from the exchange correlation functional, the 

remaining terms can be written in their explicit form; 

ቜ
−ħଶ

2𝑚௘
𝛻(௥)

ଶ + 𝑣௄ௌ(𝑟)ቝ 𝛹௜ =  𝐸௄ௌ𝛹௜       22.3 

                       

𝑣௄ௌ(𝑟) = න
𝑛(𝑟ᇱ)

|𝑟 − 𝑟ᇱ|
𝑑𝑟ᇱ + 𝑣(𝑛) + 𝑣௫௖(𝑟)           23.3 

 

From the equation, the functional derivative of 𝐸௑஼(𝑛) is given as shown,   

     

𝑣௫௖ =
𝜕𝐸௑஼(𝑛)

𝜕𝑛(𝑟)
    24.3 

 

The theoretical exact solution is provided by Kohn-Sham Equations for the energy of the ground 

state for the interacting systems. Since the exchange-correlation functional is unknown, then the 

only remaining question is its form.  
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                  Initial gauze of ρ(r)  

  
  
 
 

Use ρ(r) to calculate Jeff (r) 

Veff (r)=Veff(r)+∫
ఘ(௥)

௥ି୰ଵ
dri+Vxc(ρ(r)) 

 
 
 
 

Solve Kohn-sham equation 

[ ௛మ

ଶ௠𝒆
𝛻௜

ଶ + 𝑉eff(r)]Ψi=E𝛹 

 
 
 
 

Calculate new ρ(r) 
ρ(r)=∑|∅I (r)

2| 
 
 
 
 

                          Self-consistent? 

 

 

                                         Yes           NO, generate a new density functional and start from initial 

 

 

Figure 2.3: Schematic illustration of Kohn-sham solution (Sholl and Steckel, 2011) 

 

 

 

 Solved! can now calculate energy, forces 
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The above illustration needs an input file of the material under study. The input consists of atoms 

arranged to determine the potential of an atom V(r), together with atomic number Z. Where we first 

gaze at charge density, Hartree potential and the calculated exchange-correlation potential (Payne et 

al., 1992). For self-consistency to be achieved, a smaller charge density is generated as compared 

to chosen values. Then we can deduce the minimum energy from charge density n(r) that 

eventually results in the minimum energy guessed (Payne et al., 1992).  

The density in its computation is however used as another function in calculating Hartree 

potential and exchange-correlation potential. The results of 𝑉ு(𝑟)  , 𝑉௑஼(𝑟) and 𝑉௡௨௖(𝑟) give the  

effective potential 𝑉௘௙௙(𝑟). 

Hence, the system’s Hamiltonian is equal to 𝑉௘௙௙(𝑟)+K.E. 

     

Ĥ∅௜(𝑟) = ቈ
−ħଶ∇ଶ

2
+ 𝑉௘௙௙(𝑟)቉ ∅௜(𝑟) =∈௜ ∅௜(𝑟)      25.3 

                                                                                                                                      

3.2.6 Exchange-Correlation Functional 

 

The only idea remaining is what form of the exchange correlation functional is unknown from 

the K-S theorem. Thus, in order to yield its form, we  must approximate  the exchange 

correlation functional 𝑬𝑿𝑪𝒏(𝒓) and  it’s done with various approximation techniques such as; 

local Density Approximation (LDA) and Generalized Gradient Approximation (GGA), where 

GGAs include PBE and PBEsol functional (Perdew et al., 1996) 

 3.2.7 Local Density Approximation (LDA) 

 

According to this approximation, the correlation functional is deduced as per the equation below, 

Exec{𝑛(𝑟→)}  = න 𝑛(𝑟→) ∈௫௖
௛௢௠  {𝑛(𝑟→)}𝑑𝑟       26.3 
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The term  ∫ ∈௫௖
௛௢௠  {𝑛(𝑟→)} is the exchange correlation energy for a gas of uniform density (Sholl 

and Steckel, 2011). On the contrary, the key challenge is that it gives inaccurate results in a 

system where an independent particle breakdown is required.  

However, these exchange correlations in LDA can be improved when the gradient of the charge 

density is included, which is done in GGA. 

3.2.8 Generalized Gradient Approximation (GGA) 

The local density approximation provides that within the systems of interaction, density is 

assumed to be similar. This is unable to explain in detailed if the density increases in some 

molecules which in turn doesn’t give a good approximation. In order to improve on this 

approximation, density should be taken in a way to depend on the functional and gradient of the 

density n(r), so as to consider the electron’s true non-homogeneity that generalized gradient 

approximation (GGA) really introduced and formulated a detailed equation as shown. 

 

Exec{𝑛(𝑟→) = ∫ 𝑛(𝑟→) ∈௫௖
௛௢௠  {𝑛(𝑟→)}𝑑𝑟 + ∫ 𝑓[ 𝑛(𝑟→), ∇n(r)}    27.3                                               

 

Where the exchange correlation becomes, 

𝑉௑஼
ீீ஺ =

𝜕𝐸௫௖
ீீ஺

𝜕𝑛(𝑟)
= ൤∈௫௖+ 𝑛

∈௫௖

𝑛(𝑟)
− ∇(𝑛

∈௫௖

𝑛(𝑟)
)൨        28.3 

  

In this case, the correlation chosen, denoted by f, satisfies several known limits EXC. The best 

way is to determine if by adjusting it to satisfy the known energy or hole for exchange 

correlation so as to be in agreement with the known properties. Thus, the preferred 

approximation is GGA since it involves the charge gradient and gives a better prediction of the 

results than LDA. 

The GGA consists of two major categories of functional that is, Pardew-burke-Ernzerhof (PBE) 

functional and revised PBE functional PBEsol that improves prediction of solid properties of 

equilibrium.  
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We have used both, LDA, PBE and PBEsol in our calculations. Despite success in the wide use 

of these approximations, the hindrances that face them are, the unable to describe properties 

correctly like the electronic of some materials. Hence to deal with such limitation, a hybrid and 

GW functional is employed. 

 

3.2.9 Hybrid Functionals and GW approximations 

  

Numerous research works indicate that when analyzing band gaps using GGA and LDA, their 

band gaps are found to be underestimated for various materials.  

 These challenges are overcome by suitable Hybrid DFT functional. This is obtained by suitable 

mixing DFT exchange functional both local and semi-local together with Hartree-Fock (non-

local) energies in order to solve the band gaps challenges. 

 

3.2.8 Plane Waves Basis 

The density functional theory together with the Born-Oppenheimer approximation shows 

relations that exist by interactions of electrons and nuclei. The generated scenario becomes a 

problem as it requires finding solutions for many systems that interact. For the single-state 

particle problem, the particle is in motion with an existing effective potential with nuclei that are 

taken to be stationary. To execute the calculations, the systems are expanded into a set of plane 

waves so as eigenstates for the homogeneous electron are not identical to particle atoms. The 

expansion is fundamental for the Kohn-Sham wave function as it is useful during energy 

calculations of the solid. The solution obtained is for the Schrödinger equation and must 

therefore obey Bloch theorem. 

The theorem can be expressed as 𝑒௜௞.௥ and a lattice periodic function uk(r) k denoting a wave 

vector within the Brillouin zone (C. Kittle, 1996). 

 

𝜓௞(𝑟) = 𝑒௜௞.௥𝑢௞(𝑟)                                                                                                                    29.3 

 

The lattice periodic function is given by an expression; 

𝑢௞(𝑟 + 𝑅) = 𝑢௞(𝑟)                                                                                                                    30.3 
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Substitute in the equations above, we get; 

𝑢௞(𝑟) = ∑ 𝑐𝐺𝑘𝑒௜ீ.௥
ீ                                                                                                                 31.3 

Where G is a reciprocal lattice and G.b=2πm, b is the translator vector of the crystal lattice. 

𝜓௞(𝑟) = ∑ 𝐶௞,ீ𝑒௜(௄ାீ).௥
௞,ீ                                                                                                        32.3 

 

Thus by inserting the plane wave expression into the K-S equation, we obtain 

∑ ቂ
ħ

ଶ௠
|𝐾 + 𝐺|𝜎ீீᇲ + 𝑉௄ௌ

ఙ (𝐺 − 𝐺ᇱ)ቃ =∈௜ 𝐶௜(௄ାீᇲ)ீ                                                                 33.3 

 

We set the plane wave energy cut-off Ecut 

ଵ

ଶ
|𝐾 + 𝐺|ଶ < 𝐸Cut                                                                                                                     34.5 

 

The discrete set of plane waves describes the k-points which are an expansion of electronic wave 

functions, Bloch’s theorem does it. It merges state (electronic) numbers at the infinite problem to 

finite.  By computing electronic state numbers uniquely, it is possible to represent k-points 

according to plane waves. We only do that if the k-point and electronic state are close, hence can 

solve infinite mathematical calculations. 

 

3.2.9 K-Space and Brillouin Zone 

 

DFT calculates systems with periodic atoms in space and knowledge in materials research. The 

cell that periodically repeats itself is called the supercell and contains atoms. In identifying these 

cells, important lattice vectors are denoted. To analyze Schrödinger equations for a system that 

obeys Bloch theaorem,the solutions of the wavefuction is written; 

 𝜓௞(𝑟) = 𝑒௜௞.௥𝑢௞(𝑟)                                                                                                                35.3 
 
The independent solving of the Schrödinger equation for varieties of values of k is attributed to 

Bloch’s theorem. The theory creates simple and easier mathematical concepts. The DFT 

calculations for such theory are solved with respect to k than r, and done in a simple and easier  

(Sholl and Steckel, 2011). The fundamental ideas behind the expansion of 𝑒𝑖𝑘𝑟 expression were to 

obtain plane waves. 
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 The plane wave calculations are essential as it allows the use of the Fourier transform in 

representing real and vector space (Sholl and Steckel, 2011).  

 k- Space, contain a minimum volume that consists of all information of the material. For 

reciprocal lattice vectors, we can express it as are Wigner-Seitz cell, it is also demonstrated in 

real space. The Brillion zone is merely Cells in k space. The calculations are then based on these 

K-points. 

 

3.3.0 Pseudo-Potential 

 

The interaction of the system’s surroundings can be best described by the atomic potential V(r). 

Every atom for instance contains valence and core electrons, between the two which are 

necessary for bonding.  

Thus, the pseudo-potential chosen is capable of handling only valence electrons as results lower 

the cost of computation in the calculation. 

 The core electrons are treated fixed and thus eliminated and the remaining valence electrons 

wave function are merged and thus an illustrative description of merged pseudo-potential is 

shown. 

 
Figure 3.3: pseudopotential of an atomic wave function   

 The  figure 3 indicates the fixed core, and the smooth node-less function is the replaced wave 

function. The merged Pseudo-wave function is indicated by the right arrow, and it matches all 
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electron wave functions. Similarly, it can be seen at a different cutoff radius that the efficient 

calculations using DFT are attributed to the pseudopotential chosen.  

The valence state has a certain cutoff radius for every approach used (Sholl and Steckel, 2011). 

To produce a similar density of the charges, the electron valence regions must contain a merger 

of true potential and pseudopotentials applied. It has maximum displacement squared wave 

which is similar to potential and needs greater cut-off energies to work hence known as norm-

conserving. 

 

The ultrasoft one makes use of true pseudopotential that are matched at electron valence area, 

thereby reducing cut-off energies drastically. For effective performance, an orthonormality factor 

is employed that softens pseudo-wave functions and yields better results in the core region. 

For PAW, its calculations work on the fact that the augmented plane wave and that of 

pseudopotential are joined and the core electrons are shallow and treated as it is. We employed 

the PAW and ultrasoft pseudopotentials in the predictions of various properties of the material 

under study. 
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CHAPTER FOUR: COMPUTATIONAL METHODS 

 

4.1 Materials 

 

In this study, a computer with an installed Quantum Espresso (QE) package was used to perform 

the DFT simulations. The PW and THERMO_PW drivers were installed in QE. Additionally, 

data visualization software including Xcrysden, Grace, Gnuplot, VESTA and Python was also 

used.  The heavy calculations were run at the Center for High-Performance Computing (CHPC) 

cluster workspace in South Africa via remote access.  

4.2 Methods 

The first principles calculations in this work were employed as per the theory of density 

functional theory where the exchange correlation functionals were approximated by generalized 

gradient approximation and local density approximation as implemented in the Quantum 

Espresso code. The process started with the installation of the Quantum Espresso package 

together with all the other sub-software and drivers. The crystal structure of the K2SbAu material 

was downloaded from the materials project website in CIF format. Materials cloud input 

generator in QE was used in making the PWscf input file. All the pseudopotentials for K2SbAu 

material both Norm-Conserving, ultrasoft and projected Augmented wave were downloaded 

from the QE pseudopotential library. This study employed, PBE+ GGA, PBEsol and LDA 

exchange-correlation potentials.  

The basic and simplest functional is the local density approximation LDA, in that the correlation 

energies and exchange of electron density at a point in space are estimated by a homogenous 

electron gas with similar density(Skelton et al., 2015). However, the approximation work from a 

fortuitous cancellation of errors for some systems, but it does not give better results. The 

improvement can be done on LDA by including the density gradient, ∇n(r), which is the basis of 

the semi-local generalized-gradient approximation (GGA) functional. GGA functionals tend to 

yield improved energetics and lengthen bonds, thereby increasing cell volumes and lattice 

constants and softening phonon frequencies(Skelton et al., 2015). 
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The phenomenological overbinding is corrected by GGA functionals as exhibited by the LDA, 

and in so doing, lattice constants values are way below the actual hence invoking the use of PBE 

to solve the problem of underestimations in the functional(Sholl and Steckel, 2011).  

Such measures led to an improvement to the earlier PW91 GGA. In the process, good analyses of 

material properties are done by use of GGA and its unique function PBEsol. 

 

4.2.1 Self-Consistent Convergence Tests 

 

Convergence of total energy with cutoff energy, k-points and cell dimensions was performed 

using the input file generated from the materials cloud in order to ensure that DFT calculations 

and exact solutions converged. 

For electronic structure, all calculations were done using the Quantum Espresso package as 

implemented by DFT. The calculations were based on pseudopotentials and a plane wave basis 

set. Thus in describing the exchange correlations effect and electron exchange, we used two 

different functionals: the local density functional (LDA), and the Generalized Gradient 

Approximation (GGA) as parametrized by Pardew Burke Ernzerhof PBE (Perdew et al., 1996), 

PBEsol. The energy convergence criteria for this study was set at  5× 5 × 5 × 1 × 1 × 1  for k-

point mesh, and for cut-off energy for self-consistence calculations and the plane wave basis was 

set at 150Ry K2SbAu ternary compound, with minimum varying from 60Ry-70Ry for different 

approximation functionals, and optimized convergent test were used in the calculation. 

The calculations for this DFT theory need a lot of computational effort; thus a mathematical 

integration of equations is unable to occur over the k space entirely. Thus Pack and Monkhorst 

came up with a solution for this problem, Considerations of k space grid points were done, and a 

supercell was used that contain cubic lattice constants which is similar to k points applied. 

The graphical optimized k-points graph for the two functions was obtained, Convergence of total 

energy with k-point Mesh curve was plotted and obtained for generalized gradient 

approximations by Pardew Burke, GGA+PBE. 
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4.2.2 Structural Properties of materials 

Various structures are exhibited by different materials which are classified by numerous features 

in general. They are however categorized in terms of atomic structure that involves invisible 

features. These features are the type of bonding between the atoms and their arrangement. 

Secondly, micro-structure is features visible by microscopic devices for instance the microscope. 

They however affect the thermal, optical, electrical, magnetic properties and physical aspect of 

the material. The two, that is, micro and macro-structures affect elastic properties involved by 

the material under study.  

 

Illustrating the properties of the materials provides an avenue to knowing metal’s strength, useful 

in the engineering world that enhances its applicability in the discipline(Manjula et al., 2016). 

The material’s atoms are vital for understanding the structure of a material together with its 

atomic arrangement. 

The structural properties are very essential in understanding a solid’s constituent. This thesis has 

computed lattice parameters for the K2SbAu pnictide ternary semiconductor’s structure. The total 

energies were obtained in terms of the volume of cell dimensions. Thus, obtained structural 

properties by the equation of state were fitted in third order derivative Birch-Murnaghan 

equation (Chen and Dongguo, 2013). The equation of state (EOS) knowledge is vital in both 

applied and basic sciences as it provides insight into the fundamental solid-state theories. 

 

Therefore, the properties obtained are lattice constant, Bulk modulus, minimum volume, 

minimum energy and First pressure derivative. 

4.2.3 Bulk Modulus and its Pressure Derivative  

The moduli expression is as shown in equation 37, which shows variations of pressure-volume 

and binding energy, 

 

     𝐵 = −𝑉
డ௉

డ௏
= 𝑉

డమா

డ௏మ
                                                                        37.4 

Total binding energy E for a given material in terms pressure P of the unit cell can be deduced 

as; 
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   𝑃 = −
డா

డ௏
                                                                                         38.4 

 

At the equilibrium point, Pressure is equal to zero.  

Thus the material’s elastic properties are computed for bulk system and described by 

compressibility constant K0,   

Thus  in the 37 and 38 equations, the equilibrium bulk modulus is given by (Chandra and 

Kholiya, 2015),  

ଵ

௄బ
= 𝐵଴ = −𝑉

డ௉

డ௏
= −𝑣

డమா

డ௏మ
]v=VO                                                         39.4 

And its pressure derivative theoretically is defined as (Chandra and Kholiya, 2015), 

𝐵଴
ᇱ =

డ஻

డ௏
/p=0 =

ଵ

஻బ
ቆ𝑉

డ

డ௏
ቀ𝑉

డమா

డ௏మቁቇv=vo                                                             40.4 

The Murnaghan equation is written as: 

∆𝐸(𝑣) = 𝐸 − 𝐸଴ = 𝐵௢𝑉௢ + ൤
௏೚

஻೚
+

ଵ

ଵି஻ᇱ೚
+

௏೚
షಳ೚

஻ᇱ೚(஻ᇱ೚ିଵ)
൨                                                  41.4 

Where 𝐸଴ and 𝑉௢  are the equilibrium energy and volume at zero pressure, 𝐵௢ is the bulk 

modulus;𝐵௢
ᇱ  is the first pressure derivative of materials (Chandra and Kholiya, 2015). These 

calculations are derived in terms of interatomic interactions. 

Therefore the nature of fundamental solid-state theories gives can be used to determine 

thermodynamic parameters. 

 

4.2.4 Elastic stability 

 

In order to compute the information about the mechanical properties, elastic constants are vital. 

Such mechanical properties like bulk moduli, shear moduli, poisons ratio, Young modulus and 

anisotropy of material are computed using two approaches. 
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In DFT the two approaches are useful in the calculation of the elastic constants: the stress-strain 

approach and the energy-strain. Therefore in this research, we used a stress-strain approach to 

calculate elastic constants as it was determined from linear fit functions, according to Robert 

Hooke’s Law. 

Thus the given energy density is in the form, 

𝑈 =
∆ா

௏೚
=

ଵ

ଶ
∑ ∑ 𝐶௜௝𝑒௜𝑒௝௜

଺
௝

଺
௜                                                                                           42.4 

 

Where ∆𝐸 is the energy increase from the strain with vectors 𝑒௜𝑒௝௜, basically, the C is a matrix 

space for elastic constants(Chandra and Kholiya, 2015). Bulk elastic properties include the bulk 

modulus B and shear modulus G which were calculated using Voigt-Reuss-Hill averaging 

schemes(Hill, 1952). 

 

For a crystal with an orthorhombic structure, bulk modulus for Voigt averaging 𝐁𝐯 and the Voigt 

shear modulus 𝑮𝒗 are defined as, 

𝐵௩ =
ଵ

ଽ
[𝐶ଵଵ + 𝐶ଶଶ + 𝐶ଷଷ] +

ଶ

ଽ
[𝐶ଵଶ + 𝐶ଵଷ + 𝐶ଶଷ]                                                          43.4 

   𝐺௩ =
ଵ

ଵହ
[𝐶ଵଵ + 𝐶ଶଶ + 𝐶ଷଷ − 𝐶ଵଶ − 𝐶ଵଷ − 𝐶ଶଷ] +

ଵ

ହ
[𝐶ସସ + 𝐶ହହ + 𝐶଺଺]                       44.4 

Similarly, the Reuss bulk modulus Bோ and Reuss shear modulus is written in the form of, 

Bோ = 1/[(𝑆ଵଵ + 𝑆ଶଶ + 𝑆ଷଷ) + 2(𝑺𝟏𝟐 + 𝑺𝟏𝟑 + 𝑺𝟐𝟑)]                                                    45.4 

Gோ = 15/[4(𝑆ଵଵ + 𝑆ଶଶ + 𝑆ଷଷ − 𝑆ଵଶ − 𝑆ଵଷ − 𝑆ଶଷ) + 3(𝑆ସସ + 𝑆ହହ + 𝑆଺଺)]                  46.4 

For Hill approximation, the bulk modulus and shear modulus are then given by, 

Bு =
ଵ

ଶ
(𝐵௩ + Bோ) ; Gு =

ଵ

ଶ
(   𝐺௩ + Gோ)                                                                      47.4 

Of course, from the equations we get the average of the two approximations for the 
corresponding moduli and shear. 

Poisson’s ratio n and Young’s modulus E can also be expressed as from the equations below, 

Eு = 9BுGு/(3Bு +  Gு)                                                                                        48.4 

Poisson ratio n denoted by, 
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𝑛 = (3Bு − 2Gு)/2(3Bு + Gு)                                                                              49.4 
 
The shear anisotropic factor gauges how the bonding occurs between atoms in different planes. 

This thesis focuses on bulk elastic constants. 

Thermo_pw code implements three averaging methods; these are the one that ignores uniform 

strain (Voigt), the one that validates uniform stress (Reuss) and the two that show constant 

stiffness 

4.2.5 Electronic Properties 

 

The motion of electrons in an electrostatic field produced by nuclei describes the electronic 

structure of a material, this field is generated when nuclei are stationary. In this regard, the wave 

functions and energies of the electrons best describe the electronic properties of the material. 

This is done by solving quantum mechanical equations. Thus vital properties deduced are the 

band structure, density of states and partial density of states of a material. 

 4.2.6 Band Structure and Band gaps 

 

The solid’s band structure can be best described by the range of energy possessed by these 

electrons. The associated energies of the electrons form a network of bands termed energy bands, 

which are forbidden bands and allowed bands. The range of energy that can either be free from 

the named band energies makes them a width of bands.  

These widths differ from one another due to the overlap in their orbital arrangement as per the 

degree of atomic orbitals(Scandolo et al., 2005). The existing band gaps are categorized as direct, 

and indirect. The energy state at the minimum conduction band and the energy state in the 

valence band maximum are differentiated by momentum. Direct band gaps are depicted when k-

vectors are similar. The electron’s momentum and holes depict similarity in CB and VB that is 

an electron can emit a photon directly(Hill, 1952). For indirect, no photon can be emitted directly 

but passes through a state known as intermediate in order to emit momentum to the crystal 

lattice. 
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Figure 4.4 showing direct band gap 

 

 

 Figure 5.4 Indirect band gap diagram of material 

 

4.2.7 Density of States and Projected Density of States (PDOS) 

 

The useful concept like the electronic density of states DOS which is a function of energy is vital 

in analyzing the solid’s band structure. This is done by the use of reciprocal k-points (space) with 

simply the properties of the band structure. The DOS is thus illustrated as the electronic number 

of states in a unit volume per unit energy, an idea broadly discussed in statistical ensembles. The 

sum of all states within a given energy range is expressed mathematically, 

𝑔(ε) =
ଶ

(ଶగ)య
∑ ∫ 𝑑𝑘𝛿(𝜀 − 𝜖ik)                                                               50.4 

Where 𝑔(ε) is the density of states 

It can be as well be expressed in terms of fermi-energy𝐸௙ 

𝑔(ε) =
ௗா೑

ௗఌ
                                                                                              51.4 
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By normalization, we use the integral value to obtain the number of density of states N 

𝑁 = ∫ 𝑔(ε)
ா೑

ିஶ
d𝜀                                                                                     52.4 

Thus, the use of quantum espresso code becomes easier to compute the DOS in the above 

equation. By considering the contribution of an atom’s existence, it is possible to compute the 

projected density of states PDos for every atom. In summary, states (DOS) are the domain’s 

average space occupied by the system. 

4.2.8 Electronic Transport Properties 

 

The ab initio calculation of electronic transport properties is done on the optimized structure 

using the BoltzTrap theory. BoltzTrap code within the constant relaxation time approximation is 

carried out and obtained the required Transport Properties, the figure of merit, power factor, 

thermal conductivity and many more. In computing lattice thermal conductivity, the reciprocal 

spaces of the primitive cells were sampled. This was discussed in an earlier theoretical chapter. 

 

4.3 Optical Properties 

 

The components of matter in a material have constants like the dielectric constants ε1, the μ1 

which is represented by the charge of the field and the conductivity σ1. Material properties such 

as optical for varied media need a clear and complex description of a new response function like 

a refractive index. The essential aspect is the association of electromagnetic waves in various 

media. For the occurrence of such phenomena, optical constants become fundamental in 

computing material’s index of refraction n and the extinction coefficient k optical constants and 

many other properties(C.kittle, 1996).  

With equations, one can easily fix the expression with obtained data from the dielectric constants 

and hence compute optical properties which are essential in optoelectronic applications 

(Ambrosch-Draxl and Sofo, 2006). 
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4.3.1 Reflectivity 

The reflectivity can be represented as R(ω) (Ambrosch-Draxl and Sofo, 2006), 

            R(ω) = | 
[ఌೝ೐(ఠ)ା௝ఌ೔೘ (ఠ)]ଵ/ଶିଵ

[ఌೝ೐(ఠ)ା௝ఌ೔೘ (ఠ)]ଵ/ଶାଵ
|2                                                52.4 

This equation can be reduced as, 

𝑅(𝜔) = ቂ
ଵିே

ଵାே
ቃ

ଶ

                                                                                                      53.4 

 
(ଵି୬)మା୩మ

(ଵା୬)మା୩మ
                                                                                           54.4 

Letting k=0, we obtain the equation below. Showing the reflectivity of the material 

𝑅 = ቚ
ଵି௡

ଵା௡
ቚ

ଶ

                                                                                                          55.4 

If we sum over the entire conduction bands, we obtain complex imaginary dielectric 

functions𝜀௜(𝜔). 

 The absorption coefficient was also deduced since the loss of intensity per unit length is referred 

to as the absorption coefficient, written as 

𝛼(𝜔) =
ఠ

ସగ
𝜀ଶ(𝜔)           55.4 

From the equation, we can deduce that a strong relationship between 𝛼(𝜔) and 𝜀ଶ(𝜔) cause an 

increase in high-energy absorption. Using the Quantum espresso optical program, we calculated 

the frequency-dependent dielectric matrix where we obtained K2SbAu real and imaginary 

dielectric values. These values are fundamental in calculating the reflectivity, energy loss, 

absorption coefficient constants and refractive index. The curves were plotted as discussed in the 

analysis of the results in the next chapter 
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CHAPTER FIVE: RESULTS AND DISCUSSION 

 

5.1 K2SbAu Pnictide Ternary Semiconductor 

 

In this section, the investigation results of the Face centred orthorhombic structure of the 

K2SbAu ternary semiconductor are presented, emphasising its structural, mechanical, electrical, 

and optical properties, utilizing the theoretical methodologies described in Chapter 3 and the 

computational details offered in Chapter 4. This section will demonstrate and discuss the results 

that have been achieved after a detailed analysis. 

 

5.1.1 Crystal Structure of K2SbAu pnictide ternary compound 

 

                                        

          Figure 6.5: Crystal structure of K2SbAu pnictide ternary semiconductor 

The crystal structure was visualized using Xcrysden which is a separate software package 

separate from the quantum Espresso Package. The input file was generated and suitable lattice 

constants were 6.60149Ȧ for GGA, 6.39519 Ȧ for PBEsol and 6.175 for LDA. In addition, the 

command line for structure visualization was used for Xcrysden--input file, e.g. xcrysden --

Si.scf. in. The obtained unit cell of the K2SbAu crystal lattice contains 18 atoms after performing 

structural optimization of the orthorhombic with relaxed structural parameters and 40 bonds 

covalently bonded. 
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5.1.2 Structure Optimization 

K-Point Optimization  

 

Figure 7.5: K-points optimization curve using GGA for K2SbAu 

The energy convergence with respect to the k-point was at 5 where maximum energy was 

attained. However, the k-point mesh here overestimated the integral computation hence the 

energy is too high thereby curving upwards with maximum energy approximation. As from the 

results, the integral numerical computation assumes the analytic form of the band energy across 

the Brillouin zone. Normally, most of the materials curve downwards with minimum energy 

approximation hence this material depicts a unique k-point optimization plot. We again, tested 

self-consistent convergent using pseudopotential as per parameters of PBEsol and obtained a 

similar k-point curve thus a proof of convergence occurring for various approximations. 
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Figure 8.5: Total energy versus k-points using PBEsol. 

As from the graph, the minimum total energy was obtained with k-point mesh at 5 × 5 × 5 ×

1 × 1 × 1, and the nature of the curve is similar to that of GGA hence depicting consistent 

results for analysis(Chen and Dongguo, 2013). There exist slight deviations in their 

corresponding total energy as compared to earlier approximations, which can be attributed to 

differences in pseudopotentials used for varied approximation. the optimization is achieved. 
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Lastly, Local Density approximations functional parameters were used and tests were carried out 

on k-point optimization for the material under study. The parameters are the corresponding 

pseudopotential for the LDA of the material and its convergence test is useful to affirm that 

indeed the three approximations used provide similar results for other computations. The ab 

initio calculations were done with the converged k-point curve obtained, hence necessary to 

carry the involved calculations. 

 

Figure 9.5: Total Energy against k-points mesh for LDA+PZ 

The energies were underestimated even though a similar curve plot was obtained as expected 

from the study. However, the two approximations, are in agreement with k-point mesh 

convergence, which occurs at 5 5 5 1 1 1 with corresponding total energies. This is a 

fundamental reason to ensure that other first principles calculation to follow was done 

successfully. These are optimization of cut-off energy, cell dimension, and electronic and optical 

calculations. For cut-off energy, the test was done by use of the optimized k-points for GGA, 

PBEsol and LDA functional(Jaffe & Zunger, 1984). 
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5.1.3 Energy cut-off convergence 

The related energy for plane wave plays a crucial role in the calculations performed when 

compounds are computed using interdisciplinary theories like density functional (Sholl and 

Steckel, 2011). Maximum efficiency is achieved in terms of available energy at the point of 

discontinuity. However, when we consider the lattice parameter and the k points, we get the 

expected results. When compared to arbitrarily selecting several plane waves for the basis set, 

this method is helpful. 

An increase in energy cutoff increases the plane wave’s number hence leading to an increase in 

the accuracy of the description of ion cores. The vital idea is to ensure energy differences remain 

the same since an increase in a number of plane waves does not increase charge density in the 

bonding. The structure’s energy curve was generated as shown for K2SbAu ternary compound 

using LDA, PBE and PBEsol functional. We began with PBE, and its curve optimized. 

The energy convergence test for cut off energy curve was shown; 

 

Figure 10.5: The energy optimization plot using GGA for K2SbAu 
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The optimized energy cutoff obtained starts at 60Ry and from the graph, the best cut-off 

convergence energy is 150Ry for GGA of this ternary semiconductor compound. This cutoff 150 

Ry together with the k-point mesh obtained becomes essential in computing the material’s 

properties efficiently while ensuring the accuracy of the results obtained such as band structure, 

density of states and partial density of state. 

Secondly, we set pseudopotentials for the input file of the material for PBEsol parameters and 

test done on cut-off energy 

 

Figure 11.5: Total energy versus Cutoff Energy for PBEsol. 

The initial cut-off energy began at 70Ry and still, the most useful cut energy suitable for 

calculation for electronic properties remained to be 150Ry. 
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Thirdly, LDA functional parameters were set for the cut-off energy convergence test was done 

and curves were obtained for the same materials. 

 

Figure 12.5: Total Energy versus Cutoff energy (Ry) LDA+PZ 

In the entire calculation, we choose values relatively above the energy cutoff of (60Ry). These 

gave more accurate computational results as opposed to the minimum value from the graph. In so 

doing, we lower the computation cost and on the other hand, we obtain a more accurate work of 

calculations. 

5.1.4  Cell dimension optimization 

 

The cell dimension optimization provides data for detailed descriptions of the structural 

properties of the material under computation. Furthermore, it provides a lattice parameter 

necessary for other calculations, plotting this energy with respect to the volume of the lattice 

parameterizations; we obtain a curve that indeed depicts its convergence. The cell dimension was 

optimized and generated a graph showing total energy vs lattice constant.  
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The data obtained from optimization for both GGA and LDA was fitted in the Birch Murnagan 

equation of state where ground state structural properties were deduced. These properties are 

bulk moduli, shear moduli, Young’s modulus, Poisson’s ratio 

Graphically, GGA provides optimized lattice constant as shown below;

 

Figure 13.5: Plot for total energy versus lattice constant (GGA). 

The total energy versus lattice constant plot was obtained and convergence occurred at a lattice 

parameter of 6.6 (A) for GGA as shown in the above plot. This in comparison with existing work 

of similar materials is in agreement on the nature of the curve. Thus this value was used in the 

calculation of electronic properties that is band structure, DOS and PDOS. 

Similar curves were obtained using pseudopotentials generated from different functionals, the 

second one being PBEsol and lastly LDA, local density approximation.  

However, the PBEsol and GGA show good general performance across all four functional 

employed. We generated input files using PBEsol approximation and did a cell dimension 

convergence test for the k-point test. 
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Figure 14.5: Total Energy against Lattice constant 

 The lattice parameter obtained as 6.39519 Ȧ was the optimized value used in the next 

calculations of band structure and density of states using GGA+PBEsol pseudopotentials. The 

ground state structural properties were generated using cell dimension data obtained after fitting 

in the Murnaghan equation of state 

Lastly, the Local density approximation input file was used and obtained the optimized curves 

for cell dimensions as shown, indicating the lattice parameters shown(Sholl and Steckel, 2011). 

This, just as from earlier work, we fitted in the equation of state and obtained the structural 

properties exhibited by the ternary pnictide semiconductor K2SbAu. 
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Figure 15.5: Plot for total energy versus lattice constant (GGA). 

Generally, the convergence test for k-points, cut-off energy and cell dimensions are very 

important in the computation of the next calculations, since these values obtained were used in 

structural properties and electronic. Variable cell relaxation (vc-relax) was performed to allow 

both variations of the atomic positions as well as lattice constants(Sholl and Steckel, 2011). The 

structural changes induced through relaxation including bond lengths and bond angles were 

determined using Xcrysden and compared with those of the original structure. 

 

5.1.5 Structural Properties of K2SbAu pnictides compound 

These properties were obtained for various approximations used with their corresponding 

pseudopotential. The properties were obtained as results of fitting cell dimensions data in the 

equation of state for Simple cubic known as the Murnaghan equation of state within the QE 

package.  
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The material's mechanical stability was then tested through a volume optimization curve with 

respect to energy for K2SbAu and plotted for various approximations.  

Indeed all three approximation deduce that the compound is stable and hence possess the desired 

properties useful for investigation. Using the first principle FP-LAPW, the total energy was 

calculated for all approximations by fitting to the murnaghan’s equation of state for the structural 

properties as represented in the tables above. 

 

Table5.1: Ground state structural properties of K2SbAu for GGA, PBEsol and LDA 

 

 

 

 

 

Comparing the properties with respect to their approximation, it is observed that LDA 

underestimates the values and hence provides values lower as compared to GGA 

approximation(Kim et al., 2010).  

For example from the table above we can compare their corresponding lattice parameters, GGA 

is 6.60149Ȧ while LDA is 6.19105 Ȧ. Thus, these are first-time computations of the ternary 

structural properties of this material. In comparison to similar compounds with the same 

stoichiometry like research done on compounds of K3Cu3P2 and K3Ni3P2 (S. Daoud, 2019). 

These compounds are both ternary pnictide semiconductors just like K2SbAu hence detailed 

computation brings closer correlations to their obtained results. Similarly provides the optimized 

lattice constants of a = b = 8.81 Å, c = 6.94 Å for Na6ZnS4, a = b = 7.55 Å, c = 5.83 Å for 

Na6ZnO4 and a = b = 9.25 Å, c = 7.12 Å for NaZnSe4(Es-smairi et al., 2022) 

 GGA PBEsol LDA 

Lattice constant (Ȧ) 6.60149Ȧ 6.39519 Ȧ 6.195105 Ȧ 

Bulk Modulus  (Bo) 4.0 GPa 4.8 GPa  5.4 GPa 

Min. Volume  (Vo) 287.69A^3 261.55 A^3 237.30 A^3 

Min. Energy (emin) -445.95834 Ry 1364.45610 Ry -445.6071 Ry 

First pressure 

derivative 

0.348GPa 0.234GPa 0.236GPa 
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5.1.6 Mechanical stability 

 5.1.7 Elastic Properties 

 

The elastic constants of the ternary semiconductor were calculated using GGA, PBEsol and LDA 

functional where it was obtained to be positive and hence mechanically stable. We also 

computed elastic properties and obtained the material’s bulk modulus, young  modulus, shear 

modulus and poison ratio as shown in the table below, 

Table5. 2:  Computed bulk modulus ( BV ,BR,B H  in GPa), shear modulus (GV ,GR ,GH  in 

GPa) and young modulus (EH ) 

 

Functional  BV BR BH   GV GR GH EH 

GGA+PBE  17.39 15.70 16.55 9.12 6.39 7.76 20.09 

PBEsol  16.23 13.99 15.11 9.23 6.38 7.80 19.95 

LDA+Pz 13.46 11.57 12.62 8.95 5.54 7.24 18.15 

 

The bulk elastic properties are deduced using Voigt-Reuss-Hill averaging approximation for the 

crystal material. The value’s difference depicted in the table can be attributed to the different 

exchange correlation functional and pseudopotential used. BH is the average of bulk modulus for 

Voigt and Reuss approximation similar to GH.  

As per the criteria for brittleness and ductility of the material, the materials are categorized based 

on the B/G ratio. A material is said to be brittle when   B/G <1.75 while it is ductile if it is 

greater than 1.75.  

Table 5.3: The calculated B/G ratio, Poisson's ratio (n) 

Functional  𝐵
𝐺ൗ  𝑛௏ோ 

GGA+PBE 2.13 0.295               present work 

PBEsol 1.94 0.280               present work 

LDA+Pz 1.76 0.250               present work 
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The GGA and PBEsol predict that the K2SbAu compound is ductile since the ratio obtained is 

greater than 1.75.  For LDA it underestimates the values hence the best approximation predicts 

that this material is ductile since the ratios 2.13 and 1.94 are greater than 1.75.  

 

Table 5.4: The calculated  independent elastic constants Cij for K2SbAu in (GPa) are as indicated 
in the table,  

Functional C11 C12 C13 C22 C23 C33 C44 C55 C66 

PBE 35.80 9.31 4.13 35.17 18.60 22.47 15.72 5.15 4.10 
PBEsol 34.96 7.98 3.15 34.80 17.02 19.96 16.08 5.50 4.04 
LDA 30.08 6.02 1.82 29.18 14.42 17.42 18.13 5.38 3.12 

 

5.1.8 Electronic Properties 

 

The properties are computed within the QE code using three approximation methods that are 

GGA, PBEsol and LDA. Each has a unique pseudopotential thus deducing electronic properties 

with some differences. The key properties are band structure, Density of State plot, and partial 

density of state for the K2SbAu ternary semiconductor compound. For a better understanding of 

the material’s properties physically, we ought to minimize energy so as to obtain the crystal’s 

band structure.  

The contained information is essential for the analysis of the band gap hence capable to predict 

its applicability as optoelectronic material technology. It is however noted that materials 

containing direct band gaps are considered active semiconductors for optical applications while 

those of indirect nature respond weakly to optical excitation. 

. While computing band structure, the optimized dense k-point mesh used was 12× 12×12×, cell 

dimension of 6.6 and the ecutrho of 150Ry was employed in the calculation and thereby 

generating the band structure for both GGA and LDA approximation as shown below, 
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Figure 16.5: The computed energy band structures of ternary pnictides K2SbAu 
 
 

The figure depicts band spectra of the compound under study, using generalized gradient 

approximation (GGA) along high symmetry Brillion zone points. Where the level of Fermi 

energy was set at zero, as shown by the dotted line from the band structure(Tran and Blaha, 

2009). The illustrated level is composed of occupied valence bands of K2SbAu, while the one 

above the fermi level consists of unoccupied conduction bands. The electronic bandgap for the 

K2SbAu compound using GGA was found to be 0.943eV. We did a comparison using Local 

density Approximation and obtained similar band spectra of the material as shown. 
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      Figure 17.5: Calculated band spectra using LDA  

While for LDA the gap energy is 0.848166eV; the deviation is a result of the underestimation of 

values for Local Density Approximation for this compound. The compound K2SbAu is of 

semiconducting nature having a direct band for the three approximations. Another comparison 

was done using a newly generated functional known as PBEsol, since the ternary pnictide 

material under study is stable we again obtain a similar band structure computationally as 

indicated in the diagram below. 
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Figure 18.5: Calculated band spectra using PBEsol functional 

 

Similarly, structure’s band plotted and density of state was computed. The band gap obtained 

was 0.906 eV a value close to pseudopotentials for GGA+PBE. 
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Table 5.5: calculated electronic band gap of the K2SbAu for various approximations. 

Method  GGA PBEsol LDA 

Band gap (eV) 0.9430 0.9060 0.8482 

 

With optimized lattice constants in this work, the band structure of the studied material which is 

a result of Kohn-Sham was deduced with the use of PBEsol, LDA and PBE functional along 

high symmetry points. From the three methods, the valence band maximum (VBM) and 

conduction band were calculated within the gamma point of the Brillouin zone. Thus from the 

research investigated, the material has a direct band gap semiconductor character at the gamma 

point. In the three functional, the fermi level was shifted to zero hence closer to the VB 

indicating a p-type semiconductor(Yin et al., 2014). Our calculated band gaps are tabulated 

hence, it is clear the band gap is 0.9430, 0.9060 and 0.8482eV for various approximations used.  

However, the experimental band gaps have not yet been reported, thus in comparison to 

materials of the same stoichiometry, we found that the material predicts an agreement with it. 

The difference is a result of different functions used during computations. LDA thus 

underestimated the bandgap. The solution to this problem is the use of hybrid functionals or a 

many-body approach, with an increase in the computational demanding 

5.1.9 Density of States 

The electron probability distribution in the energy spectrum is known as the Density of states 

(DOS)(Yin et al., 2014). Figure 17 shows how the total density of states for the investigated 

structure using PBE, PBEsol and LDA functional. It can be seen that indeed the contribution is 

around the fundamental band gap contributed by the elements of material compound K, Sb, and 

Au as seen from the plot(Tran and Blaha, 2009). The Fermi level was set at zero being closer to 

valence bands. Using generalized gradient approximation functional(GGA)(Perdew et al., 1996), 

we computed the DOS of the studied material. 
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Figure 19.5: Density of states (DOS) for PBE+GGA 

The density of states reveals the valence band and conduction band separated by an energy gap 

hence this material is a p-type semiconductor compound since the fermi level is closer to the 

valence band VB. The Density of state is a variable quantity hence once manipulated can 

improve device performance. Momentum for electrons and photons in the density of states is 

calculated by counting up the states to a given wave number. This is determined from the 

number of waves confined to a box within a volume space  

For the hybrid functional of PBEsol, the computed Dos structure was also obtained as shown in 

figure 18. It still shows a similar structure as for GGA, even though a different pseudopotential 

was used for the particular functional. 
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Figure 20.5: Density of states for PBEsol functional (Kim et al., 2010) 

Lastly, we applied similar computation technique using LDA functional to elucidate materials 

density of states, and obtained the results as plotted in figure 19. 
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Figure 21.5: LDA Density of states 

Since we are first reporting material properties theoretically, our point of a reference relied on 

compounds of similar ternary semiconductors like as referenced (Verma et al., 2011) CuAlS2 

depicts similar characteristics as K2SbAu. 

5.2.0 Projected density of state 

From the total density of states, we again further studied materials PDOS as the last electronic 

properties for the three functional, their corresponding orbital contribution deduced, 

 

 
Figure 22.5: Projected density of states K2SbAu  

The K2SbAu has fermi energy nearer VB and hence is a p-type semi-conductor compound 

however the contrary was to be true if it was near CB hence becoming an n-type semiconductor 
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Figure 23.5: Electronic properties of projected density of states (PBEsol)(Kim et al., 2010) 
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Figure 24.5: LDA Projected density of states K2SbAu. 

 

5.2.1 Optical Properties of K2SbAu 

Calculated optical properties of K2SbAu at equilibrium lattice constant were obtained as shown 

in the figures. This is achieved by the use of functional, in this work, PBE, PBEsol and LDA 

functional are used to obtain optical spectra when it is at the stable lattice constant. In Fig22 (a), 

b indicates the computed imaginary constant of dielectric denoted as 𝜀ଶ(ω) and real  𝜀ଵ of the 

dielectric constant for K2SbAu for radiation up to 25 eV. The function denoted as 𝜀ଶ(ω) shows 

an imaginary dielectric constant that exhibits one peak.  

These occur as results of orbital contribution in direct optical transition using the states of 

valence in its valence band and conduction band. The real dielectric 𝜀ଵ in the limit of zero energy 

is equal to the square of refractive index n. From Fig 23 the obtained value of the refractive 

index n is 2.4 eV which is in excellent agreement with the experimental value of 2.0–2.5 eV of 

similar compounds like CuAlS2(Kim et al., 2010). 

Fig. 24 shows the loss function of K2SbAu. The loss of energy for electrons is an important 

factor in describing the energy loss of a fast electron traversing in the material. The prominent 
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peak in loss function L (ω) spectra located at 11.43 eV represents the characteristic associated 

with the plasma resonance and the corresponding frequency is the so-called plasma frequency. 

Fig. 25 displays the reflectivity of K2SbAu. The peak of L(ω)in Fig. 24 corresponds to the 

trailing edges of the reflection spectra in Fig. 25. For instance, the prominent peak of the energy 

loss function L(ω) located at 11.43 eV corresponds to the abrupt enhancement of R(ω)(Mbilo et 

al., 2022). The purpose of such properties is to help in photovoltaic devices since it is very vital 

to determine the region of higher conductivity. Figure 26 indicates a higher peak of conductivity. 

The curve for conductivity relates to the imaginary part of the dielectric function  𝜀ଶ(ω). 

Graphical plot for real and imaginary dielectric plots as indicated for Peso. 

Using dielectric constants known as real  and 𝜀௜௠(ω) imaginary tensor, we compute the 

absorption spectra α(ω), energy loss L(ω), refractive index n(ω) and reflectivity(Taylor et al., 

2013). According to knowledge present on this compound, it is the first time to study the optical 

properties of K2SbAu ternary semiconductor. The PBEsol approximation was used and the 

results obtained for various optical properties is as shown below (Pilania and Sharma, 2013) 

 

 

 

 

 

 

 

 

 

 

 

Figure 25.5: Calculated real dielectric constant for optical properties (Kim et al., 2010) 



  

61 
 

 

Figure26.5: showing the imaginary 𝜀ଶ(ω) plot for K2SbAu PBEsol  

 

The material’s response to such properties depends on the nature of the medium which is 

described by the energies of photons ingrained by the function ε(ω) (Mbilo et al., 2022). The 

dispersion of light is attributed to the real part dielectric constant ε(ω) and demonstrated by the 

refractive index; whereas absorption of light in the medium relies on the imaginary part and is 

embedded in the absorption coefficient(Pilania and Sharma, 2013). 

In order to design a good optoelectronic device, we need a more accurate idea of refractive 

indices. The measure of material transparency to the incident photons is known as the refractive 

index, which is considered an important physical parameter for semiconductor materials. It is 

because of its close relation to the band structure and electronic properties of semiconductor 

materials. 
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Figure 27.5: showing the absorption spectra α (ω) for PBEsol approximation 
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Figure28.5: calculated refractive index n (ω) optical properties 

Apart from the refractive index, there exists another vital characteristic of the material known as 

reflectivity R(ω), which can be illustrated as the ratio of the reflected incident light power and 

describes the optical response of the surface of a material(Taylor et al., 2013). It has an inverse 

relation to the loss of energy function. From the calculated values of refractive index n(ω) and 

energy loss coefficient, we calculated the reflectivity of the material under study as shown. 
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Figure 29.5: Calculated Reflectivity of the material K2SbAu 

 

 

Figure 30.5: computed Energy loss coefficient optical property 
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Similar computation was performed for LDA functional, and the optical properties of the 

material obtained as shown in the figures, 

A  B 

 

Figure 31.5, (A), calculated real dielectric constant while figure 32.5:(B) the imaginary 

dielectric for LDA 
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Figure33.5: Refractive index for LDA functional 

C  D 

 

Figure C, indicates absorption coefficient of ternary semiconductor while D display Reflectivity.  

 

 

Figure 34.5: shows computed LDA energy loss optical properties of ternary K2SbAu  



  

67 
 

The compound has also been interpreted for reflectivity as a function of energy from Figure D, 

from infrared regions to UV spectra region it has a similar trend as observed for absorption in 

Figure C(Irfan et al., 2021). The coefficient of absorption is required to manufacture an efficient 

photovoltaic system, from the graphs the low absorption is from (0-2eV) and the medium occurs 

5 to 15eV spin-up. The reflectivity has also an inverse relation to the energy loss function as 

indicated by the comparable plots(Irfan et al., 2021). 

For PBE+GGA functional, similar optical properties were obtained, 

 

Figure 35.5 and Figure36.5 respectively shows corresponding real and imaginary dielectric 

spectra for PBE. 
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Figure 37.5: Refractive index and Absorption coefficient for pnictide ternary compound 

K2SbAu (PBE). 
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 Figure 38.5: Energy loss coefficient of ternary compound for optical properties. 
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CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS 

 

6.1 CONCLUSIONS 

 

In this thesis, structure, electronic, mechanical (physical) and optical properties were calculated 

on ternary pnictide semiconductor compound K2SbAu. This was done using first-principles 

calculations from density functional theory in order to provide vital information for its 

application in optoelectronics. All structure optimizations and electronic structures such as band 

structure, the density of states and projected density of states were performed using the Quantum 

espresso code. The comparison was by use of three distinct functionals, that is PBE, PBEsol and 

LDA together with similar materials with the same stoichiometry. Our results are consistent in 

most cases with three functional applied and existing pnictide ternary compounds. We, therefore, 

hope our study would be paramount in providing better theoretical knowledge and an eye-opener 

for experimental research on this material. 

The band gap values, total density states and projected density of states which are electronic 

properties were obtained at ground state, together with structural properties obtained from the 

computations of lattice parameters, bulk moduli, young modulus, Poisson ratio and shear moduli. 

Results for elastic constants are in agreement with the three approximations functional used 

hence consistency is achieved. The Murnaghan third-order equation of state gives these ground 

state structural properties for PBE, PBEsol and LDA as obtained in chapter five  16.55 

GPa,15.11 GPa and 12.62 GPa bulk moduli respectively. For shear moduli, 7.76 GPa, 7.80 GPa 

and 7.24 GPa respectively then lastly young moduli of 20.09 GPa, 19.95GPa and 18.15GPa were 

obtained. The K2SbAu has a narrow band gap maximum being 0.9430eV which is direct, hence 

the material studied displayed properties of a p-type semiconductor as the fermi zero line was 

closer to valence band VB. Thus the majority of charge carriers are positive holes. 
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The elastic constants and structural stability are studied using PBE, PBEsol and LDA functional. 

The relaxed system is dynamically stable thus there are no negative values along the high 

symmetry Brillouin zone, thus satisfying all the mechanical stability criteria for the material 

crystal structure. Electronic properties were investigated by calculating the band structure, partial 

density of states (PDOS), and the total density of states (TDOS) using the PBEsol functional, 

PBE and LDA. 

The coefficient of absorption is needed to manufacture an efficient photovoltaic system, from the 

graphs the low absorption is from (0-2eV) and the medium occurs 5 to 15eV spin-up. The 

reflectivity has an inverse relation to the energy loss function as indicated by the comparable 

plots. 

Most importantly, the highest absorption peaks occur in the optical region and hence may be a 

potential material for solar photovoltaic applications. The results show that K2SbAu has potential 

applications in solar cells due to its narrow band gap. An area for further research can be done.  

6.2 Recommendations 

From the computed electronic properties such as band gaps, DFT calculations underestimate 

these values hence in order to overcome this hindrance we recommend the use of the GGA+U 

pseudopotential even though they are computationally expensive. Other than that, uses of 

approaches that widen that band gap are applicable. Such approaches involve a method of self-

interacting correction that removes the Hartree term. Similarly, in order to obtain a better result, 

calculations ought to involve hybrid functional to give better results specifically the band gaps. 

With proper and successful access to high-performance computing resources, these studies can 

effectively be carried out at minimal costs. 

In summary, obtained computational results for K2SbAu are recommended for use as 

optoelectronic devices like solar cells and photovoltaic cells due to their optical properties 

depicted by the pnictide ternary compound. 
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6.3 Future work 

1. Experimental study of structural and electronic properties of K2SbAu pnictide ternary 

semiconductor  

2. Further study to be on Investigating the thermoelectric transport properties of the K2SbAu 

from a combination of first-principle calculations and semi-classical Boltzmann transport 

theory 
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