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ABSTRACT 

The scientific search for materials with good light energy absorption and desirable optical and 

electrical properties for applications in the areas of optoelectronics like photovoltaic is on the rise 

globally. Since the optoelectronic potential, intrinsic stability, eco-friendliness and conversion 

efficiency of most classes of semiconductor materials are not well researched, there is a need for an 

extensive study to provide an insight and the comprehensive properties of all classes of 

semiconductor compounds.  This motivated us to perform ab initio DFT calculations based on plane 

wave self-consistent field technique for structural, electronic, mechanical, elastic, and optical 

properties using two exchange correlation functionals: the LDA and the GGA. The one based on 

LDA was Perdew-Zunger while those based on the GGA were Becke-Lee-Yang-Parr, Engel-Vosko, 

Perdew-Burke-Ernzerhof, Perdew-Burke-Ernzerhof for solids and Second-order correlations. The 

bandgap of the material was from the range of 0.5493 eV to 1.2282 eV, suggesting that the band gap 

is within the visible region. This indicates that the material is suitable for optoelectronic application 

in photovoltaic. The analysed electronic structure of the projected density of states using the PAW 

pseudopotentials displayed that the valence band was mainly dominated by As 2p, Zn 2p, Zn 1s, and 

K 2s, with other orbitals giving a very minimal contributions, whereas the conduction band of the 

material was mainly dominated by Zn 1s and Zn 2p, with small contributions from As 2p and K 2s 

orbitals, with the other orbitals making insignificant contributions. The most important and 

fundamental conditions for the elastic stability of rhombohedra lattice was satisfied. The optical 

properties displayed the material to have an excellent absorption of light energy within the visible 

region, which supports the results obtained for the band gap. The average lattice parameter was a = 

18.2477, which is comparable with the one in the experimental results indicated in the open 

literature. The bulk moduli values of the six exchange correlations ranged from 13.3GPa-22.2GPa. 

The Young Moduli values ranged from 19.1GPa-20.9GPa. The Shear moduli values ranged from 

7.4GPa- 7. 8GPa.The poison’s ratios ranged from 0.26-0.28. This information suggests that the 

material is ductile, mechanically stable, ionic, and anisotropic when subjected to external forces. 
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CHAPTER ONE: INTRODUCTION 

1.0 Introduction 

This chapter contains information on semiconductors, with the main focus on the classification of 

ternary chalcogenides broadly into two categories. Ternary pnictides are discussed from broad to 

specific; thereafter, the statement of the problem, objectives followed by the significance, and then 

the justification of the research on the trigonal structure of Zintl phased tetrapotassium 

diarsenidozincate(K4ZnAs2) semiconductor compound based on ab initio molecular studies. 

 

1.1 Background of the Study 

Optoelectronic industries are currently competing to produce devices with good energy efficiency 

and low power consumption, as these are the factors that attract most consumers. This desire has not 

gone unnoticed within the scientific community, where there has been an increase in scientific 

research to obtain exemplary semiconductor materials with desirable qualities such as high power 

efficiency, high temperature stability, turntable   band gap, high dielectric constant,  and perfect  

performance for applications in advanced technological fields such as optoelectronics, 

thermoelectrics, spinotronics, photodetectors, and biomedical imaging. (Mbilo et al., 2022). 

Semiconductor research began when Group IV elemental semiconductor materials (silicon, Si, 

germanium, and Ge) were discovered. This was a phase-one evolution in the fields of computing and 

optoelectronic operations (Berends et al., 2019). The most desirable properties and applications have 

been achieved using cadmium, cadmium, plumbum, and Pb-based semiconductor compounds. 

However, for several decades, such materials have encountered opposition in their applications 

owing to the toxicity of Pb and Cd (Liu et al., 2016). 

Researchers are now shifting their interest to non-Cd- and Pb-based semiconductor compounds that 

are non-toxic, cheap, and readily available with high potential for providing high energy to be used  

for specific applications such as microelectronics, optoelectronics, excellent thermophysical and 

thermo-electrical materials, nuclear energy production, and magnetic storage materials (Zeb et al., 

2020),(Faculty and Fulfilment, 2006). 

 

1.2 Types of Semi-Conductors 

Semiconductor materials are broadly classified into two categories: elemental and compound. 

Elemental semiconductors are the group four elements of an elementary periodic table.  
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Examples include silicon (Si) and Germanium (Ge). Their structures resemble those of diamond, 

with an FCC lattice structure having a basis with identical atoms (Idrissi et al., 2021).  

Each atom has four neighbouring atomic particles that form a regular tetrahedral structure                  

( RVelavan, and MyvizhiP. 2018). The tetrahedral crystal structures of Si and Ge are shown in 

Figures 1.1 a and b (Javey, 2006). 

 

                             (a)                                                                                            (b) 

Figure 1.1: Crystal structures of semi-conductors. (a) Silicon. (b)  Cubic structure of 

Germanium of side a unit (Javey, 2006). 

 

Compound semiconductors contain two or more elements from different groups of elementary 

periodic tables (Idrissi et al., 2021). These materials typically belong to groups III-V. Examples of 

group III elements are Indium (In), Gallium (Ga),Boron (B), Aluminium (Al), while group V 

elements are Nitrogen (N), phosphorus (P), Arsenic (As), Antimony (A) and Bismuth (Bi) ( Berends 

et al.,2019) .Compound semiconductor structures contain elements that can form different complex 

structures depending on their bonding processes. They can form binary (two elemental structures, 

e.g. GaAs), ternary structures (three elemental structures: Indium Gallium Arsenide (InGaAs) and 

Tetra potassium di-arsenido Zicate  (K4ZnAs2), or even quaternary crystal structures (four elemental 

structures, for example, Aluminium-Indium Gallium Arsenide (AlInGaP) ( Berends et al.,2019). 

Compound semiconductor materials have high efficiency performance properties such as high-power 

yield, modified optical and structural properties, and relatively high frequency compared to 

elemental semiconductor materials (Idrissi et al., 2021).  
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These properties  provide room for band gap engineering which helps researchers alter the position 

of the band gap within the material (Berendset et al., 2019). 

 

1.3 Binary and Ternary Semiconductor Materials 

1.3.1 Binary Semiconductors 

Binary semiconductors have two elements in their crystal structure e.g., Silicon Carbide (SiC), 

Gallium Arsenide (GaAs) and Cadmium Sulphide (CdS). One way to obtain such materials is 

through the doping of Group IV elements with groups III and V, as shown in Fig. 1.2 

 

 

Figure 1.2: Chart of binary semiconductor formation (Liu et al., 2016; Mouhat and Coudert, 

2014). 

 

They can also be formed by inducing group II and VI  elements in group IV of the elementary 

periodic table ( RVelavan and Myvizhi, 2018).  They crystallise into two main crystal structures, that 

is, zinc blende and wurtzite (Roknuzzaman et al., 2017). Despite their bonding structures being more 

ionic, zinc blende and wurtzite still maintain covalent bonding with high stability and strength 

(Mathematics, 2018). The diagram in fig 1.3 below shows the wurtzite binary crystal structure of 

Gallium Nitride (GaN) (Berends et al., 2019). 
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Figure 1.3: Gallium Nitride (GaN) Wurtzite binary semiconductor with dimensions a × b ×  c 

(Jaffe and Zunger 1984). 

 

1.3.2 Ternary Semiconductors. 

Ternary semiconductors comprise three elements in a periodic table. They are formed by either of the 

following ways, as shown in Fig.1.4  (Mathematics, 2018). 

 

Figure 1.4: Ternary semiconductor formation using elements in different groups  

(Mathematics, 2018). 
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1.4 The Ternary Chalcogenides Semiconductors 

There are two main types of ternary chalcogenide semiconductors, chalcopyrites and pnictides 

(Smith, 1975). 

1.4.1 Chalcopyrites. 

Ternary chalcopyrite semiconductors materials have a general formula AIBIIIC2 where the superscript 

refers to the group of the element where it belongs. They are isoelectronic analogues of groups II-VI  

binary crystal structures (Irfan et al., 2021).The semi-conductivity properties of ternary chalcopyrite 

semiconductor materials can be determined by maintaining a total of four valence electrons in each 

atomic space of the structure. This is done by substituting groups I and III for group II, as per the 

Grimm-Somerfield rule. Most chalcopyrite compounds exhibit a wide energy spectrum. This is the 

main reason why these materials are suitable for application in photovoltaics, optoelectronics, 

microelectronics, magnetic fibre storage, spintronics, etc. Examples of Ternary chalcopyrite 

semiconductor materials include CuInSe2, CuGaS2 and AgInS2. The crystal structure of CuInSe2 as 

one of the examples of chalcopyrite  is shown in the figure (1.5b)  (Mathematics, 2018) 

 

Figure 1.5: Crystal structure of CuInSe2 (Mathematics 2018). 

 

1.4.2 Pnictides Ternary Semiconductors. 

Pnictides Ternary semiconductor materials have the general formula AIIBIV  where A = K, B = Zn, 

Cu etc., and C = P, As and the superscripts refers to the groups of the named elements. Pnictides are 

analogues of group III-V isoelectronic binary semiconductor crystal structures. They form tetragonal 
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crystals with a space group of I-42d connected to the structure of zinc blende. The semi-conductivity 

of pnictide structures can be obtained by  the substitution of groups II and IV for group III, and there 

must be  four valence electrons on each atomic site of the structure according to the Grimm-

Sommerfeld rule (Irfan et al., 2021). 

Examples of pnictide ternary semiconductor materials are Zinc Sulphide diphosphate (ZnSiP2) and 

tetra potassium di-arsenido zincate ( K4ZnAs2), .The crystal structure of Zinc Sulphide diphosphate( 

ZnSiP2) is shown in figure (1.6) (Mathematics, 2018). 

 

 

 

 

Figure 1.6: Crystal structures of Zinc Sulphide diphosphate  (ZnSiP2) ternary phosphate 

semiconductor materials (Mathematics 2018); (Prots et al. 2007) 

 

Ternary chalcopyrites and ternary  pnictide semiconductor materials have received excellent 

scientific research attention because of their unique crystal structures and exemplary physical 

properties such as high refractive indeces, nonlinear susceptibility, fairly excellent thermophysical 

and thermal electrical properties, wide physical spectrum, and high melting and boiling points (Zeb 

et al., 2020). These peculiar properties give ternary chalcopyrite and ternary pnictides opportunities 

for extensive research in the application of optoelectronics, sensor detectors, and optics solar 

energy/perovskites (Zeb et al., 2020). 

1.4.3 Crystal Structure of Tetra-Potassium di-Arsenido Zincate (K4ZnAs2) 

Tetra potassium di asenido-zincate forms a trigonal structure that belongs to a space group 166 and 

point group -3m.It was obtained in  the form of a black crystal, plate-like structure, by reacting Tetra 

potassium diasenido-zincate  (K4ZnAs2 ) and  Tripotasium  Arsenide (K3As) at a temperature of 923 

K for 4 h in a crucible and then placed in a steel ampule for cooling to a low room temperature (Prots 

et al., 2007). 
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Figure 1.7: Crystal structure of tetra potassium diarsenido zincate  (K4ZnAs2) (Prots et al. 

2007) 

 

1.5 Ab Initio Calculations 

The research work can be done either experimentally in the laboratory, field work surveys, or 

through DFT simulations which involve the use of computer software codes. DFT material 

simulations help in the general prediction of material properties. This is always done by comparing 

the calculated results with the one done experimental results.   The ab initio studies involve accurate 

approximations which are used to solve the Kohn-Sham discussed in chapter three.  During the study 

of material properties,  several codes   aid in the calculations of many formalisms (Jeong et al., 

2021). 

From the standard elementary periodic table, different correlation functional properties of each 

element are accessed from the Material Cloud project by downloading the required elements, after 

which DFT parameters such as energy, density, band gap, and volume are created in various forms. It 

involves  choosing a particular  structure and creating all the data about the structure, for example, 

energy optimisation, lattice parameters, phonon dispersion graphs, and band structures  (Giannozzi et 

al.,2009). 

Fig 4.1, in  Section 4.3, typically shows how the input file generated from the material cloud project 

looks like and the chart flow showing  how the Kohn-Sham equations of a given structure are 

calculated  in a (Giannozzi et al.,2009). 
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1.6 Statement of the Problem 

Binary and ternary (chalcopyrites and pnictides) semiconductor materials have proved to have better 

properties that can make them be applied in photovoltaic and other photo electronic applications 

(Jeong et al., 2021) . The major disadvantage is the unclear information about the origin of their 

optoelectronic properties. Their potential in terms of efficiency, therefore, has not yet reached the 

level of the toxic Cd- and Pb-based semiconductor materials because of the stated limitation.  The 

reason for this is there’s little research work already done both experimentally and through the 

simulation method. Those that have already been done by simulations only few approximation 

functionals have been used to test convergences without considering the effect of overestimation and 

underestimation of the data. (Berends et al., 2019). In this work we investigated the insight on the 

structural, electronic, optical, mechanical and elastic properties of Zintl phased tetra potassium di 

arsenidozincate (K4ZnAs2) semiconductor compound by performing DFT simulations using ab initio 

studies to bridge the gap between the theoretical expectations and actual properties of this material 

using two exchange correlation functions functionals; the LDA and the GGA. The one based on 

LDA was Perdew-Zunger while those based on the GGA were Becke-Lee-Yang-Parr, Engel-Vosko, 

Perdew-Burke-Ernzerhof, Perdew-Burke-Ernzerhof for solids and Second-order correlations, 

(Berends et al., 2019). Doing this will help us propose for materials with better properties for solar 

energy harvesting. 

 

1.7 Main Objective 

To perform first-principles calculations on Zintl phased tetra potassium di-arsenidozincate 

(K4ZnAs2) semiconductor compound compounds for thermophysical and optoelectronic applications. 

1.7.1 Specific Objectives 

 To study the structural, optical, mechanical, and electronic properties of Zintl phased tetra 

potassium di-arsenidozincate (K4ZnAs2) pnictide ternary semiconductors.  

 To study the mechanical and the elastic stability of Zintl phased tetra potassium di-

arsenidozincate (K4ZnAs2) pnictide ternary semiconductors. 

 To study the anisotropic properties of the Zintl phased tetra potassium di-arsenidozincate 

(K4ZnAs2) pnictide ternary semiconductors through the test of spatial dependence. 
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1.8 Justification and Significance of the Study 

The  potentials harvesting of  pnictide ternary materials such as  Zintl phased tetra potassium di-

arsenidozincate (K4ZnAs2) semiconductors has not been fully realised for photovoltaic applications 

because of the little research work done on them leading to limited information regarding to the 

origin of their optoelectronic properties (Berends et al., 2 019). More and more research works are  

needed to bridge the gap between the theoretical expectations and actual material properties of 

ternary pnictides and identify efficient  materials for the  photovoltaic applications (Mbilo et al., 

2022). 

In this study, we performed first-principles calculations based on DFT, as structured in the quantum 

Espresso package, to investigate different properties of Zintl phased tetra potassium di 

arsenidozincate compound (K4ZnAs2). The PBE-GGA, PBEsol-GGA, LDA-PZ, BLYP-GGA, EVE-

GGA, and SO-GGA functionals were used to achieve structural optimisation and applied for study of 

the structural, electronic, mechanical, elastic, and optical properties of the material (K4ZnAs2) 

compound. The results were compared with the one done experimentally to draw general 

conclusions. The research   provided a clear information to the  advanced options for more optimal 

performance of material-based devices which leads to commercialization and gradual  movement to 

a cleaner and eco-friendly form of energy  (Elenewskiand Hackett, 2012). 
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CHAPTER TWO: LITERATURE REVIEW 

2.0: Introduction 

The chapter contains a literature review of scientific work previously conducted by some scholars on 

both binary and ternary semiconductor materials based on ab initio molecular simulation tools. It has 

three sections; Section 2.1 has material modelling; 2,2 Solar Cell Efficiency 2.3 contain the review 

on the previous work while section 2.4 has a summary introduction of computational analysis which 

will be discussed in detail in chapter three while 2.5 has the detailed balanced limit. 

 

2.1: Material Modelling. 

Modelling is among the common methods used to study the general properties of most materials in 

both solid-state physics and applied chemistry (Körbel et al., 2016). This is often achieved by 

computational material design which provides insight and clear information about the structure of 

different materials for different applications. Parameters such as bond lengths, position and size of 

the band gap, lattice constant, orbital arrangements, trigonal distortions, gap level alignments, and 

anion displacement are very important when modelling a material for specific use (Burke, 2007). 

The aim of material modelling is to optimise some properties, such as optical and other aspects, such 

as costs and material stability under different environments. Computational material design addresses 

these challenges because it is flexible to study and engineer the technological fabrication of materials 

of known complexity (Körbel et al., 2016). Computer-based atomic and molecular codes play a vital 

role by providing important energetic and structural characteristics of the atoms that make up the 

structure of the material. It combines factors such as quantum chemistry, solid-state physics, and 

statistical mechanics to highlight well-elaborated strengths and weaknesses to aid in the design of 

materials. Computer modelling of materials has been used to study various materials in scientific 

research with the main focus of obtaining an alternative energy source with the view of medicating 

global warming effects. 

In most of these studies, the method provides simulation outcomes which often collaborate with the 

experimental data. Computers perform tasks, such as complex mathematical equations, which cannot 

be solved by seasoned mathematicians using artificial intelligence and machine teaching (Malakkal 

et al., 2016).It can manipulate theories that are very difficult to understand. This complements the 

experimental data and can be applied in the prediction of the properties of materials which are yet to 

be introduced in the field of material science.  
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Starting with an atomistic model, modern techniques can display the ground state structure, elaborate 

properties, and arrangement of electrons in the structure (Physics et al., 2020). A summary of the 

previous theoretical work is discussed in the subsequent sections. 

 

2.2: Solar Cell Efficiency 

This quality is very important to consider when choosing optoelectronic devices. It is the quantity the 

light energy that can be converted to useful electrical energy by a solar cell material when directly 

exposed to sunlight. Several factors determine the solar-cell efficiency of a material. An example is 

the cell geometry with respect to solar energy rays, temperature of solar energy, solar shading, etc. 

(Irfan et al. 2021). Figure 2.1 shows different efficiencies of different materials used in a solar cell; 

silicon based, organic photovoltaics, Dye sensitised solar cells (DSSC) and Photovoltaic solar cells 

(PSC) through the years. 

In the figure above, it is seen that the efficiency of Photovoltaic solar cells (PSCs) has drastically 

gone high over some years. This is because there have been several studies that have been carried out 

to source for the better materials required for photovoltaic thin film fabrications (Sundaram et al., 

2018). 

Figure 2.1  The graphs of efficiencies of different solar panels, (Sundaram et al., 2018). 
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2.3:  Review on the Previous Work 

The elaborated study of groups I and II (AIBIII  and AIIBIV ) ternary semiconductor materials 

have been carried out as reported in various studies. Mbilo et al., 2022 performed Ab Initio study of 

tripotasium tricopper diphosphate (K3Cu3P2 ) for solar cell applications. 

Elenewski and Hackett, (2012) used a generalised gradient approximation with Hubbard parameter 

(GGA+U) approach supplemented with localized correlation to study the total electronic correlations 

of thiolate-ligated iron-oxo (IV) porphyrin. In comparison with the structure of the Hamiltonian 

model, they discovered that the moment of iron in 3d  introduced correlation to the vicinity of the 

electrons making the local moments strong (Elenewski and Hackett, 2012). 

Zeb et al., 2020 studied the structure of  K3Cu3P2 and K3Ni3P2 ternary pnictides semiconductor 

materials  using first principles calculations and prospects  density functional theory of for 

thermophysical and optoelectronic applications through optimization of structure of the materials 

incorporated in GGA with Perdew-Burke-Enzenhorf (PBE) as the correlation and exchange 

functional of energy (Zeb et al., 2020). Both K3Cu3P2 and K3Ni3P2 materials displayed direct band 

gap semiconducting properties and their band gap values, both spin up and spin down, ranges from 

1.7eV to 1.9eV (Zeb et al., 2020). 

R.C Smith investigated on the general progress in application of groups I and II (AIBIII  and 

AIIBIV ) ternary semiconductor materials. The work studied both the optical and electrical 

responses of many compounds of II-IV-VI2 at room temperature. An example of such compounds is 

CuAlS2,CuGaSe2 etc (Smith, 1975). 

Sree Parvathy et al., 2016 studied the thermoelectric properties of zinc based ternary pnictide 

semiconductors using first principles calculations and prospects of density function theory. They 

reported on the both electronic structure and  the transport properties of several zinc based ternary 

pnictide semiconductors of the family ZnXPn2 (X=Si, Ge and On=P and As) and ZnXP2 (X=Si, Ge 

and An) (Sreeparvathy et al., 2016).Using DFT calculations and prospects, Jaffe and Zunger, (1984) 

studied the electronic structure of ternary pnictide semiconductors (ZnSiP2, ZnGeP2, ZnSiAs and 

MgSiP2). The trends in both band gap and bonding structure plus the charge distribution within the 

structure was studied (Jaffe and  Zunger, 1984). Naher and Naqib, (2022) recently used first 

principles calculations and prospects of DFT to investigate the effect of individual atoms on both the 

binary and ternary semiconductor materials. 
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Through their investigation, the band structures was used in classifying the material into metal, 

insulator and semiconductor crystal structures (Naher and Naqib, 2022). Berends et al., 2019 

investigated optoelectronic properties and prospects of ternary I-III-VI2 semiconductor materials. 

They provided an elaborated insight on the optoelectronic characteristics of compounds of group I-

III-VI2. All materials displayed a large stroke shifts, broad bandwidth and long excitation life time 

(Berends et al., 2019). 

Sergey et al., 2021 studied the Second harmonic generation (SHG) and birefringent properties of 

Ternary pnictide semiconductors of the general formula ABC2 (A=Zn,Cd, B=Si,Ge and C=As,P) 

using first principles calculation of the density function theory. They used computational method 

based on linear muffin tin orbital (LMTO) (Ou et al., 2021) . 

Omata et al., 2015 investigated the wurtzite based ternary semiconductor materials of groups’ I-III-

O2 using first principles calculations and prospects of density functional theory. The magnetic 

properties, band gap structures, electronic configuration of elements in the structure of wurtzite 

materials, optical properties both in visible and UV regions were studied. 

In this research work, basing on the first principles method, we investigated the structural, electronic, 

optical, mechanical and elastic properties on Zintl phased tetrapotassium diarsenidozincate 

K4ZnAs2semiconductor compound using the PBE-GGA, PBEsol-GGA, LDA-PZ, BLYP-GGA, 

EVE-GGA and SO-GGA functionals theory as implemented in quantum Espresso package (Perdew, 

et., al. 1965). We used Material Project database to download the CIF (Crystallographic Information 

file) files. The downloaded CIF files were used to generate the input files from the material cloud 

website. 

To optimize both lattice constants and atomic positions within the tetra potassium diarsenido zincate  

(K4ZnAs2)  structure, various cell relaxations were done which were then used in the calculation of  

structural, mechanical, electronic and optical  properties (Mbilo et al., 2022). 

 

2.4: Computational Analysis. 

The common tool used in the computation of electronic crystal structures both in the field of solid-

state physics and applied chemistry is ab initio molecular simulation tool based on DFT which act on 

Kohn-Sham equation 2.1 given below using several approximations discussed in section 3.3 in 

chapter three. The foundation of density functional theory was laid down using Hohenberg-Kohn (H-

K) theorem in the calculations of charge density of semiconductors (Elenewski and Hackett, 2012). 
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Most of these theoretical studies  tend to ignore the d orbitals of cations within the structure and the 

electronic  charge density of electrons is not self-consistent (Han et al., 2016). The electronic density 

is expressed as shown by the equation (2.1) to get the minimum energy. 

            

) 

Where n® is electronic density and  is function. 

The LDA and GGA approximation potential apparatus are used to incorporate the atomic interaction 

and exchange correlations within the whole structure. In the determination and prediction of 

properties of compounds, local energy potential which depends solely on the electronic density n® of 

particles in each point in the region is used. It fails when the particles of the materials undergo a 

constant rapid changes in molecules (Irfan et al., 2021). GGA is used to determine the electronic 

structure  using functional  which depend on both electron density n® and its first derivative in XC 

potentials( Naher and Naqib, 2022). 

Since the band gaps of insulators are under estimated, when LDA and GGA are used, it can lead to 

connection of the Kohn-Sham DFT with Hubbard parameters U either as LDA+U and GGA+U to be 

applicable in the correlation energy potentials such as tran-blaha modified Becke Johnson in the form 

of TB-MB functions. Hubbard parameters are incorporated in both GGA and LDA  because of 

coulomb force as a result of particle attractions/ repulsion within the atomic structures (Callow et al., 

2021).The electronic, elastic, structural, mechanical and optical properties of the tetra potassium 

diarsenido zincate (K4ZnAs2) in quantum Espresso package using GGA-BLYP.GGA-EVE, GGA-

SO, GGA –PBE, GGA-PBEsol and LDA-PZ functional approximations was studied in this work. 

2.5: Detailed Balance Limit 

It is also called Shockley-Queisser limit. It is a theoretical limit in solar cells that highlights the 

highest efficiency a solar cell made from a single p-n junction can have theoretically  (Shockley and 

Queisser, 1961).The highest  theoretical efficiency   is the ratio of the generated solar energy to the 

input power as given by equation (2.2 ). (Physics et al., 2020). 

 

Where the maximum power output,  is the incident power,  is the band gap energy of the 

crystal structure and  gives the number of absorbed photons (Shockley and Queisser, 1961). 
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From (2.2), the number of absorbed photons is given by equation (2.3) which is obtained from 

integration of the Planck’s law ((Irfan et al., 2021).  

 

Where h,   , and c are the, Planck’s constant, the   solar temperature, Boltzmann’s constant and 

the speed of light respectively. Finally,  is given by equation (2.4) 

 

Applying the fact that 

 

Equation (2.5) becomes equation (2.6), that is; 

                                                      (2.6) 

Figure (2.4) displays the graphical representation of the detailed balance limit. 

 

 

Figure 2.2  Graphical representation of the Shockley- Queisser limit (Rühle, 2016) 
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CHAPTER THREE: THEORETICAL FRAMEWORK 

3.0 Introduction 

Any material on Earth, whether in a solid, liquid, or gas state, is composed of many particles, such as 

atoms, ions, and molecules sandwiched together by strong electric forces. The arrangement of 

particles within the structure under the influence of these electric forces forms three states of matter 

(Talirz et al., 2020). The behaviour of these many particles in a body can be well explained using the 

many body Schrödinger wave equation (Bretonnet, 2017). The Schrödinger equation has a 

Hamiltonian which constitutes the kinetic energy, effective potentials, and interaction of the 

particles. Despite the simplicity of Schrödinger’s equation, it is very difficult to obtain solutions  

(Giannozzi et al., 2009). Density function theory is used to look for possible solutions to the 

Schrodinger equation  using a set of physical  approximations called ab initio molecular simulation 

tools, also called first-principle calculation approximations  (Physics et al., 2020). This chapter 

contains the theoretical framework of some approaches used to determine possible solutions to the 

Schrödinger wave equation. It has four subsections, including the background of DFT, computational 

theory, first-principles calculations, and approximation for the exchange correlations of energy. 

 

3.1 Background of Density Function Theory 

Atomic particles consisting of a positive central nuclear core and negatively charged electrons (both 

ground-state and valence electrons) play a very important role in determining the general 

characteristics of the crystal structure. However, understanding the general behaviour of these 

particles within the structure is extremely difficult because most of their parameters are very 

complex, as described by the Schrödinger wave equation ( Sholl and Steckel, 2009).. Much research 

is underway on various theories with the aim of gathering enough information to obtain lasting 

solutions of the Schrödinger equation which describes the basic behaviour of these atomic particles 

in external Coulomb fields. The non-relativistic time-independent Schrödinger equation is denoted 

by equation (3.1) (Schrödinger, 1926; Zerfass, 2015). 

 

 

 

where H is Hamiltonian denoting the total energy of the  system and  denoting the wave functions 

of the many body system (Burke, 2007). 
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For a system of several electronic particles (electrons and nuclei), the Schrodinger equation  is given 

by equation ( 3.2) (Burke, 2007). 

 

where  and  denotes the coordinates of electrons and nuclei in the atomic structure respectively 

and  is the wave functions of the particles in the structure. 

The Hamiltonian operators have the total  kinetic energy and  effective potential energy given by 

equation (3.3) (Burke, 2007).. 

 

where  is the total kinetic energy and  is the effective potential energy of the electron-electron, 

electron-nuclei and the nuclei-nuclei interaction within the atomic structure. Putting equation (3.2) to 

(3.3) we’ve 

 

Tackling and getting the solution of equation (3.4) of many body systems of particle is very difficult 

because we are handling the spatial coordinates which requires us to consider each particle in 3D. 

This becomes more complex when handling the interparticle interactions ((Schrödinger, 1926; 

Zerfass, 2015).Various first principles approximations is put forward to find the solution of many 

bodies system of S.E problem (Zerfass, 2015). 

 

3.2 First Principles Calculation Approximations 

The first principle, based on the interaction of particles within the atomic structure according to 

quantum mechanics principles, tries to look for a solution of the Schrodinger equation through a 

series of approximations to obtain eigenvalues and eigenfunctions of the body system and thus its 

electronic structure. Below are some of the approximations that have been proposed by different 

scholars trying to simplify the Schrödinger equations of a many-body system (Sholl and Steckel, 

2009) . 
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3.2.1 The Born-Oppenheimer Approximation 

In a body, the interacting system of valence electrons and cantered nuclei transfers minimal 

momentum to each other because the two have different masses and experience different Coulomb 

forces of attraction.  

However, the Coulomb forces of attraction between them remain constant, because they have 

opposite charges. Based on this, if one imagines that the momenta of these oppositely charged 

interacting system particles are equal, then the nucleus should have almost zero velocities because 

they are very massive compared to electrons.  

The assumptions under the Born–Oppenheimer approximation is the motion of both nuclei and 

electrons within the molecule that are separated, leading to separated molecular wave functions in 

terms of electron and nuclear positions. On the scale of nuclear motion, the valence electrons are said 

to relax in the ground state, as given by the Hamiltonian equation (Sholl and Steckel, 2009) . This 

approximation which separates the nuclei and electrons within the structure by neglecting the 

contribution of nuclear energy to the kinetic energy in the general Schrödinger equation, is called the 

Born-Oppenheimer approximation/adiabatic principle. 

The total energy involves the kinetic energy of the interreacting electrons and the Coulombic forces 

of repulsion between electron- electron interactions, electron -ion interactions, ion- ion interactions, 

and electrons of many bodies, but not nuclei-based interactions (Physics et al., 2020). The general 

Schrödinger equation is now reformulated by this approximation  as equation (3.5) (Burke, 2007). 

 

The Hamilton of both the potential and kinetic energy as a result of the interaction of the system of 

electrons is given by equation (3.6). 

 

 

The Born-Oppenheimer approximation is applied in the simplification of the time-independent 

Schrodinger equation of many-body systems by concentrating on the electronic particles only 

(Toulouse, 2019). Dealing with the interactions of electrons only within the structure, the time 

independent Schrodinger equation become  

 
Where I is the wavefunction 𝛹 and is given by equation (3.8). 
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From the time-independent Schrodinger equation in equation (3.8), the electronic Hamiltonian gives 

(3.9) (Sholl and Steckel, 2009). 

 

 

And from this can be expanded to have equation (3.10). 

 

 

From Equation (3.10), the electron- electron interaction is still complex in solving the equation. This 

is where the DFT steps to obtain the solution. 

 

3.2.2 Hartree Fork Approximation 

This is also called independent particle approximation. The resulting equation after the Born–

Oppeheimer approximation acting on the Schrodinger equation is in fact more complex than before 

because the electron-electron interactions inside the orbitals within the structure  are ignored 

(Zerfass, 2015). (Allan, 2021). The Hartree fork approximation determines the wave functions and 

energy of the quantum properties of   many-body particle systems in stationary states. It is postulated 

that the motion of each electron in the atomic structure is described by a single-particle motion called 

an orbital which does not depend on the motion of other  particles  (Burke, 2007). Hartree fork 

approximation works on the basis of simple approximation of many body wave functions given by a 

single state operator of N spin orbitals given by equation (3.11). 

   

where x is the coordinates of spin and space, and Ψ is the wave function that provides the solution of 

the Hamiltonian.  
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The wave function under this approximation is symmetrical with respect to the change in all  

positions of electrons within the structure, and they obey Pauli’s exclusion  principle given by 

equation (3.11) (Zunger and  Wei, 1996). 

 

 

3.2.3 Density Functional Theory. 

Under density function theory, one does not solve a very complex Schrödinger wave equation; 

instead, one solves a very simple and straightforward formulation based on  the Pierre Hohenberg 

and Walter Kohn theorem which states that the total energy and other parameters within the atomic 

structure are determined by the ground state probability of the election density (Bretonnet, 2017). 

DFT approximations eliminate the complexities posed by the Hartree-fork formulation by 

considering both the energy exchange and correlation within the atomic structure. It determines the 

ground-state electronic structure of the wide properties of all kinds of atomic particles. It lowers the 

Schrödinger wave equation by solving the Kohn-Sham equation and  its function (Toffoli, 2012). 

The ground-state energy of identical fermion particles is a special function of particle density, and its 

electronic state resembles a fully solved Schrödinger equation. This minimises the energy of the 

overall function. This functional attains its threshold value with respect to the change in particle 

density subjected to the normalised condition as long as  the density has its correct values (Bretonnet, 

2017).DFT is a type of first-principles calculation, named so because it can predict the properties of 

various particles, both known and unknown or real and ideal, without necessarily  requiring 

experimental input (Toffoli, 2012). 

This requires low effort while performing computational exercises. Computational exercise focuses 

on the whole electron density system to perform atomic modelling for any structure in a periodic 

table, both in elemental and molecular or compound states. Using a supercomputer, one can perform 

the modelling of several particles without necessarily going to the laboratory to perform experiments. 

A DFT user can easily relate the experimental measurements to the simulated results and draw  

lasting conclusions about  the general properties of various compounds (Physics et al., 2020).   In 

1976, Hohenberg and Kohn discovered that the sum of the number of  particles and their total energy 

can be calculated for a group of  atoms  in an external potential field as long as the external potential  

is a known  function of the density of states, which is also proposed   by DFT (Zunger and  Wei, 

1996). 
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3.2.4 The Hohenberg- Kohn (H-K) Theorems 

The Hohenberg and Kohn theorems came into DFT by indicating that the function of  the density of 

states contains all the properties required by the  system of particles in a compound,  and it is less 

complicated  because the density of states has only three coordinates (Burke, 2007). Therefore, it is 

very easy to solve   system of many-body problems. In DFT, the Hamiltonian operator interacts with 

electronic particles and has an external potential which mostly involves the nucleus-electron 

interactions. Since there is  mapping of the potential and  the ground state density of particles (Burke, 

2007) , that is equation ( 3.13). 

 

Hohenberg and Kohn indicated that the inverse is true; that there is a mapping from the ground state 

density to the potential given by equation ( 3.14) (Zunger and  Wei, 1996) . 

 

Thus, it is clearly seen that the ground state density determines the potential (Harrison, 2005). . The 

Hamiltonian of the system of particles provides complete information on the system of particles.  

The Hohenberg- Kohn theorem was first proven using the contradiction method. It was   shown that 

the ground-state energy of possible electronic particles in a material is a unique functional. Hence, 

Density Function Theory (DFT) is used. The main drawback of this theorem is that, after postulating 

the existence of   an energy functional, it does not specify the exact definition of the functional 

proved (Sholl and Steckel, 2009). The other Hohenberg-Kohn theorem is the second theorem which 

probes if a given density of states is in the ground state density . This optimisation is performed 

based on the variational principle, where the trial density of states is used to determine the lowest 

possible minimum energies. 

 

3.2.5 Kohn-Sham Equation 

Schrödinger equation in the ground state of ideal non-interacting  particles gives the same density of  

state as that of interacting particles (Burke, 2007).  Burke (2007) reformulated the Schrödinger 

equation of a much-body system such that it has a Hamiltonian similar to that of interacting particles. 

Reformulating the Schrödinger equation from the H-K theorems, the energy exchange functionals 

can be expressed by equation (3.15) (Harrison, 2005): 
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The energy in the  ground state  and other observables can be easily computed given their exchange 

correlation (Widyastuti et al.,2022). The effective potential in atomic units is given by equation 

(3.16). 

 

Where Veff is the effective potential, Vext[ n(r)] is the external potential, VH [ n(r)] is the Hartree 

term, VXC [n(r)] is the exchange correlation term, and n(r) is the electron density ( Burke,2007). 

This leads to a new reformulated Schrödinger equation for the Kohn-Sham Equation (3.17) 

(Bretonnet, 2017). 

 

Where H is Hamiltonian operator, Veff(r) is effective potential, 𝜀𝑖 is minimum energy and ᴪi is many 

body wave functions. From the energy functional, the K-S equations are expressed as (Sholl and 

Steckel, 2009.); 

 

 

From the K-S equation above, notice that it differs from the S.E because we are dealing with 

individual electrons. 𝑉𝐻 is the Hartree potential and 𝑉𝑋𝐶 represents the exchange and correlation 

potential. 

 

3.2.6 The Self Consistent Field (Scf) Cycle 

The Hamiltonian operator of the Schrödinger wave equation has both the kinetic energy and effective 

potential energy of the particles Veff. Veff of the particles in the structure depends on the electronic 

density and can be calculated from wave function ᴪ. The flow chart in figure (3.1) displays how the 

K-S equation can be solved for frozen nuclear particles. This is done by optimizing the cut-off 

energy and k-points of the sample which determines the nature of the pseudo potential to be used. By 

taking the trial electron density n (r), which is directly proportional to the energy ground state E0, as 

an input to the effective potential, a new effective potential is obtained, which is consistent with the 

previous trial density. This process makes the density of states self-consistent (Sholl and Steckel, 

2009). 
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Figure 3.1 The Kohn-Sham equation self-consistence flowchart (Burke et al., 1997). 

 

3.2.7 DFT with Coulomb Interaction (Dft+U) 

The Hubbard model which was primarily used as an ad hoc method designed to describe the XC 

energy of the extended ground state of the d and f electron orbitals of transition elements, falls under 

the DFT intra-atomic interaction of particles within the atomic structure. 

This model adds a Hubbard-like component to the Coulomb force of the interacting particles within 

the structure. Its  overall energy is the sum of the GGA energy given by equation (3.19) (Giannozzi 

et al., 2009). 
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3.3 Approximation for Exchange Correlation Energy 

Computing a solution for the Schrödinger equation in ground-state particles in a much-body system 

is very difficult. This is because, when solving the familiar Kohn-Sham equation, the exchange-

correlation functional of the interacting particles must be known which is not always clear. The 

homogenous electron gas provides a clear approach for solving the Kohn-Sham equation. Examples 

of these approaches include the local density approximation (LDA), generalised gradient 

approximation (GGA), local density approximation + Coulomb interaction (LDA+U), generalised 

gradient approximation + Coulomb interaction  (GGA+U), and pseudo-potential approximations 

(Dorado et al., 2009). 

 

3.3.1 Local Density Approximation 

LDA is an example of the XC functional in the ab initio calculation of DFT which describes the 

properties of many body systems, such as phase stability, vibrational frequencies, structure, and 

elastic modulus. It depends entirely on the density of electrons and not on the electronic derivatives 

or K-S orbitals. Successful LDAs include those with derivatives of the HEG model. They are more 

important in the generation of more complicated approximations of XC energy. Using LDA to 

calculate the energy difference of a two-body system has many errors, such as the overrated binding 

energy. The exchange co-relation energy of each electron in electronic gas homogeneity has a 

density similar to of that the electron gas at any point r given by equation (3.20) (Dorado et al., 

2009). 

 

3.3.2 Generalized Gradient Approximation 

To improve the DFT calculations, GGA was used to take the position of the fluctuations in the 

density of states. The formulation was proposed by Perdew and Wang. It depends on the electronic 

density and derivative/gradient at a given point. GGA reduces the error of energy atomisation of all 

sets of molecules comprising suitable light atoms by an appropriate factor, 4 which equates to an 

error of approximately 2-3 kcal/mol. GGA yields relatively accurate results even with binding 

energies. It fails when the electronic density-like molecules undergo constant rapid changes (Burke 

et al., 1997). 
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3.3.3 The Perdew, Burke, Ernzerhof (Pbe) Exchange-Correlation Functional 

The PBE-GGA exchange correlation was proposed by Perdew, Burke, and Ernzerhof. It is a simple 

approximation of the GGA for the exchange and correlation energies of electronic particles. It works 

well, especially when molecules interact with the metal surfaces. It is very reliable for bulk 

calculations of the n(r) and XC energies. When used in bond energy calculations, PBE is among the 

most applied functions because it reduces the mean absolute error to reasonably meaningful 

accuracy. It will be used in this research because it conserves several features, both in exchange parts 

and correlation. However, when applied to the determination of the bond length, it overrates it. 

Therefore, has several errors thanLDA (Giannozzi et al., 2009). 

 

3.3.4 Pseudo-Potential Approximation 

They are also called the ideal effective potential and are used as an approximation to simplify 

complex systems. Pseudo potentials (Vps) are always used in place of electrons bounded on the core 

of an atom for effective improvement of calculations. Generally, it is assumed that the only particles 

which take part in chemical reactions and bonding processes are electrons, which are actively used in 

the analysis of the chemical and physical properties of atoms/elements. In this formulation, bounded 

electrons are assumed to be static, and the forces of attraction between ions are purely electrostatic in 

nature.This eliminates the need for inclusion of ground states and nuclear potentials which also 

participate in holding cloud electrons in the atomic structure (Sholl and Steckel, 2009.). 

These strong core potentials are replaced with weak pseudo-potentials viewed as pseudo-wave 

functions instead of normal electron wave functions (Giannozzi et al., 2009).Therefore, it takes the 

place of the valence electrons. There are two sets of pseudo potentials: normalized conserving 

pseudo potential which normalizes the motion of electrons to be periodic, and the ultra-pseudo 

potential which lowers the sum  of plane waves, making  convergence of the density of states faster 

(Giannozzi et al., 2009). 

The diagram shown in Figure 3.2 illustrates the full all-electronic (AE) wave function and the 

electronic potential. The valence electron wavefunctions move faster in the space having the inner-

core electrons owing to the strong ionic potential. These movements have orthogonality between the 

inner core pseudo-wave function in the both inner core space electrons and the outermost valence 

electrons. The pseudopotential is designed such that no radial nodes exist in  pseudo-wave functions 

and pseudo-potentials are always symmetrical to  all electron wave functions, and the potential in the 

outer space of a radius cut-off care should be taken because the pseudo-potential may introduce the 

ghost state/nonphysical state within the system  (Seitsonen, 2009). 
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3. 4 Computational Theory 

Interacting particles in an atom are described in terms of qualitative models (quantum mechanics) 

improved from the semi-empirical classical mechanics. This is done using ab initio molecular 

simulation tools, also called first-principles calculations (Callow et al., 2021). The Schrodinger 

equation which forms the basis of interacting particles within the atomic structure, has a Hamiltonian 

that is composed of kinetic energy that comes as a result of electron-electron interactions and the 

potential energy as a result of electron-nuclear interactions. The first principle calculations 

reformulate Schrodinger equation to Kohn-Sham equation bearing the  clear insight information of 

correlation effects of interacting particles (Fan et al., 2022). Naturally, an atom is composed of 

positive core nuclei surrounded by clouds of valence electrons. Nuclei and inner filled orbitals are 

often positively charged while the valence electrons are massless, faster moving and negatively 

charged. 

Electrons near the nucleus are said to be bound to the ground state. The properties of electrons in the 

ground state of an atom are defined as those of definite, discrete  N interact   ing particles in an 

external potential Coulomb field generated by a series of nucleic configurations within the system 

(Giannozzi et al., 2009). These are considered to be fixed-point charges. Valence electrons are not 

specific to any particular core; instead, they move freely within the atomic structure and experience 

equal forces of attraction from each nucleus in the structure.  These valence electrons  participate in 

the bonding and  chemical reactions (Bartolotti and Flurchick, 2007).Advanced research practices in 

solid-state physics are practiced from the classical point of view to the quantum point of view of 

particle interactions within an atom using first-principles calculations, also called first principle 

calculations. 

Because the Schrödinger equation forms the foundation of the classical point of view of solids, the 

Hamiltonian of interacting particles has both the kinetic energy and effective potential V of the 

particles within the structure. The computational method involves changing the Schrödinger 

formulation to the Kohn-Sham formulation. From a microscopic point of view, a solid is seen to have  

positively charged cores (nuclei) cantered in a cloud of valence electrons and filled orbitals that are 

very massive and move slowly relative to electrons and are viewed as classical particles, while the 

valence electrons are viewed as massless particles moving very fast and are seen as quantum 

particles(Callow et al., 2021) . 
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CHAPTER FOUR: MATERIAL AND METHODS 

4.0 Introduction 

This chapter contains details on how the computational methods were performed on the trigonal 

crystal structure of Zintl phased tetra potassium di arsenidozincate K4ZnAs2 semiconductor 

compound. It has got five sections; section 4.1 has computational methods,4.2 highlights more about 

the pseudopotentials used in DFT calculations. Section 4.3 explains how the quantum espresso input 

file are applied in the DFT calculations. Section 4.4 has the explanation and equations used in the 

calculations of the optical properties while section 4.5 has the structural properties. (Giannozzi et al., 

2009); (Mathematics, 2018)   (Prots et al., 2007) are the main  references used in this chapter. 

 

4.1. Computational Methods 

The computations in this work were carried out using the plane-wave self-consistence field method, 

PWscf, using the ab initio calculation method coded in the quantum espresso computational program 

which uses first-principles technique study (Giannozzi et al.,2009). The generalised gradient 

approximation method and the local density approximation method were used as the exchange-

correlation potential (Ziesche et al., 1998), with two types of exchange-correlation functionals 

adopted for the work: ultra-soft-core correction with scalar relativistic type or the norm-conserving 

scalar relativistic type. The functional used for the local density approximation computation was the 

Perdew-Zunger LDA-PZ ( Perdew and Zunger, 1981) while those based on the generalised gradient 

approximation used were GGA-BLYP (Becke-Lee-Yang-Parr) Miehlich et al.,1989, GGA-EV 

(Engel-Vosko) (Ziesche et al.,1998). GGA-PBE (Perdew-Burke-Ernzerhof) Perdew and 

Zunger,1981, GGA-PBESol (Perdew-Burke-Ernzerhof for solids) Perdew and Zunger, 1981, and 

SO-GGA (second-order GGA)  (Zhao and Truler,2008). The procedure for obtaining the 

crystallographic information file and processing the input files has been described previously (Mbilo 

et al., 2022). The lattice parameters, kinetic energy cut-off and Monkhorst-Pack k-pont mesh were 

optimized, including the variable cell relaxation, before the actual cell computation were performed ( 

Monkhorst and Pack, 2022). The optimized cut-off kinetic energy in relation to the total energy was 

set at 140 Ry, whereas the final Monkhorst-Pack k-point mesh used in this work was optimized at 

9×9×9 with an offset of 0. Additionally, geometry optimization was performed by minimizing the 

total energy with respect to the lattice parameter and then fitting the data to the Birch-Murnaghan 

equation of state, as reported elsewhere (Mbilo et al., 2022).The optimum parameters were applied in 

the calculations of the band structures, density of states,mechanical, and optical properties of the 

compound material. 
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4.2 Pseudo potentials 

The electrons in a solid crystal structure are categorized  into two groups: inner core electrons and 

outer valence electrons (Giannozzi et al.,2009). The electrons in the core do not participate in 

chemical reactions and are in an inert state. Valence electrons participate in the chemical bonding 

and are mobile within the crystal structure. This implies that the valence electrons determine both  

the physical and chemical behaviors  of the structure (Mathematics, 2018). 

Therefore, much focus is put on valence electrons when studying the structure of a material. As the 

core electrons are fixed and inert, their effective potentials Veff   are determined by replacing them 

with weak pseudopotentials which assume their effects. The pseudopotentials were downloaded from 

the Q.E website. The right pseudopotentials are chosen from the website, depending on  the 

functionals used ( PBE-GGA, PBEsol-GGA, BLYP-GGA, EV-GGA,SO-GGA, and LDA-PZ )  

(Prots et al., 2007).  Pseudopotentials can also be generated from the Gbrv pseudopotential website 

(Prots et al., 2007) .Figure 4.1 below illustrates the pseudopotentials with the red dashed line 

showing the pseudopotential and the blue dashed line showing the psuodo wavefunctions of the 

system of particles (Råsander, 2010). 

 

 

Figure 4. 1 Illustration of the Pseudopotentials, (Råsander, 2010). 
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4.3 The Quantum Espresso Input File 

The quantum Espresso input files depend on the calculations that are performed. It can be used for 

scf, vc–relax, band structure computations, etc. Each file has special parameters required for first-

principles calculations. From the standard periodic Table of Elements, the properties of each element 

are accessed from the Material Cloud project by downloading the required elements, after which 

DFT parameters such as energy, density, band gap, and volume are created in various forms. It 

involves  choosing a particular  structure and creating all the data about the structure, for example, 

energy optimisation, lattice parameters, phonon dispersion graphs, and band structures  (Giannozzi et 

al.,2009). Fig 4.1 below typically shows how the input file  generated from the material cloud project 

looks and the chart flow showing  how the Kohn-Sham equations of a given structure are calculated  

in a quantum espresso (Q.E) package  (Giannozzi et al.,2009). 

 

Figure 4.2. Kohn–Sham equation flow chart (Ciucivara, 2007). 

 

The %control, %system and the %electrons are the main name lists used in QE calculations. Atomic 

species and k-points are the main cards used in this package.  The %control name lists used to 

indicate the flux of computation, the % electron name list has a specific system, and the atomic 

species indicates the type of atoms and the pseudopotential files used.  The atomic position card 

indicates the position of the atoms in the structure (Giannozzi et al.,2009). 

 

4.4: Optical Properties 

The study of the optoelectronic properties of a structure is crucial because it explains the behavioural 

response of a crystal structure when it interacts with light energy (Saikia et al., 2022). The dielectric 

function comprises of the real and the imaginary components.  
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A complex dielectric function is used to study the optical properties of the material.  It is represented 

by Equation (4.1) below (Giannozzi et al., 2009); (Mathematics, 2018),  (Roknuzzaman et al., 2017). 

 

where  represents the real part and  the imaginary part  that can be generated   

from the Kramers- Kronig equation after finding the imaginary part of the function (Roknuzzaman et 

al., 2017). This function is dependent on the arrangement of the electronic band structures of a given 

material and affects its properties entirely (Kittel, 2005). Through the application of this dielectric 

function, the behaviour of the electronic bands within the structure can be studied (Mathematics, 

2018). 

The   dielectric function can also be applied to investigate other optoelectronic properties of the 

material like the optical absorption coefficient, the extinction coefficient, Refractive index and the 

reflectivity.The optical absorption coefficient measures how photon energy passes through the 

material at different frequencies. It is generated from the dielectric function using the real and 

imaginary part of function as shown in equation (4.2) below (Kittel, 2005). 

 

The extinction index   is related to the dielectric functions by in equation (4.3)   (Saikia et al., 

2022). 

 

where  the extinction index. 

The refractive index , which measures the bending of light energy as it traverses different 

media represented   by equation (4.4) below (Kittel, 2005) . 
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The reflectivity   equation (4.5). 

 

 

The energy loss  measures the amount of light energy loss as the photon energy undergoes 

absorption, scattering, radiation and reflection when it interacts with a material. It is given by 

equation (4.6) below (Saikia et al., 2022). 

 

The refractive index and extinction coefficient in relation to the dielectric function   they are 

connected by equation (4.7) below (Kittel, 2005) 

 

where  is the complex function of  .The refractive index, the extinction index and the 

reflectivity are related by equation (4.8) below (Kittel, 2005) 

 

 

 

4.5 Structural Properties 

The structural properties studied in this work were the lattice parameter, bond length, volume and the 

bond angle. The tetra potassium diarsenide zincate (K4ZnAs2) semiconductor compound has a 

trigonal crystal structure belonging to R-3m space group number 166 which crystallises into 

rhombohedral lattice with lattice parameters  which agrees very well 

with experimental work reported by Prots et. al., (2007) (Prots et al., 2007) . The mean lattice 

parameter from the six functionals was a = 18.2477 a. u., which is in good agreement with the 

experimental value of 18.2170 a. u. reported in the literature for the synthesised K4ZnAs2compound  

(Prots et al., 2007). 
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The crystal structure parameters including: the lattice a parameter, bulk modulus, equilibrium 

volume and enthalpy of formation energy were calculated by fitting the lattice parameter vs total 

energy, and cell volume vs total energy using the Birch-Murnaghan equation of state given by 

equation (4.9). 

 

where in the equation above Eo, B, B′, V, and Vo are respectively, the optimum value of total energy, 

the bulk modulus, the pressure derivative of bulk modulus, the total unit cell volume, and the 

optimized unit cell volume. 

 

4.5.1: K-Point Sampling 

The k-points of the crystal structure were always placed in reciprocal spaces. When calculating the 

crystal structure, it is important to collect all periodic functions over the Brillouin zone. In the 

sampling of k-points, special k-point reciprocal spaces with high symmetry were selected for the 

calculation of other properties. The commonly known method used in the sampling of   k-points  is 

the Momkhorst-Pack method (Giannozzi et al.,2009). The Momkhorst-Pack method uses a spaced 

mesh in the Brillouin zone. The order used in the Momkhorst-Pack method   is of the sequence (nd1 

nd2 nd3 d1 d2 d3), where d1 d2 and d3 indicate the displacement of particles from the origin, a point 

where there is no offset. K-points are in an optimised state to give the optimised structure of the 

Brillouin zone for the calculated band structure. 

In this study, we obtained the k-points from the material cloud website for use in the calculations of 

the band structure (Hinuma et al., 2017). Monkhorst-pack grids of 8 × 8 × 8, 9 × 9 × 9, and 8 × 8 × 8 

for K4ZnAs2 were created as a result of convergence tests for k-points with energy.The  positions 

along the high symmetrical axes were described 𝞒, T, Η2|Η0, L, F SO|S2, F, Γ for   K4ZnAs2 

compound ( R.Velavan1, Myvizhi.P2. (2018) . The summed energy as a function of unit volume and 

lattice constants was interpolated using the Murnaghan equation of state.The quantum espresso 

program was applied to calculate the elastic constants and other properties, such as bulk moduli, 

shear moduli, Young’s moduli, and Poisson’s ratio using three functions (Voigt, Reuss, and Hill’s 

average). The hill averages of the bulk and shear moduli were used to compute the sound velocities. 

The Debye temperature was determined using a method that uses the angular averages of the sound 

velocity computed for each direction and solves the Kohn -Sham equation.  
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Then, was used to calculate the vibrational energy, constant strain heat capacity, free energy, and 

entropy within the Debye model (Tyuterev and Vast, 2006). The chosen k-path is specific to the 

material crystal structure obtained (Setyawan and Curtarolo, 2010). The density of states (DOS) was 

obtained from electronic structure calculations, and the k-points need to be dense as well (Sholl and 

Steckel, 2009).From the DOS, the material can be categorised as an insulator, semiconductor, or 

metal, and the band structure plot shows whether the bandgap is direct or indirect and the type of 

semiconductor material is. 

 

4.5.2: Murnaghan Equation of States 

The Murnaghan equation of states was used in this study to obtain the optimised volume, bulk 

modulus, and their respective derivatives. From a thermodynamic interpretation, an equation of 

states  is related to the temperature, pressure, and volume  of a crystal structure in the  

thermodynamic equilibrium state (Giannozzi et al.,2009).     The relationship between the pressure 

and volume of a material with a constant number of particles is given by Equation (4.18) (Setyawan 

and Curtarolo,2010). 

 

 

To find the energy with respect to the volume, Equation (4.17) is integrated, leading to Equation 

(4.10). 

 

where in the equation above Eo, B, B′, V, and Vo are respectively, the optimum value of total energy, 

the bulk modulus, the pressure derivative of bulk modulus, the total unit cell volume, and the 

optimized unit cell volume. In Q.E, the ev.x command file was applied by inputting the energy and 

volume values into the Murnaghan equation. This fitting was performed after lattice constant 

convergence was carried out wher the energies of different volumes were obtained. 
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4.5.3: Bulk Modulus and Its Pressure Derivative 

In this study, the equilibrium bulk modulus and its respective pressure derivatives were generated by 

the application of the Murnaghan equation of states. The bulk modulus determines the resistance of 

the crystal structure to the compressive force acting on it. The volume and bulk modulus of a 

structure are inversely related to each other (Hung et al. 2018). The bulk modulus is given by 

equation (4.11) 

 

Where  is the bulk modulus, the volume and  is the pressure. The pressure of such system is 

given by equation (4.12) . 

 

When equation (4.12) is fitted into equation (4.11) then it reduces to equation (4.13) . 

 

 

The derivative of pressure of the bulk modulus can be   given by equation (4.23) 

 

 

 

4.6: Electronic Properties 

The electronic properties investigated in this study were the bandgap and density of states. 

Electronic properties are crucial because they enable us to understand the manner in which the 

electrons of a material interact within the crystal structure and can be used to predict the general 

properties of a material (Hinuma et al., 2017). Band structure computations were performed using 

highly symmetrical points. Each symmetrical point is generated from a material project website 

(Hinuma et al., 2017). 
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4.7 Elastic Stability Analysis 

The elastic constants are applied in the study of mechanical properties such as anisotropy, Young’s 

modulus, bulk modulus, Poisson’s ratio, and shear modulus of any material. DFT calculations use 

two methods to compute the elastic constants: the stress strain and energy strain methods. In this 

study, we used the stress-strain method to compute the elastic constants as per the Hooks law 

(Giannozzi et al., 2009). 

The mechanical stability of the trigonal structure is given in equation (4.24) below. 

 

For any trigonal structure, the nine independent constants must satisfy Born stability criteria. 

BV = 

[ + [

 

The Bulk elastic properties (bulk modulus Bv, Young’s modulus GR, and shear modulus G) were 

computed using the Voigt-Reuss-Hill schemes defined by equations (4.26) equation ( 4.30) 

(Fulfillment et al., 2021). 

BR =1/ 

[( 2( ) 

 

GR =15 / 

[ ( +3(

                 

Where Si,j denotes the elastic compliance obtained by inverting the elastic constant matrix. 

According to Hill approximation both bulk and shear modulus is defined by equation (4.28) and 

equation (4.28) 

BH = ( ); = ( )                                 (4.28) 



36 
 

The Voigt bulk modulus BR and the Voigt shear modulus GR are defined by equation (4.29) and 

(4.30) respectively 

BV =  C11 + C22 +C33] +  [C12 + C13 + C23]                                                                  (4.29) 

GR = [ + [ ],                                     (4.30) 

2( + ) < C44 (C11 - C12)                                                                                                  (4.31) 

The Poisson’s ratio and Young’s modulus are gotten from the shear and bulk moduli through the 

application of the equations (4.32) and (4.33), respectively (Dong et al., 2013; Hou, 2008). 

 

 

 

The anisotropy in the interatomic binding energies in different matrices can be given by shear 

anisotropy. 

The anisotropic factors A1 in the (100) planes between the < 011> and <010> directions, A2 in the 

{010} planes between the < 101> and <001> directions, and A3 in the {001} planes between the 

<110> and <010> directions are defined by equation (4.34) (Giannozziet al.). 

A1 =     ,       ,                                                (4.34) 

For any crystal structure of a compound with mechanical stability, strain energy must be greater than 

zero. This implies that the elastic stiffness must have the required inequalities, and Ci,j of different 

crystal structures must obey the specified conditions Dong et al., 2013; Hou, 2008). 
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CHAPTER FIVE: RESULTS AND DISCUSSIONS 

5.0. Introduction 

Results obtained from the studied properties (structural, electronic, elastin, mechanical and optical) 

of the trigonal Zintl phased tetra potassium diarsenido zincate (K4ZnAs2) semiconductor compound 

at the DFT theory level. Some of the experimental data for the K4ZnAs2 material like band gaps are 

known. The reason for this was to provide adequate insight into the K4ZnAs2 material. First, 

convergence tests including total energy, elat, cell energy, and k points are discussed, followed by 

the structural properties of the K4ZnAs2 material.  (Giannozzi et al., 2009); (Mathematics, 2018)   

(Prots et al., 2007) are used as the main references. 

 

5.1: Structural Properties  

An ideal trigonal structure Zintl phased tetra potassium diarsenido zincate (K4ZnAs2) semiconductor 

compound e of belongs to the R3c space group. The unit cell is made up of 7 atomic particles, that is, 

4 K atoms, 1 Zn atom and 2 As atoms. The visual appearance of the structure is shown in Figure 5.1 

a. The structure of this material has two inequivalent K1+ sites, with the first K1+ site attached to 

three equivalent As3- atoms in a trigonal, non-coplanar geometry. In the first case, all K-As bond 

lengths are 3.47 Å. At the second K1+ site, K1+ is bound to four equivalent As3- atoms to form a 

mixture of edge- and corner-sharing K-As4 tetrahedra. There is one shorter (3.34 Å) and three longer 

(3.50 Å) K-As bond lengths. Zn2+ is bound to two equivalent As3- atoms in a linear geometry. Both 

Zn-As bond lengths are 2.33 Å. As3- is bound to seven K1+ and one Zn2+ atom in a distorted cubic 

cantering geometry. Distorted cubic cantering geometry (Sholl and Steckel, 2009). 

Variable cell relaxation (vc relaxation) was performed on K4ZnAs2. The relaxed unit cell structure 

and the crystallographic data for a stable compound of K4ZnAs2 are a 

 . Figure 5.1 b shows the 

lattice parameters of the relaxed unit cell structure of the K4ZnAs2. 
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Figure 5.1: Structure of relaxed unit cell of the tetra potassium diarsenido zincate (K4ZnAs2). 

 

The crystal system of the stable compound of K4ZnAs2 adopts a trigonal structure, and the lattice 

system is rhombohedra (Sholl and Steckel, 2009). The length of the unit cell as a function of energy 

was investigated, and it was realised that convergence was achieved for the tetra potassium 

diarsenido zincate (K4ZnAs2) semiconductor, as shown in Subsection (5.2.1). 

 

5.2.1: Convergence Tests 

K-point optimization using the six functionals, that is, PBE-GGA. PBEsol-GGA, LDA-PZ, BLYP-

GGA, EVE-GGA, and SO-GGA were performed by moving from a 2 × 2 × 2 mesh to a denser mesh 

of 24 × 24 × 24, using an interval of 2 × 2 × 2. The converged K-points of the trigonal phase of the 

K4ZnAs2material using the six functionals were found   to be 9 × 9 × 9, as shown in figures 5.2.1 

(a)- (f). This mesh was selected to be optimum in this case; nevertheless, any value above it could be 

used. The higher the mesh, the denser the structure becomes, leading to more complicated 

computations, and is expensive even when the results obtained might be more accurate. This implies 

that the optimum mesh should be used to test convergence results (Giannozzi et al., 2009). 
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Figure 5.2 a BLYP 

 

 

Figure 5.2 b EV 
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Figure 5.2.c LDA 

 

 

 

 

 

 

 

 

Figure 5.2 d PBE 
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Figure 5.2 e PBEsol 

 

 

                                                                  Figure 5.2 f SOGGA 

Figure 5.2: k-point convergence for the tetra potassium diarsenido zincate 

 (K4ZnAs2 ) semiconductor compound. 
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The optimised value of the converged mesh for the k-points, 9 × 9 × 9, was applied to test the 

convergence of the cutoff energy. Cutoff energy convergence was applied versus the energy in Ry.  

Using the is PBE-GGA. PBEsol-GGA, LDA-PZ, BLYP-GGA, EVE-GGA and SO-GGA functionals 

for trigonal phase of K4ZnAs2 materials, the convergence tests were achieved at 120Ry as presented 

in the figure 5.2.2 (a-f). 

 

 

Figure 5.3 a BLYP 

 

Figure 5.3 b EV 
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Figure 5.3 c LDA 

 

Figure 5.3 d PBE 
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                                                                    Fig 5.3 e PBEsol 

 

                                                                     Fig 5.3 f SOGGA. 

Figure 5.3.: Cutoff energy for the tetra potassium diarsenido zincate (K4 ZnAs2) semiconductor 

compound. 

The cell dimension in the angle of the unit cell as a function of energy using eV was studied, and it 

was discovered that the convergence of the trigonal phase of K4ZnAs2 using six functionals, that is, 

PBE-GGA. PBEsol-GGA, LDA-PZ, BLYP-GGA, EVE-GGA, and SO-GGA methods were 

obtained.  
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The convergence of is PBE -GGA,PBEsol, LDA-PZ, BLYP-GGA, EVE-GGA and SO-GGA was 

achieved at 20.5 , 20.5A, 17.25A, 18.25A, 18.25A and 17.25A respectively as shown in the figure 

5.2.3 (a-f). 

 

                                                               Fig 5.4 a BLYP. 
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                                                                             Fig 5.4 b  EV. 

 

 

Fig 5.4  c LDA 
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                                                                         Fig 5.4 d PBE 

 

  Fig 5.4  e PBEsol 
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                                                                         Fig 5.4 f SOGGA 

 

Figure 5.4 The cell dimensions convergence using eV in angstroms for tetra potassium 

diarsenido zincate (K4ZnAs2) semiconductor compound. 

The cell dimension in angstroms of the unit cell as a function of energy using elat convergence was 

studied and it was discovered that the convergence of the trigonal phase of K4ZnAs2 using the six 

functionals, that is PBE. PBEsol, LDA, BLYP, EVE, and SOGGA were not achieved. 

 

The crystal structure parameters including: the lattice a parameter, bulk modulus, equilibrium 

volume and enthalpy of formation energy were calculated by fitting the lattice parameter vs total 

energy, and cell volume vs total energy using the Birch-Murnaghan equation of state of the tetra 

potassium diarsenido zincate (K4ZnAs2) semiconductor using six functionals, that is, PBE. PBEsol, 

LDA, BLYP, EVE, SOGGA and the results were as shown in table 5.1 below. 



49 
 

Table 5.1: Computed ground-state lattice parameters, bulk modulus, equilibrium volumes, and 

enthalpies of formation of K4ZnAs2 ternary compound using various correlation functionals. 

 Lattice 

parameter ao 

(a.u) 

Bulk modulus 

Bo GPa 

Equilibrium 

volume (a.u)3 

Enthalpy of 

formation ∆Hf 

(Ry) 

LDA 17.5986 7.2 5450.47 -419.77 

PBE 18.2247 5.3 6053.12 -424.58 

PBEsol 17.9182 6.0 5752.81 -416.69 

BLYP 18.5201 4.7 6352.32 -423.90 

EV 19.8910 3.2 7869.87 -429.09 

SOGGA 17.3333 8.5 5207.72 -439.79 

Experimental 

work 

18.2170 - - - 

  

From the table 5.1 above of the equation of states of the six functionals, the trigonal phase of the 

material is stable because it occupies the lowest Enthalpy of formation for the six functionals. 

Convergence was achieved because the value was less than 6 for all functionals. Because this 

material is energetically stable, it cannot be decomposed into any other structure under any given 

normal condition. Because the volume is also very low at the convergence point, we can conclude 

that as the symmetry deviates from the ideal structure, the volume continues to increase. 

5.3 Electronic Properties 

The optimum parameters obtained from the variable cell relaxation and lattice parameter 

optimization were used to calculate the electronic properties of the trigonal phase of tetra potassium 

diarsenido zincate (K4ZnAs2).  To understand the electronic properties of the compound, ground 

state conditions were used to calculate the density of states, and the band structures of the trigonal 

phase of the tetra potassium diarsenido zincate (K4ZnAs2) structure were investigated along the 

symmetry points (Γ, T, Η2|Η0, L, F S0|S2, F, Γ) in the Brillouin zone using GGA-PBE, GGA-

PBEsol, PZ-LDA, GGA-BLYP, GGA-EV, and GGA-SO as exchange-correlation functionals.   
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At the Fermi level EF (E=0), the material was noted to have an indirect band gap where the minima 

of the valence band were at the gamma point, while the maxima of the conduction band were at the 

F-symmetry point for all functionals used, confirming that K4ZnAs2is a semiconductor material. The 

electronic band structure indicates the band gap type of the material which is a crucial parameter that 

determines the type of application and suitability in optoelectronics. The obtained density of states 

and band diagrams for the tetra potassium diarsenido zincate (K4ZnAs2) trigonal structure for the 

GGA-PBE, GGA-PBEsol, PZ-LDA, GGA-BLYP, GGA-EV, and GGA-SO functionals are shown in 

Figures 5.5 (a-f). 

 

                                             

 

 

 

 

 

                                                                            Fig 5.5 a BLYP 

 

                                                                  Fig 5.5 b EV 
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                                                                         Fig 5.5 c LDA 

 

                                                                                Fig 5. d PBE 
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Fig 5.5 e  PBEsol 

 

 

 

 

 

 

 

 

Fig 5.5 f SOGGA 

Figure 5.5: The combined density of states and the wave vectors against energy in EV of the 

tetra potassium diarsenido zincate (K4ZnAs2). 
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The smallest band gap (Eg =0.5493 eV) was obtained using LDA-PZ, which is known to 

underestimate the bandgap of materials, while the largest bandgap (Eg =1.2282 eV) was obtained 

using GGA-EV which has an advantage in predicting a good bandgap for semiconductor 

materials(Physics et al., 2020). The other functional predicted bandgaps of 0.7724 eV (GGA-BLYP), 

0.7215 eV (GGA-PBE), 0.6565 eV (GGA-PBESol), and 0.8526 eV (SO-GGA). This study provides 

good insight into the bandgap of the material because of the use of a variety of functionals, each 

having its own intrinsic strength which sets it apart from the others. This material structure also 

exhibited no discontinuities throughout the chosen k-paths, as observed in Figure (5.5 a-f). 

By calculating the density of states (DOS) of this material, we can determine the available electronic 

states/shell/orbitals that an electron can occupy so that a given atom can participate in the formation 

of a band-edge. The six functionals used in the analysis of the electronic properties of K4ZnAs2were 

as follows:  the valence band was mainly dominated by the Zn-2p, Zn-3d, As-1s and As-2p orbitals, 

with very small contributions from other orbitals. The upper conduction band is mainly formed by K-

4p, K-3p, K-1s, Zn-3d, Zn-2p, and Zn-1s orbitals, with little contribution from the other states. The 

dispersion characteristics of the conduction and valence bands indicated a strong interaction between 

the orbitals of the seven atoms of the K4ZnAs2structure. The interaction of the orbitals results in the 

hybridization of different states, leading to the formation of a band gap within the structure. 

These interactions are essential for optoelectronic and photovoltaic applications, because they 

prevent optical transitions with the same electronic states to take place. This allows for maximum 

optical absorption of light energy in visible region. 

 

5.4 Elastic and Mechanical Properties 

The elastic properties are important for determining the structural, thermal, and mechanical stability 

of materials. Moreover, the elastic properties also provide information on how a material responds to 

both the intrinsic and extrinsic forces applied to its crystal structure. The elastic properties such as 

bulk modulus B, shear modulus G, Young’s modulus E, and Poisson’s ratio n, of Voigt 

approximation, Reuss approximation and the Voigt-Reuss-Hill approximation were computed in this 

study by using GGA-PBE. GGA-PBEsol, PZ-LDA, GGA-BLYP, GGA-EVE, and GGA-SO 

functionals as listed in Table 5.2(a-f). 
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Table 5. 2a: The bulk ( , , ) and shear ( , , ) moduli of the the tetra potassium 

diarsenido zincate (K4ZnAs2) materials in GPa under the Voight, Reuss and Hill averaging 

schemes calculated using the GGA-BLYP approximations. 

 Bulk Modulus 

( B) 

Young 

Modulus 

( E) 

Shear 

Modulus 

( G) 

 

Poison ratio 

( n)  

 

Voigt 

Approximation 

 

14.6649 

 

20.7623 

 

8.2127 

 

0.26404 

 

1.7856 

Reuss -

Approximation 

 

14.4863 

 

17.3634 

 

6.6773 

 

 

0.30022 

 

2.1695 

Voigt-Reuss-Hill 

Approximation 

 

14.5756 

 

19.0631 

 

7.4450 

 

0.28027 

 

1.9578 

 

Table 5. 2b: The bulk ( , , ) and shear ( , , ) moduli of the the tetra potassium 

diarsenido zincate (K4ZnAs2) materials in GPa under the Voight, Reuss and Hill averaging 

schemes calculated using the EV-GGA approximations. 

 

 Bulk Modulus 

( B) 

Young 

Modulus 

( E) 

Shear Modulus 

( G) 

 

Poison ratio 

( n)  

 

Voigt 

Approximation 

22.3265 23.3617 8.8117 0.32561 2.5337 

Reuss -

Approximation 

22.1220 18.51616 6.8049 0.3649 3.2509 

Voigt-Reuss-Hill 

Approximation 

22.2237 20.9389 7.8083 0.34081 2.8462 
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Table 5. 2c: The bulk ( , , ) and shear ( , , ) moduli of the the tetra potassium 

diarsenido zincate (K4ZnAs2) materials in GPa under the Voight, Reuss and Hill averaging 

schemes calculated using the GGA-PBE approximations. 

 Bulk Modulus 

( B) 

 

 

Shear 

Modulus 

( G) 

 

Poison ratio 

( n) 

 

 

Voigt 

Approximation 

15.033 21.029 8.2997 0.26685 1.8113 

Reuss -

Approximation 

14.9110 17.3640 6.6481 0.3059 2.2429 

Voigt-Reuss-Hill 

Approximation 

14.9717 19.1964 7.4739 0.28422 2.0032 

 

Table 5. 2 d: The bulk ( , , ) and shear ( , , ) moduli of the the tetra potassium 

diarsenido zincate (K4ZnAs2) material in GPa under the Voight, Reuss and Hill averaging 

schemes calculated using the SO-GGA, approximations. 

 Bulk Modulus 

( B) 

Young 

Modulus 

( E) 

Shear 

Modulus 

( G) 

 

Poison 

ratio 

( n) 

 

 

Voigt 

Approximation 

15.1570 21.5140 8.5140 0.26343 1.780 

Reuss -

Approximation 

14.9749 17.9902 6.9205 0.29971 2.1638 

Voigt-Reuss-Hill 

Approximation 

15.0659 19.7620 7.7172 0.27973 1.9522 
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Table 5. 2 e: The bulk ( , , ) and shear ( , , ) moduli of the the tetra potassium 

diarsenido zincate (K4ZnAs2) materials in GPa under the Voight, Reuss and Hill averaging 

schemes calculated using the PZ-LDA approximations. 
 

 

 

Approxination 

Bulk Modulus 

( B) 

Young 

Modulus 

( E) 

Shear 

Modulus 

( G) 

 

Poison ratio 

( n) 

 

 

 

Voigt 

Approximation 

13.3627 20.8280 8.3969 0.24022 1.5914 

Reuss -

Approximation 

13.2412 17.3171 6.7538 0.28203 1.9606 

Voigt-Reuss-Hill 

Approximation 

13.3019 19.0725 7.5753 0.25886 1.7560 

Table 5.2 f: The bulk (BV, BR, BH) and shear (GV, GR , GH) moduli of the the tetra 

potassium diarsenido zincate (K4ZnAs2) materials in GPa under the Voight, , Reuss and Hill 

averaging schemes calculated using the GGA-PBEsol     approximations. 

 

 

 

 Bulk 

Modulus 

( B ) 

Young 

Modulus 

( E) 

Shear 

Modulus 

( G) 

 

Poison ratio 

( n) 

 

 
 

Voigt 

Approximation 

15.1570 21.5137 8.5140 0.26342 1.7802 

Reuss -

Approximation 

14.9749 17.9902 6.9205 0.29977 2.1638 

Voigt-Reuss-

Hill 

Approximation 

15.0659 19.752 7.7173 0.27973 1.9522 
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The parameters used to define the mechanical properties, as shown in Table 5.2 (a-f), were 

consistently higher for the EV-GGA and SO-GGA functionals.  The bulk modulus measures the 

resistance to the change in volume that occurs because of the external pressure applied to the 

material. The larger the value of the bulk modulus, the harder is the material. Based on the calculated 

bulk moduli using the six functionals, we predict that the the tetra potassium diarsenido zincate 

(K4ZnAs2) material is a soft material because, in all cases, the value of the bulk modulus is not very 

large, that is B > 20 GPa (Giannozzi et al., 2009) . The ductility and brittleness of a material were 

determined using Pugh’s (Giannozzi et al., 2009) and Poisson’s ratio (Dong et al., 2013; Hou, 2008). 

A material is said to be brittle if the B/G ratio is less than 1.75, whereas if the material has a B/G 

ratio greater than 1.75, it implies that the material is ductile. The results obtained using these six 

functionals confirmed that the material is ductile.   

Furthermore, the covalent or ionic properties of the material can be predicted using the Poisson’s 

ratio n, for covalent material, the condition   is true, and ionic if  is 

true. Because the Poisson’s ratios of the six functionals used were approximately greater than 0.25 

and less than 0.5, this implies that the tetra potassium diarsenido zincate (K4ZnAs2) has ionic 

properties. These findings are in agreement with data in the literature (Dong et al., 2013). 

Mechanical stability was obtained by confirming the elastic constants  of the trigonal the tetra 

potassium diarsenido zincate (K4ZnAs2) structure using GGA-PBE. GGA-PBEsol, PZ-LDA, GGA-

BLYP, GGA-EVE, and GGA-SO functionals. The tetra potassium diarsenido zincate (K4ZnAs2) 

ternary material adopts rhombohedral crystal structure belonging to Laue class  featuring 7 

independent elastic constants given as C11, C12, C13, C22, C33, C44, and C55 as shown in table 5.3 

below. The most important and fundamental conditions for the elastic stability of rhombohedral 

lattice systems are given by Equation (4.24) in chapter four. The calculations show that trigonal the 

tetra potassium diarsenido zincate (K4ZnAs2) satisfies the necessary and sufficient conditions; 

therefore, the material is mechanically stable. (Giannozzi et al., 2009). 
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Table 5.3: The calculated elastic constants ( ) of the K4ZnAs2materials in GPa using GGA-

PBE E V-GGA, SO-GGA, approximations. 

Functional  

C11 

 

C12 

 

C13 

 

C22 

 

C23 

 

 

C44 

 

C55 

GGAPBE 27.462 9.5049 5.9807 27.4625 5.9807 4.4440 4.4340 

EV-GGA 36.0311 16.0177 12.8158 36.0311 12.8158 4.3610 4.3610 

SO-GGA 41.3018 20.2235 12.7362 41.3019 12.7362 5.2460 5.2460 

BLYP-GGA 26.5477 8.8317 6.0032 26.5477 6.0032 4.5244 4.5244 

GGA-

PBEsol 

27.4733 9.1858 6.1097 27.4713 6.1097 4.6807 4.6807 

PZ-LDA 25.5825 7.5803 4.3027 25.5825 4.3027 4.5405 4.5405 

 

Directional isotropy or anisotropy is the the directional dependency of the mechanical properties that 

is closely analogous to the plastic deformation and crack characteristics of a crystal structure. In this 

study, to get a comprehensive insight into the elastic isotropy/anisotropy of the tetra potassium 

diarsenido zincate (K4ZnAs2) Compound, the spatial dependencies of the Young’s modulus, shear 

modulus, and Poisson’s ratio were investigated, as shown in graphical representation in Figure (5.6 

a-c). 
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(a) 

 

(b) 

 

(c) 

 

Figure 5.6: The spatial dependency of (a) Youngs modulus, (b) Shear modulus, and (c) 

Poisson’s ratio 
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The degree of anisotropy is dependent on the deviation of a geometrical body from the spherical 

shape in this case, represented in a 2D shape. If a geometrical body is a spherical (3D) or circular 

(2D) shape, it exhibits isotropy, which is observed in the xy-plane for Young’s modulus, shear 

modulus, and Poisson’s ratio at varying degrees. It is also seen that for the xz-plane, the degree of 

anisotropy is slightly more symmetric for Young’s modulus, shear modulus, and Poisson’s ratio, 

while for the yz-plane, the anisotropy gives an antisymmetric distribution.  

The anisotropic deviation from the computed values of Young’s modulus were 12.749 GPa and 

35.502 GPa for the minimum and maximum data, respectively, while the shear modulus and 

Poisson’s ratio were 4.31 GPa,12.63 GPa and 0.045GPa 0.627GPa for the minimum and maximum 

data. This deviation displays an anisotropy values of 2.785, 2.929, and 13.8346 for the Young’s 

modulus, shear modulus, and Poisson’s ratio, respectively. The low data gotten here corroborate the 

earlier deduction that the material structure is ductile. In summary, the K2ZnAs2 compound displays 

isotropy in the xy-plane but anisotropy in the xz and yz planes. 

 

5.5. Optical Properties 

The optical properties of semiconductors are important because they determine how the material 

crystal structure interact with electromagnetic spectral radiation. This is the basis for technologies 

such as optical communication, displays, and optical storage. The optical properties depend on the 

band structure of semiconductors, which affects the optical permittivity and absorption coefficient, 

and their analysis can further extend our understanding of their suitability for optoelectronic and 

photovoltaic applications. In this study, crucial parameters were analysed to understand the 

suitability of this material. The results obtained for the optical properties are shown in Figure 4 (a-e). 

The complex dielectric wave equation explains the response of the electrons of the material to the 

incident photon energy and is given by Equation (5.1). 

.1 

where ε(ω) is the total angular frequency dependent dielectric function,   is the real 

part of the complex dielectric wavefunction with n and k being the refractive index and extinction 

coefficient respectively, and   is the imaginary part of the dielectric function. The 

 defines the wave damping and energy dissipation, whereas the imaginary part  is 

related to polarization and is responsible for the phonon absorption in a material. 
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Figure 5.7 a: Dielectric constants epsilon 1 and epsilon 2 as a function of energy for the tetra 

potassium diarsenido zincate (K4ZnAs2).  

 

The dielectric functions for this material showed that it was higher at lower energy from 1.0 eV to 

7.0 eV and beyond there which dramatically decreases, indicating that the materials exhibit strong 

attenuation of the incident electromagnetic wave radiation within this region, and therefore exhibit 

metallic characteristics. The refractive index n(ω) and extinction coefficient k(ω) are important 

optical parameters for studying the potential applications of materials in optical and photonic 

devices. The expressions for the refractive index and extinction coefficients are given by Equations 

5.2 and 5.6, respectively. 

 

 

Refractive index n (ω) is a useful parameter for predicting light refraction, particularly in 

optoelectronic applications. When photons come into contact with matter, they slow down owing to 

their interaction with electrons, and their refractive index is greater than one. However, if photons 

pass through a material with a higher refractive index n(ω), more photons are attenuated. There is a 

tendency for n (ω) to increase when the electronic density is increased.  
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The extinction coefficient k(ω) is analogous to ε2(ω), as observed in Figure 4a and 4b, and the 

dissimilarity of k(ω) from ε2(ω) is ascribed to the slight differences in optical conductivity [42]. In 

photonics, the extinction coefficient k(ω) is an important attribute of the fluorescence phenomenon; 

when the extinction coefficient is large, the fluorescence is proportionately high. 
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Figure 5.7 b: Refractive index and extinction coefficient as a function of energy for the tetra 

potassium diarsenido zincate (K4ZnAs2).  

 

The other optical parameters used in this study are the absorption coefficient  , reflectivity  , and 

energy loss function  , as given in equations (5.4), (5.5), and used in Figures 5.7c, 5.7d, and 5.7e, 

respectively.  The absorption coefficient measures the amount of light energy absorbed by a material. 

Reflectivity describes the surface characteristics of a material, while the energy-loss spectrum 

highlights the energy loss of electrons entering the material. 
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The absorption coefficient is an important parameter which is closely related to the skin depth of the 

material in which the electromagnetic wares interact with. Figure 4c shows a graphical representation 

of the calculated absorption coefficient of the tetra potassium diarsenido zincate (K4ZnAs2) 

compound which spans from the deep ultraviolet region at 20 eV to the infrared region. The wide 

absorption range of this material is an important characteristic desirable for applications in the 

optoelectronic and photovoltaic industries. The absorption spectra   can be used to explain the 

case of absorption of the incident photon energy. It measures the quantity of light energy absorbed 

by the material. The computed spectra of  for the tetra potassium diarsenido zincate (K4ZnAs2) 

are presented in Figure 4c. In the spectra of  , it is shown that initially the value of  is zero, 

and the peaks start appearing from around 0.71eV which corroborates earlier values obtained for the 

electronic bandgap. The absorption spectrum of the tetra potassium diarsenido zincate (K4ZnAs2) 

had a wide range of 1.5 - 14.5 eV spanning the UV-Vis range and again at 16 eV – 20 eV. 
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Figure 5.7 c: Absorption coefficient as a function of energy for the tetra potassium diarsenido 

zincate (K4ZnAs2). 
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Figure 5.7 d: Reflectivity as a function of energy for the tetra potassium diarsenido zincate 

(K4ZnAs2). 

 

The optical surface properties of a material are best described using reflectivity characteristics. In 

Figure (5.7 d), the reflectivity of the the tetra potassium diarsenido zincate (K4ZnAs2) compound is 

highest between 0 eV and 11 eV, which corroborates the observation of the absorption coefficient in 

Figure 4c as well as the energy loss function, as shown in Figure (5,7e). 
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Figure 5.7 e: Energy loss function as a function of energy for the tetra potassium diarsenido 

zincate (K4ZnAs2).  

 

Major energy loss peaks were observed in the slightly higher region of approximately 7 -13 eV.  No 

energy loss peaks were observed in the visible region. No significant peaks were observed in the 

visible region. 
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CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS 

6.1: Introduction 

This chapter presents the conclusions drawn from the results and work that remains to be done. 

 

6.2: Conclusions 

The structural, electronic, mechanical, elastic, and optical properties of trigonal K4ZnAs2ternary 

pnictide structures were studied using the first-principles method with triangulation of six exchange 

correlation functionals: LDA-PZ, GGA-PBE, GGA-PBESol, GGA-EV, GGA-BLYP, and SO-GGA. 

The material has been predicted to be mechanically stable, with bandgaps ranging between 0.5493 

and 1.2282 eV. The most important and fundamental conditions for the elastic stability of 

rhombohedral lattice was satisfied. The lattice parameter and bandgap values were in agreement with 

previous experimental and theoretical studies, respectively. The conduction band formation was 

found to be mainly due to Zn 1s and Zn 2p, with low contributions from the As 2p and K 2s orbitals, 

and the other orbitals making insignificant contributions. On the other hand, the valence band 

formation is mainly due to the As 2p orbital, with some significant contributions from Zn 2p, Zn 1s, 

and K 2s, and other orbitals making minor contributions.  The results revealed that K4ZnAs2absorbs 

light energy within the UV-VIS region of the electromagnetic spectrum as well as in the infrared 

region, showing excellent potential for optoelectronic and photovoltaic applications.  

 

6.3: Recommendations 

Studying the optical, elastic, structural, and electronic properties is of great importance when 

studying material applications, such as photovoltaics and other optoelectronic applications.  For the 

band gap calculation, the six-exchange correlational functional used in this work normally 

underestimated while others overestimate the band gap energy especially when investigating a single 

phase. Work still needs to be done to investigate this material in different phases, such as monoclinic 

and tetragonal phases, for more accurate band gap precision. We also recommend band gap 

engineering studies to be carried out so as to tune the band gaps for optoelectronic applications. 

We also recommend that other stoichiometries of the K4ZnAs2material be studied with the inclusion 

of double, triple, and mixed phases. We suggest that this material be investigated using other 

functionals such as local density approximation + Coulomb interaction (LDA+U) and generalised 

gradient approximation + Coulomb interaction (GGA+U) using various suitable pseudo-potentials. 

In addition to photovoltaics and optoelectronic applications, we recommend that investigations be 

done on this material so that it may be considered for other applications. 
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