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Abstract 

This report delves into the practical applications of advanced modeling in the realm of 

prognostic modeling for pediatric in-hospital mortality. This research commenced with a 

comprehensive systematic review aimed at identifying predictive models for in-hospital 

mortality among pediatric patients in resource-limited settings. While the review unearthed 

twenty-one prognostic models from fifteen studies, it also unveiled significant methodological 

concerns. These included issues such as poor reporting, suboptimal handling of missing data, 

inadequate sample sizes, and misjudged categorization of continuous predictors, which 

collectively cast doubt on the models' predictive capabilities. Subsequently, the research 

progressed to external validation, assessing the predictive ability of the identified models using 

data from pediatric patients in 20 county referral hospitals between 2014 and December 2021. 

Of the 21 models, only 4 met the criteria for external validation. The validation metrics 

encompassed discriminatory ability (c-statistics) and model calibration (slope and intercepts). 

The findings consistently revealed a trend of underestimating the risk of mortality in all four 

models, highlighting the potential for misclassifying high-risk patients. To rectify the 

miscalibration issue, the focus shifted towards recalibrating these models. Two recalibration 

strategies were explored, with logistic recalibration proving more effective. However, the 

improvements, while notable, did not meet the necessary clinical standards, primarily due to a 

lack of consideration of model uncertainty during the development of the individual models in 

their original studies. Addressing the pivotal problem of model uncertainty, a stacking of model 

predictive distributions methodology was introduced. This innovative approach merged 

predictive distributions from four distinct models (which were refitted), enhancing the accuracy 

and reliability of mortality risk predictions. When comparing the performance of the individual 

models with the stacked posterior distribution, the latter surpassed individual models, offering 

improved discrimination and calibration, promising significant advancements in predictive 
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accuracy. The focus then shifted to the Fine-Gray Sub-distribution Hazard model in the context 

of competing risks, with Monte Carlo simulations revealing the impact of patient follow-up 

duration on model accuracy. The findings underscored the challenges in managing competing 

risks and the limitations of established approaches, particularly in epidemiological research. In 

conclusion, this study embarks on an innovative journey into the development, validation, and 

recalibration of prognostic models for predicting in-hospital mortality in pediatric patients. It 

underscores the importance of ensemble techniques in mitigating model uncertainties and 

improving predictive accuracy. Despite remarkable progress, further research is needed to 

address the intricacies of competing risks and enhance model reliability. 
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Chapter 1 

1.0 General Introduction 

1.1 Background 

Over the past decades, there has been a considerable progress in improving care, but child 

mortality remains high in sub-Saharan Africa relative to the rest of the world[1, 2]. Paediatric 

deaths in hospitalized children mostly occur soon after admission [3] and are caused by 

common childhood illnesses such as malaria, pneumonia, etc., which are readily treatable by 

cost-effective interventions[4].  To reduce child mortality and morbidity in Low-and Middle-

Income Countries (LMIC), World Health Organization (WHO) recommend use of a set of 

clinical signs to identify children whose health status is at the risk of deterioration for 

immediate treatment[5]. However, due to multifactorial nature of making clinical predictions, 

clinicians have difficulty to objectively and simultaneously weigh multiple risk factors to 

produce reliable and accurate predictions. Therefore, there is need for prognostic models that 

estimate the actual individual risk as accurately as possible. 

A prognostic model is a mathematical equation used to quantify the risk that a patient will 

experience an event of interest (e.g. death) in a specified time-period [6]. Such models are 

useful tools for clinicians and patients especially in screening for high-risk patients who could 

benefit from prompt management especially in LMIC where mortality is high. These 

prognostic models have been increasingly published over the last three decades [7]. However, 

majority of these prognostic models are yet to gain wide acceptance in clinical practice due to 

some reasons including models not being externally validated as should be [8] and poor 

predictive performances when subjected to external validations. Consequently, clinicians have 

continued to use their cognitive bias and gut feelings to predict patients’ possible outcomes [9] 
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despite evidence from numerous studies which have suggested that gut feelings are frequently 

wrong on the predictions of mortality[10]. This problem is further compounded by a high 

patient-clinician ratio in LMIC[11]. A clinically useful prognostic model should not only be 

derived using appropriate methodology but should also have clinical relevance [12]. In this 

report we focus on two methodological issues that include failure to account for competing 

events, and model uncertainty in the development of prognostic models. 

1.1.1 Competing events 

The conventional approach to analyzing time-to-in-hospital mortality typically relies on the 

Kaplan-Meier method for estimating survival functions and the Cox Proportional Hazards 

(CoxPH) model for gauging the impact of covariates on the hazard function, as outlined in 

prior research[13]. This method adeptly tackles the challenging issue of censoring, where the 

ultimate survival time remains unknown, by assuming non-informative censoring[14]. This 

assumption posits that individuals who are censored and those still at risk share similar 

prospects for survival. Additionally, it presumes that the reasons behind censoring are unrelated 

to the study's objectives[15]. However, this assumption has its limitations, particularly in 

scenarios where patients are discharged alive from the hospital upon recovery or when 

deteriorating patients are referred elsewhere for specialized care. In such cases, these 

individuals possess distinct characteristics from those still within the hospital, leading to 

different survival prospects. The presence of competing events is a common occurrence in 

biomedical research, yet traditional survival analysis methods continue to be employed, despite 

their tendency to yield biased estimates[16].  

To address this limitation, it is imperative to adopt methods that relax these assumptions. The 

competing risk framework offers a solution by considering alternative outcomes as competing 

events that preclude the occurrence of the event of interest[17]. For instance, being discharged 

alive or being referred are deemed competing events, with either one of these outcomes 
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preventing the in-hospital death (the event of interest) from occurring. Nonetheless, the 

suitability of the competing-risk framework in studies with short survival times remains 

uncertain[18]. Therefore, there is a need to explore its effectiveness and applicability in such 

contexts. 

1.1.2 Model uncertainty 

For many years, the central concern in the realm of predictive modeling has revolved around 

mitigating model uncertainty, especially when the primary objective is accurate out-of-sample 

prediction, which places the utmost value on model predictive performance [19]. In the domain 

of prognostic modeling, researchers and statisticians commonly employ data-driven or 

computer-assisted techniques to determine the covariates to include in a specific regression 

model. This selection process often relies on information criteria such as AIC or BIC. 

Subsequently, inferences are drawn under the presumption that the chosen "optimal" model 

serves as the true data-generating model (DGM). 

While this conventional approach is prevalent in the literature and adheres to established 

statistical practices, it falls short in effectively addressing model uncertainty during the 

covariate selection process. Consequently, this approach frequently leads to an underestimation 

of the uncertainties associated with the quantity of interest, ultimately yielding unreliable 

inferences[20, 21].  

In this thesis, the aim is to address the following key questions; what is the utility of competing 

risks framework in the setting of short survival time such as 2 days? What is the prediction 

accuracy of the existing prognostic models? What modelling techniques to use in handling 

model uncertainty?  
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1.2 Statement of the problem  

In Low- and Middle-Income Countries (LMIC), there is a concerning trend of pediatric ward 

deaths occurring within a short time after admission, typically within 48 hours. To address this 

issue effectively and identify patients at risk of deterioration, it is crucial to employ prognostic 

models. While numerous such models exist in the literature, none have received a 

recommendation for clinical use, especially in high-mortality settings. This lack of 

endorsement stems from several key factors. Firstly, most of these models have not undergone 

external validation, and for the few that have, their predictive performance has proven subpar. 

One primary reason behind this poor performance is the use of sub-optimal methodologies, 

including the failure to consider competing risks and model uncertainty. 

Consequently, there are several critical issues that need addressing. First, the clinical utility of 

these published models remains uncertain because there are limited validation studies 

evaluating and comparing their performance in larger cohorts of similar patients. This 

uncertainty means that these models cannot be relied upon for clinical use until their 

effectiveness is demonstrated. Second, the potential of the competing-risk framework in 

developing prognostic models in situations where the time-to-event is short, and competing 

events are significant, has not been explored adequately. Third, considering the high patient-

clinician ratio in most LMIC public hospitals, there is an urgent need for a robust prognostic 

model to predict mortality in children with short survival periods and thus save lives in this 

setting. Lastly, addressing uncertainty in prognostic models is vital, especially when dealing 

with an overwhelming number of possible models to consider from a single dataset or when 

the number of explanatory covariates far exceeds the available data. 

This thesis aims to tackle these issues comprehensively with the goal of improving the out-of-

sample predictive accuracy of prognostic models in the future. 
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1.3 Objectives of the study 

1.3.1 General objective 

The main objective of this study is to advance the field of pediatric predictive modeling by 

enhancing the methodological quality, clinical utility, and robustness of existing models. 

1.3.2 Specific objectives 

The specific objectives of this study are to: 

1. Conduct a systematic review to assess and rank published pediatric predictive models 

based on their methodological quality. This evaluation will specifically focus on 

examining how these models address issues related to model uncertainty and competing 

events, if at all. 

2. Evaluate the clinical usefulness and reliability of the models identified in objective 1 

through an external validation study. 

3. Perform model recalibration on existing prognostic models to enhance their predictive 

performance. 

4. Develop a robust method for addressing model uncertainty during the development of 

a predictive model. 

5. Investigate the methodological suitability of the sub-distribution hazard model for 

accounting for competing risks or events in situations characterized by a short time to 

event. 
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1.4 Significance of the study 

The significance of this thesis lies in its profound implications for the field of pediatric 

healthcare and predictive modeling. Firstly, the systematic review outlined in Objective 1 is 

poised to provide a comprehensive understanding of the landscape of pediatric predictive 

models. Its significance extends to shedding light on both the strengths and limitations of 

existing models. Knowledge gained from that piece of work is invaluable for clinicians who 

rely on these tools to make critical decisions about the care and treatment of pediatric patients. 

Additionally, it offers researchers and practitioners a well-informed starting point for further 

advancements in the field.  

Objective 2, which involves the external validation of identified models, bridges the gap 

between theoretical efficacy and real-world applicability. The significance here is two-fold: it 

offers empirical evidence of the utility and reliability of these models, thus guiding clinical 

practice, and it ensures that predictive models remain relevant and trustworthy in the ever-

evolving landscape of pediatric healthcare.  

Objective 3, which is focusing on model recalibration, addresses a fundamental concern in 

predictive modelling -the need for models to adapt and remain accurate over time. The ability 

to fine-tune these models based on empirical data can significantly enhance their predictive 

power, ultimately leading to more precise clinical decisions.  

Objective 4 takes on the formidable challenge of addressing model uncertainty during model 

development. The significance of this lies in its potential to bolster the trustworthiness of 

predictive models. By devising robust methods to manage model uncertainty, this study 

promotes accuracy and reliability of model predictions.  

Lastly, Objective 5 delves into the methodological suitability of the sub-distribution hazard 

model for handling competing risks in pediatric scenarios marked by short time-to-event 

windows. This has direct implications for clinical practice, ensuring that prognostic 
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assessments accurately reflect the complex realities of pediatric healthcare, reducing the risk 

of inappropriate interventions or resource allocation. 

In conclusion, this thesis embodies a multifaceted endeavor with significant imlications for the 

pediatric healthcare landscape. Its objectives collectively contribute to the improvement of 

predictive modeling techniques, enhance the quality of patient care, and provide a solid 

foundation for future research in the field.  

1.5 Thesis outline 

The structure of this report unfolds as follows: In Chapter 2, we embark on a comprehensive 

literature review of prognostic models. Chapter 3 provides a detailed overview of the research 

methodology and introduces key concepts. The external validation of prognostic models is the 

focus of Chapter 4. In Chapter 5, a thorough exploration of model recalibration is conducted to 

enhance predictive ability. Chapter 6 delves into innovative approaches for addressing model 

uncertainties. Chapter 7 involves extensive Monte Carlo simulations to investigate the impact 

of a short follow-up period on the accuracy of prognostic models in the context of competing 

events. Finally, Chapter 8 draws this report to a close with a discussion and recommendations 

for areas warranting further research. 
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Chapter 2 

2.0 Literature Review   

2.1 Introduction  

Child survival has improved significantly over the last few decades; however, in sub-Saharan 

Africa, child mortality remains disproportionately high compared to the global average. 

Pediatric deaths within hospitals typically occur shortly after admission, often due to treatable 

conditions like malaria, pneumonia, and diarrheal diseases. These diseases can be managed 

effectively with cost-efficient interventions [3, 22, 23]. In low- and middle-income countries 

(LMICs), healthcare practitioners frequently rely on clinical signs, as recommended by the 

World Health Organization (WHO) guidelines, to identify patients at risk of deterioration and 

make informed treatment decisions [24]. The WHO's clinical criteria, developed based on 

expert recommendations and a review of relevant studies reporting mortality risk factors, serve 

as the basis for these guidelines. To further enhance patient outcomes, prognostic or predictive 

models, using statistical equations and a combination of risk factors, can assist clinicians in 

identifying high-risk patients [25]. 

Despite numerous prognostic models for hospitalized children being published over the last 

three decades [7]; there are concerns regarding the methodology employed in their 

development [26]. Notably, none of these models are recommended for use in resource-limited 

settings according to current clinical practice guidelines. Consequently, there is a need for 

reviews of the methodologies underpinning their development [27].  

This chapter aims to address this gap by identifying and summarizing studies that have 

developed prognostic models or scoring systems to predict in-hospital pediatric mortality in 



9 
 

LMICs. Specifically, it provides a comprehensive overview of the existing research and 

critically assesses the methodological robustness of each model. 

2.2 Methods 

2.2.1 Protocol and registration  

Following recommendations, a research protocol for this review was not only published in a 

peer-reviewed journal [28], but was also registered with the International Prospective Register 

of Systematic Reviews (PROSPERO) under the registration number CRD42018088599.  

Furthermore, the reporting of this study adheres to the guidelines outlined by the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [29].  

2.2.2 Eligibility criteria 

We employed specific eligibility criteria to determine article inclusion, as outlined below: 

Study Design: Articles eligible for inclusion were peer-reviewed studies with study designs 

encompassing case-control, cohort (prospective or retrospective), cross-sectional, or 

randomized controlled trials. 

Outcome: We focused on studies predicting all-cause in-hospital mortality. Studies that 

predicted operative, trauma, or post-discharge mortality were excluded. 

Setting and Target Population: Our study centered on children over 1 month old admitted to 

pediatric wards within resource-limited settings, as defined by the World Bank [30]. Studies 

targeting children in High Dependency Units (HDU) or Intensive Care Units (ICU) were 

excluded due to the limited availability of such facilities in LMIC. Additionally, studies that 

included conditions uncommon in children, such as diabetes, cancer, chronic kidney disease, 

musculoskeletal disorders, etc., were excluded. However, studies focusing on prevalent 

childhood illnesses, such as malaria, pneumonia, meningitis, anaemia, and 

diarrhoea/dehydration [3], were included. 
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Prognostic Research Studies: Studies primarily aimed at developing predictive models or 

scoring systems were included. Excluded were case series, conference proceedings, editorials, 

commentaries, expert views, case reports, reviews, and studies primarily generating 

hypotheses, such as explanatory studies [31].  

Predictors in the Model: Studies that reported multivariable models with a minimum of 2 

variables/predictors were included. 

Full Text and Language: Language restrictions were not applied, and non-English language 

studies were translated using Google Translate. Studies not available in full text were excluded. 

2.2.3 Search strategy of articles 

Following the CHARMS (Checklist for critical Appraisal and data extraction for systematic 

Reviews of prediction Modelling Studies) checklist [32], our study identified seven core items, 

detailed in Table 2.2.3-2 which provided precise guidance for the formulation of our eligibility 

criteria, review objectives, and the structuring of our search strategy. In our quest to pinpoint 

relevant research papers that develop predictive models, we made use of MeSH (Medical 

Subject Headlines) terms and keywords, thoughtfully presented in We searched through 

CINAHL (via EbscoHost), Google Scholar, MEDLINE, and Web of Science, with our search 

scope spanning from the inception of these databases to August 2019. To uncover additional 

studies that might meet our eligibility criteria, we manually scrutinized the reference lists of 

the identified articles. To consolidate our search results, we effectively employed the 

EndNoteX7™ bibliography tool. 

Table 2.2.3-1. We searched through CINAHL (via EbscoHost), Google Scholar, MEDLINE, 

and Web of Science, with our search scope spanning from the inception of these databases to 

August 2019. To uncover additional studies that might meet our eligibility criteria, we 

manually scrutinized the reference lists of the identified articles. To consolidate our search 

results, we effectively employed the EndNoteX7™ bibliography tool. 
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Table 2.2.3-1: Systematic review framework as recommended by CHARMS checklist. 

Item  Criteria  

Prognostic or diagnostic 

model 

Prognostic model predicting in-hospital mortality. 

Scope Prognostic models to inform clinicians about the risk of deterioration 

or death. 

Type of prediction models Prognostic models with and/or without external validation. 

Prediction target population Children aged > 1 month to 15 years admitted in pediatric wards in 

developing countries 

Outcome of interest All-cause in-hospital mortality. 

Prediction period Any  

Intended moment to apply 

the prediction tool 

Prognostic model to be used in primary prevention to assess risk of 

deterioration and thus guide prevention/treatment. 

CHARMS= Checklist for critical Appraisal and data extraction for systematic Reviews of 

prediction Modelling Studies 

Table 2.2.3-2: Search terms for prognostic models 

Search 

ID 

Sub-heading Search Terms 

S4  

Children  

 

paediatric* OR pediatric* OR (MH “Pediatrics+”) OR child* 

S3  

Hospital 

based 

 

(MH “Hospitals+”) OR hospital* 

S2  

Low-income 

countries  

 

(MH “Developing Countries+”) OR (MH “Africa+") OR TI 

(“low income” OR “low and middle income“OR  “LMIC” OR 

“LIC” OR “limited resource*” OR “poor resource*” OR 

"resource* poor" OR (“developing countries”) OR 

(“developing nations”) OR (“third world”)  OR “resource-

constrained” OR (“global south”) 

S1  

Predictive 

models 

prognos* OR (MH “prognosis”) OR 

 (Predict* AND (Outcome* OR Risk* OR Model* OR 

Mortality OR Index OR Rule* OR decision* OR scor*))  

OR “risk score” OR “scor* system” OR “logistic model*” 

 “risk prediction” OR “risk calculation” OR “risk assessment” 

OR “c statistic” OR discrimination OR calibration OR AUC 

OR “area under the curve” OR “area under the receiver 

operator characteristic curve” 
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2.2.4 Data extraction from the included articles 

In our analysis of each study within our scope, we adhered to the guidelines outlined in 

CHARMS, ensuring the extraction of a comprehensive set of data points. This data 

encompassed particulars like the enrollment of participants, study design, characteristics of the 

study population, geographic location, sample size, the number and selection of predictors, 

study duration, methods for handling continuous predictors, management of missing data, 

modeling techniques (such as logistic regression or survival analysis), validation of model 

assumptions, internal validation methods (e.g., cross-validation, bootstrapping, or random data 

splits), presentation formats (such as regression formulas with coefficients, score charts, or 

nomograms), and model performance metrics. 

These performance metrics embraced aspects of discrimination, quantified by measures like 

the area under the curve (AUC) complete with 95% confidence intervals (CIs), as well as 

calibration and classification metrics, including specificity, sensitivity, positive predictive 

value, and negative predictive value. Beyond this, we delved into an extensive literature review 

to ascertain whether the models under consideration had undergone external validation in other 

studies. In cases where an article featured multiple prognostic models, each model was 

independently scrutinized. Importantly, to ensure the utmost accuracy and consistency, the data 

extracted by our two reviewers underwent a meticulous cross-checking process, with any 

disparities being resolved through thoughtful discussion with a third reviewer.  

It's worth noting that due to substantial heterogeneity among the studies included in our 

analysis, we opted not to engage in a quantitative synthesis of the identified models. 
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2.2.5 Assessment of methodological rigor of the identified prognostic 

models  

Following the PROBAST framework (Prediction study Risk of Bias Assessment Tool), a 

Cochrane tool meticulously designed for assessing the risk of bias (RoB) in predictive 

models[33, 34] we carried out RoB evaluations for each model across four pivotal domains. 

These domains encompassed: 

a) Selection of Study Participants: This domain probed how participants were recruited for 

the study. 

b) Predictors Domain: Here, we delved into elements like the selection of candidate 

predictors. 

c) Statistical Analysis Domain: This involved the evaluation of factors such as sample size, 

treatment of continuous predictors, and the management of missing data. 

d) Outcome Domain: This focused on the methods used for measuring and reporting 

outcomes. 

Within each of these domains, we employed a series of signaling questions, each offering five 

potential responses: yes, probably yes, probably no, no, and no information. Any affirmative 

response (yes or probably yes) signaled a low RoB. The final RoB rating for each model was 

determined by the culmination of outcomes within these domains. 

In alignment with PROBAST recommendations, a prognostic model was stamped with a "low 

RoB" rating if all four domains were marked as "low" RoB. Conversely, a model was tagged 

with a "high RoB" when at least one domain received a "high" RoB rating. Models teetered 

into the "unclear RoB" category if at least one domain garnered an "unclear" rating, while the 

remaining domains maintained a "low" RoB rating.  
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2.3 Results 

2.3.1 Characteristics of the included studies 

Our search strategy initially unearthed a total of 4054 unique articles. However, 3545 of these 

were subsequently excluded after a thorough review of titles and abstracts, as they veered into 

non-relevant topics. The full texts of 509 articles underwent a rigorous assessment for 

eligibility, eventually leading to the inclusion of 15 primary studies that reported a total of 21 

developed models, all of which met the eligibility criteria. See Figure 2.3.1-1 for a visual 

representation of this selection process. The eligible studies analysed data for patients who 

were below 15 years of age with median mortality being 6.7% (range 1.2% to 43.9%).[35] [36] 

While majority of the models were developed for general cases in paediatric wards (n=9), some 

were tailored for specific paediatric groups defined by common diagnoses such as febrile 

illness (n=1),[37] malaria (n=2), [38, 39] pneumonia (n=4),[35, 40-42] malnutrition (n=2) [43, 

44] and other infectious diseases (n=3).  
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Figure 2.3.1-1: PRISMA flow diagram showing the process used to identify prognostic 

models predicting in-hospital paediatric mortality included in this review. 

The bulk of the studies included in our analysis were published after the year 2000, totaling 20, 

except for a single study published in 1996 [43]. Notably, the temporal range of data used in 

these models under review varied, with the latest dataset employed in Rosman et al.'s study 

spanning from 2016 to 2017 [45]. In contrast, the oldest dataset was utilized by Draimax et al. 

and encompassed the years 1986 to 1988. Five of the 15 included studies were based on data 

collected from at least two hospitals. Among these, three studies expanded their research across 

multiple countries, including countries within sub-Saharan Africa and Asia (Figure 2.3.1-2). In 

the review of the identified studies, we observed that a significant portion of the essential 
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information we aimed to abstract was either not reported or was only partially reported. This 

observation serves as a clear indication of non-compliance with the Transparent Reporting of 

a Multivariable Prognostic Model for Individual Prognosis or Diagnosis guidelines (TRIPOD) 

[46, 47].        

 

 

Figure 2.3.1-2: Prognostic models predicting in-hospital paediatric mortality identified 

by country. Text highlighted in red are the names of the models with their corresponding 

discrimination measures (area under the curve). Key: PEWS-RL score=Paediatric Early 

Warning Score for Resource-Limited Settings; SICK score=Signs of Inflammation in Children 

that Kill; PET score= Paediatric Emergency Triage; mRISC score= Modified Respiratory 

Index of Severity in Children score; RISC score= Respiratory Index of Severity in Children 

score; PERCH severity score= Pneumonia Etiology Research for Child Health severity score; 

LOD score= Lambarene Organ Dysfunction score; CRT= Classification and Regression 

Trees; ITAT Score= Inpatient Triage Assessment and Treatment score; PEDIA score= 

Paediatric Early Death Index for Africa score. 

 



17 
 

2.3.2 Methodological issues of the reviewed models 

Candidate predictors 

The final reported models featured a total of 61 distinct predictors, with each model typically 

incorporating a median of 7 predictors. In most cases, the initial selection of independent 

candidate predictors was predominantly based on univariable analyses. However, it's worth 

noting that three studies [41] deviated from this approach, opting for predictor selection 

through literature reviews or considerations of clinical relevance. Across 6 models, a backward 

stepwise selection method was employed during multivariable analyses to determine the final 

model predictors. Notably, the common predictors included in the final models encompassed 

indicators such as altered consciousness, malnutrition indicators, vital signs, and signs of 

respiratory distress (see Figure 2.3.2-1). Some models included predictors that were either not 

easily obtainable or required specialized laboratory techniques. Among the 13 models that used 

continuous predictors, 8 of them categorized these continuous predictors, despite the potential 

for a continuous scale. Additionally, two out of the 13 models implemented alternative 

techniques such as fractional polynomials [37] and restricted cubic splines [44] to determine 

the most suitable functional form for these continuous predictors.  
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Figure 2.3.2-1: Top four categories of predictors in the models of the reviewed reports: altered 

consciousness (coma, prostration, not alert, unconscious); malnutrition indicators 

(kwashiorkor, edema, weight-for-height z-score, weight-for-age z-score, mid-upper arm 

circumference-MUAC, wasting); vital signs (temperature, respiratory rate, heart rate, oxygen 

saturation); signs of respiratory distress (indrawing, lung crepitation, difficult breathing, 

grunting). 

Sample size, events per variable (EPV) and missing data 

The sample size across the included studies exhibited a wide range, spanning from 16 to 

50,249, with a median of 1,307. The median effective events per variable (EPV) stood at 21, 

with an interquartile range between 8.3 and 32.5. Notably, 7 models had an EPV of less than 

10, indicating the potential for overfitting due to insufficient sample sizes. For instance, in the 

development of the PEDIA-Immediate score by Berkley et al., the dataset reported 60 deaths. 

According to the general guideline that a study building a predictive model should ideally have 

a minimum of 10 events (deaths) for each independent candidate predictor,[48] this should 

have led to the consideration of a model with a maximum of 6 predictors. However, 10 

predictors were incorporated instead, resulting in an EPV of 6. 
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In the case of missing data, there was a lack of uniform reporting. Different approaches were 

employed across the reviewed studies: 6 models did not report how they handled missing data; 

8 employed complete case analysis; 4 utilized multiple imputations through chained equations; 

and a single study [44], applied single imputation.  

 

Model development 

The majority of studies predominantly employed logistic regression for their model 

development, while one study [37] opted for Cox regression, another study [36] used the 

Spiegelhalter/Knill-Jones method, and a fourth study [39] utilized a machine learning 

technique known as classification and regression trees. In the context of verifying model 

assumptions, most studies failed to provide such information. For example, George et al. [37] 

who employed Cox regression, did not report the verification of the proportional hazard 

assumption or explore the potential presence of competing risks, as recommended [49]. Other 

regression assumptions, such as multicollinearity, were also largely unreported. However, it's 

worth noting that the use of a backward elimination method inherently addresses redundant 

variables, implying the satisfaction of the multicollinearity assumption if this method was 

applied [50]. Furthermore, while five studies developed models using data from different 

countries or centers, none of them clustered their analyses based on the data source in a 

multilevel model to account for potential heterogeneity. Neglecting this clustering aspect can 

introduce bias in predictor effects [51]. 
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Model performance evaluation & presentation 

Performance measures (both calibration and discrimination) were poorly reported in most of 

the studies and in most cases (n=20) AUC for discrimination was reported. Performance of the 

derived models was evaluated in 12 models using either split-sample, resampling methods, or 

separate datasets. Except for the model derived by George et al. [37], all other models did not 

report both apparent discrimination (without any adjustment for optimism) and optimism-

corrected discrimination measures. Despite inadequate reporting of the models’ performance, 

16 models reported AUCs ≥ 0.80, an indication of promising models. Apart from the following 

exceptions; Lambarene Organ Dysfunction (LOD) score [38], Paediatric Early Death Index for 

Africa (PEDIA) score [36], Signs of Inflammation in Children that Kill (SICK) score [52], 

Respiratory Index of Severity in Children(RISC) score [35], and Modified Respiratory Index 

of Severity in Children (mRISC) score [40], other prognostic models in this review have not 

been externally validated (by independent investigators using diverse populations). Only 2 

studies [41] developing 4 models provided a full model formula (both coefficients and 

intercept/baseline function) in their results as recommended [46, 47]. While most of the models 

(n=17) were presented as simplified integer scores, only a few were assigned weights according 

to the regression coefficients. 

Risk of bias (RoB)  

According to the PROBAST tool, Risk of Bias (RoB) was assessed in four key domains: 

participants, predictors, outcome, and analyses. Figure 2.3.2-2 provides a summary of the RoB 

assessment across all models included in this review. Notably, the domain of outcome showed 

consistently low RoB across all models. However, the domain of statistical analyses raised 

significant concerns. In 19 out of 21 models, comprehensive details of model development 

were not reported as expected, making it challenging to conduct a proper risk of bias assessment 

using the nine signaling questions under the analysis's domain. Consequently, these models 
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were judged to have an unclear RoB in this domain (see Figure 2.3.2-3).  In the overall RoB 

judgment, 9 out of the 21 models were assessed as having a high risk of bias because at least 

one out of the four domains in these models received a high RoB rating. The remaining models 

(12 out of 21) were judged to have an unclear RoB due to the combination of low and unclear 

RoB ratings in the domains. Notably, no model received a low RoB rating in all four domains. 

 

Figure 2.3.2-2: Summary of the risk of bias of the included models using PROBAST (Prediction 

study Risk of Bias Assessment Tool). 
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Figure 2.3.2-3: Risk of bias assessment. Low means low risk of bias, High means a high risk of 

bias, and Unclear bias means it was not possible to assess the risk of bias. Key: PEWS-RL 

score=Paediatric Early Warning Score for Resource-Limited Settings; SICK score=Signs of 

Inflammation in Children that Kill; PET score= Paediatric Emergency Triage; mRISC score= 

Modified Respiratory Index of Severity in Children score; RISC score= Respiratory Index of 

Severity in Children score; PERCH severity score= Pneumonia Etiology Research for Child 

Health severity score; LOD score= Lambarene Organ Dysfunction score; CRT= 

Classification and Regression Trees; ITAT Score= Inpatient Triage Assessment and Treatment 

score; PEDIA score= Paediatric Early Death Index for Africa score. 
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2.4 Discussion 

2.4.1 Summary of key findings 

In this chapter, we conducted a systematic review with the objective of identifying predictive 

scores for in-hospital mortality among pediatric patients in resource-limited countries. During 

this comprehensive review, we identified fifteen studies that collectively presented the 

development of twenty-one distinct prognostic models. Our analysis not only involved an 

examination of the characteristics of these studies but also an in-depth assessment of the 

methodological quality of the included models, adhering to contemporary guidelines relevant 

to predictive models. 

This assessment brought to light several significant quality issues. These concerns primarily 

revolved around reporting deficiencies and various methodological considerations. Key 

problems included inadequate handling of missing data, a heavy reliance on univariable 

analysis for predictor selection, inappropriate categorization of continuous predictors, 

suboptimal adherence to the events per variable (EPV) principle, and less-than-optimal 

presentation of the proposed models for practical application. As a result, none of the models 

met the established criteria for good methodological quality, indicating an overall risk of 

potential high or unclear bias in their predictive capabilities (see Figure 2.3.2-3).  

Our analysis of predictive models reveals discrepancies in meeting contemporary 

methodological standards. Firstly, we observed that 18 out of the 21 models in this review 

routinely employed univariable analysis for the initial selection of candidate predictors to be 

integrated into multivariable analyses. This common practice may exclude potentially 

significant prognostic factors that, while appearing insignificant in univariable analyses, could 

prove to be substantial when combined with other predictors [46, 47].  It is recommended to 

make an a priori selection of predictors based on expert opinion, clinical intuition, or relevant 
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literature for this purpose. However, it's worth noting that only three studies in this review 

followed this approach [41]. 

Using small sample sizes during model development can result in poor predictive performance, 

overfitting, and biased effect estimates. To ensure the reliability of prognostic models, it's 

generally accepted that there should be a minimum of ten events for each candidate 

independent predictor [53-55]. Models with insufficient events per variable (EPV) are 

considered underpowered and are more likely to produce spurious results [48]. Surprisingly, in 

this review, 7 out of 21 models had inadequate sample sizes (EPV<10), and there was no 

information provided regarding whether bootstrapping, which helps reduce overfitting, was 

utilized in these models [56]. 

Similar to many epidemiological studies, dealing with missing data is a common challenge. 

The typical approach to address this issue involves multiple imputation or other suitable 

methods. However, in the model development studies reviewed here, such methods were rarely 

used. To illustrate, out of the 21 models examined, 8 employed Complete Case Analysis 

(CCA), 4 used multiple imputation under the assumption that the missing data was Missing at 

Random (MAR), and 6 did not provide information on how they handled missing data, leading 

us to assume they used CCA. Following Harrell's recommendations [57], CCA should only be 

considered when the percentage of missing data is less than 5%. However, the appropriateness 

of using CCA could not be determined, as most of the studies failed to report the proportion of 

missing data for each variable. Inappropriately using CCA means that only a small subset of 

the data is considered, which cannot be considered a random sample from the target population 

unless the data is Missing Completely At Random (MCAR), a condition that is rarely observed 

in practice [58]. Consequently, there are concerns regarding potential loss of precision in 

inferences and biases in the estimated parameters [59] or models employing CCA. Multiple 

Imputation by Chained Equations (MICE) is the recommended method for handling missing 
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data, but applying it when data are not missing at random could lead to biased model results 

[60]. Additionally, there were concerns about how continuous predictors were handled in this 

review. Among the 13 models that included continuous predictors, 8 of them chose to 

categorize these variables, even when a continuous scale was feasible. While this approach 

may seem intuitive, it comes at the cost of predictive accuracy, resulting in poorer model 

performance due to a loss of statistical power and information. 

It is recommended that the nature of continuous data should be retained or managed using 

appropriate techniques, such as flexible parametrizations like fractional polynomial regression 

splines, or non-parametric methods like locally estimated scatterplot smoothing (LOESS) 

functions [61, 62]. In this review, only 2 studies applied appropriate methods for transforming 

continuous data, using restricted cubic splines and fractional polynomial approaches. 

While sixteen models achieved a discrimination metric of over 80%, indicating their promise, 

it's crucial to exercise caution when interpreting their performance. This caution is warranted 

because the median mortality rate in the studies included was only 6.7%, resulting in heavily 

imbalanced data due to the rarity of the outcome of interest. To illustrate this point, consider a 

study with a mortality rate of 5%; a model predicting no deaths could easily achieve 95% 

accuracy, which could be misleading [49, 63]. Therefore, it is advisable for authors to provide 

additional performance measures for their models. These measures may include model 

specificity, sensitivity, accuracy, positive predictive values, and negative predictive values. 

These additional metrics will enable a more accurate contextualization of the model's 

performance, considering the inherent challenges of imbalanced data.  

2.4.2 Comparison with other Studies 

The methods employed to evaluate the quality measures of the models included in this chapter 

have previously been used to assess predictive models in various specialties [64-66]. As seen 

in the findings of this review, earlier reviews [26, 67-69] that focused on the development of 
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prognostic models also identified numerous shortcomings. These issues encompassed 

inappropriate statistical analyses, insufficient reporting of critical methodological details 

necessary for model validation, and a general lack of external validation. 

It's essential to recognize that a detailed and transparent report of the methods used in model 

development is a fundamental principle of research integrity. This transparency enables the 

research community to assess study findings and gauge the risk of bias [70]. Inadequate 

reporting of clinical models not only hampers future research in the field of prognostics but 

also contributes to wasted research efforts [71]. For instance, conducting external validation of 

prognostic models requires access to a complete model formula. This information is crucial for 

directly estimating survival probabilities [47]. However, this level of detail was found in only 

four of the models. Surprisingly, in the case of five models reported to have undergone external 

validation, the complete model formula, as required, was not provided. This omission raises 

questions about whether the authors of these external validation studies applied the original 

model coefficients to the external datasets or if they essentially created new model coefficients, 

which is tantamount to model redevelopment. 

As a result, this review underscores the importance of researchers adhering to the TRIPOD 

guidelines, which were established to assist authors of prognostic models in creating 

comprehensive and transparent reports. It's worth noting that the quality of clinical predictive 

models does not appear to have improved over time, as previous reviews spanning from 1996 

[72] to 2019 [73] consistently identified suboptimal methodologies in the development of 

predictive models, particularly in the realm of analysis. Models derived in a subpar manner can 

lead to overly optimistic results and potentially misleading performances. 

Several factors may contribute to the prevalence of low-quality prognostic models, including 

the pressure to publish new predictive models, regardless of their clinical value, and the 

insufficient biostatistical support provided to investigators.  
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Hence, there is a crucial role for the editorial process in promoting best practices and ensuring 

compliance with the recommendations outlined in the TRIPOD statement. This compliance 

could be incorporated into the checklist for submission, thereby fostering the development of 

high-quality predictive models. 

2.4.3  Implications of this review 

The development of a prognostic model involves several stages, including development, 

validation (both internally and externally), impact assessment, and implementation. However, 

a significant number of the models reviewed are still in the initial development stage. This 

indicates a prevalent focus among researchers on creating new models, often using similar 

prognostic factors, while neglecting the crucial steps of validating and enhancing existing 

prognostic models. This lack of validation and improvement leaves healthcare policymakers 

uncertain about which models to recommend for use in their specific settings. 

To progress prognostic research to the next stage, external validation is essential. In Kenya, for 

example, there are substantial patient-level datasets available, such as the Clinical Information 

Network (CIN), which has been accumulated over time from various referral hospitals. These 

datasets can be leveraged for the external validation of the models identified in this review, 

allowing for comparative assessments, as recommended by  Collins et al.,[74]. If necessary, 

predictive performance can be enhanced by incorporating new prognostic factors. 

Furthermore, it's worth noting that a considerable number of the models reviewed rounded the 

original predictor coefficients to the nearest integer. This practice can impact model 

performance during external validation due to a loss of predictive accuracy resulting from 

coefficient rounding [58]. 

In this chapter, we aim to provide guidance on methodological considerations regarding 

candidate predictors, as identified in this review. When selecting potential candidate predictors 

for inclusion in a prediction model, researchers should prioritize those that will be readily 
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available at the time predictions are made. While some predictors obtained from invasive 

procedures, such as C-reactive protein, blood gas analyses, or blood or cerebrospinal fluid 

culture, may offer a higher predictive value for mortality, they might not be practical in 

resource-limited settings where results may take days to be reported or resources may be 

insufficient to perform such tests in many hospitals. Therefore, models utilizing such variables 

may not be practical for clinicians in typical emergency departments in low- and middle-

income countries (LMIC). 

The practice of screening model candidate predictors based on bivariate associations, using a 

p-value threshold (typically 0.05), has been strongly discouraged in previous research. 

Additionally, the common practice of categorizing continuous model predictors is also 

problematic, as it discards valuable information and often lacks clinical plausibility [49].  

Finally, there's a risk of overfitting if a model includes more predictors than the dataset can 

support. The ratio of events (deaths) to the number of independent candidate predictors has 

been extensively discussed in methodological literature, and it's recommended that the ratio of 

events per variable (EPV) should be at least 10 [75, 76]. 

2.4.4 Strengths and limitations of this review 

The article search strategy employed in this chapter successfully identified several potentially 

eligible studies, making it unlikely that any relevant studies were inadvertently omitted. The 

quality assessment of the included models was based on contemporary reporting standards and 

applied consistently to all identified studies. 

For example, when there was no mention of internal validation or confirmation of model 

assumptions in a study, we were unable to determine whether these critical steps in model 

development were conducted or not. Consequently, models that might have otherwise been 

considered low risk for bias were classified as either unclear or high risk in each domain. The 

PROBAST analysis domain included the majority (9 out of 20) of the signalling questions, and 
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any model within this domain had a higher likelihood of being labelled as high risk as long as 

there was a single negative (no or probably no) response. This stringent criterion resulted in all 

models being categorized as either unclear or high risk for bias, thereby preventing us from 

conducting a meta-analysis. 

We acknowledge that our conclusion might change if we were to relax this decision rule to 

some extent. Nonetheless, we maintain our position that authors should adhere to guidelines 

for transparent and comprehensive reporting of any proposed prognostic model. Such 

adherence facilitates the model's external validation and subsequent practical application. 

Lastly, it's important to note that we used Google Translate to interpret a study by Bitwe et al. 

[77] from French to English. It is possible that some statistical terminologies were not 

accurately translated, and certain aspects of the model characteristics might have been lost in 

the process. 

2.5 Conclusion  

Well-constructed and thoroughly validated predictive models have the potential to make 

significant contributions to child survival, particularly in resource-limited countries. In our 

review, we specifically focused on identifying predictive models for in-hospital mortality 

among pediatric patients. Unfortunately, we found that none of the models we examined met 

the criteria for being considered of high quality. This highlights the pressing need to address 

the identified shortcomings in future prognostic model development by adhering to widely 

accepted and standardized methodological criteria. It's important to emphasize that most of the 

models created have not yet undergone the crucial step of external validation. This omission 

not only obstructs rigorous external validation by other researchers but also undermines the 

practical applicability of these models. Rather than prioritizing the creation of new prognostic 

models, researchers should strongly consider conducting comprehensive joint external 

validation exercises using large datasets collected over extended time periods and from diverse 
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locations. This approach would facilitate comparisons among models and, when necessary, 

enable adjustments to ensure their generalizability and effectiveness in real-world scenarios.
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Chapter 3 

3.0 Research Methodology  

3.1 Introduction 

In this chapter, we present key principles and approaches that will be employed across this 

thesis report. Section 3.2 outlines the data sources and the study designs utilized for data 

collection, while section 3.3 elaborates on data management and the handling of missing data. 

The concepts and methods utilized for external validation are detailed in section 3.4, with 

model recalibration methods discussed in section 3.5. Additionally, sections 3.6 and 3.7 

provide insights into strategies for managing model uncertainty, and addressing competing 

risks, respectively. 

3.2 Data  

3.2.1 Data sources   

We leveraged on the data collected by the Clinical Information Network (CIN) from 20 Kenyan 

county referral hospitals. The geographical locations of these hospitals are depicted in Figure 

3.2.1-1. The selection of hospitals for inclusion in the CIN dataset was deliberate, focusing on 

those with an annual admission rate of at least 1000 patients. These hospitals were chosen to 

provide a representative sample encompassing both high and low malaria endemicity regions, 

spanning both large rural and urban settings. More details about the selection of these hospitals 

and their locations have been given elsewhere [78].  The CIN initiative is a collaborative effort 

involving medical researchers from the Kenya Medical Research Institute (KEMRI)-Wellcome 

Trust Research Programme, the Kenya Ministry of Health (MoH), the Kenya Paediatric 

Association (KPA), and the University of Nairobi (UoN). Since 2013, the CIN has been 
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collecting over 200,000 de-identified patient-level records from pediatric wards, which 

includes data on more than 6,000 patient fatalities.  

 

 

Figure 3.2.1-1: Locations of hospitals included in the validation cohort. 



33 
 

3.2.2 Data management 

Patients admitted to hospitals affiliated with the Clinical Information Network (CIN) undergo 

thorough data collection procedures. This process involves documenting various aspects of 

their medical history and care. The information routinely collected includes biodata like age 

and gender, details about the patient's illness history such as the duration of illness, fever 

history, diarrhea, vomiting, convulsions, and vaccination records. Additionally, examination 

findings are recorded, covering vital signs, the presence of conditions like thrush or edema, and 

visible wasting. 

Investigation results from tests conducted during admission, such as malaria, hematology, 

glucose levels, HIV, and lumbar puncture tests, are also documented. Clinician also records 

primary and secondary admission and discharge diagnoses, as well as the treatments 

administered during inpatient, including antibiotics, anti-malarial drugs, and anti-tuberculous 

medications. Any supportive care measures provided, such as oxygen support, blood 

transfusions, and fluid treatments, are also documented.  

Vital signs measurements taken during the initial 48 hours of admission and patient outcomes 

at the time of discharge are also recorded. To document care provided in hospitals, clinicians 

in these hospitals use a standardized medical record known as the Pediatric Admission Record 

(PAR), which is universally adopted for use within the CIN network [79]. 

After a patient's discharge or death, a trained data clerk transfers this data to a customized data 

capture tool. This tool is developed using the non-proprietary Research Electronic Data Capture 

(REDCap) platform [80]. As part of quality assurance procedures, local data quality checks are 

conducted before data is synchronized with a central database at the end of each day. The 

checks are done using scripts written in R programming language. These checks assess data 

completeness and identify any transcription errors, and any inconsistencies or omissions. Any 

data issue detected is corrected by the data clerk after careful verification with the patient's 
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medical records. However, it's important to note that the data clerk does not make corrections 

to documentation errors made by the clinical or nursing teams. 

 

3.2.3 Missing data imputation  

Owing to the substantial amount of missing data in the CIN dataset, multiple imputation by 

chained equations (MICE) was performed to address the problem under the assumption of data 

missing at random (MAR) mechanism.  

According to Rubin's seminal work in 1976, Missing at Random (MAR) implies the existence 

of a systematic link between the likelihood of encountering missing values and the available 

observed data, rather than the missing data itself. The likelihood of observation Yi being 

missing when considering both 𝑌𝑖 and X𝑖 is equivalent to the probability of 𝑌𝑖 being missing 

when only  𝑋𝑖 is considered as shown in equation (3.3-1)  

P(Ymissing|Yi, Xi) = P(Ymissing|Xi) (3.3-1) 

In this method missing values are imputed using a set of univariate conditional imputation 

models [81] and generates multiple “complete” datasets with different plausible values of the 

missing values. As recommended, we included all variables of interest in the imputation model 

and selected other auxiliary variables in the database giving a total of 53 variables in the 

imputation model. The auxiliary variables were intended to preserve the relationship among 

variables [82, 83]. In the imputation model we specified different imputation options 

conditional on the type of the variable, for instance ordered logistic regression option was 

applicable to ordinal categorical variables, multinomial logistic regression for nominal multi-

level was applicable to categorical variables with more than 2 levels, linear regression for 

continuous variables, and binary logistic regressions for dichotomous categorical variables. 

Based on the principle that the number of imputations must at least be equal to the proportion 
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of incomplete data [82], we generated 70 multiply imputed datasets since 68% the CIN records 

were incomplete. Graphical comparisons of the kernel density plots of the imputed verses 

observed values suggested the imputed values were plausible since the distributions of the 

values from the two datasets (imputed and original) appeared identical as shown in Figure 

3.2.3-1. The multiply imputed datasets were used in the subsequent analyses to answer study 

objectives except for the literature review. 
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Figure 3.2.3-1: Kernel density plots of the observed (non-imputed) and imputed values of various variables. Visual inspection of the distributions 

of the observed and imputed values appears identical suggesting the imputation model generated plausible values to replace missing ones.   
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3.3 Prognostic model’s external validations  

The literature review conducted in Chapter 2 highlights significant shortcomings in many 

prognostic models, undermining their practicality and applicability. Common methodological 

weaknesses include limited sample sizes, resulting in low signal-to-noise ratios and insufficient 

events-per-variable (EPV), with some models falling below the recommended EPV threshold 

of 20, potentially introducing bias. Additionally, issues arise from inadequate handling of 

incomplete data, inappropriate statistical analyses, and overly optimistic interpretations of 

model outcomes. Excessive dependence on fully automated statistical techniques, like stepwise 

model selection algorithms (backward or forward), which do not necessitate expert input, can 

lead to over-optimistic or irrelevant models for real-world use. To determine methodological 

utility of the identified prognostic models, in Objective II (Chapter 4), we will perform external 

validation of prognostic models for in-hospital pediatric mortality in LMICs. This validation 

will be based on routine hospital data collected by the Clinical Information Network (CIN) in 

Kenya. The following section outlines the methodology to address the research questions in 

Objective II. 

3.3.1 Determining model’s predicted risks in the validation set 

The model regression coefficients were used to determine predictions of the risk of mortality 

in the validation dataset. For each patient in the validation cohort, the presence of the model 

predictor was assigned a value of 1, while its absence was assigned a value of 0.  This was then 

multiplied by the corresponding regression coefficients and added together with the model 

intercept to get linear predictor.  Patient’s predicted risk of in-hospital mortality was then 

computed on the resultant linear predictor using the logistic function provided in equation 

(3.3.1-1) 
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𝑃(𝑌 = 1|𝑋) =
𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋1  +  …  𝛽𝑘𝑋𝑘) 

1 + 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑋1  +  …  𝛽𝑘𝑋𝑘)
, 

(3.3.1-1) 

 

where 𝑃(𝑌 = 1|𝑋) represents the probability that the dependent variable 𝑌 is equal to 1 given 

the values of the independent variables 𝑋. The  𝛽0 is the model intercept and 𝛽i is the regression 

coefficient for a given predictor X.  

3.3.2 Determining model’s performance in the validation set 

Model performance was determined based on the two metrics namely discriminatory index and 

model calibration. To determine the discriminatory ability of the model we used the Area Under 

the Curve (AUC) also known as c-statistic which is a measure of the ability of a model/score 

to distinguish between 2 classes [84, 85]. We classified the model’s discriminatory ability using 

the following cutoffs; (AUC)≥0.90 was classified as “excellent discrimination”, AUC ranging 

from 0.80 to 0.89 was classified “good discrimination”, AUC ranging from 0.70 to 0.79 as “fair 

discrimination”, and  “poor discrimination” was for the model whose AUC was <0.70 [86, 87].   

Model calibration was assessed by both plotting the predicted probability of in-hospital death 

against the observed proportion, and by computing calibration metrics namely calibration 

slope and calibration intercept [88]. The calibration slope, which has a reference value of 1, 

examines the dispersion of the predicted risks such that a slope value of < 1 suggests that 

estimated risks are too extreme while a slope value of >1 indicates that the estimated risks are 

too low. On the other hand the calibration intercept is a measure of calibration-in-the-large and 

it has a reference value of 0 such that a calibration intercept of <0 indicate overestimation 

while that of >0 indicate underestimation of risk [88]. The confidence intervals for both c-

statistic, calibration slope and intercept were calculated through bootstrap resampling using 

CalibrationCurves package in R[89]. 
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3.4 Model recalibration   

Clinical prediction models frequently encounter challenges during external validation, 

resulting in their rejection due to insufficient predictive accuracy. This issue can be partly 

ascribed to the dynamic nature of clinical settings, where a variety of factors, including changes 

in clinical practices, influence the landscape despite efforts to standardize these practices 

through clinical guidelines. Such interventions can modify the prevalence and clinical 

presentations of common childhood illnesses, diminishing the effectiveness of clinical 

prediction models developed before these shifts when validated in these evolving settings. 

Additionally, factors like case-mix variations, disparities in the timing of model development 

and validation, and dataset drift contribute to the degradation of model performance when 

applied to new samples. Thus, model recalibration is a vital step to enhance model performance 

and adapt them to the specific local context, as elaborated in Objective III (Chapter 5). The 

strategies for model recalibration are elaborated below. 

3.4.1 Model recalibration strategies 

To improve performance of the existing prognostic models, we used model’s linear predictor 

as shown in equation (3.4.1-1) whereby the α denotes the model intercept and 𝛽1 to 𝛽n denotes 

the vector of model coefficients (also called slope) for each of the prognostic factor 𝑋1 to 𝑋n 

(also called covariate).   

𝑙og (
P(in − hospital mortality)

1 − P(in − hospital mortality)
) = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑛𝑋𝑛 , 

(3.4.1-1) 

 

The right-hand side of the equation ((3.4.1-1) constitutes the linear predictor (𝐿𝑃𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) of the 

original model which is a weighted sum of the prognostic factor 𝑋1 to 𝑋n in the model, weights 

being 𝛽1 to 𝛽n which are the regression coefficients, and the α denotes the model intercept. 

This computation is done for each patient meeting the eligibility criteria of the models in the 

updating dataset. The resultant linear predictor is used by the recalibration strategies to adjust 
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the model accordingly [90, 91]. In this work, we used recalibration-in-the-large/intercept-only, 

and logistic calibration method to update the models as described below. 

3.4.2 Adjusting model intercept only/recalibration-in-the-large 

This approach exclusively adjusts the original model's intercept. The updated intercept is set to 

match the average of predicted in-hospital probabilities within the dataset used for the update 

[92]. This was accomplished by fitting a univariate logistic regression model, with the outcome 

being in-hospital mortality. In this regression, the linear predictor was treated as an offset, 

effectively fixing a constant coefficient of the covariate at unity for each observation within 

the updating dataset. Consequently, we derived an intercept from this model, which was then 

incorporated into the linear predictor of the original model as a correction factor. Importantly, 

the regression coefficients (𝛽1 to 𝛽n) of the original model remained unaltered, as illustrated in 

equation (3.4.2-1). 

𝑙og (
P(in − hospital mortality)

1 − P(in − hospital mortality)
) = (𝛼 + 𝛼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟) + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑛𝑋𝑛, 

(3.4.2-1) 

 

3.4.3 Logistic calibration  

This approach was employed to simultaneously update both the model intercept and the model 

slope for each of the models undergoing an update. To achieve this, we conducted univariate 

logistic regressions on each of the updating datasets, with in-hospital mortality as the dependent 

variable and the linear predictor as a covariate. This modeling process produced two key 

outputs: the calibration intercept and the slope correction factor. These two quantities were 

subsequently utilized to refine the original models, as exemplified in the equation 3.4.3-1.  This 

approach effectively updated the original model’s regression coefficients proportionally using 

slope’s correction factor. 
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𝑙og (
P(in − hospital mortality)

1 − P(in − hospital mortality)
) = 

(𝛼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟) + (𝐿𝑃𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 × 𝛽𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟),  

 

(3.4.3-1) 

 

 

3.5 Accounting for model uncertainty 

In the development of prognostic models, researchers often employ selection criteria to 

choose the "best" model from a pool of competing models, and all subsequent statistical 

inferences and conclusions are made with the implicit assumption that the distribution 

function of the selected model accurately represents the actual data-generating model 

(DGM). This practice is standard in statistical literature. However, it has its limitations, as it 

neglects model uncertainty in the process of selecting the most appropriate probability 

distribution function, potentially leading to misleading statistical inferences and either 

overestimation or underestimation of the risk associated with the outcome of interest. 

Objective IV (Chapter 6) aims to enhance the predictive ability of the model by addressing 

model uncertainty. To achieve this objective, the following methodology will be explored. 

3.5.1 Stacking of predictive distributions 

We started by first fitting models to the data using Bayesian inference. After which we 

calculated model’s posterior predictive distributions which is the distribution of predictions 

that the model would make for new data. To combine the predictive densities, we used a loss 

function called Kullback–Leibler divergence to determine model weights such that the model 

with lowest loss is given the most weight [93].  

3.6  Competing risk framework and simulations  

All prognostic models discussed in Objectives 1 to 4 focus on pediatric in-hospital mortality, 

typically occurring shortly after admission, with an average time frame of around 48 hours. 
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During the development of these prognostic models, the use of the Sub-distribution Hazard 

(SH) model in scenarios characterized by competing events, short follow-up period or 

substantial censoring has been discouraged due to its impact on the proportionality 

assumption of the SH model. Furthermore, it has been argued that, in situations with a brief 

follow-up period, the competing risks framework has limited influence compared to other 

alternative approaches. Therefore, Objective V (Chapter 7) aims to investigate how the 

accuracy of these prognostic models is affected in setups characterized by a short follow-up 

period or heavy censoring. The following section outlines the methodologies employed in 

this investigation. 

3.6.1 Overview of competing risks framework 

When a patient is admitted to a hospital, there are four possible outcomes: death, discharge, 

referral to another health facility, discharge against medical advice or absconding from the 

facility. The occurrence of any of these outcomes precludes another event at that point in 

time. Let (𝑋𝑡)𝑡≥0 representing the state a patient is in at any given time, 𝑋𝑡 ∈ {1, 2, 3, 4}. 

𝑋𝑡 = 1 represent discharge from hospital upon achieving clinical stability, 𝑋𝑡 = 2 indicates 

referral to other hospitals for advanced care, 𝑋𝑡 = 3 indicates the state of being discharged 

against medical advice or a patient absconds (escapes medical premise without permission 

of the healthcare worker), and  𝑋𝑡 = 4 represents in-hospital mortality which is the event of 

interest. The event-specific (also called cause-specific) hazard functions of these events are 

denoted by 𝛼0𝑗(𝑡),  where 0𝑗 denotes a transition from the point of admission to any of the 

four competing events at a given time.  The competing risk framework is represented 

schematically in Figure 3.6.1-1 whereby the occurrence of states 1-3 precludes state 4 (in-

hospital mortality).  
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Figure 3.6.1-1: Schematic view of the competing event framework for hospital admissions. 

Every admitted patient experience any of the four mutually exclusive events (discharged, 

referred out, discharged against the advice or absconded, and died). Cause-specific hazard 

functions are denoted by  𝛼0𝑗(𝑡), 𝑗 = 1, 2, 3, 4  and each arrow denotes a transition to a state 

denoted by a rectangle. 

3.6.2 Patient survival/follow-up period 

The patient survival/follow-up period was determined by length of hospital stay (LOS), which 

is the difference between the date of the observed event (e.g., date of discharge) and the date 

of admission. The CIN data had median LOS of 5 days with an interquartile range of 2 to 6 

days. Further exploration of the data suggested that a smaller number of patients with LOS >15 

days had an outcome of interest (hospital mortality). For this reason, the datasets used in the 

simulations included patients with LOS <=15. All simulations and statistical analyses were 

conducted using the R statistical programming language. The cmprsk R package (version 2.2-

9) [94] was used to fit the SH models. 
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Chapter 4 

4.0 External Validation of Prognostic Models 

 

4.1 Introduction  

Childhood mortality remains high in lower and middle-income countries (LMICs) despites a 

significant reduction since 1990 but it’s uncertain how much in-hospital mortality has changed 

over this duration [95-97]. Mortality rates among hospitalized children in sub-Saharan Africa 

remains high and most deaths occur within the first few hours of admission [78]. Emergency 

Triage Assessment and Treatment (ETAT) guidelines, produced by the World Health 

Organization (WHO), provide guidance on immediate care for children admitted to hospitals.  

ETAT guidelines provide guidance on triage and uses syndrome-based approach to 

management of common childhood conditions but they are still used inconsistently and 

implemented sub-optimally in Africa despite having been in existence since 2005 [98].  

Regardless of underlying condition, children at risk of death during hospitalization often 

present with similar danger signs and prompt triage and immediate supportive management are 

thought as most important in reducing mortality and morbidity in admitted children[99].  

Identification of children at risk of in-hospital mortality is the first step in directing supportive 

treatments that have the potential to reduce deaths. Therefore, clinical prediction models that 

identify the sickest children immediately on arrival to hospital for immediate supportive care 

and targeted close monitoring may be useful [25].  

In Chapter 2, It was shown that many prognostic models do not meet the methodological 

standards hence reducing their utility and generalizability. A common methodological 
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weakness identified include small sample size which makes a resultant model to have a low 

signal-to-noise ratio, limited number of events-per-variable (EPV), with some having EPV of 

less than 20 which is thought to lead to biased estimates [47, 100-102]. Other weaknesses 

include poor handling of incomplete data, inappropriate statistical analyses, and optimistic 

interpretations of the model output.  Furthermore, overreliance on fully automated statistical 

techniques, such as the stepwise model selection algorithm (backward or forward), which do 

not require expert or consensus input, can lead to overoptimistic or biased models that are not 

always relevant in routine practice [12, 101, 103, 104].  

In this Chapter, we focus on the external validation of prognostic models identified in Chapter 

2. This is an important step in the development of any prognostic models since it aims to assess 

predictive model’s transferability and or generalizability to other patient populations before it 

can be recommended for use in the clinical practice. It is noteworthy that in Chapter 2 it was 

shown that none of the identified model had undergone an independent external validation 

hence there is uncertainty in their reliability and generalizability [12, 105, 106].  

The remainder of this chapter is structured as follows; sections 4.2 present model validation 

methods, it also delves into the details of the models set to be externally validated as we as 

sensitivity analysis. The results of this model validations are shown in section 4.3, discussion 

is provided in section 4.4, implication and conclusion is provided in the section 4.5.  

4.2 Methods 

4.2.1 Prognostic models included for external validation. 

Models included in this external validation chapter were obtained from the systematic review 

on prognostic models done in chapter 2 which identified 11 models predicting in-hospital 

mortality for children admitted in LMICs hospitals. However, we excluded 9 models [35-38, 

44, 107] since they did not publish the relative weights of the risk factors and model intercept 
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for the logistic regression models, or the baseline hazard function for the survival models as 

required for the external validation. Before we made the decision to exclude these models, we 

contacted the corresponding authors of those studies by email asking for the full model formula 

without success. The following are the models included in the current external validation study. 

1. RISC-Malawi prognostic model 

RISC-Malawi is a Respiratory Index of Severity in Children (RISC) that was developed using 

prospectively collected clinical data from a cohort of 14,665 hospitalized children aged 2-59 

months with pneumonia in Malawi between 2011–2014. Total deaths in the model 

development cohort were 465 deaths and the case fatality rate was 3.2% across the seven 

hospitals under study[41]. The authors utilized logistic regression to develop a prognostic 

model whose intercept and odds ratios for the seven prognostic factors are provided in Table 

1. The author reported an area under the receiver operator characteristic curve (ROC) of 0.79 

(95% CI: 0.76–0.82), demonstrating a fair ability to discriminate between children’s risk of 

mortality.  

2. Lowlaavar et al. 2016 prognostic models  

Lowlaavar et al. 2016 [108] developed three models utilizing a two-site prospective 

observational study in Uganda which enrolled children between 6 months and 5 years admitted 

with a proven or suspected infection. In their study, 1307 children were enrolled consecutively 

and 65 (5%) of participants died during their in-hospital stay. The study was conducted between 

March 2012 and December 2013. The primary model included weight for age z-score, Blantyre 

coma scale and HIV status. Based on the derivation dataset the AUC was 0.85 (95% CI 0.80–

0.89). The second model included MUAC (mid-upper arm circumference), Blantyre coma 

scale, and HIV status. The area under the ROC curve of this model was 0.84 (95% CI 0.79–

0.89). Model 3 included 2 variables MUAC and Blantyre coma scale with an AUC of 

0.82(0.72-0.91). The equations of these 3 models are provided in Table 4.2.1-1. 
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Table 4.2.1-1: Models to be externally validated. 

Study Models Inclusion criteria Predictors Model equation with intercept and 

odds ratios  

Model 

derivation 

AUC 

(95% CI) 

CIN sample size 

eligible for validation 

(% with mortality 

outcome) 

Hooli et al. 

2016  

RISC-

Malawi 

Model  

age>=2months 

<=59months, 

Pneumonia by 

danger signs 

(Cough or difficult 

breathing and at 

least one danger 

sign 

(Central cyanosis, 

grunting, chest wall 

indrawing, stridor, 

inability to drink, 

AVPU<A, or 

convulsion)) 

Moderate 

hypoxemia, 

severe 

hypoxemia, 

moderately 

malnourished, 

severely 

malnourished, 

child-

sex(female), 

wheezing  

= −4.67
+ (𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 ℎ𝑦𝑝𝑜𝑥𝑒𝑚𝑖𝑎 × 0.43)
+ (𝑠𝑒𝑣𝑒𝑟𝑒 ℎ𝑦𝑝𝑜𝑥𝑒𝑚𝑖𝑎 × 1.62)
+ (𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒𝑙𝑦 𝑚𝑎𝑙𝑛𝑜𝑢𝑟𝑖𝑠ℎ𝑒𝑑
× 0.55)
+ (𝑠𝑒𝑣𝑒𝑟𝑒𝑙𝑦 𝑚𝑎𝑙𝑛𝑜𝑢𝑟𝑖𝑠ℎ𝑒𝑑 × 1.53)
+ (𝑓𝑒𝑚𝑎𝑙𝑒 𝑠𝑒𝑥 × 0.22)
+ (𝑤ℎ𝑒𝑒𝑧𝑒 × −0.35)
+ (𝑢𝑛𝑐𝑜𝑛𝑠𝑐𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 × 1.74) 

0.79 (95% 

CI: 0.76–

0.82) 

N= 50,669, 

Mortality=4406(8.7%) 



48 
 

Lowlaavar 

et al. 2016  

Primary 

model  

age>=6months 

<=60months with 

proven or suspected 

infection   

Abnormal 

Blantyre 

Coma Score,  

Positive HIV, 

Weight for age 

z-score 

= −4.280
+ (𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝐵𝑙𝑎𝑛𝑡𝑦𝑟𝑒 𝐶𝑜𝑚𝑎 𝑆𝑐𝑎𝑙𝑒 
×  2.51) + (𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐻𝐼𝑉 × 1.32)
+ 𝑤𝑒𝑖𝑔ℎ𝑡𝑓𝑜𝑟𝑎𝑔𝑒𝑧𝑠𝑐𝑜𝑟𝑒 × −0.2 

0.85 (95% 

CI 0.80–

0.89) 

N=86,784 

Mortality=4,045(4.7%) 

 Model 2. age>=6months 

<=60months with 

proven or suspected 

infection   

Abnormal 

Blantyre 

Coma Score, 

Positive HIV, 

Middle Upper 

Arm 

Circumference 

(MUAC) 

= −0.523
+ (𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝐵𝑙𝑎𝑛𝑡𝑦𝑟𝑒 𝐶𝑜𝑚𝑎 𝑆𝑐𝑎𝑙𝑒 
×  2.54) + (𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐻𝐼𝑉 × 2.27)
+ (𝑀𝑈𝐴𝐶 × −0.03)   

0.84 (95% 

CI 0.79–

0.89) 

N=86,784 

Mortality=4,045(4.7%) 

 Model 3. age>=6months 

<=60months with 

proven or suspected 

infection   

Abnormal 

Blantyre 

Coma Score, 

MUAC 

= 0.303
+ (𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝐵𝑙𝑎𝑛𝑡𝑦𝑟𝑒 𝐶𝑜𝑚𝑎 𝑆𝑐𝑎𝑙𝑒 
×  2.47) + (𝑀𝑈𝐴𝐶 × −0.03)   

0.82(0.72-

0.91) 

N=86,784 

Mortality=4,045(4.7%) 
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4.2.2  Model validation dataset 

Patients hospitalized in paediatric wards aged ≥2 months but ≤ 15 years were eligible for 

inclusion from September 2013 to December 2021 and this included data collected from 20 

CIN hospitals. Surgical cases, burns patients, healthy children accompanying sick babies, 

children admitted with poisoning such as organophosphate ingestion or any other form of 

poisoning, traumatic and road traffic cases were all excluded from validation cohort. We also 

excluded patients admitted during healthcare workers(nurses and doctors) strike [109]. These 

exclusions were done to make the validation dataset as much similar as possible to the 

derivation cohort of the models whose performance is assessed in this study. To obtain model-

specific cohort for the external validation, the following eligibility criteria were applied.   

1. Eligibility criteria for RISC-Malawi model’s external validation cohort  

As defined in the study that derived RISC-Malawi model, the external validation cohort 

included patients aged 2 to 59 months with admission diagnoses of pneumonia that was defined 

as follows; history of cough or difficult breathing and at least one of the danger signs which 

included central cyanosis, grunting, chest-wall indrawing, stridor, inability to drink/breastfeed, 

and or painful responsive (P) or unresponsiveness (U) based on the disability scale of AVPU 

(Alert, Verbal, Painful responsive, unresponsive) see Figure 4.2.2-1. 

RISC-Malawi model predictors were defined in the validation cohort as follows; moderate 

malnourished was defined as MUAC between 11.5cm and 13.5cm. Severe malnourished was 

defined as MUAC<11.5cm. Unconsciousness was assessed using the disability scale of AVPU 

(Alert, Verbal, Pain, Unresponsive). Thus, a patient was assumed to be unconscious if he/she 

either responding to pain only or was unresponsive altogether (P or U). Moderate hypoxemia 

was defined as oxygen saturation ranging from >=90% to <=92%, and severe hypoxemia was 

defined as oxygen saturation <90%.   
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To understand performance of RISC-Malawi model in scenario where the definition of a 

predictors varied from the original study, we performed sensitivity analyses where pneumonia 

diagnosis was defined based on the clinical diagnosis as opposed to using danger signs. 

 

Figure 4.2.2-1: Patients meeting the eligibility criteria of inclusion for external validation of 

various models. 

 

2. Eligibility criteria for Lowlavaar et al. models’ external validation cohort  

To match the clinical characteristics of external validation cohort to that of the model 

derivation, we included children aged 6 to <=60 months and excluded patients with the 

following characteristics: malnourished cases (defined as clinical diagnoses of malnutrition), 

readmission cases, those with cancer diagnosis, those with heart condition, and patients with 

any parasitological confirmed or clinically suspected non-infectious illness see  Figure 4.2.2-1.  
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Model predictors were defined as follows; weight-for-age z-score was computed based on the 

reference materials in the WHO website (for patients <24 months) [110, 111] and national 

center for health statistics (for patients >24 months) [112], and abnormal Blantyre coma 

score(BCS).  

Since BCS data was only collected in 6 out of 20 CIN hospitals, we limited the validation data 

to include patients from the 6 hospitals whose locations are shown in Figure 4.2.2-2. The 

collection of BCS data was introduced in September 2019 in the 6 hospitals which are 

participating in the WHO-led study conducting evaluation of pilot subnational introduction of 

the RTS,S/AS01 malaria vaccine in western Kenya- a region with high malaria transmission 

throughout the year [113]. Therefore, as defined in the model derivation study, a patient with 

a BCS of less than 5 was considered abnormal.  
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Figure 4.2.2-2: Locations of the 6 hospitals whose patients were included in the validation 

cohort of Lowlaavar et al. models. 
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4.2.3 Assessing performance of the prognostic model in the external 

validation. 

Regression coefficients from the model were utilized to predict mortality risk in the validation 

dataset. The process involved assigning a value of 1 to the presence of the model predictor for 

each patient in the validation cohort and 0 for its absence. These values were then multiplied 

by the respective regression coefficients and summed with the model intercept to generate a 

linear predictor. Subsequently, the patient's predicted risk of in-hospital mortality was 

calculated based on this linear predictor using the logistic function described in equation 

(3.3.1-1). 

4.2.4 Missing data in the model validation set. 

The two models selected for external validation in this Chapter used variables that had varying 

levels of documentation in the validation cohort, for instance the data in Mid-Upper Arm 

Circumference (MUAC) which was used to determine malnutrition status were missing in 

49.8% of the of the eligible population for RISC-Malawi model. Documentation of this variable 

was equally poor in the derivation dataset Hooli et al. whereby the data were missing in 45.8% 

of the eligible population. See Table 4.2.4-1 for the data missingness of predictors in RISC-

Malawi model and Table 4.2.4-2 for Lowlavaal et al. models.  

Table 4.2.4-1: Predictors used in RISC-Malawi model and their level of missingness both 

in derivation and validation datasets. 

Predictor Variable in model 

derivation dataset 

Variable equivalent 

in external 

validation dataset 

N in the 

Derivation 

datasets 

N in the 

Validation 

datasets 

Oxygen 

saturation  

Normal Oxygen saturation 

93%-100% 

10,586(64.3%) 16,897(33.3

%) 

 Moderate 

hypoxemia (90%-

92%) 

Oxygen saturation 

90%-92% 

1,382(8.4%) 3,875(7.6%) 

Severe hypoxemia  Oxygen saturation 

<90% 

2094(12.7%) 8949(17.7%) 
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Missing oxygen 

saturation  

 2413(14.7%) 20,947(41.3

%) 

Malnutrition 

based on 

Middle Upper 

Arm 

Circumference 

(MUAC)  

Normal  MUAC>13.5cm  4557(27.7%) 15,234(30.1

%) 

Moderately 

malnourished 

MUAC (11.5cm -

13.5cm) 

3382(20.5%) 8,699(17.2%) 

Severely 

malnourished 

MUAC < 11.5cm 991(6.0%) 3,042(6.0%) 

Missing MUAC data  7545(45.8%) 25,232(49.8

%) 

Wheeze Wheezing =Yes Wheezing =Yes 4117(25.0%) 6666(13.2%) 

Wheezing =No Wheezing =No 8767(53.2%) 42,701(84.3

%) 

Missing Wheezing 

data 

Missing data 3591(21.8%) 1,302(2.6%) 

Unconsciousne

ss 

Unconscious=Yes Painful responsive or 

unresponsive in the 

disability scale of 

AVPU (Alert, Verbal, 

Painful responsive, 

unresponsive) 

608(3.7%) 3,221(6.4%) 

Unconscious=No Alert or verbal 

response based on the 

disability scale of 

AVPU 

12529(76.1%) 45,915(90.6) 

Missing data  3338(20.3%) 1,533(3.0%) 

 

 

Table 4.2.4-2: Predictors used in Lowlaavar et al. model and their level of missingness 

both in derivation and validation datasets. 

Predictor Variable in 

model 

derivation 

dataset 

Variable 

equivalent in 

external 

validation 

dataset 

N in the Derivation 

datasets 

N in the 

Validation 

datasets 

Blantyre 

coma score 

Abnormal 

Blantyre coma 

score (score 

<5) 

Verbal response 

based on the 

disability scale 

of AVPU 

Not provided 2023(2.3%) 

Missing data Not provided 103(1.0%) 
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HIV 

diagnosis 

Positive HIV 

diagnosis 

Positive HIV 

diagnosis 

66(5.1%) 850(1.0%) 

Weight for 

age z-score 

(WAZ) 

Severely 

stunted. 

(WAZ< -3) 

Weight for age 

z-score < -3 

206 (15.9) 481(4.5%) 

Underweight 

(WAZ < -2) 

Weight for age 

z-score < -2 

372 (28.6%) 2,649 (24.7%) 

Missing data  No provided 45(0.4%) 

Mid-upper 

arm 

circumfere

nce  

MUAC < 

125mm 

MUAC < 

125mm 

187 (14.5) 898(8.8%) 

MUAC < 

115mm 

MUAC < 

115mm 

94 (7.3) 292(2.8%) 

Missing data  No provided 531 (4.9%) 

To avoid bias that may have resulted from excluding observations with missing data, we 

undertook multiple imputation to account for the uncertainty caused by missing data [114, 115]. 

To do this, we created 20 imputation datasets under the assumption of missing at random 

(MAR) mechanism. Variables to be imputed were ordered based on their levels of data 

missingness from low to high. This was meant to fully benefit from the chained equations of 

the imputing algorithm and to boost convergence. The simulation error in the multiple 

imputation was minimized by using 100 iterations between imputations. Validation of the 

prognostic model was carried out on each of the imputed dataset.  Rubin’s rules [116] were 

used to pool estimates from the 20 multiply-imputed datasets.  

4.3 Results  

4.3.1 Eligible population 

The Clinical information Network’s database had a total of 212,654 patients admitted and 

162,329 patients that were eligible to be included in the validation cohort from all 

hospitals(n=20).  We further applied model-specific exclusions as shown in Figure 4.2.2-1 to 

obtain n=50,669 and n=10,782 patients who were eligible for the external validation of RISC-
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Malawi and Lowlaavar model respectively.  Model performance results are presented using 

imputed dataset. 

4.3.2 Characteristics of the cohort used in the external validation of the 

RISC-Malawi prognostic model.  

We had n=50,669 patients who met the eligibility criteria to be included in the validation 

dataset of the RISC-Malawi model. Out of this cohort, pneumonia case fatality ratio was 8.7% 

which varied across hospitals ranging from 16.3% to 1.9%.  Upon examining characteristics of 

these cohort, we observed that 3,221/50,669 (6.4%) of the patients were unconscious, of which 

1,281/3,221 (39.8%) died. 3,042/50,669 (6%) of all patients were severely malnourished and 

604 (19.9%) of them died. In addition, the data also suggested 8,949/50,669 (17.7%) patients 

experienced severe hypoxemia out of which 14% (1,253/8,949) of them died as shown in Table 

4.3.2-1. 

Table 4.3.2-1: Demographic and clinical characteristics of the cohort used to externally 

validate RISC-Malawi model.  

 All patients Survived Died 

Population  

 

n=50669 

 

46263/50669 

(91.3%) 

4406/50669 

(8.7%) 

Child-sex (Female) 
22184/50669 

(43.8%) 

20001/22184 

(90.2%) 

2183/22184 

(9.8%) 

Age(months) 

Median (IQR) 
13(7-24) 14(7-25) 9(6-16) 

Moderate hypoxemia 
3875/50669 

(7.6%) 

3591/3875 

(92.7%) 

284/3875 

(7.3%) 

Severe hypoxemia 
8949/50669 

(17.7%) 

7696/8949 

(86%) 

1253/8949 

(14%) 

Moderately malnourished 
8699/50669 

(17.2%) 

7988/8699 

(91.8%) 

711/8699 

(8.2%) 

Severely malnourished* 
3042/50669 

(6%) 

2438/3042 

(80.1%) 

604/3042 

(19.9%) 

Wheeze present 
6666/50669 

(13.2%) 

6181/6666 

(92.7%) 

485/6666 

(7.3%) 

Unconsciousness* 
3221/50669 

(6.4%) 

1940/3221 

(60.2%) 

1281/3221 

(39.8%) 
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 All patients Survived Died 

Unconscious* defined as either Painful responsive or unresponsive in the disability 

scale of AVPU (Alert, Verbal, Painful responsive, unresponsive)  

Severe hypoxemia* defined as oxygen saturation <90%  

Severely malnourished* defined as Mid-upper Arm Circumference (MUAC) <11.5cm  

Moderately malnourished* defined as MUAC between 11.5cm and 13.5cm 

 

In general, a comparison of the patients’ case-mix between the validation and derivation cohort 

of RISC-Malawi model suggested that characteristics were comparable between the two data 

sources however there was a higher prevalence of unconsciousness in the validation dataset 

(6.4%) than it was in derivation one (3.7%) as shown in Table 4.2.4-1.  

4.3.3 Characteristics of the cohort used in the external validation of the 

Lowlaavar et al. 2016 models. 

Since the derivation study of the Lowlaavar models included Blantyre coma score as a model 

predictor, the eligibility criteria to the model validation cohort included patients from 6 

hospitals where the BCS data is collected. In this dataset 10,782 children met the eligibility 

criteria of which 570/10782 (5.3%) experienced in-hospital mortality. As defined in the 

model’s derivation study, patients with a BCS<5 were considered to have abnormal BCS that 

was present in 1199 patients of whom 236(19.7%) died in hospital. 
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Table 4.3.3-1: Demographic and clinical characteristics patients from 6 hospitals who 

were included in the validation cohort of Lowlaavar et al. 2016 models. 

Indicator  All patients Survived Died 

Population N=10782 
10212/10782 

(94.7%) 

570/10782 

(5.3%) 

Gender (Female) 
4508/10782 

(41.8%) 

4245/4508 

(94.2%) 

263/4508 

(5.8%) 

Age(months) Median (IQR) 24(14-42) 24(14-42) 22.5(11-38) 

HIV diagnosis 
75/10782 

(0.7%) 

63/75 

(84%) 

12/75 

(16%) 

Abnormal BCS* 
1199/10782 

(11.1%) 

963/1199 

(80.3%) 

236/1199 

(19.7%) 

WAZ* -0.5(-1.5-0) -0.5(-1.5-0) -1(-2-0) 

MUAC* 14.3(13.5-15) 14.3(13.6-15) 14(13.1-14.8) 

BCS*=Blantyre Coma Score 

WAZ*= Weight for Age Z-score 

MUAC*= Mid-upper Arm Circumference (MUAC) 

Abnormal BCS* defined as Blantyre coma core of <5  

 

     

4.3.4 Model performances in external validation dataset 

The discriminatory ability (c-statistic) of the RISC-Malawi model was 0.77 (95% CI: 0.77 to 

0.78) whereas the calibration slope was 1.04 (95% CI: 1.00 to 1.06), and calibration intercept 

was 0.81 (95% CI: 0.77 to 0.84) which is indicative of a poorly calibrated model since it is 

underestimating the risk (intercept >0) see Figure 4.3.4-1.  
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Figure 4.3.4-1: Performance of the RISC-Malawi model in an external validation dataset. 

The figures show calibration curves and other model performance metrics. Key:  RCS 

denotes the Restricted Cubic Splines, and CL denotes the Confidence Limits (95%) 

 

For the Lowlaavar et al. model, we computed the performance statistics for the 3 models and 

the findings were as follows; the primary model (model 1) which included 3 predictors 

(abnormal BCS, HIV+, weight for age z-score) had a c-statistic of 0.75 (95% CI: 0.72 to 0.77) 

while the calibration slope was 0.78 (95% CI: 0.71 to 0.84) and the calibration intercept was 

0.37 (95% CI 0.28 to 0.46).  The second model (model 2) had included the following 3 

predictors: abnormal BCS, HIV+, and MUAC had a c-statistic of 0.78 (95% CI: 0.77 to 0.80) 

while the calibration slope was 0.82 (95% CI: 0.76 to 0.89) and the calibration intercept was 

0.92 (95% CI 0.84 to 1.10). Lastly, the third model had 2 predictors namely abnormal BCS and 

MUAC. The model had a c-statistic of 0.71 (95% CI: 0.68 to 0.73) while the calibration slope 

was 0.73 (95% CI: 0.67 to 0.80) and the calibration intercept was 0.39 (95% CI 0.31 to 0.48) 

as shown in Figure 4.3.4-2. 

 



60 
 

  

Figure 4.3.4-2:  Performance of the Lowlaavar et al. 2016 models in an external validation dataset where abnormal Blantyre Coma Score 

(BCS) was defined as BCS<5. The first panel to the left is the calibration curves of the primary model (Model I), the panel in middle are the 

calibration curves for model II, and the last panel to the right are the calibration curves of the model III. Key:  RCS denotes the Restricted Cubic 

Splines, and CL denotes the Confidence Limits (95%).   
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4.3.5 Sensitivity Analyses  

As a sensitivity analysis, we varied the criteria of determining pneumonia diagnosis in the 

validation cohort of RISC-Malawi such that instead of using danger signs (central cyanosis, 

grunting, indrawing, stridor, inability to drink, AVPU, and convulsion) as used in the original 

study to define pneumonia, we used clinical admission diagnosis of pneumonia. All other 

eligibility criteria remained unchanged, and this resulted to a sample size of 56,045 with a 

pneumonia case fatality rate of 7.6%. Evaluation of the RISC-Malawi model performance in the 

sensitivity analyses dataset suggested a reduced performance as compared to what was seen in the 

main analyses as shown in the Figure 4.3.5-1.  

 

Figure 4.3.5-1:  Performance of the RISC-Malawi model in a sensitivity analyses dataset 

(Pneumonia is defined based on the admission clinical diagnosis instead of danger signs). The 

values show calibration curves and other model performance metrics. Key:  RCS denotes the 

Restricted Cubic Splines, and CL denotes the Confidence Limits (95%).   
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We also undertook a sensitivity analysis of the Lowlavaar models using patients from all 

hospitals(n=20) instead of the 6 hospitals as used in the main analyses. However, the abnormal 

BCS was defined using AVPU scores which is a disability scale such that patients who were at 

“V” during the clinical assessment by a physician were classified as having abnormal Blantyre 

scale. Those who met the eligibility criteria were 86,784 patients and in-hospital mortality was 

4.7%(n=4045). Patients who were classified as having abnormal BCS were 2023(2.3%) out of 

which 268(13.5%) died. Additionally, there were 850 (1%) patients whose HIV status was known 

to be positive and 95(11.2%) of them died in hospital as shown in Table 4.3.5-1. Performance of 

the Lowlavaar models in the sensitivity analyses dataset were lower as compared to the main 

analyses as shown in Figure 4.3.5-2. 

Table 4.3.5-1: Demographic and clinical characteristics of patients included in the 

sensitivity analyses dataset. 

Indicator All patients Survived Died 

Population N=86784 N=82739 (95.3%) N=4045 (4.7%) 

Gender (Female) 
37683/86784 

(43.4%) 
35740/37683 (94.8%) 1943/37683 (5.2%) 

Age(months) Median 

(IQR) 
20(11-36) 20(12-36) 13(9-27) 

HIV diagnosis 
850/86784 

(1%) 
755/850 (88.8%) 95/850 (11.2%) 

Abnormal BCS* 
2023/86784 

(2.3%) 
1755/2023 (86.8%) 268/2023 (13.2%) 

WAZ* -1(-2-0) -1(-2-0) -1(-2-0) 

MUAC* 
14.2(13.4-

15) 
14.2(13.5-15) 13.5(12.5-14.5) 

BCS*=Blantyre Coma Score 

WAZ*= Weight for Age Z-score 

MUAC*= Mid-upper Arm Circumference  

Abnormal BCS* defined as responding to Pain in the disability scale of AVPU (Alert, Verbal, 

Painful responsive, unresponsive)   
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:  

Figure 4.3.5-2: Performance of the Lowlaavar et al. 2016 models in an external validation dataset whereby Abnormal Blantyre coma score was 

defined using the disability scale of AVPU (Alert, Verbal response, Pain response, Unresponsive) such that patients who were not alert but 

responding to verbal stimuli were assumed to have abnormal Blantyre coma score. The first panel to the left is the calibration curves of the 

primary model (Model I), the panel in middle are the calibration curves for model II, and the last panel to the right are the calibration curves of 

the model III. Key:  RCS denotes the Restricted Cubic Splines, and CL denotes the Confidence Limits (95%).   
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4.4 Discussion  

4.4.1 Summary of key findings 

Validation of existing prognostic models to identify children at risk of deterioration in diverse 

settings is the first step towards wider clinical application of clinical prediction rules.  In this 

chapter, 4 prognostic models were externally validated that were originally designed by two 

studies to identify children at an increased risk of in-hospital mortality in low resource setting 

[41, 108]. Using a diverse population of children admitted to 20 hospitals from 2014 to Dec 

2021, we performed areas under the curve analysis to assess the discriminatory ability as well 

as the calibration levels of these four prognostic scores. All models had fair discriminatory 

values (AUC 0.70-0.79) however, all of them markedly underestimated the mortality 

(calibration intercept > 0). This leads to misclassification of patients who are at an increased 

risk of deterioration. The model performance measures were even lower when these models 

were validated using the sensitivity analyses datasets where we varied the definitions of 

abnormal Blantyre Coma score, and pneumonia from how it was defined in the original study 

by Lowlavaar et al., and Hooli et al. for RISC-Malawi respectively. This demonstrates the 

value addition of defining predictors as used in model derivation study.  

The sub-optimal performance of these models in the CIN datasets may be due to having more 

diverse patient populations, and different case-mix. Although we attempted to make sure that 

the patients characteristics in validation and derivation cohort were as similar as possible, we 

observed that the cohort we used to validate the RISC-Malawi model had a higher childhood 

mortality rate (8.5%) than the original patient group (3.2%). Despite this difference the 

discriminatory ability of the RISC-Malawi in the validation cohort had an AUC 0.77(95% CI: 

0.77 to 0.78) which was nearly alike to that observed in the model derivation cohort 0.79 (95% 

CI: 0.76 to 0.82).  
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While the calibration intercepts of all models we externally validated suggested 

underestimation of the risk of mortality in their predictions, calibration slopes of the same 

models illustrated that these predictions were too extreme especially for the Lowlaavar et al. 

models whose calibration slopes were all <1. On the other hand, predictions of the risk of 

pneumonia-related mortality by RISC-Malawi model were too low as judged by the calibration 

slope of >1. The result may be partly explained by the inclusion of more physical examination 

variables as prognostic factors which could potentially make a model to underperform in an 

external dataset because of the variations in inter-observer agreement which is more common 

in physical examination findings [117, 118]. It is encouraged to include prognostic factors that 

do not have inter-observer variations such as blood lactate and other biomarkers including C-

reactive protein, procalcitonin, etc., in the settings where these tests are available. However, 

while such biomarkers might be having better prognostic values and hence attractive to be 

included in the prognostic models, they may not be readily available in limited-resource 

settings and are costly to undertake.  

In literature, RISC-Malawi model has been subjected to an external validation in a diverse 

cohort of hospitalized children from the World Health Organization’s study group whose study 

patients were pooled from 10 studies on pediatric pneumonia from different countries [119].  

In this cohort there were 17,864 who met the eligibility criteria with a pneumonia case fatality 

ratio of 4.9%. The RISC-Malawi score in that validation study had fair discriminatory value 

(AUC = 0.75, 95% CI = 0.74-0.77) which was not very different from what was obtained in our 

validation study even though our validation cohort had a higher pneumonia case fatality ratio 

of 8.7% (Table 2). Furthermore, we could not determine RISC-Malawi’s calibration measures 

in the validation study since these were not reported. To our knowledge, Lowlaavar et al. 

models have not been externally validated in any setting.  
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4.4.2 Limitations  

While CIN database is a rich source of data that is routinely collected from several hospitals 

over a period and hence suitable for model development and validation, by design these data 

were not meant for such purposes instead it was an essential initial step in efforts to understand 

and improve care in Kenyan hospitals. This led to missing data in variables of interest for many 

children which resulted to multiply imputing the data a task that was computationally 

prohibitive. However, CIN dataset had a substantial effective sample size required for external 

validation studies [120]. Lastly, even though we attempted to make the validation population 

as similar as possible to that used in the derivation of the models we externally validated, we 

didn’t exclude children who carried more than one diagnosis concomitantly, which could 

explain the reason why the validation case mortality rate being twice to that of the derivation 

cohort.  

4.4.3 Fulfilled knowledge gaps and what to be done next.  

In the literature it is more common to find model development studies than validation ones. 

Hence there are a lot of models which are running a risk of not being utilized in the clinical 

practice because they have not been externally validated using diverse population as expected 

hence become wasted research efforts. When evaluating a model for risk stratification, 

researchers should utilize pre-existing knowledge and, if available, validate and update an 

existing model within a similar setting instead of building a new model from scratch with all 

the drawbacks of overfitting and lack of reproducibility. In this study we have subjected 4 

models to an external validation study to determine their clinical utility. In the ideal case of 

perfect validity where scores have AUC≥0.8, calibration intercept =0, and calibration slope =1 

then the model could be recommended for use in the clinical application. However, if the model 

deviate from the ideal case, then there is evidence of miscalibration and model recalibration 

should be performed [92, 121]. Our findings have suggested that the 4 models have significant 
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miscalibration and hence underlining the necessity of recalibration as a next step which is 

reserved for Chapter 5. 

4.5 Conclusions 

Despite the common challenge of prognostic models showing reduced performance when 

applied to populations different from the one used for their development, none of the externally 

validated models in this chapter demonstrated exceptional discrimination, with an AUC>=0.8, 

while maintaining precise risk estimation based on calibration statistics. Consequently, using 

these models in settings other than those in which they were originally developed may not be 

advisable with a high degree of confidence. Our findings suggest that recalibrating these 

models or considering the creation of new prognostic models with improved sensitivity and 

specificity for identifying children at risk of in-hospital mortality may be a worthwhile pursuit
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Chapter 5 

5.0 Recalibrating Prognostic Models 

5.1 Introduction 

Prognostic models predict patients’ risk of deterioration or poor outcome and good models  can 

inform clinical treatment or follow-up plans [25] but developing new models without 

investigating performance of existing models wastes potentially important historical data and 

research efforts [72]. External validation of published prognostic models in comparable 

settings or populations is recommended in establishing model transportability and 

generalizability [122-124].  

Most clinical prediction models may not perform well in external validation and end up being 

rejected because of poor predictive performance. This is partly because clinical environments 

continuously evolve in various ways, including shifts in clinical practice, even though clinical 

practice guidelines tend to standardise this [125]. Other reasons include change of patient’s 

management such as use of aggressive treatment therapies e.g. use of higher molecules of 

antibiotics as opposed to the first-line, and introduction of new vaccines e.g., RTS,S/AS01 

which is a world’s first malaria vaccine [113]. Such interventions may change the prevalence 

and clinical presentations of common childhood illnesses, and thus, a clinical prediction model 

developed before these interventions would perform poorly when validated in such settings. 

Variation in case-mix, different time points of model development and validation, and dataset 

drift also contribute towards deterioration of the model performance when applied in new 

samples hence a need for model recalibration to contextualize to the local settings [126]. 

Model updating is suggested once there is evidence of poor model calibration but acceptable 

discriminatory abilities in an external validation study [91, 92].  
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In chapter 4, the four identified prognostic models were externally validated but their 

calibration estimates suggested an underestimation of in-hospital paediatric mortality risk.  

In this chapter, we aim to recalibrate these models (Respiratory Index of Severity in Children 

(RISC-Malawi) [41]  and three other models developed by Lowlaavar et al. [108]) using 

regression coefficients updating strategies and determine how much their performances 

improve.  

The rest of this chapter is structured as follows; section 5.2 provides details of the model 

calibration metrics, assembling if the recalibration cohort, sample size determination for the 

model recalibration, and recalibration strategies. Section 5.3 provides model recalibration 

results; the chapter concludes with discission and the conclusion sections in section 5.4 and 5.5 

respectively.    

5.2 Methods 

5.2.1 Models’ calibration metrics  

The threshold for a perfectly calibrated score is a model with a calibration slope of 1 and 

calibration intercept (calibration-in-the large) of 0 or an identity line of 45° in the calibration 

plot indicating limited chances of over/underestimating the risk of bad outcomes when used in 

clinical practice. Although it is not clear how close these metrics should be to the set thresholds 

for the model to be acceptable, there is consensus from the literature that a model has good 

calibration if the intercept is close to 0 and the slope is close to 1 [127]. For instance, a model 

slope of 0.95 was termed “good calibration” by Philips et al., [128] and Nakhjavan et al. [129] 

termed a model with a slope of 0.97 and an intercept of 0.006 “proper calibration”.  

5.2.2 Details of models to be recalibrated. 

The RISC-Malawi [41] model and 3 models by Lowlaavar et al. 2016 [108] were identified in 

chapter 3 and externally validated in chapter 4. In brief, RISC-Malawi is a Respiratory Index 

of Severity in Children (RISC) that was developed using prospectively collected clinical data 
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from a cohort of 14,665 hospitalized children aged 2-59 months with pneumonia in Malawi 

between 2011–2014. The three models by Lowlaavar et al. 2016 [108] were developed utilizing 

a two-site prospective observational study in Uganda which enrolled 1307 children between 6 

months and 5 years admitted with a proven or suspected infection. In chapter 4, findings 

suggested that while they had fair discriminatory ability (c-statistics of 0.70 to 0.79 [86, 87]), 

they were poorly calibrated as judged from their calibration slopes and intercepts of these 

models as shown in  Figure 5.2.2-1. For instance, RISC-Malawi had a c-statistic of 0.77 (95% 

confidence interval (CI): 0.77 to 0.78), a calibration slope of 1.04 (95% CI: 1.00 to 1.06), and 

the calibration intercept was 0.81 (95% CI: 0.77 to 0.84).  Lowlaavar et al. 2016 had a c-statistic 

of 0.75 (95% CI: 0.72 to 0.77), calibration slope was 0.78 (95% CI: 0.71 to 0.84), and the 

calibration intercept was 0.37 (95% CI 0.28 to 0.46). 
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 Figure 5.2.2-1: Model intercept and model slope of the four models suggesting that models were not well calibrated. These estimates were 

obtained from external validation study 
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5.2.3 Availability of model predictors in the recalibration cohort 

For RISC-Malawi model, all predictors were available across all 20 hospitals contributing to 

model updating dataset except for the predictor called unconsciousness which was unavailable. 

However, we recoded this predictor based on the disability scale of AVPU (Alert, Verbal 

response, response to Pain, Unresponsive) such that a patient was assumed to be unconscious 

if the clinician rated them as either “P” (responding to pain only) or “U” (unresponsive).  AVPU 

is known for the assessment of the patient’s brain function hence used for the determination of 

the level of consciousness[130]. For the Lowlaavar model, all predictors were available in all 

hospitals except for the Blantyre Coma Score which was available in only 6 hospitals as from 

September 2019. Therefore, for the updating and testing of the Lowlaavar models we only used 

data from the 6 hospitals for patients admitted as from September 2019 through December 

2021 when use and recording of Blantyre Coma Score was introduced in the six hospitals.  

 

5.2.4 Eligibility criteria for model recalibration cohort  

To determine the appropriate patients to be included in the cohort of model recalibration, we 

applied eligibility criteria as was used in the original model derivation studies [41, 108]. In 

summary, for the RISC-Malawi model we included children aged 2-59 months with admission 

diagnosis of pneumonia defined as either cough or difficult breathing, and any of the danger 

signs namely central cyanosis, grunting, chest wall indrawing, stridor, inability to 

drink/breastfeed, convulsing or not alert based on the disability scale of AVPU scale. For the 

Lowlaavar models, we included children aged 6-60 months admitted with any confirmed or 

suspected infectious diseases. To achieve this eligibility criteria, we filtered out all patients 

with non-communicable diseases. In each of the two model recalibration cohorts, we excluded 

children admitted for surgery or with burns, trauma, road traffic accidents, those with poisoning 



73 
 

such as organophosphate ingestion, and those patients admitted during healthcare workers’ 

strike.     

For each model’s eligible dataset, we split the data into model updating dataset (for 

recalibrating the model) and testing dataset (for assessing model performance after updating). 

For RISC-Malawi model, 50,669 patients met the eligibility criteria, the updating dataset 

included 30,343 patients admitted across all 20 hospitals from January 2014 through December 

2018 while the model testing dataset included 20,326 patients admitted in the same hospitals 

from January 2019 through December 2021 as shown in Figure 5.2.5-1. For Lowlaavar models 

there were 10,782 patients who met the eligibility criteria in 6 out of 20 hospitals. 7521 of these 

patients admitted in 4 hospitals were used to update the models and the remaining 3261 patients 

from 2 hospitals were used to test these models. 

5.2.5 Sample size for model recalibration  

Following sample size calculation approaches by Riley et al. [131] that took into account the 

c-statistics of the original models, the number of parameters in the original model, and the 

prevalence of the outcome (in-hospital mortality) in the derivation cohort, we computed the 

sample sizes required to recalibrate each of the four models assuming an acceptable difference 

of 0.05 between the apparent and adjusted R-squared of the original model. Minimum sample 

sizes required for each of the 4 models are provided in Table 5.2.5-1. For example, while 

sample size calculation approaches required a minimum sample size of 1619 for RISC-Malawi 

model our model updating and testing datasets exceeded this having sample sizes of 30,343 

and 20,326 respectively as shown in Figure 5.2.5-1. In addition, with mortalities of >1000 in 

RISC-Malawi models datasets, and >200 in Lowlaavar models’ datasets, the events-per-

variable ratios exceeded the recommended ratio of 20, given the >100 events per variable for 

each model [131, 132].  
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Table 5.2.5-1: Minimum required sample sizes for recalibration of identified models.  

Model c-statistic 

in the 

derivation 

cohort 

Number of 

parameters 

in the 

original 

model 

Outcome 

prevalence 

in the 

derivation 

cohort   

Margin of 

error in 

estimation 

of intercept 

(assumption) 

Difference 

between 

apparent 

and 

adjusted 

R-squared 

Minimum 

required 

sample 

size 

RISC-Malawi 

model 

0.79 7 3.2% 5% 5% 1619 

Lowlaavar 

model 1 

0.85 3 5% 5% 5% 285 

Lowlaavar 

model 2 

0.84 3 5% 5% 5% 307 

Lowlaavar 

model 3 

0.82 2 5% 5% 5% 239 
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Figure 5.2.5-1: Populations used to update and test RISC-Malawi model and 3 models by Lowlaavar et al. 2016 
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5.2.6 Assessment of missing data in the model recalibration cohort 

Model recalibration entails numerical adjustment of the model’s intercept and regression 

coefficients of the prognostic factors by a common numerical value. In such computations all 

prognostic factors are expected to have data for each patient in a cohort, otherwise records with 

incomplete data are deleted from the analysis resulting to “complete case analysis” that could 

lead to loss of statistical power and potentially yield biased estimates[133]. Missing data 

assessment suggested that in the cohort for updating RISC-Malawi model 68.3% of the 

patients’ records risked being dropped from the analysis because of the incomplete data in the 

required variables while 5.2% of the records in Lowlaavar models’ cohort would also be 

discarded through a complete case analysis.  

5.2.7 Model recalibration strategy 

In the model recalibration strategies, we employed equations as described in detail in chapter 

3 section 3.5.1 but the following are the equations used in the model recalibration. 

Recalibration-in-the-large equation  

𝑙og (
P(in − hospital mortality)

1 − P(in − hospital mortality)
) = 

(𝛼 + 𝛼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟) + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑛𝑋𝑛 

 

 

 

Logistic calibration equation  

𝑙og (
P(in − hospital mortality)

1 − P(in − hospital mortality)
) = 

(𝛼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟) + (𝐿𝑃𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 × 𝛽𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟) 
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5.2.8 Assessing performance of the recalibrated prognostic model in the 

testing dataset. 

For each model we separately applied the two recalibration strategies (intercept only, and 

intercept and slope) as described above. Based on the adjusted model, we computed linear 

predictor for each patient in the model-specific testing dataset (see Figure 5.2.5-1) which was 

used to compute patient’s predicted risk of mortality via a logistic function. Model performance 

was determined using two metrics namely discriminatory index and model calibration. 

Discriminatory ability was determined using the c-statistic (value 0–1, discriminative if > 0.7) 

[84, 85] while the calibration was measured using the calibration slope that summarises 

agreement between predicted and observed risks and it ranges from 0 to 1 with values near 1 

showing better accuracy while values < 1 suggesting predicted risks that are too extreme, and 

calibration intercept which indicates the extent that predictions are systematically too low or 

too high, with predicted risks under-estimated if > 0 or over-estimated if < 0 [88].   

 

5.3 Results 

5.3.1 Characteristics of the model recalibrating cohorts. 

The eligibility criteria for RISC-Malawi model were met in 50,669 patients from all 20 

hospitals which were split into model recalibrating (n=30,343) and testing (n=20,326) datasets. 

The distribution of patient characteristics in recalibrating and test datasets were similar, 

although the test set had slightly higher mortality 1948 (9.6%) than the updating dataset 2458 

(8.1%). This finding was not unexpected because in the cohort for model testing, cases of 

severe hypoxemia were 24% which were almost twice that of model updating (13.4%) as 

shown in Table 5.3.1-1. However, we noted that cases of severe hypoxemia in the RISC-

Malawi’s original study was 12.7% which was comparable with that of model updating dataset. 
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Table 5.3.1-1: Distribution of clinical characteristics of the cohort used to recalibrate and 

test RISC-Malawi model.   

 Updating dataset 

(N=30343) 

Testing dataset 

(N=20326) 

All patients 

(N=50669) 

Mortality 2458 (8.1%) 1948 (9.6%) 4406 (8.7%) 

Child-sex (Female) 13380 (44.1%) 8804 (43.3%) 22184 (43.8%) 

Age in months  

Median [Min, Max] 
13.0 [2.00, 59.0] 13.0 [2.00, 59.0] 13.0 [2.00, 59.0] 

Moderate hypoxemia* 1971 (6.5%) 1904 (9.4%) 3875 (7.6%) 

Severe Hypoxemia* 4071 (13.4%) 4878 (24.0%) 8949 (17.7%) 

Moderately malnourished*  5245 (17.3%) 3454 (17.0%) 8699 (17.2%) 

Severely malnourished* 1882 (6.2%) 1160 (5.7%) 3042 (6.0%) 

Wheezing 3837 (12.6%) 2829 (13.9%) 6666 (13.2%) 

Unconscious*  1774 (5.8%) 1447 (7.1%) 3221 (6.4%) 

Unconscious* defined as either Painful responsive or unresponsive in the disability scale 

of AVPU (Alert, Verbal, Painful responsive, unresponsive)  

Moderate hypoxemia* defined as oxygen saturation 90%-92%%  

 

Severe hypoxemia* defined as oxygen saturation <90%  

Severely malnourished* defined as Mid-upper Arm Circumference (MUAC) <11.5cm  

Moderately malnourished* defined as MUAC between 11.5cm and 13.5cm 

 

For the Lowlaavar models, there were 10,782 patients meeting the eligibility criteria in 6 out 

of the 20 hospitals with an overall in-hospital mortality of 5.3%. A sub-analysis to understand 

the distribution of mortality in the cohort revealed that mortality was higher in the testing 

dataset 227(7.0%) as compared to the updating dataset 343 (4.6%). In addition, patients 

classified to have abnormal Blantyre Coma Score (n=1096,10.2%) had a higher mortality of 

19.4%. On further examination of the abnormal BCS population, we noted that patients in the 

testing cohort had a relatively higher mortality of 23.0% as compared to those in updating 

cohort  17.9%. The distribution of other model predictors was similar between testing and 

updating datasets as shown in Table 5.3.1-2. 
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Table 5.3.1-2: Demographic and clinical characteristics of the cohort used to recalibrate 

and test Lowlaavar model.   

 Updating 

(N=7521) 

Testing 

(N=3261) 

All patients 

(N=10782) 

Mortality 343 (4.6%) 227 (7.0%) 570 (5.3%) 

Child-sex (Female) 3131 (41.6%) 1377 (42.2%) 4508 (41.8%) 

Age in months 

Median [Min, Max] 
24.0 [6.00, 60.0] 24.0 [6.00, 60.0] 24.0 [6.00, 60.0] 

HIV diagnosis 16 (0.2%) 59 (1.8%) 75 (0.7%) 

Abnormal Blantyre 

Coma Score 
761 (10.1%) 335 (10.3%) 1096 (10.2%) 

Weight for Age Z-

score 
-0.500 [-4.00, 4.00] -1.00 [-4.00, 4.00] 

-0.500 [-4.00, 

4.00] 

Mid-upper Arm 

Circumference 

(MUAC) in 

centimeter  

14.2 [7.00, 21.0] 14.3 [8.20, 21.7] 14.3 [7.00, 21.7] 

 

5.3.2 Predictive performance of the recalibrated RISC-Malawi model 

To adjust the predictive performance of RISC-Malawi, we used two methods (intercept only, 

and logistic recalibration) as earlier described.  The original model slope was 1.04 (95% CI: 

1.00 to 1.06) indicating regression coefficients were slightly small (close to zero) and thus 

underestimating in-hospital mortality predictions in the new patients. On the other hand, the 

calibration intercept was 0.81 (95% CI: 0.77 to 0.84) indicating that the predicted probabilities 

are systematically too low. To adjust the RISC-Malawi model we used the correction factor for 

slope 𝛼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = 0.84 and for intercept  𝛽𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = 0.326   which were 

estimated from logistic recalibration model using the updating dataset and equation (3.4.3-1) 

was used in model adjustment. The adjusted model showed an improvement in model intercept 

by 0.04 (95% CI: -0.001 to 0.08) compared to the original one. However, upon assessing the 

same model in a separate dataset (testing), the model intercept deteriorated slightly to 0.12 

(95% CI: 0.07 to 0.17), and model slope also dropped from 1.33 (95% CI: 1.28 to 1.38) in the 

model updating dataset to 1.08 (95% CI: 1.03 to 1.13) in the model testing dataset as 
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summarised in Figure 5.3.2-1. As compared with the derivation cohort, the discriminative 

ability of the RISC-Malawi was not any different in the updating dataset c-statistic 0.78 (95% 

CI: 0.78 to 0.79) but this was lower in the testing dataset 0.75 (95% CI: 0.74 to 0.76) as shown 

in Figure 5.3.2-3. Results of the intercept only method improved model intercept, but it 

suggested slope model adjustment was required as provided in the figure.  

Table 5.3.2-1: Correction factors for model intercept and model slope 

Model  Intercept correction factor(α) Slope correction factor (β) 

Lowlaavar model 1 -0.469 0.757 

Lowlaavar model 2 -0.207 0.699 

Lowlaavar model 3 -0.450 0.763 

RISC-Malawi 0.326 0.846 
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Figure 5.3.2-1: RISC-Malawi model calibration performance in various datasets. The figure in the left show calibration intercept while that 

on the right shows model slope. The coloured points and the 95% confidence intervals (shown as errors bars) shows the model calibration 

performances in the external validation, updating dataset (for model recalibration), and in the testing dataset. The dotted line denotes the 

references of the model intercept(α=0) and slope(β=1) for a perfect calibrated model.    
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Figure 5.3.2-2: Calibration performance of Lowlaavar models in various datasets. The figure in the left show calibration intercept while that on 

the right shows model slope. The coloured points and the 95% confidence intervals (shown as errors bars) shows the model calibration 

performances in the external validation, updating dataset (for model recalibration), and in the testing dataset. The dotted line denotes the 

references of the model intercept(α=0) and slope(β=1) for a perfect calibrated model. 
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Figure 5.3.2-3: Discriminatory ability of the four models (RISC-Malawi, and the 3 models by 

Lowlaavar et al.) in various datasets. The coloured points and the 95% confidence intervals 

(shown as errors bars) shows the c-statistics of the in the derivation dataset, external 

validation, updating (for model recalibration), and in the testing dataset. The dotted line 

denotes a fair discriminatory ability of the model (Area Under Curve of 0.7) 

 

5.4 Discussion 

In this chapter we sought to recalibrate the four models which were externally validated win 

chapter and found to be over/underestimating the predicted risk of the in-hospital mortality. In 

general, the performance of a model with promising discriminatory ability (AUC >0.7) but 

with poor calibration can be improved using recalibration strategies. To achieve the objective, 

we used a relatively large sample sizes powered enough to update and test these models as 

shown in Figure 5.2.5-1. In addition, data used in this chapter has both temporal and spatial 
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richness since it has been collected from 20 county referral hospitals from 2014 through 2021. 

We explored both calibration-in-the-large adjustment and logistic calibration as recalibration 

strategies. Comparing results of the two model updating strategies, we observed that logistic 

recalibration was effective as expected than the recalibration-in-the-large method because the 

latter only adjusts the average predicted risk. The findings of model updating suggest that while 

the calibration of the models improved after recalibrating in updating dataset and upon testing 

in the test dataset, the differences in calibration performances in before and after updating were 

small as shown in Figure 5.3.2-1 for RISC-Malawi and Figure 5.3.2-2 for Lowlaavar models. 

However, these differences may not be clinically meaningful in practice since it has not met 

the required thresholds. The threshold for a perfectly calibrated score is a model with a 

calibration slope of 1 and calibration-in-the large of 0, or an identity line of 45° in the 

calibration plot indicative of limited chances of over/underestimating the risk of bad outcomes 

when used in clinical practice. The model 3 of Lowlaavar et al. appeared to have met the 

calibration thresholds however its discriminatory ability was below the minimum acceptable 

threshold of AUC>0.7. Since the objective of this chapter was not to refit models, the 

recalibration strategies employed here do not change the ranking of the patients’ predicted risk 

of in-hospital mortality, and as a result do not affect models’ discriminatory ability. It is 

possible that a drop of AUC in the test dataset could be due to the unfortunate split sampling 

between updating and testing datasets or could indeed be due to chance. Based on this 

understanding, Lowlaavar model 3’s low AUC in the testing dataset underscores a need to 

validate published prognostic models across plausibly similar contexts to ascertain if their 

discriminatory ability is consistent as expected. In summary, models we recalibrated exhibited 

poor performance even after adjustment to the local context. It is noteworthy that a mis-

calibrated prognostic model has been termed to be “clinically harmful” since it reduces the net 

benefit of its applicability in identifying risky patients for treatment [134].  
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Performance of the updated models can be explained by predictor-outcome associations being 

substantially different population in derivation, updating and in testing dataset [91]. For instance, 

as compared with pneumonia case-fatality in the derivation dataset which was 3.2%, the dataset 

used to update and test RISC-Malawi model had a higher pneumonia case-fatality of 8.13% and 

9.56% respectively as shown in the Figure 5.2.5-1. On the other hand, mortality in the dataset used 

to adjust Lowlaavar models were only slightly higher than that of derivation cohort.  

Models often exhibit relatively poor predictive performance in the external validation studies. This 

is partly because clinical environments continuously evolve in various ways including shift in 

clinical practice even though clinical practice guidelines tend to standardize this [125]. Other 

reasons include change of patient’s management such as use of aggressive treatment therapies e.g. 

use of higher molecules of antibiotics as opposed to the first-line, and introduction of new vaccines 

e.g., RTS,S/AS01 which is a world’s first malaria vaccine [113]. Such interventions may change 

prevalence and clinical presentations of common childhood illnesses and thus would make a 

clinical prediction model developed before these interventions perform poorly when validated in 

such settings. Variation in case-mix, different time points of model development and validation, 

and dataset drift also contribute towards deterioration of the model performance when applied in 

new samples [126] hence a need to adjust model to contextualize to the local settings. To do this, 

that’s where the recalibration of the model intercept helps to capture nuances brought about by the 

variations in settings which are hard to be incorporated in the model predictors.  

While it is more common for researchers to develop new prognostic models and sometimes even 

without a regard to methodological rigour [122, 123], there is a growing interest among researchers 

to recalibrate existing models to align with local context and be applied in clinical practice if found 

to be suitable. However, in the literature of prognostic research, it has not been established the 

acceptable differences between the expected calibration thresholds and the observed model 

calibration performances, it is also not clear on the number of external validations a prognostic 
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model is expected to have been subjected to before model updating is justified. In addition, even 

if a predictive model would be subjected to repeated model recalibrations, it is likely that 

prediction performance will plateau where no further meaningful gain will be realised [135]. It is 

therefore important for researchers to consider ensemble machine learning techniques such as 

stacking which are useful in combining predictive abilities of various competing models to yield 

a meta-model whose predictive performance would certainly be relatively better than that of a 

single model [136].  

5.5 Conclusion  

Due to inherent sampling variations, the performance of any model may exhibit slight 

discrepancies when applied to new patient samples. The conventional approach involves creating 

entirely new models, often resulting in a loss of valuable insights from prior prognostic modeling 

endeavors and an increased risk of overfitting, thereby diminishing the models' generalizability. 

In this chapter, we sought to enhance the performance of existing prognostic models by leveraging 

methodological strategies applied to large datasets. Our exploration led to the discovery that these 

models could be effectively improved through straightforward recalibration techniques, albeit not 

meeting the anticipated calibration thresholds of 0 for the model intercept and 1 for the model 

slope. This underscores the need for a computational approach that amalgamates these models into 

a meta-model, thereby enhancing their out-of-sample predictive performance which is devoted for 

next chapter of this report. 
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Chapter 6 

6.0 Accounting for model uncertainty through 

stacking of predictive distributions of prognostic 

models 

6.1 Introduction  

In developing predictive models, researchers/statisticians often consider a wide range of 

competing models as a potential representation of the observed data with the assumption that 

the true data-generating model exists among the considered models. A single model is then 

selected from the list of competing models based on probabilistic or resampling criteria. 

Probabilistic model selection methods include AIC (Akaike Information Criterion) and BIC 

(Bayesian Information Criterion). On the other hand, the resampling methods include 

bootstrap, random train/test split of the data, cross-validation such as K-fold methods, or 

leave-one-out. Based on the output of the "best" chosen model, statistical inferences and 

conclusions are drawn with an implicit assumption that the distribution function of the 

selected model constitutes the actual data-generating model (DGM). This approach is 

commonplace in literature since it is standard statistical practice. However, it is not entirely 

satisfactory since it ignores model uncertainty in the selection of a suitable probability 

distribution function that might result in a misleading statistical inference and 

over/underestimation of the risk of the outcome of interest [20, 21]. Traditional methods of 

developing predictive models typically overlook model uncertainty hence yielding a model 
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with a tendency to overstate the goodness-of-fit between model and data, causing the model 

to lose predictive power when applied to independent datasets [137, 138]. 

Aware that prognostic models are to be used to predict in-hospital mortality and be used by 

clinicians in hospitals as a 'job aid' to identify children at an increased risk of deterioration, 

every little bit of model performance matters substantially. 

 In this chapter, given a forementioned background, a novel approach is proposed that 

leverages on Stacking of Bayesian predictive distributions of the candidate models. This 

machine learning technique is analogous to the 'wisdom of the crowd' phenomenon [139], 

which arguably outperforms any form of single model selection techniques in terms of out-

of-sample predictive performances [140-142]. This is achieved by fitting each model to the 

data using Bayesian inference and calculating the posterior predictive distributions for each 

model. These distributions represent the range of predictions the models would make for new 

data. The next step involves determining the weights for each model. To achieve this, a loss 

function is used such as the Kullback-Leibler divergence, which quantifies the difference 

between the predicted distributions and the true distribution [93]. The model with the lowest 

loss is assigned the highest weight, reflecting its reliability in making accurate predictions. 

The final prediction is then obtained through a weighted sum of the posterior predictive 

distributions for the individual models. This combination of predictions is carefully weighted 

to minimize the overall divergence from the true distribution, resulting in a more robust and 

accurate mortality risk estimation. By incorporating Bayesian predictive distributions and 

applying the Stacking technique, we aim to enhance the predictive performance and reduce 

the impact of model uncertainties, thus improving the utility of mortality prediction models 

in clinical decision-making. 
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The remainder of this chapter is organized as follows. Section 6.2 presents methods on 

stacking predictive distribution. This is followed by application to CIN paediatrics data.  

Results are presented in Section 6.3 and we conclude with a discussion in Section 6.4. 

6.2 Methods 

6.2.1 Prognostic factors considered in development of the meta model. 

In this chapter, the four models were considered. The four models were identified from 

previous chapters, and they include RISC-Malawi model and 3 other models developed by 

Lowlaavar et al. 2016. There were seven predictors included in the RISC-Malawi model, 

three predictors included in model 1,2 and two predictors in model 3 of the Lowlaavar et al. 

as shown in Table 6.2.1-1. Based on these predictors we developed 4 new models for the 

model averaging experimentation. 

Table 6.2.1-1: Prognostic factors included in the 4 predictive models.  

Study and the model’s 

name from which 

prognostic factors were 

obtained  

Model 

name  

Prognostic factors 

Hooli et al. 2016  
 

Model 1 Moderate hypoxemia, severe hypoxemia, 

moderately malnourished, severely malnourished, 

child-sex(female), wheezing, and unconsciousness  

Lowlaavar et al. 2016  Model 2  Abnormal Blantyre Coma Score, Positive HIV, 

Weight for age z-score 

Model 3 Abnormal Blantyre Coma Score, Positive HIV, 

Middle Upper Arm Circumference (MUAC) 

Model 4 Abnormal Blantyre Coma Score, MUAC 
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6.2.2 Model computations 

We used Bayesian analysis in the computations because it is easy to express model 

uncertainties, and ease of generating densities such as a posterior predictive distribution. We 

used Stan, a probabilistic programming language written in C++, for obtaining full Bayesian 

inference through its interface rstan in R statistical programming language [143]. Stan uses 

a No-U-Turn sampler which is a Monte Carlo Markov Chain (MCMC) algorithm to draw 

samples from a desired distribution by building a Markov-chain of accepted values (out of 

proposed values) for the unknown parameter as a posteriori distribution, a Monte Carlo 

Markov Chain (MCMC) algorithm that allows for quicker convergence to a target 

distribution compared to the Gibbs sampler, which uses a random walk algorithm.    

6.2.3 Model fitting 

We split the data into train and test set. The training set was used to fit logistic regression 

models predicting in-hospital paediatric mortality. The test set was used to assess model 

performance and to generate posterior predictive distribution.  For all models we specified 

four chains which is considered adequate, each with 2000 iterations half of which were 

devoted to the warm-up (adjusting the sampler's behaviour) and were automatically discarded 

before results were displayed. To assess model convergence, we performed Gelman-Rubin 

diagnostics, including visual inspection of the model chains of estimated parameters [143, 

144]. 

6.2.4 Model averaging methods 

The classical stacking technique also called stacking of means entails combining models by 

minimizing the mean squared error of the point estimate, or forming a meta model by 

combining multiple base learners e.g. Random Forest (RF), Support Vector Classification 

(SVC), K-Nearest Neighbors (KNN), and Light Gradient Boosting Machine (LGBM), 

Bootstrap aggregating (Bagging), and Adaptive Boosting (AdaBoost) [142]. In this chapter, 
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we considered ensemble averaging techniques which entails averaging models’ point 

predictions  and averaging model’s predictive distributions [93]. Each of these model 

averaging techniques allows incorporation of several competing models M = 𝑚1, … ,𝑚𝑘 in 

the estimation process as described below.  

1.  Averaging point predictions  

We used the test set to obtain the patient’s predicted risk of in-hospital mortality for each of 

the models, which was computed using the following logistic function. 

  𝑃(𝑌 = 1|𝑋) =
𝑒𝑥𝑝(𝛽0+𝛽1𝑋1 + … 𝛽𝑘𝑋𝑘) 

1+𝑒𝑥𝑝(𝛽0+𝛽1𝑋1 + … 𝛽𝑘𝑋𝑘)
, 

where 𝛽0 is the model intercept and  𝛽1,...,k are the regression coefficients for prognostic 

factors 𝑋1,...k. We then averaged predictions from all four models for each patient to obtain a 

weighted in-hospital mortality risk prediction.    

2. Stacking predictive distributions 

We started by first fitting each model to the data using Bayesian inference. After which we 

calculated model’s posterior predictive distributions which is the distribution of predictions 

that the model would make for new data. To combine the predictive densities, we used a loss 

function called Kullback–Leibler divergence to determine model weights such that the model 

with lowest loss is given the most weight [93]. The procedure of stacking model is described 

as follows; let 𝑆 be the scoring rule to determine model weights (𝜔𝑘) which are obtained by 

finding a solution to the optimization problem of minimizing the difference between expected 

predictive density of the aggregated predictive distribution and the true data generative 

distribution as shown in equation (6.2.4-1). 
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(6.2.4-1) 

 

where 𝑝(ỹ|𝑦,𝑀𝑘) is the predictive distribution of the out-of-sample data ỹ for the model 𝑀𝑘 

trained on data 𝑦, and 𝑝𝑡(ỹ) is the unknown true data distribution. The weights (𝜔𝑘)  are a 

vector that sum to 1, so they form a simplex. This means that the weights represent a 

probability distribution over the models.  

Therefore, the estimated aggregated predictive density takes the form of  p̂(ỹ|𝑦) =

∑ �̂�𝑘𝑝(ỹ|𝑦,𝑀𝑘)
k
i=1 . Due to computational challenge the predictive density 𝑝(ỹ|𝑦,𝑀𝑘) is 

approximated as 𝑝(𝑦𝑖|𝑦i−1,𝑀𝑘) by the Leave-One-Out cross-validation (LOO) via Pareto-

smoothed importance sampling (PSIS) [145, 146]. The calculated weights were then used 

to combine model’s predictive distributions as shown in equation (6.2.4-2).  
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, 𝑠. 𝑡.∑𝜔𝑘  = 1,

𝑀

𝑘=1

𝜔𝑘 ≥ 0   

 

(6.2.4-2) 

 

 

6.2.5 Model performance assessment 

Two metrics were used to assess model performance: discriminatory ability and model 

calibration. The discriminatory ability was determined using the c-statistic (value 0-1, 

discriminative if > 0.7) [84, 85], while the calibration was measured using the calibration 

slope and calibration intercept.  Slope values near 1 indicated better accuracy while values 

<1 indicated extreme risk predictions [88]. 
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6.3 Results 

6.3.1 Characteristics of the cohort used to train and test models.  

In this analysis, we examined a substantial cohort of 19,117 patients from the CIN database. 

Out of these, 12,745 patients were designated to the training set, while the remaining 6,372 

patients were utilized for testing the performance of our predictive models. The overall 

mortality rate in the entire cohort was 6.3%, resulting in a total of 1,198 recorded deaths. We 

also identified a subset of patients (5.6%) who were in an unconscious state. Among these 

unconscious patients, 25.1% died. It is noteworthy that the mortality rates among 

unconscious patients exhibited considerable variability across different hospitals, ranging 

from 14.7% to 35%. Abnormal oxygen saturation levels were prevalent among a significant 

portion of the patients, with 10.3% (1,970 individuals) exhibiting severe hypoxemia. 

Alarmingly, the case fatality rate among these patients stood at 17%, emphasizing the critical 

nature of this indicator in predicting mortality risk. Finally, a small fraction of patients (1.3%) 

was identified as being HIV+ in the cohort, and this proportion was consistent across both 

the test and train sets shown in Table 6.3.1-1.  
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Table 6.3.1-1: cohort of patients used to train and test models. 

Indicator Test 

(N=6372) 

Train 

 (N=12745) 

Overall 

(N=19117) 

Mortality 396(6.2%) 802(6.3%) 1198(6.3%) 

Child-sex (Female) 2612(41.0%) 5290(41.5%) 7901(41.3%) 

Unconscious  348(5.5%) 720(5.6%) 1068(5.6%) 

Wheezing  223(3.5%) 450(3.5%) 673(3.5%) 

Severely 

malnourished  

326(5.1%) 669(5.2%) 995(5.2%) 

Moderately 

malnourished  

1469(23.1%) 2950(23.1%) 4419(23.1%) 

Severe Oxygen 

saturation  

650(10.2%) 1320(10.4%) 1970(10.3%) 

Moderate oxygen 

saturation 

539(8.5%) 1129(8.9%) 1668(8.7%) 

Abnormal 

Blantyre coma 

score 

640(10.0%) 1317(10.3%) 1957(10.2%) 

HIV+ diagnosis 84(1.3%) 173(1.4%) 257(1.3%) 

6.3.2 Result of model’s stacking weights    

The weights reflect the relative importance of each model's predictions in the final ensemble. 

Notably, the procedure of determining model weights assigned a weight of 0.000 to Model 4 

suggesting that its predictions were excluded entirely from the final stacked densities. This 

decision might have been made based on the model's performance or redundancy with other 

models, rendering it less valuable in contributing to the final prediction. On the other hand, 

Model 1 received the highest weight of 0.711, signifying that its predictions held the most 

significant influence on the ensemble's final prediction. Models 2 and 3 were also included 

in the ensemble, contributing with weights of 0.214 and 0.075, respectively, although to a 

lesser extent than Model 1. 

The distribution of predicted probabilities for different models is provided in Figure 6.3.2-1. 

Model 1 has the most concentrated distribution, with most of the predictions falling between 

0.5 and 0.75. Model 2 has a wider distribution, with predictions ranging from 0 to 1. Model 

3 has a similar distribution to Model 2, but with more predictions at the lower end of the 
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spectrum. Model 4 has the most spread-out distribution, with predictions ranging from 0 to 1 

and a peak at around 0.25. The ensemble model has a distribution that is similar to Model 1, 

but with slightly more predictions at the lower end of the spectrum.  

Figure 6.3.2-1: distribution of predicted probabilities for four different models. The x-axis 

represents the predicted probability, and the y-axis represents the density of predictions at 

each probability. 
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6.3.3 Comparison of model performances 

i) Discrimination  

The discrimination ability (C-statistic) measures the models' capability to accurately 

distinguish between patients who experienced mortality and those who did not. Higher C-

statistic values indicate better discrimination performance, with values closer to 1.0 reflecting 

excellent predictive accuracy.  As shown in Table 6.3.3-1, among the individual models, 

Model 1 demonstrated the highest discrimination ability with a C-statistic of 0.722, followed 

by Models 3, 2, and 4, with C-statistics of 0.711, 0.697, and 0.706, respectively. Both 

ensemble techniques showed improved discrimination abilities compared to the individual 

models. The Stacking of Predictive Distributions achieved the highest discrimination ability 

among all approaches, with a C-statistic of 0.744. The Averaging Approach also exhibited a 

notable discrimination ability, with a C-statistic of 0.740.  

Therefore, in summary, the ensemble techniques (Stacking of Predictive Distributions and 

Averaging Approach) outperformed the individual models in terms of discrimination ability, 

indicating that they are more accurate in classifying patients based on their mortality risk. 

ii) Calibration  

The calibration intercept of the individual models ranged from 0.009 to -0.014. A calibration 

intercept of 0 indicates perfect calibration, while positive values suggest overestimation and 

negative values suggest underestimation. As shown in Table 6.3.3-1, Model 1 had a 

calibration intercept closest to ideal calibration (0.009), indicating a slight overestimation of 

predicted probabilities. The calibration intercepts of the ensemble techniques were -0.005 for 

Stacking and -0.006 for Averaging. Both ensemble techniques achieved calibration intercepts 

closer to 0 compared to the individual models, indicating better calibration. This suggests 

that the ensemble techniques' predicted probabilities were more accurate and closely aligned 
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with the true probabilities of mortality events. The calibration slopes of the individual models 

ranged from 0.954 to 1.065. A calibration slope of 1 indicates perfect calibration, where 

predicted probabilities match the observed probabilities. Values greater than 1 indicate that 

predicted probabilities are too extreme, while values less than 1 indicate conservative 

predictions. The calibration slopes of the ensemble techniques were 1.297 for Stacking and 

1.266 for Averaging. Both ensemble techniques had calibration slopes greater than 1, 

indicating a slightly more aggressive prediction of probabilities. However, the calibration 

slopes were still relatively close to 1, suggesting that the ensemble techniques' predictions 

were well-calibrated and appropriately reflected the actual probabilities of mortality events. 

Table 6.3.3-1: Individual model performances compared to that of ensemble methods.  

Model Calibration intercept  Calibration slope Discrimination (c-

statistics)  

Model 1 0.009(-0.097 – 0.115) 0.954(0.848 – 

1.060 

0.722(0.682 – 0.758) 

Model 2 -0.007(-0.111 – 0.097) 1.060(0.928 – 

1.192) 

0.697(0.662 -0.730) 

Model 3 -0.013(-0.1108 – 0.092) 1.065(0.942 – 

1.188) 

0.711(0.681 – 0.740) 

Model 4 -0.014(-0.119 – 0.090) 1.041(0.917 – 

1.165) 

0.706(0.675 – 0.734) 

Averaging 

individual 

predictions  

-0.006(-0.110 – 0.098)  1.266(1.134 – 

1.398) 

0.740(0.712 – 0.767) 

Stacking of 

Predictive 

Distributions 

-0.005(-0.109 – 0.099) 1.297(1.163 – 

1.430)  

0.744(0.716 – 0.771) 
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6.4 Discussion  

6.4.1 Summary of the findings 

In this chapter, we utilized a stacking methodology to merge the predictive distributions 

originating from four distinct prognostic models. The primary objective was to bolster the 

precision and dependability of mortality risk predictions concerning pediatric patients, and 

hence reducing model uncertainty. The procedure of stacking encompassed the allocation of 

weights to each model, calculated through the application of the Kullback–Leibler divergence 

method which is a measure used to quantify how one probability distribution differs from 

another. These weights played a crucial role in delineating the unique contributions of each 

model towards the ultimate collective prediction. Here is the summary of the key findings: 

Firstly, the discriminatory ability of the ensemble techniques, namely the Stacking of 

Predictive Distributions and the Averaging Approach, surpassed that of the individual 

models. Discrimination ability, as quantified by the C-statistic, reflects a model's capacity to 

effectively distinguish between patients who experienced mortality and those who did not. 

While individual Model 1 demonstrated commendable discrimination ability with a C-

statistic of 0.722, both ensemble techniques exhibited even better performance. The Stacking 

of Predictive Distributions achieved the highest discrimination ability, recording a C-statistic 

of 0.744. Similarly, the Averaging Approach showcased notable discrimination ability, with 

a C-statistic of 0.740. This robustly indicates that the ensemble techniques excel in accurately 

classifying patients based on their risk of mortality. Secondly, the ensemble techniques 

showcased marked improvements in calibration when compared to the individual models. 

Calibration is pivotal for aligning predicted probabilities with observed probabilities and thus 

enhancing the accuracy of risk estimation. While the calibration intercept of Model 1 was 

relatively close to ideal calibration at 0.009, the ensemble techniques further improved upon 

this metric. Specifically, the calibration intercepts of the Stacking and Averaging approaches 
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were -0.005 and -0.006, respectively. These values suggest that the ensemble techniques' 

predicted probabilities were closely aligned with the true probabilities of mortality events. 

Moreover, the calibration slopes of the ensemble techniques (1.297 for Stacking and 1.266 

for ordinary point averaging) indicated a slightly more aggressive prediction of probabilities, 

while still maintaining proximity to the ideal value of 1. This underscores that the ensemble 

techniques' predictions were well-calibrated and aptly reflected the actual probabilities of 

mortality events. 

6.4.2 Stacking of predictive distribution method vs other approaches. 

Early literature on stacking techniques primarily focused on averaging point predictions, a 

method sometimes referred to as "stacking of means." It aimed to combine models by 

minimizing the mean squared error of the point estimate [140, 147]. In earlier research by 

Raftery et al. [137], Clerke et al. [140] and Hoeting et al. [20], Bayesian Model Averaging 

was introduced as a potential solution. However, it later proved to be unreliable due to 

principles such as Occam's Razor and Occam's Window, which implied that it would 

asymptotically select a single model, the one closest in KL divergence to the true data-

generating process. Mortality prediction, a critical outcome in hospitalization contexts, has 

remained a challenging task. It's important to clarify that mortality prediction involves a 

convolution of single models, rather than a straightforward mixture, making it impossible for 

any approach to recover the true model from the list. Here, Bayesian Stacking of Predictive 

Distributions provides a more advanced ensemble technique. Instead of fixating on point 

estimates, it considers the complete predictive distributions produced by individual models. 

Each model's Bayesian predictive distribution encompasses the full spectrum of predictions 

it could make for new data. The stacking process amalgamates these predictive distributions, 

using a loss function like the Kullback-Leibler divergence to quantify the differences between 

these distributions and the actual one. The model with the lowest loss garners the highest 
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weight, resulting in a final output that is not a single point estimate but a predictive 

distribution. This approach provides a comprehensive view of model uncertainty, offering 

insights into a range of potential outcomes and their associated probabilities. 

6.4.3 Limitations 

This study's limitations are rooted in its use of predictors drawn from established models 

(RISC-Malawi, Lowlvaal et al.), which may constrain predictive capabilities by relying on 

available variables, potentially overlooking other important prognostic factors. However, it's 

crucial to clarify that the primary aim of this chapter and the associated research was not to 

devise a novel predictive model, but rather to introduce an innovative technique that 

harnesses the posterior predictive distributions of existing models to enhance out-of-sample 

predictions. Stacking of predictive distribution methods entail a greater computational burden 

compared to simpler averaging approaches. Furthermore, the effectiveness of stacking is 

intricately tied to the selection of models, as it cannot outperform the best linear combination 

offered by the chosen model list[93]. Notably, stacking displays a relatively lower sensitivity 

to model misspecifications, underscoring its role as a model averaging tool rather than a 

model selection procedure, with its ultimate focus on enhancing predictive accuracy.  

6.4.4 Implications of the study findings 

The implications of our study's findings carry substantial significance for both the predictive 

modeling field and the domain of clinical decision-making, especially in the context of 

predicting pediatric mortality in hospital settings. Our research illuminates the potential of 

ensemble techniques to significantly enhance the precision and dependability of mortality 

risk forecasts for pediatric patients, with profound consequences for clinical practice, 

healthcare resource allocation, and overall patient care. 



101 
 

In the realm of predictive modeling, our study introduces a pivotal paradigm shift by 

harnessing the capabilities of ensemble techniques such as the Stacking of Predictive 

Distributions and the Averaging Approach. These methodologies transcend the constraints 

of single-model approaches by amalgamating insights from multiple predictive models. This 

amalgamation results in a more comprehensive and resilient assessment of mortality risk for 

pediatric patients. Given the critical nature of pediatric mortality, especially in a hospital 

setting, the heightened discriminative prowess of ensemble techniques becomes paramount. 

This improved capacity to differentiate between high-risk and lower-risk cases empowers 

healthcare providers to allocate their attention and resources more efficiently, thereby 

optimizing patient care strategies. 

6.5 Conclusion 

The chapter’s approach, centered around the stacking of Bayesian predictive distributions 

from individual models, represents a pivotal advancement in addressing model uncertainty 

in prognostic modeling. By leveraging the power of Bayesian methods and the insights of 

ensemble techniques, this methodology offers a robust and reliable framework for predicting 

in-hospital pediatric mortality. The innovative amalgamation of predictive distributions, 

coupled with the calculation of model weights through loss functions, results in a final 

prediction that is more accurate and better calibrated. This improvement in predictive 

performance holds significant implications for clinical decision-making, enabling clinicians 

to make informed choices regarding the management and prioritization of pediatric patients 

who are at an increased risk of deterioration. The approach's potential to reduce the impact 

of model uncertainties underscores its importance in enhancing the utility of mortality 

prediction models in clinical practice. In a landscape where every incremental improvement 

in predictive accuracy matters, this study's contribution marks a significant stride toward 

more reliable and effective prognostic modeling in pediatric healthcare.  
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Chapter 7 

7.0 Quantifying the Impact of Short Follow-Up 

Period on the prognostic model: A Monte Carlo 

Simulation Study 

7.1 Introduction  

Researchers should accommodate for competing risks, which preclude or fundamentally 

change the probability of the event of interest, to avoid biased estimates of the relationship 

between covariates and patient outcomes. When the event of interest is in-hospital mortality, 

competing risks include discharges, referrals, etc. Using the conventional Cox Proportional 

Hazard(CoxPH) model that censors the competing events may yield biased estimates [148].  

It is important to understand how failing to account for competing risks of in-hospital 

mortality may affect estimation accuracy because some scoring systems employing the 

standard Cox regression where competing risks are censored have been developed and 

deployed in practice in other specialities such as nephrology [149]. 

Fine and Gray developed the proportional Sub-distribution Hazard (SH) model for modelling 

the effects of covariates on the Cumulative Incidence Function (CIF) in the presence of 

competing risks [17, 150]. However, in the Chapter 2 of this thesis(systematic review of 

prognostic models) it was shown that competing risks are ignored partly due to the analytical 

complexity of techniques involving competing risks [151, 152].  
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Most paediatric in-hospital mortality occurs soon after admission [99]. However, the 

application of the SH model in  such a setup of a short follow-up period or heavy censoring 

has been discouraged due to its effect on the proportionality assumption of the SH model 

[153]. In addition, it has also been argued that the competing risks framework has negligible 

influence compared to other alternative approaches when the follow-up period is short [18].  

Despite this evidence, it is notable that no simulations have been done to quantify the 

unreliability of the SH model in a setting of heavy censoring or a short follow-up period.    

In this chapter, the objective is to examine the accuracy of estimated quantities of the SH model 

in patients with short follow-up periods through extensive Monte Carlo simulations, which 

work by iteratively sampling data randomly and incorporating a range of factors to mimic a 

statistical problem. 

7.2 Methods 

7.2.1 Monte Carlo simulations 

To examine the accuracy of estimated quantities of the SH model in patients with short 

follow-up periods, we conducted extensive Monte Carlo simulations, which works by 

iteratively sampling data randomly and incorporating a range of factors to mimic a statistical 

problem. To do this, we used plasmode-type simulations whereby empirical data analysis 

informed the design of the simulations [154]. Plasmode is a real dataset that is created from 

natural processes but has some aspect of the data-generating model that is known. This 

approach was motivated by the fact that clinical data have complex covariance structures 

which cannot be replicated in a fully synthetic data [155, 156].   

7.2.2 Simulation scenarios 

In the simulation, we allowed three factors to vary, namely: 

i) the sample size (𝑛) of the simulated datasets, 
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ii)  the parameter (𝑝) which is the proportion of patients with covariates equal to zero 

who experience mortality as time (𝑡) gets arbitrarily large, and 

iii) hospital survival/follow-up period measured by the LOS.  

The sample size (𝑛) took three values: 500, 1000, and 10000. The parameter  𝑝 could take 

on three values:  0.1, 0.5 and 0.9. LOS could take 15 values ranging from 1 to 15. We thus 

examined 135 (3 × 3 × 15) different scenarios and simulated 100 datasets for each 

scenario.  

7.2.3 Data-generating process 

As part of the simulation design, we included a set of covariates in the Sub-distribution Hazard 

(SH) model fitted in the empirical dataset (CIN) and whose model coefficients were used as 

part of the true data-generating mechanism in the simulation of event time and the type of 

event. We chose four including age (in months), child sex, the temperature at admission, and 

presence of severe acute malnutrition (defined as one of the following: mid-upper arm 

circumference <11.5cm, severe wasting, oedema, or clinical admission diagnosis of the severe 

forms of malnutrition including kwashiorkor, marasmus, or marasmus-kwashiorkor). In the 

variable selection, we didn't follow any set criteria. However, as part of the simulation design, 

we wanted to examine the effect of various variable characteristics on the estimation accuracy. 

Aspects of interest included covariate variability (for continuous) and frequency of 

observation (for categorical variable). Child sex and body temperature at admission were 

included because they were frequently observed and less variable, respectively. The opposite 

was true for severe acute malnutrition and patients' age. Continuous variables were 

standardized to have a mean zero and unit variance prior to inclusion into the model. As part 

of the sensitivity analyses in a separate set of simulations, we included unstandardized 

continuous variables into the model to gain an insight on the effect it would have on the 

estimation accuracy.  
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7.2.4 Model coefficients based on the empirical data. 

We subdivided the CIN data into separate subpopulations based in the LOS which ranged 

from 1 to 15. Accordingly, a dataset with LOS=1 included patients admitted and discharged 

from hospital or died at the same day of admission, while those of LOS=5 included patients 

with LOS ranging from 1 to 5. Similarly, a dataset of LOS=15 included patients with at most 

15 LOS and thus included patients of various LOS ranging from 1 to 15. In each of these 15 

datasets, we fitted a sub-distributional hazard model (equation 7.2.4-1) for each of the 

possible patient outcomes shown in Figure 3.6.1-1 

𝜆𝑗(𝑡|𝒛) =
−𝜕 𝑙𝑜𝑔{ 1 − 𝐹𝑗(𝑡|𝒛))} 

𝜕𝑡 
, 𝑗 ∈ {1,2,3,4} 

 

(7.2.4-1) 

where 𝑗 denotes various possible patient outcomes, 𝒛 is the covariate vector, 𝐹𝑗(𝑡) =

∫ 𝑃(𝑇 > 𝑢 −)α0𝑗(𝑢)𝑑𝑢
𝑡

0
,  is the cumulative incidence function for the 𝑗𝑡ℎ event at time 𝑡, 

𝑃(𝑇 > 𝑢 −) is the probability of being in the original state 0 (point of admission) before 

transiting to state 𝑗 in time 𝑢.  

7.2.5 Simulation of event types and time-to-event 

For the simulated dataset to be complete, we needed to generate the event-types and the time-

to-event. To achieve this, we bootstrapped the empirical data for all four covariates for each 

scenario. The resultant dataset (scenario replicated dataset) was combined with the model 

coefficients obtained from the SH model fitted on the empirical dataset to generate a linear 

predictor (𝑿β) for each patient. We simulated time-to-event (𝑇𝐸) for various types of outcomes 

using the indirect method by Fine and Gray[17] which has also been described in detail in the 

Beyersmann book[157]. The primary event of interest (death) was assumed to have the 

following distribution in equation (7.2.5-2). 
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𝑃r(𝑇𝑖 ≤ 𝑡|𝑍𝑇 = 1,𝑿) =
1 − (1 − 𝑝(1 − 𝑒−𝑡))

𝑒𝑥𝑝(𝑿𝜷)
 

1 − (1 − 𝑝)𝑒𝑥𝑝(𝑿𝜷)
, 

(7.2.5-2) 

where 𝑝 is the proportion of patients with covariate equal to zero who experience event of 

interest (death) as time 𝑡 becomes arbitrarily large, 1 − (1 − 𝑝(1 − 𝑒−𝑡))
𝑒𝑥𝑝(𝑿𝛃)

 is the 

cumulative incidence function of the primary event of interest (death), and 1 −

(1 − 𝑝)𝑒𝑥𝑝(𝑿𝛃)  is the probability of the occurrence of death as 𝑡 → ∞. The inverse of 

equation 2 yielded equation (7.2.5-1) which was evaluated to generate time to primary 

event(𝑇1) as guided by Austine et al. [75].  

 

𝑇1 = −𝑙𝑜𝑔

(

 
 
 
−

1 − ((−𝑢 +
1

1 − (1 − 𝑝)𝑒𝑥𝑝(𝑿𝜷)
) (1 − (1 − 𝑝)𝑒𝑥𝑝(𝑿𝜷)))

1
𝑒𝑥𝑝(𝑿𝜷)

−  𝑝

𝑝

)

 
 
 
, 

 

 

(7.2.5-3) 

 

 

where 𝑢~𝑈𝑛𝑖𝑓(0,1), 𝑿𝜷 is the linear predictor – a combination of the bootstrapped data and 

the vector of coefficient of proportional sub-distribution hazard model from equation 1.  Time 

to experience competing event were generated from an exponential distribution 𝑇𝑗 =

𝑒𝑥𝑝(𝑿γ𝑗),   where, 𝑿γ𝑗 is the combination of covariate vector and the coefficient of SH model 

for various competing events, and 𝑗 denotes the competing event. In addition, we also generated 

the observed survival time (T) using this relationship 𝑇 = 𝑚𝑖𝑛(𝑇𝑗) where 𝑗 denotes patients’ 

outcome. The event type that corresponded with the minimum survival time (T) was assumed 

to be the appropriate patient outcome. 
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7.2.6 Searching rate parameter of exponential distribution through 

bisection method 

To find the best possible values of time at which subjects are censored, optimal values of the 

rate parameters 𝜆censor of the exponential distribution were required. For each scenario and 

in each iteration a new seed was set that corresponded to the iteration number. Setting of seed 

ensured the reproducibility (reuse of the same set of random variables) of the sequence where 

necessary. Exponential random variables were simulated from a huge population 

(N=1,000,000). This was informed from previous simulation studies. Optimal 𝜆censorvalues 

were searched in the interval [0.01, 500] to achieve the desirable proportion of patients for 

whom an event was observed to occur in the simulated data using a bisection algorithm. This 

approach starts with a large interval known to contain the solution, then it successively 

reduces interval size until the solution is found. Our stopping criteria was defined as follows; 

if the difference between the probability of being censored in the empirical dataset and in the 

simulated dataset was negligible (<0.0001) for any given scenario.  The schematic view of 

how this was implemented is as shown in Figure 7.2.6-1. 
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Initial interval
A=500

B=0.001

Bisecting interval
C=(A+B)/2

Updating interval
A=C

Updating interval
B=C

Exponential 
distribution rate to 

keep=C

Stop

No

Criteria for assessing convergence:
1. Simulate event types based on data generating 

mechanism
2. Use C as a rate in exponential distribution 

to simulate time at which subjects are censored in 
1 above 

3. Using simulated data, calculate the probability 
at which any event (excluding absconding)

occurs (P_SIM)
4. Calculate the probability at which any event 

(excluding absconding) 
occurs in the empirical data

(P_REAL)

Stopping rule
|P_SIM – P_REAL|< 0.0001

P_SIM   <  P_REAL
Yes No

Yes

 

Figure 7.2.6-2: The bisection algorithm used to search for the optimal rate parameter for the 

exponential distribution that was used to simulate time at which patients were censored. 
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7.2.7 Model coefficients based on the simulated data. 

We added the simulated event type and time-to-event for each patient in the bootstrapped set. 

We used the resultant dataset to fit the SH model using the primary event (in-hospital death) 

as the dependent variable and regressed against the four covariates.   

7.2.8 Assessing estimation bias 

Upon model convergence, we extracted the estimated regression coefficients. We estimated the 

bias and relative bias for each scenario across the 100 replicated datasets using equation (7.2.8-

1) 

𝑏𝑖𝑎𝑠(𝛽j) =
1

100
∑ (�̂�𝑖,𝑗  −  𝛽j)
100
i=1 , (7.2.8-1) 

 where 𝛽j is the true value of the 𝑗𝑡ℎ regression coefficient (obtained via the empirical dataset) 

and �̂�𝑖,𝑗 is the estimated value of the 𝑗𝑡ℎ regression coefficient obtained in the 𝑖𝑡ℎ simulated 

dataset. The relative bias was defined as 
𝑏𝑖𝑎𝑠(𝛽j)

𝛽j
× 100.  

7.3 Results 

7.3.1 Characteristics of the empirical sample used for data generation. 

In total there were 140,203 patients across the 19 hospitals analysed. The overall mortality 

was 6.2% which ranged from 1.3% to 11.8% across hospitals as shown in Figure 7.3.1-1. 

Overall in-patient mortality was 6.2% ranging from 1.3% to 11.8% across hospitals. 

Subpopulation analysis suggested that mortality was the highest (40.6%) among patients 

admitted and discharged on the same day (LOS=1), and 60.3% of all 15 days’ mortality 

occurred within the first 48 hours of admission, as shown in Figure 2. The distribution of the 

four covariates used in the data generating model showed that, 44.1% of children were 

female, 9.6% had severe acute malnutrition, and the average age in months was 34.4(standard 

deviation: 35.7) which included neonates with a median age of 9 days (interquartile range 5-
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14 days). Patients’ characteristics were similar between patients with short and long follow-

up periods. However, severe acute malnutrition was more prevalent in patients who stayed 

longer in the hospital as shown in Table 7.3.1-1. 

 

Figure 7.3.1-1: Distributions of the patient outcomes across hospitals 
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Table 7.3.1-1: Distribution of clinical characteristics of the empirical sample used for data 

generation. 

 
Short follow-

up (LOS<=2) 

Other follow-

up period 

(LOS>2) 

All patients 

(N=27018) (N=113185) (N=140203) 

Outcomes (competing events)       

Discharged/medical stability 20291 (75.1%) 
106924 

(94.5%) 
127215 (90.7%) 

Referred out 978 (3.6%) 1875 (1.7%) 2853 (2.0%) 

Discharged against medical 

advice/absconded 
338 (1.3%) 560 (0.5%) 898 (0.6%) 

Died 5197 (19.2%) 3406 (3.0%) 8603 (6.1%) 

Missing 214 (0.8%) 420 (0.4%) 634 (0.5%) 

Child sex       

Male 14752 (54.6%) 
62311 

(55.1%) 
77063 (55.0%) 

Female 11999 (44.4%) 
49890 

(44.1%) 
61889 (44.1%) 

Missing 267 (1.0%) 984 (0.9%) 1251 (0.9%) 

Age in months       

Mean (SD) 35.6 (35.1) 34.1 (35.8) 34.4 (35.7) 

Missing 230 (0.9%) 960 (0.8%) 1190 (0.8%) 

Body temperature at admission (°C)       

Mean (SD) 37.4 (1.26) 37.6 (1.19) 37.6 (1.21) 

Missing 3963 (14.7%) 
11339 

(10.0%) 
15302 (10.9%) 

Severe Acute Malnutrition       

Yes 1678 (6.2%) 
11765 

(10.4%) 
13443 (9.6%) 

No 23236 (86.0%) 
96809 

(85.5%) 
120045 (85.6%) 

Missing 2104 (7.8%) 4611 (4.1%) 6715 (4.8%) 

 

7.3.2 Relative bias in the estimated quantities 

The results of the Monte Carlo simulations are reported graphically. Model converged in 

94.5% of all Monte Carlo simulations whose bias in recovering a true data-generating model 

are reported graphically. As expected, the estimation accuracy improved with the increase in 

sample size. The same was true with increasing value of parameter 𝑝. This observation was 
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consistent across all model covariates. We also observed that for binary covariates that were 

not commonly observed, such as severe acute malnutrition (observed in 9.6% of all patients), 

the trend did not exhibit any pattern suggestive of reducing estimation bias regardless of the 

values of parameter  𝑝 and sample size scenarios used in simulations. See Figure 7.3.2-1. 

  

Figure 7.3.2-1:The y-axis is the relative bias in recovering the true model coefficient for 

variable severe acute malnutrition at different values of the parameter 𝒑 (0.1, 0.5, and 0.9) 

across various sample sizes (500, 1000, and 10000). 

On the other hand, for the categorical variables that were modestly observed in the empirical 

dataset, such as gender(male), which was observed in 55% of all patients, the results 

suggested that the accuracy of the model estimates increased with the increase in the follow-

up period as shown in Figure 7.3.2-2 
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Figure 7.3.2-2: The y-axis is the relative bias in recovering the true model coefficient for 

variable child sex at different values of the parameter 𝒑 (0.1, 0.5, and 0.9) across various 

sample sizes (500, 1000, and 10000). 

In the simulations, we included two continuous variables with varied variances: age in 

months (mean=34.4, standard deviation=35.7) and temperature (mean=37.5, standard 

deviation=1.2), which were standardized so that they had mean zero and unit variance. 

However, even after standardizing these variables, we observed that the bias in variable with 

high variance(age) was relatively high (see Figure 7.3.2-3 lower panel) compared to the 

temperature variable with a much lower variance as shown in Figure 7.3.2-3 (upper panel). 

In the sensitivity analyses, we witnessed a high number of model non-convergence (38.2%) 

owing to non-standardization of continuous variables. 
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Figure 7.3.2-3:The y-axis is the relative bias in recovering the true model coefficient at 

different values of the parameter 𝒑 (0.1, 0.5, and 0.9) across various sample sizes (500, 1000, 

and 10000). The upper panel represent the variable temperature while the lower panel 

represent the variable age in months. 
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7.4 Discussion  

7.4.1 Principal findings 

The Fine-Gray SH model was developed to model the impact of covariates on the incidence 

of events over time in the setting of competing risks. In this chapter, through a series of Monte 

Carlo simulations, we determined how the length of patient follow-up affects the estimation 

accuracy of the SH model. Most of the patients in our dataset experienced all-cause hospital 

mortality shortly after admission - 40.6% occurred within 24 hours of admission (Figure 

7.3.1-1). Simulation findings suggested that the bias in recovering the true data-generating 

mechanism was relatively higher in scenarios with a short survival period than in long follow-

up periods.  

Treating competing events as censored observations is commonplace in most 

epidemiological work, where the CoxPH is used as a standard survival analysis method. 

While this approach is useful in understanding disease aetiology, it is not reliable if there is 

a dependence between competing events. This is because the cause-specific hazard cannot 

be interpreted as the marginal hazard, and covariate effects do not directly translate onto the 

cumulative scale. One of the difficulties associated with competing events and, in fact, 

censoring in general is that, without making restrictive assumptions about the exact nature of 

the dependency between the different event types, it is impossible to distinguish between 

dependent and independent event processes [158]. 

While we believe that the bias in recovering the true data-generating mechanism is solely 

attributable to the follow-up period, we would like to acknowledge that the Breslow method, 

which is the default method for handling ties in Cox regression and is implemented in the R 

package used for competing risks, also has some bias as observed by Berger et al. [159], and 

hence our findings should be interpreted with caution.  
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The effect of the follow-up period on estimation of regression coefficients for binary 

covariates with a moderate prevalence was similar to that of continuous covariates. However, 

for binary covariates with a very low prevalence e.g., 9.6% for severe acute malnutrition, we 

witnessed a huge variability among model results obtained from simulated data prompting a 

much higher number of iterations and a longer follow-up period to permit accurate estimates.  

A similar phenomenon was observed in the sensitivity analyses. This observation is probably 

because a low-prevalence predictor in the model induces the problem of separation and 

monotone likelihood in the estimation of parameters [132, 160]. In addition, we noticed high 

bias in the scenarios with low values of the parameter 𝑝 ≤ 0.1. These observations have 

implications for analysts fitting SH model in which the prevalence of covariate is low or in a 

setting with low primary event of interest. We witnessed a considerably high number of 

nonconvergence of models in the sensitivity analyses. This finding underscores the need to 

standardize continuous covariates before modelling. 

7.4.2 Strengths of the study 

Methodological issues affecting the SH model, such as the optimal number of events-per-

variable (EPV), the impact of various censoring distributions, and the effect of time-

dependent covariates, have been addressed previously in multiple studies [75, 161, 162].  

To the best of our knowledge, this is the first study to explore how the accuracy of the 

estimated SH model coefficients is affected by the patients' length of hospital stay. 

We used the indirect simulation method developed by Fine and Gray to generate the event 

types and event times, which was a strength of this work because the method does not require 

the specification of the cause-specific hazard functions, which should be non-negative. In 

addition, we used plasmode-type simulations to capture the complex variance-covariance 

structure inherent in clinical datasets [17, 150].  
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7.4.3 Limitations of the data 

Although we used a large dataset that reflected typical scenarios faced by researchers 

developing models, we did not evaluate all possible scenarios, including adding highly 

correlated variables to the model. Another concern was that the simulation results were only 

based on converged models. Instances of non-convergence were omitted (5.6%). Due to 

computational challenges, we limited the number of scenarios significantly. For example, we 

only assessed three scenarios for sample size, three for the values of 𝑝, and a limited number 

of datasets generated per scenario. In a similar simulation study authors generated 1000 

datasets per scenario, but in our study, we generated 100 datasets per scenario. Regardless of 

these limitations, we believe that our research is robust enough and it has pointed areas of 

concern for further research.  

7.4.4 Conclusions 

Sub-distribution hazard models have been applied in studies with long follow-up periods, such 

as cancer studies [163], intensive care studies [164] and nosocomial infections studies [165] 

but few in studies with short follow-up periods. Monte Carlo simulation results demonstrated 

how inaccurate SH model estimates are when applied in populations with short survival 

periods. Based on the study findings, it is challenging to be prescriptive on the average follow-

up period a population should have to permit accurate SH model estimates. However, the study 

has highlighted a potential weakness of the SH model application in the setting of a short 

survival period that can be a subject of further research. 
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Chapter 8 

8.0 Conclusion, Recommendations and Further 

Research 

This report illustrates the practical applications of advanced modeling in developing prognostic 

models. It follows a structured path, beginning with a comprehensive systematic review in 

Chapter 2. This review aimed to identify predictive scores for in-hospital mortality among 

pediatric patients in resource-limited countries. Despite finding twenty-one prognostic models 

across fifteen studies, the analysis unveiled significant quality concerns. These issues included 

problems with reporting, handling missing data, univariable analysis for predictor selection, 

small sample sizes, and inappropriate categorization of continuous predictors. None of the 

identified models met the criteria for good methodological quality, raising doubts about their 

predictive capabilities. 

In Chapter 4, four eligible prognostic models from Chapter 2 underwent external validation. 

This involved assessing their discriminatory ability and calibration levels using a diverse 

population of pediatric patients admitted to 20 hospitals from 2014 to December 2021. While 

all four models displayed fair discriminatory values (AUC 0.70-0.79), a critical problem 

emerged. Each of these models consistently underestimated the risk of mortality, as indicated 

by calibration intercepts greater than zero. This underestimation could lead to the 

misclassification of high-risk patients. To address these issues, Chapter 5 focused on 

recalibrating the models for in-hospital mortality prediction. The recalibration aimed to rectify 

situations where these models either overestimated or underestimated the risk of in-hospital 

mortality. The use of large sample sizes from 20 county referral hospitals, offering temporal 
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and spatial richness, was a notable aspect of this work. Two recalibration strategies, calibration-

in-the-large adjustment and logistic calibration were explored. Logistic recalibration was found 

to be more effective, yet the improvements achieved were relatively small. The models still 

failed to meet the necessary calibration thresholds for clinical use, mainly due to an insufficient 

account of model uncertainty during their development. 

Chapter 6 tackled the issue of model uncertainty. It employed a stacking methodology to merge 

predictive distributions from four distinct prognostic models (an extension of Chapter 5). This 

was done with the goal of improving the accuracy and reliability of mortality risk predictions 

for pediatric patients while reducing model uncertainties. Weights were assigned to each model 

using the Kullback–Leibler divergence method. Key findings showed that ensemble 

techniques, including the Stacking of Predictive Distributions and the Averaging Approach, 

outperformed individual models. They excelled in distinguishing between patients with 

different levels of mortality risk and improved calibration compared to individual models. This 

approach's potential to reduce model uncertainties has significant implications for clinical 

decision-making, resource allocation, and patient care in pediatric healthcare, representing a 

notable advancement in predictive accuracy and reliability in the field of prognostic modeling. 

Chapter 7 shifted the focus to the Fine-Gray Sub-distribution Hazard (SH) model, designed to 

address competing risks. Through Monte Carlo simulations, it examined how the length of 

patient follow-up affects the accuracy of this model. The study's findings highlighted that 

biases in recovering the true data-generating mechanism were more pronounced with shorter 

follow-up periods. Additionally, it underscored the common practice of treating competing 

events as censored observations, particularly in epidemiological research using the Cox 

Proportional Hazard (CoxPH) model. However, this approach becomes unreliable in the 

presence of dependencies between competing events, as the cause-specific hazard doesn't 

directly translate to the cumulative scale. 
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Despite the progress made, there is a need for further research in this area to fully comprehend 

and address these complexities. 
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