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ABSTRACT

A fundamental consideration in densification of geodetic 
networks is how to handle the position values of the already 
established datum stations. The question is: shall they be 
considered as stochastic or as fixed, non-stochastic entities?.

Different densification models have been put forward as 
solutions to the question above. These are distinguished by the 
manner in which higher order net points are handled within the 
densification process.

Presented herein is a study aimed at evaluating three 
densification approaches, namely; static, dynamic, and static- 
dynamic densification models with a view to identifying their 
strengths and weaknesses as models for densification of geodetic 
networks. In the static densification model, existing stations are 
held fixed and assumed errorless, while in the dynamic 
densification model, the existing datum parameters are treated as 
stochastic. The static-dynamic model treats datum parameters as 
stochastic prior information, while at the same time keeping them 
numerically and stochastically unchanged.

To evaluate these models, each was used to adjust a network at 
two levels of densification. The adjustment process involved- 
estimation of parameters for secondary and tertiary densification 
networks built on a datum defined by adjusting the primary network 
within the framework of a free network. For each model and at every 
level of densification, the resulting parameters, standard errors 
of points and their corresponding standard error ellipses were 
compared against each other. Through analysis of these results the 
strength and weaknesses of each densification model have been 
appraised.



A real network forming a part of the geodetic network of Kenya 
was adopted as the test network. The network consists of eight 
primary control stations, fifteen secondary stations, and twenty- 
two tertiary stations. Using original field data the test network 
is densified in two levels using the three densification models 
above.

The results indicate that standard errors and point error 
ellipses from the static model are the smallest, followed by those 
from the static-dynamic model, and finally those from the dynamic 
model. The standard errors for the static model are expected to be 
small algebraically because they are based on a fixed and errorless 
datum; with the datum being stochastic these results are not 
representative enough.

The dynamic and static-dynamic densification models 
incorporate stochasticity of datum parameters, in the static- 
dynamic model datum parameters are maintained definitive, while in 
the dynamic model all parameters are estimated afresh, thus 
resulting in the loss of the concept of datum. It is on the basis 
of the stronger theoretical and practical qualities of the static- 
dynamic model that the model would ordinarily be recommended for 
geodetic densification of networks.

The results in general demonstrate that the static-dynamic 
model gives more realistic estimates than the static and dynamic 
models hence it is a more suitable approach to the densif ication of 
geodetic networks.
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NOTATION

Listed below are the symbols used in the text. The page at 
which the symbol first appears is also given in parenthensis.

y  - vector of observations (18)
x - vector of unknown parameters (to be estimated) (18)
A - design matrix
W - positive definite weight matrix(18)

<Jq - variance of unit weight (18) 

e - observational error (18)
E(x) - expectation of X(19)
E(e) - expectation of observational error(19)
E{y) - expectation of y(19)
D(x) - dispersion of x(19)
D(y) - dispersion of y(19)
D(e) - dispersion of observational error(19)
r - vector of constants(20)

R - restriction design matrix(20)

L - Lagrange function(21)

d0“ - a posteriori variance of unit weight(23)

n - number of observations(18)
c - the number of restrictions(18)
m “ the number of unknowns(20)
Prx ■ cofactor matrix (24)
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c r [ 0 ] - trace of cofactor matrix(24)
N - normal equation matrix(25)
G - as defined in text (25)
jc, , x2 - vectors as defined in text (27)

A , A, - design submatrices (28)

X - vector of Lagrange multipliers(21)
- dispersion of X (29)

Ax, , A x 2 - unknown parameters to be estimated (30)

2 - variance covariance matrix of the observations(3 3 )

~o~c - circular probable error (53)

aE , aN - standard errors in E and N respectively (54) 

aE~ - variance of the easting (55) 

oiV2 - variance of the northing(55)

~ covariance between easting and northing(55) 

a - semi-major axis(55) 

b - semi-minor axis(55) 

a - bearing of the semi-major axis(5 5 )

- null hypothesis(80)

- alternative hypothesis (80)

X - chi-square test at m degrees of freedom(80)



a - chi-square test at m degrees of freedom(80)

= - F-test statistic at (%,/n, , m, degrees of freedom
l/ 2

for samples 1 and 2 (83)



CHAPTER ONE

INTRODUCTION

After a geodetic network has been set up, the requirement 
to extend it to the nearest proximity of a particular area of 
work almost immediately arises. The extension of the geodetic 
network is known as densification. The densification problem 
arises where, with new additional observations, certain new 
stations have to be introduced into the already existing 
network. The special question is then how to handle the 
position values of the already established datum stations; 
shall they be considered as stochastic or as fixed, non­
stochastic, entities?.

There are basically four densification approaches which 
have been proposed. The main distinction in the four models is 
dependent on how the coordinates of the higher control 
stations are handled during densification.

In one approach, the existing stations are held fixed and 
are considered errorless; this solution has been referred to 
by, among others, Pslzer [1980] as hierarchical densification, 
Cooper [1937] and Aduol [1993] as static densification while 
Vanicek and Lugoe [1986] refer to it as overconstrained 

adjustment of densification.

In another approach, referred to as the semi-dynamic 

solution discussed by Blaha [1974], coordinates of existing 
stations are held fixed, as in the static case, but their 
covariance information is propagated into the new stations;
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this approach has also been termed as quasi-hierarchic or 
p se udo-dynamic (Van Mierlo [1984] and Wolf [1983]) .

In the third approach, instead of the datum points being 
considered fixed and errorless, they are considered as 
stochastic, such that during densification, estimation for 
parameters is within a model combining rigorously both sample 
and orior information. In which- case both the datum and new 
stations are adjusted. This means that the existing stations 
will obtain corrections for their coordinates, i.e., they 
"move”. This is the dynamic densif ication model approach, as 
has been referred to by Cooper and Leahy [1978], Pelzer 

[1980], El-Hakim [1982], Wolf [1983], Papo and Perelmuter 

[1985], Schaffrin [1985].

In the fourth approach, proposed by Aduol [1993], the 
properties of both the static and dynamic models are combined. 
In this model densification parameters are estimated by 
incorporating datum parameters as stochastic prior 
information, while at the same time keeping them numerically 
and stochastically unchanged. Aduol [ibid] has termed the 
model as the static-dynamic densification model. A model of 
similar characteristics is also referred to as estimation with 
incomplete prior information by Theil [1963] .

In the present study, three models for densification of 
geodetic networks, i.e. static, dynamic, and static-dynamic 

models are considered. The models are considered in so far as 
-heir practical applicability is concerned, and specifically 
an evaluation of their suitability as solutions to the

2



densification problem in geodetic networks.
The pseudo-dynamic densif ication model discussed above is 

not considered since the proposed model had the serious 
drawback that on one hand datum parameters were treated as 
non-stochastic, hence fixed, while on the other hand they were 
created as stochastic resulting in an inconsistent estimation 
model [Aduol 1993] . Further, Wolf [1983] had earlier 
demonstrated mathematically that the "compromise-solution", 
which exhibits similar characteristics with the pseudo-dynamic 
densification model, leads to a bias in the residual system. 
In which case the adjusted connection (angles, distances) to 
the given stations are falsified.

1.1 The Statement of the problem
In the traditional approach to network densification, 

subsequent networks are built upon earlier ones on the basis 
that datum points, i.e. higher order net points, are known 
exactly. For example, traditionally, geodetic networks are set 
up on the basis of triangulation-trilateration where primary 
triangulation points are considered 'fixed' in form of exact 
restrictions, on which basis secondary triangulation points 
are adjusted. Consequently tertiary networks are set up on the 
basis that secondary points are fixed and errorless.

The traditional densification approach has however some 
disadvantages, the main one being the assumption that higher 
order net points are errorless yet in real sense they are 
stochastic, having been obtained from a prior estimation. This
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will always lead to falsified estimates, which is so because 
the treatment of stochastic information as exact will 
ordinarily result in unrealistically high precision for 
estimated parameters [Aduol 1996].

Considering densification by addition of points or 
observations through secondary measurements, in which, for 
example, secondary measurements are more precise than those 
which constituted the primary net, as is most likely to be 
with more modern instrumentation, holding the primary stations 
fixed leads to unwarranted distortion of the newer work 
[Cooper and Leahy 1978].

It can be noted that the static model approach is not a 
rigorous solution to the densification problem from the fact 
that the assumption that datum coordinates are fixed is not 
exactly true, since first order points are in fact stochastic, 
themselves having been obtained from the first network 
adjustment, and according to Blaha [1974] this results in too 
optimistic results.

Considering the fact that fixed points have stochastic 
prior information, which is neglected when using the static 

model, the semi-dynamic model incorporates this stochastic 
prior information. In this model coordinates of existing 
points are held fixed, as in the static case, but their 
covariance information is propagated into the new stations 
-Nickerson at.al 1986] . However, the use of the semi -dynamic 
model as an improvement on the static model is hampered (as 
noted above) by the fact that on one hand datum coordinates
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ar^ treated as fixed while on the other they are treated as 
stochastic, which results in an inconsistent estimation model.

The realization that the static and semi-dynamic models
were not rigorous enough led to studies in which densification
was accroached by considering datum coordinates as stochastic
during the estimation process, i.e. the use of the dynamic

model as recommended by among others Cooper and Leahy [1978],
Peizer [1980], El-Hakim [1982], Papo and Perelmuter [1985],

and Nickerson et. al [1986]. Incorporating stochastic
restrictions in the estimation model usually results in a more
realistic estimation of parameters. Thus the dynamic model is
statistically more rigorous than the static model. However,
from a practical point of view, this model has the
disadvantage that datum coordinates change values during the
adjustment. It is pointed out in Aduol [1993] that
"coordinating a single point by intersection with dat'um points 
forming a part of the national geodetic reference system, the 
single new point would (theoretically) cause all points in the 
national network to acquire new coordinates and new stochastic 
parameters. With this it is noted that the concept of a datum, 
which is so vital for a national reference system, is 
effectively lost".

It is against this background that Aduol [ibid] has 
proposed the static-dynamic model in which the properties of 
both the static and dynamic models are combined as a way of 
network densification using the two models but avoiding their 
weaknesses. In the static-dynamic model, coordinates of the 
fundamental net stations are considered as stochastic so that 
their covariances are fully taken into account while at the 
same time they are considered as non-stochastic, i.e. they

5



retain their definitiveness.
The advent of modern technology which has provided the 

geodesist with sophisticated computational capabilities at low 
cost, as well as the development of the various densification 
models mentioned above, are two factors that have led to the 
realization of the necessity to reconsider adjustment of 
densification of national and regional geodetic networks, with 
special consideration to the accuracies of the datum points.

From the foregoing discussion, densification of networks 
is a very important aspect of geodetic work and various models 
are available for its realization. However each of the 
available densification models has its empirical and 
theoretical weaknesses, so that there is need to study the 
densification models with a view to evaluating their practical 
applicability and their overall suitability for geodetic 
densification work.

1-2 objective of the study
The main objective of the study herein is to demonstrate 

the practical applicability, and to evaluate the suitability 
of, the static, dynamic and static-dynamic densification 
approaches, in relation to the densification of a part of the 
Kenyan geodetic network, as a representation of geodetic 
networks in general. Through this, it is hoped to gain an 
insight into the effectiveness of particular densification 
models in addressing the fundamental problem of densification 
1 *e *' k°w to treat the already fixed points. Further, to
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stabl'ish which of the approaches is best suited for 
recommendation to be adopted for geodetic densification work, 
and under what circumstances.

1.3 T.i terature Review
Studies on densification of geodetic networks have 

paralleled geodetic network set-up over time. As Aduol [1993] 

observes, "densification of geodetic networks remains one of

the basic operations a surveyor must undertake ". In the
conventional approach to network densification, the datum
coordinates are considered fixed in the form of exact
restrictions / -j S. \ 1C! £3 \ . , u. o c q -r — V\ p static model}. The wide
application of the static model in densification work and its
inherent limitations led to studies of more rigorous 
alternatives [Wolf 1983].

The necessity to consider datum coordinates as stochastic 
was already recognized as early as 1882, in which year 
W. Jordan advocated for the fact that datum coordinates in 
densif ication networks be treated as "correlated observations" 
[Wolf 1983]. At the start of the twentieth century, 
researchers had realized the need for incorporating the 
stochasticity of datum parameters in subsequent network 
densification [Aduol 1993], with which realization new 
coordinates were estimated on the basis of fixed datum 
coordinates, while the "errors" on the estimated coordinates 
were computed through "error propagation" incorporating the 
error on the datum coordinates. Recent works on this approach
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In econometrics, by mid-twentieth century statisticians 
had realised the need for introducing a priori information in 
econometric estimation processes. Durbin [1953] demonstrated 
that there was a diminution in computed variances during 
estimation processes in which extraneous information was 
incorporated as opposed to the process in which it was not. He 
further developed a mathematical model to accommodate 
regression when there was partial extraneous information.

Theil and Goldberger [1961] highlighted the uncertainties
that arose when, during statistical estimation of economic
relations, a hypothesis is formulated, and appropriate
computation to provide desirable estimates of parameters of
the linear relation carried out, only to find that the
estimated income elasticity of some commodity was negative. In
their search for a statistical estimation model to accommodate
a priori information, Theil and Goldberger [ibid] are quoted
as saying "an investigator does not accept this negative 
estimate but rather attributes the result to the incorrectness 
of his previous hypothesis and perhaps decides to change his 
set of explanatory variables. It is well known, but also well 
ignored, that exact probability statements can no longer be 
made if the hypothesis is thus rejected in the light of the 
evidence.

The difficulty seems to be that the investigator has a 
priori knowledge which he can not conveniently incorporate in 
the hypothesis and which he therefore omits. This kind of a 
priori knowledge, however, is precisely the major source of 
rejactions of hypotheses; it seems clear that it is logically 
more consistent to incorporate such knowledge in the 
hypothesis right at the beginning than to exclude it from the 
ypothesis and reject it afterwards when the results 
contradict the omitted knowledge."

term it as quasi-hierarchic or pseudo-dynamic solution [Van

Mierlo 1984, Nickerson et al. 1986].
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They went ahead and proposed a model of "mixed" 
estimation which was an effort to incorporate prior knowledge 
of coefficients in regression analysis and other linear 
statistical models. This prior knowledge was formulated in 
terms of prior estimates of parameters which were assumed to 
be unbiased and to have a moment matrix. It has to be noted 
that this can be considered as part of the fundamental 
mathematical formulation of the dynamic model.

Theil [1963] analyzed the use of incomplete prior 
information in regression analysis. He considered the 
combination of prior and sample information with the fact that 
both were stochastic but independent of each other. He tested 
the compatibility of the two and proposed a measure for the 
relative contribution of sample and prior information to the 
results of estimation.

The 1970's saw the emergence of intensified work in 
search for rigorous densification solutions in light of the 
realisation that there was need to provide for stochasticty of 
datum parameters in the adjustment process. A method for 
combining stochastic prior information in a vector of 
regression coefficients with incomplete prior information on 
the variances of the disturbance terms was developed by 
Toutenburg [1974]. This enlarged the general linear regression 
model to give a restricted regression model. This work can be 
considered as the setting of the mathematical basis for the 
static-dynamic model.

Blaha t1974] considered the existence of uncertainties

9



during densification work, when fixed parameters were 
neglected in variance-covariance propagation. The main aim of 
his study was to correct the variance-covariance matrices for 
the contribution of such uncertainties by considering the 
general least squares method with weighted, unknown, or some 
weighted and some unknown parameters, hence providing a more 
generalized approach to hierarchical densification. This was 
an expansion on the work of Papo [1973], where he proposed a 
method by which without altering the values of the adjusted 
parameters their a posteriori (after adjustment) covariance 
matrix could be improved by inclusion of the effect of 
uncertainties in the constants of the adjustment process.

The Blaha algorithm, as outlined in Blaha [1974], is a 
method that permits the propagation of random errors from a 
previously determined network into the accuracy estimates and 
solution vector for merged network points, without affecting 
the original network's accuracy or solution vector.

In their studies on densification, Cooper and Leahy 

[1978], outlined the possible dangers in the conventional 
densification approach in which the primary net points are 
assumed to be fixed absolutely and the inclusion of secondary 
networks being by adjusting secondary measurements only. In 
their study, they undertook adjustment of a second order 
network using two approaches. In one, positions of the primary 
points were assumed fixed, and in the other, these positions 
were regarded as correlated and thus not held fixed. The 
esu ts °f their study indicated that the densif ication in

10



which primary positions were regarded not fixed yielded a
better adjustment. They are quoted as saying "it is a simple 
matter in adjustment to allow for random errors in the 
p r e v i o u s l y  fixed and correlated coordinates if they are 
known ".

It has to be noted however that this approach has the 
weakness of introducing new coordinate values and stochastic 
parameters for the primary network which may constitute the 
national geodetic reference net, and as such, the vital 
concept of datum is effectively lost [Aduol 1993].

Several methods for computing coordinates of points in a 
densification network by considering the already fixed net 
points as random variables, were discussed by Koch [1983a]. In 
addition, he addressed the special case of transformation of 
the covariance matrix for the coordinates of the fixed points 
of the network if the datum was changed during the 
densification process.

Koch [1983b] discussed the definition of datum for 
geodetic networks in the case of densif ication. He stated that 
the datum should be established such that within the class of 
certain definitions the trace of the covariance matrix of the 
estimated coordinates of additional points and of the points 
°f the network connected with the additional points becomes 
minimal. Koch [ibid] demonstrated that such datum could 
readily be obtained by means of a matrix that contained a 
basis of the null space of the coefficient matrix for the 
model of parameter estimation.
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The special question of how to handle the position 
values of the already fixed stations is: shall they be 
considered as stochastic quantities or as fixed non-stochastic 
entities?. This was addressed by several researchers among 
them Van Mierlo [1984], who suggested the adoption of a 
"compromise solution". In this solution, the coordinates of 
the fundamental net stations are considered as stochastic so 
that their covariances are fully taken into account while at 
the same time they are considered as non-stochastic in which 
case they are not corrected by the resulting residuals and the 
discrepancies are arbitrarily put to zero. However, Wolf

[1983] , had demonstrated mathematically that the "compromise 
solution" led to a bias in the residual system. In which case 
the adjusted connection, i.e. angles and distances tc the 
given stations are falsified.

In hierarchical densification, the assumption that 
control points are fixed leads to covariance matrices 
depicting too optimistic results. It also means that the trace 
of the covariance matrix is in effect too small. Van Meirlo

[1984] considered this problem in detail and developed a 
mathematical system for determination of the inner precision 
of densification networks in agreement with the inner 
precision of free-networks.

It is evident that there exists considerable differences 
ln quality between the old and new measurements in 
densification of networks. Schaffrin [1985] suggested that it 
Was not aPPropriate to deal with both the new and old
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measurements in the same manner by simply adding the previous 
coordinates as "pseudo observations" e.g. as used in the 
static and dynamic models, instead he constructed a more 
robust method " the best homogeneously linear (weakly) 

unbiased predictor". This method proved to be robust enough 
against eventual errors in the prior information without 
destroying the "homogeneity of the neighbourhood".

Vanicek and Lugoe [1986] considered rigorous 
densification of horizontal networks in which a statistically 
rigorous densification model is compared to non-rigorous 
models. In the statistically rigorous adjustment of new 
points, i.e. the densificacion network, and junction points 
(datum points to which new points are directly linked through 
observations) are rigorously adjusted in phase adjustment 
modes where information from the existing network is 
propagated into the new phase of adjustment by: (i) using
existing positions of the junction points for initial 
estimates; and (ii) using the inverse of the covariance matrix 
of these existing positions for the a priori weight matrix of 
the junction points.

The non-rigorous approach involved "minimum constraint" 
adjustment of densification network holding the coordinates of 
one junction point fixed, and "overconstrained" adjustment in 
which all junction points were held fixed. These approaches 
Were applied to a simulated network and the results of the 
study indicated reasonably small shifts (less than lOppm) in 
ositions of densification points between the rigorous and
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non-rig°rous solutions. However, statistical analysis showed 
that the confidence regions for the non-rigorous solutions 
were not realistic, and hence the recommendation of the use of 
the statistically rigorous densification approach. 
Characteristics of this model equate it to those of the 
d y n a m ic model.

Nickerson et al. [1986] studied the effects of additions 
to, and densification of, the Maritime second-order geodetic 
control network by (i) holding existing stations fixed and 
errorless (static case); (ii) treating existing stations as 
fixed and errorless, but propagating their covariance 
information into new stations (semi-dynamic case); and (iii) 
performing a weighted parameter adjustment with existing 
stations weighted by their previously determined covariance 
matrix (dynamic case) .

The results of the study indicated that only the dynamic 
scheme provided realistic confidence ellipses for geodetic 
network densification. Unfortunately, this also resulted in a 
change in the coordinates of the existing stations. They thus 
recommended that one has to simply record and not apply the 
corrections to the coordinates of the existing stations, and 
use the covariance information provided by the dynamic model. 
it can be noted that this assumption leads to a distortion in 
networks which is not reflected in the confidence ellipses.

Cooper [1987] indicates the importance of considering the 
stochasticity of coordinates of the higher order points during 
ensification as opposed to 'fixing' them. The result of using
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the d y n a m ic model is that coordinates of datum points change 
as a result of the estimation of the coordinates of the new 
points. This introduces the anomaly of having two sets of 
coordinates for a national control point. The remedy for this 
is through the re-estimation of coordinates and covariance 
matrix for all points in the geodetic network, not just the 
points from which densification has been done [Cooper and 

L e a h y , 1 9 7 8].
Different models for the sequential optimization of 

geodetic networks were proposed by Illner [1988], in this 
study Illner [ibid] considered optimality during sequential 
sec up of geodetic networks i.e. hierarchical densificacion of 
networks. The proposed models for the solution of the 
sequential optimization included a dynamic solution, a static 
solution, and a hybrid solution.

Mathematical models for both densification and
integration of geodetic networks were looked at by Lugoe 

[ 1 9 9 0 ]. In this study, models for densification of
geometrically strong and geometrically weaker networks are 
discussed. Lugoe [ibid] then considered simultaneous
densification and integration which he observed as being a 
statistically viable approach to solving problems pertaining 
to densification and integration together.

More recent work on densification has been done by 
Aduol [1993] who observed that, the use of the dynamic model 
was tampered by the fact that datum coordinates attain new 
slues during adjustment. To circumvent this problem,
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Scha£frin [1984] had earlier proposed to adopt the dynamic 

solution, but to ignore changes on the datum coordinates 
unless such changes are "significantly" large [cf. Nickerson et 

2 1986]. It is immediately noted in this case however that
as long as changes on datum coordinates are merely neglected 
on the basis of whether they large or not, the finally adopted 
coordinates can not be consistent with the mathematical model 
adopted for the estimation of the unknown parameters [Aduol

1993] .

It is on this basis therefore, that Aduol [ibid] 

proposed the static-dynamic model for network densification. 
rphe need for this model becomes necessary in the light of the 
theoretical and empirical weaknesses of the static and dynamic 
models which may be overcome by a model that combines 
properties of the two.

To demonstrate this approach, Aduol [ibid] considered a 
simulated two-dimensional geodetic network comprising 19 
stations with the observables as horizontal angles and 
distances. Application of static, dynamic, and static-dynamic 
models yielded results which, from analysis of the respective 
variance-covariance matrices demonstrated strong theoretical 
and practical qualities of the static-dynamic model against 
the fully static and fully dynamic models for network 
densif ication. It is however, important to note that the above 
study was done on a simulated network, hence the need for
similar studies on real geodetic networks to ascertain the 
above result.
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Hakiboglu et al. [1994] analyzed distortions in the
ati0nal geodetic network of Saudi Arabia, in which assumed 

positions of the three densification stages of the network 
primary, secondary, and tertiary geodetic networks were 

compared against those determined from a modern GPS survey for 
the same region.

1,4 organization of the Report
The report is organised into eight chapters. In Chapter 

Two, linear estimation models relevant to the study are
presented while Chapter Three discusses the main geodetic
densificaticn models used in the study.

The test network on which the densification is applied is 
presented in Chapter Four. Chapter Five outlines the
computational procedures used while in Chapter Six, are
presented the results of these procedures as applied to the 
test network. The results are then discussed in Chapter seven 
and the relevant conclusions drawn in Chapter Eight.
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CHAPTER TWO 

ESTIMATION MODELS

presented in this chapter are linear estimation models 
considered relevant to the estimation of parameters in the present 
study. The simple Gauss-Markov model considered in section (2.1) is 
Che basic model, and its variants under exact and stochastic 
restrictions are then considered in sections (2.2) and (2.3) 
respectively. Finally section (2.4) discusses the free network 
adjustment model for datum specification.

2.1 Simple Gauss-Markov Model
The simple Gauss Markov model makes use of the principle of 

(least squares which requires that the sum of squares of the 
residuals be minimum. The model is fully described through the 
functional and stochastic models
Ax = E(y) , D(y) = VT1 (2-1)

where: y  is an n x 1 vector of observations
x is an m x 1 vector of unknown parameters (to be 
estimated)
A is an n x m design matrix
W is an n x n positive definite weight matrix 
of y , and 
2 • ,°o is the variance of unit weight.

is stochastic, it is associated with an observational 
e^r°r e so that we may write from (2-1) that
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y - AX + e'
With the least squares requirement that the sum of

residuals be minimum, and taking into consideration the weights of 
the observations, and provided A has full column rank, then the
e s t i m a t e s  of the unknown parameters x are given by

* = (ATtfA) -LATtfy (2-3)
w ith
D(X) = d^A'lWir1 (2-4)
and
d20 = (eTWi) / (n-m) . (2-5)

Further,
E(x) = x , (2-6)
indicating that x is an unbiased estimate of x .

In the event that the design matrix A is not of full column 
rank, we would have the case of Gauss-Markov model with rank
defect. In such case {ATWA)~l in equations (2-3) and (2-4) above 
would not exist. This situation arises when for instance the datum
for the coordinates being adjusted is generally incompletely
defined by observations and restrictions i.e. the observations do
not cater for all the degrees of freedom of the network [e.g., Koch
1987 pg.212] , when observation equations are formed it is necessary
to add a set of restrictions which in effect complete the
definition of the coordinate datum.

A coordinate system in three-dimensional space necessitates
the definition of seven degrees of freedom, if it is defined in
shape, this includes, one scale element, three translation elements
an three rotation elements. For a two-dimensional network, four
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elements for two and three dimensions which are defined by- 
inclusion of certain measurements in a network.The following

2.2 Hauss-Markov with Exact Restrictions
Exact restrictions may be incorporated in geodetic networks

for two main reasons; First, to overcome datum defects, and 
secondly, to fulfill certain physical or geometric conditions in
the modal. In general the Gauss-Markov model with exact
restrictions is set up in the form

y = Ax+e (2-1)

with (2-8) as the exact restrictions, in which r is a cxl vector of 

constants, and R is a cxm restriction design matrix. (2-8) is also

discuss the variants of the Gauss-Markov model under
forms of restrictions.

and r = Rx ( 2 - 8 )

referred to as exact prior information e.g., Durbin [1953] and 
Aduol [1993].
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To determine the estimate of x  under the least squares

onditi°n and further fulfilling (2-8) . The Lagrange function L is

used
L = t'wt * 2-9)

ith which, under least squares conditions the resulting normal 
equations take the form

A'Kft R (2 - 10)

provided the model i.e., (2-7) and (2-8) is of full rank, the
estimates of x  and X may be obtained through

a 'wa r ' (2 - 11 )

The inversion of the normal equation matrix can be performed 
through block-matrix techniques, see Aauol [1996] and Schaffnn 

[1984] .
As mentioned in (2-1), datum defects due to fewer degrees of 

freedom than necessary lead to rank deficient surveying systems, 
these are overcome through the imposition of appropriate 
restrictions (2-8). In the case where restrictions are introduced 
only to overcome datum defects and define the reference coordinate 
system, we have a minimally constrained model [Mikhail 1976; Koch 

1987]. where restrictions are more than, but include, those just 
needed to overcome datum defects results in an over-constrained 

model [Aduol 1996]. Under over-constrained models, it may happen 
that the simple Gauss-Markov model has full rank, in such a case
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thj_s is called over-constrained with full rank. However, if the 
simple Gauss-Markov model has a rank defect, such that among the 
restrictions some go towards overcomming the rank defects, it is 
refered to as over-constrained with rank defect.

2 3 Gauss-Markov with stochastic restrictions
In this case the rank defect in the design matrix is overcome

by introducing restrictions with their stochasticity. The
r e s t r i c t i o n s  are set up in the form 

r  = Rx + er, er - ( 0 ,  2rr) , for D{r) = 2 rr (2-12)

T a k in g  (2-12) together with (2-2) , GJauss-Markov with stochastic 
restrictions is expressed as

1 [a !— i jX

CO ■

J l*J u(0

on taking

y A 8y
z , A : = R

, and c : =
gr .

(2-13) may be written as 
y : = Ax + i, with e ~ (0 , H tt)

for

D( t ) yy
0 2 ,

(2-14)

(2-15)

(2-16)

on assumming that y and r are independent. With (2-16) the combined 

weight matrix W is defined in the form
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f t  = 2 »  =

I'1yy
0 H -l

provided the inverse exists.
Under least squares condition we have that

* s Ca'w a) -*ktwy

(2-17)

(2-18)

with
2** = a02 OrtH) - 1

where d02 is the variance of unit weight, given the form

d 02 = e ' t f f e / (n+c- m)  ‘ ( 2 - 2 0 )

for n being the number of observations, c the number of 
restrictions, and m the number of unknowns.

Further we have that
E(X) = (A!WA) _1 (Â WA) X - x (2-21)

Thus demonstarting that x is an unbiased estimate of x .

2.4 The Free Network Adjustment Model
The free network model is one way of defining the datum (see 

section 2.1.1) of a network so that the datum is not dependent on 
just one parameter, for instance, but instead the datum is 
dependent on parameters spread over the network. Such a network is 
considered free in that its geometrical size and shape is 
determined while remaining essentially independent of a reference
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datum-
The result of such a free network adjustment is that the 

onsistency of observations and thus the internal precision of the 
etwork may be checked, free of external influences associated with 
ttaching a network rigidly to an absolute reference datum. This 

makes free network adjustment best suited for adjustment of datum 
networks, as it results in fairly representative estimates of 
network parameters with uniformly distributed accuracies.

In free net adjustment the final datum information is drawn 
from the approximate coordinates of all net points, computed to an 
abitrary datum. This concept of the so-called 'inner solution' 
gives unique results. The inner solution is the minimum-norm least 
squares solution of the singular equations;
z'We =* min; (2-22)

x‘x =* min; (2-23)
and
tr[Qa ] => minimum (2-24)

These are generalized as inner constraints. With (2-22) as the 
basic least squares condition, in addition to which restriction (2- 
23) can be interpreted geometrically as representing a minimum 
possible deviation between final network coordinates and the 
initial approximate coordinates, which in effect controls the scale

°f the network, while minimal trace for the cofactor matrix Qa  in
(2-24) , which represents 'inner accuracy', ensures that the 
accuracy of the resultant coordinates is the best possible [Schmitt
1982] .
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Mathematically, datum is defined by setting up an exact 
estriction in the form of (2-8) but in this case R is a special 
matrix whose columns are made up of the normalised eigenvectors of
eigenvalues in the normal matrix
N = A'WA (2-25)
which have values equall to zero due to the rank defect in N [e.g., 
Aduol, 1996] . If R is expressed as G1 then due to the special form 
of G we shall have
UG1 =0 (2-26)
in which G is an orthorgonal matrix. The overall restriction can 
thus be written as
Q'x = 0 (2-27)
for a three dimensional network in which angles have been observed,
the corresponding restrictiom matrix for n points is given in the
form

' 1 0 0 I 0 0 . . . O'
0 1 0 0 1 0 . . . 0
0 0 1 0 0 . . 1
0 -i'l 0 2̂ -y2 . • • -Ya

-Zl 0 ’*2 0 x2 . ■ • Xa

*1 0 -*7 0 . . . 0
.*1 *i Zi *2 Y2 z2 . • ■ v

thus
' 1  0 0 1 0 0  . 0  '

0  1 0 0 1 0 0
0  o 1 0 0 1 1
0  z ± 0 ~ Y 2 ~ Y n

0«sT1

‘ * 2 0 x 2

* 1 0 ^ 2 - * 2 0 • 0____» * 1 * 2 ^ 2 z2 . V

Az:
= 0

(2 - 28a)

(2-28b)
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If the distances were determined, the seventh row would be 
dieted as observed distances control the scale of the network. 
Simiiarly, if azimuth observations were made then the fourth, fifth 
and sixth rows would be deleted. Varoius forms of the restriction 
matrix depending on different observation combinations are listed 
by  Illner [1985].

Noting that the normal equation matrix in (2-22) is singular,
the problem of adjusting free networks thus becomes principally one
of overcomming the rank defect in the normal matrix. Several 
approaches to the solution of N are considered in detail by among 
others Mittermayer [1972], Pope [1973], Grafarend and Schaffrin

[1974], Brunner [1979], and Meissl [1982]; for the theory of
generalised inverses, see Rao and Mitra [1971], Bjerhammar

[1973],and Ben-Israel and Greville [1974].
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CHAPTER THREE

GEODETIC NETWORK DENSIFICATION MODELS

Presented in this chapter are models used in densification 
of geodetic networks. The basic model is outlined in section 
(3 .1 ), it is then considered by incorporation of various 
restrictions to yield the static, dynamic, and static-dynamic 
models in sections (3.2), (3.3), and (3.4) respectively. Section
(3.5) briefly outlines the concept of weighting of observation. 
The contents of this chapter are based extensively on the work 
of Aduol [1993, 1996].

3.1 Basic Model
In densification of networks there are two groups of points 

to be handled in parameter estimation. These are the already 
existing points over which datum is defined, and the 
densification points to be freshly coordinated. Let the unknown
parameters associated with the datum points be collected in a 
vector xr and those of densification points into vector x2 . Thus 
if the vector of all unknown parameters in the estimation model 
will be x , then we have that

x = (3-1)

With this we set the linear Gauss-Markov model in the form
y  » A x+zy, cy~(0,a20ypr1yy) = (0,2^) , (3-2)

"n which y  is an nxl vector of observations, A is an nxm design 
* is an mxl vector of unknown parameters, ey is an nxl

ector of observational errors, a20y is the variance of unit
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wej_ght, and Wyy is an nxn positive definite weight matrix of y  . 
On making use of (3-1) in (3-2) we obtain

Xi +A2^2 + ® y • ( 3 “ 3 )

w h ere  x  and x^ are respectively of orders n^xl and n^x 1 , A^ and

are respectively design submatrices of orders nxm1 and

nxitiz , and

A • Az] . (3-4)
We have further that the datum parameters collected in x1 are

stochastic prior information, so that we may write in general 
the stochastic restriction as
r=R1x1+er, er~ (0,2 rr) , (3-5)

in which r is a cxl vector of stochastic parameters, Rr is a

cxm~ restriction design matrix, and S rr is a cxc covariance

matrix of r . Thus we have the model represented as
y=A1x1+A2x2+ey, ey~ (0 , a0yfr17y) = (0,2^) ; (3-6a)

r=R1x1+eT/er~( 0,2rr) . (3-6b)
This model was suggested by Durbin [1953] as the model for
estimation with incomplete extraneous information, and is 
considered as the basic estimation model from which various 
densification models are developed depending on how restrictions 
are incorporated.

3'2 Sie Static Dens if ication Model
In this model we have that the datum parameters are treated

aS exact prior information. The representation (3-6) then becomes
that nf Q . . .; exact restriction in the form
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r s ' (3-7)

s i n c e  for exact restriction e r = 0 ,  e r ~ ( 0 , 0 )  .
The full estimation model then becomes

^^2^2 + ®y' (0,0 oŷ ~ yy) “ ( 0 / S yy) ; ( 3 - 8a)

r=î 1XL (3-8b)
To determine the estimate of x  Under the least squares condition 
a n d  further fulfilling (3-8b). A Lagrange
f u n c t i o n  is used and the normal equations for this
s e t  up take the form

*1
A'2W „ A  0 =

>3 H* o o A r
where A is the vector of Lagrange multipliers. From this we
obtain that the estimate x of x is given as
x = (N/1 - N r~xR!Kr~lRNz~1) AlWyyY + N r~1R/K r~1r ,

for Nr := (A'WyyA + r 'r ) , Kr : = jttTlJ?', [see Aduol 1996(B-10)
with A = [A, A2] , i?= i?2]

Also the estimate D(X) of the dispersion of X is given as
D(l) = - N ^ R ' K^RN^) N(Nz~1 - N ^ R ' K ^ R N / 1) 
with

, (3-11)

do2 - (c/Wyy£)/(2i+c-/n) . (3-12)
In the special case that R1 is positive definite, we should have 
from (3-8b) that
*i = R1~lr
we then obtain that

(3-13)

y~\R1~1r = A2x2+ey. 
■̂f in this we set

(3-14)

c = = y - ^ - ' r  , (3-15)
n (3-14) becomes a simple Gauss-Markov model in the form
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(3-16)£ = A2x2Jr̂ y‘ ^y~ ( ̂  ̂ ̂ o ŷy) (O/S^y) ,
n̂ which we now have only the unknown subvector x2 appearing;

a n d  2 ^  - D { 0  .

In practice we normally have that the exact prior
information of (3-8b) comprises only the datum coordinates, so 
that the vector x1 contains only the datum coordinates. If we let

the exact prior information values of xx be , then (3-8b) 
becomes simply
C, = / (3-17)

being equivalent to taking r = Ci and R± = J1; where 

is a cxc identity matrix. With this we now have from (3-15) that 
C * y-ACi (3-i8)
From (3-16) the estimate x2 of x2 is obtained in the form

x2 = (A2'WyyA2)-1A\WyyC>,
with DU^) = ' l  (3-19)
for a20 = (zvWr/zy) / (n-m2)

It is usual in survey practice to start off a parameter
estimation from approximate values of the parameters, normally
for linearization purposes. In such case we would have that 
xi = xQ1 + Axx and x2 = x02 + Ax2 , (3-20)

in which xQ1,x02 are the approximate values to xx,x2 respectively.
in such situation (3-6) takes the form
/  = A,Axx + + ey , ey ~ ( 0 ,  a^&T1^ )  ,

r  = J21A x 1 + e r , e r -  ( 0 , Z r r )
the unknown parameters to be estimated are

now and A x 2 , from which estimates of x± and may then be
w^?in6d through (3-20) ; and correspondingly (3-7) and (3-13) would become

,R1Ax1/ Axt = Hr. (3-22)

(3-20) we take = Cx = x01, then in (3-22) we have
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(3-23)AXi
And
y

* R'lr = 0 .
following onto this we notice that (3-21) becomes

s A 2A X 2 + ey'ey ~ Oy" yy' (3-24)
hich is similar to (3-16) and from this we obtain the usual
estimates

AXo = (A2/̂ yyA>'1 ,
wich 0 (AA2) = a20y(-»XA>'1 (3-25)
for d2o = (i'yKyyiy) /  ( n - m , )

T h is  is the form of parameter estimation often adopted in the
s t a t i c  densification of geodetic networks. It should be noted
c h a t  t h i s  model is basically the same as the simple Gauss-Markov
w i t h  exact restrictions i.e. (2-7) and (2-8). However we notice
c h a t  in this case the design matrix and the vector of unknowns
are partitioned into components to represent contributory factors
for fixed and new parameters respectively. It is also important
Co observe from (2-7) that datum parameters are treated as exact
prior information, hence the effect of the uncertainties in the
datum  parameters on the estimated parameters is implicitly
ignored. This implicit omission is not justified as the datum
p a r a m e te r s  themselves could probably have been obtained earlier
th ro u g h  an adjustment process and have a covariance matrix
associated with them. The effect of neglecting the covariance
matrix has been considered in depth by Wolf [1983].

3 •3 Sie Dynamic Densification Model
The dynamic densification model is based on the use of 

stochastic restrictions within the framework of the model 
rePresented in (3-6), in a combined form we have
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(3-26)>] s Ai *2 *1 + 8y
r *1 °. Cr

on taking,

we have that
yc =Acxc + cC'

A  A,
; Xr = *1

0 *2.

Cc ~(C),a2oyir1yy)

in which, on the assumption that y  and r are 
shall now be having

'2 0
B(e() =0- £<«<) “

oy' yy
° Or^rr

= SfC

The corresponding weight matrix is given as

%  "
°\y”yy °

®*0r**r
= s -1CC

This is the mixed estimation model of Theil 
[1961] . From the definition A = Â ] ,R - [î  0]

X - (Af’W/'f-Af-) 1A^W^(t
= (A/S ‘1yyA + J?/S-1rrR)'MA'S'^y + J?/T-1rrr)

with
D{St ) = -l
and
“V  = (t'ylTyft) /tiaCe (WyyQtyQ'y)

320r = (?'rIfrr8r) / trace (WrrOerCtr) 
in which

5<rc ei = o r r  -  j e c ^ '  = r lrz - r {a 'w<ca ') ~1r i

®«y°«y = Qyy - AQffA1 = - A U V ((A') ~1A /

 ̂ êŷ ty cf.[Mikhail 1576],
and
er = OtrOtr HTrix
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(3-27)

(3-28) 

independent, we

(3-29)

(3-30)

and Goldberger 
,we have that

(3-31)
(3-32)

(3-33a)

(3 - 33b)

(3 - 34a) 

(3-34b)

(3-35a)

(3-35b)
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This model is developed principally on the basis of the 
■*imple Gauss-Markov model with stochastic restrictions as in (2- 

in this approach to densification, both datum and new network 
parameters are estimated in (3-3) . Statistically this is a better 
approach as compared to the static approach since the 
stochasticity of datum parameters is considered with the 
framework of adjustment, thus providing a more realistic 
estimation. On the other hand this approach to densification 
provides new values for datum coordinates, which implies any 
small densif ication work will lead to the readjustment of the 
whole network, thus the concept of national geodetic reference 
systems loses meaning and this, may translate into uncontrolled 
geodetic works which would be so hard to harmonize.

3.4 The Static-Dynamic Densification Model

If in (3-6) be a positive definite matrix, then we may
write

- er) (3-36)
so that (3-6a) becomes
y = (r-zy)+A2x 2 + ty, e-iO.a2̂ - 1̂ ) = (0,2^) (3-37)
or
y - A ^ - 1r = + ey - \ R ^ z r) .

0n taking y. = y  - e: = ey - A1R1'1tr

We have that
+ e ,  e ~ ( 0 , 2 ^ )

D ") = S„ - 2 ^  Xyy. ♦
*°2Cyff'-yy *

°n using least squares we obtain

(3-38)

(3-39)

(3-40)
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(3-41)
ft *
and

^2 ̂yy 1y

= J, , i.e. identity matrix of the same dimension as .
T hen, from (3-41) and (3-42) we would now have that

* = + AlSrA')^]'1
lA2,(o2oyIf ~''yr + Ai2 rA'> “ -^r) ] , 

£(*,) = [(^(a2̂ - 1̂  +
(3-43)

We note that with this model we are able to estimate 
densif ication parameters ^  by incorporating datum parameters x, 
as stochastic prior information, while at the same time keeping 

x 1 numerically and statistically unchanged. This provides for a
balance between the static and dynamic approaches to
densification as it considers the stochasticity of datum points
while at the same treat: ing them as fixed.

3.5 Weighting of Observations
Weights are related to variance in the following way

where o02 is the variance of unit weight, also called variance

(3-44)

factor or sometimes the variance component. ai2 is the variance

°f observation i. Using the matrix notation, we may represent the 
Weight matrix, W as

(3-45)(3-45)

where 2yy is the variance covariance matrix of the observations.
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protn equation (3-44) we note that the problem of weighting 
to that of determing the standard errors of differentreduce^

R a t i o n s . In the present study it is assumed the observations 
not correlated thus the initial weights were determined by

ohsei
were
imply inverting the squares of the adopted observational errors 
aS outlined in the various sections of chapter four. However, the 
values for weights are scaled accordingly during the estimation

process.



CHAPTER FOUR

THE TEST NETWORK

in order to test and evaluate the models discussed in chapter 
hree, data from a part of the Kenyan geodetic network were 
adopted. The data which were obtained from Survey of Kenya records 
of measurements and adjustments included initial observations for 
Che primary, secondary, and tertiary networks. The primary network 
denoted as KGN-1 hereafter, consisted of eight first order 
horizontal control points sepearated by an average distance of 39 
Km (as shown in Fig.l). KGN-1 was then densified to fifteen second 
order horizontal control points with an average distance separation 
of 13 Km, the secondary network shown in Fig.2 will be referred to 
herein as KGN-2. Further, KGN-1 and KGN-2 were densified to twenty- 
two third order horizontal control points separated by an average 
distance of 8 Km. The tertiary control network shown in Fig.3 is 
denoted hereinafter as KGN-3.

Data consisted of the original field observations for 
distances and angles, and the adjusted coordinates of the network 
stations. These coordinates are based on the U.T.M. grid. It has to 
be noted that these coordinates were adopted as approximate in the 
Present study. For the purpose of easy identification and use in 
Programming the network points were coded hierachically, where the 
ei9ht primary order stations were assigned numbers 1-8, the fifteen 
Secod order stations are assigned 9-23, and the twenty-two third

3 6



0jfdê  stations given 24-45. In the following sections these numbers 
vfill be usec  ̂most commonly than the real station names.

4 } rhe Primary Network (KGN-l)
KGN-1 consisted of eight stations as shown in Fig. l with 

corresponding approximate coordinates and observation sets in 
Tables 4.1 and 4.2 respectively. This was considered as the 
fundamental network upon which densification was done, and thus the 
fundamental datum was defined by adjusting the primary network 
within the framework of free-network adjustment.

In this study, all the eight primary points were considered 
approximate and the adjustments were done assuming that the 
measurements were of first order precision. Standard error of 
angular observations was taken as ±0.5", based on a variety of 
experiences from various reports on different surveys e.g. Musyoka 
[1993], Aduol [1981], and Gosset [1959].
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FIG I : PRIMARY NETWORK



jffile 4,1: Approximate coordinates of the primary network

point Code N E
[m] [m]

1 SKP106 9965867.148 234568.251
2 SKP108 9930827.740 244847.960
3 SKP210 9920928.207 263626.699
4 SKP211 9954810.146 266508.302
5 SKP212 9953913.168 290496.201
6 SKP213 9925562.951 293406.871
7 SKP214 9936363.270 327853.362
8 SKP215 9896895.405 316442.934

Tahlfi 4.2: Observational dataset for KGN-1.

Obs. 
No.

Ray * o Bearingi ii

1 1 2 163 38 58.6
2 1 4 109 5 41.2
3 2 1 343 38 58.5
4 2 3 117 47 48.2
5 2 4 42 5 15.4
6 3 2 297 47 48.1
7 3 4 4 51 40.4
8 3 8 114 28 0.2
9 3 6 81 9 14.1

10 4 3 184 51 40.4
11 4 5 92 8 29.2
12 4 6 137 23 43.2
13 4 1 289 5 41.4
14 4 2 222 5 15.4
15 5 4 272 8 29.1
16 5 6 174 8 17.1
17 5 7 115 9 48.5
18 6 3 261 9 13.8
19 6 4 317 23 43.0
20 6 5 354 8 16.8
21 6 7 72 35 30.3
22 6 8 141 12 57.8
23 7 6 252 35 30.3
24 7 5 295 9 48.6
25 7 8 196 7 29.6
26 8 7 16 7 29.7
27 8 6 321 12 57.8
28 8 3 294 28 0.5
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Secondary Network (KGN-2)
KGN-2 consisted of fifteen stations connected onto the 

fundamental network (KGN-1) as shown by thin lines in Fig. 2. The 
corresponding observational sets are as given in Table 4.4 while 
the approximate coordinates are given in Table 4.3. In Table 4.3 
the first eight approximate coordinates were determined from the 
adjustment under free network of KGN-1, while the rest are as 
obtained from Survey of Kenya.

Tahlp 4.3: approximate coordinates of the secondary network 
(KGN-2)

Point Code N E
[m] [m]

1 SKP106 9965867.1352 234568.2516
2 SKP108 9930827.7520 244847.9533
3 SKP210 9920928.2259 263626.6790
4 SKP211 9954810.1409 266508.2800
5 SKP212 9953913.1636 290496.1621
6 SKP213 9925562.9667 293406.8300
7 SKP214 9936363.2753 327853.2967
8 SKP215 9896895.4409 316442.8767
9 120.S.l 9963932.0730 269718.8330

10 120 .S .2 9949485.0600 261852.8100
11 121.S.l 9954495.4220 280104.9380
12 121.S.2 9945383.6230 286178.5410
13 121. S. 3 9950678.8590 304751.112014 134.S .7 9928278.3570 262387.1370
15 134. S. 8 9940076.4020 263194.0290
16 134. S. 9 9941138.9550 274039.416017 135 .S .7 9928572.7660 279001.9100
18 135.S.3 9910855.9480 297806.058019 135.S .4 9901567.8710 308367.620020 135.S.5 9916117.7110 312499.355021 135.S.9 9936062.8920 300024.187022 135.S.8 9923580.1200 302009.637023 135 .S.10 9936916.5030 314544.8230
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FIG 2 SECONDARY NETWORK H



4.4: The observational dataset for the secondary network* 
(KGN-2).

Obs. 
No.

Line BearingO 1 it Distance
[m]

1 9 5 115 44 36 .5 -
2 9 11 132 15 28 .1 14032 .894
3 9 1 273 9 3 .5 -
4 9 4 199 23 23 .8 9670 .472
5 9 10 208 34 1 .4 16449 .605
6 10 4 41 9 42 .6 7073 .186
7 10 16 124 24 20 .3 -
8 10 15 171 53 13 7 -
9 11 9 312 15 27 .8 -

10 11 5 93 12 25 .6 10407 466
11 11 12 146 18 50 .3 10950 .594
12 11 16 204 25 26 2
13 12 5 26 50 54 2 9560 092
14 12 13 74 5 11 7 -
15 12 22 144 1 2 5 -
16 12 6 159 57 49 9 -
17 12 17 203 7 4 2 -
18 12 16 250 43 36 8 -
19 12 11 326 18 50 3 -
20 13 23 144 33 47 4 -
21 13 22 185 46 36 2 -
22 13 21 197 55 17 5 15361 325
23 13 5 282 47 0 4 14617 351
24 14 3 170 25 39 4 7454 089
25 14 17 88 59 5 4 16617 302
26 14 16 42 10 40 2 -
27 14 15 3 54 44 9 11825 600
28 15 16 84 24 15 8 -
29 15 10 351 53 13 4 9503 784
30 16 17 158 27 1 9 -
31 16 6 128 48 26 9 -
32 16 12 70 43 36 8 12859 75733 16 11 24 25 26 6 14669 35034 16 4 331 9 2 6 15608 30335 16 10 304 24 20 0 14770 51736 16 14 222 10 40 6 -
37 17 6 101 48 5 4 14715 94238 17 12 23 7 4 2 -
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g 4.4: continued

Obs. 
No.

Line BearingO 1 11 Distance
[m]

39 17 14 268 59 5.3 -

40 17 3 243 33 48.6 17170.701
41 18 6 343 20 48.3 15350.856
42 18 19 131 19 44.7 14064.701
43 18 21 5 1 44.0 -

44 18 17 313 17 40.6 -

45 19 8 120 3 14.9 9329.364
46 19 18 311 19 44.7 -

47 19 20 15 51 10.3 -
48 19 21 346 24 10.2 -
49 20 8 168 24 22.9 19622.478
50 20 7 37 10 34.1 -

51 20 19 195 51 10.8 15125.304
52 20 23 5 . 37 0.2 14545.624
53 21 20 147 58 30.4 -
54 21 19 166 24 10.1 -

55 21 18 185 1 43.8 -
56 21 7 89 22 53.4 -

57 21 23 86 38 8.3 -

58 21 22 170 57 44.4 12639.632
59 22 13 5 46 36.2 -

60 22 6 282 58 45.5 -
61 22 21 350 57 45.0 -
62 22 12 324 1 2.2 -
63 23 7 92 22 48.9 13320.000
64 23 13 324 33 47.3 -
65 23 21 266 38 8.4 -
66 23 22 223 13 34.4 18302.767

The error of any distance measurement will have two 
contributing factors namely a fixed instrumental error plus a 
propotional error depending on the range. These errors add
vectorially, to give an overall standard deviation of error for a 
9iven instrument as (f + 10~ed)m [e.g. Musyoka 1993] in which f is
the fixed instrumental error and d the observed distance. In the 
resent study the standard error for distance observations was
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taken

tlrt*

as ±O.Olm while that of angular observations was taken as

These values for the errors were adopted since they are 
recommended as the most suitable accuracies for secondary 
triangulation works [e.g. Gosset 1959 pg.265]

yhe> Tertiary Network (KQN-3)
KGN-3 consisted of twenty-two tertiary points linked to the 

KGN-1 and KGN-2 as shown by the fine lines in Fig. 3. With 
respective observation sets and approximate coordinates as given in 
Tables 4.6 and 4.5a, 4.5b, and 4.5c. In this case there are three 
classes of approximate coordinates, this being the adjusted 
coordinates of points which were determined from first level 
densification work using the three different approaches to 
densification. Each model resulted in a different set of results, 
hence three different sets of approximate coordinates to be used 
during the second level of densification.
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rafcl̂  4.5a: approximate coordinates of KGN-3
resulting from first level static densification.

point Code N
[m]

E
[m]

1 SKP106 9965867.1352 234568.2516
2 SKP108 9930827.7520 244847.9533
3 SKP210 9920928.2259 263626.6790
4 SKP211 9954810.1410 266508.2800
5 SKP212 9953913.1636 290496.1621
6 SKP213 9925562.9660 293406.8300
7 SKP214 9936363.2753 327853.2967
8 SKP215 9896895.4409 316442.8767
9 120.S.l 9963932.0730 269718.8316

10 120.S.2 9949485.0600 261852.8090
11 121.S.l 9954495.4220 280104.9380
12 121.S.2 9945383.6230 286178.5410
13 121.S.3 9950678.8593 304751.1109
14 134.S.7 9928278.3566 262387.1372
15 134.S . 8 9940076.4028 263194.0288
16 134.S.9 9941138.9550 274039.4160
17 135.S.7 9928572.7633 279001.9110
18 135.S.3 9910855.9480 297806.0581
19 135.S .4 9901567.8722 308367.6209
20 135.S.5 9916117.7110 312499.3542
21 135.S.9 9936062.8921 300024.1871
22 135.S.8 9923580.1205 302009.6374
23 135.S.10 9936916.5030 314544.8230
24 135.T.6 9942628.0170 299337.1600
25 121.T.5 9947392.3200 297152.6800
26 121.T.4 9952372.3080 292844.9710
27 121.T.9 9949803.4490 289489.8880
28 135.T.16 9939211.6500 291072.5800
29 135.T.14 9935086.9800 288325.2680
30 135.T.13 9938187.1470 282764.636031 135.T.10 9930525.5700 287309.570032 135.T.19 9925634.8180 286423.795033 135.T.5 9944523.7170 293466.002034 135 .T. 3 9912294.0470 278424.7330
35 135.T.5 9915871.1200 287342.273036 134.T.9 9925039.1650 269920.888037 134.T.10 9933938.0450 275108.063038 134.T.5 9934586.1750 267992.099039 120.T.1 9945802.3470 266520.393040 120.T.4 9948003.1670 273206.921041 121.T.8 9949306.6410 277591.444042 121.T.10 9954204.1380 289225.716043 121.T.2 9955468.9760 283653.625044 134.T.2 9932950.1020 262087.262045 134.T.8 9928940.0180 253845.9110
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4.5b: approximate coordinates of KGN-3
resulting from first level dynamic densification.

point Code N E[m] [m]
1 SKP106 9965867.1352 234568.2517
2 SKP108 9930827.7520 244847.9535
3 SKP210 9920928.2259 263626.68054 SKP211 9954810.1398 266508.2801
5 SKP212 9953913.1636 290496.1621
6 SKP213 9925562.9669 293406.83007 SKP214 9936363.2753 327853.2971
8 SKP215 9896895.4422 316442.8756
9 120.S.l 9963932.0730 269718.8341

10 120.S.2 9949485.0567 261852.8109
11 121.S. 1 9954495.4204 280104.955212 121.S.2 9945383.6238 286178.5438
13 121.S.3 9950678.8588 304751.112014 134.S.7 992827*8.3582 262387.1408
15 134.S.8 9940076.4026 263194.029116 134.S.9 9941138.9560 274039.416317 135.S.7 9928572.7716 279001.910018 135.S. 3 9910855.9481 297806.055819 135 .S .4 9901567.8782 308367.614920 135.S.5 9916117.7160 312499.353721 135.S.9 9936062.8928 300024.181022 135.S.8 9923580.1286 302009.636923 135.S.10 9936916.5030 314544.8122
24 135.T.6 9942628.0170 299337.160025 121.T.5 9947392.3200 297152.680026 121.T.4 9952372.3080 292844.971027 121.T.9 9949803.4490 289489.888028 135.T.16 9939211.6500 291072.580029 135.T.14 9935086.9800 288325.268030 135.T.13 9938187.1470 282764.636031 135.T.10 9930525.5700 287309.570032 135.T.19 9925634.8180 286423.795033 135.T.5 9944523.7170 293466.002034 135.T.3 9912294.0470 278424.733035 135.T.5 9915871.1200 287342.273036 134.T.9 9925039.1650 269920.888037 134.T.10 9933938.0450 275108.063038 134.T.5 9934586.1750 267992.099039 120.T.1 9945802.3470 266520.393040 120.T.4 9948003.1670 273206.921041 121.T.8 9949306.6410 277591.444042 121.T.10 9954204.1380 289225.716043 121.T.2 9955468.9760 283653.625044 134.T.2 9932950.1020 262087.262045 134.T.8 9928940.0180 253845.9110
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densificat^on*
jflhle 4.5c: approximate coordinates of KGN-3

resulting from first level static-dynamic

point Code N E[m] [m]
1 SKP106 9965867.1352 234568.25162 SKP108 9930827.7520 244847.9533
3 SKP210 9920928.2259 263626.67904 SKP211 9954810.1409 266508.28005 SKP212 9953913.1636 290496.16216 SKP213 9925562.9660 293406.83007 SKP214 9936363.2753 327853.29678 SKP215 9896895.4409 316442.8767
9 120.S.l 9963932.0740 269718.833110 120.S.2 9949485.0603 261852.807611 121.S.l 9954495.4231 280104.938612 121.S.2 9945383.6244 286178.541913 121.S.3 9950678.8601 304751.113314 134.S.7 9928278.3563 262387.136815 134.S.8 9940076.4011 263194.027016 134.S.9 9941138.9546 274039.416317 135. S.7 9928572.7653 279001.910518 135.S.3 9910855.9465 297806.059919 135.S.4 9901567.8690 308367.621920 135.S.5 9916117.7107 312499.356621 135.S.9 9936062.8920 300024.188422 135.S.8 9923580.1198 302009.638523 135.S.10 9936916.5030 314544.8250

24 135.T.6 9942628.0170 299337.160025 121.T.5 9947392.3200 297152.680026 121.T.4 9952372.3080 292844.971027 121.T.9 9949803.4490 289489.888028 135.T.16 9939211.6500 291072.580029 135.T.14 9935086.9800 288325.268030 135.T.13 9938187.1470 282764.636031 135.T .10 9930525.5700 287309.570032 135.T .19 9925634.8180 286423.795033 135.T .5 9944523.7170 293466.002034 135.T.3 9912294.0470 278424.733035 135.T.5 9915871.1200 287342.273036 134.T.9 9925039.1650 269920.888037 134.T .10 9933938.0450 275108.063038 134.T.5 9934586.1750 267992.099039 120.T .1 9945802.3470 266520.393040 120.T.4 9948003.1670 273206.921041 121.T.8 9949306.6410 277591.444042 121.T.10 9954204.1380 289225.716043 121.T.2 9955468.9760 283653.625044 134.T.2 9932950.1020 262087.262045 134.T.8 9928940.0180 253845.9110



The observational dataset for the tertiary network 
(KGN-3) .

Obs. 
No.

Line BearingO f II Distance
[m]

1 24 22 172 0 49.0 -

2 24 28 247 32 27.0 8943.005
3 24 25 335 22 5.0 5241.204
4 25 13 66 36 36.0 8278.938
5 25 26 319 8 25.0 6584.579
6 26 25 139 8 24.0 -

7 26 27 232 33 36.0 4225.701
8 26 42 296 50 44.0 4056.428
9 27 26 52 33 36.0 -

10 27 42 356 33 53.0 4408.611
11 27 12 216 50 26.0 5522.499
12 27 25 107 27 59.0 8033.176
13 28 12 321 35 15.0 7876.857
14 28 22 145 1 13.0 -
15 28 24 67* 32 26.0 -
16 28 29 213 39 58.0 4955.889
17 29 28 33 39 59.0 -
18 29 30 299 8 26.0 6366.400
19 29 31 192 33 12.0 4673.125
20 29 22 130 3 34.0 -
21 30 29 119 8 25.0 -
22 30 17 201 22 24.0 10324.358
23 30 12 25 22 44.0 7965.175
24 30 31 149 19 23.0 8908.220
25 31 17 256 46 20.0 8534.088
26 31 30 329 19 23.0 -
27 31 32 190 15 57.0 4970.317
28 32 31 10 15 56.0 -
29 32 17 291 35 46.0 7982.225
30 32 33 20 26 47.0 -
31 33 34 205 1 • 5.0 -
32 33 17 222 12 4.0 -
33 33 36 230 23 27.0 -
34 33 32 200 26 47.0 -
35 34 18 94 14 37.0 -
36 34 33 25 1 4.0 -
37 34 35 68 8 35.0 9608.224
38 35 34 248 8 34.0 -

39 35 19 124 13 36.0 -
40 35 18 115 36 27.0 11603.56641 36 34 146 17 16.0 -
42 36 14 293 15 57.0 8200.59643 36 17 68 44 16.0 9744.32544 36 37 30 14 17.0 -

45 36 38 348 34 41.0 9739.97946 37 17 144 1 47.0 6629.348
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tgftx 1 <=>4.6 : continued

Obs. 
No.

Line OBearingt it DistanceCm]

47 37 38 275 12 15.0 7145.41948 37 36 210 14 16.0 -
49 37 16 351 33 31.0 7279.774
50 38 37 95 12 15.0 7145.489
51 38 44 254 30 49.0 6127.302
52 38 16 42 42 9.0 8916.83053 39 38 172 31 29.0 11312.31354 39 15 210 9 12.0 6622.02955 39 16 121 48 27.0 8847.78056 39 10 308 16 24.0 5945.20657 40 41 73 26 35.0 4574.30658 40 9 347 38 54.0 -
59 41 40 253 26 36.0 -
60 41 11 25 50 45.0 5765.561
61 41 10 270 38 58.0 -
62 42 27 176 33 53.0 4408.616
63 42 43 282 47 20.0 5713.80964 43 42 102 47 21.0 -
65 43 9 301 16 18.0 -
66 44 38 74 30 49.0 6127.31067 44 15 8 49 40.0 7211.802
68 44 45 244 3 12.0 9165.18169 45 14 94 25 46.0 8566.896
70 45 44 64 3 11.0

The estimation process at this stage involved the use of the
observation sets and each of the sets of approximate coordinates in
the respective models for purposes of determining third order point 
coordinates (as detailed in section 4.2.2) . The standard error for 
distances were taken as ±0.05m and the angular observations were 
assumed to have errors of ±1.5" as stupilated for example in Aduol 
[1981] and Gosset [1959] .
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CHAPTER FIVE 

COMPUTATIONS

Presented in this Chapter are the experiments undertaken to 
determine parameters under different models as discussed in chapter 
three. An outline of the characterization of precision which will 
be useful in the analysis of the determined results is discussed 
and computer programs used in the study are also outlined.

5 . 1  Densification Experiments
The fundamental datum was defined by adjusting the primary 

network (KGN-l) within the framework of a free network. 
Densification was then carried out in modular basis, by using the 
values determined from this adjustment as part of the data for 
subsequent densifications using the different models discussed in 
chapter 3 .

First densification was done by applying the concepts of the 
static model; this experiment was designated 'Experiment A'. In 
this experiment the observational data-sets in Tables 4.3 and 4.4 
were used for first level densification of KGN-l to yield KGN-2, on 
the assumption [from section (3.1)] that at this level of 
densification all the points in KGN-l are held fixed and erroless. 
Likewise, the second level densification was done by holding the 
adjusted coordinates of KGN-2 as fixed.

i

51



Using the same observation sets, the experiment was repeated 
but this time treating the coordinates of KGN-1 as stochastic. In 
this experiment, designated 'Experiment B', the concepts of the 
d y n a m ic  model in equation (3-27) were used by basically 
incorporating the determined weight matrix of the free network 
adjustment of KGN-1 in the first level densification. The adjusted 
coordinates and the corresponding covariance matrix were then used 
in the second level densification to determine parameters for 
points in KGN-3.

The third experiment, designated 'Experiment C', involved 
first and second level densification by using the concepts of the 
static-dynamic model. In this particular case the coordinates and 
covariance matrices of KGN-1 and KGN-2 were in the estimation 
process while at the same time being considered fixed, see (3.3).

5.2 Precision Criteria for Analysis of the Results.
The densification models are used to estimate unknown 

parameters, which are normally corrections to approximate 
coordinates in a given geodetic network. To adequately assess the 
equality of adjusted coordinates of a network, representation of 
precision measures is very important. In this study the main tool 
to aid analysis will be the network's a posteriori variance- 
covariance matrix as given in equations (3-4), (2-19), and (3-11) .
rom this, presentation of precision may take different forms as 
outlined below.
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2 . 1 Standard orrors_ot. the estimates
positional standard errors of the estimates, i.e. point 

coordinates, are obtained by talcing the square roots of the 
diagonal elements of the variance-covariance matrix in equation (3- 
4 ) above. These constitute two values, one in E direction and the 
other in the N direction. Normally the sizes of the standard errors 
are dependent on the chosen datum [e.g. Cross 1979; Illner 1985, 

and Aduol 1996] . For this reason positional standard errors are not 
representative enough, especially for fixed networks, in which, 
positional standard errors tend to give the impression that the 
estimated parameters are more accurate than they actually are [e.g. 
Aduol 1993] . However for free networks where datum is defined over 
approximate coordinates without fixing any particular point, the 
positional standard errors are fairly representative and thus very 
vital for analysis.

5.2.2 Circular probable error(CPE)
In the case of two-dimensional networks where one is 

interested only in one measure of accuracy instead of the two
componets of the positional error, the two are Combined to give a 
vector sum oc referred to as "Circular Probable Error", this is

also referred to in [Mikhail 1976, pg.33] as the "radial standard
error", and by Aduol [1981 pg.46] as "positional error sphere" for 
a three-dimensional case. ~6~c is given as
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, [<o/ *■ o/)/2]1/2 (5-3)

^ere <*e anc* av are standard errors in E and N respectively. For n

parameters we have that,
Ol + <V + • • • + <*n

n

1 / 2

(5-4)

where ait [i=1,2,3,.... n] are respective standard errors. In the

present study single values os and aN have been computed for

eastings and northings for each densification model, these are then 
compared.

5.2.3 Standard error ellipses
By using the parameters of the variance-covariance matrix of 

the adjusted coordinates, appropriate terms for error ellipses may 
be calculated. There are two types of error ellipses within 
networks. The first is the standard error ellipse for a point which 
reflects how accurately a point has been positioned. The second 
type is the relative error ellipse which represents relative 
accuracy between points in a network. In the present study we shall 
use point ellipses as the interest of the study is to obtain how 
accurately points are fixed. The theory behind the deriviation of 
error ellipses which is extensive, is adequately covered in most 
9eodesy texts for example Mikhail 1976 pp. 28-35; Cooper, 1987 
PP-1 3 0 - 1 3 5 .
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The parameters for error ellipses are given as;
a 2 = (1/2) (oE2 + a 2) + [(1/4) (oE2 - a 2)2 + o ̂  ]1/2 
^2 s (1/2) {a2 + a^2) + [(1/4) (a/ + a/)2 a^2]1/2

a = 1 / 2 arctan

where

2o£7/
(«** - V

is the variance of the easting;

(5-6)

Ox is the variance of the northing;

is the covariance between easting and northing; 

a is the semi-major axis; 

b is the semi-minor axis;

a is the bearing of the semi-major axis.
The probability of a point falling inside the standard error 

ellipse is 0.394 [Aduol 1996]. The main advantage of using the 
error ellipse as an analytical tool is that the values from which 
it is derived represent all the parameters of the variance- 
covariance matrix as opposed to positional standard errors which 
only incorporate variances and assumes that there is totally no 
correlation between the parameters which is not quite correct. In 
-he present study the parameters of the error ellipses are computed 
and single precision criteria circular probable errors are computed 
0̂r different tests. These are then compared for various 
densification models.
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5 2.4 Mean ...shifts
These are vectors determined from the final adjusted 

coordinates of points in a network adjusted using different methods 
r under different circumstances. They give a measure of 

displacement between points which can be used to analyse networks.

5 . 3  Computer Programs
Although separate program segments were written for each task 

i.e. free network adjustment, static, dynamic, and static-dynamic 
densification adjustment, this section explains the program in 
broad terms only, thus they have been combined into two main units 
viz., FREE.FOR and DENSITY.FOR with corresponding subroutines as 
listed in appendices A.l, A.2, and A.3 respectively. The programs 
were coded in FORTRAN 77 and computations were carried out on a 
VAX/VMS 6310 main-frame computer.

5.3.1 Program FREE.FOR
This program uses the concept of free network adjustment (see, 

section 2.4) to adjust the primary network, which is used as the 
defined datum for subsequent static, dynamic, and static-dynamic 
first and second geodetic network densifications. The flow chart 1 
In Appendix A.4 shows systematic stages of freenetwork adjustment.

5 ' 3 *2 Program DENSITY.FOR
In this program all models of densification are considered. It 

c°nsiSt:s 0f different modules which were tackled separetly, tested,
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before being linked together.

3.2.1 Module one
In this module, the steering data is prompted for, reduced 

observations, stations occupied during data acquisition and 
provisional coordinates are read into the computer memory, lastly 
all output and computational matrices are initialized to zero. Flow 
chart 2 in Appendix A.5 has been drafted to aid in understanding 
Che working of this module.

5 .3 .2.2 Module Two
This module forms the design matrix A, the vector y of 

observations and the weight matrix W from reduced observations in 
(5 .3 .2 .1 ), their contents are then used to adjust densification 
networks depending on the model which is determined accordingly 
from the steering data input in module one. The module then 
computes a posteriori variance components.

5.3.2.3 Module Three
In this module the determined data in (5.3.2.2) are used in 

network analysis where the variance covariance matrix is determined 
by using equations (3-11), (3-19), and (3-42). From the variance
covariance matrix a posteriori standard errors for observation sets 
are determined, correspondingly error ellipse parameters for the 
adjusted coordinates are determined. Finaly this module outputs the 
r®sults of each mode of densif ication. Flow chart 3 in Appendix A. 6 
dePicts to working procedure of modules two and three.
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CHAPTER SIX

RESULTS

The results for the free network adjustment of the primary
network are presented in section (6 .1 ). Results for Experiment
A in which densification was carried out using the static model
are given in section (6 .2 ) while section (6.3) outlines results
obtained from densif ication using the dynamic model in Experiment
B. The results for Experiment C in which parameters were
determined from densification by the static-model are given in
section (6.4). Each of sections (6.2), (6.3), and (6.4) consists
of two subsections under which results for the first and second
levels of densification are presented respectively. The Tables
indicate the estimated parameters 6E and 6N for each
densification point, their corresponding standard errors js and
aN, computed from equations (3-19), (3-32), and (3-43) . For each
point, the circular probable error is used to assess the quality
of estimates (i.e mean standard error in E, mean standard error
in N, and mean standard error for both E and N computed from
equation (4-3)) is also presented in Tables (6.2), (6.3), and
(6-4). Also presented are error ellipse parameters (max a, min 
0' a for semi-major axis, semi-minor axis, and orientation of 
semi-major axis respectively) computed from equations (4-5) and

4̂“6). The results presented in this chapter are part of those
0utput in the running of the programs as outlined in Chapter 5,
ttle rest of the results are as shown in appendix B.
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6 l gesultS-jQr. primary network adjustment
These are the results determined from the free network

adjustment of the primary network, using data in Tables (4.1) and
(4 .2 ). These were later used as representing the defined datum
base upon which the secondary net was built. The diagrammatic
depiction of the determined point error ellipses for the eight
primary stations are shown in Fig.4.
rpgHi 6,1: Results for free network adjustment (2 Iterations)

ST. <5E[m] <5N[m] as [m] [m] max min a
o [m] o [m] o »

1
2345
67
8

0.0006 -0.0128 -0.0067 0.0120
-0 . 0 2 0 0 0.0189
-0.0220 -0.0050 
-0.0389 -0.0044 
-0.0410 0.0157
-0.0653 0.0080
-0.0573 0.0359

0.0014 0.0083 0.00153 0.00793 8 11 0.0043 0.0077 0.00434 0.00805 39 35 
0.0081 0.0044 0.00823 0.00468 316 18 
0.0033 0.0028 0.00325 0.00270 44 42 
0.0025 0.0032 0.00253 0.00376 315 15 
0.0066 0.0084 0.00689 0.00829 44 32 
0.0042 0.0049 0.00469 0.00493 44 52 
0.0110 0.0074 0.01227 0.00757 315 20

oE =0.005973 aN =0.006274 oc =0.0061253 a01 2 3 4 5 * * 8 =0.98688

Table 6 .1 a : Estimated coordinates - free network adjustment

Provisional coordinates Adjusted coordinates ST. E [m] N[m] E [m] N [m]
1 234568.251 9965867.148
2 244847.960 9930827.740
3 263626.699 9920928.2074 266508.302 9954810.1465 290496.201 9953913.168
® 293406.871 9925562.951
1 327853.362 9936363.2708 316442.934 9896895.405

234568.2516 9965867.1352 
244847.9533 9930827.7520 
263626.6790 9920928.2259 
266508.2800 9954810.1410290496.1621 9953913.1636
293406.8300 9925562.9667 
327853.2967 9936363.2780 
316442.8767 9896895.4409
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6 2 Results for Experiment A
These results were determined by using the estimated 

coordinates from the free network adjustment of the primary 
network in Table (6.1a) and the observation set in Table (4.4) 
in the adjustment for determining coordinates of secondary and 
tertiary net stations using the static densification model.

6.2.1 First level of densification
This estimation was determined with points 1-8 held fixed 

and errorless. Point error ellipses for these results are as 
shown in Fig.5.

Table 6.2: Results for first level densification using the 
static model (3 iterations)

ST <5E [m] <5N [m] a3 [m] a* [m] max 
a [m]

min 
o [m]

a
O II

9 -0.001401 0.000090 0 . 0 1 0 1 0.0073 0.0113 0.0072 325 3510 -0.000963 0.000175 0.0078 0.0074 0.0078 0.0095 342 2911 -0 . 0 0 0 0 2 2 0 . 0 0 0 0 0 1 0.0115 0.0098 0.0105 0.0090 304 2012 0 . 0 0 0 1 0 1 -0 . 0 0 0 0 1 0 0.0082 0.0078 0.0080 0.0088 24 413 - 0 .0 0 1 1 1 1 -0.000341 0.0098 0.0104 0 . 0 1 0 0 0 . 0 1 0 1 359 4314 0 . 0 0 0 2 2 0 -0.000427 0.0099 0.0095 0.0108 0.0093 334 415 -0.000169 -0.000773 0.0064 0.0079 0.0067 0.0070 357 5916 -0 . 0 0 1 0 0 0 0.000266 0.0104 0.0103 0.0108 0 . 0 1 2 0 43 5317 -0.001830 -0.000125 0 . 0 1 1 1 0.0093 0.0099 0.0087 349 2418 0.000118 -0 . 0 0 0 0 0 2 0.0107 0 . 0 1 2 0 0.0113 0 . 0 1 0 0 26 419 0.000876 -0.001251 0.0066 0.0057 0.0070 0.0062 29 5320 -0.000771 0.000089 0.0123 0.0109 0.0129 0 . 0 1 1 2 354 421 0.001003 0.000999 0.0091 0.0086 0.0093 0.0090 325 322 0.003433 0.000503 0.0116 0 . 0 1 2 0 0.0123 0.0118 37 5923 0 . 0 0 0 0 0 1 -0.000024 0 . 0 1 0 2 0.0092 0 . 0 1 0 1 0.0090 355 3

oE =0.009864 oN =0.009367 ac =0.00961871 d02 =1.00015
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6.2a: Estimated coordinates-static model•ggplS-

Provisional coordinate Adjusted coordinates gT. E [m] N [m] E [m] N [m]
9 269718.83310 261852.81011 280104.938 286178.541

13 304751.11214 262387.137
15 263194.02916 274039.41617 279001.91018 297806.05819 308367.62020 312499.35521 300024.187
22 302009.63723 314544.823

9963932.073 2697189949485.060 2618529954495.422 2801049945383.623 2861789950678.859 3047519928278.357 2623879940076.402 263194
9941138.955 274039 9928572.766 279001 9910855.948 297806 9901567.871 308367 9916117.711 312499 9936062.892 300024
9923580.120 302009 9936916.503 314544

8316 9963932.0730 8090 9949485.0600 9380 9954495.4220 5410 9945383.6230 
1109 9950678.8593 1372 9928278.3566 0288 9940076.4028 4160 9941138.9550 9110 9928572.7633 0581 9910855.9480 6209 9901567.8722 3542 9916117.7110 1871 9936062.8921 6374 9923580.1205 8230 9936916.5030

6.2.2 Second level of densification
These results were obtained during adjustment by holding 

points 9-23 as fixed and errorless. Diagrammatic representation 
of the error ellipses in Table 6.7 are shown in fig.8 .
Table 6.2b: Results for second level densification using the static model (3 iterations)

ST. 6E [m] 6N [m] a3 [m] o\, [m] max min a
a [m] a [m] o "

000114000008002465000444000352000703001785000003000003000012001563000998002497001000000843000062000091000869001773000019003618000850

0.000029 0.0115 0.000001 0.0104 0.000108 0.0106 0.000003 0.0119 0.000001 0.0111 -0.000542 0.0116 -0.000004 0.0109 -0.001734 0.0114 0.000000 0.0113 -0.000013 0.0126 0.000091 0.0106 -0 . 0 0 0 1 0 2  0.0108 -0.000118 0.0106 -0.000004 0.0104 -0.001765 0.0108 -0.000957 0.0115 -0.002382 0.0135 0.002420 0.0112 0.000010 0.0133 0.000216 0 . 0 1 1 2  0.001189 0.0123 -0.000253 0.0097

0.0112 0.0124 0.0078 0.0070 0.0120 0.0124 0.0122 0.0109 0.0104 0.0112 0.0099 0.0115 0 . 0 1 0 0  0.0108 0.0097 0.0115 0 . 0 1 0 2 0.0108 0.0110 0.0130 0.0122 0.0123 0.0124 0.0124 0.0101 0.0105 0.0096 0.0109 0.0098 0.0109 0.0112 0.0119 0.0122 0.0131 0.0123 0.0098 0.0130 0.0130 0.0108 0.0128 0.0097 0.0098 0.0106 0.0098

0.0105 358 23 0.0106 25 340.0098 343 23 0.0103 46 460.0105 39 290.0098 321 18 0.0096 345 20 0.0097 327 55 0.0101 323 34 0.0103 32 150.0104 323 10 0.0106 343 21 0.0101 339 46 0.0106 310 0 0.0096 32 270.0101 37 010.0120 58 220.0119 331 42 0.0128 336 45 0.0107 6 560.0098 331 46 0.0123 9 10

°E =0.0113641 aN =0.0109022 ac =0.0111355 dQ2 =1.0000
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.2c; Estimated coordinates static model

provisional coordinates Adjusted coordinates 
ST. E [m] N [m] E [m] N [m]
24 299337.160
25 297152.680
26 292844.971
27 289489.888
28 291072.580
29 288325.268
30 282764.636
31 287309.570
32 286423.795
33 293466.002
34 278424.733
35 287342.273
36 269920.888
37 275108.063
38 267992.099
39 266520.393
40 273206.921
41 277591.444
42 289225.716
43 283653.625
44 262087.262
45 253845.911

9942628.017
9947392.320
9952372.308 
9949803.449
9939211.650
9935086.980
9938187.147
9930525.570
9925634.818
9944523.717
9912294.047
9915871.120
9925039.165
9933938.045
9934586.175
9945802.347
9948003.167
9949306.641
9954204.138
9955468.976
9932950.102
9928940.018

299337.1601 
297152.6800 
292844.9957 
289489.8884 
291072.5796 
288325.2673 
282764.6342 
287309.5700 
286423.7950 
293466.0020 
278424.7314 
287342.2720 
269920.8905 
275108.0620 
267992.0982 
266520.3930 
273206.9210 
277591.4448 
289225.7173 
283653.6250 
262087.2656 
253845.9101

9942628.0170 
9947392.3200 
9952372.3081 
9949803.4490 
9939211.6500 
9935086.9794 
9938187.1470 
9930525.5683 
9925634.8180 
9944523.7170 
9912294.0460 
9915871.1190 
9925039.1649 
9933938.0450 
9934586.1732 
9945802.3461 
9948003.1646 
9949306.6434 
9954204.1380 
9955468.9762 
9932950.1039 
9928940.0177

6.3 Results for Experiment B
These results were obtained by considering the stochasticity 

of the higher order points in the network densification, using 
data from Tables 4.3 and 4.4.

6-3-l First level densification
Results obtained by using the variance-covariance matrix 

êtermined from the freenet adjustment of points 1-8 within a 
^amic adjustment. The corresponding error ellipses for these 
resuits are given in Figures 6 and 9.

L
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6.3: Results for first level densification using the
dynamic model (3 iterations)

6E[m] <5N[m] crB [m] [m] max min a
a [m] a [m] o "

1 0.00012 
0.00023

3 0.001554 0.00010
5 0.00009
6 -0.00004
7 -0.00014
8 -0.001099 0.00118
10 0.0009011 0.00472
12 0.0028713 -0.00007
14 0.00348
15 0.00015
16 0.00033
17 0.00000 
18 -0.00212
19 -0.00508
20 -0.0013321 -0.00600
22 -0.00095
23 -0.00108

-0.00005 0.0014 
0.00000 0.0043 
0.00006 0.0064 

-0.00105 0.0022 
-0.00001 0.0017 
0.00087 0.0057 
0.00004 0.0029 
0.00130 0.0094 

-0.00006 0.0121 
-0.00328 0.0124 
-0.00163' 0.0118 
0.00081 0.0117 
-0.00021 0.0119 
0.00116 0.0124 
0.00062 0.0124 
0.00099 0.0120 
0.00574 0.0118 
0.00010 0.0117 0.00362 0.0120 
0.00499 0.0122 
0.00079 0.0118 
0.00286 0.0118 0.00002 0.0123

0 . 0 0 2 0 0 . 0 0 2 0  
0.0077 0.0077 
0.0032 0.0028 
0.0018 0.0023 
0.0018 0.0018 
0.0072 0.0077 
0.0017 0.0030 
0.0083 0.0088 0.0121 0.0124 
0.0117 0.0125 
0.0118 0.0119 
0.0117 0.0117 
0.0117 0.0120 
0.0119 0.0126 0.(7117 0.0124 
0.0117 0.0120 
0.0119 0.0120 0.0127 0.0127 
0.0131 0.0133 0.0124 0.0128 
0.0117 0.0119 
0.0121 0.0122 
0.0117 0.0123

0.00139 6 38
0.00430 40 0
0.00666 320 32
0.00165 45 44
0.00159 317 50.00567 41 330.00154 48 450.00971 29 34
0.01164 316 5
0.01164 349 3
0.01165 315 51
0.01165 348 32
0.01169 22 33
0.01162 29 7
0.01165 7 56
0.01165 9 4
0.01162 323 6
0.01166 13 40
0.01163 23 43
0.01167 39 28
0.01161 325 4
0.01160 31 37
0.01165 344 21

o3 =0.0101436 aiV =0.0101325 ac =0.010138 a02 =0.99357

Table 6.3a: Estimated coordinates - dynamic model

Provisional coordinates Adjusted coordinates ST. E [m] N [m] E [m] N [m]
1 234568.252
2 244847.9533 263626.679
4 266508.2805 290496.162
6 293406.8307 327853.297
8 316442.877
9 269718.833
10 261852.810
11 280104.93812 286178.541
11 304751.112

262387.137 
263194.029 

^  274039.416 
7 279001.910

9965867.135 
9930827.752 
9920928.226 
9954810.141 
9953913.164 
9925562.966 
9936363.275 
9896895.441
9963932.073
9949485.060
9954495.422
9945383.623
9950678.859
9928278.357
9940076.402
9941138.955 
9928572.766

234568.2517 
244847.9535 
263626.6805 
266508.2801290496.1621
293406.8300 327853.2971 
316442.8756 
269718.8341 
261852.8109 
280104.9552 
286178.5438 
304751.1120 
262387.1408 
263194.0291 
274039.4163 
279001.9100

9965867.1352 
9930827.7520 9920928.2259 
9954810.1398 
9953913.1636 
9925562.9669 9936363.2753 
9896895.4422 
9963932.0730 
9949485.0567 
9954495.4204 
9945383.6238 
9950678.8588 
9928278.3582 
9940076.4026 
9941138.9560 
9928572.7716
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Table 6 -3a: continued
Provisional coordinates Adjusted coordinates 

ST. E[m] N[m] E [m] N[m]
18 297806.058
19 308367.620
20 312499.35521 300024.187
22 302009.637
23 314544.823

9910855.948 9901567.871 
9916117.711 
9936062.892 
9923580.120 
9936916.503

297806.0558
308367.6149
312499.3537
300024.1810
302009.6369
314544.8122

9910855.9481
9901567.8782
9916117.7160
9936062.8928
9923580.1286
9936916.5030

g.3.2 second level densification
Tflfrle 6.3b: Results for second level densification using the 

dynamic model (2 iterations)

ST <5E [m] <5N [m] cr8 [m] <jN [pi] max min a
a [m] a [m] o »

0. 0 . 0 . 0. 0. 0. 0. 0.9 -0. 1G 0. 
11 0 . 12 - 0 .13 0.14 0.15 -0.16 -0.17 -0.18 0.19 -0.
20 0 . 
21 0 . 
22 - 0 .23 0.24 -0 .25 0.
26 -027 - o .
28 - 0 . 29 - 0 . 20 - 0 .
U  - o .  22 -0. 32 - 0 .

28:8:
37 :§•
3940 •0

000742000086000248000613000033 000054 000582 000781 004275 005703 005550 001900 006594 001058 004666 003155 002417 000276 000470 000044000034 002292 000001 002045 002304 003204 007496 001295 001046 001867 001196 001327 000295 002513 001237 003768 002995004058
004278002666

0.000173 0.0011 0.001800 0.0043 0.000306 0.0064 0.000718 0.0022 0.000111 0.0017 0.000541 0.0057 0.000694 0.0029 0.000834 0.0094 0.001306 0.0115 -0.004020 0.0098 -0.001142 0.0115 0.002633 0.0057 -0.006060 0.0117 -0.001318 0.0112 0.003181 0.0088 0.003161 0.0055 0.001282 0.0057 -0.001336 0.0110 -0.001135 0.0108 0.000003 0.0122 0.000076 0.0118 0.003294 0.0085 0.000021 0.0123 0.001565 0.0174 -0.007918 0.0191 -0.001547 0.0162 -0.004835 0.0182 0.001869 0.0164 0.002242 0.0171 0.002697 0.0161 0.001567 0.0169 0.000850 0.0167 0.003625 0.0184 -0.001128 0.0156 -0.000617 0.0159 0.000752 0.0158 0.002080 0.0155 0.002177 0.0160 0.003854 0.0163 -0.006036 0.0209

0.0023 0.0077 0.0032 0.0018 0.0018 0.0072 0.0017 0.0083 0.0110 0.0081 0.0115 0.0060 0.0109 0.0066 0.0106 0.0054 0.0046 0.0081 0.0094 0.0124 0.0117 0.0090 0.0117 0.0170 0.0104 0.0183 0.0186 0.0154 0.0146 0.0149 0.0144 0.0149 0.0162 0.0180 0.0183 0.0150 0.0145 0.0145 0.0165 0.0182

0.0023 0.0077 0.0064 
0.0022 0.0018 0.0072 0.0029 0.0094 0.0119 0.0118 0.0116 0.0060 0.0118 0.0119 0.0116 0.0059 0.0058 0.0113 0.0123 0.0124 0.0118 0.0110 0.0123 0.0187 0.0109 0.0190 0.0104 0.0165 0.0171 0.0161 0.0170 0.0171 0.0191 0.0182 0.0183 0.0158 0.0156 0.0162 0.0176 0.0213

0.0 11 54 23 0.0043 2 55 0.0032 345 06 0.0018 13 44 0.0017 344 35 0.0057 325 58 0.0017 307 09 0.0083 0 00 0.0105 324 41 0.0069 322 36 0.0114 43 15 0.0057 359 28 0.0108 19 11 0.0051 337 33 0.0074 328 10 0.0050 318 46 0.0043 339 49 0.0076 341 23 0.0073 323 14 0.0122 0 00 0.0117 0 00 0.0057 42 29 0.0117 0 00 0.0153 41 30 0.0184 28 43 0.0151 331 48 0.0157 317 25 0.0153 347 05 0.0145 2 53 0.0148 9 18 0.0143 349 36 0.0143 336 13 0.0150 28 06 0.0153 16 49 0.0158 7 10 0.0149 5 22 0.0143 343 40 0.0143 342 37 0.0148 42 39 0.0176 20 51
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6.3b: continued^gbl£-

ST

41

<5E [m] <5N [m] <xB [m] aN [m] max 
o [m]

min 
o [m]

a
O 1it

~o7 o04170 -0.004002 0.0131 0.0180 0.0133 0.0176 12 49-0.007832 0.000796 0.0185 0.0192 0.0192 0.0184 8 01-0.000803 -0.000801 0.0165 0.0152 0.0188 0.0176 339 45-0.004853 0.001962 0.0182 0.0143 0.0182 0.0141 353 36-0.009858 -0.000476 0.0142 0.0156 0.0145 0.0146 12 38

o£ =0.0135641 o„ =0.0124741 oc =0.0130305 dQ2 =0.99955

jgfti p> 6.3c: Estimated coordinates dynamic model
Provisional coordinates Adjusted coordinates 

ST. E [m] N[m] E [m] N [m]
1 234568.2522 244847.9533 263626.6814 266508.2805 290496.1626 293406.8307 327853.2978 316442.8769 269718.83410 261852.81111 280104.95512 286178.54413 304751.11214 262387.14115 263194.02916 274039.41617 279001.91018 297806.05619 308367.61520 312499.35421 300024.18122 302009.63723 314544.81224 299337.16025 297152.68026 292844.97127 289489.88828 291072.58029 288325.26830 282764.63631 287309.57032 286423.79533 293466.00234 278424.73035 287342.27336 269920.88837 275108.06338 267992.09939 266520.393 273206.92151 277591.444
ll 289225.716 j3 283653.625 55 262087.262253845.911

9965867.1359930827.7529920928.2269954810.1149953913.164 9925562.967 9936363.275 9896895.4429963932.073 9949485.057 9954495.4209945383.6249950678.8599928278.3589940076.4039941138.956 9928572.772 9910855.948 9901567.8789916117.716 9936062.893 9923580.129 9936916.5039942628.0179947392.3209952372.308 9949803.4499939211.6509935086.9809938187.1479930525.5709925634.8189944523.7179912294.0479915871.1209925039.1659933938.0459934586.1759945802.3479948003.1679949306.6419954204.1389955468.9769932950.1029928940.018

234568.2524 244847.9535 263626.6820 266508.2807290496.1621293406.8300 327853.2976 316442.8763 269718.8298 261852.8166 280104.9607 286178.5419 304751.1186 262387.1419 263194.0244 274039.4131 279001.9100 297806.0561 308367.6144 312499.3537 300024.1810 302009.6346 314544.8122 299337.1580 297152.6823 292844.9678 289489.8805 291072.5787 288325.2670 282764.6341 287309.5688 286423.7937293466.0017 278424.7305 287342.2718 269920.8842 275108.0600 267992.0949 266520.3887 273206.9183 277591.4482 289225.7082 283653.6242 262087.2571 253845.9011

9965867.1354 9930827.7538 9920928.2262 9954810.1145 9953913.1637 9925562.9676 9936363.2759 9896895.4430 9963932.0743 9949485.0527 9954495.4193 9945383.6264 9950678.8527 9928278.3569 9940076.4058 9941138.9592 9928572.7762 9910855.9468 9901567.8771 9916117.7160 9936062.8928 9923580.1319 9936916.5030 9942628.0186 9947392.3121 9952372.3065 9949803.4442 9939211.6519 9935086.9822 9938187.1497 9930525.5716 9925634.8188 9944523.7206 9912294.0459 9915871.1194 9925039.1658 9933938.0471 9934586.1772 9945802.3509 9948003.1610 9949306.6370 9954204.1388 9955468.9752 9932950.10409928940.0175
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6 4 Exults for Experiment C 
r 4 . 1  First level densification

Taft.1 p 6.4: Results for first level densif ication using theStatic - dynamic model ( 1 iteration)

ST. 6E[m] 5N [m] [m] <?* [m] max 
a [m]

min 
o [m]

a
O it

1 0.00000 0.00000 0.0014 0.0083 0.0015 0.0079 8 11
2 0.00000 0.00000 0.0043 0.0077 0.0043 0.0080 39 35
3 0.00000 0.00000 0.0081 0.0044 0.0082 0.0046 316 18
4 0.00000 0.00000 0.0033 0.0028 0.0032 0.0027 44 42
5 0.00000 0.00000 0.0025 0.0032 0.0025 0.0037 315 15
6 0.00000 0.00000 0.0066 0.0084 0.0068 0.0082 44 32
7 0.00000 0.00000 0.0042 0.0049 0.0046 0.0049 44 52
8 0.00000 0.00000 0.0110 0.0074 0.0122 0.0075 315 20
9 0.00011 0.00095 0.0116 0.0117 0.0118 0.0114 338 11
10 -0.00239 0.00031 0.0119 0.0113 0.0119 0.0119 357 31
11 0.00054 0.00105 0.0115 0.0114 0.0115 0.0113 303 2
12 0.00081 0.00142 0.0115 0.0113 0.0115 0.0114 25 20
13 0.00156 0.00135 0.0122 0.0113 0.0122 0.0110 8 51
14 -0.00023 -0.00062 0.0119 0.0118 0.0122 0.0111 342 41
15 -0.00205 -0.00090 0.0118 0.0114 0.0119 0.0116 20 17
16 0.00027 -0.00043 0.0115 0.0114 0.0116 0.0112 25 1317 0.00049 -0.00061 0.0115 0.0118 0.0118 0.0112 349 50
18 0.00128 -0.00136 0.0119 0.0127 0.0129 0.0116 26 5019 0.00172 -0.00175 0.0123 0.0132 0.0137 0.0114 32 2620 0.00189 -0.00110 0.0126 0.0124 0.0132 0.0119 317 3921 0.00137 -0.00027 0.0119 0.0115 0.0120 0.0111 336 4022 0.00145 -0.00177 0.0120 0.0120 0.0125 0.0112 315 3623 0.00198 -0.00023 0.0127 0.0115 0.0127 0.0113 345 25

oE =0.0119259 oiV =0.0117920 ac =0.0118591 d02 =0.99995

Tahi£_6. .4a: Estimated coordinates - static-dynamic model
Provisional coordinates Adjusted coordinates ST. E [m] N[m] E [m] N [m]

1 234568.251
2 244847.960
3 263626.699
4 266508.302
5 290496.201
6 293406.871
7 327853.362
8 316442.934
9 269718.833
10 261852.810
11 280104.93812 286178.541 

304751.112 262387.137 
263194.029

9965867.148 
9930827.740 
9920928.207 
9954810.146
9953913.168 
9925562.951 
9936363.270 
9896895.405
9963932.073
9949485.060
9954495.422 
9945383.623
9950678.859 9928278.357 
9940076.402

234568.2516 
244847.9533 
263626.6790 
266508.2800290496.1621
293406.8300 327853.2967 
316442.8767 
269718.8331 
261852.8076 
280104.9386 
286178.5419 
304751.1133 
262387.1368 
263194.0270

9965867.1352 
9930827.7520 
9920928.2259 
9954810.1410 
9953913.1636 9925562.9667 
9936363.2780 
9896895.4409 
9963932.0740 
9949485.0603 
9954495.4231 
9945383.6244 
9950678.8601 
9928278.3563 
9940076.4011
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6.4a: continued
provisional coordinates Adjusted coordinates 

ST. E [m] N[m] E [m] N [m]

<jg)0X£-

16 274039.416 9941138.955
17 279001.910 9928572.766
18 297806.058 9910855.948
19 308367.620 9901567.871
20 312499.355 9916117.711
21 300024.187 9936062.892
22 302009.637 9923580.120
23 314544.823 9936916.503

274039.4163
279001.9105
297806.0599
308367.6219
312499.3566
300024.1884
302009.6385
314544.8250

9941138.9546
9928572.7653
9910855.9465
9901567.86909916117.7107
9936062.8920
9923580.1198
9936916.5030

6.4.2 Second level densification
jahl e 6.4b: Results for second level densification using the 
static-dynamic model (1 iteration)

ST. <5E [m] <5N[m] crB [m]

1
2345
67
8 9
10
1112131415

20
21
22

16 017 018 019 0

23 024 025 026 027 o28 -029 -o30 -0
32 -o33 -o34 -035 -0
3738 -o
39 -040 §

. 0 0000

. 00000.00000

. 00000

.00000

.00000

.00000

. 00000

.00000

. 00000

. 00000.00000

. 00000.00000.00000.00000.00000.00000

. 00000

. 00000

. 00000

. 00000

. 00000.001764.000108.003775.001431.000882.000563.002353.000198.000043.000152.002414.001008•003430

. 000000.000001•000362•000167

0.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.0000090.0024010.0001980.0027030.000061-0.000022-0.005804-0.0043130.001481-0.0007380.000001-0.001531-0.000004-0.000077-0.002954-0.000771-0.002892

0.0014 0.0043 0.0081 0.0033 0.0025 0.0066 0.0042 
0.0110 0.0116 0.0119 0.0115 0.0115 
0.0122 0.0119 0.0118 0.0115 0.0115 0.0119 0.0123 0.0126 0.0119 0.0120 0.0127 0.0148 0.0134 0.0136 0.0153 0.0143 0.0149 0.0140 0.0147 0.0145 0.0161 0.0136 0.0138 0.0137 0.0134 0.0139 0.0141 0.0173

crN [m] max min a
a [m] o [m] °

0.0083 0.0015 0.0077 0.0043 0.0044 0.0082 0.0028 0.0032 0.0032 0.0025 0.0084 0.0068 0.0049 0.0046 0.0074 0.0122 0.0117 0.0118 0.0113 0.0119 0.0114 0.0115 0.0113 0.0115 0.0113 0.0122 0.0118 0.0122 0.0114 0.0119 0.0114 0.0116 0.0118 0.0118 0.0127 0.0129 0.0132 0.0137 0.0124 0.0132 0.0115 0.0120 0.0120 0.0125 0.0115 0.0127 0.0144 0.0159 0.0098 0.0077 0.0154 0.0159 0.0156 0.0123 0.0134 0.0144 0.0127 0.0148 0.0129 0.0139 0.0125 0.0148 0.0131 0.0139 0.0141 0.0167 0.0156 0.0158 0.0159 0.0159 0.0130 0.0137 0.0126 0.0135 0.0126 0.0140 0.0144 0.0153 0.0156 0.0169

0.0079 8 110.0080 39 350.0046 316 180.0027 44 420.0037 315 150.0082 44 320.0049 44 520.0075 315 200.0114 338 110.0119 357 310.0113 303 20.0114 25 200.0110 8 510.0111 342 410.0116 20 170.0112 25 130.0112 349 500.0116 26 500.0114 32 260.0119 317 390.0111 336 400.0112 315 360.0113 345 250.0130 2 370.0129 322 280.0126 323 550.0132 343 290.0135 332 380.0125 327 240.0124 345 340.0125 355 150.0130 323 340.0132 320 480.0133 343 110.0135 339 510.0130 21 060.0125 10 000.0124 352 220.0129 37 260.0154 358 42
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6.4b: continued

ST. <5E [m]

a l 0.000346 To 0.00275343 -0.00041944 0.005603

<5N [m] crB [m] [m] max 
a [m]

min 
o [m]

a
O it

0.003730 0.0114 0.0157 0.0115 0.0153 31 450.000080 0.0161 0.0167 0.0167 0.0162 16 470.000014 0.0144 0.0132 0.0164 0.0154 331 470.003935 0.0158 0.0124 0.0158 0.0126 329 100.000923 0.0124 0.0136 0.0126 0.0126 6 24

os =0.0143624 =0.0139635 ac =0.0141643 d02 =1.0000

Triple 6.4c: Estimated coordinates - static-dynamic model

Provisional coordinates Adjusted coordinates ST E[m] N [m] E [m] N [m]
24 299337.16025 297152.68026 292844.97127 289489.88828 291072.58029 288325.26830 282764.63631 287309.57032 286423.79533 293466.00234 278424.73335 287342.27336 269920.88837 275108.06338 267992.09939 266520.39340 273206.92141 277591.44442 289225.71643 283653.62544 262087.26245 253845.911

9942628.0179947392.3209952372.308 9949803.4499939211.6509935086.980 9938187.1479930525.5709925634.8189944523.7179912294.0479915871.1209925039.1659933938.0459934586.1759945802.347 9948003.1679949306.6419954204.1389955468.9769932950.1029928940.018

299337.1617 297152.6801 292844.9747 289489.8894 291072.5792 288325.2674 282764.6334 287309.7095 286423.9948293466.0018 278424.7306 287342.2725 269920.9223 275108.0623 267992.0970 266520.3943 273206.9212 277591.4443 289225.7187 283653.6284 262087.2676 253845.9108

9942628.0170 9947392.3200 9952372.3082 9949803.4517 9939211.6500 9935086.9800 9938187.1412 9930525.5355 9925634.8227 9944523.7162 9912293.8786 9915871.1216 9925039.1167 9933938.0454 9934586.0602 9945802.3469 9948003.1641 9949306.6446 9954204.1389 9955468.9764 9932950.10599928940.0169

6 - 5 Computed Shifts
The final coordinates for Experiments A, B, and C were

ComPared to the initial network coordinates from Survey of Kenya.
Table 6.5 shows the magnitude and direction of separations
between the two sets of coordinates for each point in the network
*le Figures 11,12, and 13 depict this shifts graphically. Table 

6.5b and Figures 14,15, and 16 show the numerical values of 
|^ts between coordinates determined from the three experiments.

.
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TaXH?  ̂ ^ : Shifts between estimated and the initial network^ m i t e r s

Exp. A

St. <5 [mm] a
o »

1 12 .8 272 42
2 13 . 7 119 10
3 27 .5 136 37
4 22 .6 192 42
5 39 . 1 186 27
6 43 .7 150 54
7 65 .5 175 22
8 67 .6 147 56
9 1 . 4 180 00
10 1 .0 180 00
11 - -
12 - -
13 1.. 1 164 45
14 44 . 7 297 34
15 9 .2 102 31
16 - -
17 2 . 8 289 20
18 10 .. 1 00 00
19 1,. 5 53 07
20 8 ,.0 180 00
21 14 ,.4 45 00
22 6 .. 4 51 21
23 - -
24 - -
25 - -
26 2 .. 7 00 1327 4 ,.0 00 00
28 4 ..0 180 0029 9 ..2 139 24
30 1..8 180 0031 17 ..4 256 4532 _
33 - -
34 1 ..9 147 5935 2 .. 8 135 0036 2 ..5 339 4237 1 ..0 180 0038 2 .. 1 256 0339 9 ..0 90 0040 2 ..4 270 0041A 'v 2 ..5 71 3342A “i 1..3 00 00**3 2 ,,0 90 00
4c 4 .. 1 27 49 ̂j 1.. 1 198 27

Exp. B Exp. C

6 [mm] a 6 [mm] a
o ti o ii

12.6 276 21 12.8 272 42
15.2 115 13 13.7 199 10
25.6 131 31 27.5 136 37
21.2 184 02 22.6 192 42
39.1 186 19 39.1 186 27
42.3 157 58 43.7 150 54
64.6 174 45 65.5 175 22
69.1 146 38 67.1 157 53
3.5 157 53 1.0 84 17
9.3 313 07 2.4 172 52

22.8 354 13 1.3 61 23
3.5 75 10 ■ 1.6 57 16
9.1 316 20 1.7 40 14
4.9 358 51 7.3 74 03
5.9 140 27 2.2 204 14
5.1 124 37 5.0 233 08

10.2 90 00 8.6 30 43
2.4 212 17 2.4 323 37
8.3 132 33 2 . 8 133 32
5.2 104 34 6.3 349 23
6.1 101 24 5.1 352 09

12.1 180 00 15.3 00 00
1.6 180 00 2.0 00 00
2.6 141 20 1.7 00 00
8.2 290 45 - -

3.5 147 23 3.7 00 00
8.9 154 53 7.4 03 05
9.2 98 08 8.0 180 00
2.3 116 33 3.6 180 00
3.3 125 08 5.8 270 00
2.0 126 52 3.5 174 27
1.5 148 23 4.7 90 00
3.6 94 45 8.2 104 02
1.0 87 24 0.8 93 55
1.3 153 26 1.6 72 38
3.8 168 06 3.4 178 39
3.6 145 09 4.0 90 00
4.8 137 47 3.9 86 03
5.6 151 46 4.1 97 41
6.6 245 33 2.9 244 06
5.4 316 24 4.5 67 14
7.9 174 08 6.6 85 44
7.8 189 47 2.8 161 34
5.3 177 07 6.8 34 54
9.9 183 56 9.5 255 34



Jablg_6_15b: Shifts between estimated parameters for experiments

A-B B-C C-A

St 5 [mm] a <5 [mm] a 6 [mm] a
o » o " o ft

1 0.001 255 57 0.001 75 57 - -
2 0.002 6 00 0.002 6 20 - -
3 - 84 17 0.003 264 17 - -
4
5

0.027 178 22 0.216 39 54 - -
6
7 0.002 156 48 0.002 336 48

- -
8 0.002 169 12 0.002 169 13 - -
9 0.002 305 50 0.004 94 31 - -
10 0.010 133 50 0.012 310 10 0.001 236 19
11 0.023 96 47 0.024 279 45 0.001 208 37
12 0.004 14 49 0.003 180 00 0.003 212 37
13 0.010 130 36 0.009 324 23 0.002 251 34
14 0.005 86 20 0.005 263 17 0.002 53 07
15 0.005 304 17 0.005 151 02 0.005 46 36
16 0.003 292 28 0.006 145 11 0.001 323 07
17 0.013 355 34 0.011 177 22 0.002 165 43
18 0.002 239 02 0.004 94 31 0.002 309 48
19 0.008 307 00 0 . Oil 137 31 0.002 342 39
20 0.005 315 00 0.006 151 19 0.004 270 00
21 - - 0.007 96 10 0.001 271 24
22 0.012 346 12 0.013 162 08 0.001 154 45
23 0.011 270 00 0.012 90 00 0.002 270 00
24 0.003 307 18 - - 0.002 270 0025 0.008 163 46 0.008 344 26 - -
26 0.028 266 43 0.007 76 10 0.021 270 0027 0.009 238 43 0.012 49 52 0.003 20 2028 0.002 334 39 0.002 165 15 -
29 0.003 353 53 0.002 169 42 -
30 0.003 357 52 0.009 184 42 0.006 187 5131 0.003 303 00 0.014 104 45 0.003 190 0032 0.002 301 36 0.004 15 45 0.019 88 5433 0.004 355 14 0.017 179 59 - -34 0.001 263 39 0.002 17 39 0.016 180 1785 - - 0.022 142 11 0.003 10 5435 0.006 278 07 0.003 126 28 0.058 146 4137 0.003 316 24 0.011 178 58 0.011 180 003"8 0.005 320 29 0.067 56 56 0.039 270 3539 0.006 318 07 0.007 124 54 0.011 180 0040 0.005 216 52 0.004 43 05 - -41 0.007 152 01 0.009 332 50 0.001 337 2242 0.009 275 12 0.011 89 57 0.002 57 160.001 218 39 0.004 74 44 0.003 86 39
4c 0.009 270 00 0.016 79 04 0.003 45 000.009 265 43 0.009 93 30 0.001 138 34
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FIG 4 POINT ERROR ELLIPS ES -FR EE NETWORK
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POINT ERROR ELLIPSES RESULTING FROM THE STATIC MOOEL
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FIG 6 POINT ERROR ELLIPSES RESULTING FROM THE DYNAMIC MOOEL
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FIG 7 POINT ERROR ELLIPSES RESULTING FROM THE STATIC-DYNAMIC MODEL



FIG, a POINT ERROR ELLIPSES RESULTING FROM THE STATIC MOOEL



FIG 9 POINT ERROR ELLIPSES RESULTING FROM DYNAMIC MODEL
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f:IG 10 POINT ERROR ELLIPSES RESULTING FROM THE STATIC-DYNAMIC MODEL



A RESULT OF STATIC DENSIFICATION
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FIG 12: EXPT. B SHIFTS OF POINTS FROM THEIR POSITIONS AFTER PHASING TO THEIR POSITIONS AS A RESULT OF
DYNAMIC DENSIFICATION
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FIG 13 EXPERIMENT C SHIFTS OP POINTS FROM THEIR POSITIONS AFTER

TC THEIP POSITIONS AS A RESUL* 0 ^  STATIC-DYNAMIC DENSIFICATION.



FIG 14: SHIFTS BETWEEN DETERMINED COORDINATES OF EXP A AND B
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FIG 15: SHIFTS BETWEEN DETERMINED COORDINATES OF EXP. B AND C
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FIG 16: SHIFTS BETWEEN DETERMINED COORDINATES OF EXP. A AND C
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6.6 Analysis of Results . . .In this section are analysed the a posteriori variance of
unit weight d02 , standard errors a8 arK  ̂ > and the computed

radial standard errors ~o~E , , and a c from the results obtained
in the sections above.

6.6.1 Analysis of variances

The estimated a posteriori variance of unit weight d02 for 
all the adjustment models are tested for any significant 
difference from the a priori variance °f unit weight ct02 Which 
was considered as unit in all the adjustments. The null
hypothesis for this test is written as
H0 : a02 = o02
and the alternative hypothesis as 

: <V * a02

( 6 - 1 )

( 6 - 2 )

where a02 and o02 are the a posteriori and a priori variances 

respectively. Using the x2 test, the test statistic is written as

Xa2 = md02/o( (6-3)

Where m are the degrees of freedom. Wit*1 (6-3) and using a level 
of significance of 0.05, the hypothesis (6-1) above is tested for

and rejected if,
2 nXmA >%' a / 2  ,m

(6-4)

a  being the level of significance. From (6-3) test statistics 
for each model and level of adjustment are computed and tabulated

below.
For the free network adjustment results the following 

statistics are obtained

X\a = 11.8425

X2o.o25.i2 .337
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This results indicate that the null hypothesis (6-1) is accepted 
tfhich implies no significant difference between the a posteriori 
and 3. prior variances of unit weight.

Table 6.6a: computed statistical values for x 2 test of
gxperiments A,B, and C.

First level Second level
densif ication Ho densif ication Ho

E x p e r i m e n t A X Y  =64.006 ZJ6s =68.000 Y

X Y  0 2 5 . 6 4  =89.320 Y X Y  0 2 5 , 6 8  =  ^ 4  • 0 3 7

Experiment B X Y  =47.688 X 2  2 2  =21.990 Y

X Y  0 2 5 , 4 3  • 1 9 7 Y X^0. 0 2 5 , 2 2  =3 6.781

Experiment C X Y  =47.997 X 2  22  =22.001 Y

X Y  0 2 5 , 4 3  =T0.197 Y X Y  0 2 5 , 2 2  =3 6.781

Y- represents acceptance of the null hypothesis.

From the Table above the null hypothesis for the x2 test was 
accepted for all the Experiments at both levels of densif ication.
These indicate that the estimated a posteriori variances of unit
°f weight from the densification models are statistically equal
to the a priori variance of unit weight used in the estimation.

The acceptance of the null hypothesis indicates that the 
estimation processes were done correctly and more specifically 
that the a priori variance of unit weight was correctly chosen 
I0*1 that all the three models relate to the unknown parameters 
c°mpietely and correctly.
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Despite the fact that the null hypothesis is acceptable in 
jj cases above, it has to be observed that for individual 
gtatistical estimates, the more close the test statistic is to 
cke value obtained from Tables of statistics the more reliable
the estimate are. It can be noticed that the 
values lm>T?a/2.m determined from Experiment A (i.e use of the 
static model) are closest followed by those from Experiment C,
and finally those from Experiment B.

It is expected that the results of the static model should 
appear as the best, the reason being that the model is based on 
the assumption that higher order points are fixed and errorless. 
However, the higher order points are stochastic having been 
determined, for example in this case from the adjustment of the 
primary network (see section 3.1).

The results of Experiment C have the second closest values 
while those from Experiment B have the lagest difference. These 
are results determined from the static-dynamic and dynamic models 
respectively within which stochasticity of datum parameters is 
incorporated. In the static-dynamic model datum parameters are 
maintained definitive while in the dynamic case all parameters 
are estimated afresh, thus resulting in the loss of the concept 
fixed national datum. It is on this basis that the results of 
Experiment C can ordinarily be considered as best overall.

Analysis of standard errors
The standard errors for Experiment A are generally smaller 

Allowed by those of Experiment C and finally those of Experiment 
The results of Experiment A seem more accurate from these
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gtandard errors but as explained in preceding sections these 
ainplify the fact the static model assumes a fixed and errorless 
datum. The important observation made here is the fact that the 
standard errors for the static-dynamic model are in between those 
0f the static and dynamic models in magnitude.

6.6.3 Efficiency of the Estimators
Following the discussion in sections (6.6.2) and (6.6.3) the 

results for Experiment C (densification using the static-dynamic
model) are considered as best overall. On the basis of this, the 
computed values oZ , and of the other two experiments are 
tested for any significant difference from the values determined
from Experiment C .

The null hypothesis H0 and its alternative Ha are stated 
respectively as

* • ' *  - 5  (6-5)
Ha-.o\ > o22

where o21 is taken as the factor computed from Experiment C,

while o22 is the factor being tested. The test statistic in 
this case is defined as

= ° \ / ° T2 <6 ' 6 )

and the null hypothesis is rejected if
'̂nh.,m2  ̂^a, , m2 (6-7)

where a , m1 and rr̂ are the level of significance, and degrees of 
freedom for samples 1 and 2 respectively. Using a level of
significance 0.05 and with (6-7), one obtains values given in 
the Tables below.



fat)le 6 *6a ComPute<d values of

First level densification

Experiment A **48/64 =1-5848
Experiment B =1-3544
Experiment C

T ab le  6.6b Computed values of

First level densification
Experiment A f48#64 =1.46 1 8
Experiment B F48>48 =1-3823
Experiment C

the test statistic for oN

Second level Ho densification Ho

Y =1-6404 Y
Y F22 22 =1.2530 Y

the test statistic for ~o~E

Ho Second level densification Ho
Y ■̂2 2,68 =1-5973

Y F22,22 =1 - 1212

Table 6.6c Computed values of

First level densification Ho
Experiment A F48/64 =1.5201
Experiment B F48 48 =1-3685
Experiment C

thei test statistic for oc

Second leveldensification Ho
Y 2̂ 2,68 =1 -6180 Y
Y 2̂2,22 =1 - 1815 Y

From Tables (6.6a, b, c) , it is noticed that the hypothesis 
(6~5) was accepted for both Experiments A and B at the two levels 
°£ densif ication.
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6 6.4 Analysis of error ellipses
Figures 5 and 8 depict point error ellipses for the first 

and second levels of densification using the static model, while 
figures 6 and 9 depict those from the static model, and Figure
7 and 10 show those from the static-dynamic model. Note that in 
Figure 5 points 1 to 8 do not have error ellipses because of the 
concept of the static model in which datum points are treated as 
fixed and errorless, likewise points 1 to 23 are treated as fixed 
during second level densification hence the indication that they 
do not have error ellipses in Figure 8. It should be noted that 
the situation of not having error demonstrates that the points 
in question are so accurately placed that the error ellipse 
parameters are zeros. Figures 6, 7, 9, and 10 have error ellipses 
at all points since the stochasticity of datum parameters is 
considered in Experiments B and C.

Error ellipses for points 1 to 8 in Fig. 7 are similar to 
those in Fig. 4 and those for points 8 to 23 in Fig. 10 are similar 
to points 8 to 23 in Fig. 5. A general view of the error ellipses 
indicates that the size of the ellipses are smallest in 
Experiment A followed by those of Experiment C and finally those 
°f Experiment B and all the ellipses are differently oriented. 
The implication of the error ellipse of a point is a space in 
which there is 0.394 probability that the estimated point lies 
Inside, thus the smaller the ellipse the more accurately the 
p°int is placed.

As discussed above, the fact that error ellipses for 
**Periment A are smallest is attributed to the fundamental
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once pt of holding datum parameters fixed. These are not 
êpresentative enough since datum parameters are in fact 
tochastic. Experiments B and C incorporate the stochasticity of 
datum parameters in which case Experiment C which yields the 
second best results can be considered as a more reliable 
estimation process than Experiment A.

6.6.5 Analysis of Shifts
From Table (6.5) and Figures 11-16 respectively, it can be 

seen that all the computed shifts differ in magnitude and 
direction, It is however noticed that the values determined from 
Experiments B and C are close together in magnitude while those 
of Experiment A are appreciably larger or smaller in comparison. 
This demonstrates the fact that the new coordinates from 
Experiment A (i.e. use of the static model) are distorted though 
looking reasonably correct.
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CHAPTER SEVEN

DISCUSSION

In this chapter, performance of the static, dynamic, and 
static-dynamic densification models based on the results obtained 
and analyzed in chapter six is discussed. Discussed first, in 
section (6.1), are the results of Experiments A, B, and C at the 
first level of densification. The results for the second level 
densification are thereafter discussed in section (6.2) while 
section (6.3) concludes the chapter.

7.1 First level of densification
At the first level of densification the primary network 

(Fig. 1) was densified by addition of second order points (Fig. 
2). From the results of Experiments A, B, and C in sections 6.2, 
6.3, and 6.4 respectively. The smallest set of standard errors 
of estimated parameters were obtained from Experiment A (use the 
static model) as can be seen from Table 6.2. The static-dynamic 
rcodel (Experiment C) yielded the second smallest set of standard 
errors which were very close to those from Experiment B (use of 
dynamic model) .

The computed average standard error for the three 
9xperiments varied in magnitude though statistical tests in 
Section (6.6.3) indicated no significant differences, these 
er*ors for Experiments A, B, and C were 9.6mm, 10.8mm, and 10.1mm 
esPectively and in all experiments, points 12 and 15 had the 
Hest standard errors. This situation is probably attributed



r

Resulting error ellipses indicated different sizes and 
orientations for each experiment but it could be noted from 
Figures 5, 6, and 7 that Experiment A resulted in the smallest 
error ellipses followed by Experiment C and finally Experiment 
B had the largest error ellipses. These reflected the same order 
of accuracy levels as did the standard errors of the estimated 
parameters for respective experiments, which is expected as error 
ellipses are derived from the covariance matrix.

Experiment A was undertaken with datum (primary) stations 
1 to 8 being treated as fixed and errorless, this is the reason 
why Fig. 5 depicts these points as not having error ellipses 
which in essence gives the impression that these points were so 
accurately positioned that their standard errors are negligibly 
small. This gives the main cause for objection of these results 
since datum points are in fact stochastic having been determined 
from an earlier adjustment. In this case, for example, Fig. 4 
shows the datum points as having error ellipses, yet in the 
static densification process they are implicitly ignored, which 
indicates that the results of the static model are not 
representative enough, and as has been stated in previous 
chapters, they are expected to be too optimistic.

Although all the computed parameters from the static model 
iook reasonably correct as indicated by the smaller error 
ellipses, computed shifts (Table 6.5) between adjusted and 
lnitial coordinates depict the static model as giving greater 
Variations in stations than the static-dynamic and dynamic

10 the fact that there was a high number of observations to and
from these two points.
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yodels. This could be attributed to distortions in the new 
network caused by neglecting the stochasticity of datum points 
during the estimation process.

Experiment B in which densification was performed by treating 
che datum coordinates as stochastic (i.e use of the dynamic 
model) resulted in larger error ellipses compared to both 
Experiments A and C. As can be seen from Fig. 6, all network 
points have error ellipses since this mode of densification 
yields new values for both datum and densification points. It is 
noticeable that all the point error ellipses for the datum 
stations are relatively smaller as compared to those that were 
determined for the primary network.

The smaller point error ellipses for the primary network in 
comparison to those determined earlier from the free network 
adjustment depicts improved accuracy for the datum points at this 
level of densification, in case, these can be attributed to fact 
the corresponding parameters are much refined in the first level 
densification since values that already been determined are 
further adjusted. It is however important to observe that despite 
the rigour of this experiment, due to the incorporation of 
stochasticty of datum points, these points are estimated afresh 
which is technically a handicap, since in this case the concept 
°f datum which is vital for national geodetic reference systems 
effectively losses meaning.

Experiment C yielded results which in magnitude ranged 
êfween those of the static and dynamic models. In this 
^^Psriment, datum coordinates are treated as stochastic while 
joining the concept of datum, as the numerical values of the



^atum parameters and the respective datum covariance matrix are 
maintained as definitive within the context of a consistent 
mathematical formulation. This is evident from the results in 
Tables 6.4b and 6.4c. in which the estimated parameters for datum 
stations do not change from those of the primary network despite 
having been used in the estimation process.

Figures 7 and 10 further demonstrate the concept of the 
static-dynamic model in which datum elements remain defined, 
since the point error ellipses for datum stations are similar to 
those determined in earlier adjustments in both size and 
orientation. For example, error ellipses for points 1 to 8 in 
Fig. 7 are similar to those in Fig. 4, likewise error ellipses 
for points 8 to 22 in Fig. 10 are similar to those of the same 
points in Fig. 7.

In general, estimated standard errors, point error ellipses, 
and coordinate shifts for the dynamic and static-dynamic models 
(i.e. Experiments B and C) differ very slightly; this could be 
explained by the similarity of these two models in principle with 
differences resulting due to the mode of application where the 
concept of datum is retained in the static-dynamic model while 
datum is estimated afresh in the dynamic model.

7-2 Second level densification
At this level, the results of the first level of 

ênsification were densified into a tertiary network. From Tables 
®*2b, 6.3b, and 6.4b, Experiment A yielded the smallest standard 
Srrors and error ellipses, followed by those from Experiment C 

I finally those from Experiment B.
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It is observed that the order of accuracy of determination 
this level is similar to that of the first level of 

densification, however it is noticed that numerical values of 
accuracies increased at this level for all models which indicates 
a general reduction of accuracy in the higher order networks. 
This is expected since the accuracy of instruments used for 
setting geodetic networks reduces down the lower levels of 
densification, consequently weighting of observation sets tends 
co become less accurate in the hierarchy of geodetic network 
densification. Explanation to the behaviour of results in the 
second level of densif ication is as has been outlined in section 
( 6 . 1 ) •

From section (6.6), the analysis indicated that the 
estimated a posteriori variances of unit weight from all the 
models at all levels of densification were statistically equal 
to the a priori variance of unit weight. This therefore, 
indicates that the estimation processes were correctly carried 
out and specifically that the models relate to unknown parameters 
completely and correctly.

The efficiency of estimators tested for in section (6.6.3) 
indicated no significant differences between the computed 
Circular Probable Errors for all the experiments at both levels 
°f densification, while this signified the validity of the 
estimates determined, it is attributed to fact that the 
Parameters used as estimates in the study were in fact computed 
^nal point coordinates from the Survey of Kenya records hence 

closeness of the determined estimates which led to determined 
P°int accuracies being very close in magnitude. This is also
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evident from Tables 6.2, 6.3, and 6.4 in which the computed
estimates for differences between initial and final coordinates 
are very small in magnitude.

7.3 Concluding remarks
Form the foregoing discussion, an overall classification of 

the viability of determined results in geodetic densification of 
networks would be Experiment A, Experiment C , and finally 
Experiment B i.e., the use of static, static-dynamic, and dynamic 
densification models respectively.

However, the static model is based on a fixed and errorless 
datum, with the datum being stochastic, this model yields results 
that are not representative enough; in most cases the results 
seem more accurate than they indeed are (discussed in Chapters 
1 and 3) .

The dynamic and static-dynamic densification models 
incorporate stochasticity of datum parameters, in the static- 
dynamic model, datum parameters are maintained definitive while 
in the dynamic model all parameters are estimated afresh. It is 
on the basis of these stronger theoretical and practical 
qualities that the static-dynamic model, despite coming second 
to the static model in this study, is ordinarily considered to 
9ive more reliable results in geodetic densification of networks.

Despite the static-dynamic densification model being the 
ôre acceptable one than both the static and dynamic 
ênsification models it is imperative to observe that these two 

could also be used in the densif ication of geodetic 
^ w°rks under certain circumstances. For example, for ordinary



gapping purposes, the use of the static model in which datum 
information is treated as exact, although strictly not correct, 
may however not be very critical since the accuracies of networks 
for mapping purposes do not have to be so high.

The use of the dynamic model would be particularly 
recommended for isolated precise engineering networks in which 
there is no need to fix datum. Such networks would include those 
for the analysis of deformation of engineering structures, for 
example, dam deformation analysis and earth deformation analysis. 
The model would also be useful for scientific geodetic networks 
such as those for crustal deformation monitoring.
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CHAPTER EIGHT

CONCLUSION

This chapter summarises the work done and gives recommendations 
arising from the findings of the work reported herein.

8.1 Summary
The objective of the present study was to demonstrate the 

practical applicability, and to evaluate the suitability of three 
approaches to geodetic network densification namely, static, 
dynamic, and static-dynamic densification models.

To realise this objective, the three models (Experiments A, 
B, and C) were used to estimate parameters for a part of the 
Kenyan geodetic network consisting of eight primary control 
stations, fifteen secondary control stations, and twenty-two 
tertiary control stations as discussed in section (5.1).

In Experiment A, densification under the static model was 
applied, the datum stations were regarded as fixed and error- 
free. In Experiment B, application of the dynamic model, the 
stochasticity of datum stations was considered, thus in this 
approach all the stations were estimated afresh. The concept of 
Experiment C (use of static-dynamic model) was such that datum 
coordinates were treated as stochastic prior information while 
at the same time their numerical values and respective datum 
;ariance-covariance matrices were maintained definitive.
The results of these three approaches were very close to one 

Mother owing to the fact that estimations were being carried out 
0ri an already adjusted network, and the estimates were themselves 
7ery close to the approximate values which were adopted from the



gurney of Kenya coordinates. However, on evidence of the standard 
errors and error ellipses as shown in chapter six and 
mathematical formulations in chapter three, the static-dynamic 
model was considered the more suitable approach for densification 
from among the three models considered.

8.2 Conclusions
Traditional densification is carried out by applying the 

static model. As has been demonstrated in the study, this model 
implicitly ignores the stochasticity of datum points by assuming 
them as fixed and errorless. This implicit omission is not 
justified as the "fixed" datum parameters are themselves obtained 
from an earlier adjustment process thus having an associated 
variance covariance matrix.

It is therefore concluded that there is need to incorporate 
the stochasticity of datum points in the densification of 
networks. This is the only way to truly reflect the fact that 
datum points are determined from initial network adjustments.

In view of the fact that stochasticity of datum points has 
to be considered, there is need to determine the variance 
covariance matrix of datum points for a particular geodetic 
network during any adjustment. This should be saved and made 
available for use in subsequent densification of the network.

The use of the dynamic model incorporates stochasticity of 
datum parameters. Unfortunately, this results in all coordinates 
being estimated afresh in which case the idea of network datum 
ls lost. This leads to the conclusion that the dynamic model can 
n°t be effectively used in cases where the datum reference has 
**° remain fixed. It however can be used in situations where the 
^tum need not be maintained.

99



The static-dynamic model yielded results which were, in 
terms of magnitude of standard errors and error ellipses, between 
those of the static and dynamic models. It can therefore be 
concluded that the static-dynamic model is a "sandwich” model 
which effectively uses the advantages of the static and dynamic 
models. The static-dynamic model is thus considered as the best 
suited approach to the densification of geodetic networks.

It is however imperative to observe that the static and 
dynamic models could also be used in densification work under 
special circumstances that, datum has to be retained without 
considering its stochasticity and datum not being retained at all 
respectively.
8.3 Recommendations

Having compared the mathematical formulations of the static, 
dynamic, and static-dynamic models as approaches to densification 
of geodetic networks and in view of the results obtained in 
Chapter Six and discussed in Chapter Seven, it is recommended 
that the static-dynamic model is the more viable approach to 
densif ication of geodetic networks from the set of of three 
models studied here.

The study herein was carried out on data already determined 
from the field, it is recommended that a survey be set up from 
the begining, data collected and subsequently processed using the 
above models.

The study herein was carried out on data for an existing 
Network, it is recommended that it be tested on a freshly 
Signed and observed network.

As a further test to the three densif ication models studied, 
is recommended that they be subjected to the adjustment and 

nsification of three and four dimensional geodetic networks.
1 0 0
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ftPPBNDIX A: PROGRAM LISTINGS AND FLOWCHARTS

flPPENDIX A.l; PROGRAM DENSITY .FOR
*

C*

c
*

c★

c
*

*M 0 D U L E 0 N E ******************************************************
IMPLICIT REAL*8 (A-H,O-Z)
DOUBLE PRECISION W 2 (66,66),X (50),Y (50),DXA(50) ,DYA(50) 
DIMENSION LANG(100,2),IDEG(100),MIN(100),SEC(100)
DIMENSION LDST(100,2),DST(100),DIST1(100),DIST2(100) 
DIMENSION A 1 (47,90),A2(70,90),W(117,117),A(117,90) 
DIMENSION Yl(lOO),Y2(100),YM(200,1),ANG0(100),ANG1(100) 
DIMENSION ANG(200,1),re(46,1),RESD(117,1),WD(100)
DIMENSION IDG(100),IMN(100),RSC(100),ARES(117,1),ETW(1,117) 
DIMENSION NBRG(100),MITN(100),SCS(100),AZMT(100),CAZMT(100) 
DIMENSION ATW(90,117),ATWA(90,90), ATWAIN(90,90),ADY(117,1) 
DIMENSION ETWE(1,1),DX(90,90),ADJO(117,90),ATR(90,117) 
DIMENSION W T (117,117)
DIMENSION DX1(50) ,DY1(50) ,STDQ(2 00) ,Rr(46,90) ,CRX(90,1) 
DIMENSION RTW (90,46) ,RTWR(90,90) , SUM1 (90,90') ,SUMI(90) 
DIMENSION RTWre(90,1),ATWY(90,1),SUM2(90,1),SOLN1(117,1) 
DIMENSION DELS(90,1),RRES(46,1),ADJX(90,1),SOLN2(46,1)
FIRST VARIANCE COMPONENT DIMENSIONS ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
DIMENSION
DIMENSION
DIMENSION
DIMENSION

W 1 (47,47),El(47,1),W1I(47,47),All(90,47)
A1W(90,90) ,Alll(47,90) ,AIT(90,47) , QE1(47,47) 
A1WI(90,90),W1QE(47,47)
E1T(1,47),E1TW1(1,47),E1TW1E(1,1),AA1(47,47)

SECOND VARIANCE COMPONENT DIMENSIONS
DIMENSION
DIMENSION
DIMENSION
DIMENSION

E2(70,1),W2I(70,70),A22(90,70 
A222(70,90),A2T(90,70),QE2(70 
W2QE(70,70) ,E2T(1,70) ,E2TW2(1 
AA2(70,70)

,A2WI(70,70)
70),A2W(90,90) 
70),E2TW2E(1,1)

THIRD VARIANCE COMPONENT DIMENSIONS*•★'*'**•*•'*■★*★★★★'*,•*'★★•*r'*•**★★•*••*'•*•★•*'★★★*'■*'★**
DIMENSION
DIMENSION
DIMENSION
DIMENSION

W r (46,46),E3(46,1),WrI(46,46)
A3 33(46,90) ,QE3(46,46) ,A3T(1,46) 
WrQE(46,46) ,E3T(1,46) ,E3TWr(l,46 
R T (90,46),RRI(46,46),W3QE(46,46)

,E3TWrE(1,1) 
RTWRI(90,90)

FREENET MANIPULATIONS
DIMENSION
DIMENSION
DIMENSION
DIMENSION

A T (16,42),G (4,16),G T (16,4),GTG(16,16),ADG(16,16) 
AV(16,16) ,GAV(4,16),GTAV(16,16),AVGT(16,16)
ASB(16,16),ASAT(16,42),ADJX(16,1),ADX(42,1)
ATSB(16,16),ABA(16,16),E(42,1)



c COVARIANCE MATRIX MANIPULATIONS* *******************************t
DIMENSION SGY(50),SGX(50),EC(50), COV (90,90)
DIMENSION VMIN(50),THETA(50),SGMX(50),SGMY(50),VMAX(50)
REAL KK(4,4),KKINV(4,4)

* ★★★*★*★*★*★★**★★*•★★★★*★★★*★★★★*★**★*****★★★*★★***★**’**★★**★
C * MAXDST=NUMBER OF DISTANCES MEASURED
C * MAXDIR=NUMBER OF DIRECTIONS MEASURED
C * MAXST= NUMBER OF STATIONS IN THE NETWORK
C * NOTS=(MAXST-MAXDAT)*2 THE NUMBER OF UNKNOWNS IN THE
C * X-VECTOR
C * NEQ=MAXDST+MAXDIR TOTAL NUMBER OF OBSERVATIONS/EQUATIONS* **★★★★★★***★★★*★★★****★*★*★*★★★★****★★★★*★★★*■*••*■★*•★'**■★'*•■*•'*•■*•■*•★★

WRITE(*,1)
READ( * , 2 )MAXST

1 FORMAT(' INPUT TOTAL NUMBER OF STATIONS (MAXS11T)')
2 FORMAT(12)

WRITE(*,3)
3 FORMAT(' INPUT TOTAL NUMBER OF DATUM STATIONS (MAXDAT)') 

READ( * , 2 )MAXDAT
WRITE(*,4)

4 FORMAT(' INPUT NUMBER OF DISTANCE OBSERVATIONS(MAXDST)') 
READ( * , 2 )MAXDST
WRITE(*,5)

5 FORMAT(' INPUT TOTAL NUMBER DIRECTIONS OBS.(MAXDIR)')
READ ( * , 2 )MAXDIR
WRITE(*,6)

6 FORMAT(' HOW MANY ITERATIONS ?')
READ( * , 2 )ITR
WRITE(*,7)

7 FORMAT(' HOW MANY RESTRICTIONS ?')
READ(*,2)NEQR
WRITE(3,12)

12 FORMAT(15X,'THE INPUT DATA USED FOR THE STUDY ARE 
</13X,50('=')///, 6X,’POINT',28X,'APPR.CO-ORDINATES 
X'/5X,13('='),25X,14('=')/31X,'X(METRES)',15X,'
XY(METRES) '/30X,11(' = '),13X,10(’ = ' ) )
READ(12,13)(Y (I),X (I),1=1,MAXST)

13 FORMAT(X,F12.4,2X,Fll.4)
* STORING PROVISION COORDINATES

DO 100 1=1,MAXST 
DXA(I)=X(I)
DYA(I)=Y (I)

100 CONTINUE
APVUW IS THE APRIOR VARIANCE OF UNIT WEIGHT
APVUW=1.0
RS = 206264.8
PI=3.141592
ICNT=1
WRITE(3,16)(I,DYA(I),DXA(I),1=1,MAXST)

16 FORMAT(7X,13,2OX,F12.4,16X,Fll.4)
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17 FORMAT (/9X, 'DIST.NO: ' , 5X, ' STATION' , 12X, ' DIST. BETWEEN 
<STATIONS'
</8X, 10 ('='), 5X, 10 (' = '), 9X, 24 ( ' = ' ) ) 1=
READ(23,14) (LDST(I,1) ,LDST(1,2) ,DST(I) , I = 1;MAXDST)

14 FORMAT(X,12,X,I2/X,F9.3)
WRITE(3,18)(I,LDST(1,1),LDST(I,2),DST(I),I=1,MAXDST)

18 FORMAT (11X, 12,10X, 12,3X, 12,23X, F9.3)
WRITE(3,19)

19 FORMAT(/5X, 'LINE.NO:',8X, 'STATION',6X, ' H .DIR(DEG,MIN,&SEC) ' 
X, 9X, 'AZMT(RADIANS) '/4X,10('='),6X,10(' = '),4X, 24(' = ') ,
X7X,15(*= '))
INPUT FOR HORIZONTAL DIRECTIONS
READ(23,15) (LANG(I,1) ,LANG(I,2) ,IDEG(I) ,MIN(I) ,
<SEC(I),1=1,MAXDIR)

15 FORMAT (X, 12 , X, 12,3X, 13 , X, 12 , X, F4.1)
WRITE(3,20) (I,LANG(1,1) ,LANG(I,2) ,IDEG(I) ,MIN(I) ,SEC(I)
<,1=1,MAXDIR)

20 FORMAT (6X, 13,10X, 12,2X, 12,12X, 14,2X, 13,2X, F5.2 )
1000 CONTINUE

ICNT=ICNT+1 
NEQ=MAXDST+MAXDIR 
NOTS=(MAXST-MAXDAT)*2
INITIALIZING THE OUT PUT MATRICES AND VECTORS 
DO 10 1=1,NEQ 
DO 10 J=1,NOTS 
A (I, J)=0.0 
ANG(1,1)= 0.0 
W(I,I)=0.0 

10 CONTINUE*************************************************
*M O D U L E  T W O *
IF(MAXDAT.EQ.0) GOTO 401
DESIGN MATRIX FOR FIXED DATUM WORKS
COMPUTING DISTANCE OBSERVATION PARAMETERS AND
LOADING IN THE
DESIGN MATRIX
DO 23 1=1,MAXDST
K1=LDST(I,1)
K2=LDST(1,2)
DIST1(I)=SQRT( (X(K2)-X(K1))* *2 +(Y(K2)-Y (Kl))* *2 )
DO 22 J=l,2
IF(J .EQ.2)GO TO 21
IF(Kl.LE.MAXDAT)GO TO 22
Jl=(Kl*2-1)-MAXDAT*2
J2=J1+1
A1(I,Jl)= (X(Kl)-X(K2))/(DIST1(I))
A1(I, J2) = (Y(K1)-Y(K2))/(DIST1(I))
GO TO 22

21 IF(K2.LE.MAXDAT)GO TO 22 
Jl=(K2*2 -1) -MAXDAT*2 
J2=J1+1
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2 2

23
C
C
C

24

25

C
C

C
C

26
C
C
C
C

A1(I,Jl)= (X(K2)-X(K1))/(DIST1(I))
A1(I,J2)= (Y(K2)-Y(K1))/(DIST1(I))
CONTINUE
Y1(I)=DST(I)-DISTl(I)
STORING COMPUTED DISTANCES
W1(I;I)=APVUW/( (0 .003**2)+(DST(I)*10E-6)**2)
CONTINUE
FORMATION OF DESIGN MATRIX COMPONENT A2 FOR DIRECTION *
DO 26 1=1,MAXDIR 
L1=LANG(I,1)
L2=LANG(1,2)
DIST2(I)=SQRT((X(L2)-X(LI))**2+(Y(L2)-Y(L1))**2)
DO 25 J=l/2
IF(J .EQ.2)GO TO 24
IF(LI.LE.MAXDAT)GO TO 25
J2=J1+1
A2(I,Jl)=(Y(L2)-Y(L1))/DIST2(I)*RS 
A2(I,J2) = (X(LI)-X (L2) )/DIST2(I)*RS 
GO TO 25
IF(L2.LE.MAXDAT)GO TO 25 
Jl=(L2*2-1)-MAXDAT*2
J2=J1+1
A2(I,Jl)= (Y(LI)-Y(L2))/DIST2(I)*RS 
A2(I,J2)= (X(L2)-X(LI))/DIST2(I)*RS 
CONTINUE 
DN=Y(L2)-Y(L1)
DE=X(L2)-X(L1)
COMPUTATION OF OBSERVED HORIZONTAL ANGLES 
CAZMT IS THE COMPUTED BEARING 
CALL QUAD(DE,DN,Y2 2)
CAZMT(I)=Y2 2
CONVERSION OF THE COMPUTED BEARINGS INTO 
DEGREES,MINUTES,SECONDS 
XN=CAZMT(I)*PI/180.
CONVERSION OF COMPUTED AZIMUTHS INTO DEGREES, 
MINUTES,SECONDS
CALL ANGLE(XN,NBRG(I),MITN(I),SCS(I))
ANG1(I)=Y22*3600.
AZMT **** IS THE INPUT DIRECTION 
Y2(I)=SCS(I)-SEC(I)
W2(I,I)=APVUW/1.0 * * 2 
CONTINUE
FORMATION OF COMPLETE DESIGN MATRIX,WEIGHT MATRIX,& 
Y-VECTOR*******************************************************
DO 28 1=1,NEQ 
DO 28 J=1,NOTS 
IF(I .GT.MAXDST)GO TO 27 
A(I,J)=A1(I,J)

104



YM(1,1)=Y1(I)
ANG (1,1)=ANGO(I)
W(U)=W1(I,I)
GO TO 28 

27 K=I-MAXDST
A (I; J) =A2 (K, J)
W (I, I) =W2 (K; K)
YM(1,1)=Y2(K)

28 CONTINUE 
GO TO 402 

401 CONTINUE
* COMPUTING DISTANCE OBSERVATION PARAMETERS AND LOADING IN
C THE DESIGN MATRIX FOR DYNAMIC AND STATIC DYNAMIC
C NETWORKS

DO 30 1=1,MAXDST 
K1=LDST(I,1)
K2=LDST(1,2)
DIST1(I)=SQRT((X(K2)-X(K1))**2+(Y(K2)-Y(K1))**2)
J1=K1*2-1 
J2=J1+1
A1(I,Jl) = (X(K1)-X(K2))/(DIST1(I) )
A1 (I, J2) = (Y(K1) -Y(K2) ) / (DIST1 (I) )
J3=K2*2-1 
J4=J3 + 1
A1 (I, J3) = (X (K2) -X (Kl) ) / (DIST1 (I) )
A1(I, J4) = (Y(K2)-Y(K1))/(DIST1(I) )
Y1(I)=DST(I)-DIST1(I)

* STORING COMPUTED DISTANCES 
ANGO(I)=DIST1(I)

30 CONTINUE
C FORMATION OF DESIGN MATRIX COMPONENT A2 FOR DIRECTIONS
Q  ★  ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ T I T

DO 31 1=1,MAXDIR 
L1=LANG(I,1)
L2=LANG(1,2)
DIST2(I)=SQRT((X(L2)-X(L1))**2+(Y(L2)-Y(L1))**2)
J1=L1*2-1
J2=J1+1
A2(I, Jl) = (Y(L2)-Y(L1))/DIST2(I)*RS 
A2(I,J2)= (X(L1)-X(L2))/DIST2(I)*RS 
J3=L2*2-1 
J4=J3 + 1
A2(I, J3) = (Y(L1)-Y(L2))/DIST2(I)*RS 
A2(I,J4)=(X(L2)-X(L1))/DIST2(I)*RS 
DN=Y(L2)-Y(LI)
DE=X(L2)-X(LI)
COMPUTATION OF OBSERVED HORIZONTAL ANGLES 
CAZMT IS THE COMPUTED BEARING 
CONVERSION OF THE COMPUTED BEARINGS 
INTODEGREES,MINUTES,SECONDS
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o 
o 
o

CALL QUAD(DE,DN,Y22)
CAZMT(I)=Y22

C CONVERSION OF COMPUTED AZIMUTHS INTO DEGREES,
q MINUTES,SECONDS

XB=CAZMT(I)*PI/180.
CALL ANGLE(XB,NBRG(I),MITN(I),SCS(I))
ANG1(I)=Y22*3600.
Y2(I)=SCS(I)-SEC(I)

31 CONTINUE
FORMATION OF COMPLETE DESIGN MATRIX, WEIGHT MATRIX, &
Y-VECTOR
★  ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ •A T * ’ * ' * - *

DO 33 1=1,NEQ 
DO 33 J=1,MAXST*2 
IF(I .GT.MAXDST)GO TO 32 
A (I,J)=A1(I,J)
YM(1,1)=Y1(I)
W (I,I)=W1(1,1)
ANG(1,1)=ANG0(I)
GO TO 33

32 K=I-MAXDST 
A (I, J) =A2 (K, J)
W(I,I)=W2(K,K)
YM(1,1)=Y2(K)
ANG(I,1)=ANG1(K)

33 CONTINUE 
DO 60 1=1,NEQR 
Rr(I,I)=1.0 
Wr(I,I)=1/(WD(I)* *2)

60 CONTINUE 
GO TO 403 

402 CONTINUE
C MANIPULATION FOR THE STATIC MODEL
* LEAST SQUARES MANIPULATION 

IRR=MAXST-MAXDAT
NEQ=MAXDST+MAXDIR 
NOTS=(MAXST-MAXDAT)*2

* COMPUTING UNKNOWN PARAMETERS 
CALL ATB(A,W,ATW,NEQ,NOTS,NEQ)
CALL TIMES(ATW,A,ATWA,NOTS,NEQ,NOTS)
CALL MATINV(ATWA,ATWAIN,NOTS)
CALL TIMES(ATWAIN,ATW,R,NOTS,NOTS,NEQ)
CALL TIMES(R,YM,CRX,NOTS,NEQ, 1)

* CRX--  IS THE VECTOR OF UNKNOWNS
* COMPUTING FOR RESIDUALS

CALL TIMES(A,CRX,SOLN,NEQ,NOTS,1)
CALL MINUS(YM,SOLN,RESD,NEQ,1)

* ADY .... IS THE VECTOR OF ADJUSTED OBSERVATIONS 
CALL ADD(ANG,SOLN,ADY,NEQ,1)
DO 202 I=MAXDST+1,NEQ 
DG=ADY(I,1)/3600.*PI/180.
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CALL ANGLE(DG,IDG(I-MAXDST),IMN(I-MAXDST),RSC(I-MAXDST)) 
202 CONTINUE

DO 29 1=1,NEQ 
29 E (I,1)=RESD(1,1)

GO TO 404 
403 CONTINUE

*********** MANIPULATIONS FOR THE DYNAMIC MODEL ************** 
CALL ATB(A ,W ,ATW,NEQ,NOTS,NEQ)
CALL TIMES(ATW,A,ATWA,NOTS,NEQ,NOTS)
CALL ATB(Rr,Wr,RTW,NEQR,NOTS,NEQR) t 
CALL ADD(RTWR,ATWA,SUM1,NOTS,NOTS)
CALL VERSOL(SUM1,SUMI,NOTS)
CALL TIMES( ATW,YM,ATWY,NOTS,NEQ,1)
CALL TIMES(RTW,re,RTWre,NOTS,NEQR,1)
CALL ADD(ATWY,RTWre,SUM2,NOTS,1)

* DELS = UNKNOWNS
CALL TIMES( SUMI,SUM2,DELS,NOTS,NOTS,1)

* COMPUTING RESIDUALS
CALL TIMES(A,DELS,SOLN1,NEQ,NOTS,1)
CALL MINUS(YM,SOLN1,ARES,NEQ, 1)
CALL TIMES(Rr,DELS,SOLN2,NEQR,NOTS,1)
CALL MINUS(re,SOLN2,E3,NEQR,1)

* ADY IS THE VECTOR OF ADJUSTED'OBSERVATIONS
CALL MINUS(ANG,ARES,ADY,NEQ,1)

* CONVERTING ADJUSTED BEARINGS TO DEGREES,MINUTES AND
C SECONDS**

DO 42 I=MAXDST+1,NEQ 
XX=ADY(I,1)/3600.*PI/180.

42 CALL ANGLE(XX,IDG(I-MAXDST),IMN(I-MAXDST),RSC(I-MAXDST)) 
IF(NEQR.EQ.O)GOTO 408

***** MANUPILATION FOR STATIC DYNAMIC *********************** 
CALL TIMES(A3,Rr,AIR,NEQ,NEQR,NEQR)
CALL TIMES(AIR,re,AIRr,NEQ,NEQR,1)
CALL TRANS(AIR,A1RT,NEQ,NEQR)

* INVERTING Wr 
DO 66 1=1,NEQR

66 WrI(1,1)=1./Wr(I,I)
CALL TIMES(AIR,WrI,A1RW,NEQ,NEQR,NEQR)
CALL TIMES(A1RW,A1RT,QQ,NEQ,NEQR,NEQ)

* INVERTING W 
DO 67 1=1,NEQ

67 WI(I,I)=1.0/W(I,I)
CALL ADD(WI,QQ,QQQ,NEQ,NEQ)
DO 68 1=1,NEQ

68 WW(I,I)=1./QQQ(I,I)
CALL TRANS(A4,A22T,NEQ,NEQR2)
CALL TIMES(A22T,WW,A2TW,NEQR2,NEQ,NEQ)
CALL TIMES(A2TW,A4,BB,NEQR2,NEQ,NEQR2)
CALL MATINV(BB,BINV,NEQR2)
CALL TIMES(A2TW,YM,XS,NEQR2,NEQ, 1)
CALL TIMES(BINV,XS,XSS,NEQR2,NEQR2,1)

* XSS IS THE VECTOR OF UNKNOWNS
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* COMPUTING RESIDUALS
CALL TIMES(A4,XSS,SOLN3,NEQ,NEQR2,1)
CALL MINUS(YM,SOLN3,SDRES,NEQ,1)

* ADY IS THE VECTOR OF ADJUSTED OBSERVATIONS 
CALL MINUS(ANG,SDRES,ADY,NEQ,1)

* CONVERTING ADJUSTED BEARINGS TO DEGREES,MINUTES AND
Q SECONDS**

DO 42 I=MAXDST+1,NEQ 
XX=ADY(1,1)/3600.*PI/180.

42 CALL ANGLE(XX,IDG(I-MAXDST),IMN(I-MAXDST),RSC(I-MAXDST)) 
408 CONTINUE
* El ARE RESIDUALS FOR DISTANCES
* E2 ARE RESIDUALS FOR DIRECTIONS
* E3 ARE RESIDUALS FOR RESTRICTIONS

DO 49 1=1,NEQ
IF(I .GT.MAXDST)GO TO 48 
El(I, 1)=ARES(I,1)
GO TO 49

48 E2((I-MAXDST),1)=ARES(I,1)
49 CONTINUE 

404 CONTINUE
* COMPUTING THE COFACTOR MATRICES///

CALL MATINV(W1,W1I,MAXDST)
CALL MATINV(W2,W2I,MAXDIR)
CALL MATINV(Wr,WrI,NEQR)

* COMPUTING FIRST VARIANCE COMPONENT 
CALL ATB(A1,W1,All,MAXDST,NOTS,MAXDST)
CALL TIMES(All,A1,A1W,NOTS,MAXDST,NOTS)
CALL MATINV(A1W,A1WI,NOTS)
CALL TIMES(A1,A1WI,Alll,MAXDST,NOTS,NOTS)
CALL TRANS(Al,AIT,MAXDST,NOTS)
CALL TIMES(Alll,AIT,AA1,MAXDST,NOTS,MAXST)
CALL MINUS(WI1,AA1,QE1,MAXDST,MAXDST)
CALL TIMES(W1,QE1,W1QE,MAXDST,MAXDST,MAXDST)
CALL TRANS(El,E1T,MAXDST,1)
CALL TIMES(E1T,W1,E1TW1,1,MAXDST,MAXDST)
CALL TIMES(E1TW1,El,E1TW1E,1,MAXDST,1)

* COMPUTING THE TRACE 
TQE1=0.
DO 50 1=1,MAXDST 

50 TQE1=TQE1+W1QE(1,1)
C V01=VARIANCE COMPONENT FOR DISTANCES
* COMPUTING THE SECOND VARIANCE COMPONENT

CALL ATB(A2,W2,A22,MAXDIR,NOTS,MAXDIR)
CALL TIMES(A22,A2,A2W,NOTS,MAXDIR,NOTS)
CALL MATINV(A2W,A2WI,NOTS) t
CALL TRANS(A2,A2T,MAXDIR,NOTS)
CALL TIMES(A222,A2T,AA2,MAXDIR,NOTS,MAXDIR)
CALL MINUS(W2I,AA2,QE2,MAXDIR,MAXDIR)
CALL TIMES(W2,QE2,W2QE, MAXDIR,MAXDIR,MAXDIR)
CALL TRANS(E2,E2T,MAXDIR,1)
CALL TIMES(E2T,W2,E2TW2,1,MAXDIR,MAXDIR)
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CALL TIMES(E2TW2;E2,E2TW2E,1/MAXDIR/1)
* COMPUTING THE TRACE 

TQE2=0.
DO 501 1=1,MAXDIR

501 TQE2=TQE2+W2QE(I,I)
C V02 =VARIANCE COMPONENT FOR DISTANCES

V02=E2TW2E(1,1)/TQE2
* COMPUTING THE THIRD VARIANCE COMPONENT

CALL ATB(A2,W2,A22,MAXDIR,NOTS,MAXDIR)
CALL TIMES(A22,A2,A2W,NOTS,MAXDIR,NOTS)
CALL MATINV(RTWR,RTWRI,NOTS)
CALL TIMES(Rr,RTWRI,A333,NEQR,NOTS,NOTS)
CALL TRANS(Rr,RT,NEQR,NOTS)
CALL TIMES(A333,RT,RRI,NEQR,NOTS,NEQR)
CALL MINUS(Wr,RRI,QE3,NEQR,NEQR)
CALL TIMES(Wr,QE3,WrQE,NEQR,NEQR,NEQR)
CALL TRANS(E3,E3T,NEQR,1)
CALL TIMES(E3T,Wr,E3TWr,1,NEQR,NEQR)
CALL TIMES(E3TWr,E3,E3TWrE,1,NEQR,1)

* COMPUTING THE TRACE 
TQE3=0.
DO 502 1=1,NEQR

502 TQE3 =TQE3 +WrQE(1,1)
C V03 =VARIANCE COMPONENT FOR DISTANCES

VO3=E3TWrE(1,1)/TQE3* ■*•■*••*■*★*★*■*■*■*•**■*•■*•**★*•★•*•★★★★*■*•*•*'★*
* *M 0 D U L E T H R E E  **★*★****•****★•*■★**■*•★*★■*•★★*•*•■*••*'*★★
* COV IS THE COVARIANCE MATRIX OF THE ESTIMATED
* PARAMETERS

DO 43 1=1,NOTS 
DO 43 J=1,NOTS

43 COV(I,J)=SUM1(I,J)*APVUW
C UPDATING PROVISIONAL VALUES

DO 44 1=1,MAXST 
J=2 * I-1 
K=J+1
X(I)=X(I)+DELS(J,1)
Y (I)=Y(I)+DELS(K,1)

44 CONTINUE
* CALCULATING THE COVARIANCE MATRIX FOR ADJUSTED OBSERVATIONS

CALL TIMES(A,COV,ADJO,NEQ,NOTS,NOTS)
CALL TRANS(A,ATR,NEQ,NOTS) L!"CL

* STDO IS THE VECTOR OF STD ERRORS TO THE ADJUSTED
C OBSERVATIONS

DO 45 1=1,NEQ
STDO(I)=WT(I,I)**0.5

45 CONTINUE
* DX,DY ARE CORRECTIONS TO THE PROVISIONAL COORDINATES***

DO 46 1=1,MAXST
DX1(I)=X(I)-DXA(I)
DY1(I)=Y(I)-DYA(I)
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46 CONTINUE
47 CONTINUE^********************* ANALYSIS***************************

* COMPUTING ERROR ELLIPSE PARAMETERS 
DO 78 J=1;MAXST
1=2*J-l
VARX(J)=COV(1,1)
M=I + 1
VARY(J)=COV(M,M)

* CVXY IS THE COVARIANCE B/T X & Y 
CVXY(J)=COV(I,M)

C SGX=STND ERROR IN X
C SGY=STND ERROR IN Y

SGX(J)=VARX(J)**0.5 
SGY(J)=VARY(J)**0.5

* AXES OF ERROR ELLIPSES 
W X = 0 .5* (VARX (J) +VARY (J) )
W Y =  (0.25* (VARX(J) -VARY(J) ) **2+CVXY(J) **2) **0.5 
BOS(J)=VARX(J)-VARY(J)
IF(BOS(J).EQ.O.)BOS(J)=0.00001 
TCV=2.0*CVXY(J)/BOS(J)
THETA(J )=ATAN(TCV)
THETA(J)=THETA(J)/2.
IF(THETA(J).LT.0)THETA(J)=THETA(J)+2.0*PI 
CALL ANGLE(THETA(J),ITEG(J),MTIN(J),TSEC(J))

* VMAX=SQUARE OF SEMI MAJOR AXIS
* VMIN=SQUARE OF SEMI MINOR AXIS

VMAX (J) = W Y + W X
VMIN(J) = W X - W Y  
WRITE ( * , *) VMIN(J)

C SGMX,SGMY ARE SEMI MAJOR AND SEMI MINOR AXES
SGMX(J)=VMAX(J)**0.5 
SGMY(J)=ABS(VMIN(J))**0.5 

C POINT MEAN ERROR
EC(J) = ((VARX(J)+VARY(J) )/2 . )**0.5 

78 CONTINUE
* NETWOK MEAN ERROR

IRR=MAXST-MAXDAT 
TRACE=0.0
DO 405 1=1,IRR 
TRACE=TRACE+COV(1,1)

405 CONTINUE
IF(MAXDAT.EQ.0)GOTO 406

************ OUTPUT OF RESULTS***************************
IF(NEQR.EQ.0)GOTO 821 
WRITE(11,199)

199 FORMAT(/,12X,'STATIC-DYNAMIC NETWORK ADJUSTMENT '
X/32 ( 1== '))
GO TO 822

821 WRITE(11,820)
820 FORMAT(/,2OX,'DYNAMIC SOLUTION ADJUSTMENT '/32('=='))
822 WRITE(11,210)ITR
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210 FORMAT(//,15X,'RESULTS OBTAINED AFTER ',14,'
1ITERATIONS',//)
WRITE(11,316)

316 FORMAT(2IX,'OBSERVED AND'/3X,'LINE',10X,'REDUCED 
1DIRECTIONS',9X,'PROVISIONALBEARINGS',6X,'VECTORY'
1 / 3 X , 2 ,10X,18('-'),19X,20('-'),6X,8('-’)/)
WRITE(11,317)(LANG(N ,1),LANG(N,2),IDEG(N),MIN(N)

X ,SEC(N),NBRG(N),MITN(N),SCS(N),Y2(N),N=1,MAXDIR)
317 FORMAT (IX, 213,8X, 216 , F7.1,9X, 216 , F7.3,8X, F6.3 )

WRITE(11,318)
318 FORMAT(2IX,'OBSERVED AND'/3X,'LINE',10X,'REDUCED 

DISTANCES',9X,'PROVISIONAL DISTANCE',9X,'VECTORY'/3X,
X2 ('--') ,10X,18('-') ,9X,20('-') ,6X,8('-')/)
WRITE (11,319) (LDST (N, 1) ,LDST(N,2) ,DST(N) ,-DISTl (N) , Y1 (N)
1,N=1,MAXDST)

319 FORMAT (IX, 213,8X, F10.3,19X, F10.3,16X, F6.3)
WRITE(11,201)

201 FORMAT(//20X, 'ESTIMATED PARAMETERS'/32('**') )
WRITE(11,212)

212 FORMAT(1IX,'CORRECTIONS TO
XPROVISIONALCOORDINATES’/,11X, '--------------------------- '
X/23X, 'UNITS:METRES'/18X, 'DELX -
1,10X, ' DEL Y ' / 15X, '---------- ' 8X, '--------- ',/)
IRR=MAXST-MAXDAT 
IF(MAXDAT.EQ.0)THEN 
DO 860 1=1,NOTS

860 CRX(1,1)=DELS(I,1)
ELSE 
END IF
DO 222 1=1,IRR 
J=I*2-1 
K=J+l
WRITE(11,203)CRX(J,1),CRX(K,1)

203 FORMAT (17X, F9.6,7X, F9.6)
222 CONTINUE

WRITE(11,208)VUW
WRITE(11,209)ElTWlE,TQEl,E2TW2E,TQE2,E3TWrE,TQE3

209 FORMAT(//5X, ' VARIANCE COMPONENTS',F8.3,2X,F8.3,2X, F8.3 , 
12X, F8.3,2X, F8.3,2X, F8.3)

208 FORMAT(//5X,'APOSTERIORI VARIANCE 
XOF UNIT WEIGHT-',F8.3)

300 FORMAT(//,10X,'NETWORK MEAN ERROR=',F5.3,2X,'METRES'/10X, 
120 ('=='))
IF(MAXDAT.EQ.0)THEN 
DO 824 1=1,NEQ

824 RESD(I,1)=ARES(I,1)
ELSE 
END IF
WRITE(11,320)

320 FORMAT(/38X,'STANDARD ERRORS OF'/38X,'
XADJUSTED OBSERVATIONS',16X,'RESIDUALS'/2X,'LINE',4X,'
XADJUSTED OBSERVATIONS',12X,'(SEC
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10NDS)',13X,'(SECONDS)'/10X,20('-'),7X,20('-'),6X,9('-')/) 
WRITE(11,321)(LANG(1,1),LANG(I,2),IDG(I),IMN(I),RSC(I), 

XSTDO(I+MAXDST),RESD((I+MAXDST),1),I=1,MAXDIR)
321 FORMAT(213,2X,216,F7.1,15X,F6.3,15X,F6.3)

WRITE(11,322)
322 FORMAT(/38X,'STANDARD ERROS OF'/38X,'ADJUSTED 

XOBSERVATIONS',6X,'RESIDUALS'/2X,'LINE',4X,' 
1ADJUSTEDOBSERVATIONS',12X,'(METRES) *
1,13X,'(METRES)'/10X,20(’-'),7X,20('-'),6X,9( '-')/)
WRITE(11,323)(LDST(1,1),LDST(I,2),ADY(I,1),STDO(I),
1RESD(1,1),1=1,MAXDST)

323 FORMAT(213,10X,F10.3,15X,F6.4,15X,F6.3)
WRITE(11,342)
WRITE(11,343)(re(I,1),E3(I,1),I=1,NEQR)

342 FORMAT (/ , 'RESTRICTION VECTOR', 23X, ' RESTRICTION 
XRESIDUALS')

343 FORMAT(F8.6,12X, F8.6)
WRITE(11,312)

312 FORMAT(/,1IX,'STANDARD ERRORS',25X,'ERROR ELLIPSES'/11X,
1'-------------- ' , 25X, '---------------',/38X,' SEMI' , 9X,
1'SEMI'/IX,'STN',6X,'SIGMA',10X,'SIGMA',7X,'MAJOR',8X,
X'MINOR',12X,'ORIENTATION',/)
WRITE(11,852)(I,SGX(I),SGY(I),SGMX(I),SGMY(I),

XITEG(I),MTIN(I),TSEC(I),1=1,IRR)
852 FORMAT(IX,12,3F13.4,F13.6,7X, 216 , F6.1)

WRITE(11,314)
314 FORMAT(IX,'STN',IX,'PROVISIONALCOORDINATES',6X,'

XCORRECTIONS',13X,'FINALCOORDINATES'/IX,'-- ',IX,'---
x--------' , 6X, '-----------’ , 13X, '-------------
X'/8X,'EASTING',5X,'NORTHING',7X,'DEL-E',3X,
X'DEL-N',9X,’EASTING',5X,'NORTHING')
WRITE(11,315)(I,DXA(I),DYA(I),DX1(I),DY1(I),

XX(I),Y(I),1=1,MAXST)
315 FORMAT(IX,12,2F12.3,6X,2F9.4,4X,2F14.4)

STOP
END
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APPENDIX A. 2: PROGRAM FREE .FOR

C
*

c
*

c*

IMPLICIT REAL*8(A-H,O-Z)
DOUBLE PRECISION X (8),Y (8),DXA(8),DYA(8)
DIMENSION LANG(28,2),IDEG(28),MIN(28),SEC(28)
DIMENSION LDST(14,2),DST(14),DIST1(14),DIST2(28)
DIMENSION Al(14,16),A2(28,16),W(42,42),A(42,16)
DIMENSIONY1(14),Y2(28),YM(42,1),ANG0(14),ANG1(28),ANG(42,1)
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

IDG(28),IMN (28) ,RSC(28) ,RESD(42,1) ,ETW(1,42) 
NBRG(28),MITN(28),SCS(28),AZMT(28),CAZMT(28) 
ATW(16,42),ATWA(16,16), ATWAIN(16,16),ADY(42,1) 
ETWE(1,1),D X (16,16),ADJO(42,16),ATR(16,42)
DX1(8),DY1(8),STDO(42), R(16,42),CRX(16,1) 
WT(42,42),SOLN(42,1)

FIRST VARIANCE COMPONENT DIMENSIONS ***********************************
DIMENSION W 1 (14,14),E1(14,1),W1I(14,14),A11 
DIMENSION A1W(16,16) ,A111(14,16) ,AIT(16,14) 
DIMENSION E1T(1,14),E1TW1(1,14),E1TW1E(1,1) 
DIMENSION A1WI(16,16)W1QE(14,14)
SECOND VARIANCE COMPONENT DIMENSIONS ************************************

(16,14) 
,QE1(14 
,AA1(14

14)
14)

DIMENSION
DIMENSION
DIMENSION
DIMENSION

W2(28,28),E2(28,1),W2I(28,28) 
A2W(16,16),A222(28,16),A2T(16 
A2WI(16,16),W2QE(28,28),E2T(1 
E2TW2E(1,1),AA2(28,28)

A22 (16,28)
28) ,QE2 (28,28) 
28),E2TW2(1,28)

FREENET MANIPULATIONS **********************
DIMENSION A T (16,42),G(4,16),GT(16,4),GTG(16,16),ADG(16,16) 
DIMENSION AV(16,16),GAV(4,16),GTAV(16,16),AVGT(16,16) 
DIMENSION ASB(16,16),ASAT(16,42),ADJX(16,1),ADX(42,1),E(42,1) 
DIMENSION ATSB(16,16),ABA(16,16),COV(16,16),ET(1,42)
COVARIANCE MATRIX MANIPULATIONS * *******************************
DIMENSION CVXY(8),ITEG(8),MTIN(8),TSEC(8),VARX(8)
DIMENSION VARY(8),SGY(8),SGX(8),EC(8)
DIMENSION VMIN(8),THETA(8),SGMX(8),SGMY(8),VMAX(8)
REAL KK(4,4),KKINV(4,4)

************************************************************* 
MAXDST=NUMBER OF DISTANCES MEASURED 
MAXDIR=NUMBER OF DIRECTIONS MEASURED 
MAXST= NUMBER OF STATIONS IN THE NETWORK 

NOTS=(MAXST-MAXDAT)*2 THE NUMBER OF UNKNOWNS IN THE X-VECTOR 
NEQ=MAXDST+MAXDIR TOTAL NUMBER OF OBSERVATIONS/EQUATIONS

*************************************************************
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WRITE(*,1)
READ{*,2)MAXST

1 FORMAT(' INPUT TOTAL NUMBER OF STATIONS (MAXST)')
2 FORMAT(12)

WRITE( * , 3 )
3 FORMAT(' INPUT TOTAL NUMBER OF DATUM STATIONS (MAXDAT)')

READ( * , 2 )MAXDAT
WRITE(*,4)

4 FORMAT(' INPUT NUMBER OF DISTANCE OBSERVATIONS(MAXDST)')
READ(*,2)MAXDST
WRITE(*,5)

5 FORMAT(' INPUT TOTAL NUMBER DIRECTIONS OBS .(MAXDIR)1)
READ(*,2)MAXDIR
WRITE(*,6)

6 FORMAT(' HOW MANY ITERATIONS ?')
READ ( * , 2 ) ITR
WRITE(3,12)

12 FORMAT(15X,'THE INPUT DATA USED FOR THE STUDY ARE 
</l3X/50(,= ,)///,6X/'POINT';28X,'APPR.CO-ORDINATES'
</5X;13('='),25X,
<14('=')/31X,'X(METRES)',15X,'Y(METRES)'/30X 
<,11('=') , 13X,10(' ='))
READ(12,13)(Y (I),X (I),1=1,MAXST)

13 FORMAT(X,F11.3,2X,F10.3)
*** STORING PROVISION COORDINATES 

DO 100 1=1,MAXST 
DXA(I)=X(I)
DYA(I)=Y(I)

100 CONTINUE
** APVUW IS THE APRIOR VARIANCE OF UNIT WEIGHT 

APVUW=1.0 
RS=206264.8 
PI=3.141592 
ICNT=1
WRITE(3,16)(I,DYA(I),DXA(I),1=1,MAXST)

16 FORMAT(7X,13,2OX,Fll.3,16X,F10.3)
WRITE(3,17)

17 FORMAT(/9X,'DIST.NO:',5X,'STATION',12X,'DIST.BETWEEN 
<STATIONS'
</8X,10(' = '),5X,10(' = '),9X,24(' = ') )
INPUT FOR OBSERVED DISTANCES
READ(21,14)(LDST(1,1),LDST(I,2),DST(I),1=1,MAXDST)

14 FORMAT(I1,X,I1,X,F9.3)
WRITE(3,18)(I,LDST(I,1),LDST(I,2),DST(I),1=1,MAXDST)

18 FORMAT(11X,12,10X,12,3X,12,23X,F9.3)
WRITE(3,19)

19 FORMAT(/5X,'LINE.NO:’,8X,'STATION',6X,'H .DIR 
< (DEG,MIN,& SEC)',9X
<, 'AZMT( RAD IANS) ' /4X, 10 (' = '), 6X, 10 (' = '), 4X, 24 (' = '), 7X, 15 (' = ') ) 
INPUT FOR HORIZONTAL DIRECTIONS
READ(21,15)(LANG(1,1),LANG(I,2),IDEG(I),MIN(I),
<SEC(I),1=1,MAXDIR)
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15 FORMAT(II,X,II,X,13,X,12,X,F5.2)
WRITE(3,20)(I,LANG(1,1),LANG(I,2),IDEG(I),MIN(I),SEC(I)

<,I=1,MAXDIR)
20 FORMAT (6X, 13,10X, 12,2X, 12,12X, 14,2X, 13,2X, F5.2 )

1000 CONTINUE
ICNT=ICNT+1 
NEQ=MAXDST+MAXDIR 
NOTS=(MAXST-MAXDAT)*2

C INITIALIZING THE OUT PUT MATRICES AND VECTORS
DO 10 1=1,NEQ 
DO 10 J=1,NOTS 
A (I,J)=0.0 
ANG(1,1)=0.0 
W(I,I)=0.0 

10 CONTINUE
* FREENETWORK ADJUSTMENT MODULE* ************************************************************
* COMPUTING DISTANCE OBSERVATION PARAMETERS AND LOADING IN THE
* DESIGN MATRIX

DO 30 1=1,MAXDST 
K1=LDST(1,1)
K2=LDST(1,2)
DISTl(I)=SQRT( (X(K2)-X(K1))**2+(Y(K2)-Y(K1) ) **2)
J1=K1*2-1 
J2=J1+1
A1 (i, J D = (X i(Kl) -X (K2) )/ (DIST1 (I
A1 (I,J2) = (Yi(Kl) -Y (K2) )/ (DIST1 (I
J3 =K2*2- 1
J4 =J3 + 1
A1 (I,J3) = (X i(K2)-X (Kl) )/ (DIST1 (I
A1 (I,J4) = (Y (K2) -Y (Kl) )/ (DIST1 (I
Y1(I)=DST(I)-DIST1(I)

* STORING COMPUTED DISTANCES
ANG0(I)=DIST1(I)
W1(I,I)=APVUW/((0.003**2)+(DST(I)*10E-6)**2)

30 CONTINUE**********************************************************
C FORMATION OF DESIGN MATRIX COMPONENT A2 FOR DIRECTIONS***********************************************************

DO 31 1=1,MAXDIR 
L1=LANG(I,1)
L2=LANG(1,2)
DIST2(I)=SQRT((X(L2)-X(LI))**2+(Y(L2)-Y(LI))**2)
J1=L1*2-1 
J2=J1+1
A2(I, Jl) = (Y(L2)-Y(L1) )/DIST2(I)*RS 
A2(I, J2) = (X(L1)-X(L2))/DIST2 (I)*RS 
J3=L2*2-1 
J4=J3 + 1
A2(I,J3)= (Y(L1)-Y(L2))/DIST2(I)*RS 
A2 (I,J4) = (X(L2)-X(L1) )/DIST2(I)*RS



DN=Y(L2)-Y(LI)
DE=X(L2)-X(L1)

* COMPUTATION OF OBSERVED HORIZONTAL ANGLES
* CAZMT IS THE COMPUTED BEARING
C CONVERSION OF THE COMPUTED BEARINGS INTO
C DEGREES,MINUTES,SECONDS

CALL QUAD(DE,DN,Y2 2)
CAZMT(I)=Y22

C CONVERSION OF COMPUTED AZIMUTHS INTO DEGREES, MINUTES,SECONDS 
XB=CAZMT(I)*PI/180 .
CALL ANGLE(XB,NBRG(I),MITN(I),SCS(I))
ANG1(I)=Y22*3600.

* AZMT **** IS THE INPUT DIRECTION 
Y2 (I)=SCS(I)-SEC(I)
W2 (I,I)=APVUW/0.49

31 CONTINUE
Q ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
C FORMATION OF COMPLETE DESIGN MATRIX,WEIGHT MATRIX,& Y-VECTOR

DO 33 1=1,NEQ 
DO 33 J=1,MAXST*2 
IF(I .GT.MAXDST)GO TO 32 
A (I, J) =A1 (I, J)
YM (1,1)=Y1(I)
W (I, I)=W1(1,1)
ANG (1,1)=ANG0(I)
GO TO 33

32 K=I-MAXDST
A (I, J) =A2 (K, J)
W (I, I) =W2 (K, K)
YM(1,1)=Y2(K)
ANG(I,1)=ANG1(K)

33 CONTINUE
* FORMING THE RESTRICTION MATRIX FOR THE FREENET.

DO 40 1=1,4
DO 40 J=1,NOTS

40 G (I,J)=0.0 
DO 41 1=1,4 
J=2 * I-1
K=J+l
G (I,J)=1.0 
G (2,K)=1.0
G(3,J)=-1.0*(Y(I)-9935646.003)
G (3,K)= X(I)-279718.82 
G (4,J)=X(I)-279718.82 
G(4,K)=Y(I)-9935646.003 
NDF=4

41 CONTINUE
* FREENET SOLUTION MANIPULATION 

NEQ=MAXDIR+MAXDST
CALL TRANS (A, AT, NEQ, NOTS)
CALL TRANS(G,GT,NDF,NOTS)
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***

* * *

* * * *

* * * *

42 * * *
* * * *  *

48
49 * * *

* * *

*****

50***
****

CALL TIMES(AT,W,ATW,NOTS,NEQ,NEQ)
CALL TIMES(ATW,A,ATWA,NOTS,NEQ,NOTS)
CALL TIMES(GT,G,GTG,NOTS,NDF,NOTS)
CALL ADD(ATWA,GTG,ADG,NOTS,NOTS)
CALL MATINV(ADG,AV,NOTS)
CALL TIMES(G,AV,GAV,NDF,NOTS,NOTS)
CALL TIMES(GAV,GT,KK,NDF,NOTS,NDF)
CALL TIMES(GT,GAV,GTAV,NOTS,NDF,NOTS)
CALL TIMES(AV,GTAV,AVGT,NOTS,NOTS,NOTS)
CALL MINUS(AV,AVGT,ASB,NOTS,NOTS)
CALL TIMES(ASB,ATW,ASAT,NOTS,NOTS,NEQ)
ADJX ** IS THE VECTOR OF ESTIMATED PARAMETERS 
CALL TIMES(ASAT,YM,ADJX,NOTS,NEQ,1)
CALL TIMES(A,ADJX,ADX,NEQ,NOTS, 1)
E IS THE VECTOR OF RESIDUALS 
CALL MINUS(YM,ADX,E,NEQ,1)
SOLN IS THE VECTOR OF ADJUSTED OBSERVATIONS 
CALL ADD(ANG,E,ADY,NEQ,1)
CONVERTING ADJUSTED BEARINGS TO DEGREES,MINUTES AND SECONDS** 
DO 42 I=MAXDST+1,NEQ 
XX=ADY(I,1)/3600.*PI/180.
CALL ANGLE(XX,IDG(I-MAXDST),IMN(I-MAXDST),RSC(I-MAXDST))
El ARE RESIDUALS FOR DISTANCES 
E2 ARE RESIDUALS FOR DIRECTIONS 
DO 49 1=1,NEQ 
IF(I.GT.MAXDST)GO TO 48 
El(1,1)=E(1,1)
GO TO 49
E2((I-MAXDST),1)=E(I,1)
CONTINUE
COMPUTING THE COFACTOR MATRICES///
CALL MATINV(W1,W1I,MAXDST)
CALL MATINV(W2,W2I,MAXDIR)
COMPUTING THE FIRST VARIANCE COMPONENT 
CALL ATB(A1,W1,All,MAXDST,NOTS,MAXDST)
CALL TIMES(All,A1,A1W,NOTS,MAXDST,NOTS)
CALL MATINV(A1W,A1WI,NOTS)
CALL TIMES(A1,A1WI,Alll,MAXDST,NOTS,NOTS)
CALL TRANS(Al,AIT,MAXDST,NOTS)
CALL TIMES(Alll,AIT,AA1,MAXDST,NOTS,MAXDST)
CALL MINUS(W1I,AA1,QE1,MAXDST,MAXDST)
CALL TIMES(W1,QE1,W1QE,MAXDST,MAXDST)
CALL TRANS(El,E1T,MAXDST,1)
CALL TIMES(E1T,W1,E1TW1,1,MAXDST,MAXDST)
CALL TIMES(E1TW1,El,E1TW1E,1,MAXDST,1)
COMPUTING THE TRACE 
TRAW1QE1=0.
DO 50 1=1,MAXDST 
TRAW1QE1=TRAW1QE1+W1QE(1,1)
V01= VARIANCE COMPONET FOR DISTANCES 
V01=E1TW1E/TRAW1QE1
COMPUTING THE SECOND VARIANCE COMPONENT
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* * * * *

50***

C

*  *  ★  *

43
C

44

* * *

* *

45

46

CALL ATB(A2,W2,A22;MAXDIR,NOTS,MAXDIR)
CALL TIMES(A22,A2,A2W,NOTS,MAXDIR,NOTS)
CALL MATINV(A2W,A2W2,NOTS)
CALL TIMES(A2,A2W2, A222,MAXDIR,NOTS,NOTS)
CALL TRANS(A2,A2T,MAXDIR,NOTS)
CALL TIMES(A222,A2T, AA2,MAXDIR,NOTS,MAXDIR)
CALL MINUS(W2I,AA2,QE2,MAXDIR,MAXDIR)
CALL TIMES(W2,QE2, W2QE,MAXDIR,MAXDIR)
CALL TRANS(E2,E2T,MAXDIR,1)
CALL TIMES(E2T,W2,E2TW2,1,MAXDIR,MAXDIR)
CALL TIMES(E2TW2,E2,E2TW2E,1,MAXDIR,1)
COMPUTING THE TRACE 
TRAW2QE2=0.
DO 50 1=1,MAXDST 
TRAW2QE2=TRAW2QE2+W2QE(1,1)
V02= VARIANCE COMPONET FOR DISTANCES 
V02=E2TW2E/TRAW2QE2
COMPUTING THE SUMMED VARIANCE OF UNIT WEIGHT 
VUW=(E2TW2E+E1TW1E)/ (TRAW1QE1+TRAW2QE2)
CALL TRANS(ASB,ATSB,NOTS,NOTS)
CALL TIMES(ASB,ATWA,ABA,NOTS,NOTS,NOTS)
CALL TIMES(ABA,ATSB,COV,NOTS,NOTS,NOTS)
COV IS THE COVARIANCE MATRIX OF THE ESTIMATED PARAMETERS***
DO 43 1=1,NOTS
DO 43 J=1,NOTS
COV(I,J)=COV(I,J)*VUW/APVUW
UPDATING PROVISIONAL VALUES
DO 44 1=1,MAXST
J=2*I-1
K=J+1
X(I) =X(I) +AD JX (J , 1)
Y (I)=Y(I)+ADJX(K,1)
CONTINUE
IF(ICNT.EQ.ITR)GO TO 807
APVUW=VUW
GO TO 1000
WNME=SQRT(TRACE/(IRR*2))
CALCULATING THE COVARIANCE MATRIX FOR ADJUSTED OBSERVATIONS 
CALL TIMES(A,COV,ADJO,NEQ,NOTS,NOTS)
CALL TIMES (AD JO, AT, WT, NEQ, NOTS , NEQ)
STDO IS THE VECTOR OF STD ERRORS TO THE ADJUSTED OBSERVATIONS 
DO 45 1=1,NEQ 
STDO(I)=WT(I,I)**0.5 
WRITE(100,*)W T (1,1)
CONTINUE
DX,DY ARE CORRECTIONS TO THE PROVISIONAL COORDINATES***
DO 46 1=1,MAXST 
DX1(I)=X(I)-DXA(I)
DY1(I)=Y(I)-DYA(I)
CONTINUE
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********************** ANALYSIS*************************** 
COMPUTING ERROR ELLIPSE PARAMETERS 
IRR=MAXST-MAXDAT 
DO 78 J=l;IRR 
1=2*J-1
VARX(J)=DX(I;I)
M=I + 1
VARY(J)=DX(M/M)

******CVXY IS THE COVARIANCE B/T X & Y
* CVXY(J)=DX(I, M )
C SGX=STND ERROR IN X
C SGY=STND ERROR IN Y

SGX(J)=VARX(J)**0.5 
SGY(J)=VARY(J)**0.5 

*** AXES OF ERROR ELLIPSES
W X = 0 .5* (VARX (J) +VARY (J) )
W Y =  (0.25* (VARX (J) -VARY(J) ) **2+CVXY(J) **2) **0.5 
TCV=(2.0*CVXY(J))/(VARX(J)-VARY(J))
THETA(J)=ATAN(TCV)
THETA(J)=THETA(J)/2.
IF(THETA(J).LT.0)THETA(J)=THETA(J)+2.0*PI 
CALL ANGLE(THETA(J);ITEG(J)#MTIN(J),TSEC(J))

** VMAX=SQUARE OF SEMI MAJOR AXIS
*** VMIN=SQUARE OF SEMI MINOR AXIS

VMAX (J) = W Y + W X  
VMIN(J) = W X - W Y  
WRITE ( * , *) VMIN(J)

C SGMX,SGMY ARE SEMI MAJOR AND SEMI MINOR AXES
SGMX(J)=VMAX(J)* *0.5 
SGMY(J)=ABS(VMIN(J))**0.5 

C POINT MEAN ERROR
EC(J) = ( (VARX(J)+VARY(J) )/2 . )**0.5 

78 CONTINUE
* NETWOK MEAN ERROR

IRR=MAXST-MAXDAT 
TRACE=0.0
DO 405 1=1,IRR 
TRACE=TRACE+DX(1,1)

405 CONTINUE
WNME=SQRT(TRACE/(IRR*2))

****************** OUTPUT OF RESULTS***************************
821 WRITE(11,820)
820 FORMAT(/,2OX, 'FREE-NETWORK ADJUSTMENT 1/32 ( ’=='))
822 WRITE(11,210)ITR
210 FORMAT(//,15X,'RESULTS OBTAINED AFTER ',14,' ITERATIONS',//)

[ WRITE(11,316)
316 FORMAT (2IX, ' OBSERVED AND ' /3X, ' LINE' , 10X, ' REDUCED DIRECTIONS ' , 

19X, 'PROVISIONAL BEARINGS',6X, 'VECTOR Y '/3X,2('--'),10X,
<18('-'),19X,20('-'),6X,8('-')/)
WRITE(11,317)(LANG(N ,1),LANG(N ,2),IDEG(N),MIN(N)

X,SEC(N),NBRG(N),MITN(N),SCS(N),Y2(N),N=1,MAXDIR)
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317 FORMAT(IX,213,8X,216,F7.1,9X,216,F7.1,8X,F6.3)
WRITE(11,318)

318 FORMAT(21X,'OBSERVED AND'/3X,'LINE',10X,'REDUCED DISTANCES', 
19X,'PROVISIONAL DISTANCE',9X,'VECTOR Y '/3X,2 10X,
<18('-'),19X,20('-'),6X,8('-')/)
WRITE(11,319)(LDST(N,1),LDST(N,2),DST(N),DIST1(N),Y1(N)

1,N=1,MAXDST)
319 FORMAT (IX, 213,8X, F10.3,19X, F10.3,16X, F6.3 )

WRITE(11,201)
201 FORMAT(//20X,'ESTIMATED PARAMETERS'/32('**'))

WRITE(11,212)
212 FORMAT(1IX,’CORRECTIONS TO PROVISIONAL COORDINATES'/,

<11X, '------------------------- ' ,/23X, 'UNITS rMETRES'/18X, 'DEL
XXI, 10X, ' DEL Y ' / 15X, '----------'8X,'----------',/)
IRR=MAXST-MAXDAT 
IF(MAXDAT.EQ.0)THEN 
DO 860 1=1,NOTS 

860 CRX(I,1)=ADJX(1,1)
ELSE 
END IF
DO 222 1=1,IRR
J=I*2-1
K=J+1
WRITE(11,203)CRX(J,1),CRX(K,1)

203 FORMAT (17X, F6.4,11X, F6.4)
222 CONTINUE

WRITE(11,208)E1TW1E,TRAW1WQE1
208 FORMAT(//5X,'APOSTERIORI VARIANCE OF UNIT WEIGHT-',F8.3) 

WRITE(11,300)WNME
300 FORMAT(//,10X,'NETWORK MEAN ERROR=',F5.3,2X,'METRES'/10X, 

120('=='))
IF(MAXDAT.EQ.0)THEN 
DO 824 1=1,NEQ 

824 RESD(I,1)=E(I,1)
ELSE 
END IF
WRITE(11,320)

320 FORMAT(/38X,'STANDARD ERRORS OF'/38X,'ADJUSTED OBSERVATIONS', 
16X,'RESIDUALS'/2X,'LINE',4X,'ADJUSTED OBSERVATIONS',12X,'(SEC 
10NDS)',13X,'(SECONDS)'/10X,20('-'),7X,20('-'),6X,9 ('-')/)
WRITE(11,321)(LANG(I,1),LANG(I,2),IDG(I),IMN(I),RSC(I), 

XSTDO(I+MAXDST),RESD((I+MAXDST),1),I=1,MAXDIR)
321 FORMAT(213,2X,216,F7.1,15X,F6.3,15X,F6.3)

WRITE(11,322)
322 FORMAT(/38X,'STANDARD ERROS OF'/38X,'ADJUSTED OBSERVATIONS', 

16X,'RESIDUALS'/2X,'LINE',4X,'ADJUSTED OBSERVATIONS',
X12X, ' (METRES) ' ,13X, ' (METRES) '/10X,20('-'),7X,2 0('-') ,
X6X,9('-')/)
WRITE(11,323)(LDST(1,1),LDST(1,2),ADY(I,1),STDO(I),
1RESD(I,1),1=1,MAXDST)

323 FORMAT(213,10X,F10.3,15X,F6.3,15X,F6.3)
342 WRITE(11,312)
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312 FORMAT(/,1IX,'STANDARD ERRORS',25X,'ERROR ELLIPSES'/11X,
1'-------------- ',25X, '---------------' ,/3 8X, ' SEMI' , 9X,
1'SEMI'/IX,'STN',6X,'SIGMA',10X,'SIGMA',7X,'MAJOR',8X,'MINOR' 
1,12X,'ORIENTATION', / )
IF(MAXDAT.EQ.0)THEN
WRITE(11,852) (I,SGX(I) ,SGY(I) ,SGMX(I) ,SGMY(I) ,ITEG(I) ,MTIN(I) 
1,TSEC(I),1=1,IRR)

852 FORMAT(IX,12,3F13.4,F13.6,7X,216,F6.1)
ELSE 
END IF
WRITE(11,313)(I,SGX(I-IRR),SGY(I-IRR),SGMX(I-IRR),SGMY(I-IRR) 
1,ITEG(I-IRR),MTIN(I-IRR),TSEC(I-IRR),1=(MAXST-MAXDAT+1), 
1MAXST)

313 FORMAT(IX,12,4F13.3,7X, 216 , F6.1)
WRITE(11,314)

314 FORMAT(IX, 'STN' ,IX, 'PROVISIONAL COORDINATES', 6X, ' 
XCORRECTIONS',13X,'FINAL COORDINATES'/ I X , I X , '
X ----------------------- ' , 6X, ' ---2------- ' ,
X13X, '----------------------' /8X,
X'EASTING',5X,'NORTHING',7X,'DEL-E',3X,' 
XDEL-N',9X,'EASTING',5X,'NORTHING')
WRITE(11,315)(I,DXA(I),DYA(I),DX1(I),DY1(I), 
<X(I),Y(I),1=1,MAXST)

315 FORMAT(IX,12,2F12.3,6X,2F7.4,4X, 2F14.4)
STOP
END
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APPENDIX A.3: SUBROUTINES

SUBROUTINE FOR DETERMINING QUADRANTS
SUBROUTINE QUAD(A,B,C)
IF(B.EQ.0.)GO TO 10 
BRG=(ATAN(A/B))*180./3.14159265389 

10 IF(B)20,30,40 
20 IF(A)80,70,80 
70 BRG=180.

GO TO 160 
80 BRG=BRG+180.

GO TO 160
40 IF(A)50,60,160 
50 BRG=BRG+360.

GO TO 160 
60 BRG=3 60.

GO TO 160 
30 IF(A)90,92,93 
90 BRG=270.

GO TO 160
92 BRG=0.

GO TO 160
93 BRG=90.
160 C=BRG

RETURN
END************************************************************** 
SUBROUTINE TIMES(A,B,C,II,KK,JJ)

C FORM MATRIX PRODUCT R=AC
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A(II,1),B(KK,1),C(II,1)
DO 15 1=1,II 
DO 15 J=1,JJ 

15 C(I,J)=0.0 
DO 35 1=1,II 
DO 35 K=1,KK 
AA=A(I,K)
IF(AA.EQ.0.)GO TO 35 
DO 31 J=1,JJ

31 C(I,J)=C(I,J)+AA*B(K,J)
35 CONTINUE 

RETURN 
END
SUBROUTINE TRANS(A,B,L,N)

C TRANSPOSE A INTO AT
REAL*8 A(L,N) ,B(N,L)
DO 5 1=1,N 
DO 5 J=1,L 

5 B (I,J)=A(J,I)
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RETURN
END************************************************************** 
SUBROUTINE ADD(A,B,C ,M ,N)

C MATRIX ADDITION C=A+B
IMPLICIT REAL*8(A-H,O-Z)
DOUBLE PRECISION A (M, N),B(M,N),C(M,N)
DO 10 1=1,M 
DO 10 J=1,N 
C(I,J)=A(I,J)+B(I,J)

10 CONTINUE 
RETURN 
END**************************************************************
SUBROUTINE MATINV(A,RINV,N)

C INVERT MATRIX A OF ORDER N;RINV IS ITS INVERSE
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION A(N,N),RINV(N,N),B (100,100)
DO 7 1=1,N 
DO 7 J=1,N 

7 B (I, J) =A (I, J)
J1=N+1 
J2=2*N 
DO 17 1=1,N 
DO 17 J=J1,J2 

17 B (I,J)=0.0 
DO 27 1=1,N 
J=I+N

27 B (I,J)=1.0 
DO 97 K=1,N 
KP1=K+1
IF(K.EQ.N) GO TO 57 
L=K
DO 37 I=KP1,N

37 IF(ABS(B(I,K)) .GT.ABS(B(L,K)))L=I 
IF(L .EQ.K)GO TO 57 
DO 47 J=K,J2 
TEMP=B(K,J)
B(K,J)=B(L,J)

47 B(L,J)=TEMP 
57 DO 67 J=KP1,J2 
67 B(K, J)=B(K, J)/B(K,K)

IF(K.EQ.1)GO TO 87 
KM1=K-1 
DO 77 1=1,KM1 
DO 77 J=KP1,J2

77 B(I,J)=B(I,J) -B(I,K)*B(K,J)
IF(K.EQ.N)GO TO 107 

87 DO 97 I=KP1,N 
DO 97 J=KP1,J2

97 B (I,J)=B(I,J)-B(I,K)*B(K, J)
107 DO 117 1=1,N
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DO 117 J=1, N 
K=J+N

117 RINV(I# J)=B(I,K)
RETURN
END************************************************************** 
SUBROUTINE MINUS (A, B, R, M, N)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A(M,N),B(M;N),R(M,N)
DO 2 1=1;M 
DO 2 J=1, N

2 R (I, J) =A (I, J) -B(I,J)
RETURN
END

£**★★***★*★★*★****★*★★*★***★**★*★*★*★★★★****★**•■*•*■**•**★■*•*★*•**■*'•*■ 
SUBROUTINE ABT (A, B , R, L, M, N)

C FORM THE PRODUCT R=A*BT
IMPLICIT REAL*8(A -H ,0-Z)
DIMENSION A (L, M),B(N,M), R (L, N)
DO 5 1=1,L 
DO 5 J=1,N 
R (I, J)=0.0 
DO 5 K=1,M

5 R (I/J)=R(I,J)+A(I,K)*B(J,K)
RETURN
ENDC* *★★★*★★**★*★**★****★*★★★★★*********★**•*★★★**★*********.******
SUBROUTINE ATB(A,B,R,L,M,N)

C FORM THE PRODUCT R=AT*B
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A(L,M),B(L,N),R(M,N)
DO 5 1=1,M 
DO 5 J=1,N 
R (I, J)=0.0 
DO 5 K=1,L
R(I, J)=R(I,J)+A(K,I)*B(K,J)

5 CONTINUE 
RETURN 
ENDC****************************************************-*.*.*.*****-*.*
SUBROUTINE ANGLE CONVERTS RADIANS TO DEG,MIN,SECONDS 
SUBROUTINE ANGLE(RAD,IDEG,IMIN,SEC)Q*************************************************************

ANG=RAD*206264.8062 
IDEG=ANG/3600.
IMIN=(ANG-IDEG* 3 600)/60.
SEC=ANG-(IDEG*3600+IMIN*60)
RETURN 
END
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APPENDIX A: 4 FREENET . FOR PROGRAM - FLOWCHART
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APPENDIX A:5 MODULE 1 - PROGRAM DENSITY.FOR

START

DIMENSION MATRICES/DECLARE 
COORDINATES

READ APPROXIMATE 
COORDINATES

'1
INITIALIZE VARIABLES

6

1 2 6



APPENDIX A: 6 MODULES 2& 3 - PROGRAM DENSITY.FOR
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APPENDIX B: RESULTS OF STUDY

APPENDIX B .1: Results of the freenet adjustment

FREE-NETWORK ADJUSTMENT

RESULTS OBTAINED AFTER 3 ITERATIONS 
VARIANCE COMPONENTS

DISTANCE : TRACE1= 7.66753 ETWE1 = 7.60516 
DIRECTIONS: TRACE2=18.33247 ETWE2 = 18.00087 

Adjusted direction observations
Ray Adjusted Obs. Std. Error Residual[o ' "] ["] ["]
1 2 163 38 58 . 5 0 . 151 0 .0691 4 109 5 41,.4 0 . 151 0 .1382 1 343 38 58 .3 0 .151 -0 .0692 3 117 47 48 ,.2 0 .151 0 .0232 4 42 5 15 ..4 0 . 151 0 .0933 2 297 47 47 ,.9 0 . 151 -0 .0223 4 4 51 40 .. 5 0 . 147 0 .1203 8 114 28 0 .. 7 0 .139 0 ,.2593 6 81 9 13 .9 0 .139 -0 .1534 3 184 51 40 .. 1 0 ,. 147 -0 ,.0864 5 92 8 29 ,.3 0 . 147 0 ,.0464 6 137 23 43 .. 1 0 .. 143 -0 ,.0174 1 289 5 40 ..9 0 . 151 -0 ,.1384 2 222 5 15 .. 1 0 ,.151 -0 ,.0935 4 272 8 29 .. 1 0 ,. 147 -0 ,.0105 6 174 8 16 ..9 0 .. 150 -0 ..0845 7 115 9 48 ,. 7 0 ,. 146 0 .. 1846 3 261 9 14 .. 1 0 ,. 139 0 ..0946 4 317 23 43 ..0 0 ,. 143 -0 ..0326 5 354 8 16 ..8 0 .. 150 0 ..0686 7 72 35 30 .. 3 0 .. 143 0 ..0696 8 141 12 57 ., 8 0 .. 132 0 ., 0417 6 252 35 30 ..0 0 ,. 143 -0 .. 1187 5 295 9 48 ..3 0 .. 146 -0 .. 1427 8 196 7 29 ..6 0 .. 148 -0 ..0088 7 16 7 29 .,8 0 .. 148 0 ..0428 6 321 12 57 ..5 0 .. 132 -0 .. 1158 3 294 28 0 .,0 0 ..139 -0 .,198

1 2 8



Adjusted distance observations
Ray Adjusted Obs. tm] Std. Error [m] Residual[m]
1 2 36516.133 0.0030 -0.0631 4 33799.714 0.0028 -0.0522 3 21228.340 0.0017 0.0152 4 32315.983 0.0026 -0.0543 4 34004.280 0.0028 0.0243 8 58027.019 0.0077 0.0403 6 30138.621 0.0025 -0.0504 5 24004.697 0.0020 0.0335 7 41274.135 0.0034 -0.0266 4 39735.818 0.0082 0.0486 5 28499.302 0.0023 0.0606 7 36099.926 0.0029 -0.0427 8 41084.219 0.0074 0.0348 6 36776.219 0.0103 0.026

APPENDIX,B,2.1: Results for first level of densification using the static model
FIXED-DATUM NETWORK ADJUSTMENT

RESULTS OBTAINED AFTER 3 ITERATIONS

ETWE TRACE cvuw
1 56.5389 9.3921 6.019810.4611 2.0401 5.1277
2 48.6592 21.5509 2.211518.3408 9.7604 1.8791
3 39.21911 39.2089 1.000327.78089 27.7531 0.9999

Adjusted direction observations
Ray Adjusted Obs. Std. Error[o ' "] ["]
9 5 115 44 36 ,.8 0 ..671 0 . 1029 11 132 15 27 ..8 0 ,.655 -0 ,.1559 1 273 9 3 ..3 0 ..694 -0 . 1409 4 199 23 23 ..9 0 ,. 832 -0 ,.0389 10 208 34 1,. 7 0 ,.870 0 ,. 15710 4 41 9 41.. 7 0 ..847 -0 ,.37010 16 124 24 20 ..2 0 ,. 746 0 ,. 02410 15 171 53 13 ..0 0 .. 714 -0 ,. 23111 9 312 15 27 ..6 0 .. 655 -0 . 07411 5 93 12 25 .. 7 0 ,.829 0 ..05311 12 146 18 50 .. 1 0 ,.659 -0 .09411 16 204 25 26 ..6 0 .. 724 0 ,.20712 5 26 50 53 ..9 0 ,.684 -0 ..15912 13 74 5 11..8 0 ,.868 0 ,.066
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22
617161123

22
21531716151610176
121141014

6
12143

61921178182021871923
201918723
2213

6211271321
22

Adjusted Obs. [o ]
Std. Error 

["]
Residual

["]
144 1 2 . 1 0 .660 -0 .198159 57 49 .6 0 .611 -0 . 194203 7 4 . 1 0 .666 -0 .054250 43 36 .5 0 .681 -0 .102326 18 49 .9 0 .659 -0 .219144 33 47 .4 0 .687 0 .045185 46 35 .9 0 .638 -0 .147197 55 17 .8 0 .759 0 .090282 47 0 .0 0 .823 -0 .037170 25 38 .9 0 .858 -0 .31888 59 5 .4 0 .728 0 .07642 10 41 .0 0 ,.683 0 .2303 54 44 .6 0 .896 -0 .29184 24 15 .8 1,.097 -0 ..061351 53 13 .0 0 . 714 -0 .056158 27 1,. 7 0 ..820 -0 ,.039128 48 27 .0 0 .663 -0 ..02170 43 36 . 8 0 ,.681 0 ,.03924 25 26 .4 0 ,. 724 -0 ,.092331 9 1,.8 0 ,.671 -0 ,.351304 24 20 .3 0 ..746 0 ..230222 10 40 ,.4 0 ..683 -0 ,.264101 48 6 .6 6,.687 0 ,.35123 7 4 ,.3 0 .. 666- 0 ,.079268 59 5 .2 0 ,.728 0 ,.020243 33 48 ,.6 0 ..733 0 ,.132343 20 48 ,.3 0 ,. 725 0 ,.037131 19 44 ,. 7 0 .. 705 -0 .. 0175 1 43 ..9 0 ,. 734 -0 ,.048313 17 40 ,.3 0 ..849 -0 ..212120 3 14 ,.5 0 ,.864 -0 ..312311 19 44 ,.5 0 .. 705 -0 ,.17315 51 11 ,.3 0 ,. 719 0 ..449346 24 9 ..6 0 ..660 -0 ..246168 24 22 .9 0 ..828 -0 .. 10437 10 34 ,.2 0 ..949 0 ..099195 51 10 ,.4 0 ,. 719 -0 ..2115 37 0 ..3 0 ..911 0 ..079147 58 30 ,.4 0 ,.892 -0 ,.035166 24 10 ,.0 0 ..660 -0 ..021185 1 43 ,.9 0 ..734 0 ..03389 22 53 ,.6 0 ..753 -0 .,07586 38 8 ,. 5 0 ..675 0 ..129170 57 45 ,.4 0 ..607 0 ..4995 46 36 ..2 0 ..638 -0 ..018282 58 45 ..4 0 ..863 0 ..040350 57 44 ,.8 0 ..607 -0 .. 101324 1 2 .. 1 0 ..660 -0 ..05592 22 49 ..4 0 .. 704 0 ..080324 33 47 ..3 0 ..687 0 ..020266 38 8 .. 1 0 ..675 -0 .,064223 13 34 ..1 0 ..859 -0 ..044
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Adjusted distance observations
Residual

[m]
Ray Adjusted Obs. Std. Error

[m] [m]

9 5 23066.700 0.009 -0.071569 11 14032.894 0.013 0.019779 4 9670.472 0.008 0.037899 10 16449.605 0.015 -0.0303310 4 7073.186 0.009 0.0051411 5 10407.466 0.011 0.0583512 5 9560.092 0.012 0.0232312 11 10950.594 0.008 0.0901613 21 15361.325 0.013 -0.0001813 5 14617.351 0.010 0.0898714 3 7454.089 0.010 0.1711414 17 16617.302 0.010 -0.0792215 14 11825.600 0.009 -0.0052915 10 9503.784 0.015 0.0103416 12 12859.757 0.020 -0.0860116 11 14669.350 0.009 0.1384416 4 15608.303 0.012 -0.0067516 10 14770.517 0.019 -0.0901116 15 10897.293 0.017 -0.0203416 14 17354.270 0.017 0.0028917 6 14715.942 0.009 -0.0566517 3 17170.701 0.013 -0.1091618 6 15350.856 0.014 -0.0262418 19 14064.701 0.007 0.0301519 8 9329.364 0.013 -0.2326620 8 19622.478 0.008 -0.1373020 19 15125.304 0.012 0.1898521 23 14545.624 0.011 -0.0805721 22 12639.632 0.012 -0.0518823 7 13319.834 0.010 -0.1334623 22 18302.767 0.009 0.03498

i
PENDIX B.2.2ynamic model First level densification results results using the

DYNAMIC SOLUTION ADJUSTMENT

RESULTS OBTAINED AFTER 2 ITERATIONS

ETWE TRACE CVUW
39.9987 22.0101 1.817327.0013 25.5498 1.056815.7789 15.6215 1.0101
34.6779 34.6899 0.988732.3221 32.3220 1.000015.9996 15.9836 0.9999
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Adjusted direction observations
Ray Adjusted Obs. Std. Error Residual[o ' "] ["] ["]
9 5 115 44 36 . 7 0 .581 0 .0029 11 132 15 28 .0 0 .449 -0 .0269 1 273 9 3 .4 0 .700 0 .0009 4 199 23 23 ,. 7 0 .563 -0 .1839 10 208 34 1 . 7 0 .579 0 . 17410 4 41 9 41 ,.9 0 .617 -0 . 14510 16 124 24 20 . 1 0 .493 -0 .09910 15 171 53 13 ,.2 0 .488 -0 .06811 9 312 15 27 ,.9 0 .449 0 .05511 5 93 12 25 .. 7 0 .556 0 .09211 12 146 18 50 ,.3 0 .459 0 .02811 16 204 25 26 ,.6 0 .467 0 .18812 5 26 50 54 .1 0 .684 -0 .01512 13 74 5 11..6 0 .610 -0 .06812 22 144 1 2 .2 0 .447 -0 .14812 6 159 57 49 ,.9 0 .562 0 ,.07812 17 203 7 4 ,. 1 0 .465 -0 .07112 16 250 43 36 ..5 0 .464 -0 .11912 11 326 18 50 ,. 1 0 .459 -0 .09713 23 144 33 47 ,.4 0 .486 0 ,.05213 22 185 46 35 ,.9 0 .410 -0 . 14013 21 197 55 17 ,.8 0 .526 0 ,.13113 5 282 47 0 ,. 1 0 .624 0 .08814 3 170 25 39 .. 1 0,.700 0 ..00014 17 88 59 5 ,.4 0 .490 0 .04514 16 42 10 40 ..9 0 ,.482 0 ,.22014 15 3 54 45 ,.0 0 .680 0 ,.04015 16 84 24 15 ..9 0 .699 0 ,.00815 10 351 53 13 ,.3 0 .488 0 ,. 10716 17 158 27 1..8 0 .570 0 ..02616 6 128 48 27 ,.0 0 .532 -0 ..00716 12 70 43 36 .. 7 0 ,.464 0 ,.02116 11 24 25 26 ,.4 0 .467 -0 ..11016 4 331 9 2 .. 1 0 ,.680 -0 ..07216 10 304 24 20 ,.3 0 .493 0 ..10716 14 222 10 40 ,.4 0 ,.482 -0 ,.27417 6 101 48 6 ..3 0 .620 0 ,.04017 12 23 7 4 ..3 0 ,.465 0 ..06217 14 268 59 5 ..2 0 ,.490 -0 ..01117 3 243 33 48 ..4 0 ,.700 0 ..00018 6 343 20 48 ..3 0 .580 0 ..07118 19 131 19 44 ..9 0 ,.484 0 ..10018 21 5 1 43 ,.9 0 ,.479 -0 ,.06418 17 313 17 40 ..5 0 ,.646 0 ..01119 8 120 3 14 ..8 0 ..700 0 ..00019 18 311 19 44 ..6 0 ..484 -0 ..05719 20 15 51 11 ,.2 0 ,.480 0 ..35519 21 346 24 9 ..6 0 ,.458 -0 ..15220 8 168 24 22 ,.9 0 .700 0 ..00020 7 37 10 34 ., 1 0 ..699 0 ..00620 19 195 51 10 ..4 0 ,.480 -0 ..30520 23 5 37 0 ..2 0 ,.635 0 ..05221 20 147 58 30 ,.4 0 ,.696 -0 ..01021 19 166 24 10 .. 1 0 ,.458 0 ..07321 18 185 1 43 ..9 0 .479 0 ..01721 7 89 22 53 ,.5 0 ,.534 -0 ..0892l 23 86 38 8 ,.5 0 ,.434 0 ,.111
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Ray Adjusted Obs.[ O '  "]
Std. Error Residual [" ] [" ]

21 22 170 57 45 .3 0 .396 0 ..43022 13 5 46 36 .2 0 .410 -0 .. 01122 6 282 58 45 .4 0 .636 0 .. 04122 21 350 57 44 .6 0 .396 -0 ..17022 12 324 1 2 .1 0 .447 -0 ..00423 7 92 22 49 .5 0 .548 0 ..08623 13 324 33 47 .3 0 .486 0 ,.02723 21 266 38 8 .1 0 .434 -0 ..08323 22 223 13 34 .2 0 .620 0 ..010

Ad:justed distancei observations
Ray Adjusted[m] Obs . Std. Error [m]

Residual[m]
9 5 23066.700 0.014 -0.0729 11 14032.894 0.009 0.0209 4 9670.472 0.001 0.0389 10 16449.605 0.001 -0.03010 4 7073.186 0.010 0.00511 5 10407.466 0.017 -0.05812 5 9560.092 0.016 0.02312 11 10950.594 0.007 0.09013 21 15361.325 0.001 0.00013 5 14617.351 0.019 0.09014 3 7454.089 0.015 0.17114 17 16617.302 0.010 -0.07915 14 11825.600 0.007 -0.00515 10 9503.784 0.011 0.01016 12 12859.757 0.008 -0.08616 11 14669.350 0.019 0.13816 4 15608.303 0.001 -0.00716 10 14770.517 0.009 -0.09016 15 10897.293 0.007 -0.02016 14 17354.270 0.011 0.00317 6 14715.942 0.009 -0.05717 3 17170.701 0.011 -0.10918 6 15350.856 0.010 -0.02618 19 14064.701 0.009 0.03019 8 9329.364 0.006 -0.23320 8 19622.478 0.012 -0.13720 19 15125.304 0.009 0.19021 23 14545.624 0.009 -0.08121 22 12639.632 0.008 -0.05223 7 13320.000 0.018' 0.03323 22 18302.767 0.011 0.035
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APPENDIX 2.3: First, level densif ication results using, the static-dynamic mntipl____________________

STATIC! DYNAMIC SOLUTION ADJUSTMENT
RESULTS OBTAINED AFTER 1 ITERATIONS

ETWE TRACE CVUW
37 , 29 ,

Adjusted

•9987 37.9986 •0013 28.6248
direction observations

10 .0000.9889

Ray Adjusted Obs. [o ' "] Std. Error Residual 
[" ] [" ]

9 5 115 44 35 .8 0 .497 0 .7389 11 132 15 28 .0 0 .495 -0 . 0419 1 273 9 3 .2 0 .477 0 .3039 4 199 23 23 .2 0 .495 0 ,.2019 10 208 34 1 .6 0 .700 0 .00010 4 41 9 42 ,.6 0 ..567 0 ,.00110 16 124 24 20 .3 0 .495 -0 . 10310 15 171 53 13 ,.4 0 ,.495 -0 ..08711 9 312 15 27 . 8 0 .495 0 ,. 04111 5 93 12 25 ,. 7 0 ,.467 -0 .. 10711 12 146 18 50 . 1 0 .495 0 ,.06211 16 204 25 26 ,.3 0 ,.495 0 .. 14912 5 26 51 53 .8 0 .675 0 ,.62212 13 74 5 11 ,. 7 0 ..700 0 ,.00012 22 144 1 2 ,.3 0 .495 -0 ,. 07212 6 159 57 49 ,.9 0 ,.479 0 ..00012 17 203 7 4 ,.2 0 ,.495 -0 ..06612 16 250 43 36 .. 7 0 ,.495 -0 ..07012 11 326 18 50 ,. 1 0 ,.495 -0 ..06313 23 144 33 47 .. 3 0 ..490 0 ..03513 22 185 46 36 ..3 0 ,.415 -0 .. 15113 21 197 55 17 .. 6 0 ,. 541 0 .. 14313 5 282 47 0 ,.5 0 ,.465 -0 ..00414 3 170 25 39 ..3 0 ,.495 -0 ..09014 17 88 59 5 ,.3 0 ..495 0 ..02814 16 42 10 40 ..5 0 ..495 0 .. 24714 15 3 54 44 ,. 9 0 ,.700 0 ..00015 16 84 24 15 ..9 0 ..700 0 ..00015 10 351 53 13 .. 0 0 ..495 0 ..08816 17 158 27 1.. 7 0 ..700 0..00016 6 128 48 26 .. 8 0 ,.467 0 ..09816 12 70 43 36 .. 7 0 ..495 0 ..07016 11 24 25 26 .. 7 0 ..495 -0 .. 14916 4 331 9 2 .. 1 0 ,.456 0 ..53016 10 304 24 19 ..9 0 ..495 0 ..10316 14 222 10 40 ..9 0 ..495 -0 ., 24717 6 101 48 5 .. 7 0 ..700 0 ..34617 12 23 7 4 ..2 0 ..495 0 .,06617 14 268 59 5 ..2 0 ..495 -0 ..02817 3 243 33 48 .. 8 0 ..497 -0 .,25118 6 343 21 48 ..3 0 ..700 0 ..00918 19 131 19 44 .. 7 0 ..495 0 .,07818 21 5 1 44 ..0 0 ..495 -0 ..04018 17 313 17 40 .. 6 0 ..700 0 .,00019 8 120 3 15 ..0 0 ..700 -0 ..109
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Ray Adjusted Obs. Std. Error Residual[o ' "] ["] ["]
19 18 311 19 44.6 0.495 _0.07819 20 15 51 10.5 0.495 0.33019 21 346 24 9.9 0.495 - 0.11320 8 168 24 22.3 0.700 0.65820 7 37 10 34.0 0.495 0.10020 19 195 51 11.0 0.495 - 0.33020 23 5 37 0.2 0.700 0.00021 20 147 58 30.4 0.700 0.00021 19 166 24 9.9 0.495 0.11221 18 185 1 43.8 0.495 0.04021 7 89 22 53.9 0.495 - 0.56621 23 86 38 8.3 0.485 0.06421 22 170 57 44.6 0.449 0.36722 13 5 46 36.3 0.415 - 0.02222 6 282 58 45.8 0.485 0.30722 21 350 57 45.0 0.449 - 0.23322 12 324 1 2.1 0.495 0.07223 7 92 22 48.9 0.495 0.00123 13 324 33 47.3 0.490 0.01023 21 266 38 8.3 0.485 -0.12923 22 223 13 34.1 0.678 0.056
Adjusted distance observations
Ray Adjusted Obs. !Std. Error Residual[m] [m] [m]

9 5 23066.843 0.0118 -0 . 0729 11 14032.855 0.0099 0 .0209 4 9670.396 0.0116 0 .0389 10 16449.666 0.0111 -0 .03010 4 7073.176 0.0116 0 .00511 5 10407.583 0.0115 -0 .05812 5 9560.045 0.0114 0 .02312 11 10950.414 0.0107 0 .09013 21 15361.325 0.0110 0 .00013 5 14617.171 0.0121 0 .09014 3 7453.747 0.0117 0 . 17114 17 16617.461 0.0111 -0 .07915 14 11825.611 0.0088 -0 .00515 10 9503.763 0.0106 0 .01016 12 12859.929 0.0108 -0 .08616 11 14669.073 0.0109 0 .13816 4 15608.317 0.0113 -0 .00716 10 14770.697 0.0110 -0 .09016 15 10897.334 0.0107 -0 .02016 14 17354.264 0.0111 0 .00317 6 14716.055 0.0115 -0 .05717 3 17170.919 0.0116 -0 .10918 6 15350.909 0.0129 -0 .02618 19 14064.641 0.0109 0 .03019 8 9329.829 0.0134 -0 .23220 8 19622.752 0.0127 -0 . 13720 19 15124.924 0.0110 0 . 19021 23 14545.785 0.0109 -0 .08121 22 12639.736 0.0108 -0 .05223 7 13319.935 0.0117 0 .03323 22 18302.697 0.0112 0 .035
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APPENDIX B.3.1 • -Second level densification results using the static model

FIXED-DATUM NETWORK ADJUSTMENT____

RESULTS OBTAINED AFTER 3 ITERATIONS

ETWE TRACE CVUW
47.8850 68.9875
47.005469.9999

28.113668.0003
46.978569.9939

1.7033 1.0145
1.00001.0000

Adjusted direction observations
Ray Adjusted Obs. Co Std Error

["]
Residual
["]

24 22 172 0 48 .0 1 .000 0 .00024 28 247 32 28 1 0 707 -0 .59424 25 335 22 4 .9 1 .000 0 00025 13 66 36 36 .5 1 .000 0 .00025 26 319 8 24 .6 0 707 -0 .57826 25 139 8 23 .6 0 707 0 .57826 27 232 33 36 3 0 707 -0 .06226 42 296 50 43 8 1 000 0 .00027 26 52 33 36 .3 0 .707 0 06327 42 356 33 52 6 0 707 -0 .09427 12 216 50 26 .3 1 000 0 .00027 25 107 27 59 0 1 000 0 .00028 12 321 35 14 8 0 716 -0 11928 22 145 1 13 2 0 701 -0 12228 24 67 32 27 1 0 707 0 .59428 29 213 39 58 2 0 707 0 41429 28 33 39 59 1 0 707 -0 .40629 30 299 8 26 4 0 695 -0 61729 31 192 33 11 9 0 997 0 .01929 22 130 3 34 8 0 960 -0 05430 29 119 8 25 4 0 695 0 57030 17 201 22 24 3 0 698 0 54030 12 25 22 43 8 0 709 0 54130 31 149 19 23 0 0 689 0 03731 17 256 46 19 4 0 974 -0 00731 30 329 19 23 0 0 689 -0 02631 32 190 15 56 9 0 681 -0 56332 31 10 15 55 9 0 681 0 59332 17 291 35 45 8 0 998 -0 00532 33 20 26 47 6 0 682 0 05233 34 205 1 5 3 0 675 -0 64033 17 222 12 3 9 0 708 0 49933 36 230 23 27 2 0 857 -0 34933 32 200 26 47 7 0 682 -0 08134 18 94 14 36 8 0 887 0 07034 33 25 1 4 3 0 675 0 50834 35 68 8 34 8 0 704 -0 41635 34 248 8 33 8 0 704 0 47535 19 124 13 37 0 0 756 -0 29335 18 115 36 27 9 0 675 0 330
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Ray Adjusted Obs. Std. Error Residual[o ' "1 ["] ["]
36 34 146 17 16.0 0.871 0.12436 14 293 15 56.1 0.734 -0.08036 17 68 44 16.9 0.690 0.03936 37 30 14 17.0 0.663 -0.28836 38 348 34 41.3 0.867 0.14137 17 144 1 47.4 0.744 -0.39037 38 275 12 15.1 0.676 -0.27837 36 210 14 16.1 0.663 0.52537 16 351 33 30.9 0.671 -0.08238 37 95 12 15.1 0.676 -0.06038 44 254 30 47.9 0.707 -0.06238 16 42 42 9.5 0.856 0.41739 38 172 31 29.2 0.795 -0.20039 15 210 9 12.3 0.891 0.17139 16 121 48 27.4 0.694 0.26539 10 308 16 23.8 0.674 0.14440 41 73 26 35.3 0.707 0.54740 9 347 38 54.0 1.000 0.00041 40 253 26 36.3 0.707 -0.54741 11 25 50 45.5 1.000 0.00041 10 270 38 58.0 1.000 0.00042 27 176 33 52.6 0.707 0.09442 43 282 47 20.3 0.707 0.45343 42 102 47 21.3 0.707 -0.45343 9 301 16 18.4 1.000 0.00044 38 74 30 48.0 0.707 0.06344 15 8 49 40.5 1.000 0.00044 45 244 3 12.4 0.707 -0.59445 14 94 25 46.8 1.000 0.00045 44 64 3 11.3 0.707 0.594

Adjusted distance observations
Ray Adjusted Obs. Std. Error Residual[m] [m] [m]
24 28 8942.726 0.0117 0.1393424 25 5241.264 0.0102 -0.0301925 13 8278.537 0.0125 0.2006225 26 6584.572 0.0115 0.0032826 27 4225.481 0.0124 0.1100926 42 4056.428 0.0129 0.0000227 42 4408.611 0.0138 0.0000427 12 5522.840 0.0114 -0.1707227 25 8033.177 0.0131 -0.0004828 12 7876.856 0.0111 0.0004928 29 4955.847 0.0105 0.0211829 30 6366.497 0.0113 -0.0482829 31 4673.126 0.0107 -0.0006830 17 10324.562 0.0124 -0.1019530 12 7965.175 0.0124 -0.0000930 31 8908.198 0.0126 0.0110231 17 8534.087 0.0112 0.0003531 32 4970.317 0.0139 -0.0001432 17 7982.221 0.0130 0.0019633 32 20158.898 0.0111 0.0500134 18 19434.606 0.0135 -0.0005134 35 9608.224 0.0125 -0.00012
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Ray Adjusted Obs. Std. Error Residual[m] [m] [m]
35 19 25429.218 0.0128 0.05954
35 18 11603.566 0.0120 -0.00022
3 6 14 8200.595 0.0126 0.00069
36 17 9744.266 0.0108 0.02945J36 38 9739.818 0.0111 0.08029
37 17 6629.355 0.0116 -0.00340
37 38 7145.419 0.0115 -0.00024
37 16 7279.774 0.0118 -0.00012J 138 37 7145.349 0.0135 0.06976
38 44 6127.303 0.0129 -0.00041
38 16 8916.730 0.0114 0.04982
39 38 11312.314 0.0124 -0.00033
39 15 6622.009 0.0124 0.00999
39 16 8847.748 0.0122 0.01577
39 10 5945.751 0.0124 -0.27257
40 41 4574.046 0.0109 0.12996
40 9 16306.344 0.0105 -0.00076
41 11 5765.458 0.0118 0.05145
41 10 15739.652 0.0105 -0.00528
42 27 4408.606 0.0139 0.00504
42 43 5713.879 0.0133 -0.03502
44 38 6127.295 0.0108 0.00759
44 15 7211.664 0.0107 0.06880
44 45 9165.192 0.0132 -0.00531
45 14 8566.737 0.0150 0.07974

lPPENDIX B.3.2: Second level densif ication__results__using__the[ynamic model

DYNAMIC SOLUTION ADJUSTMENT 
RESULTS OBTAINED AFTER 2 ITERATIONS

ETWE TRACE CVUW
49.0084 53.7786 0.911367.9916 65.5281 1.037644.5453 43.9980 1.0124
54.8773 54.8769 1.000062.1227 62.1227 1.000045.9875 46.0003 1.0000

i
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Adjusted bearing observations
Ray Adjusted Obs. Std. Error Residual[o ' '•] ["] ["]

24 22 172 0 48 .0 1 .000 0 .00024 28 247 32 28 1 0 707 -0 .59424 25 335 22 4 .9 1 .000 0 .00025 13 66 36 36 .5 1 .000 0 .00025 26 319 8 24 .6 0 .707 -0 .57826 25 139 8 23 .6 0 707 0 .57826 27 232 33 36 .3 0 707 -0 .06226 42 296 50 43 .8 1 000 0 .00027 26 52 33 36 .3 0 707 0 .06327 42 356 33 52 .6 0 707 -0 .09427 12 216 50 26 .2 1 000 0 .00027 25 107 27 59 0 1 000 0 .00028 12 321 35 14 .8 1 000 0 .00028 22 145 1 13 0 1 000 0 .00028 24 67 32 27 1 0 707 0 .59428 29 213 39 58 2 0 707 0 .41029 28 33 39 59 1 0 707 -0 .41029 30 299 8 26 4 0 707 -0 .59429 31 192 33 12 .0 1 000 0 .00029 22 130 3 34 7 1 000 0 .00030 29 119 8 25 3 0 707 0 .59430 17 201 22 24 9 1 000 0 .00030 12 25 22 44 4 1 000 0 .00030 31 149 19 23 0 0 707 0 03131 17 256 46 19 6 1 000 0 00031 30 329 19 23 0 0 707 -0 03131 32 190 15 56 9 0 707 -0 57832 31 10 15 55 9 0 707 0 57832 17 291 35 45 9 1 000 0 00032 33 20 26 47 6 0 707 0 06733 34 205 1 5 3 0 707 -0 57433 17 222 12 4 5 1 000 -0 00133 36 230 23 26 8 1 000 0 00133 32 200 26 47 6 0 707 -0 06634 18 94 14 36 9 1 000 0 00034 33 25 1 4 2 0 707 0 57434 35 68 8 34 9 0 707 -0 44535 34 248 8 33 8 0 707 0 44535 19 124 13 36 7 1 000 0 00035 18 115 36 28 2 1 000 0 00036 34 146 17 16 1 1 000 0 00036 14 293 15 56 1 1 000 0 00036 17 68 44 16 7 1 000 -0 00136 37 30 14 17 2 0 707 -0 40636 38 348 34 41 4 1 000 0 00037 17 144 1 46 9 1 000 0 00037 38 275 12 14 9 0 707 -0 10937 36 210 14 16 2 0 707 0 40637 16 351 33 30 9 1 000 0 00038 37 95 12 14 9 0 707 0 10938 44 254 30 47 9 0 707 -0 06338 16 42 42 9 9 1 000 0 00039 38 172 31 29 0 1 000 0 00039 15 210 9 12 5 1 000 0 000
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Ray Ad jus ted <Obs . Std. Error Residual[o 1 "] ["] ["]
39 16 121 48 27 .6 1 .000 0 .00039 10 308 16 23 ..8 1 .000 0 .00040 41 73 26 35 .3 0 .707 0 .54740 9 347 38 54 ,. 1 1 .000 0 .00041 40 253 26 36 .3 0 .707 -0 . 54741 11 25 50 46 ,. 1 1 .000 0 .00041 10 270 38 58 .0 1 .000 0 .00042 27 176 33 52 ,.6 0 . 707 0 .09442 43 282 47 20 ,.3 0 . 707 0 .45343 42 102 47 21..3 0 . 707 -0 .45343 9 301 16 18 ,. 4 1 .000 0 .00044 38 74 30 48 ,.0 0 .707 0 .06244 15 8 49 40 ..5 1 .000 0 .00044 45 244 3 12 .. 4 0 .707 -0 .59445 14 94 25 46 .. 7 1 .000 0 .00045 44 64 3 11.,3 0 .707 0 .594

Adjusted distance obsevations
Ray Adjusted Obs. [m] Std. Error [m] Residual[m]
24 28 8942.725 0.0061 0.14024 25 5241.254 0.0120 -0.02025 13 8278.543 0.0144 0.19525 26 6584.581 0.0103 -0.00526 27 4225.486 0.0066 0.10526 42 4056.433 0.0064 -0.00527 42 4408.617 0.0169 -0.00627 12 5522.826 0.0094 -0.15927 25 8033.187 0.0126 -0.01128 12 7876.855 0.0123 0.00128 29 4955.846 0.0134 0.02229 30 6366.497 0.0122 -0.04929 31 4673.127 0.0116 -0.00130 17 10324.549 0.0135 -0.09630 12 7965.179 0.0134 -0.00230 31 8908.199 0.0130 0.01031 17 8534.087 0.0229 0.00031 32 4970.318 0.0117 -0.00132 17 7982.230 0.0127 -0.00333 32 20158.901 0.0169 0.04734 18 19434.604 0.0123 -0.0014̂ 35 9608.226 0.0161 -0.00235 19 25429.202 0.0141 0.06735 18 11603.564 0.0173 0.00036 14 8200.584 0.0130 0.00936 17 9744.272 0.0133 0.0266 38 9739.820 0.0133 0.079137 17 6629.341 0.0193 0.003

88 7145.421 0.0224 -0 . 0 0 17279.777 0.0225 -0.0027145.351 0.0189 0.069
i 44 6127.304 0.0154 -0.0018916.734 0.0090 0.048
)9 11312.315 0.0139 -0.002‘5 6622.010 0.0126 0.009y 16 8847.749 0.0150 0.015
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Ray Adjusted Obs. Std. Error Residual[m] [m] [m]
39 10 5945.731 0.0209 -0.25640 41 4574.053 0.0170 0.12340 9 16306.350 0.0197 -0.008
41 11 5765.473 0.0183 0.042
41 10 15739.646 0.0177 -0.00242 27 4408.612 0.0189 -0.00142 43 5713.872 0.0187 -0.02844 38 6127.296 0.0154 0.00744 15 7211.665 0.0197 0.06844 45 9165.197 0.0103 -0.01145 14 8566.754 0.0210 0.065

APPENDIX B.3.3: Second level densification using the static-dynamic ®Qdel

STATIC-DYNAMIC SOLUTION ADJUSTMENT 
RESULTS OBTAINED AFTER 2 ITERATIONS

ETWE TRACE CVUW

Adjusted

27.9877 89.0123
34.5681 82.4319

bearing

12.0094 74.6650
34.6000 82.4319

observations

2 . 1.
0 . 1.

33041921
99910000

Ray Adjusted[o Obs. Std 
" ] Error

["] Residual
["]

24 22 172 0 48.0 0.999 0.00024 28 247 32 28.1 0.707 -0.59424 25 335 22 4.. 9 1.103 0.00025 13 66 36 36.5 1.000 0.00025 26 319 8 24.6 0.717 -0.57826 25 139 8 23.6 1.000 0.57826 27 232 33 36.3 0.999 -0.06226 42 296 50 43.8 1.016 0.00027 26 52 33 36.3 1.001 0.06327 42 356 33 52.6 1.039 -0.09427 12
27 2528 12 
28 228 2428 29
o 289 28
29 2 2all

216 50 26.2 1.001 0.000107 27 59.0 1.015 0.000321 35 15.0 1.000 -0.138145 1 13.1 0.998 -0.14167 32 27.1 1.000 0.594213 39 58.2 0.857 0.41533 39 59.1 1.000 -0.406299 8 26.4 1.000 -0.611192 33 11.9 0.889 0.017130 3 34.7 1.000 -0.040119 8 25.4 0.956 0.57717 201 22 24.3 1.000 0.610123l 25 22 43.8 0.707 0.601149 19 23.0 0.707 0.026
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Ray Adjusted Obs . [o 1 ]
Std Error

["]
Residual
["]

31 17 256 46 19.6 0.990 0.00931 30 329 19 23.0 0.997 -0.03731 32 190 15 56.9 0.960 -0.57532 31 10 15 55.9 0.695 0.58132 17 291 35 45.9 0.789 -0.00132 33 20 26 47.6 0.695 0.06433 34 205 1 5.3 0.709 -0.65333 17 222 12 4.0 0.689 0.49133 36 230 23 27.1 0.709 -0.33933 32 200 26 47.6 0.689 -0.06934 18 94 14 36.8 0.974 0.08934 33 25 1 4.3 1.000 0.49634 35 68 8 34.8 0.936 -0.41235 34 248 8 33.8 1.000 0.47835 19 124 13 37.1 0.849 -0.32335 18 115 36 27.9 1.037 0.36436 34 146 17 15.9 1.004 0.15036 14 293 15 56.3 0.997 -0.13336 17 68 44 16.8 0.998 -0.04736 37 30 14 17.0 0.978 -0.27136 38 348 34 41.3 0.708 0.18037 17 144 1 47.4 0.829 -0.43637 38 275 12 15.1 0.829 -0.30037 36 210 14 16.1 0.997 0.54237 16 351 33 30.9 0.829 -0.08538 37 95 12 15.1 1.000 -0.08138 44 254 30 47.9 1.024 -0.06238 16 42 42 9.4 0.770 0.46839 38 172 31 29.2 0.975 -0.20439 15 210 9 12.3 0.877 0.17439 16 121 48 27.4 0.970 0.26639 10 308 16 23 .8 0.756 0.14240 41 73 26 35.3 0.707 0.54740 9 347 38 54.1 0.871 0.00041 40 253 26 36.3 0.744 -0.54741 11 25 50 46.1 0.867 0.00041 10 270 38 58.0 0.987 0.00042 27 176 33 52 .6 0.891 0.09442 43 282 47 20.3 0.829 0.45343 42 102 47 21.3 0.978 -0.45343 9 301 16 18.4 0.682 0.00044 38 74 30 48.0 0.707 0.063
54 15 8 49 40.5 0.707 0.00044 45 244 3 12.4 1.000 -0.59445 14 94 25 46.7 0.997 0.00045 44 64 3 11.3 0.707 0.594

I
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Adjusted distance observations
Ray Adjusted Obs. Std. Error Residual

[m] [mj [m]
24 28 8942.726 0.0133 0.13924 25 5241.264 0.0150 -0.03025 13 8278.538 0.0099 0.20025 26 6584.572 0.0100 0.00326 27 4225.481 0.0146 0.11026 42 4056.428 0.0130 0.00027 42 4408.611 0.0152 0.00027 12 5522.836 2.0134 -0.16827 25 8033.177 0.0169 0.00028 12 7876.854 0.0132 0.00228 29 4955.847 0.0132 0.02129 30 6366.497 0.0133 -0.04829 31 4673.126 0.0132 -0.00130 17 10324.547 0.0170 -0.09530 12 7965.179 0.0148 -0.00230 31 8908.198 0.0124 0.01131 17 8534.085 0.0099 0.00131 32 4970.317 0.0110 0.00032 17 7982.229 0.0123 -0.00233 32 20158.898 0.0105 0.05034 18 19434.601 0.0137 0.00234 35 9608.224 0.0144 0.00035 19 25429.201 0.0113 0.06835 18 11603.562 0.0151 0.00236 14 8200.589 0.0141 0.00336 17 9744.270 0.0122 0.02736 38 9739.818 0.0146 0.08037 17 6629.340 0.0147 0.00437 38 7145.419 0.0117 0.00037 16 7279.776 0.0187 -0.00138 37 7145.349 0.0183 0.07038 44 6127.303 0.0121 0.00038 16 8916.732 0.0155 0.04939 38 11312.314 0.0168 0.00039 15 6622.009 0.0145 0.01039 16 8847.748 0.0131 0.01639 10 5945.744 0.0122 -0.26940 41 4574.046 0.0130 0.13040 9 16306.342 0.0160 0.00041 11 5765.470 0.0132 0.04541 10 15739.648 0.0147 -0.00342 27 4408.606 0.0130 0.00542 43 5713.879 0.0179 -0.03544 38 6127.295 0.0120 0.00844 15 7211.664 0.0177 0.06944 45 9165.192 0.0194 -0.00545 14 8566.743 0.0161 0.076
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