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ABSTRACT

A Turbo-Pascal program is written to design circularly-symmetric, 

2-Dimensional, finite impulse response (FIR) digital filters 

using the Kaiser window method.

The filter specifications are given in the frequency domain and 

comprise the passband limit (s), the transition width (s) and the 

ripple. Given these specifications, the first approximations of 

the window order and window parameter (a) are computed using 

expressions given by T.S. Speake and R.M. Mersereau [20].

The operation of inverse discrete Fourier transform (IDFT) is 

used to obtain the ideal impulse response. The window function 

and the ideal impulse response are then multiplied point by point 

to get the actual impulse response. The DFT operation is then 

performed to get the Forier transform at discrete points in 

space.

The filter characteristics of the designed filter are made 

available n tabular forms once the frequency response is

determined. This enables the user to compare them with the 

supplied specifications. If the user is satisfied with the 

designed filter, then he/she can have the filter impulse response 

in the form of tables or 3-dimensional graphs. If, on the other 

hand, the filter specifications are not met and the user wants to
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redesign the filter, he/she can supply new values for the window 

order and window parameter(a). Increasing the window parameter (a) 

has the effect of reducing the ripple but widening the transition 

width. With the new values of the window order and parameter (a), 

the filter is redesigned. The process can be repeated as many 

times as one wishes until the user is satisfied with the design. 

The 3-dimensional graphs can be printed on paper if the user so 

wishes.

For most lowpass filter applications, a redesign of the filter is 

not required as the first round design produces filters that meet 

the specifications. For other types, however, redesigns are often 

required especially if the window order is low.

Coded data for 65x65 images with 32 gray levels are used as input 

data for the image processing application. An image is displayed 

on the screen with 16 gray levels (actual gray levels divided by 

2) .

The image is then corrupted by impulse noise with 10% probability 

and displayed on the screen.

The effect of the different standard filters on both the original 

image and the image corrupted with noise can then be studied by 

designing the required filters and filtering the images with 

these filters. To effect all these, one only needs to respond
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appropriately to prompts from the computer.

The blurring effects of the lowpass filter can best be studied by 

applying it to an image corrupted with impulse noise while the 

edge sharpening effect of highpass filters can best be seen when 

applied to the original uncorrupted image.
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1. INTRODUCTION

The advent of the high speed digital computer and its wide 

availability for research and development work has made it 

possible for the digital signal processing to emerge as a major 

discipline [1]. Many of the earlier works on one-dimensional (1-D) 

digital signal processing theory were modeled to simulate the 

analog systems theory. Later, with the fast development in the 

digital technology, it was found that not only could digital 

systems simulate analog systems very well but also do much more. 

In fact, many of the methods in common use today do not have 

analog counterparts [2].

Signals that are inherently two-dimensional (2-D) cannot, in most 

cases, effectively be handled with one-dimensional (1-D) digital 

signal processing theory. Hence the need for the development of 

the 2-D digital signal processing theory - a theory which has no 

equivalent in the analog world [2]. 2-D digital signal processing 

deals with the representation of 2-D signals, such as pictures, 

with 2-D arrays of numbers and the processing of these arrays.

2-D digital filters have found wide applications within the wider 

context of 2-D digital signal processing. These take the form of 

one or more of the following objectives [3] :

1) enhancement of the image to make it more acceptable to the
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human eye,

2) removal of the effects of some degradation mechanism, and

3) separation of features for easier identification or 

measurement by machine or human.

Linear 2-D digital filtering can be used in the enhancement of 

medical images [4,5]. For example, a highpass 2-D digital filter 

may be employed to reduce spatial low frequency components in an 

x-ray image thus making features with high frequency components, 

such as fracture, easier to identify.

Another area of application of 2-D digital filters is in remote 

sensing. Here many images and maps are collected by platforms

aboard aircrafts and satellites through different sensors. These 

images and maps, in general, need to be processed to improve their 

quality and to extract the useful information. 2-D lowpass filters 

may thus be applied to smooth sharp transitions such as those

caused by the presence of impulse noise, while 2-D highpass 

filters can be used to extract the information contained at the 

edges and boundaries.

Still more effective for the removal of noise are nonlinear

filters such as the median filters [4,5], the generalized mean 

filters [6] and the signal adaptive median (SAM) filters [7].

The median filter has both good noise cleansing and edge

preserving properties. A class of filters that combines linear
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filters and the median operation specifically designed for edge 

detection is proposed by Y. Neuvo et al. [8].

In the African context, the remote sensing applications are 

particularly appealing because they are useful in predicting the 

weather, monitoring earth resources and cartography. The levels of 

a lake, for example, may be monitored by studying its boundaries. 

And if the image taken from a satellite does not clearly show the 

boundaries, edge detecting digital filters may be applied to 

highlight the boundaries. *

For the extraction of features, shape representation and 

description of images, P.Maragos et al. [9] have used

mathematical morphology. And G.I. Verenza et al. [10] have used 

knowledge based systems for image processing and interpretation, 

especially in applications to the medical field.

Some of the filters mentioned above are nonlinear although many 

important filtering operations, such as spatial frequency 

filtering, are linear. Linear shift invariant (LSI) digital 

filters are easy to design and analyze, yet they are powerful 

enough to solve many practical problems [2]. These class of 

digital filters can be classified as infinite impulse response 

(HR) or finite impulse response (FIR) .

In designing IIR filters, stability is a very important 

constraint. Although this is a problem in both the 1-D and 2-D
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digital filters, it is much more difficult to understand in the 

2-D case [2,11] .

The design of 2-D H R  filters can be accomplished through 

optimization techniques [12]-[15], by applying spectral 

transformations on prototype 2-D digital filters [3,16] or by 

bilinearly transforming a cascaded number of elementary analog 

filters with different rotations and different 1-D prototypes 

[17,18].

The design of 2-D FIR digital filters either uses transformation 

techniques such as the McClellan transformations [19] or are 

direct extensions of their 1-D counterparts like the windowing 

techniques [2,20,21] and the optimal design methods [22,23]. Of 

these, the windowing method is the easiest to apply and it is the 

most general, for it can be used to find filters of any order with 

any magnitude and phase characteristic [16].

This work is concerned with the development of a computer program 

that designs 2-D, circularly symmetric FIR digital filters using 

the windowing techniques and apply these for the enhancement of 

digital images.

1.1 PROBLEM DEFINITION

Digital filters can be implemented by either using a dedicated

hardware or by programming a general purpose computer [2 4] .
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Before the implementation, however, the impulse response of the 

filter that meets the required specifications has to be 

determined, that is, the filter has to be designed. Both the 

design of the filter and the implementation of the filtering 

process involve a lot of computations. So, even if the filtering 

is ultimately to be implemented with a dedicated hardware, the 

filter characteristics can be studied and the necessary 

modifications be made using software methods before the final 

filter that meets the filter specifications is designed and 

implemented using dedicated hardware.

The department of Electrical and Electronic Engineering, Univer- 

of Nairobi, is currently in possession of software packages for 

the design of 1-D finite impulse response (FIR) and infinite 

impulse response (HR) filters. It does not however have the same 

for the design of 2-D digital filters. Nor are they readily 

available, at least in the local markets. In the absence of such 

a package, it is unthinkable to design 2-D digital filters. This 

remained a stumbling block to the implementation of any process 

that uses 2-D digital filters for its realization. This project 

aims at partially solving this problem.

1.2 SCOPE OF WORK

As the time available for the work cannot allow otherwise, a 

particular filter type and design technique was considered for
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this work. Of the two filter types, i.e. FIR and HR, the FIR 

filter was chosen and the design method used is the Kaiser window 

method. The reasons for choosing the FIR filter for the filter 

type and the Kaiser window for the design method are given in 

section (4.1).

The program is designed in such a way that the user provides the 

kind of filter (lowpass, highpass, bandpass, or bandstop) and the 

necessary specifications, in response to prompts from the 

computer. Then the filter is designed and the impulse response 

( or filter coefficients ) are put in the form of tables and, 

if required, in pe-rspective plot (3-D graph) . Upon the compu­

tation of the frequency response of the designed filter, 

characteristics like the cutoff frequency, the transition 

bandwidth(s), the ripples in the stopband(s) and passband(s) are 

calculated. Also, the order of the window used and the parameter a 

used in the computation of the window are made available. This 

enables the user to see whether the supplied filter specifica­

tions are met or not. If they are not met, and the user wants to 

redesign the filter then he/she has the liberty to supply a new 

window order and parameter a to be used in the redesign. This can 

be repeated until such a time when the user is completely 

satisfied with the result.

Then the frequency response is displayed on a 3-D graph and 

finally the impulse response of the latest designed filter is
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given in the form of a table.

Hardcopies of all the 3-D graphs can be obtained if desired. One 

only needs to respond in the affirmative when asked whether a 

hardcopy is required and supply the number of copies when asked 

for the number of copies.

In the image processing application, some image codes are included 

with the program and one is asked which image he/she wants to 

process. The image is then displayed on the screen with 16 gray 

levels. The user can then corrupt the image with impulse noise by 

calling a subroutine written for that purpose and view the

resulting image. The image corrupted with noise, or the original 

uncorrupted one, can then be processed with a filter of type and 

specification of the user's choice.

The original image, the image corrupted with noise and the one

processed with a filter can be printed by using the Graphics/ 

PrintScreen capability of the computer.

1.3 SUMMARY OF SIGNIFICANT RESULTS

Given the type of filter to be designed and the specifications, 

the Kaiser window function is first computed. The expression for 

the order of the window, the parameter a used to compute the

window as given by T.C. Speake and R.M. Mersereau [20] are taken

as the first approximate values. The ideal impulse response is
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obtained by first sampling the given ideal frequency response and 

then performing the inverse discrete Fourier transform operation 

on it. The final impulse response is obtained by multiplying the 

ideal impulse response and the window function point by point. 

This completes the first round design work.

But a test has to be conducted to see whether the designed filter 

meets the given specifications. For that, a discrete Fourier 

transform operation is performed on the impulse response. The 

filter characteristics can then be compared with the given 

specifications. Tests revealed that the specifications are not 

always met, especially with those of low order filters. So, the 

user may be required to supply new values for the window order and 

parameter a if he/she feels the design is not satisfactory and 

the filter will automatically be redesigned with these new 

values.

In the image processing applications, the blurring effect of the 

lowpass filter and the sharpening effect of the highpass filter 

can be demonstrated. The lowpass blurring effect can best be seen 

by applying it on an image corrupted with impulse noise. The noise 

is suppressed although, along with it, edges of the image proper 

are also somewhat blurred.

The effect of the highpass filter can be seen on the original 

unage. It can be seen that if an image is filtered with a highpass
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filter, the transition between high gray levels and low gray 

levels is sharpened or, if the transition bandwidth is reduced, 

only the edges are highlighted while the rest is blackened.

The filter design and filtering operations take longer as the 

filter order is increased. For this reason, the filter order to be 

designed is limited to a maximum value of 65x65. Filter order gets 

higher as the transition bandwidth of the filter gets narrower 

and/or the ripples get smaller.
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2. A REVIEW OF FILTERING THEORY

Filtering of signals is a process by which inaccuracies caused by 

the presence of unwanted signals, or noise, are minimized [25] . 

Filters were originally viewed d as circuits or systems with 

frequency selective behavior. Thus lowpass, highpass, bandpass and 

bandstop filters are merely filters that allow selected frequency 

ranges to pass with little or no attenuation while rejecting 

frequencies outside these ranges.

Filters can be realized using analog circuits or digital 

techniques. This chapter gives a review of some of the most common 

filters.

2.1 ANALOG FILTERS

Although the shift is now increasingly towards the use of digital 

filters, analog filters are also widely in use. This is so because 

of the speed, cost and size factors which favor the use of analog 

components in some applications [26] .

Some of the most common applications of analog filters include 

[27] :

• selection of the band of frequencies (audio or video) to 

modulate the radio frequency carrier of the transmitter,

• selection of the band of frequencies containing the desired 

signal before amplification at the receiver end,
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further selection after translating the variable input 

frequency spectrum to a fixed intermediate frequency, 

rejection of the two sidebands and the carrier at the 

transmitter,

separation of various channels transmitted by frequency 

multiplexing methods,

. band limiting at the transmitter end and smoothing at the 

receiver end to recover signals transmitted by time mult- 

plexing methods,

. and many more including as frequency multipliers, spectrum 

analyzers, matched filters and equalization filters.

Also, a number of useful image processing options in the form of 

thresholding, level slicing, contouring false colour enhancement 

are quite possible with analog filters [28] .

There are a number of types of lowpass filters, but probably the 

most commonly used are the Butterworth and the Chebyshev filters 

[29] .

2.1.1 Butterworth (Maximally flat) lowpass filter

The amplitude response of a Butterworth lowpass filter is given by

c (2 . 1)
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where n = 1,2,3,...

= order of the filter,

0) = cutoff frequency.c

As n increases the response more nearly approximates that of the 

ideal filter. The Butterworth filter has excellent amplitude 

characteristics near u>=0 but its characteristics near the cutoff 

and the attenuation in the stopband are relatively poor.

2.1.2 Chebyshev(Equiripple) lowpass Filter

Its amplitude response is given by

I H ( jCt)) I =1 /  v l + e 2C 2 (U)/U) ) ( 2 . 2 )I I  n c

where

n = 1,2,3,...

» order of the filter,

= number of half cycles in the stopband, 

e = constant that determines the ripple height, and

C (x) is the n^-order Chebyshev polynomial given byn

{cos(n cos ~x) ,|x|^l.
-1 . .

cosh(n cosh x) , x 2:1.
(2.3)

Each polynomial oscillates between -1 and +1 in the interval -1 ^ 

x s +1 and increases in magnitude outside this range. The
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Chebyshev polynomial can be found from the recursive formula

C (x) = 2xC (x)-C (x) . (2.4)n+1 n n-1

With C (x)=l and C (x)=x, other orders may be determined from theo l
recursive formula.

If A is defined as the maximum passband deviation, then e canmax
be expressed in terms of A as [30]A max

/ .0.lAmax ,e=vl0 - 1 (2.5)

In applications where passband ripples are undesirable, the 

Butterworth filter is preferable to the Chebyshev filter.

However, for a fixed n and a given allowable deviation in the 

stopband, the Chebyshev filter is the best of all all-pole filters 

in that it has the smallest transition interval from the passband 

to some specified attenuation in the stopband. For example, the 

attenuation in decibels of the Chebyshev amplitude response is 

approximately 3(n-l)+201og c below that of the Butterworth filter 

in the stopband [29].

The phase response of the Butterworth filter is more linear over 

the passband than that of the Chebyshev. In fact it is generally 

true that the better the amplitude response of a filter, the 

poorer its phase response is and vice-versa [29].
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2 1.3 Frequency Transformations

Highpass, bandpass and bandstop filters may be obtained from a 

prototype lowpass filter by replacing the Laplace transform 

operator s in the transfer function of the prototype by an 

appropriate expression.

To transform the prototype lowpass filter to a highpass filter the 

s in the transfer function of the prototype lowpass filter is 

replaced by 1/s.

In a bandpass filter B is defined as the bandwidth of the 

frequencies passed with center frequency o)r . The bandpass transfer

function is then obtained by replacing the s in the prototype
2 2lowpass filter by (o>̂ +s ) /Bs.

In the band-reject filter B is defined as the bandwidth of the 

rejected frequencies centered at . Its transfer function is

obtained from that of a prototype lowpass filter by replacing the
2 2S in the prototype by Bs/(s +ur ) .

2.2 DIGITAL FILTERS

Discrete time signals are defined only for discrete values of 

time, i.e. time is quantized while the term digital implies that 

both time and amplitude are quantized, In digital systems 

therefore signals are represented as a sequence of numbers which
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take only a finite set of values.

A sequence of numbers x, in which the n number in the sequence 

is denoted x(n) is formally written as

x = {x(n) } , -oo < «n < oo .

2.2.1 Digital Filter Representation

A digital system operates on an input sequence x(n) to produce an 

output sequence y(n) . Linear system implies the principle Oi 

superposition applies, i.e. if y,(n) and (n) are the responses 

when x. (n) and (n) , respectively are the inputs, then 

ay (n)+by„(n) is the response when axi(n)+bx^(n) is the input.

Shift-invariant systems are characterized by the property that if 

y (n) is the response to x(n) then y(n—k) is the response to 

x(n-k).

Thus, the input-output relationship of linear shift-invariant 

(LSI) digital systems is given by

00
y(n) = £x(k) h(n-k), (2.6)

k = -oo

where y(n) = output sequence, 

x(n) = input sequence, 

h(n) = impulse response of system .
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Equation (2.6) above is referred to as the linear convolution sum 

and is denoted by

y (n) = x(n)*h(n). (2.7a)

It can be easily shown, by substitution of variables, that 

00

y (n) = £ h (JO x (n-k) = h(n)*x(n), (2.7)
k = -co

and so convolution obeys the commutative law.

An LSI system is said to be stable if every bounded input produces 

a bounded output (BIBO). A necessary and sufficient condition on 

the impulse response for BIBO stability is

00

£ | h (n) | < oo . (2.8)
n = - oo

Digital filters are linear shift-invariant systems described by

M L
y (n) = £ a (k) x (n-k) - £ b (k) y (n-k) , (2.9)

k = 0 k= 1

where a(k) and b(k) are the filter coefficients.

The z-transform X(z) of a sequence x(n) is defined as

00
X (z) = £ x (n) z

n = -oo

where z is a complex variable. It can be shown that the
-noz-transform of a shifted sequence x(n-nQ) is z X(z). The
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z-transform is also a linear operation. Thus, taking the 

z-transform of Eqn.(2.9) and rearranging, we get

Defining

we can write

Y(z)=-
1

M
£ a (k) z K 
k = 0 .X(z) .

L
+ Y. b (k) z K
k = 1

H (z)
£ a (k) z
k = 0

-k

1 + £ b (k) z
k-1

-k

(2 .10)

Y (z) = H (z) X (z) . (2.11)

H (z) , the ratio of the z-transform of the output Y(z) to the 

input X (z), is referred to as the transfer function of the filter.

If z = e^W in the above equations, the z-transform reduces to the 

Fourier transform and the transfer function H(z) becomes the 

frequency response of the filter, z = e"5 is the unit circle on 

the z-plane.

2.2.2 Classification of Digital Filters

A filter is classified either as a finite impulse response (FIR) 

or infinite impulse response (HR) filter depending on the
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duration of the impulse response.

filter has a finite number of nonzero terms in its impulse 

response sequence h(n) while an H R  filter has an infinite number 

of nonzero terms.

If h(n)=0 for n 0, the system is said to be causal or physically 

realizable. A noncausal system will have a nonzero

response even before the input is applied and, therefore, it is 

not realizable.

Digital filters can also be classified as recursive or non- 

recursive for purposes of realization. When the b(k) 's in the 

transfer function are not all zero the calculation of y(n) in the 

difference equation requires the values of some outputs that have 

already been calculated. Such filters are called recursive 

filters. Otherwise the filter becomes nonrecursive. In 

nonrecursive filters no previous values are required to calculate 

the present output, y(n).

For nonrecursive filters, the transfer function reduces to

H (z) = £ a (k) z *, (2'

k-°

the impulse response becomes identical to the a (k) 

°oefficients, i.e.
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✓a (n) , 0 ^ n ^ M . 
h (n) =j

'■0 , otherwise .

For this reason, a nonrecursive filter is also a finite impulse 

response (FIR) filter, and a recursive filter is an infinite 

impulse response (HR) filter [1,31].

However, in general both FIR and IIR filters can be implemented by 

either recursive or nonrecursive techniques [31].

2.2.3 Advantages of Digital Filters

Digital filters offer important advantages over their analog 

counterparts. Some of the advantages are [32]:

i) They are highly accurate. The inaccuracies of digital 

filters, which are due to the rounding errors in the computer 

arithmetic, can be made as small as required. The background 

noise produced in analog circuits however cannot be so easily 

controlled and analog components cannot easily be made to a 

tolerance of less than about one per cent.

ii) They permit a high degree of flexibility. For example, their 

characteristics can be changed by merely reading in from 

memory a new set of filter coefficients or, at most, by 

re-writing a section of the program.

iii) They are free from drift. A computer program is not altered 

by variations like supply voltage and ambient temperature.
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iv) Freedom from the constraints of time is achieved when a 

waveform is in a digital memory .

2.3 TWO-DIMENSIONAL DIGITAL FILTERS

Two-dimensional(2-D) digital filters have found wide application 

in areas that inherently involve 2-D signals. Examples of 2-D 

signals include television images, reconnaissance photographs, 

medical x-ray images, radar and sonar arrays and.seismic data.

A 2-D discrete signal is a function defined over the set of 

ordered pairs of integers.

Thus

x = {x (n_, n̂ ) , -oo < n ,n2 < oo }

is a discrete signal defined over the ordered pairs of integers

‘W  •

A single element from the sequence is referred to as a sample. 

Thus x(n ,n ) represents the sample of the sequence x at the point

(W  •

2.3.1 2-D Digital Filter Representation

The input-output relationship of a 2-D digital linear shift- 

invariant (LSI) system is given by the 2-D convolution sum :

/
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y (ni,n2> ~ E I x (k1'k2) h(ni-ki,n2-k2)
k l  = -ook2 = -co

(2.13)

where

y (n : ' n2)

x(n„,n )

= 2-D output sequence,

= 2-D input sequence, 

impulse response of LSI system .

By a simple substitution of variables, the above equation can be 

shown to be equivalent to

00 00

y (n , n ) = Y V h (k ,k ) x (n -k ,n -k ) . (2.14)1 2 u u 1 2  1 1 2 2
k l  = -co k2 = -oo

Using the double asterisk (**) to denote the 2-D convolution, the 

input-output relation of a 2-D digital LSI system is written as

y(n ,n ) = x (n., n,) **h (n., nj = h (n^ n^ **x (nn, n^ .

A necessary and sufficient condition for an LSI system to be BIBO 

stable is that its impulse response should be absolutely summable, 

i .e.

00 00

I I Ih (n^ n2l < 00 • (2.15)
n l  = -oon2 = -oo

Linear shift—invariant 2—D digital filters can be described by a 

constant coefficient, linear difference equation relating the 

output of the filter to the input. For a first quadrant filter, 

the input signal x(n^,n^) and the output signal y(n^,n2) are
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related by

L1-1L2 -1
y(n ,n )- £ I a(l ,ijl ^ V W V  

11= 012=0
Kl-1 K2-1
I I b(ki,k2)y(ni-ki,n2-k2) . 

kl = 0 k2 = 0 
(kl,k2)*(0,0)

The 2-D z-transform of a discrete array x(n_,nj is given by

00 00

X (Z -nl -n2
j ' V ' I  I X<n!'n2)Zl' ’Z2n 1 =-oo n2 =-oo

where z. and z„ are complex variables.

Using the linearity and shifting properties of the z-transform 

and taking the z-transform of Eqn.(2.16) above, the transfer 

function can be shown to be

H(z.,z2)

L1_1 L2_1 -11 -12y y a (i ,i > z ■** ^ 1 2 1 2 A11 = 0 12 = 0________________  A
Kii  K2'1 -ki -k2
Z I b(k1-k2)Zi z2kl=0 k2=0

A (z- z )z 1, 2
B (z ,z Jz 1 2

(2.17)

where a(l,,l ) and are constants and b(0,0)=l.

With the transfer function H(z ,z ) defined above, the z-l ^
transform of the output and input are related by

Y (z , z ) = X (z , z ) H (z , z ) .1 2  1 2  1 2
(2.18)
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jO)lLetting z. - e and j£i)2z = e , the z-transform reduces2 to the

Fourier transform and the transfer function H (z ,z ) becomes1 2 the

frequency response of the filter H (o>_, Ct>̂) . The surface in the

z-domain described by zl
jtdl j(J2= e , z2 = e is known as the 2-D

unit surface or the unit bicircle.

2 . 3 . 2  Classification of 2-D Digital Filters

If b(k ,k_) = 0 for all (k. ,k̂ ) * (0,0) the digital filter described 

by the difference equation (2.16) reduces to

L1-1L2-1
y(n.,n J =  I E a dj' V ^ r V V V  (2.19)

11= 012=0

Such a filter has only a finite number of nonzero terms in its 

impulse response, which turns out to be the same as the a(l ,1 ) 

coefficients, and is therefore called an FIR filter. It is also a 

nonrecursive filter as the value of y ( n _ , n ^ )  does not depend on 

previous output values.

On the other hand, if any of the b(k ,k ) coefficients, apart from 

b(0,0) which is defined to be 1, are not equal to zero then the 

filter becomes a recursive filter and at the same time an H R

filter.
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< 3. DESIGN AND REALIZATION OF DIGITAL FILTERS

Both 1—D and 2-D digital filters are classified as H R  or FIR 

filters. For each type of filter there are various design 

techniques which have got their own merits and demerits.

Given the filter specifications, the design of a filter entails 

the determination of the filter coefficients so that it meets the 

design specifications.

Realization of digital filters refers to the way the filter 

performs its intended purposes, i.e. filtering of signals. The 

realization techniques are also dependent on the filter type and, 

to some extent, on the design technique used.

3.1 1-D FIR DIGITAL FILTER DESIGN
\

1-D FIR Filters have transfer functions of the form 

K-l
H(z) = £ h(k)z~K. (3.1)

K = 0

The design of 1-D FIR filters is, therefore, the task of 

determining the coefficients (h(k)} so that it meets certain 

performance specifications. Usually, the specifications are in the 

frequency domain.
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3.1.1 Design of FIR Filters Using Windows

j oSince H(e ), the frequency response of any digital filter, is

periodic in frequency, it can be expanded in a Fourier series. The 

resulting series is of the form

However, the filter impulse response h(n) is not realizable as it 

is infinite in duration and is not causal (it begins at -oo) . A 

weighting sequence w(n), called the window, is thus used to modify 

the Fourier coefficients h(n) in Eqn.(3.2) to control the 

convergence of the series.

. . .  /vj(|)To produce an FIR approximation to H (e ), the sequence h(n) =
A  •/.

h(n.)w(n) is formed- K(e' ), tbe Eaurier transform of d(n) , cam. be 

shown to be given by [26]

oo
(3.2)

n = -  oo

where

h (n)

(3.3)

where w and 0 are frequencies in radians.

Thus, H(e:’W) is a periodic continuous convolution of the ideal 

frequency response with the Fourier transform of the window.
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.’erf ,From Eqn.(3.3) above it can be seen that if W (e* ) is narrow,
a  j Cl> ,H(eJ ) will be nearly the same as H (e ). Therefore, the window 

is required to have w(n) as short as possible in duration to 

minimize computations in the implementation of the filter, while 

having W(ejW) as narrow as possible in frequency so as to 

faithfully reproduce the desired frequency response. These are 

conflicting requirements [26] . One has thus to choose a window 

with orders such that the required frequency response is not 

seriously compromised and, at the same time, the computation time 

is not too long.

Some of the commonly used windows include: the Bartlett, the

Hanning, the Hamming, the Blackman and the Kaiser window functions 

[26, 34] .

3.1.2 Design of FIR Filters Using Frequency Sampling Method

The main idea here is that a desired frequency response can be 

approximated by sampling it at N evenly-spaced points and then 

obtaining an interpolated frequency response that passes through 

the frequency samples.

For filters with reasonably smooth frequency response, the

interpolation error is generally small. In the case of band-

selective filters, where the desired frequency response changes 

radically across bands, the frequency samples which occur in the
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transition bands are set as variables whose values are chosen by 

an optimization algorithm which minimizes some function of the 

approximation error of the filter [26,33].

Frequency sampling designs are particularly attractive for 

narrow-band frequency-selective filters where only a few of the 

samples of the frequency response are nonzero [26].

3.1.3 FIR Filter Design Using Equiripple Approximation Methods

This design method is concerned with zero-phase FIR filters. The 

frequency response of such filters is given by

H(e3W) = £ h (n) e~jU>n . (3.4)
n=-M

The impulse response sequence has a duration of N=2M+1 and for 

zero phase h(n) must be equal to h(-n). Because of symmetry, the 

above equation can be written as

M
H(ejW) = h(0) + X 2h(n)Cos (wn) .

n = 1

Also, since cos (nw) can be expressed as a sum of powers of cos (u>) , 

the above can be written as

i  (j) _  kH(eJ ) = X ak(cos w) , 
k = 0 *

(3.5)
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where the a 's are constant coefficients which are related to 

h(k) .

Consider a lowpass filter whose passband range is 0^ | | and

stopband range is u Suppose the maximum error in the

passband is 6. and that in the stopband is 6,. It is not possible

to specify each of the parameters S ,6 , u , u) and M. An approach1 2 p s
developed by Herman and Schussler is to fix 8,8„ and M, and let 

o) and 0) be variables [24,26].S P

t hSince Eqn.(3.5) above is an M order trigonometric polynomial, 

there can be at most M-l local maxima and minima in the interval 

0<oK7r.

Differentiating Eq. (3.5) above with respect to u>, we get

• M -I

£ ka (cosw)K • (3.6)
■k = 1 J

Thus it can be seen from Eqn. (3.6) that H(e ) will either have a 

maximum or a minimum at o>=0 and uy=n, and hence there will be at 

most (M+l) local extrema in the interval 0̂ u)̂ 7r. In general,

there will be N extrema in the passband and N extrema in thep s
stopband, and so we have

dH (e ) 
dw =-sinu

N +NP s M+l . (3.7)
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We can write 2m equations relating the M+l filter coefficients and 

the M-l frequencies at which extrema occur. These equations are, 

however, nonlinear and are solved by iterative process [24,26].

3.2. 1-D H R  DIGITAL FILTER DESIGN

H R  filters promise a potential reduction in computation compared 

to FIR filters when performing comparable filtering operation. By 

feeding back output samples, we can use a filter with fewer 

coefficients (hence less computation) to implement a 

desired operation. On the other hand, IIR filters pose some 

potentially significant implementation and stabilization problems 

not encountered with FIR filters [2].

An IIR filter has a transfer function of the form

M
[a(lt)z K

H(z) = k = °L------- . (3.8)
I + Y, b (k) z K

k= 1

The design of an IIR filter thus centers around finding the filter 

coefficients, a(k)'s and b(k)'s, of the transfer function such 

that the filter satisfies some given performance specification.

Some of the techniques commonly used to design IIR filters are 

briefly discussed below.
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3.2.1 Filter Design From Analog Filters

This technique involves designing an appropriate continuous-time 

filter and then transforming the resulting filter into a digital 

one. This method is most useful for designing standard filters 

such as lowpass, highpass, bandpass and bandstop filters [31].

3.2.1.1 Impulse Invariant Design Method

The impulse response of the digital filter is chosen as equally- 

spaced samples of the impulse response of the analog filter, 

h (t), that is
a

h(n) = h (nT),

where T is the sampling period.

It can be shown [26] that the z-transform of h (n) is related to 

the Laplace transform of h (t) by the equation

H (z) sT 1 z=e
1
¥

CD

I H
k = -oo

a (S + j
27Tk
T ) .

If the system function of the analog filter has N simple poles, 

then it can be written as

H (s)
N A
I s+i~'
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with a corresponding impulse response of

N
h (t) = £ A e Skt,kk = 1

and the impulse response of the digital filter becomes

N
h(n) = h (nT) = Y A e Skr‘.a kk = 1

The system transfer function of the digital filter H(z) is thus 

given by

N
H(z) = I -S T

, k -1 k = l 1 -e z
(3.9)

Then the transform pairs become

IX IX

k= 1
-S T, k -1 k=ll-e z

Hence H(z) may be obtained by first expressing H(s) as a sum of 

partial fractions and then applying the transform pair relation 

given above.

For the frequency response of an analog filter and the equivalent 

digital filter obtained by the impulse invariant transformation to 

correspond, the analog filter must be band limited to the range 

•“if/TsQsn/T, where Q is the analog frequency. A guard filter, i.e.
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a suitable lowpass filter, is thus required to guarantee that 

the analog filter is suitably band limited prior to 

transformation.

The digital filter obtained using the impulse invariant method is 

stable if the analog filter was stable. According to Bozic [31], 

however, there exists a possibility of overflow in the 

computer program because of the variation of the filter gain with 

sampling frequency, say at z=l or o>=0. It may therefore be 

necessary to compensate for it.

3.2.1.2 Bilinear Transformation

Unlike the impulse-invariant design method, the design based on 

bilinear transformation does not require the partial fraction 

expansion of G(s). It is just a matter of substituting a function 

of z for each Laplace operator s appearing in G(s) . The function 

that substitutes the operator s is given by

s (3.10)

This transformation is recognized as the bilinear transformation. 

As a result of the transformation, the imaginary axis in the 

s-plane maps onto the unit circle in the z-plane, the left-half of 

the s-plane maps onto the inside of the unit circle and the right- 

half of the s—plane maps onto the outside of the unit circle.
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S t a b l e  analog filters are mapped onto stable digital filters by 

the bilinear transformation.

3 .2.1.3 Frequency Transformations

The idea here is to first design a digital lowpass filter and then 

use algebraic transformations to design the required 

frequency selective digital filter. This procedure can be 

applied regardless of the design procedure used to obtain the 

digital lowpass filter. Transformation functions from lowpass to 

lowpass, highpass, bandpass, and bandstop filters are readily 

available [4,26,33].

3.2.2 Time-Domain Design of H R  Filters

In this method a filter is designed such that its impulse 

response approximates a desired impulse response.

With the z-transform of the filter given by

M-l
[b(k)z^ 00k = 0 , /. y kH (z) = ---— -----  = £h(k)z ,

1 + l b(k)z'k k = C 
k = 0

it is required that the filter impulse response h(k) approximate a 

desired g(k), over the range O^k^P-1.
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Under a wide variety of conditions, Burrus and Parks, and Brophy 

and Salazar, among others, have shown that it is possible to find 

a set of a(k),b(k), such that

is minimized over all possible choices of a(k), b(k) where w(k) is 

a positive weighting function on the error sequence. Since h(k) is 

a nonlinear function of the filter parameters ({a(k)}, {b(k)}), 

generally the minimization of e can only be obtained using 

iterative techniques [33] .

3.2.3 Optimization Methods of Designing H R  Filters

Here a mathematical optimization procedure is used to determine 

the filter coefficients that minimize either the squared error or 

the p-error. These errors are defined as follows.

1W jU)Let H(e ) and H (e ) be the actual and required frequency
d

responses, respectively, and let {u , i=l,2,..M} be the discrete

set of frequencies at which the error between the actual and 

desired responses is evaluated. Then, the squared error at these 

frequencies is given by

p-i
<e> = £ [g(k)-h (k)]^w(k) (3.11)

k = 0

M
(3.12)

i  = 1



35

and the p-error is defined as a discrete approximation to either

or

fn | H (e]W) | — | HE = W(w)
p i

rn
E = W(w) x (w) -xj (w)
P i a

ip
dw,

p
du,

(3.13)

(3.14)

where the group delay x is defined as

x (w) = arg [H (eJ )]

and W(u>) is a weighting function. Several Optimization design 

procedures are available for use to solve for the coefficients 

[26] .

3.3 2-D FIR DIGITAL FILTER DESIGN

These filters share many characteristics with their 1-D 

counterparts. They are, for example, always stable as their 

impulse responses are always summable. They can also have real 

frequency response functions - zero-phase filters. Consequently, 

the design algorithms for 2-D FIR filters are closely related to 

1-D algorithms.

A 2-D FIR filter has input-output relations given by 

Yin ,n ) = I I h(ki,k2)x(ni-^.,n2-k2),
k 1 k 2

(3.15)
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where k., k , included in the sum, are finite in extent and arei ^
referred to as the region of support R.

The filter design is thus concerned with the selection of impulse 

response coefficients h(k,k^), consistent with a given region of 

support R, which yields a filter that approximates, in some sense, 

either an ideal impulse response or an ideal frequency response.

3.3.1 2-D FIR Filter Design Using Windows

2-D FIR filter design using windows is a straightforward extension 

of the 1-D technique. The filter impulse response h(n_,n^) is 

determined as the product of the ideal impulse response i(n.,nj

and another array w (n ,n ), the window function. Thus,1 2

h (n , n )1 2 i(n ,n )w(n ,n ).1 2 l' 2 (3.16)

The ideal impulse response i(n,,n_) is generally presumed to have 

infinite support. By confining the support of w(n^,n^) to R, 

however, h(n.,n^) is also confined to R. Hence, this technique 

produces a filter with the required support.

Since h is the product of i and w, the frequency responses 

** W2) anc* 1 ) are related by the convolution sum

, u ) =1 2
_TT _ft

- r f  J  1 <ni471 -ft J-Tl

,Q )VUu -ft ,w -Q ) dQ dfl ,2 1 1 2  2 1 2 (3.17)
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where W(w ,w ) is the Fourier transform of the window function. 

The window function chosen is required to have a region of support

zero-phase filters the window should satisfy the zero-phase 

relation,

1-D windows are often used as a basis for generating 2-D windows. 

Two methods are available for converting 1-D windows to 2-D ones, 

depending on whether the region R is rectangular or circular 

[2,26].

For rectangular R, the window is formed as an outer product of two 

1-D windows, that is

r and its frequency response W(u,o>2) should approximate an 

impulse function if H(0).,£O is to approximate 1(0).,^) . Also, for

w (n., n J = w (-n. , -n ) .

wR(n.,n2) = ŵ  (njw2 (n^ . (3.18)

For a circular R, the window is formed by sampling a circularly

rotated 1-D continuous window function, that is

) . (3.19)

resulting 2-D windows have nearly circular regions of support. 

^mong the popular 1-D windows that are used to form 2-D windows 

re octangular, the Hanning and the Kaiser windows.



38

3 3 2  2-D FIR Filter Design Using Transformations

in this method 1-D zero-phase FIR filter is transformed into 2-D 

zero-phase filter by means of a substitution of variables. The 

design of high-order 2-D filter is thus decoupled into the design 

of high-order 1-D filters and a low-order transformation [21] . 

This method, however, can only be used in the design of zero-phase 

filters.

The frequency response of a zero-phase 1-D FIR filter can be shown 

to be [2,19,21]

N
H (w) = V a (n) T [cos u]L-t nnn = 0

where T (x) is the nth Chebyshev polynomial.n

By making the substitution

cos 6i> ,

F (a) ,Ct> ) being the transformation function, the 2-D frequency 1 2
response becomes

N
H (u) ,0) ) = 7 a(n)T [F(w )].1 2  ^ n 1 2 (3.20)

n = 0

For H(u ,^) to correspond to the frequency response of an FIR 

filter, it can be shown that F (o>. itself must be the frequency

resP°nse of a 2-D FIR filter; but it can be of low order.
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The simplest choice for F(cd_ ,^1 is for it to be the frequency 

response of a 3x3 filter. In that case

F (0^,10 = A+Bcos (w.) +Ccos +Dcos (u>. -o)̂) +Ecos (Ci), +0)̂) ,

where A,B,C,D and E are free parameters.

Since T [x] is a polynomial of degree n in x, it follows thatn
H(o). is a polynomial of degree N in F. The filter with

frequency response H(u> , w„) can therefore be realized by cascade 

and parallel combinations of identical networks each with 

frequency response F (o)_, Ci>_) •

3.3.3 Optimal 2-D FIR Filter Design

If 1(0) ,o)̂) is the frequency response of the required filter and 

H (a). ,cO is the frequency response of the filter that we design, 

then we define the error between these two as

E (0) ,0) )1 2
H (Ct) , Cl) ) -I (0) ,0) ) .1 2  1 2

Optimization techniques are then used to determine the filter 

coefficients that minimize certain functions of this error, such

as the L -norm2

E2 E (0)_ ,cO do) du) ,1 2 (3.21)
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the L -norm
P

E
p

[ _7T .71 •
---  |E(a> ,w ) I pdo> dw

2 I I 1 1 2 1 1 247T -IT -TT J

7 p

and the Chebyshev(L ) norm
00

Eoo max E (0) ,o> )/ v 1 1 2(0). fwJ

(3.22)

(3.23)

3.4 2-D H R  FILTER DESIGN

Although 2-D difference equations represent a generalization of 

1-D difference equations, they are considerably more complex and 

are, in fact, quite different. A number of important issues 

associated with 2-D difference equations, such as the direction of 

recursion and the ordering relation, are not issues in the 1-D 

case. Other issues, such as stability, although present in the 1-D 

case, are far more difficult to analyze for 2-D systems [.21 .

With the transfer function of 2-D IIR filter given by

h (Zi,z2) =

Ll —1 L2-1
l l a | i  , l . n :  s '
11=0 12=0

Kl-1 K2-2
I I b(ki,k2)z. z2

k 1 = 0 k2 =0

A W V

B2<Z1,Z2) '
(3-24)

the design of a 2-D IIR filter is a process of finding the
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coefficients, a(l ,1 ) and bOc^k^), such that the filter 

satisfies certain performance specifications. Some of these 

methods are briefly discussed below.

3.4.1 Space-Domain Design Techniques

Suppose d(n.,nj is the required output signal to a given input 

signal x(n ,nj and y(n^rn̂ ) is the actual output signal. The 

mean-squared error given by

00 00

e2 = l l ly<nl,n2)-d(nl,n2)]2,
n 1 =-oon2 = -oo

is required to be minimized and the filter coefficients which give 

rise to this minimized mean-squared error are the required filter 

coefficients.

In most derivations of the design algorithm, it is assumed that 

a(n_,nj, b(n ,n ), x(n ,11 )̂, y(n,,nj and d(n_,nj have their 

support, confined to the fi-rat quadrant. The summation must also 

have finite limits for computational tractability [2].

The error ê  can be minimized in theory by setting its derivatives 

with respect to the parameters {a (n? ,n̂ ) ,b (ni ,n2) } equal to 

zero. It is generally not possible to solve analytically for the 

coefficient values which minimize e,. Algorithmic methods, such as 

the Shank's method, the Descent methods and the Iterative 

Prefiltering methods, are thus employed [2] .
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3 4.2 Frequency Transformations

Given a transfer function of a 2-D digital H R  filter in the form 

0f a rational function and assuming that the transfer function is 

in the first quadrant and stable, the problem becomes one of 

finding a 2-D-to-2-D transformation characterized by the mapping 

functions

These transformations are required to :

i) produce stable first • quadrant transfer function from 

stable first quadrant transfer functions,

ii) map real rational functions into real rational functions, 

and

iii) preserve some important basic characteristics of the amplitude 

response (such as ripple magnitude in pass and stopband 

regions) while altering other characteristics (such as cutoff 

frequencies or the number and shape of pass and stopband 

regions).

From the above conditions, it follows that F_ and must be 

a^i~pass transfer functions and the general form of the spectral 

transformation for first quadrant filters is [2,3,16]

-l F (z^, 2 ) , andZ1

-1z2
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Nl-1 N2-1 -nl -n2Y Y f (n , n ) z
u u i 1 2 11 2znl=0 n2=0

(3.25)
Nl-l N2-1 nl n2 z-Nl -N2 z z V y f (n , n ) ZL L 1 1 2  1nl=0 n2 =0

where i=l,2.

The usual practice is to design a prototype lowpass, digital 

filter and then use algebraic transformations to design other 

filters. Some transformation functions are readily available for 

that purpose [3,16].

But, because of the limited number of parameters, it is apparent 

that there are not sufficient degrees of freedom to specify a 

transformation to produce any arbitrary frequency response from a 

given one. For example, it is not possible to obtain a circularly 

symmetric highpass filter from a circularly symmetric lowpass 

filter [31.

Transformation functions do also exist that map 1-D H R  prototype 

filters into 2-D IIR filters [2,16].

Rotated filters may also be obtained by rotating the transfer 

function of a 1-D continuous filter into a continuous 2-D filter 

and subsequently transforming the 2—D continuous filter into a 2-D 

digital filter bilinearly [17,18].
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3.5 IMPLEMENTATION OF DIGITAL FILTERS

Digital filters can be implemented as special purpose hardware 

units or as a program which is run on a general purpose 

computer. If digital filters are required to operate in the real 

time, then the hardware implementation is the solution [1,24,33]. 

As for the algorithms used to implement digital filters, they 

depend on the type of the filter [2,26, 33]. But, in general, an 

implementation method is not exclusively used to design a 

particular type of filter. Thus, FIR filters can be realized 

recursively (a domain of H R  filters) and IIR filters may be 

implemented by the direct convolution or discrete Fourier 

transform (DFT) methods as shown by B. Gold and K.L. Jordan [34].

3.5.1 FIR Filter Realizations

There are mainly two algorithms that help implement FIR filters, 

namely, the direct convolution and the DFT implementation.

1) Direct convolution - It has been shown in Chapter 2 that the 

input-output relation of FIR filters are of the form

y(n) = £h(k)x(n-k) , 1-D case
k

y(n ,n ) = V Y)i(k ,k )x(n -k ,n -k ), 2-D case1 2  l 2 l l 2 2k 1 k 2

where the limits of summation are finite and outside these limits
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the impulse response is zero.

Therefore, if all the input samples are available and the filter 

coefficients are known, then the convolution sums given above are 

used to implement the filtering operation. This method of 

implementation has the advantage that there is little arithmetic 

quantization error [35] .

2) Discrete Fourier Transform (DFT) Implementation - This method 

is preferred to the direct convolution method for high-order 

filters because fast Fourier transform algorithms can be employed 

to efficiently perform the DFT operations. The steps followed in 

this method are :

i) The DFTs of the input and impulse response arrays are 

computed using FFT algorithms. The duration (1-D case) or the 

region of support (2-D case) has to be extended with sample 

values of zero to get the linear convolution by this method. 

Otherwise, we end up with circular convolution.

ii) These DFTs are multiplied point by point,

iii) The inverse discrete Fourier transform (IDFT) of the product 

is taken, once again, using FFT algorithms. The result is the 

linear convolution of the input and impulse response arrays - the 

output.

The DFT is generally evaluated either by means of a row-column 

decomposition of the DFT sum thus dividing the multidimensional
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DFT computation into the computation of a number of 1-D DFTs 

[2,35] or by means of the vector-radix algorithm [2,36,37]. This 

latter approach needs 25% fewer complex multiplications than the 

former [2] . Mersereau and Speake [38] have also generalized the 

1-D FFT algorithm to the multidimensional case.

DFT implementations of FIR filters are efficient with respect to 

speed but prodigal with respect to storage [2].

3.5.2 H R  Filter Realizations

Direct, cascade and parallel, and iterative implementation 

techniques are some of the methods used to realize the IIR filters 

[1,2,24,26,33,34].

a) Direct form implementation - This is a method by which the 

filter is implemented by rearranging the difference equation to 

express the output samples in terms of the input samples and 

previously computed output samples.

b) Cascade and Parallel implementation - Here an IIR filter is 

constructed from a cascade or parallel interconnections of simpler 

H R  filters.

c) Iterative implementations - This method is primarily developed 

ho deal with 2-D filters with impulse responses that are not 

recursively computable and, unlike the 1-D case, cannot be
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factored.

By making an educated guess at the output, Dudgeon and Mersereau 

[2] have shown that a better approximation for the output is 

computed as per the following equation

y <n.,n.) - a (ryn^ **x + c (n,, n2> **yi_l fry nj , (3.26)

or in the frequency domain

Y i (CV W2 } =  A ( W  ^ 2 ) X ( a 5 - ' 0,2 ) +  C ( W 1 ' W2 ) Y i _ 1 (W1 ^ 2 ) '
(3.27)

A(W. w )
where - B (w (Wl' W2 } '

C (W^rU>2 ) = 1-B(W. ,<J>2) ,

y (n ,n^) = ith approximation to the output signal y(n.,n^),

and x (n ̂ fn̂ ) = the input signal.

The above approximation converges if | C (o>_, ) | < 1 -
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4. SOFTWARE IMPLEMENTATION OF 2-D FIR DIGITAL FILTERS

In this chapter, the overall design procedure and the turbo 

pascal program written to implement this procedure will be

discussed. The most important constituent subroutines will also 

be elaborated. Discussed in this chapter will also be the 

subroutines that result in the filtering of digital images with 

any of the standard filters. Finally, the flow charts for the

design program and the filtering operations are given.

4.1 FIR FILTER DESIGN USING THE KAISER WINDOW METHOD

The FIR filter will be considered in this work because it is

always stable and so the design algorithm does not need to 

include a test for stability. This leads to a considerable

reduction in the complexity of the software to be designed. 

Moreover, FIR filters have linear phase characteristics and hence 

phase distortion in the output response is avoided.

The window method was chosen to design the 2-D FIR digital filter 

because it is simple and straightforward to use and generally 

produces a satisfactory design (although it may not always give 

designs of the lowest order). And of the different windows, the 

Kaiser window was chosen for the following reasons:

i) Unlike in the spectrum analysis problem where the Fourier
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transform of the window W {& .10 ) itself is of paramount 

importance, in the filter design problem it is the properties of 

the convolution of W(o>_,a;j with the step function that is of 

concern. The major properties in the frequency domain of a window 

used in the design of filters are the width of the "main" lobe of 

,cO and the relative sidelobe amplitude [39]. And the Kaiser 

windows are nearly optimum in the sense of having the largest 

energy in the main lobe for a given side lobe amplitude [26].

ii) A parameter (a) in the expression for the Kaiser window is 

used to adjust the trade off between main lobe width and side 

lobe ripple. The presence of this parameter makes the Kaiser 

window particularly flexible and versatile.

4.1.1 The Design Procedure

The design procedure starts by making prompts as to what filter 

type (lowpass, bandpass, highpass or bandstop) the user wants to 

design and their corresponding specifications to which the user 

responds by typing the filter type and its specifications. The 

specifications are in the frequency domain and include the 

sampling frequency, the passband limit(s), the transition width 

(all in kHz) and the ripples in the passband(s) and stopband(s).

By convention, the independent variable of the mathematical 

representation of a signal is taken to be time although it may
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not actually represent time. It is because of this convention 

then that the reciprocal is considered frequency and its units 

given in kHz.

The normalized passband limit and transition banawidths are then 

obtained by dividing the corresponding analog quantities by the 

sampling frequency [1] . Thus, if the sampling frequency is F ,
s

the analog passband limit is f and the analog transition 

bandwidth is f , then the corresponding normalized quantities are 

given by

Normalized Passband Limit (PB) = f /F , (4.1)P s

Normalized Transition bandwidth (TB) = f /F . (4.2)
t  s

The normalized quantities are thus dependent on the ratio of 

their respective analog quantities to the sampling frequency. The 

exact analog values do not have any bearing on the design 

procedure as long as the ratios remain the same. The procedure 

followed to determine the window function is based on the work of 

T.C. Speake and R.M. Mersereau [20] . The procedure is outlined 

below.

Given the passband limit (PB) , the transition bandwidth (TB) , the

tipple in the passband (6 ) and the ripple in the stopband (5 ) ,
p 5

the following quantities are computed.
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ATT -201o 8 8P s (4.3)

N = (ATT-7.00)/(13.68TB) ,

R = (N-l)12,

{0.56(ATT-20.2)°’̂ +0.083 (ATT-20.2), 20.2<ATT<60.

0 , ATT<20.2.

(4.4)

(4.5)

(4.6)

where ATT = Attenuation,

= Geometric mean of the ripples in the pass- and stop- 

bands in dB,

N = The order of the circular window,

R = Radius of the circular window, and

a = an adjustable window parameter that specifies a 

frequency domain trade off between main lobe width and 

side lobe ripple.

The circular window function is thus determined as

w (m, n)

(

*

\

I (a v l - ( m V ) / R 2) /— -— —
± ________________  , / m 2+n2 s r .

v a)
/ 2 2 „0 , v m +n >R.

(4.7)

where I (x) is the modified Bessel function of the first kind of0
zeroth order and is given by [40]
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I„ (x)
00 2 IT. 

X
2rr.2 m !f(m+1)

oo 2 nr.

(4.8)

and lr(0)=l, by definition.

The window used here is circular window as it requires fewer 

nonzero coefficients and seems to be more predictable [20].

The ideal impulse response, i(m,n), is then approximated by 

sampling the required frequency response and then performing an 

inverse discrete Fourier transform (IDFT) operation on it. The 

aliasing error resulting from such an operation is minimized by 

making the support of the IDFT much larger than the extent of the 

region of support of the window R [2,26].

In this design, circularly symmetric filters are considered not 

only because passband and stopband regions of such filters are 

easy to specify but also because they can be designed to have 

zero or linear phase characteristics.

The ideal impulse response is then multiplied point by point with 

the window function to obtain the actual impulse response of the 

filter required, i.e.

h(m,n) = i(m,n).w(m,n), (4.9)
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where h(m,n) - the required impulse response, 

i(rt,n) = the ideal impulse response, and 

w(m,n) = the window function.

Finally, the DFT is performed on this impulse response to get the 

frequency response of the filter required.
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1.2 Flow Chart For The Filter Design

/lore Design No (stop )
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4.1.3 Main Subroutines in the Design Program

As outlined in the design procedure section, the major steps 

followed in designing the filter with given specifications 

involve the computations of the window function, the impulse 

response and the frequency response. These computed quantities 

are then given out in tabular form and, if required,in 3-D graph 

form.

4.1.3.1 The Window

All calculations, apart from the modified Bessel function (Ir), 

leading to the window function are straightforward as each is 

done with one or two statements. But to calculate Ir, a separate 

function subroutine is required. The formula for I is [40]U

V x)

oo 2 re
= y — 2— .
m-0 22r'(m!)z

00 r  , I T h 2r r (x/2)
L m!m= 0 ■*

(4.10)

From the above, it is apparent that the range of m extends from 0 

to infinity but it can also be seen that, for finite x, the term 

inside the square bracket gets smaller as m gets larger. 

Therefore the computation of the sum can be terminated when this 

term or its square gets below a set minimum value, say 

epsilon=10 . The series converges so fast that, for all 

practical purposes, the error introduced by leaving out terms
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less than this set minimum is insignificant.

The function subroutine is then written as follows

begin
if x=0 then 10=1 { ic(0)=l, by definition.}
else begin 

x :=x/2; 
m : = 1 ; 
sum:=0;
term:=l; { term for m=0.}. . ■ — 8while term>=epsilon do begin { epsilon is set to 10 }

sum:=sum+term;
y :=power(x, m)/factorial(m);
term:=y*y;
m :=m+1;

end;
10:=sum; 

end; 
end;

In the above, power(x,m) is a previously defined function that 

raises x to the powerof m and factorial (m) is a predefined* 

function that calculates the factorial of m ,i.e. m! .

Also, in the computation of the window function, as the window is 

circularly symmetric, only the first quadrant quantities need to 

be computed using the formula. These are then reflected into the 

2nd quadrant as follows:

for m:=-RMax to -1 do 
for n:=0 to RMax do 

w [m, n] : =w [-m, n] ;

where RMax is the maximum possible radius of the window function 

(equal to 32 in the program).
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The 1st and 2nd quadrants are in turn reflected into 3rd and 4th

quadrants as follows

for m:=-RMax to RMax do 
forn =-RMax to -1 do 

w [m, n] : =w [m, -n] ;

4.1.3.2 The Impulse Response

The inverse DFT relation is given by

N 1 -1 N 2 -1

i(ni'n2) - n7nF l EI(1W exp
27T n k 2ir n k—  1 1 + j—  2 2N 1 N 2k 1 = 0 k 2 = C

(4.11)

where I(k_,k2) is the sample of the specified frequency response 

and Ni,N2 define the region of support of the inverse DFT.

For N =N =N and a zero-phase filter, let R = (N -l)/2. The1 2 m  m m
inverse DFT is then written as

Rm Rm
i(n.,n ) = — —  £ £ I (k., k̂ ) exp

Nm kl=-Rm k2=-Rm
f 27T n k 271 n k '

N m. +  1—  2 2Tim

Letting r = —  ni and r = —  n2, the above reduces to1 Nm 2 Nm

Rm Rm
i (n ,n ) = —  V Y I (k , k ) exp (jr k + jr k ) .12' 2 L L 1 2  1 1 2  2Nm kl=-Rm k2=-Rm

Expanding the above we get
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i(W  = ~ 2Nm

R !T. R ITi r-

l  l1 = 1 k 2 = 1 L
1(0,0) + ,k.)exp(jr.k.)exp(jr.k.)

+ I(-k ,k )exp(-jr k )exp(jr k )1 2  1 - 2 2

+ I(-k , -k )exp(-jr.k Jexp(-jr k )1 2  1 i 2 2

+ (k. , -k.)exp(jr.k.)exp (-jr.k.)

Rm r

kl = l L
+ V I(k. , 0) exp(jr.k.) + l(-k.,0) exp(-jr k )Lt 1 i j. i li

Rm pI i<0'.2 =  1 L

k.)exp(jr.k.) + I (0,-k.)exp(-jr.k.)

Using the symmetric relation

I(k.,k.) = I(±k., ±k )

in the expression for the IDFT, we get

“ " ' • V  ■ - T
R m. R re r

1(0,0) + l ,k.) exp(jr.k.)
k 1 = 1 k 2 =

exp(jr.k.)

+ exp(-jr.k.) + exp(-jr.k.) exp (jr.k.) +exp (- jr.k.)

Km r
£ I (k.,0) exp(jr.k.) +exp(-jr.k.)

Rm,
+ £ 1(0,k.)
k 2 = 1

exp (jr.k ) + exp(-jr k )2 ’ L ‘ ' 2 2 * 2 2
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Rearranging and simplifying, we get

R m R it,

i(n ,n ) = --- -I 1(0,0) + Y V 4I(k ,k_)Cos(r k )Cos(r k )1 2  2 . L L> * 2  1 .  2 2Nm k. 1 = 1 k2 = l

R m
+ £  21 ( k _ , 0) C o s ( r . k . )  + £  21 ( 0 , k , ) C o s ( r , k J
kl =1 " '

Rr

The above can be generalized to

1
2

Rrr.
I

Rm r
INm k 1 =0 joII<\l

Cos(r k )2 2 , (4.12)

where

A =

,1 if k =k =0,1 2
4 if (k *0,k *0),1 2
<2 if (k,=0,k 2*0) or(k

and

I(k.,kJ =
1, in the passband. 

0, in the stopband.

In the program, the expression inside the square bracket (Eqn. 

4.12) is called "term" and thus the expression for the ideal 

impulse response becomes

i (n ,n )1 z
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where

/I(k.,k ) , if k,=k2=0 .

(k. *0, k_=0) .2

A considerable part of the program goes into determining the

values of k and k for which the filter is in the stopband, or1 2
passband. Different types of filters have different ranges. For 

example, for a lowpass filter, Term in the expression for 

i (n̂  , n, ) is determined as follows.

if (kl=0) and (k2=0) then term:=l { At origin. }
else if (kl=0) or (k2=0) and (R<=NCutOff) { passband and }

where NCutOff is the normalized cutoff frequency.

To make use of symmetry in the impulse response computation, only 

quantities in the first quadrant are computed which are then 

reflected to the second quadrant. Reflecting the first and second 

quadrant quantities into the third and fourth quadrants give the 

total result.

Also, since quantities outside the range of support of the window 

function are anyway to be zero (after multiplication with the 

window) , they need not be computed using the expression for

then term:=2*Cos(rl*kl)*Cos(r2*k2) 
else if (R<=NCutOff)

{ on axes.
{ passband but } 
{ not on axes. } 
{ Stopband. }

then term:=4*Cos(rl*kl)*Cos(r2*k2) 
else term:=0;
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i (n ,n_). They are instead assigned zero values.

Finally, the ideal impulse response is multiplied point by point 

with the window function as follows :

for nl:=-RMax to RMax do 
for n2:=-RMax to RMax do

h[nl,n2]:=i[nl,n2]*w[nl,n2];

4.1.3.3 The Frequency Response

Once the impulse response is determined, its frequency response 

can be computed from the DFT relation given by

Nl-l N 2-1
E r> 27T n x zti n k

l h <”!•",)exp(-1-  I l-i- 2 2),
nl=0 n2=0

2rr n k 21T n k (4.13)

where h(n.,nj is the actual impulse response.1 2

For N.=N^=Nm and zero-phase filters, following the steps used in 

the ideal impulse response case, it can be shown that:

Rra Rm
H (k ,k ) = V Y A.h(n ,n )Cos(r n )Cos(r n ) , (4.14)1 2  L L 1 2  11 2/n1=0 n 2 =0

where Rm = (Nm-l)/2,

r = (2TTk ) /Nm,

r = (27rk ) /Nm.2 2

The expression for the frequency response can alternatively be

written as
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Rm Rtt

(4.15)

where

( h(n , n )1 2 if n =n =0 .1 2
Term - 4h(n.,n )Cos(r n )Cos(r n ) , if (n.*0,n,*0) .

2h(n , n )Cos(r n )Cos(r n ) , if (n -0,n *0) or1 2  1 1   ̂ 2 1 2
(n. *0, n_=0) .2

As the region of support of the impulse response (or window 

order) is much smaller than that of the IDFT, computation time is 

saved if the range of summation is confined to the radius of the 

window (R) instead of the radius of support of the IDFT (Rm). The 

form of expression for the frequency response determination used 

in the program is, therefore, as follows

Only frequency responses in the first quadrant (axes inclusive) 

are computed using the above equation. Second, third and fourth 

quadrant quantities are obtained by first reflecting the first 

quadrant quantities into the second and then reflecting second 

and first quadrant quantities into the third and fourth

R R

H(ki,k2) - l l
n1=0 n2=0

Term . (4.16)

quadrants.
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4 .1.3.4 The Three-Dimensional Graph

The calculated filter coefficients and discrete frequency 

response values, as they stand, may not mean any thing to someone 

who looks at them; they are merely data. When they are plotted 

on 3-D graphs, however, they reveal all the necessary information 

that they represent. For that purpose, a 3-D graph subroutine 

has been written and is included in the program.

To draw a 3-D graph on a 2-D screen, transformations are used. In 

the screen, the top left corner has coordinates of (0,0) while 

the coordinates of the bottom right corner depend on the screen 

resolution. The Turbo Pascal functions GetMaxX and GetMaxY give 

the screen x and y resolutions, respectively. If we let XM and 

YM, respectively, be the x and y resolutions, the transformation 

expressions used in this work are given by :

x[m, n] = XM/2-(n-1)*(XM/(4*64)) + (m-l)* (XM/(8*64))

y[m, n] = YM/1.4-(n-1)* (YM/(8*64))-(m-1)* (YM/(4*64))-k*z[m,n]

where x [m, n] and y[m, n] are the screen x- and y-coordinates of 

a point with world coordinates of (m,n,z[m,n]),

64 is one less than the maximum value that the indices m 

and n can take - 65 in this case, 

k is a factor that adjusts the resolution of the graph 

and is inversely proportional to z[m,n], and
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* is the multiplication operation.

Using these transformations, axes x , x„ and z (Fig. 4.1) are 

defined on the screen to correspond to the m and n indices and 

the dependent variable z, respectively, in the real world.

Fig.(4.1) The Three Axes 

The 3-d graph is thus plotted as follows.

With the first index held at 1, the second index is varied from 1 

to 65. This is the same as moving from the origin to the other 

end along line x2 in Fig.l. During the movement, points with 

(x,y) coordinates corresponding to numbers with adjacent indices 

are joined with straight lines.

Next, the first index is incremented by 1 and the above procedure 

is repeated until the first index becomes equal to 65.
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But, while repeating the procedure care should be taken that 

crossing lines are not drawn as these tend to mess up the whole 

picture. Thus, lines that may cross those in front of them are 

made invisible.

One method by which this crossing is reduced to a reasonably 

acceptable level, and the one used in the program, is to draw 

visible lines using the Turbo-Pascal function LineTo when it 

joins a point to a second one only when the second point has 

y-coordinates greater than, or less than, all the y-coordinates 

of points that come before it (i.e. points corresponding to 

numbers with smaller indices) but have the same x-coordinates as 

itself. Otherwise, the lines are made invisible by using the 

function MoveTo instead of LineTo.

The whole procedure above is repeated but with x. replaced by x̂  

and vice-versa.

For all its power in handling graphics, Turbo-pascal lacks the 

ability to transfer a graphics screen information to a parallel 

printer. There is no single high-level routine for printing a 

graphics image, but it does provide several routines that can be 

used to accomplish this task. C.Ohlsen and G.Stoker [41] have 

written a unit to perform this task. This unit is included with 

the program.
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A program with graphics routines works only when the machine that 

runs it includes a Turbo-Pascal(TP) compiler that contains 

Borland Graphics Interface (.BGI) device driver and Character 

(.CHR) font files and the path to the driver is indicated. But, 

all machines may not have the .BGI drivers and the .CHR fonts, 

or even the TP compiler.

One solution, suggested by M.Yester [42] and used in this work, 

is to include .BGI and .CHR files within the program itself. The 

procedure used in this program to do it is the so called 

external procedure method where .BGI and .CHR files are converted 

into object files with the BINOBJ.EXE program and then linked 

into the program.

In the program, the EGAVGA.BGI driver and LITT.CHR font are used 

and hence they are the only ones which are converted into object 

files and finally linked with the program.

4.2 APPLICATION TO IMAGE PROCESSING

One of the many applications of 2-D digital filters is in image 

processing which includes image enhancement. Image enhancement 

can be viewed as [5] selective emphasis and/or suppression of 

information in the images, with the aim of increasing its

usefulness.
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In this work, the enhancement effect of different standard 

digital filters on images of size 65x65 and 32 gray levels will 

be demonstrated. The procedure is as follows :

A coded data representing the gray levels of a 65x65 image is 

read from a file. The codes comprise characters ranging from 0 to 

9 and A to V. These are then decoded to integers ranging from 0 

to 31, the gray levels being proportional to the magnitudes of 

the integers. An integer array, IB, of size 65x65 is thus formed. 

The reading in of the image code and its decoding are handled by 

a subroutine called ''InputAndDecode' ' .

Then the images are displayed on the screen with 16 gray levels. 

The 32 gray levels in the data are reduced into 16 by dividing 

the given gray level by 2 and then rounding to the nearest 

integer. The technique of creating gray scales on the screen is 

taken from the works of Ohlsen and Stoker [41], with some 

modifications added later.

So far, the image seen is the original image without being 

subjected to corruption with noise or being processed with a 

filter. The next task would be to see the effect of introducing 

noise. Thus, positive impulse noise is put into the image by way 

of making 10% of the image elements take a gray value of 31, the 

maximum gray level possible. This is done with a subroutine 

called ''CorruptWithNoise''. Impulse noise falls on the highf r



69

side of the frequency spectrum and can be successfully filtered 

out by a lowpass filter. The new corrupted array replaces the 

original array. The new array is then displayed to see the effect 

of introducing noise.

Finally, both the corrupted and uncorrupted images are filtered 

with different types of filters to see the effect of each filter 

on the image.

The process of filtering can either be done in the frequency or 

spatial domain. Filtering in the spatial domain, which is the one 

used in this work, involves the process of convolving the impulse 

response of the filter with the array of gray levels of the 

image.

This convolution process is mathematically expressed as

Nm-1 Nm-1
y(n ,n ) = Y Vh(k,k).IB(n-k,n-k), (4.17)1 2  L L 1 2  1 1 2  2k 1 = 0 k 2 = 0

or, if the indices can also take negative values, as

Rm Rm
y(n ,n ) = V Y h (k ,k ) . IB (n -k ,n -k ) ,1 2  L L 1 2  1 1 2  2kl=-Rm k2=-Rm (4.18)

where NmxNm = region of support of the IDFT,

Rm = (Nm—1)/2 is the radius of region of support of IDFT,

IB(n^,n2) = the array of gray levels of the image.
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Since the result of convolution must fit into a 65x65 array, 

there is no need for computing numbers with indices outside the 

range -32^ k., k, ^32.

Also, since the impulse response outside the region of support is 

zero, there is no need for computing a convolution sum term 

contributed from impulse response outside the region of support.

Thus, the limits of summation are given by

-R < kl,k2 ^ R,

where R is the radius of the circular region of support of the 

impulse response.

The convolution sum then becomes

Furthermore, only (n -k ) and (r,-k ) values in the range 32 

32 need to be included as array IB is defined only for indices 

within this region.

The number of multiplications involved in the convolution process 

can further be reduced if the circular symmetric property of the 

impulse response is taken into consideration.

R R
(4.19)

k 1 = -R k2=~R



71

For a c i rcularly symmetric
filter, we have

h(k.,kJ - h(±k.,±V

and thus we have 

y (n., nj
y / l h(k.,k2) IB(n.-k.,n.-k2)|

kl=-K^ <1=_R

£ |h(k.,0) IB{n.-k;,*̂

l h(k./ k2)[lB(n1-k1,n2-k2) + XB«n1-k1.n2+kJ)

= lh( k 1, 0 ) X B ( n 1- k 1, n 2) h ( k l ' V [

-k ,n -k) + lB(n.-k.,n2+k2)|

k 2 = 1 
RIk 1 = -R

IB (n,  - 2-1 1 2

= h ( 0 , 0 ) IB (n + 11 t ,
h (k,, 0)

k 1 =1

IB (n -k r n  ) +IB(n.+kl'n2>]

R
+ l

R
V h(k,,kj

>

IB (n.-k., n„-k,) +I B ^ " V V ' V ]
Lk 2=1 ki = -R -

Rearranging and simplifying, we get

1 2
y(n,,n,) = h(0,0)IB(ni,n2)

+ y h<k.,0) jlB<n.-k.,iO + I B ' V W ]
kl = l
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k 2 = 1

R R

k1=lk2 = 1

(4.20)

This last expression for the convolution sum involves less number 

of multiplications and it is used in the program.

After the process of filtering, the resulting array replaces the 

former array IB. A process of scaling in which the gray levels 

are made to extend over the full range of the gray scale (in case 

they occupy only a portion of the whole allowable range) is then 

performed on this new array in order to produce a new scaled 

array IB. Any one of four different scaling rules ( i.e. linear, 

square-root, logarithmic or absorption ) that determine the set 

of break points in their own unique way are employed for this 

purpose. The scaling subroutine is directly 

adopted from the work of J.L Blankenship [4].

Finally the processed image is displayed on the screen by calling

the "ImageOnScreen" subroutine.



73

4 2.1 Flow Chart For The Image Processing
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R r
+ V h(0,k2) IB(n.,n2- 

k 2 = 1 *-
kj + IB(n.,n2+kJ ]

R R r
7 y h (k ,k ) IB(n -k ,n -k )+IB(n +k ,n -k )
L L 1 2  1 1 2 2  1 1 2 2;l=lk“=l L

+IB(n —k ,n_+k^)+IB(n +k_,n^+k^) (4.20)

This last expression for the convolution sum involves less number 

of multiplications and it is used in the program.

After the process of filtering, the resulting array replaces the 

former array IB. A process of scaling in which the gray levels 

are made to extend over the full range of the gray scale (in case 

they occupy only a portion of the whole allowable range) is then 

performed on this new array in order to produce a new scaled 

array IB. Any one of four different scaling rules ( i.e. linear, 

square-root, logarithmic or absorption ) that determine the set 

of break points in their own unique way are employed for this 

purpose. The scaling subroutine is directly 

adopted from the work of J.L Blankenship [4].

Finally the processed image is displayed on the screen by calling

the "ImageOnScreen" subroutine.
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4.3 PROBLEMS ENCOUNTERED

A closed form expression for the ideal impulse response of a 

circularly symmetric lowpass filter is given by [20]

i (m, n)
f J (2nf V m2+n2)cl c/

/ 2 2 m +n
(4.21)

where f = the normali-zed cutoff frequency,c

J.(x) = the first order Bessel function of the first kind 

and is given by [40]

j. (x) = y
m=0

m 2 m + 1(-1) x______
2 2 r ~ ”m !T(m+2) f

■ I (-1)m (x/2)2"~ 
m!(m+1)! (4.22)

Initially, the above formula was used to compute the ideal 

impulse response of a lowpass filter and no problem was 

encountered. But then the term for which the Bessel function was 

being computed , i.e. x = 2nf V(m. +n ), was small. When, at a 

later stage, the formula was used to compute i(m,n) for filters 

of higher order and thus larger x values, problems started to 

arise. The computed data had no particular pattern. When they 

were plotted on 3-D graphs, the whole screen was filled with 

something reminiscent of noise.

As it turned out, the problem was the limit on the number of 

significant digits and the range of values the computer can
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handle. The limit was seriously felt in the Bessel function 

computation.

The Bessel function was first computed by defining the functions 

that calculate the power, i.e. (x/2)2rr 1, and the factorial, i.e. 

m! (m+1) !, as real and then as extended data types. Real data
_39 3g

types can take values in the range 2.9 to 1.7 and have 11 to

12 significant digits while extended data types can take values 
-4951 4932in the range 1.9 to 1.1 and have 19 to 20 number of

significant digits [41].

The Bessel function computed from the two ways was compared with 

standard Bessel function tables [43]. The result was that 

defining the said functions as extended data types produced no 

significant deviations throughout the range of definition of 

Bessel function in the standard tables, i.e. o to 31.49. On the 

other hand, defining the functions as real data types gave rise 

to significant deviations for x>15 and overflow errors for x>22.

The deviation could be attributed to the limit on the number of 

significant digits while the overflow error is due to the limit 

on the range of numbers that can be handled in the real data 

types. In fact, for x>32, even if we could not get a standard 

table to compare with, the haphazard manner in which the 

calculated Bessel function varies indicates that even the 

extended data types do not provide enough number of significant
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digits to be useful in computing the ideal impulse response from 

the closed form expression.

It was after this problem was encountered then that another 

method, i.e. the sampling of the ideal frequency response and 

then performing the IDFT operation on it was considered and 

ultimately used to calculate the ideal impulse response.

Having designed the lowpass filter, the next step was to extend 

it to other types of filters. The frequency transformation 

technique was considered. But this method was to be dropped for 

the following reasons :

1) It is not possible to obtain circularly symmetric highpass, 

bandpass or bandstop filters from circularly symmetric lowpass 

filters [3,16].

2) If a frequency transformation is applied to a nonrecursive 

prototype, a recursive filter design will generally result and 

the advantages of linear phase characteristics will be lost 

[32] .

In fact, the method of sampling the ideal frequency response and 

performing IDFT operations on it proved to be equally applicable 

to the design of the lowpass and the other types of filters. Of 

course it has its own problems in the form of aliasing errors. 

These errors are reduced by making the extent of support of the 

IDFT much larger than the extent of R (the radius of the window
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function).

But again this has its own problems - speed. By having the region 

of support of IDFT very large, we end up with having very large 

number of sampling points of the ideal frequency response to 

match the region of support of the IDFT and consequently enlarged 

number of computations.

An obvious solution to the problem was to use the fast Fourier 

transform (FFT) [2,37,38]. FFT is particularly efficient if the 

region of support of the IDFT (NxN) is very large.

But as N grows larger, the number of complex words of storage
2(N ) required soon becomes greater than the capacity of the 

primary memory of the microcomputer. This necessitates the use of 

secondary storage devices to store the data. The data are then 

accessed one section at a time, resulting in input-output 

difficulties that severely affect the efficiency of the algorithm 

[2] . These, coupled with the difficulty of writing the program 

to realize the 2-D FFT algorithm within the available time for 

the work, forced the author to abandon the use of the FFT to 

compute the IDFT and DFT. A problem was also encountered in the 

image processing application in converting the array of integers 

that represent the gray levels into pictorial representations. An 

attempt was made to translate a Fortran program written by J.L. 

Blankenship [4] in which the different gray levels were



78

represented by overprinting up to 5 characters on a line printer 

into an equivalent Turbo-Pascal program. This however proved to 

be not possible at least in the text mode. In the graphics mode, 

it was possible to do it on the screen although with somewhat not 

very distinct gray levels. However, it had the advantage that a 

variety of combinations of character size and fonts and, vertical 

and horizontal spacings of the characters could be produced and 

the one that gives the best look chosen.

Later, it was seen that C. Ohlsen and G. Stroker [41] had made 

use of routines that interface BIOS to the BGI to create 

different gray levels in the form of shades. Their work was 

adapted and some modifications made to it with very good results. 

16 distinct gray levels were possible to produce with this new 

technique which gave rise to much better looking images than the 

ones produced by over striking characters.
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5. RESULTS AND CONCLUSIONS

In this chapter, some results obtained by running the programme 

and the conclusions derived from them are presented. 

Recommendations for future improvement of the programme are also 

included.

5.1. RESULTS

The software developed was used to design some of the standard 

filters, i.e. lowpass, highpass, bandpass and bandstop filters. 

Also some images were filtered with lowpass filters and highpass 

filters. Some of the results obtained are reproduced here.

5.1.1. Design of Filters

The window function used to design a filter, the ideal impulse 

response and the actual impulse response (i.e. the ideal impulse* 

response weighted by the window) of a representative lowpass 

filter designed with the software, are shown both in tabular 

(Tables 5.1-5.3) and graphical (Figs. 5.1-5.4) forms. As the 

frequency response is continuous, only its graphical 

representation is shown (Fig. 5.4).

The filter characteristics that appear with the 3-D graphs of the 

window function and the impulse responses are those supplied by
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the user of the programme but after being normalized (Figs.5.1, 

5.2, 5.3) . The ones that appear with the 3-D graph of the

freguency response, however, are the actual characteristics of 

the designed filter, Fig.(5.4). The complete characteristics of 

the designed filter is shown in Table (5.4).

After the characteristics are made available, the user is asked 

whether a redesign is necessary, and if the answer is yes he/she 

needs to supply new values for the window order and the window 

parameter. In this example, the filter is not required to be 

redesigned.

m\n
\ 2 3 4

1 . 0 0 0 0 ,. 9 9 0 0 ,. 9 5 9 0 ,. 9 1 0 0 . 8 4  3 0 . 7 6 2 0  ,. 6 6 8 0 . 5 6 60 .  9 9 0 0 . 9 8 0 0 . 9 4 9 0 .  9 0 0 0 . 8 3 4 0 .  7 5 3 0 . 6 6 0 0 . 0 0 00  . 9 5  9 0 .. 9 4 9 0 . 9 2 0 0 .. 8 7 1 0 .. 8 0 6 0 . 7 2 7 0 .. 6 3 6 0 .. 0 0 00 . 9 1 0 0 . 9 0 0 0 ,. 8 7 1 0 . 8 2 5 0 . 7 6 2 0 . 6 8 5 0 . 5 9 6 0 . 0 0 00  . 8 4 3 0  . 8 3 4 0 . 8 0 6 0 . 7 6 2 0 . 7 0 1 0 . 6 2 8 0 . 0 0 0 0  . 0 0 00  .. 7  6 2 0  .. 7 5  3 0 ., 7 2 7 0 .. 6 8 5 0 ., 6 2 8 0 .. 0 0 0 0 ., 0 0 0 0 ,, 0 0 00  . 6 6 8 0  . 6 6 0 0 . 6 3 6 0 . 5 9 6 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 00  . 5 6 6 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0

The Window Function.Table 5.1
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Fig. 5.1 The Kaiser Window Function.



CM
 

CO
 

Tf* 
lf

5 
c£) 

C"-

82

m\n
\

0
1

0 1 2 3 4 5 6 7

0.283 0.175 0.004-0.033 0.011 0.010-0.011-0.001 
0.175 0.096-0.019-0.027 0.014 0.008-0.011 0.000 
0.004-0.019-0.037-0.005 0.018 0.001-0.011 0.003 
-0.033-0.027-0.005 0.016 0.010-0.009-0.006 0.000 
0.011 0.014 0.018 0.010-0.006-0.010 0.002 0.000 
0.010 0.008 0.001-0.009-0.010 0.000 0.000 0.000 

-0.011-0.011-0.011-0.006 0.002 0.000 0.000 0.000 
-0.001 0.000 0.003 0.000 0.000 0.000 0.000 0.000

Table 5.2 The Ideal Impulse Response 
(Lowpass Filter)

5.2 The Ideal Impulse Response
(Lowpass Filter)Fig.
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m\n
\ 0 1 2 3 4 5 6 7

0 ! 0.283 0.173 0.004-0.030 0.009 0.008-0.007-0.001
1 i 0.173 0.094-0.018-0.024 0.012 0.006-0.007 0.000
2 J 0.004-0.018-0.034-0.005 0.015 0.000-0.007 0.000
3 ! -0.030-0.024-0.005 0.014 0.008-0.006-0.004 0.000

0.009 0.012 0.015 0.008-0.004-0.006 0.000 0.000 
0.008 0.006 0.000-0.006-0.006 0.000 0.000 0.000

-0.007-0.007-0.007-0.004 0.000 0.000 0.000 0.000
-0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 5.3 The Weighted Impulse Response 
(Lowpass Filter)

h e

F i l t e r  T y p e  !
T r a n s i t i o n  b a n d  w i d t h  

C u  t o t + F r  e  ci u e  n c  y  —
T h e  R i p p l e  =
T h e  A t t e n u a t i o n  ( i n  dB>

L o w p a s s  
= 0.10 
0. 30 
fin 05
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Ripple in Passband 
Ripple in Stopband 
Passband Limit 
Stopband Limit

0.07
0.04
0.26
0.35

Transition Band Width = 0.09

The radius of the window used is : 7 
The circular window parameter is : 1.62

Now, do you want to redesign the filter(Y/N)?

Table 5.4 Characteristics of 
Designed Lowpass Filter.

' r a n si t i  on band u«i dt h = 0. 03
Cu10ft Fregijencu = Q„ 23
R ip p le  in  the Passband = 6 .07
R ip p le  in  the Stopband = 6 .04

Cutoff Frequency 
Attenuation(dB)

0.28
25.27

A ttenuation

Fig. 5.4 Frequency Response of
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In the following, the impulse response ( after the ideal impulse 

response is weighted by the window ) of a highpass filter is 

shown both in tabular (Table 5.5) and graphical (Fig. 5.5) form. 

Then the frequency response is computed and the filter 

characteristics of the designed filter are given (Table .5.6).

This time the filter is redesigned and new values of the window 

order and parameter (a) are supplied. The filter characteristics 

of the redesigned filter are again made available (Table 5.7). 

The impulse response of the redesigned filter is also shown 

(Table 5.8). If the user is still not satisfied, he/she can again 

redesign the filter. For a filter that does not require further 

redesign, the frequency response of the last designed filter is 

given in the form of 3-D graph (Fig. 5.6).
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The Impulse responnse (weighted by window) :

m\n
\ 0 1 2 3 4 5 6 7

o ; 0. 717 - 0 . 173--0. 004 0 .030--0. 009--0. 008 0. 007 0. 001
i : -0 173 -0 .094 0 .018 0 .024--0 .012 - 0 .006 0 .007--0 .000
2 ! - 0 . 004 0. 018 0. 034 0 .005--0 015--0 000 0. 007--0. 000
3 ! 0 .030 0 .024 0 .005- 0 .014--0 .008 0 .006 0 .004 0 .000
4 ! - 0 . 009 - 0 . 012--0. 015- 0 .008 0 004 0. 006- 0. 000 0. 000
5 : - 0 008 -0 .006 - 0 .000 0 .006 0 .006 -0 .000 0 .000 0 .000
6 : 0. 007 0. 007 0 007 0 .004--0 000 0 000 0 000 0 000
7 ! 0 .001 -0 .000 -0 .000 0 .000 0 .000 0 .000 0 .000 0 000

Do you wish t o display it on 3--D g r aph(Y / N )9 : y

Table 5.5 The Impulse Reponse 
(Highpass Filter)

F i lt e r  Type : H ighpass
T r a n s it io n  band u id th  — !j„iO 
Cut oft Frequency — U« C’U
The R ip p le  = 0 .05
The htten u atio n  <in  dB) = 26.0 2

Fig. 5.5 The Impulse Response
( Hirrhnass Filter)
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Ripple in Passband = 0.04
Ripple in Stopband = 0.07
Passband Limit = 0.35
Stopband Limit = 0.26
Transition Band Width = 0.09
Cutoff Frequency = 0.32
Attenuation(dB) = 25.27

The radius of the window used is : 7 
The circular window parameter is : 1.62

Now, do you want to redesign the filter(Y/N)? : y

Table 5.6 Characteristics of 
Designed Highpass Filter.

Ripple in Passband 
Ripple in Stopband 
Passband Limit 
Stopband Limit 
Transition Band Width 
Cutoff Frequency 
Attenuat ion(dB )

0.02
0.04
0.36
0.25
0.11
0.32
32.16

The radius of the window used is : 9 
The circular window parameter is : 3.00

Now, do you want to redesign the filter(Y/N)? : n

Table 5.7 Characteristics of 
Designed Highpass Filter.

m\n
\ 0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7
8 
9

0.717-0.172-0.003 0.029-0.008-0.007 0.006 0.000-0.002 0.00 
-0.172-0.093 0.018 0.023-0.011-0.005 0.006-0.000-0.002 0.00 
-0003 0.018 0.033 0.004-0.013-0.000 0.006-0.003-0.002 0.00 
0.029 0.023 0.004-0.012-0.007 0.005 0.003-0.002-0.003 0.00 

-0.008-0.031-0.013-0.007 0.004 0.005-0.001-0.002 0.001 0.00 
-0.007-0.005-0.000 0.005 0.005-0.000-0.003-0.000 0.000 0.00 
0.006 0.006 0.006 0.003-0.001-0.003-0.001 0.000 0.000 0.00 
0 .0 0 0 - 0 .0 0 0 - 0 .0 0 1 - 0 .0 0 2 - 0 .0 0 2 - 0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0  

- 0 .0 0 2 - 0 .0 0 2 - 0 .0 0 2 - 0 . 0 0 1  0 . 0 0 1  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0  
0 . 0 0 1 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0

Table 5.8 Impulse Response of
Redesigned Highpass Filter.
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Fig. 5.6 Frequency Response of 
Redesigned Highpass Filter.
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The impulse response (Fig. 5.7) and frequency response (Fig. 5.8) 

of a bandpass filter are shown next. Also the impulse response 

(Fig. 5.9) and frequency response (Fig. 5.10) of a bandstop 

filter designed using the software are shown.

I r-r\i r~« : j ;—_ k ! V~, J f | i | | |1_! !. [..j

± 7 0r" T g p e = E' B n  cl p e e  s
_O \a 0 y U u t o t t ~ 0 .1 5
U p p ^ r C u t o t t Ou 3 5
The Ri p p l e ~ 0 , 0 3
r!t t e n ij at 1 o n  ( □EC — 4t,

Fig. 5.7 Impulse Response of a Bandpass Filter.
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h  p  h r  p  CD u  p  n  c  u  M 0  j= j~j j—; r-j
T y p e  s oar'idp a ss

L.OU •=■!•“ UUt O ff -  Ur 16
U p p e r  C u t U f t  ~ 0« Pd
R iD p ie i n  L o w e r  S t o p b a n d  = U. UP
i-.1 "■ i"i n 1 p i n  P a a s b a n d  = 

i n  u p p e r  S t o p b a n d  =
!J. iJ.j;

r-'j + 1* £•* f**{ 1 ja t i  0 n b 0 0 « ffi e  a n .•* =: • K * ‘ *****
T t - - i *  i~. — n n o

Fig. 5.8 Frequency Response of a Bandpass Filter
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1 m p  u  i  s  e  R p  u  ni S  0 ( U  e  i  q  h  t  0  d )

" l i t e r  Type 
Lower Cut off 
Upper Cut oft 
'""he R ip p le  
A ttenuation < dB) 
T r a n s it io n  band width

Bandstop 
n. 15 
0. 35

30. 46
0.10

Fig. 5.9 Impulse Response of a Bandstop Filter.



h  e  F r  t:! □  ij  e  n  c  i j  R  e s  p  m n  s  g

i" i  ]. t er T up0 ; Bandst op
L o u 0 r Cut Ot i: = o. i ■4
UpperC:utut t ~ j jo 7
Pi ppl 0 in  lo uer Pass-hand “ Li . U 2
Pi ppl 0 in  St opfcand -  0. Du
Pi. ppl 0 in  Upp e r p a s  s  h a n d. = 0 .03
► it t enu ■Eit i  on i beo. mean;1 := 32 .04  dB

T t.” !•••. ."** •:•f 4 .*•*. r~. i in .*1+ «*•*. — ri n o

Fig. 5.10 Frequency Response of a Bandstop Filter
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5.1.2 Tm^ge Processing

In the diskette containing the program are included codes for 9 

different images. But here only one image will be considered.

Fig. (5.11) is an image for a boy before being processed and/or 

being corrupted with noise. Figs. (5.12)- (5.15) are results 

obtained after performing some manipulations on the original 

image.

«»B8W____HUUiK?:
' mumwsmt _ «« \ ftmutmuaBRt timu

m

'''

...........!!:: ________________ ,v::;i am:: w m wmmttwwwmmtmv

" ~ m ------- n r " ....... r .... t ...... iiiiiiiii nirir  i i
Massssa:::: aaaftffln mil m m i ■ aasatatmm...............m w m w m m m m mwxi&x&mw

immuitt
wmmmmmmmm^ v j c n m iK̂̂ ^̂ tntSBHaC«E3QZaSi9i ia W M f f i ir f i t e  iiiiiiiii ...... I ..................

:: »::W::::::: i: w ebABB&N'----:::::::
::::::: wiwSuitr

Fig. 5.11 The Original Image of a Boy
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5.2 CONCLUSIONS AND RECOMMENDATIONS

5.2.1 Design of Filters j

The expressions for the minimum filter order and window parameter 

(a) required to give a particular transition bandwidth and 

attenuation as given by [20] were used to design filters.

In [20], these values were applied in the design of lowpass 

filters whose ideal impulse responses were obtained analytically 

with the result that the filter order was in error only by 2 or 

less for 95 percent of the filters designed. In this work, 

although the ideal impulse response of the lowpass filter was 

found not analytically but by performing the IDFT operation on 

the sampled values of the given ideal frequency response and much 

fewer (than those in [20]) number of designs were done, the 

results agree with the works of T.C. speake and R.M. Mersereau 

[201, especially for filters of order greater than IQ- Rowever, 

when it comes to the design of other types of filters, the errors 

become larger.

Some of the discrepancies that might be observed could partly be 

attributed to the aliasing error introduced by sampling the ideal 

frequency response at only 129x129 points. If the sampling size 

and therefore the region of support of the IDFT were increased, 

the aliasing error would be reduced. But increasing the region of
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support of IDFT would result in reduced speed.

As the FFT techniques were not used to perform the IDFT and the 

DFT operations, the design procedure is generally slow, and so 

the developed design program is used to design filters of order 

not greater 65.

This project work is the first of its kind in the department of 

Electrical and Electronic Engineering, University of Nairobi. It 

is therefore bound to be improved from time to time. The 

following are recommendations along this line:

i) Different filter types with varying filter specifications 

need to be designed and the characteristics of the designed 

filter recorded. From the recorded data, relations should be 

established that give better approximations for the window order 

and window parameter a than the one taken from [20] so that extra 

time wasted in redesigning the filter may be saved in the future.

ii) FFTs should be used to compute the IDFTs and the DFTs in the 

future. This will not only reduce the time required to design a 

filter of order of up to 65, but may also pave the way for 

designing filters of order greater than 65. Also, the region of 

support of the IDFT could be increased, without increasing the 

computation time, so that the aliasing error introduced by 

sampling of the ideal frequency response would be minimized.
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iii) The software developed is used to design circularly 

symmetric lowpass, highpass, bandpass (with one passband and two 

stopband regions) and bandstop (with one stopband and two 

passband regions) filters. It has to be extended to include

filters other than the ones it currently can handle.

5.2.2 Image Processing

The aim of this part of the program is to demonstrate how the 

different types of filters affect images when they are used to 

filter the images. This does not mean, however, that these are 

the best filters available. The fact that lowpass filters have

smoothing effect on edges and other sharp transitions in the gray 

levels of an image and highpass filters have sharpening effect 

are however clearly demonstrated.

For the lowpass filter applications, the original image is

corrupted with impulse noise, and after this corrupted image is 

filtered with a lowpass filter, the impulse noise and edges are 

seen to be smoothed - the required result. As for the highpass 

filter applications, the original image is filtered with the 

highpass filter and the result is either an image with more

clearly defined edges and the rest part of the image less 

affected, or an image in which the edges are highlighted while 

the rest part of the image is altogether darkened, depending on
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the filter specifications.

The images used for the work are of size 65x65. This is so due to 

the following :

i) The data available at the time when the program was first 

written were of that size only. Although, at a later stage, data 

for images of size 128x128 and 256x256 were made available, a 

section of the program has to be rewritten to enable the program 

accept and process these data. Time was just too short to do 

that.

ii) As the process of filtering used is the direct convolution 

method, processing of data of such big size would take too long 

time.

To get better results, both in terms of speed and image look, the 

following improvements in the program are recommended.

i) Images of size 128x128 or 256x256 should be used instead of 

the 65x65 currently in use.

ii) Convolution should be performed in the frequency domain. FFT 

techniques should be used to perform the IDFT and DFT operations.

iii) The gray levels should be increased from their current

values of 16.
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7. APPENDIX - PROGRAM LISTING

A turbo pascal programme listing is given below that :

1) designs standard (lowpass, highpass, bandpass, bandstop) 
circularly symmetric 2-dimensional digital filters using the 
Kaiser widow method.

2) displays, corrupts with impulse noise of 10% probability, 
and filters with the standard filters, digital images of size 
65x65 which are stored in the diskette containing the programme.

The programme can be run on IBM PC or compatible computers with 
the following hardware and software specifications :

i) CPU of the 80x86 family,
ii) co-processor of the 80x87 family,
iii) memory of size 640K or above,
iv) PC - DOS version 2.0 or above,
v) if the compiled programme cannot be obtained, a turbo 

pascal compiler version 4.0 or above with Borland graphics 
Interface (.BGI) and Character font (.CHR) files.

The aspect ratio used while in the Graphics mode is 1.00 , the 
default aspect ratio.

This program may be useful for the following :

1) Demonstration of design and applications of 2-D FIR 
digital filters on digital image processing for students taking 
courses on 2-D digital filters and/or image processing.

2) Anyone who wishes to design 2-D FIR digital filters using 
the Kaiser window and, study filters and see the effects of the 
different filter types on an image of size 65x65 - corrupted or 
uncorrupted with noise (impulse).
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program KFIR_2D_Filter(input,output);

}
This program designs a Two-Dimensional Low-Pass, High-Pass, } 
Band-Pass and Band-Stop Finite Impulse Response (FIR) Filters } 
using the Kaiser Window Method. }

i$M 64000,0,655360}
jlFDEF CPU87 } { To use the 8087 Mocroprocessor }
$N+ } { when necessary. }
{$ELSE}
{$N-}
{SENDIF}

uses Dos,Crt, Graph,Printer,{$U A:GraphPRN }GraphPRN; { Links the necessary
{ units.

const
epsilon=1.0E-8; { Condition To stop computations of }

{ Bessel Functions. }
MaxOrder = 65; { The Maximum order of the filter. }
RMax = 32;
RMax2 = 64;

type „
Responses = array[-RMax..RMax,-RMax..RMax] of single;
FreqArray = array[O..RMax2,O..RMax2] of real;
RealPntr =AFreqArray;

var
GraphDriver,GraphMode,
Height,BottomX,
BottomY,
MaxX,MaxY : integer;
PassbandRipple,
StopbandRipple,
Ripple,Dfpassl,
Dfpass2,Dfpass,
DfTran,Dfstopl,
Dfstop2,DfStop,
ATT,Alpha,NCutOff,
NCutOff 1 ,NCutOff2,
PassBandRipplel,
PassBandRipple2,
StopBandRipplel,
S top B andRipple2,
Lftranl,Dftran2,
NCutOffNew,
NCutOffNewl,
NCutOffNew2 : single;
Width,Radius : byte;,
Nmax,Num,
ScaleCount,
CopyNumber,
MaxSize : byte;

}
}
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Hard_Copy,Ansl,
OutOnGraph, 
MyChoice,Choice, 
FilterType,
Law,Image
w,i,IB
H
DesignOver

: char;
: Responses; 
: RealPntr;

: Boolean;

procedure LITTfont; external; {$L LITT.OBJ} 
procedure EGA VG ADriver; external; {$L EGA VGA.OBJ}

procedure LoadTheFont(ProcedurePointer :pointer);
Begin

if RegisterBGIfont(ProcedurePointer)<0 then begin 
w ritelnf Error registering font : \GraphErrorMsg(GraphResult));
Halt(l); 

end;
End; { End of Procedure LoadTheFont. }

procedure LoadTheDriver(ProcedurePointer ipointer);
Begin

if RegisterBGIDriver(ProcedurePointer)<0 then begin
writeln(’ Error registering driver: ’,GraphErrorMsg(GraphResult));
Halt(l); 

end;
End; { End of Procedure Load The Driver }

procedure FrequencyResponseOut;forward;
procedure A110ut;forward;
procedure OutFrequencyOnGraph;forward;

procedure InputFilterParameters;
{ )
{ This procedure enables the user to input the type of the }
{ filter and the filter specifications of the filter one }
{ wants to design by way of making prompts to which appropr- } 
{ riate responses are given by the user. }
{ )

var
SamplingFrequency,
CutOffFrequency,
Transition Width,

CutOffFrequency 1,
CutOffFrequency2 : single;

&egin

writeln;
w ritelnf Choose the Type of Filter by Printing the Number ’); 
writeln(’Corresponding to Your Choice...’);
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writeln;

writeln(’ 1. Lowpass Filter.’);
writelnC 2. Highpass Filter.’)
writelnC 3. Bandpass Filter.’)
writelnC
writeln;
repeat;

4. Bandstop Filter.’)

write(’Filter Type : ’);
readln(FilterT ype);
writeln;
Case FilterType of
’ 1 ’ : begin { Lowpass Filters }

write(’Sampling frequency in kHz : ’);
readln(SamplingFrequency);
writeln;
writeln(’Now Input Cut Off Frequency ’); 
writeln(’and Transition Widths... ’); 
writeln; 
repeat

write(’Cut Off Frequency in kHz : ’);
readln(CutOffFrequency);
write(’Transition Width in kHz : ’);
readln(TransitionWidth);
N CutOff: =CutOffFreq uency/S amplingFreq uency;
Dftran:=TransitionWidth/SamplingFrequency;
Dfpass:=NCutOff-0.5*Dftran;
DfStop:=DfTran+DfPass;
writeln;
if(Dfstop > 0.5) then begin 

writeln(Chr(7));
writeln(’Too large Cut Off Frequency ’); 
writelnC TRY SMALLER values.’); 
writeln; 
end

else if (Dfpass < 0) then begin 
writeln(Chr(7));
writeln(’Too small Cuttoff Frequency. TRY larger values.’); 
writeln; 

end;
until ((DfStop <= 0.5) and (Dfpass >= 0)); 

end; { end of Case Lowpass Filter Type. }

’2’ : begin { Highpass Filters }
write(’Sampling Frequency in kHz : ’);
readln(SamplingFrequency);
writeln;
writeln(’Now Input Cutoff Frequency and ’);
writeln(’Transition width... ’);
writeln;
repeat
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w ritef CutOff Frequency in kHz : ’);

readln(CutOffFrequency);
writefTransition Width in kHz : ’);
readln (Transi tion Width);
NCutOff:=CutOffFrequency/SamplingFrequency;
Dftran:=TransitionWidth/SamplingFrequency;
Dfpass:=NCutoff+0.5*Dftran;
Dfstop:=Dfpass-Dftran; 
if (Dfpass > 0.5) then begin 

writeln(Chr(7));
writeln(’Too large CutOff Frequency. TRY SMALLER value.’);
writeln;
end

else if (Dfstop < 0) then begin 
write(Chr(7));
writeln(’Too Small CutOff Frequency. TRY LARGER values.’); 
writeln; 

end;
until ((Dfstop >=0) and (Dfpass <= 0.5)); 

end; { end of highpass filter type. }

’3’ : begin { Bandpass Filters }
writeCSampling Frequency in kHz : ’);
readln(SamplingFrequency);
writeln;
writeln(’Now Input the CutOff Frequencies and ’);
writeln(’the Transition Width...’);
writeln;
repeat

write(’Lower CutOff Frequency in kHz : ’);
readln (CutOffFrequency 1);
write(’Upper CutOff Frequency in kHz : ’);
readln (CutOffFrequency 2);
write(’Transition Width in kHz : ’);
readln (Transition Width);
NCutOfTI :=CutOffFrequency 1/SamplingFrequency; 
NCutOff2:=CutOffFrequency2/SamplingFrequency;
Dftran: tra n s i t io n  Width/S amplingFrequency;
DfPass 1 :=NCutOff 1 +0.5*Dftran;
DfPass2:=NcutOff2-0.5*Dftran;
Dfstop 1 :=Dfpassl -Dftran;
Dfstop2:=Dfpass2+Dftran; 
if (Dfpass 1 >= Dfpass2) then begin 

writeln(Chr(7));
writeln(’Too Large Lower Cutoff or Too Small’);
writeln(’Upper Cutoff.TRY again !’); 
end

else if (Dfstop2 > 0.5) then begin 

writeln(Chr(7));
writeln(’Too large Upper CutOff or Trannsition’);
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writelnfBand or both. TRY SMALLER values !’);

writeln;
end

else if (Dfstopl < 0) then begin 
writeln(Chr(7));
writeln(’Too small Lower CutOff or too Large’); 
writeln(’Transition band or both. TRY again !’) 
writeln; 

end;
until ((Dfpassl < Dfpass2) and (Dfstop2 <= 0.5) 

and (Dfstopl >= 0)); 
end; { end of Bandpass filter type. }

’4 ’ : begin { Bandstop Filters }
write(’Sampling Frequency in kHz : ’);
readln(SamplingFrequency);
writeln;
writeln(’Now Input the Cutoff Frequencies and ’);
writelnfthe Transition Width...’);
writeln;
repeat

write(’Lower Cutoff Frequency in kHz : ’);
readln(CutOffFrequency 1);
write(’Upper Cutoff Frequency in kHz : ’);
readln(CutOffFrequency2);
write(’Transition Width in kHz : ’);
readln(TransitionWidth);
NCutOffl:=CutOffFrequencyl/SamplingFrequency;
NcutOff2:=CutOffFrequency2/SamplingFrequency;
Dftran:=TransitionWidth/SamplingFrequency;
Dfpassl:=NCutOffl-0.5*Dftran;
Dfstop 1 :=Dfpass 1 +Dftran;
Dfpass2:=NCutoff2+0.5*Dftran;
Dfstop2:=Dfpass2-Dftran;
if (Dfpass2 > 0.5) then begin

writeln(Chr(7));
writeln(’Too large Second Passband Limit.’);
writeln(’ TRY SMALLER.’);
writeln;
end

else if (Dfstop2 <= Dfstopl) then begin 
writeln(chr(7));
writeln(’Too narrow Bandstop or too large’); 
writeln(’Transition Width. TRY AGAIN.’); 
writeln;

end;
until ((Dfpassl < Dfpass2) and ( Dfpass2 < 0.5) 

and ( Dfstop2 > Dfstopl));

end; { end of case Badstop filter type. }
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else begin 

writeln(Chr(7));
writeln(’INVALID Choice of Filter Type. TRY AGAIN!!’); 

end; 
writeln;
end { End of CASE. }
until FilterType IN [’1 \ . ’4 ’];
writeln;
writeln(’Now Input The Ripple...’);
writeln;
repeat

write(’Ripple : ’);
readln(Ripple);
writeln;
if (Ripple < 1.0E-3) then begin 

writeln(Chr(7));
writeln(’Too small ripple. TRY LARGER values.’); 
end

else Ripple:=Ripple; 
until (Ripple > 1.0E-3);

End; { End of Procedure Input Filter Parameters. }

function power(number,index:real):extended; 
var

itslog : extended;
Begin

itslog:=index*ln(number);
power:=exp(itslog);

End; { End of Function Power. }power}

Raises number to }
{ the power of index. } 
{ Extended range will } 

{ be required in the } 
{ Bessel function j 
{ computation. }

function factorial(n integer) extended; { 

var
fact : extended; 
number : integer;

Begin 
fact:=l;
for number:=1 to n do 

fact:=fact*number; 
factoriaI:=fact;

End; { End of Function factorial. }

function 10(x:real):extended;
{
{ Function 10 calculates the modified Bessel function of }
{ the first kind of order zero to be used later in the cal- j
{ culation of window coefficients. }

{ } 
var

Gives out the factor- }

{ ial of a given number. } 
{ Extended range will } 
( be required in the } 
{ computation of Bessel } 
{ function. }

n : byte;
term,y,sum : extended;
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Begin
if x=0 then I0:=1 

else
begin

x:=x/2; { To initialise the sum
n:=l; { and the first term
sum:=0;
term:=l;

while term>=epsilon do 
begin

sum:=sum+term; { This pan computes
y:=power(x,n)/factorial(n); { the actual series
term:=y*y; 
n:=n+l;

end; { end of while. }
I0:=sum;

end ; {end of else. }
End; { End of function IO-Modified Bessel function of order o}

)

procedure SpecificationsAndParameters;
{ }
{ This Procedure Outputs the given specifications (after being )
{ normalized) and, calculates and outputs window parameters } 
{ such as radius, widow order and the Alpha parameter to be } 
{ used later in window calculation. }
{ }

diff : real;

Begin
ATT:=-20*ln(ripple)/ln( 10); 
Radius:=round((ATT-7)/(2*13.68*Dftran));
Nmax:=2*Radius+l; 
diff:=ATT-20.2; 
if diff>0 then

Alpha:=0.56*power(diff,0.4)+0.083*diff 
else Alpha:=0; 
writeln;
writeln(’The Normalized Filter Specifications are : ’);
writeln;
case FilterType of

: writeln(’Cutoff Frequency = ?,NCutoff:l:2);
’3’..’4 ’ ; begin

writeln(’Lower Cutofff = ’,NCutoffl:l:2);
w ritelnfUpper Cutoff = ,,NCutoff2:l;2);

end; 
end;
writeln(’The ripple 
writelnfAttenuation (dB)

= ripple: 1:2); 
= ’,ATT:1:2);
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writeln:
writelnfThe Window Parameters are:’); 
writeln;
writelnf Radius of Window = Radius);
writelnf Window Order = \Nmax);
writeln(’The circular window parameter = Alpha: 1:2); 

End; { End of Procedure WindowParameters}

procedure Tabulate(Y:Responses);
i......................... -............ )
{ This procedure enables to present the window function } 
{ and the impulse responses in tabular form. }

var
m,n : byte;

Begin
writeln(’m ’); 
writef ); 
for m:=0 to radius do 

write(m;6); 
writeln;
writef ’);
for m:=0 to Radius do
write(’.......
writeln;

for m:=0 to radius do begin 
write(m;2,’ I ’); 
for n:=0 to radius do 
write(Y[m,n]:6:3); 

writeln; 
end:

End; { End of Procedure Tabulate. }

procedure ThreeDGraph(Y : Responses);
{-------------------------------- - i
{ This procedure enables one to draw the three-dimensional 
{ graph of the impulse responses, windows or the frequency 
{ responses of the Two-Dimensional digital filter.

I f  )Type
VertAxis = array[l..MaxOrder,l..MaxOrder] of integer; var
k,m,n,MiIndex,MaIndex,i,j 
X1 ,X2,Y 1 ,Y2, Minimum, 
Maximum, ml ,nl  
a.b,c,d

: byte;

: integer; 
: real;

}
}
}

: VertAxis;
: array [1.. Max Order] of integer;

BottomX:=MaxX div 2; { (BottomX,BottomY) is the (x,y)- }
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Bottom Y:=round(MaxY/l.4); { coordinate of the reference point.}

for m:=l to MaxOrder do 
for n:=l to MaxOrder do begin 
ml:=m-(RMax+l); 
nl:=n-(RMax+l);

a:=((MaxX/4)/(MaxOrder-1 ))*(n-1); 
b:=((MaxX/8)/(MaxOrder-1 ))*(m-1); 
c:=((MaxY/8)/(MaxOrder-1 ))*(n-1); 
d:=((MaxY/4)/(MaxOrder-1 ))*(m-1); 
x[m,n]:=BottomX-round(a)+round(b);
z[m,n] :=Bottom Y-round(c)-round(d)-round(Height*Y[m 1 ,n 1 ]); 

end;

j The following part of the program connects points which share 
j the same coordinate on the 1st axis of the independent variab- } 
; les. Rearside lines that overlap with front lines are invisible.}

for m:=l to MaxOrder do begin 
Xl:=x[m,l];X2:=x[m,2]; 
Yl:=z[m,l];Y2:=z[m,2]; 
MoveTo(X 1, Y 1 );LineTo(X2, Y2);

{ This pan of the 
{ procedure checks if 
{ there exists overlap 

{ and lines only when 
{ there is no overlap.

for n:=3 to MaxOrder do begin
X2:=x[m,n];Y2:=z[m,n]; 

if (m<=4) then LineTO(X2,Y2) 
else

begin
j:=l;
while ((m-2*j)>=l) and ((n-j)>=l) do 

begin
v[j]:=z[m-2*j,n-j]; 
k:=j; j:=j+l; 

end;
Milndex:=l; Malndex:=l; 
for i:=2 to k do
if (v[Mi!ndexJ>v[iJ) then Milndex:=i;

Minimum:=v[MiIndex]; 
for i:=2 to k do

if (v[MaJndex]<v[i]) then Malndex:=i; 
Maximum:=v[MaIndex];
if (Y2>=Maximum) or (Y2<=Minimum) then LineTo(X2,Y2)

else MoveTo(X2,Y2);
end; { end of else. }

end; { end of inner loop. i.e. n:=3 to MaxOrder. }
{ end of outer loop, i.e. m:=l to MaxOrder. }

 ̂ The following pan of the program connects points which }
j share the same coordinates on the 2nd axis of the inde- }
> Pendent variables. }

}
}
}
}

for n:=l to MaxOrder do
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begin
X l:=x[l,n];Y l:=z[l,n];
X2:=x[2,n];Y2:=z[2,n];
MoveTo(X 1, Y1 );LineTo(X2, Y2); 

for m:=3 to MaxOrder do 
begin

X2:=x[m,n];Y2:=z[m,nJ; 
if (n<=2) or (m<=4) then LineTo(X2,Y2) 

else begin 
j:= l;
while ((m-2*j)>=l) and ((n-j)>=l) do 
begin

v[j]:=z[m-2*j,n-j];
k:=j;j:=j+l;

end;
MiIndex:=l;MaIndex:=l; 
for i:=2 to k do
if (v[MiIndex]>v[i]) then Milndex:=i; 
Minimum:=v[MiIndex];

for i:=2 to k do
if (v[MaIndex]<v[i]) then Malndex:=i; 
Maximum:=v[MaIndex];

if (Y2>=Maximum) or (Y2<=Minimum) then LineTo(X2,Y2)
else MoveTo(X2,Y2);

end; { end of else. }
end; { end of inner loop, i.e. m:=3 to MaxOrder. } 

end; { end of outer loop, i.e. n:=l to MaxOrder. }
End; { End of Procedure ThreeDGraph. }

procedure CalculateWindowCoefficients;
{ }
{ Computes the window function to be used later to modify } 
{ the ideal impulse response. }
{ }

var
m,n : integer;
y,x : real;

Begin
for m:=0 to RMax do 
for n:=0 to RMax do begin 

y:=sqrt(sqr(m)+sqr(n)); 
if y > Radius then w[m,n]:=0 
else begin

x:=sqrt( 1 -(sqr(y)/sqr(Radius))); 
w[m,n] :=I0(Alpha*x)/I0( Alpha);

end;
end; { end of do loop. }
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for m:=-RMAX to -1 do { Reflects 1st quadrant values }

for n:=0 to RMax do to 2nd quadrant.
w[m,n]:=w[-m,n];

for m:=-RMax to RMax do { Reflects 1st and 2nd quadrant } 
for n:=-RMax to -1 do { values to 3rd and 4th quad- j

w[m,n]:=w[m,-n]; { rant. }
if (MyChoice=’2 ’) and ((Choice=’r )  or (Choice=’5’)) 

then begin
RestoreCrtMode;
writeln;
w riteln(The 2-D window coefficients are 
writeln;
Tabulate(w);
writeln;
write(’Do you wish to display it on 3-D graph(Y/N)7 : ’); 
readln(OutOnGraph); 

end;
End; { End of Procedure CalculateWindowCoefficients. }

procedure CalculateldeallmpulseResponse;
( i
{ The ideal impulse response is computed by sampling the 
{ ideal frequency response and inverse frequency transform- } 
{ ing these sampled frequencv response values. }
i i

var
wl,w2,m,n,k : integer; 
term,sum,rl,r2,R ; real;

Begin
MaxSize:=129; 
k:=2*RMax; 
for m:=0 to RMax do 
for n:=0 to RMax do 
if round(sqrt(sqr(m)+sqr(n))) 
then begin 

sum:=0;
for w l:=0 to k do 
for w2:=0 to k do begin 
r l  :=(m/MaxSize)*2*pi; 
r2:=(n/MaxSize)*2*pi;
R:=sqrt(sqr(wl)+sqr(w2))/MaxSize; 

case FilterType of 
*1* : begin { Lowpass Filter }

if ((wl=0) and (w2=0)) then term:=l 
else if ((wl=0) or (w2=0)) and (R <= NCutOff) 

then term:=2*cos(wl*rl)*eos(w2*r2) 
else if (R <= NCutOff)

then term:=4*cos(wl*rl)*cos(w2*r2) 
else term:=0;

end; { end of case lowpass filter type. }

{ In the first quadrant of } 
{ the (m,n)-plane. }

<= Radius

{ In the first quadrant of } 
{ the (wl,w2)-plane. )
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’2 ’ : begin { Highpass Filter }
if ((wl=0) or (w2=0)) and (R >= NCutOff) 

then term:=2*cos(wl *rl )*cos(w2*r2) 
else if (R > NCutOff)

then term:=4*cos(wl*rl)*cos(w2*r2) 
else term:=0;

end; { end of case highpass filter type. }
’3’ : begin { Bandpass Filter }

if ((wl=0) or (w2=0)) and ((R >= NCutOff 1)
and (R <= NCutOff2)) 

then term:=2*cos(wl *rl )*cos(w2*r2) 
else if ((R >= NCutOff 1) and (R <= NCutOff2)) 

then term:=4*cos(wl*rl)*cos(w2*r2) 
else term:=0;

end; { end of case bandpass filter type. }

’4 ’ : begin { Bandstop Filter }
if ((wl=0) and (w2=0)) then term:=l 
else if ((wl=0) or (w2=0)) and

((R <= NCutOff 1) or (R >= NCutOff2)) 
then term:=2*cos(w 1 *rl )*cos(w2*r2) 

else if (R <= NCutOff 1) or (R >= NcutOfG) 
then term:=4*cos(wl*rl)*cos(w2*r2) 

else term:=0;
end; { end of case bandstop filter type. } 

end; { end of CASE. }
sum:=sum+term/sqr(MaxSize);

end;
i[m,n]:=sum;

end
else i[m,n]:=0; 

for m:=-RMax to -1 do 
for n:=0 to RMax do 

i[m,n]:=i[-m,n]; 
for m:=-RMax to RMax do 
for n:=-RMax to -1 do 

i[m,n]:=i[m,-n];
if (MyChoice=’2 ’) and ((Choice=’2 ’) or (Choice=,5’)) 

then begin 
RestoreCrtMode; 
writeln;
writeln(’The ideal impulse response is : ’); 
writeln;
Tabulate(i);
writeln;
write(’Do you wish to display it on 3-D graph(Y/N)7

readln(OutOnGraph);
end;

End; { End of Procedure CalculateldeallmpulseResponse. }
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procedure CalculatelmpulseResponse:
i i
{ The weighted impulse response is obtained by multiplying }
{ the ideal impulse response with the window function, }
{ point by point. }

var
m,n : integer;

Begin
for m:=-RMax to RMax do 
for n:=-RMax to RMax do 

i[m,n]:=i[m,n]*w[m,n];

if (MyChoice=’2’) and ((Choice=’3’) or (Choice=’5’))

then begin 
RestoreCrtMode; 
writeln;
writelnfThe Impulse responnse (weighted by window) : ’); 
writeln;
Tabulate(i);
writeln;
write(’Do you wish to display it on 3-D graph(Y/N)? : ’); 
readln(OutOnGraph); 

end;
End; { End of Procedure CalculatelmpulseResponse. }

procedure CalculateFourierTransform;
{ )
{ Computes the discrete Fourier transform. }
{ }

var
wl,w2,m,n,kl,k2 : integer;
term,sum,rl,r2 : real;

be  sin
New(H);
for w l:=0 to 2*RMax do 
for w2:=0 to 2*RMax do begin 

rl:=(wl/MaxSize)*2*pi; 
r2:=(w2/MaxSize)*2*pi; 
sum:=0;
for m:=0 to Radius do 
for n:=0 to Radius do begin 
if (m=0) and (n=0) then term:=i[m,n] 

else if (m=0) or (n=0) then
term:=2*i[m.n]*cos(m*rl)*cos(n*r2)

else term:=4*i[m,n]*cos(m*rl)*cos(n*r2); 
sum :=sum-(-term; 

end;
HA[wl,w2]:=sum;

end;
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End; { End of Procedure CalculateFourierTransform. }

procedure InputAndDecode;

array[-RMax..RMax,-RMax..RMax] of byte; 
Text;
Char;
: integer;

{ Inputs the image code of Monalisa from a separate file 
{ and decodes it into integer values representing the inten- 
{ sity at each point of space of 65x65 points.
{

var 
IA
StrChar 
Str,Choice 
id

begin
writeln(’Type the Number corresponding to the image’); 
writeln(’you want to see.’); 
writeln;

Image for Mona Lisa. ’);
Image for Lincoln. ’);
Image for a Boy.’);
Image for The Statue of Liberty.’);
Image for The Planet satum.’);

Geometrical figures.’);
Some Characters.’);
A Finger Print.’);
Chromosomes.’);

writeln(’l. 
writeln(’2. 
writeln(’3. 
writeln(’4. 
writeln(’5. 
writeln(’6. 
writeln(’7. 
writeln(’8. 
writeln(’9. 
writeln;
Repeat

write(’Now input your Choice ; ’);
readln(Choice);
writeln;
case Choice of

’1’ : Assign(StrChar,’A:MONALISA.COD’);
’2’ ; Assign(StrChar,’A:LINCOLN.COD’);
’3’ ; Assign(StrChar,’A;BOY.COD’);
’4 ’ ; Assign(StrChar,’A:STATUE.COD’);
’5’ : Assign(StrChar.’A;SATURN.COD’);
’6’ ; Assign(StrChar,’A:GEOMETRI.COD’);
’7 ’ ; Assign(StrChar,’A:CHARACTE.COD’);
’8’ ; Assign(STrChar,’A:FINGER.COD’);
’9’ : Assign(StrChar,’A:CFIROMOSM.COD’)

else begin
writeln(Chr(7));
writeln(’Invalid Choice. You have only to choose from ’);
writeln(’integers in the range (1..9).’);
writeln;

end; { end of else. } 
end { end of CASE. } 

until Choice in [’1’..’9 ’];
Reset(StrChar);
for i:=-RMax to RMax do begin
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for j:=-RMax to RMax do begin 

read(StrChar,Str);
if(Str >=’0 ’) and (Str <=’9 ’) then 

IA[ij]:=Ord(Str)-OrdCO’) 
else IA[ij]:=Ord(Str)-Ord(’A ’)+10; 

end; { end of inner do loop, i.e. j:=-RMax to RMax. } 
readln(StrChar);

end; { end of outer do loop. }
Close(StrChar); 

for i:=-RMax to RMax do 
for j:=-RMax to RMax do 

IB[i,j]:=IA[i,j];
End; { End of Procedure InputAndDecode. }

procedure Scale AS Required;
{ }
{ Scales the decoded values according to different scaling } 
{ methods so that the lowest value becomes 1 and the highest} 
{ value becomes 32. }
{ }

var
i,j,k : integer;
FLEV,KLt,AA,EE,SS,T,
Range,Imin,Imax : single;
LEV : array[1..32] of single;

Begin
Imin:=31; lmax:=0; 
for i:=-RMax to RMax do 
for j:=-RMax to RMax do begin 

if Imin > IB[i,j] then Imin:=IB[i,j]; 
if Imax < IB[i,j] then Imax:=IB[i,jj; 

end; 
writeln;
writeln(’Choose the Scale from among the following by’);
writeln(’typing the corresponding number.’);
writeln;
w rite ln fl. Linear Scale.’); 
writeln(’2. Square-root Scale.’);
writeln(’3. Logarithmic Scale.’);
writeln(’4 .’’Absorption” Scale.’);
WRITELN(’5. Without Scaling.’); 
writeln;
Repeat

write(’ Your Choice :’); 
readln(Law);
If Law In [’ 1 ’..’4 ’] then begin 

Case Law of 
’1’: begin

Range :=(Imax-Imin)/32; 
for i:=l to 32 do begin 

FLEV :=IMin+(i-l)*Range+0.5;
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LEVfi] :=Int(FLEV); 

end;
end; { end of case linear scale. }

’2 ’: begin
AA :=(sqrt(Imax)-sqrt(Imin))/32; 
for i:=l to 32 do begin 

FLEV ;=sqr(sqrt(Imin)+(i-1 )*AA)+0.5; 
LEV[i] :=Int(FLEV); 

end;
end;{ end of case square-root scale. }

’3’: begin
EE :=(Imax-Imin)/ln(33); 
for i :=1 to 32 do begin 

FLEV :=Imin+EE*ln(i)+0.5;
LEV[i] :=Int(FLEV); 

end;
end; { end of end of case logarithmic scale. } 

’4 ’: begin
if Imin > 1 then T := Imin 

else T *=1‘
SS :=-ln(Imax/T)/32;' 
for i:=l to 32 do begin 

FLEV :=Imax*exp(SS*(32-i))+0.5;
LEV[i] :=Int(FLEV); 

end;
end; { en d  o f case absorption scale. } 

end; { end of CASE. } 
for i:=-RMax to RMax do 
for j:=-RMax to RMax do begin 

KLT :=1;
for k :=1 to 32 do 

if(IB[ij] >= LEV[k]) then KLT :=k;
IB[ij] :=KLT; 
end;

end { end of case law in (1..4). } 
else if (Law<>’5’) then begin 

writeln(Chr(7));
writeln(’You have just typed \L aw ,’. Please Type’); 
writeln(’One of of these only : 1,2,3,4 or 5 .’); 
writeln; 

end
until Law in [’1 \ . ’5’];

End; { End of procedure ScaleAsRequired. }

Procedure CorruptWithNoise; 
var

i,j : integer;
Begin

for i:=-RMax to RMax do 
for j:=-RMax to RMax do
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if RandomcO. 1 then 
IB[i,j]:=32

End; { End of Procedure CorruptWithNoise. }

procedure ImageOnScreen; { Draws the image on the Screen. 
Const

DAC = 14; 
var

RedVal,GreenVal,BlueVal : Integer;
VideoMode : Byte;

Function GetVideoMode : Byte;

{ ~}
{ Places a variable directly into the video display data }

{ where the current video mode is stored. }
i i

var
Crt_Mode : Byte Absolute $40:49;

Begin
GetVideoMode := Crt_Mode;

End;{ End of function GetVideoMode. }

Procedure GetRGBPalette(I :Word; var R,G,B : Integer);

{ }
{ This function gets the red, green, and blue values.

var
Regs : Registers;

Begin
Regs.AH := $10; { Select BIOS function 10H. }
Regs.AL := $15; { Select suroutine 15H. }
Regs.BX := I; { Select the DAC to querry. }
Intr($10,Regs); { Call the BIOS Interrupt.
R := Regs.DH; { Read the red value into R. }
G := Regs.CH; { Read the green value into G. }
B := Regs.CL; { Read the blue value into B. }

End; { End of function GetRGBPallette. )

procedure CreateGravScale(FirstDAC,NumofDACs : Word);
{--...........-.............}
{ This procedure creates the grav scale. }
{-------------------------- -}

var
i : integer;
Regs : Registers;

Eegm
for i:= 0 to 15 do 
begin
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Regs.AH := $10; { Request function 10H. }

Regs.AL := $10; { Request subfunction 10H. }
Regs.BX := i; { Register value to set.
Regs.CH := 4*i; { Green value to set. }
Regs.CL := 4*i; { Blue value to set. }
Regs.DH := 4*i; { Red value to set.
Intr($10,Regs); { Create the gray scale. }

end;
End; { End of procedure CreateGrayScale, j

procedure ShowGrayScale;{ Displays the 16 gray scales. }
var

m,n,I,Xl,Yl,X2,Y2 ; Word;
XInc,YInc,X0,Y0 ; Word;
P : PaletteType;

Begin
X0 := MaxX div 3;
Y0 := 0;
GetPalette(P);
For I := 0 to 15 do 

SetPalette(I,I);
XInc := (MaxX-2*X0) div 65;
YINc := MaxY div 65;
{SetFillStyleCSolidFill, 15);
Bar(0,0,MaxX,MaxY);} 
for m:=0 to 64 do 
for n:=0 to 64 do 
begin

XI := X0+XInc*n;
Y1 := Y0+YInc*m;
X2 := Xl+XInc;
Y2 := Yl+YInc;
if (round(IB[-32+m,-32+n])<=30) 

then I := round(IB[-32+m,-32+n]/2) 
else I := 15:

SetFillStyleCSolidFill,I);
Bar(X 1, Y 1 ,X2, Y2); 

end;
End; { End of Procedure ShowGrayScale. }

°egin { Begin Procedure ImageOnScreen. } 
GetRGBPalette(DAC,RedVal,GreenVal,BlueVal); 
CreateGrayScale(0,16);
ShowGrayScale;
feadln;

. GloseGraph;
tn(E { End of Procedure ImageOn Screen. }

fr°cedure Convolve;
{ }
{ This procedure produces the convolution sum of the filter }



{ impulse response and the image code.

var
ml,m2,m3,m4,
kl,k2,nl,n2,ll,12 : integer;
TermO,Term 1 ,Term2,
Term3,sum0,
suml,sum2 : real;

begin
for nl:=-RMax to RMax do 
for n2:=-RMax to RMax do 
begin

sum0:=0; suml:=0; sum2:=0; 
for k 1 :=1 to Radius do 
for k2:=l to Radius do 
begin

ml:=nl+kl;
m 2:=nl-kl;
m3:=n2+k2;
m4:=n2-k2;
if (ml<=RMax) and (m3<=RMax) 

then TermO:=IB[ml,m3] 
else Term0:=0;

if (ml<=RMax) and (m4>=-RMax) 
then Terml:=IB[ml,m4] 
else Terml:=0;

if (m2>=-RMax) and (m4>=-RMax) 
then Term2:=IB[m2,m4] 
else Term2:=0;

if (m2>=-RMax) and (m3<=RMax) 
then Term3:=IB[m2,m3] 
else Term3:=0;

S urn 0:=sum 0+i [k 1 ,k2] * (T ermO+T erm 1+T erm2+T erm 3); 
end;
for k l:= l to Radius do 
begin

ml:=nl+kl;
m 2:=nl-kl;
if (ml<=RMax) then TermO:=IB[ml,n2] 

else Term0:=0;
if (m2>=-RMax) then Terml:=IB[m2,n2] 

else Terml:=0;
Suml:=suml+i[kl,0]*(TermO+Terml);

end;
for k2:=l to Radius do 
begin

m3:=n2+k2;
m4:=n2-k2;
if (m3<=RMax) then TermO:=IB[nl,m3] 

else Term0:=0;
if (m4>=-RMax) then Terml:=IB[nl,m4]
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else Terml:=0;
sum2:=sum2+i[0,k2]*(Term0+Term 1); 

end;
w[ n 1 ,n2]:=i[0,0]*IB[n 1 ,n2]+sum0+sum 1 +sum2; 

end;
for nl:=-RMax to Rmax do 
for n2:=-RMax to RMax do 

IB[nl,n2J:=w[nl,n2];
End; { End of Procedure Convolve. }

procedure WishHardCopy; { To inquire whether Hardcopy is required.} 
Begin 

writeln;
writefD o you wish to retain hardcopy? (Y/N) ; ’);
readln(Hard_Copy);
if (UpCase(Hard_Copy)=,Y ’) then begin 

write(’Number of copies? : ’); 
readln (Copy Number); 

end;
End; { End of Procedure WishHardcopy. }

procedure HardCopylfNecessary; { Calls the unit Hardcopy.}
Begin

if (UpCase(Hard_Copy)=’Y ’) then begin 
for Num:=l to Copy Number do begin 

HardCopy(O); 
readln; 

end; 
end;

End; { End of Procedure HardcopyIfNecessary. } 

procedure CalculateFilterParameters;

{ This procedure calculates the filter parameters of the } 
{ filter designed and enables the user to redesign the 
{ filter by providing new window order and parameter }
{ until such a time that the user is satisfied. }

var
FMax,FMin,A, 
wCmin,wCMax, 
FMinl,FMin2, 
wCMax 1, wCMin 1, 
wCMax2,wCMin2, 
FMaxl,FMax2,R 
wl,w2 

&egin
Case FilterType of

: real;
; integer;

: begin
FMax := 0.5;
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FMin := 0.5;

wCMin:=0; 
wCMax:=0.5; 
for wl:=0 to 2*RMax do 
for w2:=0 to 2*RMax do begin 

if (HA[wl,w2]>FMax) then FMax:=FF Tw2J; 
if (HA[wl,w2]<FMin) then FMin:=HA[vv l,w2]; 

end; { end of do loop'. }
PassBandRipple:=FMax-1;
StopBandRipple:=-FMin; 
if (FilterType=’l ’) then begin 

Dfpass:=0;
Dfstop:=0.5;
for wl:=0 to 2*Rmax do 
for w2:=0 to 2*Rmax do begin 

A:=sqrt(sqr(wl)+sqr(w2))/(4*RMax); 
if (A>Dfpass) and (HA[wl,w2]>(l-PassBandRipple)) 

then Dfpass:=A;
if (A<Dfstop) and (F[A[wl,w2]<StopBandRipple) 

then DfStop:=A;
if (A>wCMin) and (HA[wl,w2]>0.707) 

then wCMin:=A:
if (A<wCMax) and (HA[wl,w2]<0.707) 

then wcMax:=A; 
end; { end of do loop. }

Dftran:=Dfstop-Dfpass; 
end { end of "if..then begin". } 

else begin
Dfpass:=0.5;
Dfstop:=0;
for wl:=0 to 2*RMax do 
for w2:=0 to 2*RMax do begin 

A:=sqrt( sqr( w 1)+sqr( w2))/(4 * RMax); 
if (A<Dfpass) and (HA[wl,w2]>(l-PassBandRipple)) 

then Dfpass:=A;
if (A>Dfstop) and (HA[wl,w2}<StopBandRipple) 

then Dfstop:=A;
if (A>wCMin) and (HA[wl,w2]<0.707) 

then wCmin:=A;
if (A<wCMax) and (HA[wl,w2]>0.707) 

then wCMax:=A; 
end; { end of do loop. }

Dftran:=Dfpass-Dfstop; 
end; { end of else. }
NCutOffNew:=(wCMax+wCMin)/2;
ATT :=-10*ln(abs(PassBandRipple*StopBandRipple))/ln( 10); 

end; { end of case "1..2".}
’3’ : begin

FMax:=0.5;
FMinl:=0.5;
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FMin2:=0.5;
Dfpassl:=0.5;
Dfpass2:=0; 
wCMaxl :=0.5; 
wCMinl:=0; 
wCMax2:=0.5; 
wcMin2:=0;
Dfstopl:=0;
Dfstop2:=0.5;
for w l:=0 to 2*RMax do
for w2:=0 to 2*RMax do

if(HA[wl,w2]>FMax) then FMax:=HA[wl,w2]; 
PassBandRipple:=FMax-1; 
for w l:=0 to 2*RMax do 
for w2:=0 to 2*RMax do begin

A:=sqrt(sqr(wl)+sqr(w2))/(4*RMax); 
if (A<Dfpassl) and (HA[wl,w2]>(l-PassBandRipple)) 

then Dfpassl:=A;
if (A>Dfpass2) and (HA[wl,w2]>(l-PassBandRipple)) 

then Dfpass2:=A;
if (A>wCMin2) and (HA[wl,w2]>0.707) 

then wCmin2:=A;
if (A<wCMaxl) and (HA[wl,w2]>0.707) 

then wCMaxl:=A; 
end; { end of do loop. } 
for w l:=0 to 2*RMax do 
for w2:=0 to 2*RMax do begin

A:=sqrt(sqr(wl)+sqr(w2))/(4*RMax); 
if (A<Dfpassl) and (HA[wl,w2]<FMinl) 

then FM inl:=HA[wl,w2]; 
if (A>Dfpass2) and (HA[wl,w2]<FMin2) 

then FMin2:=HA[wl,w2]; 
end; { end of do loop. }
S topBandRipple 1 :=-FMin 1;
S topBandRipple2: =-Fmin2; 
for w l:=0 to 2*RMax do 
for w2:=0 to 2*RMax do begin

A:=sqrt(sqr(w 1 )+sqr(w2))/(4*RMax); 
if (A<Dfpassl) then begin

if (A>wCMinl) and (HA[wl,w2]<0.707) 
then wCMinl:=A;

if (A>Dfstopl) and (HA[wl,w2]<StopBandRipple 1) 
then Dfstopl:=A;

end;
if (A>Dfpass2) then begin

if (A<wCMax2) and (F[A[wl,w2]<0.707) 
then wCMax2:=A;

if (A<Dfstop2) and (HA[wl,w2]<StopBandRipple2) 
then Dfstop2;=A;

end;
end; { end of do loop. }
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NCutOffNew 1 :=(wCMax 1 +wCMin 1 )/2;
NCutOffNew2:=(wCMax2+wCMin2)/2;
Dftran 1 :=Dfpass 1 -Dfstop 1;
Dftran2:=Dfstop2-Dfpass2;
Dftran :=sqrt(Dftran 1 *dftran2);
R:= (StopBandRipple 1 *PassbandRipple*StopBandRipple2); 
ATT:=-20*ln(R)/(3*ln(10)); 

end; { end of case "3".}
’4 ’ : begin

FMaxl:=0.5;
FMax2:=0.5:
FMin:=0.5;
Dfstopl:=0.5;
Dfstop2:=0; 
wCMaxl:=0.5; 
wCMax2:=0.5; 
wCMinl :=0; 
wCMin2:=0;
Dfpassl:=0;
Dfpass2:=0.5; 
for w l:=0 to 2*RMax do 
for w2:=0 to 2*RMax do 

if (HA[wl,w2]<FMin) then FMin:=HA[wl,w2]; 
StopBandRipple:=-FMin; 
for w l:=0 to 2*RMax do 
for w2:=0 to 2*RMax do begin 

A:=sqrt(sqr( w 1 )+sqr(w2))/(4*RMax); 
if (A>Dfstop2) and (HA[wl,w2]<StopBandRipple) 

then Dfstop2:=A;
if (A<Dfstopl) and (HA[wl,w2]<StopBandRipple) 

then Dfstop 1:=A;
if (A<wCMaxl) and (HA[wl,w2]<0.707) 

then wCMaxl:=A;
if (A>wCMin2) and (HA[wl,w2]<0.707) 

then wCMm2:=A; 
end; { end of do loop. } 
for w l:=0 to 2*RMax do 
for w2:=0 to 2*RMax do begin 

A:=sqrt(sqr(w 1 )+sqr(w2))/(4*RMax); 
if (A<Dfstopl) and (HA[wl,w2]>FM axl) 

then FM axl:=HA[wl,w2]; 
if (A>Dfstop2) and (HA[wl,w2]>FMax2) 

then FMax2:=HA[wl,w2]; 
end; { end of do loop, j 
PassBandRipple 1 :=FMax 1 -1;
PassBandRipple2:=FMax2-1; 
for w l:=0 to 2*RMax do 
for w2:=0 to 2*RMax do begin

A : =sqrt (sqr( w 1)+sqr( w2) )/(4 * RMax); 
if (A<Dfstopl) then begin

if (A>wCMinl) and (HA[wl,w2]>0.707)
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then wCMinl:=A;
if (A>Dfpassl) and (HA[wl,w2]>(l-PassBandRipplel)) 

then Dfpassl:=A;
end;

if (A>Dfstop2) then begin
if (A<wCMax2) and (HA[wl,w2J>0.707) 

then wCMax2:=A;
if (A<Dfpass2) and (HA[wl,w2]>(l-PassBandRipple2)) 

then Dfpass2:=A;
end;

end; { end of do loop. }
NCutOffNew 1 :=(wCMax 1+wCMin 1 )/2;
NCutOffNew2:=(wCMax2+wCMin2)/2;
Dftran 1 :=Dfstop 1 -Dfpass 1;
Dftran2:=Dfpass2-Dfstop2;
R:=abs(PassBandRipplel*PassBandRipple2*StopBandRipple);
ATT:=-20*ln(R)/(3*ln(10)); 

end; { end of case "4".} 
end; { end of CASE. }

RestoreCrtMode;
writeln(The Filter Designed is Charactersed by the following : ’); 
writeln;
Case FilterTYpe of
’1 \ :T  : begin

writelnCRipple in Passband = 
writelnC Ripple in Stopband = 
writeln(’Passband Limit =
writelnC Stopband Limit 
writelnC Transition Band Width = 
writelnC Cutoff Frequency 
writelnC Attenuation(dB) 

end; { end of case "1..2".}
’3’..’4 ’ ; begin

writeln (’Lower Stopband Limit 
writeln(’Lower Passband Limit 
writeln(’Lower Transition Bandwidth 
writelnC Lower Cutoff 
writeln(’Upper Passband Limit 
writelnC Upper Stopband Limit 
writelnCUpper Transition Bandwidth 
writeln(’Upper Cutoff 
writelnC Attenuation in dB (Geo. mean)

\PassBandRipple:0:2); 
\StopBandRipple:0:2): 
\Dfpass:0:2); 
\Dfstop:0:2); 
’,Dftran:0:2);

= \NCutOffNew:0:2);
= ’,ATT:0:2);

= ’,Dfstopl;0:2);
= ’,Dfpassl:0:2);
= Dftran 1:0:2);

= NCutOffNew 1:0:2); 
= ’,Dfpass2:0:2);
= \Dfstop2:0:2);
= ’,Dftran2:0:2);

= \NCutOffNew2:0:2); 
= ’,ATT:0:2);

if 0FilterType=’3’) 
writeln (’Ripple in 
vTiteln(’Ripple in 
writeln(’Ripple in 

end
else begin 

writelnC Ripple in 
writelnC Ripple in

then begin 
lower Stopband 
Upper Stopband 
Passband

Lower Stopband 
Stopband

\StopBandRipple 1:0:2);
\PassBandRipple:0:2);
\StopBandRipple2:0:2);

CPassBandRipple 1:0:2); 
’,StopBandRipple:0:2);
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writelnf Ripple in Upper Passband = \PassBandRipple2:0:2);

end;
end; { end of case "3..4". } 

end; { end of CASE. } 
writeln;
writelnfThe radius of the window used is : '.radius); 
writelnCThe circular window parameter is : Alpha: 1:2);
writeln;
write(’Now, do you want to redesign the filter(Y/N)? : ’);
readln(Ansl);
writeln;
if (UpCase(Ansl)=’Y ’) then begin 

writeln;
write(’Input a new value of radius (+ve integer) : ’); 
readln(radius);
w riteflnput a new value for Alpha : ’);
readln(Alpha);

if (Choice=’4 ’) then FrequencyResponseOut 
else Allout; 

end
else begin

for w l:=0 to RMax do 
for w2:=0 to RMax do 

w[wl,w2]:=HA[2*wl,2*w2]; 
for wl:=-RMax to -1 do 
for w2:=0 to RMax do 

w[wl,w2]:=w[-wl,w2]; 
for wl:=-RMax to RMax do 
for w2:=-RMax to -1 do

w[wl,w2]:=w[wl,-w2];
OutFrequencyOnGraph;

end;
End; { End of Procedure CalculateFilterParameters. }

procedure Processlmage;
( i
{ This procedure controls the sequence of events that lead } 
{ to the filtered image output. }
(-—  i

var
Ansl,Ans2 : Char;
i,j : integer;

begin
InputAndDecode;
ScaleCount:=l;
ScaleAsRequired;
GraphDriver := VGA;
GraphMode := VGAHi;
InitGraph(GraphDriver,GraphMode,” );
MaxX: =GetMaxX;
MaxY :=GetMaxY;
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ImageOnScreen;

RestoreCrtMode;
w ritef Corrupt Image with noise? (Y/N) : ’);
readln(Ansl);
if (UpCase(Ansi)=’Y ’) then begin 

CorruptWithNoise;
InitGraph(GraphDriver,GraphMode,” );
ImageOnScreen;
RestoreCrtMode;

end;
write(’Do you wish to filter the image? (Y/N) : ’); 
readln(Ans2);
if (UpCase(Ans2)=’Y ’) then begin 

InputFilterParameters;
SpecificationsAndParameters;
writeln;
write(’Filter being designed...’);
CalculateWindowCoefficients;
CalculateldeallmpulseResponse;
CalculatelmpulseResponse;
writeln;
writeln(Chr(7));
write(’Filter is now designed. Image is being processed..’); 
Convolve; 
writeln(Chr(7)); 

for i:=-RMax to RMax do 
for j:=-RMax to RMax do begin 

if (IB[i,j] <=1) then IB[i,j]:=0; 
if (IB[i,j] >=31) then IB[i,j]:=31; 

end; { end of do loop. }
InitGraph(GraphDri ver,GraphMode, ’ ’);
ImageOnScreen;

end;
RestoreCrtMode;
CloseGraph;

End; { End of Processlmage. }

procedure MessageOut;

{ Type of Filter and its Characteristics will be outputted along } 
{ with the Three-Dimensional graph of the filter. }
{ }

var
x,yl,y2,y3,
y4,y5,y6,y7,
y8,y9,yinc : integer:

function Str5(RealNo : single) : String; 
var

Tens,Ones,Tenths,Hundredths,IntNo : integer;
begin
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IntNo := Round(100*RealNo);

Tens := ((IntNo div 10) div 10) div 10;
Ones := ((IntNo div 10) div 10) mod 10;
Tenths :=(IntNo div 10) mod 10;
Hundredths :=IntNo mod 10;
if (Tens=0) and (Tenths=0) and (Hundredths=0) then 

Str5:=Chr(32)+Chr(48+Ones)+Chr(32)+Chr(32)+Chr(32) 
else if (Tens=0) then

Str5:=Chr(32)+Chr(48+Ones)+Chr(46)+Chr(48+Tenths)+
Chr(48+Hundredths)

else if (Tenths=0) and (Hundredths=0) then
Str5:=Chr(48+Tens)+Chr(48+Ones)+Chr(32)+Chr(32)+Chr(32) 

else Str5:=Chr(48+Tens)+Chr(48+Ones)+Chr(46)+Chr(48+Tenths)+

Chr(48+Hundredths) 
end; { end of function Str5. )

Begin
x: =round(MaxX/3);
y 1 :=round(MaxY/l .24);
yinc:=round(MaxY/40);
y2:=yl+yinc;
y3:=y2+yinc;
y4:=y3+yinc;
y5:=y4+yinc;
y6:=y5+yinc;
y7:=y6+yinc;
y8:=y7+yinc;
y9:=y8+yinc;
SetTextStyle(2,0,4);
Case FilterType of

*1*: OutTextXY(x,yl,’Filter Type : Lowpass ’);
’2’: OutTextXY(x,yl,’Filter Type : Highpass’);
’3’: OutTextXY(x,yl,’Filter Type : Bandpass’);
’4’: OutTextXY(xyy l , ’Filter Type : Bandstop’);

end; { end of CASE. }

Case FilterType of

’1V 2’ :
begin

OutTextXY(x,y2,’Transition band width = ’+Str5(Dftran)); 
if (DesignOver=False) then begin

OutTextXY(x,y3,’Cutoff Frequency = ’+Str5(NCutOff)); 
OutTextXY(x,y4,’The Ripple = ’+Str5(Ripple));

end
else begin

OutTextXY(x,y3,’CutOff Frequency = ’+Str5(NCutOffNew)); 
OuttextXY(x,y4,’Ripple in the Passband = ’+Str5(PassBandRipple)); 
OutTextXY(x,y5,’Ripple in the Stopband = ’+Str5(StopBandRipple)); 

end:



132

if (DesignOver=False) then
OutTextXY(x,y5,’The Attenuation (in dB) = ’+Str5(ATT)) 

else OutTextXY(x,y6/Attenuation (Geo. mean) = ’+Str5(ATT)+ dB ); 
end; { end of case }

*3’..'’4 ’ :
begin

if (DesignOver=False) then begin
OutTextXY(x,y2,’Lower C utoff = ’+Str5(NCutOffl));
OutTextXY(x,y3,’Upper Cutoff = ,+Str5(NCutOff2));
OutTextXY(x,y4,’The Ripple = ‘+Str5(Ripple));
OutTextXY(x,y5,’Attenuation ( dB) = ’+Str5(ATT));
OutTextXY(x,y6,’Transition band width = +Str5(Dftran)); 

end
else besin

OutTextXY(x,y2,’Lower Cutoff = ’+Str5(NCutOffNewl));
OutTextXY(x,y3,’UpperCutOff = ’+Str5(NCutOffNew2));
if (FilterType=’3’) then begin
OutTextXY(x,y4,’Ripple in Lower Stopband = ’+Str5(StopBandRipplel)); 
OutTextXY(x,y5,’Ripple in Passband = ’+Str5(PassBandRipple));
OutTextXY(x,y6,’Ripple in upper Stopband = ’+Str5(StopBandRipple2)); 

end
else begin

OutTextXY(x,y4,’Ripple in lower Passband = ’+Str5(PassBandRipplel)); 
OutTextXy(x,y5,’Ripple in Stopband = ’+str5(StopBandRipple));
OutTextXY(x,y6,’Ripple in Upper passband = ’+Str5(PassbandRipple2)); 

end;
OutTextXY(x,y7,’Attenuation (Geo. mean)
OutTextXY(x,y8,’Lower Transition width 
OutTextXY(x,y9,’Upper Transition width 
end;

end; { end of case "3..4". } 
end; { end of CASE. }

End; { End of Procedure MessageOut. }

= ’+Str5(ATT)+’ dB’); 
= ’+Str5(Dftranl)); 
= ’+Str5(dftran2));

procedure WindowOut;
{ 1 
{ This procedure outputs the window functions in the form 
{ of tables or 3-Dimensional Graph. }

Begin
SetGraphMode(GraphMode);
SetTextStyle(0,0,3);
OutText(’WORKING !!’);
CalculateWindowCoefficients;
DesignOver;=False;
if (UpCase(OutOnGraph)=’Y’) then begin 
WishHardCopy; 
SetGraphMode(GraphMode); 
Height:=MaxY div 3;
ThreeDGraph(w);
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SetTextStyle(2,0,6);
OutTextXY(round(MaxX/3.2),round(MaxY/1.32),’ The Window Function’)
MessageOut;
readln;
HardCopyIfNecessary;
RestoreCrtMode;
CloseGraph;

end;
End; { End of Procedure WindowOut. }

Procedure IdeallmpulseOut;
{ )
{ This procedure outputs the ideal impulse response in the }
{ form of tables or 3-Dimensional graph. }
{ }

begin
SetGraphMode(GraphMode);
SetTextStyle(0,0,3);
OutText(’WORKING !!’);
CalculateldeallmpulseResponse;
DesignOver:=False;
if (lTpCase(OutOnGraph)=’Y ’) then begin 

WishHardCopy;
SetGraphMode(GraphMode);
Height:=MaxY div 2;
ThreeDGraph(i);
SetTextStyle(2,0,6);
OutTextXY(round(MaxX/3.4),round(MaxY/1.32),’The Ideal Impulse Response’);
MessageOut;
readln;
HardCopyIfNecessary;
RestoreCrtMode;
CloseGraph;

end;
End; { End of Procedure IdeallmpulseOut. }

Procedure WeightedlmpulseOut;
{ ............  }
{ To output the impulse response after the ideal impulse }
{ response is weighted by the Kaiser window. }
i -->

Begin
SetGraphMode(GraphMode);
SetTextStyle(0,0,3);
OutText(’WORKING !!’);
CalculateWindowCoefficients;
CalculateldeallmpulseResponse;
DesignOver:=False;
CalculatelmpulseResponse; 
if (UpCase(OutOnGraph)=’Y ’) then begin
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WishHardCopy;
SetGraphMode(GraphMode);
Height:=MaxY div 2;
ThreeDGraph(i);
SetTextStyle(2,0,6);
OutTextXY(round(MaxX/3.6),round(MaxY/l.32),’Weighted Impulse Response’);
MessageOut;
readln;
HardCopylfNecessary;
if (UpCase(Hard_Copy) = *Y*) then
RestoreCnMode;
CloseGraph;

end;
End; { End of Procedure WeightedlmpulseOut. }

procedure FrequencyResponseOut;
( ..................................................- ............................... - ................................ )
{ To Compute and output the filter parameters of the filter designed.}

Begin
SetGraphMode;
SetTextStyle(0.0,3);
OutText(’WORKING !!’);
CalculateWindowCoefficients;
CalculateldeallmpulseResponse;
CalculatelmpulseResponse;
CalculateFourierTransform;
CalculateFilterParameters;

End; { End of Procedure FrequencyResponseOut. }

procedure OutFrequencyOnGraph; { To draw frequency response on 3-D graph. } 
Begin;

WishHardCopy;
SetGraphMode(GraphMode);
Height: =MaxY div 4;
ThreeDGraph(w);
SetTextStvle(2,0,6);
OutTextXY(round(MaxX/3.2),round(MaxY/1.32),’The Frequency Response’); 
DesignOver:=True;
MessageOut;
readln;
HardCopylfNecessary;
RestoreCrtMode;
writeln;
writelnCThe Impulse response of the Filter just designed is :’); 
writeln;
Tabulate(i);
readln;
CloseGraph;

End; { End of Procedure OutFrequencyOnGraph. }
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procedure AllOut; { To output calculated quantities. }

Begin
SetGraphMode(GraphMode);
SetTextStyle(0,0.3);
OutTextC WORKING !!’);
DesignOver:=False;
CalculateWindowCoefficients; 
if (UpCase(OutOnGraph)=’Y’) then begin 

WishHardCopy;
SetGraphMode(GraphMode);
Height:=MaxY div 3;
ThreeDGrap h (w);
SetTextStyle(2,0,6);
OutTextXY(round(MaxX/3.2),round(MaxY/l .32),’The Window Function.’);
MessageOut;
readln;
HardCopylfNecessary;
RestoreCrtMode;

end;
SetGraphMode(GraphMode);
ClearViewPort;
SetTextStyle(0,0,3);
OutTextCWORKING !!’);
CalculateldeallmpulseResponse; 
if (UpCase(OutOnGraph)=,Y,) then begin 

WishHardCopy;
SetGraphMode(GraphMode);
Height:=MaxY div 2;
ThreeDGraph(i);
SetTextStyle(2,0,6);
OutTextXY(round(MaxX/3.4),round(MaxY/1.32),’The Ideal Impulse Response’);
MessageOut;
readln;
HardCopylfNecessary;
RestoreCrtMode; 

end;
SetGraphMode(GraphMode);
ClearViewPort;
SetTextStyle(0,0,3);
OutTextC’WORKING !!’);
CalculatelmpulseResponse; 
if (UpCase(OutOnGraph)=’Y ’) then begin 
WishHardCopy;
SetGraphMode(GraphMode);
Height:=MaxY div 2;
ThreeDGraph(i);
SetTextStvle(2,0,6);
OutTextXY(round(MaxX/3.6).round(MaxY/l.32),’Weighted Impulse Response ’);
MessageOut;
readln;
HardCopylfNecessary;
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RestoreCrtMode;
end;
SetGraphMode(GraphMode);
ClearViewPon;
SetTextStvle(0,0,3);
OutText(’WORKING !!’);
CalculateFouRierTransform;
RestoreCnMode;
CalculateFilterParameters;

End; { End of Procedura AllOut. }

procedure FilterDesignOut;
{ }
{ This procedure controls the sequence of procedures that result } 
{ in the 3-D graph representation of the filter designed. }
{ }

Begin
InputFilterParameters;
SpecificationsAndParameters;
writeln;
writeln(’Press ’’ENTER” to continue!’); 
readln;
GRaphDriver:=DEtect; 
lnitGraph(GraphDri ver.GraphMode. ” );
MaxX:=GetMaxX;
MaxY :=GetMaxY;
RestoreCnMode;
writeln(’l. Output the Window Coefficients Only.’); 
writeln(’2. Output the Ideal Impulse Response Only.’); 
writeln(’3. Output the Weighted Impulse Response Only.’); 
writeln(’4. Output the Frequency Response Only.’); 
writeln(’5. Output All the Above.’); 
writeln;
writelnCChoose any of the options above by printing the’);
writeln(’corresponding number. ’);
writeln;
Repeat

write(’ Chosen Option : ’);
readln(Choice);
writeln;
case Choice of

*1’ : WindowOut;
’2 ’ : IdeallmpulseOut;
’3’ : WeightedlmpulseOut;
’4 ’ : FrequencyResponseOut;
’5 ’ ; AllOut 

else begin
writeln (Chr(7));
writelnC’NON-EXISTING OPTION. TRY AGAIN.’); 
writeln; 

end;
end; { end of CASE. }
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until Choice IN[’1 V 5 ’]
End; { End of Procedure FilterDesignOut. }

function finished: boolean; 
var

answenchar;
Begin

writeln;
write(’Another Design(Y/N)?’);
readln(answer);
writeln;
finished:=(answer <> ’Y ’) and (answer <> ’y ’)

End; { End of function Finished. }

BEGIN { Main Program }
LoadTheFont( @LITTfont);
LoadTheDriver( @EGAVGADriver); 
repeat

writelnC Here are two options to choose from. Choose the’); 
writelnC option you want by printing the number’); 
writelnC corresponding to your choice.’); 
writeln;
writeln(’1. Process an image with a filter and see result.’); 
writeln(’2. Design Filter and Output its characteristics’); 
writelnC on 3-D graphs.’); 
repeat 

writeln;
write(’ Chosen option : ’)•
readln(MvChoice);
writeln;
if (MyChoice=’l ’) then Processlmage 
else if (MyChoice=’2 ’) then FilterDesignOut 
else begin 

write(Chr(7));
writelnC’You have Typed ’,My Choice,’. Please Type 1 or 2 .’) 
writeln; 

end
until MvChoice In [*1’,*2’] 

until finished
END. { ENDof Main program. }


