AN ATTRIBUTE ANALYSIS OF ARCHAEOLOGICAL_BEADS

FROM

SHANGA, NORTHERN LIENYA COAST"

BY

RUFWAFTA MUKHWANA

ind a corl mat be placed in the oniverstix mbrarg.

A Thesis submitted in Fulfilment

of the Requirements for the Degree
of Master of Arts in Archaeology
in the Department of History
at the University of Nairobi

This thésis is my original work and has not been submitted foriexamination in any other university.

Kufwafwa Mukhwana

This thesis has been submitted for examination with my approval as University supervisor

To Kufwafwa and Munyite

$$
\cdots
$$

TABLE OF CONTENTS
Acknowledgements i
Abstract vii
List of Tables riij.ix
List of Figures
CHAPTER ONE: BEAD MATERIALS ANI) USES OF BEADS
Introduction 1
Bead Material 3
Uses of: Reads ${ }^{6}$
Summary and Conclusion 1.4
CHAPMER TWO: LITERATURE REVTEN AND THE PROHAEN
Literature Review 15
The problem 26
Summary and Conclusion 26
OHAPTER THREE: THE STUDY AREA AND METHODOLOGY
Introduction 27
The Study Area 27
Proples 28
Climate and Vegetation 28
The Nature of the data base 30
Reasons lor choosing Shanea site 33
Nethorlology 35
Jibrary or Archival Research 36
Museum Beadi Collection 36
Sampling Procedures 36
X-Ray FLuorescence Analysis 10
Operational Jefinitions 42
Summary and Conclusion 50
CHAPTER FOUR: BEAD ATTRIBUTES OF SHANGA
Introduction 51
Raw-Materials 51
Shapes and Sizes 59
Decorative Techniques and Motif 61
Colour 67
X-Ray Fluorescence Analysis 69
Results 71
Summary and Conclusion 75
CHAPTER FIVE: DATA ANALYSIS AND CONCLUSIONS
Introduction 77
Raw-Material 77
Shapes 80
Colour 83
Decorations 81
Techniques of Manufacture 85
Correlation of the Shanga Beads with the Archaeological Periods 88
Recommendation 91
Conclusion 92
Appendix 93
Bibliography 122

ACKNOWLEDGEMENT

I wish to express my deepest appreciation and thanks to my suborvisor br. lonry W. Mutoro for his mutirjne effort to brime
 rritireism arer highly dhrmeceintorl.

I also exprest my gratjhum marlicularly to the following instifutions and imlividhalo: National Museums of lienyat (fort Jroms ami liamul, the Britigh lustitute in Easlevin Ajriog
 amalyse tho homd rallmations wame in this roseareh.

1 ant voly fraloful also to all who offered lheir raluathe I imo to make this stmy a shcress. This specificully goes to tho trobhical suff al the rember of kuctrat srience, linjuersity af

 shabes of heats ment in this slats.

1 dereply anpresejate the conpesation and hospitality I
 anolyeging hoast data al thr 1 aget.

1 am great ly indohted 10 Miss Sarah N. Kamath for her

[lef a hmee hanomel fif for my heloven wife Beatrje sochesca for hor batience amd molerstanding durimes the whote romben of ms study.
 of foring me a serphlarabip ame 'rosoarch funds in Archaeologe which Was verr meronsaly for h his mest-rnablate course.

ABS'TRACT

This study is concerned with an attribute analysis of archaeological heads from Shanga site. From the written documents, if is evident that questions pertaining to bead analysis and interpretation have been inadequately studied by previous archaeologists, yet with lhe exceplion of pottery, beads constitute the commonest class of artifacts on the coastal settement sites in Kenva. As one of the most valnable chronological indicators available, beads provide some of the best archaeological evidence for dating archarological sites and commercial items.

In this analysis Shang heads are studied in terms of raw materials, mamufaturing techniques, shapes, sizes, decorative motifs and colours. An x-by fluorescence analysis of the inorganic bead material samples is also made to throw some valuable insight about the mature of raw materials used in bead manufacture hy past communities on Shanga settlement.

The fiudings show that a wide variety of raw-materjad were used in the manularture of beads. It also showed that different colours, sizes, shapes and technirues were used in the manufacture of heads. NII lhese apparently were based on the functions they served and the ruslomers tasto.

LIST OF FIGLRES

Fieure	1	－	Archaeoloeical heal sjtes	\because
Figure	\because	－	（ hromical efrombice ol glass heads	2.
Figure	3	－	bocation of stuly stran	29
Fj¢い1．	1	－	fancalion ol shathen sitar	31
Fioure	5	－	Meashrmments of heads	13
Figいでき	1	－	crl inder head	17
Fi¢いで，	7	－	Ralrucl hoad	17
Fi』い1～	i	－	Mirome brath	17
Figure	9	－	Spheroid beal	17
Fionlo	10	－	I）isce head	17
Fiours	11.	－	Ring head	17
Fi¢¢いい	12	－	O1，1atrs heath	17
Figure	13	－	lillibsoja boadi	17
Figure	11	－	Piriform head	17
Figure	15	－	Longiludimally Sepmented beat	17
Fi．sure	16	－	Raw－materials percentage	58
Fi¢゙いかっ	17	－	XRF Analysis mrelass bead	71
Figute	18	－	XRF Mmatsis of（arnelian head	71
Figure	19	－	ARF Amalysjs ni lerracotia bead	72
トj¢いいe	20	－		72
Figure	21	－	SRE Inalysis of alimaster linad	73
Figure	22	－		81
Fi¢゙いいの	23	－	Barivel＇malom＇lumal	81
Figure	21	－	＇Tubular＊beat	31
Figure	25		Howngoundly frocotot estimeler	31
Fiserro	21	－	Trumeal ed hiteour bead	81
Fiぼいが	$\because 7$	－	Pricked potit run bend	81
Figures	28	－	Stratified aro hoadt	82

Figuse	29	-	Lヵn¢ iturdin	mally piey	ced b	add	82
Figure	:30	-	(s) inder h	head with	hlack	bands	42
Eigure	31	-	Flat Lened	crionder	bead		82
Fisure	13	-	Rut. 1 Ont stan	apmil limarl			82

1.1ST OF TABLFS

Tabla 3 - Stratierinhir lovel allll heals 3:-
Table 1 - lesentaliun molifs bic

ABBHREVIATLONS

B. T. F. A. British lnstidule ju bentern Africa
J.A.ll. Journal of Arrican History
J.J.A.ll. Internalional Journal of African llistory

CHAPTER ONE

INTRODUCIION:BEAD MATFRIAIS AND USES OF BEADS

Beads are minute ohiects, made from organic and inobeanic: malerials, which are pierced for stringing together before being worn hy people as ceremonial or as aesthetic obiects (Rozman 196i). The number of heads on a string varies accolding to the sjze of the body part to which they are worn. Most contemporary and arrhaeological hearts abe chamacterized by geometric patherris, decorat ions inm berforalions al lhe centre or at the extreme ent of Lho heads.

In Africa, the earliest, heads to be recovered from an archatological site are from Lakenyat Hills, Kenva. They were dated (o) 17,000 B.P. (Grimly 1976). Fisewhere in Fast Africa, beads made from differenl paw-materials have hern excavaled at a number of siles in lhe inlerinr. For exampla al Noporo River rave, beads have Weren recovered and dated $1015,000 \mathrm{R} \cdot \mathrm{P}$. (Leakey 1945 , Leakey and Lenkey 1950). At F amek (Neamuriak), beads were found and dated to 2,000 R.P. (Merrick 1975).

From othor archaeological sitns in Africa beads have also been excavated. For instance, ostrich egg-shell beads were recovered Prom lhe sile of llaua fleauh in liblya. 'lhey have been dated to 10,000 B.C. (Duhin 1987). Glass heads dating Lo loo H.C. have also been found in the Sudan. From the sites of Djenne Jino in Mali and Luxor and Badari in Egypt, beads dating to 200 B.C. have been

excavated (Dubin 1987), (see fig. 1)

BEAD MATERIALS

Beads are made from a variety of raw-materials. These include organic and inorganic materials. Organic materials consist of mutis, teeth, boues, tusks, soeds, tree resin (amber), bird eggshell, fish bone and coral. Nut beads especially those of dhoum and coconut balm are highly prized in some west African communities. 'The f'lesh of the dhoum and coconut palm is removed, leaving the kernel. This kernel is then skilfully curved into beads with circular, feathered and leal'-shaped designs (Ginstone and khan 1976). ALso roaming elephants usually swallow the flesh of the dhoum palm mots but due to the toughness of the kernel, they are undigested and hence dropped. When found these kernels are Ficked and used in the making of beads (khan 1976).

Teeth from wild game have also been in use as a raw-material for head mamufiacture. The hunters of Papua New Guinea, for example, drill toeth of animals they have killed and string them logether as beads (Fitzratrick 1963). Written sources indicate that ancient Egyptians curved hippo teeth into various bead shapes for wearing (Sease 1987). While the I, okele hunters who occupy the banks of the River Congo when hunling the leopards, put on leopards' teeth as beads to protect them from the fierce leopards that infest the denge equatorial forests. The leopard's skjn is used ás a regalia for the local chiefs in this society (Weeks 1985).

Beads were also made from Mollusc shells. Λ collection of these beads have been found at Gamble's Cave and North Horr sites, in the interior of kenya (Gow 1984). Fividence from coastal sites of Shanga, Kilwa and Manda in Kenya suggests that shells of Andara (a kind of mollusc) were cut into rough blocks and worn down into colimler shaped pieces. These were later split along the lamini and then pierced centrally to form beads. In some cases, the shefls were ground into disc shapes by using pieces of stone and poltery. This is supported by the ariss-crossing marks jeft on their surfaces. Further evidence of use of mollusc shells in bead manufacture is supported by the presence of unpierced wasters at kilwa and Shanga sites, which show that Andara were prepared by hand before being truncated inlo segments (Chitlick 1974, 1977, Horton 1981).

Beads have also been made from ivory. Ivory as a raw material for making beads is valued because it is associated with the enormous strength of the elephants, from whose tusks ivory if derived. Elephants are totems in certain African communities have therefore been treasured for centuries because of their ivory. Secondly, ivory as a rar material for making beads has an advantage to archaeologists because it preserves well in the archaeological record.

Plant seeds have also been used as raw materials for making beads. Today as in the past, seeds from certain tree species are used for bead, making among the Kamba and Pokomo. The Bagishu poople, who inhabjt the frimges of Mt. Elgon in Uganda also made
beads from seeds of Scleria racemosa in pre-colonial times. These heads have been found to be similar to those excavated at Nioro River Cave (Leakey and Leakey 19950 . Brown 1966). While seed beads do not preserve well in the archaeological record, some have been found in the marshy hatital sites of Central Africa (katoto and Shaha) in excellent conditions. These included a squash and a been seed (Phillipson 1977).

People alsomake beads from bird egg shells. The most popular are the ostrich egg-shells. Evidence for these have been found at The Lake Turkana sites, particularly at Jarigole site (Momanyi 1988). ostrich egg-shells are still a popular raw material in bead-craft fmong the transhmant pastoralist groups of East Africa such as the Turkana, Samburu, Pokot and the Karamojong (Gow 1984, Galichet 1988$).$

Fish Vertebrae are also used in making beads. Beads made from this type of raw material have been found in large numbers along lhe coastal region of Kenya (Mutoro 1979, Horton 1984). In such cases beads were made by smooth the vertebral column by removing spines (Mutoro 1979).

Coral has also been usel as a raw material for bead manufacture (Horton 1984). It has been suggested by Chittick (1974) and Steen (1967) that some coral beads were introduced to Africa by the Porluguese in the early 16 th century (Dubin 1987). However, very fer of these beads have been excavated at coastal archaeological sites (Horton 1944). Other scholars, particularly Horton (1984), insist that coral head technology was complex and
the raw-material itself was hard and tough, hence would have mostly been preferred in construction rather than bead-manufacture. The fact remains that coral is still used in the manufacture of beads by the coastal peoples, namely the Bajuni, Pokomo, Boni and Sanye.

Inorganic Materials

Inorganic materials used in the manufacture of beads include semi-precious stones, terracotha, metal, glass and clay ISleen 1967, Chittick 1974 Morrison 1984, Horton 1984, Leakey 1931, Leakey and Leakey 1950, Davison 1972, Gow 1984, Mutoro 1979, Merrick 1975 Dubin 1987, Sassoon 1966, Kirkman 1956).

Beads were also made from semi-precious stones. While few organised studies have been carried out on the manufacture of stone beads in East Africa, their abundance in this region suggests that stone was utilized in the production of beads. Most of the stone heads were made from semi-precious stone such as chalcedony, agate, crystal-quartiz and carnelian (Leakey 19931, Leakey and Leakey 1950, Gow 1984, Arke11 1933, Chittick 1967, Horton 1984).

In addition to use of semi-precious stones as a raw-material for bead making, there is abundant evidence to suggest that the polity of Shanga, Kilwa and Manda also exploited terracotta in large quantities for the manufacture of beads (Chittick 1974, 1977 and Horton 1984). Recent excavations at Ungwana have similarly revealed use af baked clay in the manufacture of beads by these communities (Abungu 1987).

Another category of raw material used in the manufacture of beads has been excavated along the Fast African Coast. This is glass. A large quantity of glass beads excavated along the East African Coast have unique distinctions. They are characterised by Iraditional colours such as Indian red opaque, blue-green, green, yel Low, black, orange and cobalt-blue (lavison 1972). Such type of beads have been called trade-wind glass beads by sleen (1967) because they are thought to have come from Venice, Holland and Egypt through trade. They are dated to A.D 200 (Sleen 1967 and Dubin 1987).

Availahle archaeological evidence indicates that metal was also used in bead preparalion. At Axum in Ethiopia, for example, heads made from copper and iron were found in a heavily corroded state (Morrison 1985). In Esypl, metal beads of jron, brass, bronze, copper and aluminum have similarly been recovered in various archaeological. sites Sease (1987). Ethnographic studies on bead preparation among the Boran blacksmiths show that metals such as copper, i.ron and aluminium (from old utensils) are used for making beads (kassam 1988). These metals are preferred in bead preparation because they are malleable and ductile. Thus, they soften when they are red hot, enabling the bead makers to fashion various shapes and sizes of heads (Sease 1987).

USES OF BFADS

A great variety of beads were used by the past communities for both ceremonial and ornamental purposes. The ceremonial function
of beads is shown by their occurrence in burial places. This is particularly clear at Katoto site in Zambia, where female and child burials are associated with grave goods including conus shells (Conus prometheus) and disc beads (Harding 1961 ad Phillipson 1977). Another example where beads were used for ceremonial prmposes by the past communilies are the burial sites at Noforo River Cave, Gamble's cave and sites around Ngorongoro Crater. Reads found at these site were made from such raw materials as mollusc shells, semi-precious stones, bone, ostrich egg-shell and nuts. These heads were found distributed among the skeletal remains as grave items (Ieakey 1931, 1915, Leakes and Leakey 1950, Sassoon 1968, (Gow 1981). Another ceremonial use of beads, is shown by hunters of Papua New Guinea, who wear animal teeth and bone beads. This is done as a sign of victory over the animal killed by the hunter (Weeks 1985).

The ormanental aspect of beads is shown by their beine sewn onto items like cjothes, gourds, bags and skins. The Turkana, Karamojong, Maasai, Okiek, Samburu and some of the conservative Swahili Communities todas, for instance, wear beads on their eye lashes, ears, noses, necks, legs and fingers for aesthetic purposes. The Swabili communities in fact, combine this aesthetic function with a religjous one: being Muslims, they conceptualize heads in Islamic colours which show blue for water, red for danger and green for peace.

The functional role of beads is seen in the Swahili speaking reoples, the Mi.ikenda, the Masaj and the Rendille. Among the

Swahili, beads are used as either talisman or charm and for production and fertiljty. White and red beads are worn to protect the wearer against the evil forces (upepo) (kassam 1988). The sinall red beads, with round edses (tunda) were used by the swahili and giriama women as girdles worn under the cloth and as amulets (Kirkman 1954). Large medium sized beads with hexagonal facets were strung with crystal and used as praying beads (sibha) by the Swabili and Arah women (Kirkman 1954).

Among Lhe Mi.iikenda, beads were used in performing rejigious functions in lhe sacred place/shrine (moro). The kambi 1 a group of old wise men) used white and blue beads decorated on the painted black staff with a red feather, to heal the sick. This occurred especially when exorcising evil spirits from the possessed. It is helieved that the evil spirits set attracted to the white and blue heads, and in due course abandoned the sick individual (Mutoro 1990). Dark blue beads and black clothes were worn by the young initiates among the Maasai people as charms for protection against evil spirits. Blue beads were also placed at the entrance of the manyatta of the moran. This indicated the presence of God and his recognilion of their social nchiovement. Amons the Samburu people, roung circumcised girls wear white beads of cowrie shells for protection against. "evil eyes" of their enemies (Galichet 1988). The amulelic aspects of beads are not only restricted to East Africa but are also found, in other parts of the world. For instance, in the Middle East this tradition of wearing beads as ammets is common among the desert. Bedouins of Jordan, who wear a
squared cylinder bead of green onaque glass called harzet marara which is thousht to protect Lhe wearer from gall-bladder disease (Mershen 1989).

Reads can also be used lo indicale ethnicity of their wearers their membership in a clan, their sex and their age group. A good example are the Oromo, Remdille, the (abbhra, Boran and the kikusu communities. For iustance, the yellow and red beads are a normal colour spectrum among the Oromo women. Yellow signifies fertility and good health (Schlee 1988). As an indicator of age and sex, females (baby 〔irls) amomg the Remdille people of Northern kenya wonr a few while beads (schlee 1988). pink beads were cherished in the past hy the kikuyu women. They figured prominentis as ear ornaments to represent the richearlh (kassam 1988). Whereas among the Gabra, heads of various colours symbolize numbers and sex. For example, three beads stand for males and four beads for females. Thus, by enumeraling the number ol beads on a necklaces (ayanin) worn by the Gabhra women, one ran easily determine the number of boys of girls a woman has delivered (Kassam 1988). Similarly, white porcelain beads called hargel halib (milk bead) when worn by women are thonght to increase the flow of milk of breast-feeding mothers amone the desert Bertomins of Jordan (Mershen 1989).

Like olher nomadic peoples of East. Africa, the Boran. Oromo, Mansai, Rendille, okjek amd Samburu have elaborate wavs of: identifying lhemselves with pody decorations. One of them is by wraring beads. - Amons lhe Boran people, black beads (umu gurraatit) are sacred aud thus worn by only the priestly (Quallum) clans or
spiritual elders. This implies sanctity since black is a symbol of 1ife. Another use of beads lo show social status is seen among the oromo people who conceive their celestial God Waay as being black in colour. Their religious leaders adorn themselves with black and blue beads to signify infinjty, purity and mystery (Kassam 1988). The Oloiboni (diviner or ritual leaders) among the Masai wore red/white, dark blue/white beads around their necks for priestly fiunctions (Galichet 1988). Among the Lugbara, an agricultural people of North-Western Uganda, there still exists ritual specialists in the person of hereditary rain-makers. Their traditional tasks include tasks include arbitration of warring clans, eradicating witchcraft and disciplining habit wrong doers. The power of these rain-makers is symbolised by the ownership of sacred objects such as rain stones, special traditional iron hoes and the wearing of obsidian bead necklaces when performing their duties. This reflects their social and economic position in the lingbara society (Gabel 1967). Another function of beads can be seen among the Maasai, Samburu and the Rendille where they are used as status makers. They distinguish the married from the unmaried, the initiated from the minitiated and the wealthy from the poor. The Mansai and Samburu communities sometimes associate beads, with God Enkai thus making them to be highly prized. For instance, black and dark blle colours are related to God, who lives in the sky which is blue in colour guring the day and black at night. It is not surprixing to see Samburu and Masai powerful and wealthy elders, wear special necklaces of big blue beads called emurt narok
that signify high status (Galichet 1988). Similarly old women, who no longer give birth, are respected at prayer when they are seen wearing dark blue and black beads.

Apart from white beads beins used as charms to protect young children from diseases, they are also worn by circumcised boys among the Samburu for the murpose of indicating the difficull period of initialion (Galichel 1988). Sjmilarly to differentiate between the iniliated from the unjnitialed among the Maasai, uncircumcised sirls wear a skin belt decorated with blue beads of di anoud shaped halierns (entudede) while young circumcised gitus wear while glass heads and cowrie shells (Gajichet 1988). Another ceremonjal example where bents are extensively used is during the Okiek initiations. As the juitiation ceremony approaches (excision forgirls), the initiates wear three to four inch long straps beads (inloroongenik). wrappod moiformby around each wrist and forearm. The colour sernence of the beads goes up from the wrist in the scheme of green, red, while, blue and orange (kratz 1988). Beads are also used to indicate marital stalus, particularly of women in societies such as the Rendille, Maasai and Samburu. Among the Rendilale, for instance, a malure ummarried woman wears a headband drocorated with while, ve」low, red, hlue and green glass beads. They also wear on their ears cylindrical white beads (somi) allermating with smallec. red beads (imbaget). During and afler marriage, they wear red largo egg-shaped beads (bukhurcha) (Schlee 1988). Married women among the Samburu put on their ears two rings of beads slrums on a wire to indicate their marital status. While
among the Masai such type of bead ornaments are worn by mothers of The moran (Galichet 1988). In the same communit.y, women who have retained their origimal names adter marriage wear skins decorated with blue and black beads (Galichet 1988).

In addition to being ceremonial and aesthetic obiects, beads were also used Ω, trade items. Glass beads, for instance, were articles of trade hetween overseas and the coastal people on the one hand and coastal people and the interior communities on the olher (I,eakey and Leakey 1950, (hittick 1974, Norrison 1984, rovango-Abuie 1977, Gow 1984 and Dubin 1987. Glass beads were axchanged for leopard skins, ivory, gold, reathers and slaves (Dubin 1987, Chiltick 1974 and Kirkman 1954). Cowrie shells and coms shell beads were held as having monelary value and thus used as a medinm of exchange in local and long distance trade fllorton 1984, Onyango-Abu.je 1977 and Chittick 1974 . In the times of colonial period, African communities along the coast of Africa also used cowrie shel l heads imported from the East lindies as a currency (Fitzpatrick 1963). North Anerican Indian bead makers of SantoDomingo and Puehlo in Mexico cut shells into small squares and bore holes through the centres by a hand-drill whirled by thongs. After stringing rragments, they wet-orind strands on stones to make them smooth ard uniform. These lieads are called heeshee and are sold lo lourists.

The most striking archaeological discovery at Ntusi sjte, in Masaka District of Uganda, has been cowrie shells from the coast
and glass beads from Italy, India and China. This evidence suggest that about 800 years ago, the Nlusj inhabitants were in frecuent contact with the sea trade. They exchanged their iron implements (liarvesting knives), salt and pottery with these glass beads

Using cowrie shell heads (and beads in general) as a form of exchange is not restrjcted to other parts of the world. In East Africa, the presenl day Turkana and Karamonjong communities still pay part of their dowry in the form beads made from different materials. A token of 1,500 beads, especially of cowrie shells and ostrich egg-shells form the basis of exchange in marriage transactiotis among these peoples.

SUMMARX AND CONCLUSION

This chapter has dealt at length with the definition of a head, the raw-materials used for bead manufacture and uses of beads. In the foregoing discussion, it has been found that beads are made from both organic: and inorganic materials. Beads are used for ceremonial purposes, as trade items, status markers and religious purposes, among the various communities which wear them.

CHAP'TER TWO

INTRODUCTION:ISTERATURF REVIEW AND THE PROBLEM

In this chapter, the jiterature review and statement of the problem are highlighted. Thus to analyse beads, one should take into consideration the amount of previous research carried out in different areas before one can identify the research problem to be sludied.

LITERATURE REVIEW

A perusal of previous studies on beads from archaeological sites on the coast of Kenya indicates that their nature and function is slill poorly known. The reason for this is that the coastal region of East. Africa experienced a relatively late fllorescence of archaeological research compared to the interior regions. Prior to 1950 , the archaeology of the coastal region was relatively unknown.

But after 1950 , a lot of research on archaeological sites on the kenya coast as carried out. The major reason is that archaeologic:al research during this period dealt with the recent history that was dominated by the quest to prove that civilizations among the indigenous societjes of Kenya were arguably the work of foreign populations from the north, notably the non-indigenous societies (Kirkman 1954). Therefore, to explain to European and
colonialist satisfaction, the abundance of impressive stone monuments, tombs, ceramics, imported wares and mosque ruins found through much of the sites of Kenya, northern Tanzania and adjacent islands were considered the handiwork of the light skinned people; i.e. calcasoids, who were in frequent contact with the civilized mediterranean world (Kirkman 1954, Murdock 1959, Leakey and Leakey 1950 and suttton 19741 .

This prothlem led to a series of excavations carried out along the coastal sites of Eastern Afrjca to recover more archaeological evidence to support the notion that civilizations found in these regions were as a result of the coming of these caucasoids.

The earliest large-scale sxonvations at the Coast of Kenya were undertaken by James Kirkman in 1954. Kirkman carried out at a number of excavations al Gedi Rujns, Manda, Ungwana, Takwa, Mrarani, Kilepwa and the forlnguese Fortress at fort Jesus in Mombasa. Archaeological evidence unearthed included Mosques, Copper Cojns, a mmber of decorated honses, chinese porcelain, iron-tools, Islamized $\left\{l^{\prime}\right.$ aged ware, hones, decorated tombs, glass bottles, local earthenware and large guantities of beads which were variably altributed to Arabs, Persians and the Portuguese (kirkman 1954,19561

The earliest level at Gedi, Ungwana and kilepwa are dated to 13th century. Mnatani was dated to lyth century, the pillar tombs at Malindi. Takwa and Kinuni dated to 17 th century. Kirkman $(1954,1956)$ analysed beads from Gedi in accordance with their shape, method of mamflaclure, colour and raw material. He concluded
that beads from these sites were in the following forms: biconical, globular, barrel, square, melon and long cylinders. The rawmaterials used in the manufacture of the beads were mostly natural. materials such as shell, Arrican elophant looth, ostrich egg-shell, crystal, semi-precious stome and ceramic material. 'The carnelian and glass beads were thought. lo have heen imported from Cambay in Guiarat and the Near East respectively (kirkman 1954, 1956). The methods used in gliss bead manufaclure were wound and drawn shefl nut carmelian were either piercod or drilled for use as beads. The colour or the brads evcavalod al 'rakwa, kilepwa Fort Jesus, Ingwana, Gedj Ruins and Manda were yellow, hlack, white, sreen and hrown.

Chittick (1967, 197t) rut more emphasis on the study of coastal settlements and believed that they were built by coolonialists from the Persian Gulf. Archaeological evidence for Chittick's atemments comes from the excavation at the sites of Kilwa and Manda on the East Alrican Coast. This included imported ceramic ware, motal objecls, cowrie shells and beads. lle argued that the sea-faring communities from Pepsin Gulf travelled to their settements al the East African Coast to barter for their trade goods (cowrie sheils ant glass beads) in exchange of ivory, mangrove timbers, lamarind, tortoise shells and other resources (Chittick 1967 and 1971). Fighteen thousand beads were recovered from the excarations that were undertaken by Chittick at kilwa in 1974.

Chittick molertook a quantilative spectrographic analysis of
certain elements of the glass beads. This analysis involved jdentifying raw materjals used in the manufacture of glass beads. Small pieces of various glass head samples were ground until they were $(0.03 \mathrm{~mm})$ thick. These Lhin sections were then mounted between glass slides. They were then examined under a spectroscope, whereby most minerals were transparent, distinguished different minerals which were observed, noted and measured. Thus, the fuantitative spectrographic analysis of the glass bead samples emahled Chiltick to classify these beads into five periods based on Lheirmineral contents. The spectrographic analysis method of bead allalysis such as size, shape, colour and techniques of manufacture in case of the glass beads.

Chitticek (1971) concluded that glass beads from kilwa displayed a high iron content and a low nickel content. He also olserved that jn period 1 and 11 , ascribed to early 13 th century, आlass beads greatly outnumber beads made from other raw materials. According to the techniques of bead manufacture, wound beads exceeded the drawn beads in the proportion of 5:4.

Period 111 jncluded beads ascribed to $14 t h$ and 5 th centuries. The drawn glass beads were 9 times as common as wound. In Period TV, 7,500 glass beads were identified. This constituted 97.5% of the total number of beads assigned to the 17 th century. Beads [repared from other raw-material like semi-precious stones, had an insignificant proportion of 3.5%.

Beads of 18 th and early $19 t h$ centuries belonged to period v. This period was marked by three ring beads of cobalt blue and

These are believed lo have heen manufactured in Ravarian (Chittick 197t). In total, $1,() 16$ heals were recovered of which 4.010 Nere olass bearls mate be the drawn method. The remaining six heals
 from limestame aml lwo were from moriolermined materials. thoush a
 from ol hor ratw-malerial, or justamen, semi-precions stones, terfacolta

 rolovant attribules shel, as colour, decoralive molif and shape were similarly Hol :whrosesmed.

Morrison (1981) amaissol in total of 1, 150 hoads form Mandet which
 ran materiads in their manufachme and colour. Sho ohserved that the Manda hearts weto made from the following: glass (563), earnoli:m (b),
 (imestone (z), atramenitr (1) , fish (is) (sen table 1.)

Kヵッ Natevial	Numbre of Speacimen	Appros.\%
Glass	$56: 3$	18.9\%
She II	523	15.1\%
Fish Vertebras	3\%	3. 3%
Coral	\%	0.17%
Aragonite	1	0.08\%
I, imestone	-2	0.17\%
Agate	-1	0.34\%
Stone	7	0. 15%
Carnelian	है	0. 13%
Terracotta	5	0. 4.3%
Total	1150	99.48\%

[^0]The mador colours of the beads according to the Nunsell colour chat were deep thue ($5 \mathrm{~PB} 3 / 8$), green ($5 \mathrm{GY} 5 / 6$) and ocean blue (10 B 6/7). The methods of manufacture of glass beads were drawn (71.1%), wound (23.4%) and of mould technique, which constituted a very small percentage 2.3%. On the basis of this analysis, Morrison (1984) concluded that the roughly fashioned, pierced and unpierced head blanks testified to the process of local shell bead manufacture on the site of Manda. This was further supported by We presence of head grinders, in whose grooves the edges of the beads are ground smooth. Morrison's studies were based on the physical examination of the beads in order to determine their source of raw materjals.

The 1979 excavations at Takwa by Mutoro produced a total of 70 heads. These were classified according to their raw-material, mothod of manufacture, colour and percentage. According to rawmalerials, filly beads, accounling for 77% were made from glass. Ten beads, accounting for 13.1% were made from bone of fish rertebrae column. Their manulacturing process, involved the smothing of fish vertebrae by removing their spines.

Finally, there were six shell beads which constituted 8.5%. They were made from small ocean smails. According to bead colours, the pinkish white $95 \mathrm{Y}(6 / 8)$ accomnted for 60.1%. Other colours of the heads were as follows: yellow (5 Y 8/12) 7.1% black 20%, red nlive $(2.5 \mathrm{YR} 4 / 6) 7.1 \%$, red 1.4%, and blue. 8% (see Table 2). Muloro's (1978) work on beads, indicates that, no detailed scientific analysis of heads particularly of glass, were done to

Antermine their mineral contenl．Mtributes such as shape，sime Gul methouts of haad wrenarntion werm not addressed．

In 1980， $198 t$ and 1986 ，mark Horton excavated the Shanga sita． wer 1,500 bearts were also found．The principal methorl of analysis employed hey Horton was buy lhysimal examination．lhis aimmed at
 follorima grouns of raw malerial：olnss（779），coppry（9），tooth （1），irory（：3）bomr（10），shale（3），qopal（2），ons：（1）haematite （1）．agate（1），olibastrov（i）inl shel」（5））．

Raw Malerial （il：ass	$\begin{aligned} & \text { Munsell } \\ & 5 y \\ & 2.5 \text { YR } \\ & 2.5 \text { YR } \\ & \vdots Y R \\ & - \end{aligned}$	rhart TOT゚八」：	colour linkish White Black Rell Olive YelJowish Red Blue GIASS BEADS	$\begin{aligned} & \text { No. } \\ & 27 \\ & 111 \\ & 5 \\ & 5 \\ & 1 \\ & 2 \\ & 51 \end{aligned}$	$\begin{aligned} & \% \\ & 38.5 \% \\ & 20 \% \\ & 7.1 \% \\ & 7.1 \% \\ & 1.1 \% \\ & 2.8 \% \\ & 77.1 \% \end{aligned}$
Fish Bone（vertebral column）			Jinkish white	10	13.1%
	5 YR		Pinkish hhite	6	8．5\％
ocean smails Shell	5 YR		ToTAL	70	98．5\％

Fable 2：Raw material，colour and percentage of liakwa beads （Sonrce：Mutoro 1979）．
This method of head amalysis eammot give the research nitermate information on bear shapes，colour，function and raw material since leithre a Mmsell colomr Chamt nor other scientific techmímes of hond anajssis wore wsed to irtmlify the various coloulls of heads Ant somiress of ratw materiads．

Abrign（1987），analssel Ungwana brads on the basis of colour， shape and raw materials．（mt of the bo0 beads recovered and atralysed， 270 wrife of olass，5t were of burnt clay（terracotta），gl varjous semi－precions stones（čarneljan，agate and alabaster）， were of shell and 11 of home．The mretominant shapes of beads
were discs, cylinders and bicones. He did not attempt to utilize scientific analytic melhods such as X-ray fluorescence to determine the exact raw material used in head preparation.

Bead studies from the interjor sites of kenya, were largely concentrated on shapes and source of raw materials. Good examples are Leakey (1931) and (1945), Leakey and Leakey (1950) and Gow (1981). The Leakey studied over 4.800 bead samples from Noro River Cave and siters in the Central Rift Valley. They classified The various types of beads b;y measuring the lenglh and breadth of each bead. This was done to ottain the length-breadth ratio or index. In symmetrjcal specimens, a mean was taken when the indices were considered in conjunction wilh approximation, divided into six categories of shapes. There were barrels (12), spheroids (51), flattered spheroids (19), disks (37), filat disks (361), straightsided disks (19) and sundries ((i).

The rollowing rocks were jdentilied as raw-materials used in the making of heads. Their identification was based on such cuiteria as hardness, colour and specific gravity (Leakey 1931 and 1945). These included various forms of chalcedony, agate, green and white quartz, microcline feldspar, plagioclase, stealite, albeil and labradorile. 'Iteser stane beads showed skjlful. workmanship. The fact. that al. these materials are known to occur: naturally in kenya also indicates that such beads could have been mamufactured locally (Leakey, and lueakey 1950). However, the method of analysis emxioyed by the Leakeys in determining hardness, colour ant specific gravity can only be userul if supplemented by other
techniques of head analysis, mamely neutron activation, X-ray fluorescence and spectrographic analysis which the leakeys were not available.
(how (198.) studied a number of beads from Central Rift Valley sites. These were non-glass homels from such sites as Noro River Cave, North Horr, Gamble's Cave I I and Enkapune Ya Noto. A tolal or 4,000 stone beads, $1 I$ bone heads, 17 mollusc shell beads, 261 ostrich egg-shell beads and 300 wood and nut beads were analysed. (inw's studies revealerl that head types could be patterned in geographical distribution which in turn related to the patterning of the prohistoric commmities and their trade network.

No scientific techniques of analysis were, however, utilized 1.0 itentify the raw-material contents of the stone beads.

Wandibba (1988) did a study on the prehistoric beads from varions siles of Central kifi region of kenya. These were Njoro River Cave and Wabukhe Hill in the Western region of Kenya. At Njoro River Cave, for instance, he analysed 810 beads. His analysis showed that out of 800 semi-precious stone beads, only 517 were of various shapes. Tn addition, there were 10 polished cylinder beads made from bone. He compared the N.joro River Cave bone beads with those found at other sites such as those in the Loita/Mara region and Lukenya Hill. Mollusc shell beads found at Wabukhe hill, North Horr I and Gambles Cave werg just mentioned but not analysed. A similar treatment was given to ostrich egg-shell beads recovered in "Henty" at East Iake Turkana, Lukenya Hi」l, Gambles Cave and Njoro

River Cave. Wandibba's studies were restricted to "indigenous heads" i.e. those made from lhe Locally available raw-material such as stone, bone and ostrich egg shell excluding glass beads (Wandibba 1988). Given such an analysis of the beads, other important aspects like techniques of manufacture, colour and nature of raw-materials and their possible sources were overlooked.

Another important head sludy done was by Momanyi (1988). He analysed doo ostrich egg-shell heads from darigole site, east of hake Turkana. He grouped these beads into various shapes and method of manufacture. He observed that there were 150 polished cylinders and discs. They were made by drilling the roughouts. These drilled roughouls were then shaped by using a hammer stone or groove stone; then finally polished to remove the asymnetrical edges.

Another important research on beads was by Davison (1972). in her doctoral thesis, she provided a poneering qualitative element analysis and physical examination of some 400 glass beads. These heads were from various sites in EAstern, Western and Southern Drica. These sites were Mapumgubwe and Bambadyanalo in Southern Africa, Kilwa in Eastern Africa and Jfe and Igbo Ukwu in West Africa. Her study included neutron activation analysis and X-ray Pluorescence spectrometry. Her results showed that the 400 beads conld be assigned two grouns: beads made from soda lime glass and beads prepared from potash,glass. For example, the Trade wind glass beads from Kilwa, Ife Class II, Igbo Ukwu Class II, Igbo Ukivu Class III, Igbo Ukwu Class J and Mapungubwe constituted a
coliesive group of breads prepared from soda lime glasses. On the other hand, Ife Class I, Ife class III and Igbo Ukwu class IV were assigned to groups whose beads were manufactured from potash glass (see Fig '2). The archaeological significance observed by Davison (1972) study is that beads recovered from coastal sites could be distinguished rrom olher beads by the presence of uranium and polash in largely comparative quantities. In general Davison's (1972) bead analysjs was more oriented to glass beads rather than on-glass bearts.

Ife Class III

Figure 2 Chemical grouping of glasses analyzed. This diagram shows mutual exclusion and nesting of groaps. It is not to any scale: degrees of homogeneity, dissimilarity, ranking, or other such features are not represented.
(Source Daviron 1972: 5)

THE PROBLEM

It can be observed from the literature review, that although considerable amount of archaeological research has been conducted in Kenya in general and the Coastal region in particular, very Jittle is known about archaeological beads from these sites. The abundance of heads from Fort Jesus, Manda, Takwa, Gedi, Ungwana, Pate and Shanga, makes it a vers promising subject for scientific investigation. This study deals with an attribute analysis of these beads and by so doing atlempts to provide some answers to questions such as the methods of beads preparation, colour, size, shape, decorative techniques. This analysis is supplemented by of X-ray fluorescence analysis which determines various mineral contents of selected bead specimens. Shanga beads stored in the linnul Museum form the forns of this study.

SUMMARY AND CONCLUSION

This literature review and statement of the prohlem have been discussed in this chapter. This has pin-pointed the weak areas of the previous studies done on archaeological beads, with particular reference to coastal sites of Kenya.

CHAETER THREE

INTRODUCTION:THE STUDY ARFA ANJ METHODOLAOGY
This chapler deals at longlh with the sturdy area, peoples, the nature of the data hase, reasons for choosing the site as well as The methodology used in the collection and analysis of beads.

THE: STUDY NRFA

Shanga site is located on a peninsula on the south western shore of the island of Pate in the lamu Archipelago. The archipelagn is Localed in lam" bistrict, Coast lrovince of kenva.
 arrhipelaso jlself is a chatn ol islands which are separated from the mainland by a narrow chambel. The channel is surrounded with a dense mangrove forest. Shanga is protected from the Indian Ocean currets by coraj rears and large sand dunes (Horton 1980,1981$).$ It fies at l.he morlh eastern parl of kenya roast. On the east. Lamu borders the Thatian Ocein, to the sollthwest, it borders 'lama River bistricl. To the norlh, by Garissa District amd Somali to the north-east. The pistrict is divided into five divisions, linmu, Mpeketoni, Fazn, Kiunga and Witu.

PEOPLES

The majority of the residents of lamu archipelago are Bajuni. They inhabit most of the islands such as, manda, pate and Faza. Other ethnic gromps in the district include the Pokomo, Boni, Segeju, Sanye and Dahalo. These occupy most of the settlement areas of the mainJand (Nurse and Spear 1985, Horton 1980, 1984, Brown 19881.

CLIMATE AND VEGETATION

Rainfall is seasonal and rarely exceeds 850 mm throughout the year, falling largely in April, May and in November. Rainfall is brought by the South East monsoon or Trade Winds (Horton 1980, Brown 1988, Allen 1972).

Generally, the Lamu Archipelago has varied temperature regimes, ranging from 20 to 29 degrees centigrade. The hottest months in Isamu District are May Lo July. The relative humidity of lhe District is 75%.

The Lamu Archipelago falls into three ecological zones: mangrove swamps, small forests and dry savannah which is engulfed by the sand dunes in the north (Horton 1984, 1986 Brown 1988). In the south, the resion is covered by scattered acacia and numerous plantations of palm trees. The mangrove forests supply excellent building materials, firewood, handicraft and canoe/boal construction materials (Aller 1972, Salim 1973, Prins 1965 , Horton 19841.

firiure 3 Shampa: location map of the archaenlogical remains with the towns reltitionship to the local environment. The mangroves have certainly grown up since
the towns abandonment. and now surround the site. (Hor ton $1980: 10$)

The 1980, 1981, 1986 and 1987 excavations were undertaken by Dr. Mark Horton on Shanga site. The excavated area was located on the south western part of the Shanga site (see Fig. 4). It covered approximately a region of 200×300 metres. This area was selected for excavated because i.t had abundant and varied amounts of artefactual material and features which were visible on the surface. These are faunal remains, pottery shards, imported ceramic wares, beads metal fragnents and ruined house walls and floors.

Intensive surface collection of the archaeological materials from the selected area was carried out. A total of 38 test pits were excavaled with the purpose of retrieving maximun information about the long term cultural development of the site (Horton 1984). This method of data recovery, which included faunal remains, metal fragnents, pottery shreds, ceramje wares, ancient coins, beads and ruins of mosques and houses, threw considerable light on the chronology and material. culture of the site at Shanga before its abandonment in the 14 th century A.D. (Horton 1984, 1986).

Figure 4 I.amu Archipelago; the distribution of known Swalili sites. Slanga is on the
southern lip of Pate Island, and Dondo lies to the north on the mainland. (Horton 1980: 11)

From these excavation, a total 1,542 beads were found. Many of these beads were male from shells, glass, stone, terracotta, agate/carnelian, hone, tooth, ivory, copper, iron sea urchin spine anl haematite. These head were not only of rarious colours, but also of various sizes, shapes. Their numbers per stratigraphic levels are shown in tahbe 3 below:

Table $3 a$ stratigraphic levels and the number of beads recovered STRATIGRAPHY AND INTERPRETATION OF THE SITE

Phasing was done up to tm deep. For example, Trench 6 had 1328 contexts, Trench 1 had 159 contexts and Trench 2260 contexts. (ontexts represent observations of archacological materials as they were. Contexts are grouped in Phases of occupation an then intermeted according to linkage of adjacent deposits. Bach phase represents ahoul 25 years of ocompation labout the 1 iff of a mud and thatch house) at the coast today. Phases are grouped into periods which comprise range of studjed activities, for example, construction of buililings. The Shansa site occupation has been dated to $800-1125$ AD using carbon 11 method and ceramic curves (rom Local amt imported pottery and coins (Horton 1984). The forriods are summrised in the tatale below:

Feriod
II
$800-950 \mathrm{AD}$

950-1075AD

975-1425AD

1320-1350AD

Activities
Construction of mud and limber houses, also include dressed coral buildings.

Monumental constructions, for example, round structures are replaced by rectangular houses with lime floors and facings.

Construction of mortared houses using coral rags and lime replace timber and mud construction technique.

Rebuilding the centre of the town.

Tatle 3b : Archaeological periods with associated activities at Shanga.

Chronological Patterns of Craft Activity
a) Primary 800-1000AD : A high concentration of ornamental shelfs, beads, grinders and iron (illemite) metallurgy.
b) Secondary 950-1250AD: Rock crystals appear, Iron (haemetite), bone combs, spindle whorls (1000AD) and a decline in shell bead making.
c) Tertiary 1250-1125AD : Decline in all except non-ferrous metals. Few spindle whorls and little slag.

Bead craftsmen relied on imported raw materials from the interior through trade exchange. At Usambara mountains, for example, three head grinders were found at Kwaranyesi which were identical to the earthenware types found at Shanga. This is a direct evidence of
coastal trade in the form of beads. It also suggest that these beads were being re-exported overseas for exchange with rawmaterials and other products. Therefore, the stratigraphy has shed light on the origins of the coastal society, establishment of island communication and development of Swahili culture at Shanga (Horton 1984).

REASONS FOR CHOOSING SHANGA SITE

1. Lack of information on these beads. Although a lot of work has been done on beads, our knowledge particularly in terms of attributes like raw-materials, shapes, colours and sizes is still inadequate as already pointed out in the review. As such, the Shanga beads provide a strong ground for analysis.
2. Preservation conditions. Most of the archaeological finds excavated at Shanga site were in good preservation conditions. Secondly, Lhis collection of beads were of different forms, sizes and colour. The raw-materials utilised in their manufacture also provided some of the basic attributes for analysis.
3. Availability of data: There is an abundance of both documentary and archaeological material that has been writien and excavated al the coastal sites of Kenya. Thus, apart from pottery, beads are the second most comnon archaeological finds readily found at coastal sites.

METHODOLOGY

'Ihis section presents the methods used in data collection and analysis. It also highlights some of the problems encountered when analysing the beads. These problems were:
(a) Destruction of beads: Some of the beads were destroyed beyond recognition. The destruction of the boads affected certain attributes. The colour of some beads was very hard to ascertain because of either, heavy corposion, hydrolysation processes or pagination. The beads which were affected by the above processes were of stone, coral bone and metal. Tn addition to this, a certain fraction of the bead samples was fragmentary in nature. Concerted efforts to reconstruction and conjoin these fragmented bearl efforts were in certain situations fruitless.
(b) Sammle: Resulting from problem (a) I ended up with it small sample size. Only 1,066 beads were finally sampled out for a physical examination and analysis. - Of these only 5 beads were X-ray fluouresenced trecause of the high cost of this form of chemical analysis.

One bead sample cost ksh: 500/-

A great majority of the written works on coastal and interior sites touching on archaeological beads were read. This enabled me 10 understand the historical background to the study of beads in the following ways: first, it revealed the amount of work that has been done previously on the subject; second, it highlighted the weak areas in the existing literature and third, it enabled me to develop a problem.

MUSEIM BEAD COLLECTION:
The excavated archaeological beads from Shanga stored in the Lamu Museum Lolalled 1,542. Since there was a large number of heads not easily recognized in form of shape, colour and rawmaterial, sone sampling was necessary to et a representative sample for analysis.

SAMPLING PROCEDURE:
Sampling in the process of taking one or few of a large population of things, or part of a whole, that can be looked al to see what the rest is like (Hornby 1989:199). Sampling was done to avoid conscious and unconscious bias on the beads in terms of their colour, methods of preparation shapes and raw-materials. A representative sample of 1 , ogg heads was chosen. This was a bead sample in which ideally all variations of attributes were present. The 1,066 beads were examined by looking at the following attributes:
(i) Colour was an asset and therefore utilized to identify and group the beads according to raw-materials. Certain bead specimens had some minerals which had a constant or uniform colour. A good example are the carnelian and copper beads. Carnelian beads were opaque red $(7.5 \mathrm{R} 4 / 11)$ while those beads made of copper were green $(7$ GY 5/6)
ii Feel: by subjecting the various bead specimen to tongue or cheek. This enabled the researcher to distinguish between beads manufactured from stone material and those prepared from glass material. Thus, stone beads were cold and glass beads were warm.
(iii) Sound: there was a clear cut difference between stone and giass beads when they were knocked against teeth. Glass beads produced hollow sounds while the stone beads has fine sharp sounds.

Other physical properties employed in the sampling of the Shanga beads were the level of attraction to the magnet and crystallization. A magnet was used to detect beads manufactured from metallic material. As a result, 14 beads, 113 of copper and 1 of iron) were easily attracted to the magnet, despite the heavy corrosion they hal undergone. This criteria helped me lo group heads into lwo classeș; namely, beads which had mineral contents of magnetic metals and other beads which lacked magnetic properties Iglass, bone, ivory, teeth, stone, coral and terracotla.

Some raw-material specimens and bead samples analysed tended to crystallize into definite, characteristically shaped crystals.

Most of these beads were stone beads, especially beads manufacture from quartz and carneJian materials. Therefore, such beads were easily sampled into specific raw-material group; i.e., stone: carnelian or quartz, since crystal faces appeared only on the surface (outside) of the beads.

Another method used n sampling of the beads, particularly those of glass was the degree of lustre. Lustre refers to the manner in which ordinary sunlight is reflected from the surface of a given object. The glass beads and raw-material were subjected to sumlight, and thus, they emilted vitreous lustre which was lacking in other beads made from various materials. Therefore, the lustre Lechnique was a strong aid in the identification of beads made from glass and separated from the bead data collected.

Atemplos were also made lo extract as much information as possjble reading the Shanga beads. For instance, a detajled level of "wholeness' census of the beads was taken. From this criteria of wholeness of the bead, a lol of information was generated in terms of untampered beads, broken fragment of beads and nonidentifiable specimens. For the wholeness of the beads (untampered wre easily $j d e n t i f i e d$ and grouped as whole beads $(860$ in lotal). However, 250 beads exhibited various degree of destruction (fragmentation), weathering and pagination. 'This greatly affected their colour, shape, decoration, size and raw-materials. To assemble the fragmented bitswof beads into meaningful shapes, the conjoining tecminue was emploved. Thus, pieces of broken beads from the same bead were joined together so as to figure out the
real bead. The conjoining technique produced 106 beads which were sampled into different shapes, sizes colours, decoration and rawmaterials. Thus, also bead pieces bearing the same design, decoration and raw-material were conjoined to be exceedingly like to whole beads of the same design and raw-materials.

ANALYTICAL PROCEDURES

The sample constituted 1,066 beads were examined, analysed and interpreted according to the theoretical frameworks set out by Beck (1928), Chittick (1967), Sleen (1967) and Guido (1978). These frameworks included a detailed visual screening (physical examination) of the 1,066 beads and their topological classification according to methods of manufacture, their shapes, sizes, dimensions, decorative motifs and raw-materials. To achieve the precise interval of measurements and sizes of the 1,066 beads, a pair of callipers were used.

Though the 1,066 beads were visually examined, a magnifying glass was occasionally employed in differentiating closely related hean colours, shapes, decorations and raw-materials. A MunsellNickerson colour chart was also utilized in indicating various colours of beads.

To determine the source of raw-materials of some of the beads, l employed the services, of a geologies who greatly aided me in physically examining and identifying bead-materials, and in drawing comparisons between the Shanga beads with those from Kilwa, Gedi, Manda and Fort Jesus, while others are at the British Institute in

Eastern Africa laboratory.

Y-RAY FLUORESCFNCE ANALYSIS

This is the only method they which the five bead samples were analysed, to represent virtually other bead specimens. These were glass, alabaster, terracotta, carnelian and quartz. The bead samples were subjected to X-ray fluorescence analysis at the Centre of Nuclear Science, University of Nairobi.

In this technitue, X-rays of variable known energy are directed al each sample. These X-rays stimulated the X-ray emission from the various elements contained in the sample. Then Whe emitted X -rays are detected and used to identify the elements present and calculate the amount of each (Bowman et al. 1970 and Davison 1972). However, the athained results are based on the use of standards of known composition.

This method of analysis was preferred to neutron activation and petrographic analysis because it is non-destructive. Apart from the damage catused to the artefact (bead in this particular case), both the nelltron activation and petrographic analysis have the disadvantage of being very time-consuming and expensive due to the complications occurring on the bead samples when being analysed in the laboratury (Cox and Pollard 1977). Whereas the X -ray fluorescence method is accurate because it largely depends on the use of standards. One su,ch important standard is known as 'standard' pottéry' which was developed and calibrated to encompass the elements normally occurring in pottery at appropriate
concentration (Perlman and Asaro 1969). This standard is appropriate for man-made glass and other bead materials (semiprecious stones and terracottal since they contain many of the ingredients (elements) found in potier (Hall et al. 1975). Again, We x-ray fluorescence analysis and its results are easily interpreted. The detected elements are represented in peak form graph. Thus, the magnitude of the peak indicates the abundance of the elements in each specimen (Davison 1972 and Hall et al. 1964).

OPERATIONAL DEFINITION: BEAD TERMINOLOGY

A classification of Shanga beads included:
STEP ONE:
(a) Sizes (dimensions) of beads: this involved measuring the ration of the bead in relation to its diameter:
(i) Standard bead refers to beads whose length is equal to the diameter:
(ii) Long bead refers to beads whose length is greater than its diameter.
(iii) Short bead means that the length is less than the diameter.
(iv) Disc bead refers to beads whose length is than one third (1/3) of the diameter.
(b) Interval measurements of beads in relation to the length of the diameter:
(i) Minute bead refers to the bead whose diameter is less than 2.5 mm :
(ii.) Small beads are beads with the diameter of 2.5 mm to 4.5 mm :
(iii) Medium beads have a diameter of 4.5 to 8.0 mm and
(iv) Large beads have a diameter greater than 8.0 mm . The methods uşed in the measurements of beads are shown o the next page.

Longitudiral section.
Fig. 5 Measurements of different shapes of beads. (Source: Sleen 1967:10)

STEP TWO: Colour of Beads:

Various colours of beads were indicated by their equivalent on the Munsell Nickerson colour scale:

1. Red Translucent (5 R 4/12). These are beads with a high silver patina.
2. Yellow (5 Y 8/12). These are beads with a wide variety of opaque shades occurring on them.
3. Grass Green (7.5 G 5/8). These are beads resembling the colour of green grass. They are translucent.
4. Ocean Blue (10 B 6/7). These are beads with a strong blue. They are either opaque or translucent.
5. Light Blue (2.5 PB $7 / 7$). Are beads with opaque or translucent, their colour approaching bluest shade of b] ue/green.
6. Deep Blue (5 PB 3/8);
7. Colourless with milky weathering
8. Black
9. White
10. Green (5 GY 5/6)
11. Dark Green (5 G 5/8);
12. Dar, Grey (2.5_PB 5/7)
13. Pink Red (10 RP 7/8)

STEP THREE: Raw Materials
The Shanga beads were grouped in accordance with raw-materials as listed below:

1. Glass - is of great importance as the main article of raw-material and commerce with the interior apart perhaps from cloth (Horton (1984).
2. Terracotta - Burnt - baked clay.
3. Bone vertebrae - from both terrestrial and marine animals i.e. pieces of bird bones, marine bivalves, hollow spines of echinoids and sea urchin spine.
4. Tooth - carved from hippo teeth
5. Tvory - beads prepared from the elephant tusks
6. Metal - include both copper and iron
7. Semi-precious slones - these are CarneLian, Crystal, Malachite, Agate, Jasper, Quartz, Shale and Coral (all lhese are beach finds).

STEP FOUR: Shapes

Sets of nomenclature on shapes of beads analysed were:
(a) Cylinder: Beads show approximate to cylinder but depends on size i.e diameter. For instance,
bead with length twice the diameter is a
"tubular" (Fig.6).
(b) Barrel: Bead whosp ends have been intentionally flattened (Fig. 7).
(c) Bicone: Bead of symmetrical shape in the form of two Cones with common base (fig. 8)
(d) Spheroid: Bead with ends appearing flat in profile if the perforation is wide (Fig. 9).
(e) Disc: Bead with length less than a third of the diameter (Fis. 10).
(f) Ring: Shape of bead whereby the perforation is greater than half of the overall diameter (Fig.11).
(g) Oblate: This is a wounded bead whose length is lesser than $2 / 3$ of its diameter (Fig. 12)
(h) Ellipsoid:Beads whose perimeter is ellipsoidal (Fig. 13.)
(i) Piriforms: Beads whose lower parts are greater than their upper parts.
(j) Longitudinally segmented: Beads that have segments which have been pierced (Fig. 15)

Fig. 12 Oblate

Fig. 14 Piriform

STEP FIVE: Definitions of Methods of Manufacture:
The methods of manufacture most commonly encountered among the Shanga glass beads were wound, drawn,fold, facet cut and mould. These terms are defined below:
(i) Wound: A technique of preparing beads that involves the molten raw-material for the bead being wound around a rod. When cool, the thread of raw-material is butted or marvered together to form the bead (Chittick 1967 , 19711.
(ii) Drawn: Long tubes of the bead raw-material are broken or snapped into short lengths. The beads formed have their sharp and rough edges rounded off. Drawn beads are also referred to as cane beads (Davison 1972).
(iui) Fold: A matrix of warm glass surrounded by thread of colours glass is pressed into a mould, with the resulting effect that the threads seem folded into the matrix itself (Chittick 1974).
(iv) Facet Cut: A ball of half melted glass is pressed hy the bead maker into a form wilh rectangular, triangular or other shaped sections, perforated by a wise (or other object) and then tonfed to give it the desired shaped (Guido 1978). This facet cut technique was also used in the manufacture of stone beads, *specially those made from carnelian and crystal-quartz materials.
(v) Mould: Molten glass is poured into moulds of desired shaper and then pierced by metallic wire. This is more rapid technique and the removal of the bead is thus facilitated.

STEP STX Decoration Motif
Decorated beads exhibit designs which have been applied bv hand to the individual beads. The principle types of decorative motif applied when examining the Shanga beads are defined as follows:
(a) Wave: A wavy band of different colour applied to the circumference of the bead (Guido 1978).
(b) Bands: Straight trails applied around the circumference of the had (Guido 1978).
(c) Chevrons: Design running at right angles to the perforation of the bead (Guido 1978).
(d) Stratifijed 'eye': Generally surrounded by a ring/or rings different in colour from the body colous of the Read (Guido 1978).
(e) Mottles: Beads that are marked with patches of different colours without a regular pattern.
(f) Whirls: Beads whose decoration has two or more glasses of different colours that are melted and stirred together and moulded into beads. These givgs the effect of lines of difference colours bending in an irregular manner.
(g) Scrabble: This decoration on a bead is formed by either winding or folding a thread of glass of different colours in an irregular manner over a bead matrix.
(h) Pricked Pattern: Beads whose perimeter has pricked holes. This type of decoration is common in terracotta beads.
(i) Etched: This method of decoration involves the scratching of the surface of beads with a hot metal point. Usually it has evidence of burnt marks, especially if on bone beads.

SUMMARY AND CONCIUSTION

In this chapter, the study area and the data base have been discussed. It has highlighted how the type of archaeological finds influence the methodology of data collection and analysis. For instance, bead studies require a close examination of attributes such as shapes, colour, size and decorative motif determine their uses. The bead sample was subjected to scientific analysis in this case X-ray fluorescence analysis will detect the elemental concentration which will enable the research to identify the rawmaterials used in the manufacture of the beads.

CHAPTER FOUR

INTRODUCTION: BEAD ATTRIBUTES OF SHANGA

This chapter deals with the different kinds of raw materials that were used in the manufacture of beads from Shanga. It also looks at the different methods which were used in manufacturing beads as well as the different shapes, sizes, decorative motifs and colours of beads that were made.
Raw Materials:
An enormous variety of materials that were locally available were explored by the raw-materials detected and identified in the manufacture of beads. These are inorganic and organic materials.

Inoreanic Materials
These are:
(a) Glass A total of 765 glass beads of various shapes and colours were identified among the Shanga bead collection. This accounted for 72 per cent of the lotal bead samples from Shanga.
lt should be noted that techniques of manufacturing beads varied with the raw-material used. For instance, five
techniques of manufacturing glass beads were identified. These are wound, molld, fold, facet cul and drawn.
i) Wound technique: According to this technique a hollow ball of warm glass is drawn out in a cylindrical form. Then, beads are cut off at the desired length.

The beads are reheated to smooth off the rough ends. This gives them theit irregular shape. This accounted for 18 per cent of the total bead collection studied.
ii) Mould technique: In this technique molten glass is poured into moulds of the desired shape, then pierced by a metallic wire.

Since the contraction o metallic wire is more rapid than that of glass, the removal of the bead is facilitated. Glass beads made by this mould techniques constituted 20 per cent of the bead sample analysed.
iii) Fold technique: This implies that matrix of warm glass is surrounded by threads of coloured glass; then pressed into a molld. The resulting effect is that the threads seem fouled into the matrix itself, although it is in fact only superficial. Among the Shanga beads analysed the fold technique of bead manufacture accounted for 15 per cent.
v) Facet-cut technique: According to this method beads were produced by a ball of half melted glass pressed by the bead maker into a form with rectangular, triangular or other shaped section. It is then perforated by a wire or other Shanga sharp object, then tooled to give it the desired facets. Glass beads made from this methods were 5 per cent.

Terracotta: There were twenty two beads of terracotta malerial. Five beads were cylinders (with minimum length of 12 mm and maximum length of 22 mm). Of this, one is a hexagonally faceted cylinder (whose length is 20 mm) from trench 8, level 7179.

Other terracotta beads are compassed of spheroids 92), bicones (13) and conical (2). However, most of the terracotta beads are bicones, usually large and somelimes truncated, (with an average diameter of 13 - 20mm). The smallest observed has 5 mm and the
argest was 22 mm in diameter.
Though the lerracotta beads resembled the spindle whorls, they were differentiated from the spindle whorls by the following characteristics:
(a) Archaeological evidence shows that spindle whorls wear out at the extreme ends, while terracotta beads analysed and identified did not have any wearing out at both their surfaces.
(b) A good number of terracotta beads were found to be irregularly shaped to have been utilised satisfactorily as spindle whorls for spimning purposes.

It is very possible that highly refined brick red clay was used to make the various terracotta beads. First, the clay was baked, pounded and then divided into pierced small lumps of the desired shapes; sizes and design forms. They were then heated in a man made oven to achieve hardness and the reguired colour. When ready they were strung.
(c) Metal: Fourteen metal beadswere found. Of these, one was iron and thirteen copper.
i) Iron: The iron bead, though rather heavily weathered and corroded, was nevertheless recognisable as a ring bead. This iron ring bead had a perforation which is greater than half the diameter.
ii) Copper: The total number of copper beads recovered was remarkably small. No analysis, of tin or bronze was carried out. Inall, thirteen beads, some very heavily corroded but recognisable as bicones (3), irregular spheroids (2), cylinders (4) disc (1) and

Longitudinally segmented (3). Most of the copper beads came from french 9 , level 9480 of the Shanga site. The longitudinally segmented copper beads were made by introducing into a cylinder of a molten copper wire or sharp object (while warm) and then pinching it at intervals.
d) Stone: Most of the 131 stone beads are crystal-quartz, though carnelian, agate, iasper, onyx, white-moon stone, alabaster, coral, shale and white soapstone are also represented.
i) Carnelian: Some 34 beads were analysed. They included uniform sets of hexagonally faceled cylinders and bicones.
ii) Crystal-Quartz: The 53 bead specimen analysed were rather roughly shaped and fashioned. The most popilar shapes were spheroids, hexagonally faceted cylinder, hexagonally faceled hicones and plain bicones, their sjze proportion varied from medium to large (d. 5 mm - 12 mm).
iii) Alabaster: Most of the 18 beads manufacture from alabaster were finely fashioned in the form of irregular spheroids, drawn and rectangular beads.
iv) Agate: 6 agate beads were analysed. The matiority of them were ellipsoids.
v) Jasper: Six examples came from Shanga site. Most jasper bead specimens examined were of disc shape.
vil Shale: Three examples were found. All these beads were discs.
vii) White Soapstone: Three examples were recorded and
analysed. They included an opaque white unpierced cylinder shape waste and uniform sets of plain barrels with an average length of 8 mm.
viii) Coral: Four specimens were recovered and analysed. The form examples included one cylinder length 8 mm , and three discs, though having asymmetrical shape.
ix) Onyx: The sole bead in this material was a roughly shaped plain barrel (d 5 mm) from level 3588, Trench 6. It has various colours of black white and light blue in it.
x) White moonstone: Two examples were recorded. They were discs.

ORGANIC RAW- MATERIALS:
The following organic raw-materials were identified as having been used in the manufacture of beads at Shanga.
a) Bone : A total of 24 beads made from bone material were identified. The bone beads are represented by 14 polished discs, ranging from medium to large (with diameter of 6 to 12 mm). The hone cylinder beads have a lenglh range of 6 mm to 16 mm .

Faunal analysis of the bone beads indicated that both the disc and cylinders were made from the polished sections. Most probably section of the long shaft of small bovid either goat, sheep or gazelle by utilizing the natural hollow for perforation. Other cylinder beads appear to have, been manufactured from pieces of bird libia, sine theír ends have heen polished smooth.
b) Mollusc Shell: There were 91 beads made form mollusc shells
winch came form various levels of Shanga site. Few are irregularly shaped and the perforations have been drilled slightly to one side tatter then centrally.

At trench 6, level 3558, a number of mollusc beads were found together with mollusc shell raw-material and unfinished shell bead fragments. This area, thus appears to have been used for bead manufacture. The extremely symmetrical shell discs (66) measure an average of 4 mm in diameter. These shell disc beads are slightly concave rather that flat. The lhickness of the shell beads indicates that only larger mollusc were preferred in bead production.

Apart from the disc beads, 25 cylinders occurred at Shanga site. The smallest has a length of 6 mm while the largest was 14 mm in length. A few partially finished mollusc shell beads suggest that the manufacturing processes were similar for both bead types. This will be discussed in the section on the technique of bead preparation. The mollusc shell beads were made by cutting the shell structure into rough blocks. These rough blocks were then worn down into cylindrical beads and then pierced to form into larious shapes. For instance, disc beads were prepared by cutting the cylindrical beads, then by using the stone and pottery for filing off the thick edges.
C) Ivory: A total of four ivory beads were recovered. These ficlude cylinders (2) and rectangular (2), from trenches 3 and 9 respectively and a levels 325,4064 and 4371 . It was cut into long this blocks of the desired shapes, pierced by a metallic wire or
burning sticks. The protruding degas were them smoothed by pottery (spindle whorls).
(1) Tooth: Four Looth beads were recovered, all of them were cylinders with concave perimeters. They were longitudinally pierced and had an average length of 14 mm . They were white/creamish in colour.

These were beads made from a hippo tooth. The tooth was cut into the desired shaped blocks. Theses shaped blocks were further designed into the required shapes i.e. cylinders, then longitudinally pierced by using a hat metallic wire. This was indicated by the burnt perforation observed on the beads.

Fig. 16 Raw materials used in beads manufacture

SPAPES, SIZES AND COLOUR:
The classification of beads by Beck (1928) and the sizes and shapes by Chittick (1967, 1974) have been employed to describe the heads from Shanga site. It should be noted that the shapes, sizes and colour of beads varied with specific raw-materials, aesthetic and ceremonial purposes.

SHAPES
The following types of shares were identified among the Shanga heads.

PARRELS: These are beads with fat ends that meet the curved profile at an angle. Barrel beads accounted for 5.6% of the total bead sample analysed. The following types of barrel beads were identified among the Shanga bead collection.
(a) plain Barrels: These beads have rounded sides and flat extremities. Plain barrels constitute 3% of the bead collection studied. most of the beads have perforations which are both conical and wide, with an average diameter of 3 mm . They are wound, ranging from small, medium to large (D2,6 and 9mm). The majority of the plain barrels are however, medium size. The plain barrels were found in the following frequencies and colours: 15 beads of yellow $(5 \mathrm{Y} 8 / 12), 10$ beads of dark green (5 G5/8), 6 colourless beads and f white beads.
(b) Faceted Barrels: These beads really resemble plain barrels, but have a characteristic of , heing faceted hexagonally, Faceted barrels represented 2.6% of the 1066 beads analysed. They are Wound, ranging in diameter from $3-6 \mathrm{~mm}$, with large conical
perforation. Their frequencies and colours are 15 beads of yellow $(5 \mathrm{Y} 8 / 12)$ and 10 beads of dark green (5 G 5/8).

CYLINDERS: These are beads whose shape is cylindrical. Their length is twice or more than their diameter. Cylinder beads accounted 9.3% of the bead collection. They were represented by 99 beads. The following types of cylinder beads were identified:
(i) Plain Cylinders: These moulded beads were by far the most numerous of the cylinders. There were 50 plain cylinder beads which accounted for 5% of the beads examined at Shanga. They varied in size from small to large (djameter $3-10 \mathrm{~mm}$) and they occurred in a variety of colours. These were 10 Light blue 12.5 PB 7/7) beads, 9 yellow ($5 \mathrm{Y} 8 / 12$) beads, 5 white/creamish beads, 5 black beads, 6 dark green (5 G $5 / 8$) beads and 15 medium Jight blue (10 B 6/7).
(ii) Hexagonally Faceted Cylinders: These are cylinder beads whose profile has been faceted into an hexagonal shape. Thus such type of beads are characterised by having six faceted sides. These beads were 20 in number, accounting for 2% of the total Shanga beads analysed. Most of the hexagonally faceted cylinders were large (lenglh 17 -22mm). Their frequencies and colours were 12 translucent red (7.55 $\mathrm{R} 4 / 11$) beads and 8 clear beads. two samples of beads analysed from this type were longitudinally pierced.
(iii) Cylinder wilh pinched ends: These are beads which are cylindrical in shape but thejr ends have "bused" into a corner or box form. A Lotal of 10 beads of this type were analysed. This "as 1% of the total bead data. Their number and colours were 4
vellow (5 Y 8/12) beads, 4 ocean blue ($10 \mathrm{~B} 6 / 7$) beads and 2 white beads.
(iv) Cylinder Truncated with one concave end: This type of bead is characterised by being cut short in a concave manner at one of the ends. There was only one example of this type of bead from level 4252 which represented 0.2% of the bead data analysed. It was black in colour, and was longitudinally pierced.
(v) Square cylinders Such type of beads have a squared perimeter. They resemble a square shaped object.

HNGITUDINALLY SEGMENTED BEADS
These are heads that conlain two or more beads thal merge almost imperceptibly. Longitudinally segmented beads constituted 3% of the bead collection. Thus they were 3 beads in total, 2 of copper and 1 of glass. These types of beads were made by introducing into a cylinder of molten copper of glass a wire or sharp object (while wamm) and then pinching it at intervals. The longibudinally segmented beads were represented in the following colours: 1 of yellow ($5 \mathrm{Y} 8 / 12$) and black bead seginents (1%) and 1 green (2.5 ($4 / 8$) bead off our segments, which was 0.2% of the total beads analysed. The black and yellow beads were glass while The stajny green beads were of copper. They had (D. \& -8mm) two, three and four segments respectively.

DRAWN BEADS

Drawn bread were characterised by their irregular appearance due to their technique of manufacture. Drawn beads were 191 in total which was 18% of the total bead sample analysed. The minute
so small sizes (D> 2 - 4) far outnumber the medium (5-7mm) in the ratio $3: 1$. However, large specimens of drawn beads were rare, they sere only 4 in number. Many colours were represented as follows: rellow beads (5 Y8/12!) (5\%) dark green beads (5 G 5/8) (4\%) green grass beads (7.5 G 5/8) (3\%), bright yellow beads (5 Y 8/12) (3\%) white beads (1%) colourless beads 1% and black beads 1%.

PIRIFORM
Piriform are beads that have the following distinct features: their lower parts are greater than their upper parts. Piriform accounted for 0.8% of the total bead data analysed. Most of the piriform from Shanga site are moulded and nearly of a spherical form. The perforations of the piriform were large. The piriform fall into the following colours and percentages: red translucent $(5 \mathrm{R} 4 / 12) 0.6 \%$ and black with decorated concentric lines in grey and yellow 0.2%

ELLIPSOIDS

Ellipsoid beads are characterised by the following features: The beads are rounded and the length is more than $4 / 5$ of the diameter. The ellipsoids constiluted 8.3% of the bead collection analysed. The following types of ellipsoids were identified:
(i) Wound ellipsoids: The elfipsoids of Shanga site beads form a homogenous group. Most examples are of medium size (D. 5-8mm). They are found in the following colours:
yellow beads $(5 y 8 / 12)(2 \%)$, dark green beads (5 G $5 / 8$) (1\%), red translucent beads (5 R 4/12) (0.4\%), green grass beads (7.5 G 5.8) 0.3% and black beads 0.2%

Mould Ellipsoid: Most of the moulded ellipsoids are of large size (I). 10 mm) with the predominant colours being yellow ($5 \mathrm{Y} 8 / 12$) 1.3\% green grass $(7.5 \mathrm{G} 5 / 8) 0.6 \%$, black 0.8%, green $(2.5 \mathrm{G} 4.8)$ 0.4% and opaque red $(7.5 \mathrm{R} 4 / 11) 0.3 \%$

RING BEAD
Only one ring bead made iron was found and analysed. It represented 0.1% of the total bead sample studied. It was a wound bead, whose perforation is greater than half the diameter. The ring bead is heavily corroded, having a rusty colour.

OBLATES

The oblates are rounded bearls, characterised mainly by their lengths being less that $2 / 3$ of their diameters. There was a total of 22 oblates, with 8 drawn from glass, 11 of terracotta, 2 bone and 1 of quartz which accounted for 2.8% of the beads analysed. The dominant colours of the ablates were dark brown 0.8% and yellow $(5$ Y $8 / 12)$ white beads (0.6%) and milky weathering coloured beads (0.4%) were the least.

SPHEROIDS

Spheroids are beads with sub-spherical form, thus the diameter being greater then the length. The sides of the spheroids are convex and lack flat surfaces at their ends. In total, there were, 99 spheroid beads which represented 11% of beads analysed the are divided into the following groups:

G]ass :
(a) Wound Spheroids: are chiefly of glass and their total number
is 73 beads. The dominant colours are yellow (7.5 YR 8/8) (4\%)
redium light blue (2.5 B 6.6) (1\%) and black (0.5%). According to size, the wound spheroids fall into medium (d. $5-8 \mathrm{~mm})$ and large (d. $10-12 \mathrm{~mm}$).
(b) Mould Spheroids There are 21 beads of this shape and technique. Most of the moulded spheroids have very wide perforations. The strong yellow bead $(7.5 \mathrm{Y} 8 / 12)(3 \%)$ colour is numerous, as woll as light blue (2.5 $\mathrm{B} 6 / 6$) (1.5%) black (0.6%) and colourless heads (0.4%). These sizes range of most of the moulded spheroids have a pronounced curve but are distinguished by the visibility of jrregular facets at one or both ends.

Other beads of spheroid shape are made of carnelian (3), lerracotia (2) copper (2) agate (1) alabaster (1) and crystal (6).

DECORATJVE TECHNIQUES AND MOTIF:

The decorated beads exhibit designs that have been applied hy hand to the individual beads specimens. Beads were decorated for artistic purposes. Decorated beads were highly prized. Twenty seven decorated specimens were analysed. The main decorative techniques and motif are shown in trable 4.
able 4: Decorative Techniques and Motif found on the Shanga beads:

Technique	Decorative Motif	R. Material	Shape	No.	\%
$\begin{aligned} & \text { Incised } \\ & \text { lines } \end{aligned}$	vertical Incisions on one cone	Terracotta	Bicone	1	3.7\%-
	Green Horizontal bands on white	Glass	Barrel	1	3.7\%
	White on Swirls	Glass	Piriforms	1	3.7\%
Incised lines with punctuations	Vertical lines with punctuations	Terracotta	Cone	1	3.7\%
	Scrabble: Two black bands at each end.	Glass	Cylinder	1	3.7%
	Green with white horizontal band	Glass	Bicone	1	3.7\%
	Concentric Rings	Glass	Disc	1	3.7\%
	Mottled: Black and white spots	Glass	Spheroid	1	3.7\%
	Black with White/ Grey horizontal bands	Glass	Spheroid	1	3.7\%
	Brown: Impressed Criss-cross and network lines	Glass	$\begin{aligned} & \text { Barrel } \\ & \text { melon' } \end{aligned}$	1	3.7\%-
	Stratified 'eye'shiny with bluish grey spots.	Glass	Spheroid	1	3.7\%
Incised]ines	Black with grey and yellow horizontal lines	Glass	Piriforms	1	3.7\%
	Vertical lines	Glass	Barrel	1	3.7\%
	Wave white band on Green	Glass	Bicone	1	3.7\%
Incised lines	Vertical incised lines with convex profile having black horizontal band at each end	Glass	Bicone	1	3.7\%
	Chevron-vertical	Terracotta	Bicone	1	3.7%
Impression	$\begin{aligned} & \text { Gadrooned-ribbed } \\ & \text { sides } \end{aligned}$	Glass	Bicone	1	3.7\%
	White band on black	Glass	Bicone	1	3.7\%
-	sreen with white whirls	G]ass	Disc	1	3.7\%
	Brown with white band	Glass	Bicone	1	3.7\%

	Dark blue with white band	Glass	Oblate	1

The main decorations on the 27 Shanga beads were:

(i)	Incised lines
(ii)	Incised lines with punctuation
(iii)	Bands
(iv)	Impression
(v)	Concentric
(vi)	Mottle
(vii)	Stratified and
(viii) Swirls	
(ix)	Pricls pattern
(x)	Etched

The results show that the most popular decorative techniques applied to the bead collections were impressions and bands. The impression technique involved impressing the beads when warm into rib shaped patterns, then gadrooned. This technique accounts for 22.2% of the total number of decolated beads.

Another decorative technique that was common among the Shanga beads is that of coloured bands, mostly in a horizontal pattern on the circumference of the beads. This type of decorative motif accounted for 26%. . A few examples of such beads are: Green horizontal band on white, white band on black, white band on brown and white band on green. This technique was applied to glass beads.

The technique of incised lines amounted to 11.1%, mostly vertical lines, some beads with punctuations. This technique was popular on the terracotta beads.

Other decorative motifs on beads which are rare on the beads from costal sites of East Africa but found in the bead collection of Shanga are swirls, stratified, mottled, wave and concentric rings which account for about (22.2\%).

COLOUR
The main colours observed on the Shanga beads were as follows:

COLOUR	NUMBER	PERCENTAGE
Yellow (5 YR 5/6)	320	30
Green (2.5 G 4/8)	160	15
White	117	11
Light Blue (2.5 PB 7/7)	75	7
Ocean Blue (10 B 6/7)	43	4
Green Grass (7.5 G 5/8)	53	5
Translucent Red (5 R 4/12)	32	3
Opaque Red (7.5 R 1/11)	19	1.8
Deep Blue (5 PB 3/8)	21	2
Dark Green (5 G 5/8)	6	0.6
Pink Red (10 RP $7 / 7)$	7	0.7
Dark Grey (2.5 PB 5/7)	10	0.9
Black	85	8
Colourless/Clear	117	11
Totals	1066	100

Table 5: Colour, Number and percentage of beads from Shanga.

Colourless clear beads could not be indicated on their equivalent on the Munsell-Nickerson colour chart.

Amongst the 1,066 beads analysed from Shanga site, 13 shades of colour are distinguished. Some of the colours are associated only with certain shapes, raw malerials and while others are fairly distributed throughout the beal collection.

The predominant colour is yellow $(5 \mathrm{YR} 8 / 12)$ which accounts for about 130%) of the beads and is equally distributed among the cylinders, barrels,drawn, oblates, spheroids, ellipsoids, bicones, annuals, and discs.

Green (2.5 G $4 / 8$) which comes in second position with 15%, has the greatest number of discs, cones and longitudinally segmented heads. The majority of the green beads are made from copper and glass materials. White beads (11\%) are mostly drawn and are made from glass, mollusc shells, bone, ivory, tooth and alabaster. However, a few heads manufactured from mollusc shells and alabaster have a milky wathering. Jight blue beads (2.5 pB $7 / 7$) constitute 7% and are prepared from glass. Thoy are always drawn discs. Black beads which accounted for (8%) are of giass-material and terracotta. Black colour was associated with bicones, ellipsoid, spheroids aml discs. The brown heads (5%) are most popular amones the terracotta material. Their shapes include bicones, cones, oblates, cylinders and barrels. Most of the termacota beads have lertical or horizontal incigions with parallel punctuations on Weir circumfekences.

The colourless beads constitute (5\%). They are made from gass and crystal-quartz. The predominant shapes of the colourless beads are the hexagonally faceted, bicones, spheroids, discs and cyinders. But a few letragonally faceted beads do also occur. The less numerous colours are ocean blue (10 B 6/7) 4%, green grass (17.5 G $5 / 8) 5 \%$, translucent red $(5 \mathrm{R} 4 / 12) 3 \%$, opaque red 17.5 R 1/11) 1.8%, deep hlue ($5 \mathrm{~PB} 3 / 8$) 2%, dark green ($5 \mathrm{G} 5 / 8$) 0.6%, pink red (10 RP 7/7) 0.7% and dark grey (2.5 $\mathrm{PK} 5 / 7$) (0.9%).

The translucent red and opadue red colours are most popular and typical of hexagonally faced bicones, and spheroids. The rawnaterials are carnelian and glass. The majority of the tubular beads are of Pinkish Red colour.

T-RAY FLUORESCENCE ANALISIS: RESULT'S
The elemental concentrations of the five beat samples of terracotta, glass, carnelian, alabaster and crystal quartz were obtained by subjecting them to quantitative X-Ray Fluorescence analysis. Some chemical characteristics of the five bead samples are as follows.

Glass: The glass bead is generally characterised by a relatively high zirconium and low lead and potassium. It has medium concentration of iron, copper and calcium. (Fig. 17).

Carnelian: Jt shows a relatively high airconium concentration and Very low calcium, iron, copper, zinc, bromine and lead elemental Proportions (Fig.18)

Perracotta: The terracotta bead sample was characterised by low concentration and constant ratios of potassium, manganese, zinc,
bromine, lead, calcium and litanium. Iron is medium whereas zirconium concentration is high (Fig.20).
Alabaster: The Alabaster bead sample has the usual high zirconium concentration and a relatively elevated calcium content. The iron and strontium concentrations are medium. There are low concentration of zinc, bromine, copper, lead and manganese (Fig. 21). These data re also shown in Table 6.

Table 6: The quantitative analysis results by X-Ray fluorescence analysis.

ELEMENT GLASS CARNELIAN TERRACOTTA CRYSTAL ALABASTER (D.blue) (opaque red) (Brick/Brown) (Milky) (White)

SPECTRUM: BIGVOLUME: (ANALYS) D BLUE SPC 1

Fig. 17 Deep Blue glass bead sample

SPECTRUM BIGVOLUME (ANALYS) OPAQRED SPC 1

Fig. 18 Red Carnelian bead sample

```
pm= parts per million
% = percentage concentration of the element in
                        the sample.
```

SPECTRUM: BIGVOLUME: (ANALYS) BROWN SPC

Fig. 19 Brick-Brown terracotta bead sample

SPECTRUM BIGVOLUME: (ANALYS) MILKY SPC 1

Fig. 20 Milky Weathering Crystal/Quartz bead sample

```
SPECTRUM: BIGVOLUME:(ANALYS) WHITE SPC 1
```


Fig. 21 White Alabaster bead sample

Results of X-Ray fluorescence analysis of a number of beads from Shanga site as recognised visually represented. The five bead samples were (1) glass bead, (hexagonally facetted bicone) of deep blue colour (5 PB 3/8); (2) Terracotta, (Plain bicone) of dark brown colour; (3) Carnelian (bicone) opaque red (7.5 R 1/4); (1) alabaster-white and (5) milky weathering colour of crystal quartz. Although the results of X -ray fluorescence are not comprehensive enough since only a few samples were analysed, but the results nevertheless can yield a lot of information concerning the other beads of the same material. (see Tatales 4 \& 5).
(a) Tn all the five bead samples analysed (Glass, Terracotta, Carneljan, Crystal-guartz and Nlabasterl: the concentration of zjrconium is high and even.
(b) There are varying pxoportions of jron , copper and calci.um concentrations.
(c) The glass bead had additives and opacifiers. Additives are used by the glass-maker for colouring and opacity. Thus the range of colour created by suspended particles of metallic copper or cuprite $\left(\mathrm{Cu}_{2} \mathrm{O}\right)$ are opaque Red, brick red and terracotta red (Davison 1972). The glass bead specimen analysed by XRF technigue contained mediun concentrations of copper and iron, suggesting that these additives were intentionally used in glass bead making.

In Chapter four, it can be concluded that the techniques which figure prominently in the manulacture of the beads from Shanga sjte are wound, drawn, folded, moulded, and facet cut for the glass beads. While beads made from bone were prepared by utilizing the hollow perforation of the long bone shaft. Shell, ivory and tooth heads were prepared by cutting large blocks into the desired lengths and shapes, then pierced by hot metallic wire. Glass, semi-precious stones, metal, ivory, tooth, bone, shell, coral and terracolta provide the bulk of the raw-material used in bead preparation at Shanga. The shapes exhibited by the Shanga beads are as follows: Barrels, cylinder, bicones, tubular, longitudinally segmented; piriforms ellipsoids, spheroids, drawn, rings and oblates. The major colours found among the Shanga beads are yellow, green, light blue, ocean blue, green grass, dark grey, brown, white, colourless, black, translucent red and pink red. Last the X-Ray fluorescence analysis showed that the Shanga bead samples (five in number) contained high elemental concentrations of zirconjum, moderate concentration copper, iron and calcium and very low proportions of arsenic, titanium, zinc, rubidium, strontium, lead, bromine, potassiun and manganese elements.

The Significance of XRF analysis
Though the bead sample analysed was small, the following comments can be made:
(i) Firing was used in the preparation of beads made from clay (terracotla)
(ii) Additives such as colorants and opacifiers were incorporated, particularly in the manufacture of glass beads.

CHAPIER FIVE

INTRODUCTION:DATA ANALYSIS ANI CONCLUSIONS
The purpose of this chapter is to synthesize the information from the beads. In order to understand the details of this study, attributes such as raw-material, shapes, colour and decorations were employed in the interpretation of the 1,066 beads from Shanga.

RAN MATERIAL
The 1,066 beads from Shanga were made of different materials. These were both organic and inorganic materials. From the wide spectrum of raw-materials used in the manufacture of beads at Shanga, two lines of evidence indicate that, glass provided the bulk of the raw-material. Firstly there is large percentage distrjbution of the glass beads and secondly, glass occurs on the olher coastal sites of East Africa. These sites are fort Jesus, Gedi, Manda, Ungwana, Takwa and Kilwa. Glass beads accounted for 72% of the Lotal of the various materials used in the preparation of beads at Shanga. This could he due to the fact that glass used in the manufacture of beads is more resistant to corrosion and thus keep a polished surface through time.
(ii) Glass as a raw-material, is noted for its various colours, transparency, hardness and rigidity at ordinary temperatures. Hence these properties made the people of Shanga prefer glass beads To other raw-makerials. The presence of bead grinders unfinished blanks of broken pieces of glass (with holes drilled) and some with
specific shapes indicate that bead making was taking place at ghanga.

The data analysed also show that semi-precious stones were tilized in the mamufacture of beads at Shanga. These semirecious stones supplied the raw-material for bead preparation hich is only second to glass-material in order of preference. The heads made of semi-precious stones represented 12.3%, thus 131 beads. The various semi-precious stones exploited for bead nalufacture were crystal-quartz, carnelian, alabaster, agate, coral shale, white moonstone, white soap stone, jasper and onyx.

Carnelian and crystal-cuartz were the most popular types of raw-material used in the manufacture of stone beads. This could be due to their brilliant appearance and attractive colours, mostly of diaque-red and translucent red. Several pieces of unpierced and pierced crystal-quartz and carnelian found at Shanga attest to the evidence of the presence of stone bead factory. This is also supplemented by the abundant potential blocks of similar materials in rough form identified at the site. However, results show that semi-precious stone materials such as alabaster, coral shale, jasper, onyx, white moonstone, white soap stone and agate were rarely used. This is clearly indicated by their minimal Percentages reprosented among the bead making raw-materials. Their infrequent usage in the manufacture of beads may be due to the poor Malities they had: these are hardness, dull colours (not attractive), easily patinated, less durable and easily crackable
being worked. Thus they commanded less demand in terms of customer's tastes.

Animal materials were also used in the manufacture of beads. These were bones, shells, ivory and tooth. Beads made from animal parts were 125 represented 12.3% of the total bead collection analysed. Of these, mollusc shells materials were the most prominent in bead manufacture and they accounted for 9%. This can be explained by the fact that mollusc shells have rigid and hard exterior coverings that contain calcious carbonate.
(iii) Various shapes and colours that range from white, black, steel-blue to pinkish were identified. Thus, bead makers of Shanga had to collect mollusc shells from the beaches of the saline waters adjacent. Indian Ocean. The mollusc shells were then worked upon and modified to make decorative ornaments, among, them shell beads.

Another raw-material used in the making of beads at Shanga was netal. These were copper and iron metals. A total of 14 beads, 13 of copper and 1 or iron was analysed. This represented about 1.2% of the total bead sample examined; implying that beads manufactured from metal were not very popular at Shanga. Copper and iron materials are easily perishable when subjected to oxidizing conditions and may help explain why the Shanga bead makers rarely "sed metal in the production of beads. It is possible that they vere used, but we cannot recover them in the archaeological record.

The type of raw-material used in the beads manufacture influenced their shape designs. For instance, disc beads were only ade from particular raw-materials. These raw materials were identified as glass, mollusc shell and bone. While bicone and hexagonally faceted beads were common among the terracotta and carnelian raw-materials. Longitudinally segmented beads were only a a de of copper material. On the olher hand, cylinders were popular with glass, bone, teeth and ivory materials. Other shapes such as ellipsoids, spheroids,piriforms, oblates and drawn shapes were prevadent amons glass and stone materials.

The following lypes of bead shapes were observed among the Shanga beads; transversely pievced rectangular bead (ivory) Figure 22, barrel "melon" (glass) Figure 23, tubular "cane shape" (sea urchin spine) Figure 24, hexagonally faceted cylinder (glass) rigure 25 , truncated bicone (glass) Figure 26 , cone: pricked paltern (terracot La) Figure 27, slratified eye bead (glass) Figure 28, cylinder longitudinally pierced (glass) Figure 29, cylinder Wack bands at extreme edges (agate) Figure 30, flattened cylinder (erystal), Fignre 31 and hutton shaped (glass) Figure 32.

Fig. 22 Transversely pierced rectangular bead (Ivory)

Fig. 23 Barrel"Melon" (Glass)

Fig. 25 Hexagonally faceted Cylinder; Longitudinally pierced (Glass)

(0)

Fig. 24 Tubular "cane shape"
(Sea Urchin spine)

Fig. 26 Truncated Bicone with one concave end (Glass)

Fig. 27 Cone: Pricked pattern (Terracotta

Fig. 28 Stratified eye bead (Glass)

Fig. 29 Cylinder longitudinally pierced Scrabble Decoration (Glass)

Scale:

Fig. 30 Cylinder: White Agate bead with black bands at extreme edges

Fig. 31 Flatenned Cylinder with bevelled edges

Fig. 32 Button shaped (Glass)

Colour was another attribute studied. It was found that preferred colours were: yellow (31\%), green (15.5\%), white (11.5\%) opaque red (9.7%) and translucent red (8.0%). Present day inhabitants of the region have symbolic meaning for these colours: Green is associated with peace and abundance, white with cleanliness and purity, light hJue with water and the sky and translucent red is associated wilh danger, thus toward off bad omens. Tl is likely that the past inhabitants of Shanga had similar symblif meanings for their beads as they were mustims as well.

Further information is provided by comparisons between the bead colours and the raw-material used in their manulacture. The comparison shows a gradual shift in terms of distribution of colours wilh specific raw-materials. This is recognizable as follows: Yellow and green beads were of glass material. White beads were prominent among the beads prepared of bone, molluse shell, ivory and teeth. Opaque red and lransdncent red beads were made of carnelian stone. Hence, their colours and fan-malerial.

The X-Ray Flnorescence analysis of bolh glass and terracolla beads indicate that beadmakers al Shanga used additires, pacifiers and colorants for techinical and aestheljc purposes. Hence, the coaslal beads which have green colour, especially those made of glass material syggest that the green colour was caused by high (oncontralions of Cu ${ }^{+\dagger}$ (Cupric Onide) and Fe^{+++}(Ferrous Oxide) and arsenic elements. These ingredients were added to glass during the
arufacturing process. These additives were intentionally used for colourization, artistic and ornamental aspects. while calcium whs added to the bead during the manlacturing process to provide chemical stathility. Similarly, the blue colour of glass beads found along the constal sites implies that an alkali, potassium may have been employed in the firing of these beads during their manufacture to achieve the desired colour and hardnesss.

The X-Ray Fluorescence analysis and the physical examination of terracotta beads from Shanga indicated that these beads were sulijected to high temperatures in the comse of their manufacture. Furthermore, the lerracot ta bends wore characterised by some degree of fragility and cracking. Since lervacolta beads have been excavated at various coastal siles, the shanga bead study cat he used to generalize some rindings aboul coastal beads: that the bead makers subjected the ceramic clay used in the manufactures, possibly between $6000^{\circ} \mathrm{a}$ and 1006 O . The firing of the terracotta beads was done to achieve hardness, minimize the level of porosity and to colour the beads into dark brown/dark grey colours. This was done 1.0 satisfy the chstomers' lastes and demands.

DECORATIONS

Among the tolat of 1,066 beads analysed from Shanga, ondy 28 beads exhibited decorataive motifs. A total of 9 decorative techniques were recognized. lt should be noted that some decorations were peculiar will beads of specific raw-materials. Good examples are:

Incised and prick patterning decorative techniques: Lhat these were found to be exhitited only on bicone and cone beads manutactured of terracotta material.

Swirls, wave, Mothle, Chevrou and Stratified "eye" beal docorative techminnes were common on glass beads. The wave decorative pattern was identilied on bicone glass lemens.

Fithed decorations: This was identified with hone cylinder beads. Thus, the decorations observed on beads from Shanga were nol ondy influenced by tyle of raw-material, but also by the shate and customers tastes.

IECHNIQUES OF MANUFACTURE
Among the coastal beads, techmintes of mamufacture varied with secific raw-materials. There is a shandard trend in heads made If glass material. They are mambactired by the followine Pethods: womb, monld, drawn, Fold amf facet cut technigues of mad manutacture.

Resides the techniques of manufacture ol $\& l a s s$ beads, other thods of makiug heads from raw-materials such as bone, teeth, hell and stone were quile distinct as they have already heen peft out in tetail at the start of this chater.

SIGNIFICANCE OF THIS STUDY

This study is especially useful for sequence delermination of chemical mineral constituents (elemental concentration). In one way, the X-Ray fluorescence analysis of five bead samples from shanga have contributed to an understanding of bead preparation technology. Of particular importance is that the beadmakers may have abandoned the tradilional techniques of making beads and switched to a new technique, which was more advanced. This new technique of head preparation required different lemperatures, fuels, addilives and furnace design lo produce glass, metal and toracolla heads. Though archaeological evidence of a furnace is stifl lacking, there is evidence of pieces of iron slus excavated from the deep stratifjed deposils of Shanga.

The resulls of this study l hrough X-Ray fluorescence and physical anadysjs of the beads from Shanga have confirmed that Weir composilion js refaled to the geographical and geological contexl of the area in which they were manufactured. This is with specific reference lo lerracolla, semi-precious stones, haematite, actal, bone, leeth, ivory and mollusc shell beads. These materials were locally available.

The bead analysis study has shown that il is inappopriate lo "ilize one athibule of beads lo describe them fully. For prposes of inlerprelation of heads excavated at various coastal sites, a wealth of detailed amalysis is required. This includes, aw-material, Lechnique of manlacture, shapes, colour and ecoralive patterms of the beads. For instance, this study has

The following observations were made on the significance of the stratigraphic analysis of the beads from Shanga.
a) Category One: Stratigraphic levels of 100-3000. Most of the beads found in these upper levels are made of glass: The manufacturing techniques are highly sophisticated. Beadmakers of Shape used to fashion the glass beads into various Shapes and colours. Copper beads are also found in these stratigraphic levels. Ivory, Shell, Bone, Tooth and Terracotta materials are found in relatively small numbers. Most of the glass and terracotta beads are decorated.
b) Category Two: Stratigraphic levels of $3000-6000$ Beads are manufactured from semi-precious stones, glass, and terracotta. These beads are less advanced in terms of Shapes, manufacturing techniques and colours compared to category one.
c) Category Three Stratigraphic levels of 6000-9000. This category is characterized by the exploitation of marine and terrestial resouces. Hunting, Shell collecting gives rise to the making of bone, shell, ivory and tooth.beads. Other materials in category three though in small quantities, are rock crystals, glass, iron terracotta. This is attested by the occurence of rock-crystal wasters, rough out materials, iron slugs terracotta lumps in the lower stratigraphic levels of Shanga.

Comments: This stratigraphic analysis indicates that in category one, bead making techniques were advanced, specialised in specific raw-materials, colour and shapes. In category two, though bead mánufacturing techniques were less advanced than category three, a wide range of materials were exploited for bead making. Bead making techniques used in category three are very crude. The bead materials are also fragile.
a) Raw Materials Carnelian was the most common semi-precious stone used in the manufacture of beads. The shapes resemble other examples from the sites of East Msican coast (Kilwa, Manda, Fort Jesus and Gedil. There is adequate evidence lo suggest that carnelian, agate and crystal quartz were exploited from the interior sites. This indicates a close trading pattern in semiprecious stones as raw-materials which were exports from East Africa were in great demand in Fatimid Egypt (Horton 1984).

Rock crystals occur at the lower levels of Shanga as finished beads, wasters, roughout materials and lump indicating that they were being worked locally. Easl Africa is well known as a source of semi-precious stones. The Kerio Valley and the Eastern Highlands could have supplied the coast. The archaeological period of these semi-precious stones is dated to 950-1050AD. Ivory, shell, bone and terracolta heads are also found during this period.

This period was characterized by hunting, shell collecting, bead griding, iron working and pottery. There is no evidence to suggest that the Shanga inhabitants relied upon marine resources for subsistence as fish bones occur in felatively small numbers. Elhno-historic observations indicate that these early inhabitants kere pastoralist, with a.strong dislike of fish. They were probably vegeterians.

Architecture included mud and timber buildings. They batherd their products with gulf region traders for glass beads, and with

A Jot of glass beads from Trench 1 and 2 (dated to belween $1050-3.350 \mathrm{~A}) \mathrm{m}$ cojnride with the presence of indian ceramics and coins imdicaling a close sea trading pattern. This archaeological period is characterized by increase in fish consumption, coltle/caprids and camel keepine. The lown was divided into two: lhe western birl which was occupied by mixed agriculluralist and the eastern part which was dominated by pastoralists. This is altested by the rapid increase in the volume of excavated bones with butchery marks suggesting lhat they subsisted mainly on a meat. diel.

Rock crystals, pottery counters, and spindle whorls were a daily craft. The first permanent buildings occur on the western side of lhe Lown in this period. This include monumental buildings, for example mosques decorated wilh elaborale milnab which signify the conversion of Shanga community to Is]am. On the eastern side of the town mud, porite and coral are used in the construction of buildings whose floors were mLastered or filled with loan and midten indicating foreign influence most probably Indian.

Non-ferrous metal working evidence for copper working at Shanga comes from fourteenth century levels in rrench 1 and 7 11250-1400AD). This include a copper cutting waste, slag and copper scrap. This perjod is charactetised by livestock keeping, hunting, consumpl ion of marine resources and housing of coral rags and lime Malls which are of Indian design.
b) Colour Colours not only possess sentimental porspective significance but also a truc monning based on the mature of the

 and cullivalion of coops (plan fombe). Mhe beads on ho olhor ham were associaled with celestial moironment and lopally while white beads indicaled moral purity. Masb of these beads wrie dalod helwern 900 and 1 小00, 10 .
(:) Shapes the most common himb ohmos were drawn, shmpoid, disks, cylinders, ellipeoids, bitiforms, hexagonally faceled bouts nul oblates. These shames occur in Fromeli (i, 8,9 and 10 which belong 1.0 Lhe nrehacological periods $111, M_{\text {and }}$ (950-1250).
(1) Trechuitues of manufacture the most prevalent brchmigues of mambacture are found on glass lmats. These are monld, drawn, fold, wombl ficel cul. These were mes: 11 y fombl in the period 950-1100N0.

RECOMAENDATION

One very important recommendation fron this stury is that it is imperative for detailed bead studies to be conducted over large areas Lo gain full knowledge of beads in terms of raw-materials used in their manufacture, techmjques of manufacture, shapes, sizes, colour and decorative motil's. lhis may serve to identify distribution of fractory sites anml lhus show a homogeneity in rawmaterials.

Elhnological studies should be done on the tratitional socieljes which still make beads along the coastal region of Kenya. These slmdies will provide a valmathe complement to archarologiceal bead studies in term of tectuiques of manufacture, raw-materind, shapes, sizes, colomr, decorate motirs and uses of beads. Ehnographic bead studjes could be used as an analogical tool for inlerpreling archaeological beads excarated at the coaslad sites of henya.

The scientific analysis of beads, should include the use of arious laboratory analyses. For instance, apart from using the X lay Fluorescence analysis, other scientific lechniques of analysis hch as neutron activation and spectrographic analyses should be employed when determining the mineral composition of specifice beanl alevials. If all these analylire terfmiques are combined, then ood lo excellenl precision mar he achieved for coastal beads, Hecifically in the determinatign of chemical mineral constiluents. This will he usekul for locating sites and the level of technicues manufacture.

CONCLUSJONS

To concludn, the analysis of beads from Shanga has shown that to make the varioms liypes of heals. the beadmakers were iulturned hys aldribuloss surh as raw-malorial, techmiguns ni mambialume shapes, sizes, colour and demombe patterns. These altribules dictated the valun, aesthetic amb omamental aspects of the beads.

APPENJIX: DATA ANALYSED

l,EVEL T LEN DIAM SHAPE/DECORATION M.T. COLOUR(M.N.) R.M.

EFY: T - TRENCII, LEN - LENGTII, DIAM - DJAMETER, R.M. - RAW MATEERIAL M.J. - manufacturing techntpue

IEVEL	'I'	LEN	D 1 AM	SHAFE/DECORATJON	M.'T. COLOUR(M.N.)				R.M.
1212	9	3	3	SQUARE CSLINDER	V	D. Blue			gliass
1207	9	1	8	CONE	W	GREEN 5	5 GY	5/6	GLASS
1232	9	7	9	DICONE: PLAIN	W	YELLOW	5 Y	8/12	GLASS
4239	9	4	2	CYLINDER	D)	L. BLUE	2.5	[B 7/7	GuAss
4239	9	2	1	D1SC	1)	I, BLUE	2.5	PB $7 / 7$	Glass
423.	9	1	3	SQUARE CYHINDER	D	YELLOW	5 Y	8/12	GLASS
4252	9	1	5	PICONE: PLALN	w	GREEN 5	5 GY	5/6	GLASS
1252	9	3	3	SQuare cyiander	D	YELLOW	5 Y	8/12	GLASS
1252	- 9	5	1	SQUARE. CYLINDER	D	YELLOW	5 Y	8/12	GLASS
1252	9	8	7	STHEROID	W	BLACK			GLASS
1239	9	2	8	DISC	D)	GREEN 5	5 GY	5/6	GLASS
1239	9	11	8	SIILEROTD	M	black			GLASS
4226	9	22	7	PIAIN CYLINDER	D	D. BLUE			GLASS
4085	9	1	3	SQUARE CYLINDER	D	YELLOW	5 Y	8/12	GLASS
1280	9	3	8	DISC ,	W	G. GREEN	N 7.5	G $5 / 8$	GLASSS
1012	9	2	9	DISC	D	YELLOW	5 Y	8/12	gLASS

1303	9	10	6	SPIIEROID	N	DEEP BLUE	$5 \mathrm{~PB} 3 / 8$	G1.ASS
4304	9	1	2	CYLINDER	D)	YELLOW 5 Y	8/12	GLASS
4304	9	9	5	SPueroid	W	YELLOW 5 Y	8/12	GLASS
57.1	9	9	3	tubular "Cane"	D	PINK RED		GLASS
567	9	2	6	1 ISC	D	WHITE		SHELL
568	3	2	4	D1 1 SC	l)	WHITE		BONE:
568	3	5	2	CYLINDER	M	CREAM		BONE
568	3	1	3	SPHEROTD	M	COLOURLESS	Cl	RISTAL
15	6	6	6	PLAIN BARREL	D	BLACK		GLASS
571	3	6	6	Plain marrel,	D	L.GREEN 10	GY 6/9	GLASS
511	3	4	2	CYLINDER	D	GREEN 5 GY	5/6	GLASS
1232	1	2	2	PLAJN BARREL	1)	YELLOW 5 Y	8/12	GLASS
1217	1	1	1	I) 1SC	1)	WHITE		GIJASS
1089	1	2	3	DISC		CREAN		SIIELI,
1102	1	3		PLAIN BARREL	D	GREEN 5 GY	5/6	GLASS
1170	1	2	1	D.SC	D	YELION 5 Y	8/12	GLASS

1051	9	2	2	PLAIN BARREL	W	GREEN 5	5 GY	5/6	GLass
1063	9	5	6	CONE	M	GREEN 5	5 GY	5/6	GLASS
12.46	9	2	3	AnNuLAR	w	O. BLUE	10	$136 / 7$	GLaSS
4246	9	こ'	3	annular	W	GREEN 5	5 GY	5/6	GLaSS
1246	9	2	3	ANNULAR	w	O. BLUEE	10	B 6/7	Glanss
1216	9	1	2	DISC	:	YELLOW	5 Y	8/12	GI,ASS
$12: 6$	9	2	3	AnNuLAR	w	YELLOW	$5 Y$	8/12	GLASS
1246	9	5	1	PLAIN BARREL.	W	YELLOW	5 Y	8/12	GLASS
1246	9	1	3	UISC	M	WHITE			GLASS
4246	9	1	3	DISC	M	YELIOOW	5 Y	8/12	GLasS
1218	9	3	2	PLAJN BARREEI,	W	YELLOW	5 Y	8/12	GLASS
1218	9	7	1	ELLITSOID	W	YELIOW	5 Y	$8 / 12$	GLASS
1248	9	10	5	ELLJTSOIJS	W	BLUE			GHASS
1248	9	1	11	DISC	D	WHITE			Glass
1246	9	4	. 4	PLAIN BARTREA,	W	GREEN 5	5 GY	5/6	GLASS
1247	9	1	5	B1.CONE	W	G. GREEN	N 7.5	$5 \mathrm{G} 5 / 8$	GLASS

1064	9	1	3	DISC		M.GREEN 7.5 G $5 / 8$				GlıASS
4051	9	\because	2	Plain barmeh.	W	GRELEN 5	5	GY	$5 / 6$	(1)ASS
4063	9)	5	6	CONE	M	GREEN :	5	GY	$5 / 6$	Glass
4246	9	2	3	ANNULAR	W	O. Bluee	: 1	0 B	$36 / 7$	Guass
4246	9	2	3	AnNULAR	W	GREEN 5	5	GY	$5 / 6$	GLASS
4216	9	2	3	annulitr	1	O. BLUE	10	0 B	$36 / 7$	GLASS
4246	9	1	3	D1SC:	M	Yellow	5	Y	$8 / 12$	GLASS
1246	9	2	3	AnNUTAAR	W	YELIM)	5	Y	8/12	GLiASS
1246	9	5	1	CLATN BARRREA	W	YELLOW	5	Y	8/1:	GLASS
4246	9	1	3	DISC	N	WHITE				GLASS
1246	9	1	3	DISC	N	IELIOW	5	Y	8/1.2	GLASS
4248	9	3	2	PLAIN PARRISL	W	TELLOW	5	Y	$8 / 12$	GLASS
4248	!)	7	1	ELLIPSOID	W	YELIUOW	5	Y	8/12	GLASS
4248	9	10	5	ELLIPSOIDS	W	blue				GLASS
1248	9	1	11	DISC .	D)	WHITE				GLASS
1246	!	$+$	$\underline{1}$	PLALN BAMREM,	w	GRFIEN	50		$5 / 6$	glass
4217	9	1	5	BLCONE	W	G.GREEN		7.5	G $5 / 8$	(iLASS

1011	9	3	i	DISC	W	GREEN	7.5	G $5 / 8$	GLass
4361	9	16	$\overline{7}$	CYLINDER	I)	Brown			GIASS
+361	9	5	1	TUBULAR	D	whITE			GLASS
+36.1	3	1	4		W	O. PLUEE	10	B $6 / 7$	GLASS
1361	9	15	15	bicone	W	UROWN			GLASS
129.	9	$\ddot{2}$	7	DISC:	1)	BLACK			Glads
429.	9	4	3	[LAIN BARTEEL	w	D. BLCE	10	B $15 / 7$	GLASS
1294	9	3	2	plain marmbi,	W	Yellow	5	($8 / 12$	GLASS
4294	!	3	3	Plate barreic	W	YELJOW	5	\% $8 / 12$	GLASS
4026	9	5	5	plain marimel	w	BLACK			GLASS
$+176$!	3	5	CYLINDER	D	BLACK			GLASS
1176	9	1	2	DISC	D	BLACK			GLASS
+17i	9	10	4	CYL INDER:TWO CONCAVE ENLS	w	BLUE: 5	PB	$3 / 8$	Gl.ASS
4185	9	3	2	TLAIN BARREL	W	YELLOW	5 Y	8/12	GLASS
4123	9	12		BICONE	W	O. BLUE	10	B $6 / 7$	GLASS

1123	9	3	1	D. ICONE	W	Wh1TE	GLASS
1123	9	1	4	DISC		WHITE	SHELL
1123	9	is	4	CYLINDER	D)	O.RED 7.5 R //11	GLASS
1385	9	$\ddot{3}$	4	Disc*	D	YELLOR 5 Y 8/12	GLASS
4395	9	5	4	SPIEROID	W	YELLOW 5 Y 8/12	GLASS
4314	9	5	6	Chain barrel,	W	BLACLE	GLASS
1314	9	4	4	SPIEROID	W	O. PLUE $10 \quad$ B 6/7	GLASS
1315	9	4	9	B1CONE	W	YELLON 5 Y g/12	GLASS
+315	9	4	9	BICONE	w	YELLOW 5 Y $9 / 12$	GLASS
+315	9	3	11	UISC.	W	G.GREEN 7.5 G $5 / 8$	Gilass
1378	9	9	5	ELhfesold	w	YELLOW 5 Y 8/12	GLASS
1378	9	4	3	ILAIN PARLREI	w	GREEN 5 GY 5/6	G1.ASS
1378	9	2	2	FLAIN BARREI ${ }_{\text {a }}$	W	L. BLUE $2.5 \mathrm{~PB} 7 / 7$	GLASS
1378	9	3	2	PLAJ N. PARRE:	W	WHITE	(ilass
1378	9	3	4	ANNUI,AR ?	W	HLACK	GLASS

$+313$	9	3	${ }^{9}$	DISC	${ }^{\text {i }}$	YELLOK 5 Y 8/1.2	GLASS
1313	9	3	8	1) 5 SC	W	JHLLOM 5 Y 8/12	GLASS
1313	9	2	1	DISC:	W	BHACL	GLASS
1313	9	2	1	ELI, ILSOLD	w	D. BROWN	GLASS
1356	9	4	3	ILLATN BARREL	W	O. BLUE $10 \mathrm{~B} 6 / 7$	GLASS
4390	9	4	2	('YLINIERK	D)	L. BLUE 2.5 PB T/T	GLASS
1380	9	2	2	Plain barkei	D)	YELLOW 5 Y 8/12	GLASS
4381	9	11	5	ELLITSOIJ	W	GREEN 5 GY $5 / 6$	Glass
1381	9	3	2	PLASN BARREL	w	GREEN 5 GY $5 / 6$	GLASS
4381	9	4	5	DRAWN BEAJ	D)	BLUE $5 \mathrm{~PB} 3 / 8$	GLASS
1653	9	7	6	COLOURED BARRED: GREEN HORIZONTAL bands on white	D	WHITE	GliAss
1816	9	3	3	DRAWN	1)	YELLON 8/12	GIJASS
1816	9	5	5	DIRAWN	D	GREEN 5 GY $5 / 6$	GLASS
1064	9	12	8	CYLINDES		WHITE	I VORI
407	9	3	4	DRAWN	D)	YELLOW 5 Y 8/12	GLASS

1653	9)	7	6	Coloure:	WHITE	GLass
				GRISEN II MANDS		(1)

1312	9	20	13	BICONE:GREY BANDS ON DARK GREEN		D. GREEN 5 G $5 / 8$	GLASS
1312	9	22	29	BICONE: IMPRESSED VERTICAL INCISIUN ON ONE LINE		1). Brown	TERRACOTTA
1654	9	3	2	DRAWN	W	YElidow 5 8/12	GLASS
1653	9	6	3	HICONE	W	G.GREEN 7.5 C $5 / 8$	Glass
1655	9	3	10	BICONE:	M	TELLOW 5 Y 8/12	GluASS
1651	9	10	6	ELLITSOJJ	W	G.GREEN 7.5 C $5 / 8$	GLASS
1272	9	2	5	D1SC		MHLKY WEATHERING	ALABASTER
4793	9	\bullet	4	SPILEROID	W	DLACK	GLASS
1298	9	8	9	SIMEROID	W	D. BLUE 5 P13 $3 / 8$	GLASS
1298	9	3	2	DIRAWN	1)	D. BLUE 5 PB $3 / 8$	GLASS
1298	9	6	8	FIRIFORM	N	W1IT TE	Ghass
4290	9	9	7	ELLITSOTI	W	R.TRANSLUCEN'T 5 R //12	GLASS

4272	3	3	8	DISC	w	GREEN 5 GY 5/6	GLASS
4272	9	4	12	DISC	W	GREEN 5 GY 5/6	GLASS
4272	9	11	7	ELLIPSOID	W	GREEN 5 GY 5/6	GLASS
+272	9	4	3	DRAWN	1)	BLUE 5 PB $3 / 8$	GLASS
4272	9	4	3	DRAWN	1)	blue 5 Pb $3 / 8$	GLASS
4272	9	1	2	URAWN	D)	BLUEE 5 P13 $3 / 8$	GLASS
4263	9	1	3	IRAWN	1)	BLUE 5 P13 $3 / 8$	ALABASTER
4263	9	5	11	CONE	iv	YELLOW \% Y 8/12	GLaSS
4263	9	3	6	D) ISC	D	GREEN 2.5 G $1 / 8$	GLASS
1263	9	2	2	drawn	D	BLUE $100 \mathrm{~B} \quad 6 / 7$	GLASS
1263	9	1	3	DRAWN	I)	BLUE $\begin{array}{llll}10 & \mathrm{~B} & 6 / 7\end{array}$	GLASS
1263	9	3	2	drawn	I)	BLUE 10 B G/T	GLASS
4263	9	7	7	SPIEROID	W	COLOURLESS	GLASS
1252	9	5	8	DICONE:IMIRESSED GADROONED	W	GREEN 5 GY $5 / 6$	GLASS
1252	9	4	7	I 3 ICONE: IMPRESSED GADROONED	D	GREEN 5 GY $5 / 6$	GLASS
4252	9	2	6	DISC	D	GREEN 5 GY $5 / 6$	GLASS
1252	9	${ }^{\circ}$	4	DISC	D	GREEN 5 GY 5/6	GLASS

$12523 \quad 5 \quad 3 \quad$ (YLINDRLCAL DISC J) GREEN 5 GY $5 / 6$ GIASS

$1199 \quad 1 \quad$ DRAWN MILKY WEATHERTNG ALABASTLER

| 4 | 9 | 3 | 5 | DISC BROWN GLASS |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1248	9	8	5	ELLI PSOIV		13	GREIEN 5 GY 5/6	CiLASS
1248	9	9	!	BJCONE: WHITE ON PLLACK	$13 \Lambda N 1)$	W	BLACK	GLASS
1218	9	10	5	FLLLITSOID		W	OPAQUE RED 7.5 R 4/11	GLASS
1171	9	3	3	DRAWN		[)	M.IJ.BLUE 10 B 6/7	GLASS
1171	9	2	1	DISC		D	M.L.BLUE 10 B 6/7	GLASS
1171	9	4	3	URAWN *		b)	M.L.BLUE 10 B 6/7	GLASS
117	3	1	2	CYLINDEIR		D	M.L.BLUE 10 B $6 / 7$	GLuSS

280	9	2	3	DRAWN	1)	GREEN 5 GY 5/6	glass
1009	9	3	2	DRAWN	11	N.L.BLUE $10 \mathrm{~B} \quad 6 / 7$	GLASS
1009	9	6	8	Spllerote	N	1). GREEN 5 G $5 / 8$	GLASS
782	9	3	5	DISC	1%	B. YELAOW 5 Y $8 / 12$	GLASS
782	9	1	3	1.15 SC	1)	YELLOW 5 Y $8 / 12$	GLASS
782	9	5	6	CONE	W	BLACK	GLASS
09%	9	6	1	SPIMEROID	W	G. GREEN 7.5 O $5 / 8$	GLASS
071	9	6	9	SPIIER(ID	Vi	O.RED 7.5 R 1/11.	Glass
095	9	5	6	DRAWN	$1)$	GREEN GY $5 / 6$	GLASS
071	3	5	5	BJCONE (SIMEFRS WEATHERING	w	BLUE-GRES 2.5	(iLASS
502	9	3	8	1)15C	1	G. GREEN 7.5 G $5 / 8$	GILASS
185	9	3	12	DISC	W	G.GREEN $7.5 \mathrm{G} 5 / 8$	GLASS
300	9	3	3	DRAWN	11	YELLOW 5 [8/12	gLASS
300	9	1	3	URANN	I)	GREEN 5 GT $5 / 6$	GLASS
300	9	1	5	STIEROID	W	PINK RED RT 7/8	Glass
511	9	3	7	DISO	$1{ }^{1 /}$	YELLOK 5 Y $9 / 12$	GLASS
511	9	3	${ }^{9}$	11SO	k	YELLOK 5 Y 8/12	GLASS
598	9	5	3	CYLINDER	1)	GREEN 5 GY 5/6	GLASS

118813 DRAWN 18 D YELLOW Y 5 8/12 GLASS

121311	8	WLITE:PARTIALLY WHITE
PIERCED SOAPSTONE		

1066	1	20		$=13$ PIRIFORN $=17$	\cdots	D. Brown	haEmettte
i59	7	17	7	CYLINDER:HEXAGO- NALLY FACETED	$\mathrm{F} . \mathrm{C}$	r. TRANSLUCENT 5 12.1/12	GARNELIAN
3237	10	8	1	CYLINDER	D	BLUE $10 \mathrm{~B} \quad 6 / 7$	GLASS
800	7	$1{ }^{15}$	15	SPIIEROID	W	BLACK	GLASS
30)	7	13	1.1	SPILEROID		COlourless	Crystal

801	7	7	6	SPIEROID		COLAOURLESS	CRYSTAL
793	7	8	4	1) 1 SC		WHITE,	SHELSL
7'2]	7	5	4	EhLIPSOID	11	I. RED 7.5 R / / 11	GLASS
1719	1	6	1	Elidjesoid	W	MELLOK Y 5 3/12	GLASS
2369	6	11	8	Elditisoin	W	SELLOW 5 Y 8/12	GildASS
2217	6	5	1	DRAWN	1)	blue $10 \quad 136 / 7$	glass
2106	6	14	$\begin{aligned} & M I D=6 \\ & M A J=2 \cdot 2 \end{aligned}$	CONE: VRTIICAI INCISED		D. BROWN	TERRACOTPA
1897	9	11	5	CTLINDER	1)	L. BROWN OVER BLUE	GLASS
2313	6	11	$\begin{aligned} & M 1 D=9 \\ & M(D=19 \end{aligned}$			BRICK RED	TERRACOTTA
724	3	3	2	DIRAWN		White	SHEL.L
1283	1	5	5	SIMEROID	W	BLACE: WHITE MAND	Ghass
782\%	8/10	10	5	CYLINDER		OPAQUE WHITE	CORAL
9336	9	6	6	CONE	N	GREENISH 5 GY 5/6	COPDER
7896	$8 / 10$	6	8	CONE.	M	GREENISII GY $5 / 6$	COPPER
1956	3	8	5	CONE -	\cdots	GREENISII 5 GY 5/6	COPIER
1612	3	12.	6	CYLINDER	1)	GREENISH 5 GY 5/6	COPPER
9480	9	11.	2	LONGITUDINALLX゙ SEGMENTED	1)	GREENISH 5 GI 5/6	COPIER

7538	$8 / 10$	2	¢	HISC		WIITE	SHELL
1457	3	3	7	DISC		12. BHOWN	Jasper
9758	9	1	7	D ISC	1)	YELLOW $58 / 1$ © (BROWNLSI WEATHERI	glass NG
92886	9	11	3	13ICONE:IIEXAGONATAL FACETED		r. TRANSLUCENT 5 R $4 / 12$	CARNELIAN
9155	9	2	8	D ISC		WHITE	SHELL
9639	9	2	6	DISC		W'IITE	SIIEL.L
1611	3	2	3	DRAWN	D	YELLOW WITII A BROWNISII WEATHERIN 5 Y 8/12	GLASS VG
9453	9	2	¢	DISC		WHITE	
7962	$8 / 10$	4	17	SQUARE: TWO PERATED HOLES		COLOURLESS	GLids
7895	$8 / 10$	9	7	SPIIEROID	W	GREENISII	coprer
3501	6	12	1	CJLINDFR: LONGITUD) LNALLY IPERCRI) W1TH ^ SCRABBHE DECORATION AND TWO BLACK BANDS AT FACH END		L. BrOWN	GIMSS
3605	6	2	6	DISC		COLOURLESS	CRYSTAL
3611	6	2.	${ }^{6}$	DISC		WHITE	SHELL
3611	6	2	;	1) 15 SC		WHITE	SHELL

1702	3	8	8	SPHEROID	L. BROWN	AGATE
1702	3	2	12	DISC	1) BLUE $5 \mathrm{~PB} 3 / 8$	GLiSS
3502	6	2	3	DRAWN	D) BLUE $5 \mathrm{~PB} 3 / 8$	GLASS
502	6	2	5	DISC	WHITE/MILKY	ALABASTER
					WEATHERING	
3502	6	4	1	URAWN	R. BROWN	JASPER
504	6	3	3	DRAWN	R. BROWN	JASPER
1704	3	12	6	CYLINUER	R. TRANSLUCENT	
					$5 \mathrm{R} \quad 1 / 12$	C \triangle KNLLIAN
960	$8 / 10$	1	4	D ISC	WHITE	SHELL
501	6	2	3	LHAWN	1) TELLOW 5 i $8 / 12$	GLASS
501	6	2	. 1	DISC	BLACK 1	ONYX
501	6	3	5	OBLATE	IBLACh	ONYX
501	6	1	3	IISC*	R. BROWN	JASPER
558	6	13	8	LONGITUD-	BIACK	GIAASS
				IIN入		
				Slicmi		
				(2 BLADS)		
502	6	2	4	DISC	1) BLUE $10 \mathrm{~B} \quad 6 / 7$	GLiSS
502	15	3	10	1) 15C	W. GREEN 5 GY 5/6	GLASS
502	6	1	2	1.RALVN	RED 7.5 R 4/11	CARNELIAN
502	6	2	7	UISC	WHLIE	SHELL
502	6	2	(;	D) 15 C	WHITE	SHELL
502	6	1	4	D1SC	WHITE	SHELL
302	6	1	4	D LSC	whlle	SHELL
502	6	1	1	. 1 ISC	WHITE	SHELL
30	6	1	4	D ISC	WHITE	SHELL
302	6	1	4	UISC	WH ITE	BUNE
302	6	2	6	$1 \mathrm{DSC} \rightarrow$	WHITE	boine
502	6	1	-5	DISC	WHITE	BONE
02	6	1	7	DISC	L) BLUE	GLASS

6315	10	8	7	SPHEROII	W	YELLOW $\overline{\text { a }}$ Y 8/12	Glass
6315	10	3	8	DISC:	W	YELLOW ら Y 8/12	GIJASS
6353	10	13	12	SPHER(RO11)	W	13LACK	GIASS
6262	10	1	4	リISC	D	GREEN 5 GY $5 / 6$	GLASS
6262	10	2	3	DRAWN	1)	GKEEN GY 5/6	GLASS
19269	10	4	3	DRAWN	D	GREEN 5 GY $5 / 6$	GLISS
6247	10	19	13	ELLIPSOID	W	13LACK	GLASS
6270	10	()	T	ELLIPSOJJ)	W	D. BLUE 10 13 6/7	GLASS
6293	10	21	7	BICONE	W	BLACK	GLISSS
6241	10	13	1.1	FIRIFORM: [1, ACK	M		
				WITH GREY AND			
				YELJOW IBANDS			
6241	10	9	8	SPHEROID	W	COLOURLESS	GILASS
6241	10	9	8	SPHEROID	W	COLOURLESS	GLASS
6241	10	$\overline{5}$	4	SQUARE (YLINDER	D	O. BLUE 10 B $6 / 7$	GLIASS
6293	10	4	5	ANNULAR	L	O. BLUE 10 B $6 / 7$	GLASS
6105	10	3	11	DISC	-	L.BLUE 2.5 PB $1 / 7$	GLASS
6435	10	8	15	BICONE	1)	2EY 2.5 PB 5/7	RACOTTA
7185	8	6	4	PLAIN C'YLINDEK	Γ	BLUE 2.5 PB $7 / 7$	GLASS
7214	8	11	22	CONE	D	REY 2.5 PB 5/7	racolya
7230	8	8	6	ELLIPSOID	W	L. BLUE 2.5 1PB $7 / 7$	GLASS
7124	8	5	4	SPHEROID	W	(OLOURLESS	C'RYSTAL
76	2	2	7	DLSC	D	WHITE	SHELL
85	2	2	5	1) 1 SC	W	WHITE	GLASS
85	2	6	7	SPHEROII	W	GREEN, WITH BLACK	GLASS

BAND ON CIRCUMFERENCE

170	2	2	1	DISC		WHITE	SHELL
116	2	\because	1	1315%		WHTTE:	Sllilal.
1.16	2	2	1	U1SC		WHITE	SHELL
7240	8	2	3	DRAWN	U	YELLOW 7.5 l - 12	GLASS
7121	8	9	6	HEXAGONALLI		K.TRANSLUCENT	GLASS
				FACEJEJ) BJCONE		$5 \mathrm{R} / 1 / 12$	
7093	8	12	11	SPHEROII	M	YELLUK $7.58 / 12$	GLASS
7121	8	5	1	SPHEROJJ	WHITE MILKY		
7121	8	5	4	SPHEROII)	WEATHEKLNG		A \triangle ABASTER
7105	8	12	11	ELLIESO! ${ }_{\text {\% }}$	M	BLUE	GLaSS
7228	8	8	1	ELLI PSOID	N	J). GIREEN 5 5/8	GLASS
6312	10	1	23	D) SC : CONCHNTR. 1 C	D	CREAM WHITE	SHELL
(i) 9.5	10	©	5	HEXAGONAL BEAD R.TRANSLUCENT WJTH F.C. CHAMFERED (OURNERS:TRIANGULAR FNTAS/SIDES FACETED TO A IRIANGUIAR APPI:A- RANCI, WHEN VIEWED FROM ABOVE			GARNELIAN
6.302	10	1	8	b) IS S ${ }^{\text {S }}$	W	GREEN 5 GY 5/6	GLASS
6.3 .37	10	3	7	DISC	W	YELLOW 7.5 Y 8/12	GLASS
587	3	1.7	17		P	BLAACK: WHITE WINDING	GLASS
				SCRABBL, EI)		LINES	
756	3	6	2	CYLINDER	1)	G.GRASS $7.5 \mathrm{G} 5 / 8$	GLASS
756	3	6	2	CYLINDER	D	G.GRASS 7.5 G 5/8	GLASS
2375	C	3	5	D) ISC	D	lELLOW 2.5 Y 8/12	GLAS
2371	6	8	6	SPHEROID	w	BLACK	GLAS
2233	6	2	9	JISC	1)	YELLOW 7.5 i 8/12	GLAS
3149	6	7	4	ELLTPSUID	W	YELLOW 7.5 Y 8/12	GLAS
7215	8	21	11	PLAIN BICONE	W	BLACK	GLAS
7283	8	7	5	ELl IPSOID	W	YELLOW 7.5 Y 8/12	GLAS
7295	8	6	4	SPHERO] D	iv	YELIJOW 7.5 Y 8/12	GLAS
6028	10	14	13	SPHELZOLD		MILKY WEATHERING	LABASTEI
6332	10	2	5	D [SC	W	G.GREV 7.5 G 5/8	GLAS
6.351	10	2	4	D. 15	W	YELLOW 7.5 Y $8 / 12$	
6354	10	2	'2	LTRAWN	D	YELLOW 7.5 Y $8 / 12$	GLAS

P08	8	3	8	I) ISC	W	G.GRASS $\quad 1.5 \quad 5 / 8$	GLASS
2026	6	1	2	HISC	I)	O.BLUE 10 B 6/7	(iLdSS
2369	6	4	2	P.CYLINDER	11	GREEN 5 GiY 5/6	GLASS
2219	6	+	3	ELLIPSOIU	W	YELLOW $\quad 1.5$ Y 8/12	GLASS
2219	6	2	2	SPHEROIU	W	YELLOW 1.5 Y $8 / 12$	GIASS
2219	6	3	2	DRAWN	D	IELLOW $7.5 \mathrm{i} 8 / 12$	GLASS
2.112	6	7	5	BARREL	W	L. BLUE 2.5 I'B $7 / 7$	GIIASS
2112	6	7	\%	SPHEROII	F.C.	T.RED 5 R 4/12 C゚AR	RNEI, ITAN
2.112	6	8	6	Elulfsold	F.C	T.RED 5 R 1/12 CAR	RNESI. I AN
$2+12$	6	6	1	SPHEROII	W	YELLOW 7.5 - $8 / 12$	GLuSS
2112	6	16	1	BICONE	W	BLACK	Glass
2107	6	2	3	LRAWN	D	YELLOW 7.5 Y $8 / 12$	GLASS

BTBLIOGRAPHY

Abungu G.A.
1987 The Historical Science on the kenya Coast and development of the towns and related topics. paper presented to the Workshop on "Urban Origins in East Eastern Airica Nairobi.

Allen, J. de t
197'2 Lamu , lublisher unknown, Nairobi
Allen, J de v
1.973 Swahifi Ornament: Art and Archaeology Research Papers 2:1-14

Allen, J. de V
1980 SwahiJi Culture and the Nature of East African Coast IJAH 15:2

Arkell, A. J.
1933 "Cambay and the bead trade" Anticuity, 10:292-306
Beck, H.C. 1928 Classification and Nomenclature of Reads Pendants. Archaeologia 27:1-7i

Bailey, 'T. J. N.
1981 statistical methots in biology (second edition). Bithard Arnold, London.

Bower, J. R. F., Nelson, C.-M. Waibel, A. F. and Wandibba, S.
1977 'The Later Stone Age Pastorad "Neolithic" Comparative
Study in Central lienya' Azania.

Bowman H. R., Gianque and Perinan I.
1970 Rapid X-ray fluorescence Analysis of Archacological Materials ln Rainer Berger (ed) Scientific methods in Medieval Archaeology.

Bozman, E. F.
1967 "Beads" Everyman's Encyclopaedia $己: 95 \mathrm{~J} . \mathrm{M} . \mathrm{Dent}$ \& Sons Ltil, London.

Brown, J.
1966 Excavation of a group of burial mounds at llkek near
Gilgil, Kenya Azania 1:59-if
Brown, J.
1970 Some molished axes from East Africa Azania 4:160-69.

Brown, H .
1988 "Siyl: Town of the Craftsmen: A Swahili cultural centre in the eighteenth and mineteenth conturies" Azania 23:101113.

Chittick, H. N.
1967 The description and dating of glass beads in Eastern Africa. Faper presented to the Conference on East Africa and the Orimen Naimobi.

Chittick, H. N.
1971 KILFA: An Istamic Trading City on the East African Coast volume II:The Finds Memoir No. 5 Pritish Institute in Eastern Africa.

Chittick, H. N.
1977 East Africa and the Orient Culture Synthesis in Colonial Times. Africa Publishing House, New York.

Chittick, H. N.
1984 Manda: Excavations at an Lsland port on the Kenya Coast. Nairobi, British Institute in Eastern Africa Memoir No.9.

Cox, G. A and Pollard, A. M
1977 X-ray Fluorescence of ancient glass beads; the importance of sample preparations. Archaeometry 19, 45-54

Davison, C. C.
1972 Glass beads in African Archaeology: Results of NeutronActivations Analysis, supplemented by Results of X-Ras Fluorescence Analysis Unpuhlished Fh. D Thesis, University of California, Rerkeley.

Dubin, L. S.
1987 The History of Beads. Abrahams, London Fitzpotrick, F.L.

1963 Our Animal Resources: Animals and Their Economic Importance llolt, Rinehart and winston Inc. New York. Gathel, C .

1967 Analysis of Prehistoric Economic Patterns.llolt. Rinehart and Winston Inc. New York.

Galichet, M. L.
1988 "Aesthetics and Colour among the Maasai and Samburu": Kenya Past and Present: Issue 20

Ginstone, T, and Khan, is.
1976 Uses of Coconut in West Africa. Onford University Press. Gow, J.
198. A survey of prehistoric beads from the Rift Valley and adiacent areas of Kenva.Mi」a T:17-35

GramLy, R. M.
1976 Upper [1eistocene archanolosical Uceurrences at site GV Jm/22 Lukeryy Hill, keuya. Man (N.S.) IL:319-34.1.

Guido, M.
1978 The Glass Beads of the Prehistoric and Roman Periods in Britain and Ireland. Society of Antiquarians, London. Hall, E. T., Banks, M. S. and Sitern J. M.

1964 lises of X-ray fluorescence Analysis in archaeology Archaeomet1.y 7:84-89.

Hall, E. T. Schweitzer, F: and TeJler' I'. A.
1975 X -Ray Fluorescence anajysis of Musemm obiects: A new Instrument Archaemetry 15:31-51.

Harding, T.
1961 Evolution and Culture. Ann Arbor, Liniversily of Michigan.

Horntyy: A. S.
1989 Oxford Advanced Learners Dictionary (Fourth Edition). Oxford liniversity Fress.

Horton, M. C.
1980 Shanga: An Interim Report. Inpublished Report for the National Museums of Kenya, Nairobi.

Horton, M. C.
198:3 Early MusJim Tmading on the Easl. African Coast: New Evidence from Shanga. Anthcuaries Journal 5:2.1-15.

Horton, M . C.
1984 The early selthement of the northern Swahili coast.
Unpublished Ph.D Thesis, University of Cambridse.
Horton, M. C.
1986 Some Evidence of Early Islamic Culture at Shanga, lienya Coast. Anticuaries Journal 6: $1-10$.

Kinssam, A.
1988 Traditional Ornaments: Some qeneral observations. Kenya Past and Present 20:11-16
keevin, G.
1983 Archaeoloes: An hatroduction. F3. T. Patsford Lete, London.

Kirliman, J. S.
1954 The Arab City of Gedi: Excavations at the great Nosque:
Architecture and Finds Oxford University Press, London.
Kickman, J. S.
1956 Ruined (ity of Gedi: The Culture of the lenya Coast in Later Middle Ages: Some Conclusions fromexcavations 1948-1956. Unpublished research papers of the Rritish institute in Eastern Africa.

Kratz, C. A.
1988 Okiek ormaments of Traditional and Transformation. Kenya Pasl and Present 20:21-26.

Leaker, $\mathrm{L} . \mathrm{S}$. B.
1931 The Stone Age Cultures of Kenya Colony. Cambridge
University Press, London.

Leaker, L. S. B.
1935 The Stone Age cultures of Kenya Colony. Oxford University Press, London.

Leakey, L. S. B.
1945 Notes on the skull and skeleton Material from Hyrax Hill.
In M. I. Leakey; Report on the excavations at Hyrax Hill,
Nakuru Kenya:-1937-1939. Transactions of the Royal Society of South Africa 30:271-109.

Leakey, N. D. and Leakey L. S. B.
1950 Excavations at Nioro River Cave Clarendon Fress, Oxford. Merrick, H. V.

1975 Change in Late Pleistocene Lithic Industries in Eastern Africa. Unpublished Ph.D Thesis University of Califormia. Mershen, B.

1989 Amulets and jewellery from Jordan: A study on the function and meaning of recent heal necklaces. TRIBUS 38:1358.

Momanyi, J. M.
1988 A study on Ostrich-oge shell beads irom Jarigole, Northern_Kensa. Unpublished B.A. dissertation, University of Nairobj.

Moreison, H.
1984 Giass Beads Memoir 9, Pritish Institute in Fasterm Africa.

Morvison, H.
1985 The Beads Excavations at Aksum (ed) Munro-Hay Memoir 10:168-178 British Institute in Eastern Africa, Nairobi.

Murdock, (B. P.

1959 Africa: its Deoples and their culture history McGrawHill, New York.

Mutoro, H. N.

1979 A Contribution to the study of cultural and Economic dynamics of the historical selthements of East African Coast with particular reference to the ruins at Talia North Kenya coasi. Uhmuhlished M. A. Thrsis, University of Nairobi.

Mutoro, H.W.
1390 The Mjifkonda Kaya as a sacred site. Paper presented to The 2nd world Archaeological Congress. Barduisimeto. Venezuela September, 1490.

Murse, D. and Spear, T.

1985 The Swahili: reconstructing the history and language of an African Society 800-1500. Unjversity of Penmsylvania Fress Phid ade Lphia.

Onvango-Abuge, J. C.
1977 A contribution to the sludy of the Neolithic in East Africa with parbicular reference to Nakuru-Naivasha basins. Unpublished Ph. J Thesis, University of California, Merkeley.

Phillipson, I. W.

1977 The Later Pre-History of Fastern and Southern Africa. Heinemann, Nairobi.

Prins. A. H. J.
1965 Sailing from Lamu: a sLudy of Maritime culture in lstamic East Africa. Assen Van Gorcum.

Salim, A. L.
1973 The Swahili-speaking peoples of kenya's Coast, 18951965. Enst African Publishinu House.

Sassoon, H.
1.966 New views on Engaruka Northern Tanzania Journal of

African History VIII 2:210-217.
Schlee (. .
1988 Beads as Status Markers among the Rendille: lenya past and Present 20: 31-37.

Sease, J.
1987 Ancient ormaments in beynt, Cairo.

Sleen, w. G. N. Van der

1956 'lvade wind beads. MAN ITFM 154
Sleen, W. G. N. Van der
1967 A Handbook on_Beads. I'ubJication of Journal
Internationals de Verre, Liegex, Belsium,
Sutton, J. E . G.
1974 The Aquatic Civilization of Middle Africa J. A.H 15:52t-16 Van de Merwe

1989 Standardized Analysis of Glass Trade beads from MgungundhJovil and Ondini nimeteenth century Zulu tapital

Sites. Solith African Archacological Bulletin. 44:98-105

Wandibba, S. 1988 Pre-historic Reads in kenya. Kenya past and present $20: 17-20$.

Weelis, J. H.
1985 The Gongo in Hutchinson, W. (ed) Customs of the Norld: A Popular Account of the Manners, Kites and Ceremonial of Men and Women all Countries. Volume II. Concept Publishing Company New Delhi pr $738-760$.

[^0]: Tabje 1: Ram materials and number of bead specimens from Banda. (Source:Moríison 19ß1).

