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Abstract

In this study, the utility of LIBS with chemometrics techniques namely PCA, PLS, ANNs and SIMCA has been 

investigated and demonstrated in performing trace quantitative and explorative analysis of High Background 

Radiation Areas (HBRA) geothermal field matrices (rocks, soils), for the purpose of analyzing atomic and 

molecular signatures, so as to characterize and evaluate the impact of HBRA geothermal discharges on the 

surrounding environment. Analytical performance tests based on (multi- signal) standard addition method were 

done for the elements in the concentration range of 10-150 ppm for the trace elements and 0.1-1.5% for Ti. The 

classical calibration yielded to predicted concentrations not close (> 10 ppm) to the true/measured concentrations 

hence the use of chemometrics techniques (PLS and ANNs) for more accurate prediction of the elements’ 

concentration in soils and rocks respectively. PCA and SIMCA were applied on the samples’ LIBS spectral 

signatures. Linear calibration curves from classical univariate approach with R2> 0.84 were obtained for the lines 

from which the limit of detection were calculated and found to be: 2.4 ppm, 5.1 ppm, 3.1 ppm, 7.6 ppm, 0.012 % 

for As, Cr, Cu, Pb and Ti in soils and 8.3 ppm, 6.1 ppm, 9.0 ppm, 3.0 ppm, 0.018 % for As, Cr, Cu, Pb and Ti in 

rocks respectively. The concentrations of Cr, Cu and Pb in soils were within the range recommended by 

Environmental Protection Agency. Pearson correlation coefficients showed that HBRAs (geothermal) were 

uniquely characterized by positive correlation of As and Cr concentrations while NBRAs had negative correlation 

of Cu with Pb and Ti. PCA and SIMCA classified samples in the categories of sampling sources i.e. HBRA 

(geothermal), HBRA (non-geothermal) and NBRA (geothermal) based on full spectrum signatures in the 200 -  

980 nm range, hence demonstrating the capability of PCA and SIMCA in identifying similarities and differences 

between unknown samples based on their LIBS spectra. The results obtained indicate that although univariate 

multi signal calibration is applicable to a limited degree in LIBS quantitative analysis, chemometrics performs 

better quantitative calibration and subsequent modeling of spectra in relation to analyte concentrations.
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CHAPTER ONE

INTRODUCTION

1.1 Background

Laser Induced Breakdown Spectroscopy (LIBS) is a laser based emission technique for elemental 

analysis. In LIBS, a laser beam is tightly focused on a sample to ablate the material thus creating micro­

plasma. The optical emission from the plasma contains the signatures of the elements present in the 

sample material (Jean et al., 2008; Dimitra et ah, 2000; Rodrigues et ah, 2008). LIBS has distinct 

advantages over other established analytical techniques such as XRF (X-Ray Fluorescence) spectroscopy 

and PIXE (Particle Induced X-Ray Emission) spectroscopy because LIBS performs relatively rapid 

analysis, and has ability to detect both low and high atomic number (Z) elements simultaneously with 

minimal or no sample preparations as samples need only to be optically accessible (Samek et ah, 2006; 

Liang et ah, 1997).

Chemometrics techniques may be used to extract useful information from a complex multivariate data by 

reducing the data complexity while increasing the information gained. Chemometrics techniques include; 

Principal Component Analysis (PCA), Soft Independent Modeling of Class Analogy (SIMCA) and Partial 

Least Squares (PLS) among others. These techniques employ multivariate mathematical, statistical and 

symbolic methods which encompass simultaneous observation and analysis of more than one variable to 

address problems in a given field (Jorado and Castro, 2003). The advantages of these techniques is that 

they extract as much information as possible from the data and reduce noise in the data with the 

information obtained used to model and make accurate predictions about the unknown samples. The 

techniques are also capable of capturing information about correlated trends in a given dataset which is 

difficult classically using only analytical spectroscopy (Ashwin et ah, 2011).

High background radiation areas (HBRA) are those which have high level of natural radioactivity and 

background radiation in excess of the International Commission on Radiological Protection recommended 

radiation dose limit (ICRP, 1991). High levels of ionizing radiation on the surface of the earth are mainly 

due to naturally occurring radioactive elements (U-238, Th-232, Ra-226 and K-40) in the earth’s crust. It 

can also be due to geothermal activity where the products resulting from the decay of Ra-226 e.g. Rn- 

222, Pb-214, Bi-210, are brought to the surface by waters of the hot springs. Natural radioactive mineral 

deposits e.g. feldspar, mica, uraninite and thorite are found in suitable geological environments like 

surficials (Stanley, 1979). Their occurrence in outcrops/ geothermal surficial systems enhances the
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background radiation of an area. High temperature geothermal systems have been found to contain high 

levels of As, which indicates a high- temperature fluid-rock interaction (Ozgur, 2002).

Geothermal system matrices may hold some trace amounts of heavy metals and toxic chemicals as well as 

the radionuclides hence understanding of their accumulation in especially HBRA regions is of 

importance, since some of them are harmful to the environment (Shiwani and Rai, 2008).

The few regions in the world, which are known as high background radiation areas (HBRAs), are due to 

the local geological and geochemical effects, which cause enhanced levels of terrestrial radiation 

(UNSCEAR, 2000). Very high background radiation areas are found at Guarapari, coastal region of 

Esperito Santo and the Morro Do Forro in Brazil; Yangjiang in China (Wei et al, 1993); southwest coast 

of India (Sunta, 1993); Ramsar in Iran (Sorahbi, 1990); United States and Canada (NCRP, 1987) among 

others. Examples of HBRA in Kenya are; Homa mountain (Barber, 1974; Bahat, 1979; Clarke and 

Roberts, 1986; Ohde, 2004), Tinderet hill (Deans and Robert, 1984), Mrima Hill (Mangala, 1987; Patel, 

1991; Kebwaro el al., 2011), Ruri hills, Rangwa ring complex, Soklo point and Kuge (Tuige), in Gwasi, 

Lambwe valley (McCall, 1958, Achola, 2009). Among these sites in Kenya, Homa mountain exhibits an 

unusual case as it is a HBRA with a volcanic complex making it a HBRA sitting on a geothermal field. 

Therefore it provides a perfect ‘laboratory’ for carrying out research on association of the element 

radioactivity elevated by geothermal activities.

In this work LIBS system has been calibrated and utilized to analyze the atomic signatures of geothermal 

matrices in a HBRA, in order to determine and characterize elemental and molecular associations present 

in such region. This is with the view of understanding the impact of HBRA geothermal discharges on the 

surrounding environment as well as the association between HBRA and geothermal emissions from deep 

underground. Multivariate calibration approaches (PLS and ANNS) have been developed and used to 

predict the concentration of heavy trace metals in geothermal field rocks and soils. Pattern recognition 

techniques (PCA and SIMCA) have been employed for characterization of HBRA and NBRA geothermal 

areas based on the spectral signatures of heavy trace metals, which contain robust information on 

elemental and molecular components that are associated with HBRAs and NBRAs. The results obtained 

indicate the utility of chemometrics - LIBS for trace quantitative and exploratory analysis of HBRA 

geothermal field matrices.

1.2 Statement of the problem

Conventional analytical techniques for analysis of samples such as soil such as Atomic Absorption 

Spectroscopy (AAS) and Atomic Emission Spectroscopy (AES) require lengthy sample preparations,
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trained operators and long measurement time. This can interfere with the sample in that the sample may 

be contaminated during preparation, thereby affecting the accuracy of results obtained. In order to realize 

rapid and reliable analysis, the combination of analytical spectroscopy and chemometrics is of necessity. 

The complex spatial, temporal multivariate nature of the geothermal matrix composition increases the 

variance, complexity and amount of data to be analyzed. Thus the uses of classical analytical and 

statistical methods are limited, leaving chemometrics methods as a better option. The research on the 

regions chosen above was of significance in utilizing LIBS to analyze the atomic and molecular 

signatures of geothermal field matrices in a HBRA in order to characterize and understand the association 

and impact of HBRA geothermal discharges on the surrounding environment

1.3 Objectives

1.3.1 General Objective

The goal of this work was to develop a calibration strategy for, and utilize LIBS to analyze the elemental 

signatures of geothermal matrices in a HBRA in order to characterize and understand the association and 

impact of HBRA geothermal discharges on the surrounding environment.

1.3.2 Specific Objectives

i. To design calibration strategies and utilize the most viable analytical model to perform LIBS 

analysis of HBRA-derived geothermal matrices.

ii. To identify and differentiate between the atomic and molecular signatures of HBRA and NBRA 

geothermal matrices.

iii. To develop and test the ability of the analytical and multivariate chemometrics models built 

based on trace element and molecular spectral profiles for exploratory analysis of HBRA 

geothermal matrices.

iv. To utilize the data and results obtained above to interpret HBRA geothermal reservoir 

characteristics and to predict the impact of HBRA geothermal associated heavy metals on the 

environment.

1.4 Justification and Significance of Study

In HBRAs, the soils, rocks and fluids from underground have a higher concentration of radioactive and 

perhaps altered composition (relative to NBRA) of trace elements. Fluids coming from the earth crust in 

such areas also carry a mixture of gases such as CO2, H2S, CH4 and NH3 which further pollute the 

environment and contribute to global warming. These gases in aqueous form modify the attachment
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potential and fractionation of the heavy elements in the surrounding environmental matrices (Tahir et al., 

2005; Liang et al., 1997). Dissolved gases and hot water from geothermal sources may hold solutions of 

trace toxic chemicals like Hg, As and salt which precipitate when water cools thus if released, can cause 

environmental damage (Shiwani and Rai, 2008). Soils containing heavy metals can be absorbed by crops, 

posing a threat to living organisms and humans (Nilesh et al., 2008).

Although some work has been done on characterization of HBRA geothermal sources using trace 

elements as signatures (Barber, 1974; Ohde, 2004), reference to atomic and molecular signatures of 

geothermal matrices is minimal in literature. Multivariate analysis of the signatures is also important 

because it can help in the extraction of useful information about the elemental and molecular signatures of 

the samples; interpretation of sample (chemical) characteristics and properties based on spectral data of 

the analyte and extraction other information such as underlying patterns (similarities and differences 

between samples) from the complex data derived from the signatures (Maya et al.,2008).

Some parts of North and West regions of Kenya’s Rift Valley e.g. Homa Mountain and Tinderet have 

been identified as HBRAs in a geothermal field (Ohde, 2004; Deans and Robert, 1984) hence they 

provide study areas for exploration of geothermal resources based on both their combined trace element 

and radiogenic signatures, since the latter are enhanced (Achola, 2009). The elevated levels of 

radionuclides and associated trace heavy metals in such environment and their potential for leaching, 

bioaccumulation, fractionation and translocation within the ecosystem make their study an important 

exploration and environmental issue (Dipippo, 2005).

As such, there is need to understand the Eco toxicological impact of HBRA geothermal effluents 

immobilization and HBRA heavy trace metal systematics. LIBS spectra can be interpreted to identity the 

elemental and molecular signatures present and their quantitative and correlative information can be used 

to predict the association and impact of the HBRA elements on the environment. The approach may be 

used to develop novel techniques for HBRA geothermal resource characterization and environmental 

impact modeling.
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CHAPTER TWO

LITERATURE REVIEW

2.1 LIBS Application in Various Fields

So far, LIBS has been used as a technique for analysis of samples in various fields e.g. analyses of 

particulates in materials (Liang et al., 1997), analysis of soils and marine sediments (Barbini et al., 2000), 

in military and industry (Adel and Arabi, 2006) but little has been done on its application in geothermics 

due to limited knowledge of the different processes involved in the laser-matter interaction and analytical 

figures of merit (accuracy, precision, and detection limits) which have not been satisfactory (Castle et al., 

1998). This is because the processes involved in laser-induced plasma formation, ablation, atomization, 

and excitation are quite complex and difficult to reproduce (Cremers and Radziemski, 1989), hence with 

respect to geothermics, there is need to employ chemometrics assisted- LIBS technique

LIBS has been successfully applied for the elemental analysis of solids, liquids, gas, and aerosols 

(Cremers et al., 1984; Eppler et al., 1996; Pichahchy et al., 1997; Martin and Cheng, 2000; Kumar et al., 

2003). Sabsabi and Cielo (1995) and Aragon et al. (1999) quantitatively analyzed the composition of 

aluminum alloys and steel by LIBS respectively, and both studies obtained satisfactory analytical results. 

LIBS was also applied to detect elements in different liquids (Fichet et al., 1999), and the limit of 

detection (LOD) of Cr was found to be 20 ppm in water and 30 ppm in oil, which made LIBS a tool for 

the quantitative analysis of liquid samples.

A combination of LIBS and chemometrics has been applied in the processing for material identification 

(Sabsabi et al, 2009), detection and classification of bio aerosols in soils (Hybl, 2003), extraction of 

information from spectral data obtained in wood furnish (Maya et al., 2008) and in analysis of molecules 

in process monitoring of pharmaceuticals (Doucet et al., 2008).

2.2. High Background Radiation Areas

Few regions in the world, which are known as high background radiation areas (HBRAs), are due to the 

local geological and geochemical effects, which cause enhanced levels of terrestrial radiation 

(UNSCEAR, 2000). Very high background radiation areas are found at Guarapari, coastal region of 

Esperito Santo and the Morro Do Forro in Minas Gerais in Brazil Yangjiang in China (Wei et al,. 1993); 

southwest coast of India (Sunta, 1993); Ramsar in Iran (Sorahbi, 1990); in the United States and Canada 

(NCRP, 1987). The existence of high background radiation areas (HBRAs) is attributed to the availability
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of certain radioactive minerals e.g. monazites or elements embedded in the continental rock system of 

these areas. Carbonatites containing monazite and ironstones are major sources of radioactivity due to 

high concentrations of thorium and uranium together with their radioactive daughters (McCall, 1958).

Previous studies on HBRAs of the world have been carried out. Wei (1980) carried out survey in HBRA 

in Yangjiang- China. The analysis of soil samples in the area was done by radiometry and field gamma 

spectrometry and the results showed the estimated annual effective dose of 0.302 mSv/y for 238U, 1.86 

mSv/y for 232Th in the high natural radiation area and 0.0101 pSv/y for 238U and 0.177 pSv/y for 232Th in 

the control area (NBRA). Diyun et al. (2012) measured the concentrations of the natural radionuclides 

238U, 226Ra, 232Th and 40K by y-ray spectrometry in topsoil samples from the Pearl River Delta 

Zone(China) and found the mean concentrations to be 140 ± 37 Bq kg'1, 134± 41 Bq kg ', 187 ± 80 Bq kg' 

'and 680 ± 203 Bq kg'1 respectively which were higher than the mean values (238U=35Bq kg'1, 

2,2Th=30Bq kg ' and luK=400 Bq kg ') in soil for China and the world. The corresponding annual outdoor 

effective dose rate per person was estimated to be between 0.11 and 0.29 mSv y'1, with a mean value of 

0.20 ±0.06 mSv/y, which was also higher than the world mean value of 0.07 mSv y'1.

Baranwala et al. (2006) investigated a HBRA sitting on a geothermal region of Eastern Ghats Mobile Belt 

(EGMB) of Orissa state in India. Soil and rock samples collected from the high radiation zone were 

analyzed by y- ray spectrometry using Nal(Tl) detector. Concentration of Th was reported to be very high 

compared to their normal abundance in crustal rocks. Concentrations of 238U and 40K were also high 

compared to normal abundance in crustal rocks but their magnitude was comparatively less than that of 

Th. The average concentrations of 238U, 232Th and 40K were found to be 33 ppm, 459 ppm and 3%, 

respectively, in soils and 312 ppm, 1723 ppm and 5%, respectively, in the granitic rocks. Maximum
Q __  JA

concentrations of U, Th and K were found to be 95 ppm, 1194 ppm and 4%, respectively, in soils 

and 1434 ppm, 10,590 ppm and 8%, respectively, in the granitic rocks.

Examples of HBRA of Kenya are; Homa mountain (Barber, 1974; Bahat, 1979; Clarkeand Roberts, 1986; 

Ohde, 2004), Tinderet hill (Deans and Robert, 1984), Mrima hill (Mangala, 1987; Patel, 1991; Kebwaro 

et al., 2011), Ruri hills, Rangwa ring complex, Soklo point and Kuge (Tuige), in Gwasi, Lambwe valley 

(McCall, 1958, Achola, 2009). Several studies on HBRAs of Kenya have been carried out based on 

radioactive elements (U, Th, Ra). Some of the studies include; Barber (1974) who analyzed carbonatites 

and carbonitic calcite and magnetites from two carbonatite complexes, Homa and Wasaki in western 

Kenya to study their trace element geochemistry using spectrometry. Carbonatites contained abundance 

ofcarbonatitic trace elements (Sr, Ba, Nb and Rare Earth Elements (REEs)) and generally low 

concentration of Cr, Co, Ni, Pb, Ge, Sn and Mo. It was concluded that the accumulation of the elements
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in the carbonatites was mainly due to fractionation of carbonates from carbonatite magmas which was 

initially rich in carbonatitic trace elements. Patel (1991), Mangala and Patel (1994), and Mustapha (1999) 

carried out a study on natural radioactivity and radon concentration measurements on Mrima hill. 

Mangala and Patel studied elemental analysis of sediments samples in which Th with a mean 

concentration of 770 ppm was found to be the main source of high environmental radiation. Patel (1991) 

in research on radiation distribution pattern showed that boreholes in the area had very high radiation 

anomalies with external radiation in the Mrima hill. Mustapha (1999) tested water samples from the 

boreholes in the area found out that they contained high level of radon with concentrations ranging from 1 

to 410 Bq/m3.

Recent studies on HBRA of Kenya include; Ohde ( 2004) who analyzed twenty eight (major and trace) 

elements including eight rare earth elements (REEs) in African carbonatite rock samples from Homa 

Mountain by instrumental neutron activation analysis. He studied the geochemical behavior of trace 

elements in relation to the order of carbonatite intrusion. Mn, Fe, Sr, Ba, Th, U and REE was found in the 

sixteen carbonatites examined. Two sets of carbonatites were found to be extra ordinarily enriched in Mn, 

Fe and Ba while others had elevated concentration of Na, Sc and Sb with high content of Cr, As, and Th. 

Achola (2009) found out that the presence of Naturally Occurring Radioactive Materials (NORM) i.e. K- 

40, Ra- 226 and Th- 232 in carbonatite rocks was responsible for high background radiation in the area.

2.3 LIBS Analysis of Environmental Samples

Environmental samples are complex and rich in environmetric information but extracting it using other 

conventional techniques is a challenge. As such several studies have been conducted using LIBS as a fast, 

non-destructive and in-situ technique for quantitative determination/analysis of these samples. Among 

this studies are; Liang et al. (1997) in analysis of particulate materials by LIBS which resulted to 

improved limits of detection (LOD) by 1 order of magnitude relative to previous methods applied to the 

same samples. Chenglie et al. (2009) used LIBS in analysis of Pb content in soils; the analyzed spectral 

line profile was fitted by Lorentzian function for determining the background and the full-width at half­

maximum (FWHM) intensity of spectral line. Precision of calibration analysis was achieved by correcting 

for self-absorption effect resulting to 8 ppm LOD for Pb in soil. In their study, Cremers et al. (2001) 

tested a new analysis method for predicting total soil carbon using LIBS by determining appropriate 

spectral signatures and calibrating the method using measurements from dry combustion of a Mollisol 

from a cultivated plot. Their results showed that LIBS method rapidly and efficiently measured soil 

carbon with fair detection limits (300 ppm), precision (4 - 5%), and accuracy (3 - 14%).
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Ferreira et al. (2009) evaluated three LIBS instrumental parameters (laser pulse energy, delay time, and 

integration time gate) regarding their influences on signal-to-noise ratio (SNR) of seven elements (Al, Ca, 

Fe, K, Mg, Mn, and Ti) in soil samples. To optimize LIBS parameters for each elemental response, 

multiple response optimization method was used. With only one simple screening design, it was possible 

to obtain a good combination among the studied parameters in order to simultaneously increase the SNR 

for all analytes.

Christoph et al.(2009) use of a double pulse-laser induced breakdown spectroscopy (DP-LIBS) to 

determine As concentration in 16 soil samples collected from 5 different mine tailing sites in Korea. The 

use of double pulse laser led to enhancement of signal intensity (by 13% on average) and SNR of As 

emission lines (by 16.5% on average) with smaller relative standard deviation (RSD) compared to single 

pulse laser approach. An internal standardization method using a Fe emission line provided a better 

correlation and sensitivity between As concentration and the DP-LIBS signal than any other elements 

used. As concentration determined by DP-LIBS was compared with that obtained by atomic absorption 

spectrometry (AAS) and found to be correlated with a correlation coefficient of 0.94.

Frank et al. (2001) used a hyphenated technique combining laser-induced breakdown spectrometry and 

laser induced fluorescence (LIBS-LIF) for the analysis of heavy metals in soils. Plasma radiation was 

detected using a Paschen-Runge spectrometer equipped with photomultipliers for the simultaneous 

analysis of 22 different elements. Calibration curves were recorded using a set of spiked soil samples. 

Limits of detection were derived from these curves for As (3.3 ppm), Cd (6 ppm), Cr (2.5 ppm), Cu (3.3 

ppm), Hg (84 ppm), Ni (6.8 ppm), Pb (17 ppm), Ti (48 ppm) and Zn (98 ppm) using the LIBS signals. 

Calibration curves based on the LIF signals showed significantly improved limits of detection of 0.3 and 

0.5 ppm for Cd and Ti, respectively.

Mohammed et al. (2009) investigated trace elements of environmental significance (Cr, Pb, Mn, Cd, Sr, 

Ni) present in the volcanic rock samples collected from sites of the Cenozoic era flood basalt flows using 

a locally developed laser- induced breakdown spectrometer. For spectrochemical analysis of these 

samples, plasma was generated by pulsed Nd: YAG laser radiation at 1064 nm wavelength on the target 

rock samples. Concentrations of these elements were found to be 1910 ppm, 1399 ppm, 90.5 ppm, 1241 

ppm and 461.5 ppm for Cr, Mn, Pb, Sr and Ni respectively. LIBS results were compared inductively 

coupled plasma atomic emission spectroscopy (ICP-AES) and found to be in agreement with the accuracy 

range of 0.02-0.23 %. From these researches, it is apparent that LIBS has been successfully used in 

analysis of environmental samples but little has been done in analysis of trace elements in environmental 

samples arising from a HBRA to evaluate influence of trace elements on the environment.
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2.4 Chemometrics and LIBS Analysis of Environmental Samples

LIBS and chemometrics have been utilized in the analysis of geo-materials for the purposes of calibration 

and classification. Among such studies are; Niangfang (2009) who used LIBS and chemometrics to 

determine Cu and Zn concentrations in soils. In his study, 12 samples with different Cu and Zn 

concentrations were analyzed by ICP-OES and LIBS, respectively. Univariate and PLS regression were 

applied to LIBS spectra to develop the calibration models for prediction of Cu and Zn concentrations 

whose results were compared in both methods. The results demonstrated that PLS regression was 

powerful in analyzing LIBS spectral data compared to the univariate regression through improved 

normalized root mean square error of calibration (NRMSEC) of about 15% and the normalized root mean 

square error of prediction (NRMSEP) of about 10% respectively. PLS regression using the reduced 

spectral range (300-350 nm) containing Cu and Zn peaks produced the best results, which indicated that 

use of the suitable spectral range in the PLS regression improved LIBS analytical capability.

Gottfried et al. (2009) used LIBS and chemometrics in classification of geological materials to 

demonstrate how PCA can be used to identify spectral differences between similar sample types. Both 

single- and double-pulse LIBS spectra were acquired using close-contact bench top and standoff (25 m) 

LIBS systems. PCA and partial least squares discriminant analysis (PLS-DA) were used to identify the 

distinguishing characteristics of the geological samples and to classify the materials. Clegg et al. (2006) 

used LIBS to quantitatively analyze 195 rock slab samples with known bulk chemical compositions 

which were split into training, validation, and test sets. The LIBS spectra and chemical compositions of 

the training set were analyzed using PLS, multilayer perceptron artificial neural networks (MLP - ANNs) 

and cascade correlation (CC - ANNs) to predict the chemical compositions of the test set. Both the full 

LIBS spectrum and the intensity at five pre-selected spectral channels per major element (feature 

selection) were used as input data for the multivariate calculations. The RMSE for PLS using the igneous 

rock slab test set was found to be; 3.07 % (Si02), 0.87 % (Ti), 2.36 % (AI2O3), 2.20. % (Fe2C>3), 1.74 % 

(MgO), and 1.14 % (CaO).

Ningfang (2009) demonstrated the feasibility of LIBS as an alternative technique to quantitatively analyze 

soil samples by using the univariate and PLS techniques to analyze LIBS spectra of 12 soil samples and 

to build calibration models predicting Cu and Zn concentrations. Results showed that PLS significantly 

improved the analytical results compared with univariate technique. Normalized root mean square error 

(NRMSE) and R2 of the univariate models were found to be 16.60 % and 0.71 in calibration and 18.80 % 

and 0.62 in prediction forCu and 18.97 % and 0.62 in calibration and 22.81 % and 0.45 in prediction for 

Zn. For PLS models using the spectral range 300 - 350 nm, the NRMSE and R2 were 1.94 % and 0.99 for
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both Cu and Zn in calibration and 7.90 % and 0.94 for Cu and 8.14 % and 0.94 % for Zn in prediction 

respectively. The results indicated that PLS can improve the quantitative analytical ability of LIBS for 

soil sample analysis.

Marcio et al. (2009) classified Brazilian soils based on the use of LIBS and chemometrics techniques. 

Linear discriminant analysis (LDA) was employed to build a classification model on the basis of a 

reduced subset of spectral variables. For the purpose of variable selection, three techniques (successive 

projection algorithm (SPA), the genetic algorithm (GA), and a stepwise formulation (SW)) were 

considered. The methodology was validated in a case study involving the classification of 149 Brazilian 

soil samples into three different orders (Argissolo, Latossolo and Nitossolo). For means of comparison, 

soft independent modeling of class analogy (SIMCA) model was also employed. The best discrimination 

of soil types was attained by SPA-LDA, which achieved an average classification rate of 90 % in the 

validation set and 72 % in cross-validation.

Most of the above highlighted studies focused on elements in contaminated soil among others but little 

attention has been focused on its use in the analyses of atomic and molecular signatures in geothermic 

applications which is important because they can help in the determination and differentiation of 

concentrations of the elemental and molecular components present in the samples as well as evaluating 

the chemical structure of the matrices. Furthermore, most studies on HBRAs have been focused mainly 

on NORM (U, Th, K-40, Ra) yet heavy elements present in these areas could be of importance in 

characterization and mapping of such areas. Geothermal field matrices (soils and rocks) are chemically 

complex matrices, and only a few studies coupled MVA and LIBS e.g. soil carbon analysis (Martin et al., 

2007).

2.5 Chemometric-LIBS in HBRA Geothermics

In general, previous studies highlighted above (section 2.1 - 2.4) have focused on analysis of NORM in 

HBRA for determination of activity concentration of radioactive elements such as Th, U, Ra and K with 

little attention directed to the role of other trace elements in the definition of the characteristics of HBRA 

and/HBRA impact on the environment. On the other hand, researches on geothermal activities have 

focused mainly on gaseous compounds e.g. SO2, H2S, and C 02 as responsible for underground 

geothermal activities. So far (according to our knowledge), very few studies (e.g. Baranwala et al., 2006) 

have been conducted on a HBRA sitting on geothermal active areas based on analysis of heavy trace 

elements.
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To implement multivariate analysis (MVA) in the analysis of HBRA geothermal field matrices, LIBS 

spectral data collected from geothermal field samples is of great significance in evaluating the 

quantitative analytical ability of LIBS in trace heavy metals analysis in geothermal matrices. The 

combination of LIBS and chemometrics can help to interpret spectral properties of the samples and in 

calibration for accurate prediction of the trace elements spectral data associated with HBRA geothermal 

matrices. As such, a new technique of method development through chemometric-LIBS has been 

developed and applied it in context of Eco toxicological impact of HBRA geothermal effluents 

immobilization, HBRA heavy trace metal systematics, and utility chemometric - LIBS for geothermal and 

prospecting in HBRA.
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CHAPTER THREE

THEORETICAL BACKGROUND

3.1 Laser- Induced Breakdown Spectroscopy (LIBS)

Laser-Induced Breakdown Spectroscopy (LIBS) is an atomic emission spectroscopic technique capable 

of obtaining spectra containing analytical line emissions of elements directly from matrices. LIBS 

operates by focusing a laser onto a small area at the surface of a specimen (a gaseous or solid or liquid 

sample) in order to produce transient plasma (Cremers and Radziemski, 2002).When the laser is 

discharged it ablates a very small amount of material of about 10 ng which instantaneously generates a 

plasma plume with plasma temperatures of about 10,000 -  20,000 K. The ablated material dissociates 

into excited ionic and atomic species of the constituent atoms that emit characteristic radiation for 

upwards of lOps per laser pulse (Capiteli et al., 2002).

Meanwhile the plasma expands at supersonic velocities (~106 cm/s) and cools, allowing for dynamic 

study of dense plasmas (Rosalba et al., 2010). Because such a small amount of material is consumed 

during the LIBS process the technique is essentially non-destructive or minimally-destructive and being 

an optical technique it is non-invasive, non-contact and can even be used as a stand-off analytical 

technique (Andrez et al., 2006). Due to the nature of this technique sample preparation is typically 

minimized to homogenization or is often unnecessary where heterogeneity is to be investigated or where 

a specimen is known to be sufficiently homogenous, this reduces the possibility of chemical 

contamination during analysis.

LIBS systems are more sensitive, fast and can detect a wide range of elements i.e. both high and low 

atomic number elements. Atomic and sometimes ionic emission lines excited and detected allow for 

qualitative identification of the species present in the plasma, while their relative intensities can be used 

for quantitative determination of the corresponding components (Barbini et al., 2000; Muller and Stege, 

2002; Rodrigues et al, 2008).

Once the plasma has reached local thermal equilibrium (LTE), the spectrally integrated line intensity 

corresponding to a transition between two adjacent levels Ek and Ej of generic atomic species 

concentration Cx can be expressed as (Cremers and Radziemski, 2002).

/oc
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(3.1)
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where /<* is the measured integral line intensity of the emitted light, UX(T) is the partition function for the 

emitting species, T is the plasma temperature, KB is the Boltzmann’s constant, g k is the statistical weight 

of the higher energy level, Aik is the oscillator strength and F is a constant depending on the 

experimental and geometrical conditions (Liwana and Feng, 2008).

The concentrations of elements can be obtained by comparing a given line intensity from an unknown 

sample to that from a reference sample whose thermal properties are close to the unknown sample 

(Stavropoulos et al., 2004). The average electron density of the plasma during the spectroscopic detection 

time window is measured by using the Saha- Boltzmann equation (Barbini et al., 2000).

Ne
3 Ex

Na U i (T )B {KT )2e  KT 

NiUK(T) (3.2)

where B is the Einstein’s coefficient while Na and Ns are the population density of atoms and ions 

respectively.

3.2 Calibration for Determination of Trace Element Concentrations in Soils and Rocks using LIBS

Univariate calibration is done by generating calibration curves obtained by plotting the intensity of the 

analyte signals resulting from atomic/ionic lines against the concentrations of known samples. The slope 

of the calibration curve is termed as the sensitivity, i.e. it is the change in analyte signal intensity for a 

unit change in concentration. The concentration of an element in any unknown sample may be obtained 

by recording the LIBS spectrum of an unknown sample and by using the calibration curve equation 

3.3(Boersema et al., 2010).

Y = mX + C (3.3)

where Y is the analyte signal/ intensity of elements emission line, m is the slope of calibration curve, X is 

the concentration of element and C is the intercept of calibration curve.

The LIBS spectra for all reference samples are obtained and the intensities of spectral lines corresponding 

to those elements in all LIBS measurement are calculated. Using the obtained intensity, concentration of 

the unknown samples is obtained from equation 3.3.
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3.3 MultivariateAnalysis (MVA)

Multivariate analysis involves statistical analysis of data that arises from more than one variable 

measurement (e.g. LIBS spectra). MVA takes into account nearly all the variables in the whole spectra, 

removes the redundant and correlated information, and extracts the most important information from the 

original LIBS spectra. MVA thus makes LIBS more feasible in the determination of elemental 

composition and the differentiation of different samples (Labbe et al., 2008). This is because LIBS 

spectra obtained from e.g. soils and rocks are complex and have an overabundance of emission lines from 

the various constituent elements. Especially in the 200 nm to 500 nm spectral region, spectral interference 

is so prominent that conventional data analysis techniques are insufficient in providing spectral 

correlation with elemental composition. Hence, the use of multivariate analysis to establish correlation 

between LIBS spectra and the concentration of elements in matrices is of necessity (Doucet et al., 

2007).The techniques include, PCA and S1MCA (for pattern recognition), PLS and ANNs (for calibration 

and spectral modeling).

From equation 3.1, given that other factors are kept constant, ideally, the measured line intensity is 

proportional to the species concentration in the sample. However, the intensity deviates from the ideal 

value due to different influencing factors and processes such as self-absorption which is often 

unavoidable in LIBS quantitative analysis if the concentration of measured species is not low enough. 

Atoms at the lower energy levels can easily reabsorb the radiation emitted by other atoms of the same 

species in the plasma leading to a pronounced non-linear relationship between the line intensity and the 

increasing element concentration i.e. the characteristic line intensity will differ from the ideal straight line 

as the element concentration increases. Inter-element interference due to line overlap and related matrix 

effects is also unavoidable, especially for multi-element samples. Spectral interference is prominent when 

emission lines of other elements are close to an emission line of the analyte. In such situations, the 

characteristic line intensity might not only result from the transition of one single species, but also be 

interfered with by other elemental number densities.

Factors such as laser power, lens -  to - sample surface distance and delay time of laser pulse, fluctuate 

from pulse to pulse, leading to the fluctuations of plasma itself. Although the fluctuations can generally be 

minimized by averaging the measured signal for multi-pulse, deviation of the measured line intensity 

from expected value is still unavoidable. All these effects shift the line intensity simultaneously, making it 

very difficult to separate them one by one physically and indicating that the utilization of data processing 

technology to compensate for these effects can be an effective way to improve the measurement results. 

Due to these deviations, the intensity of the characteristic lines may not carry enough information to
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accurately reflect the measured element concentration, while it still contains the most correlated 

information (Zhe et al., 2011). Therefore, an ideal way is to extract the major concentration information 

from these characteristic lines and further correct for deviation by taking the full-range spectrum into 

account to compensate for the deviations, thus the need to employ multivariate techniques such as PLS, 

ANNs.

3.3 1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is one of the most extensively used multivariate statistical techniques 

in chemometrics. PCA is a powerful tool for exploratory data analysis and for building predictive models 

(Clegg et al., 2009). The linear multivariate PCA models are developed using orthogonal basis vectors 

(eigenvectors), which are called principal components (PCs), thereby reducing the high dimensional LIBS 

data onto a lower dimensional space (Ashwin et al, 2011). The application of PCA can remove the 

redundant and less important information while retaining the most important and original information and 

differentiate samples by groupings (Mark, 2001; Romanenko and Stromberg, 2007).

In PCA one performs a linear mathematical transformation of the data into a new coordinate space such 

that the largest variance lies on the first axis and decreases thereafter for each successive axis. The 

coordinate space of a multidimensional data set is transformed into a coordinate system representing the 

orthogonal directions of the largest variance within the dataset, thereby reducing large number of 

variables contributing to total variance to a much smaller set of principal components (Viendra et al., 

201 l).This is done by approximating a matrix X defined by variables and small numbers of outer vector 

products. The matrix X is approximated by a product of lower dimension T*P (PCs) and a residual 

matrix E.

X=T P + E (3.4)

where T is a matrix score that summarizes the x- variables (sample spectra), P is a matrix of loadings 

showing the influence of the variables on each score (intensities at different wavelengths or 

concentrations), E is a residual matrix containing deviation between original values and the projections 

(illustrated by Fig 3.1).

The unique scores derived from each data are used to group data in PCs based on coordinate system. On 

evaluating the score plots, one finds classes of similar multivariate data set. Evaluation of loading plots 

gives information about the similarities between variables as well as showing which variables strongly
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correlate with the estimated components. The view of residuals shows well and badly modeled areas 

within the spectra (Clegg et al., 2006).

Fig 3.1: Block diagram illustrating the process of data compression by PCA.

3.3.2 Partial Least Squares (PLS)

PLS is a two-block regression method that relates two sets of data by means of regression. The purpose of 

PLS is to establish a linear model, attempting to derive from each source information that is relevant to a 

relationship between X and Y, enabling the prediction of properties of interest from a new measured 

spectrum (Ferrer et al., 2008).

PLS regression linearly relates the variations of dependent variables i.e. known concentrations to the 

variations of independent variables (spectra of known concentrations), and it works especially well when 

independent variables are large in number and carry common information such as correlations and 

collinearity (Wold et al., 2001). PLS regression actively uses dependent variables to help estimate the 

“latent” variables (PLS components) from the original independent variables, and the first PLS 

component contains the most relevant information predicting the dependent variables (Clegg et al., 2009). 

PLS regression simplifies the interpretation of the relationship between independent variables and 

dependent variables, because this relationship is interpreted with the smallest number of PLS components 

(Markandey et al., 2009). In conventional LIBS application, PLS generates a regression model that 

correlates the two matrices, the LIBS spectra (X) and the elemental concentrations (Y) as described by 

equation 3.5 (Zhe et al., 2011).

Y = BX (3.5)
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where Y contains the elemental concentrations (the response) in each calibration sample and X includes 

the intensity of each wavelength for each calibration sample. B is the regression coefficient matrix. As a 

result, PLS analysis obtains a linear combination of values to correlate the spectral intensities with the 

elemental composition (Sirven et al., 2006).

Typical PLS results can be presented as number of PCs, correlation coefficients (r), the root mean square 

error of calibration (RMSEC), root mean square error of cross validation, and root mean square error of 

prediction (RMSEP). RMSEC is a measure of how well the model fits the calibration data; the root mean 

square error of cross validation is a measure of the predictive ability of the model formed on part of the 

calibration data set to predict the remaining data; and RMSEP is a measure of the average prediction 

error. An ideal model will have high r and low RMSEC and RMSEP values (David and Melgaard, 2001). 

The predictive ability of the regression models can be evaluated by coefficient of multiple determination 

(R2) and accuracy determined by standard error of prediction (SEP) given by equation 3.6.

SEP=Er=i

where C,y is the actual concentration, CtJ is the estimated concentration of the j th component of the i,h 

sample and p is the number of samples used in the validation set (Faber et al.,2003).

3.3.3 Artificial Neural Networks (ANNs)

ANNs are nonlinear computational tools capable of modeling extremely complex functions e.g. LIBS 

spectra for soils. They operate using a large number of parallel connected simple arithmetic units called 

neurons. ANNs can be used to build empirical multivariate calibration models of the form

y = /(X ) + £ (3.7)

where y  is the vector matrix containing sample response (concentration), f  is the network function;X is 

the input (sample spectrum) and £ is the error of calibration (Marini et al., 2008).

Each neuron receives a series of inputs that are dynamically weighted; the ANNs compare the weighted 

sum of its input to a given threshold and finally apply a non- linear function to compute the output. Each 

input is a continuous variable (LIBS spectra) which becomes weighted by a weight to that adjusts the 

influence of the input values in the neurons. All the weighted inputs are summed up to an overall net input 

of the form

(cij cij) (3.6)
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Netj =  S f=1©x+ 6 (3.8)

where 0  is the bias of the neuron, which can be treated as a general weight of the neuron. The weights are 

initialized randomly and have to be optimized during model development i.e. training of the neurons.

As illustrated in Fig 3.2, an artificial neuron identifies a weighted sum of inputs x„ compares it to a given 

threshold (or a bias) b and then transforms the resulting value into a response (output) n using a nonlinear 

transfer function. The neurons are organized in layers to form a network. Each neuron of the first (input) 

layer has a single input corresponding to the measured spectrum intensity at one wavelength. The outputs 

of the last (output) layer constitute ANN results. Each neuron in this output layer is associated with one 

chemical element contributing to the spectrum. The number of neurons in the second layer (the hidden 

layer) is a free parameter (Vincent et al., 2008).
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Fig 3.2: ANNs network principle and architecture: R- number of elements in the input vector, s- number 

of neurons in a layer, a- the output (Howard et al., 2009).

To produce accurate results, the algorithm needs to be trained i.e. calibrated with a set of reference spectra 

representative of the targets to be analyzed e.g. model samples with known concentrations of elements of 

interest. The training phase involves finding the best set of weights and bias values that would minimize 

the network output errors. This is done by using, for example, a back propagation algorithm, which is 

based on a gradient descent that allows the network to find the best fit to the training set of input-output 

pairs after a certain number of iterations. Finally, the network prediction ability is evaluated by the 

validation set (Ying et al, 1993).
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3.3.4 Soft Independent Modeling of Class Analogy (SIMCA)

SIMCA is a supervised classification technique which incorporates the application of PCA for 

dimensionality reduction (Marcio et al., 2009). Because of its supervised nature, it necessitates a training 

data set consisting of samples (in this case LIBS spectrum) and their class membership (sample type) 

(Clegg el al., 2009). Soft modeling refers to the fact that the classifier can identify samples as belonging 

to multiple (overlapping) classes and is not constrained to producing a classification of samples into 

strictly discrete (non-overlapping) classes (Jose et al., 2003; Snezana and Onjia, 2007). SIMCA enables 

independent modeling of the classes as opposed to an overall variance modeling as performed in PCA. 

PCA is performed on each class in the data set and a number of PCs are retained to account for most of 

the variation within each class. Samples that may be described uniquely by spectra are mapped onto a 

much lower dimensional subspace for classification (Paul and Laurie, 1989). If a sample is similar to the 

other samples in the class, it will lie near them in the principal component map defined by the samples 

representing that class. An unknown is only assigned to the class for which it has a high probability 

(Chase et al., 2005). SIMCA-based predictive classification is performed by comparing the residual 

variance of the prospective sample with the mean residual variance of the training samples belonging to 

the specific class (Ashwin et al., 2011). If the residual variance of a sample exceeds the upper limit for 

every modeled class in the data set, the sample would not be assigned to any of the classes because it is 

either an outlier or comes from a class that is not represented in the data set (Richard, 2003).
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CHAPTER FOUR

MATERIALS AND METHODS

4.1 LIBS Set Up

A schematic diagram of the LIBS set up used in this work is shown in Fig 4.1. A Q-Switched Nd: YAG 

(Big Sky Laser) pulsed laser delivering maximum energy of 50 mJ at a fundamental wavelength of 1064 

nm, 10ns pulse duration and 10Hz fixed pulse repetition frequency was used. The laser pulse may be 

varied by a flash lamp Q-Switch delay through the laser controller. The laser beam is focused on the 

sample placed on manually controlled stage through a quartz lens.

The distance between the focusing lens of focal length 10.16 cm and the sample was kept at 10mm. The 

emission from the plasma plume was recorded by the LIBS 2500 PLUS (Ocean Optics, Inc) detection 

system with a fused silica optical fibre (0.22 Numerical Aperture, 101mm focal length) placed at right 

angle to the direction of plasma expansion. The LIBS 2500 PLUS detection system consists of seven high 

resolution (0.1 nm) HR 2000 atomic emission spectrometers covering the wavelength range 200 -  980 

nm. Each spectrometer has a 2048 pixel linear silicon CCD array with an optical resolution of 0.065nm. 

The system is connected to a computer via USB port and accessed through the OOILIBS software 

(LIBS2500 PLUS Operation Manual, 2008).

The spectrometers acquire data simultaneously, and the data are stored on a PC through the OOILIBS 

software. The OOIBS software automatically identifies the peaks of emission lines, compares the 

corresponding wavelengths with a data base of atomic and molecular lines and provides the operator with 

a list of possible elements present in a sample. The data is programmed into a chip of each spectrometer 

including the wavelength calibration coefficients.
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Fig 4.1: A schematic diagram of the LIBS set up.

Specification of each spectrometer is given in Table 4.1.

Table 4.1. LIBS 2500 PLUS spectrometer specifications

Model Region Gratings
(lines/mm)

X Range (nm)

HR + C0463 Ultra Violet 2400 200-305
HR + C0464 Ultra Violet 2400 295-400
HR + C0465 Visible 1800 390-525
HR + C0466 Visible 1800 520-635
HR + C0467 Visible-Near Infra-Red 1800 625-735
HR + C0468 Near Infra-Red 1800 725-820
HR + C0469 Near Infra-Red 1800 800-980

4.2 System Optimisation Measurements

Since the analytical performance of LIBS depends strongly on experimental conditions such as ambient 

purge gas, laser power and wavelength, optimization of laser parameters (laser pulse energy, optical fiber
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-to -sample distance, integration time and delay time) was done using kaolin and a rock simulate(doped 

with Cu and Ti at 200 ppm) as models for soil and rock respectively. Spectra were obtained at different 

laser pulse energies (15-50mJ) integration times (0.4 -  3 ps), Q-switch delay time (80 -  250 ps) and 

number of ablations per laser scan (1-20). Several measurements were made by holding one parameter 

constant and varying the others, for each parameter, the average of three spectra at different points on the 

surface of the samples was taken.

Signal to noise ratio (SNR) and % RSD of line intensities were computed to determine the robustness and 

reproducibility of the element line signals respectively. These were calculated for the following emission 

lines which were chosen based on absence of spectral interference, self-absorption and saturation.

Table 4.2. Emission lines in Cu and Ti used for optimization measurements

Element/state Wavelength (nm) 

Rock simulate Kaolin
Cu II 212.604 212.604
Cu II 221.811 221.811
Cu I 324.754 324.754
Cu I 327.396

Ti II 334.941 336.123
Ti II 336.123 337.280
T il 500.721 500.721

4.3 Description of Study Sites

4.3.1 Lambwe Valley

Lambwe valley is located in Homa Bay county of western Kenya within the latitudes 0°30'and 0°45' 

South and longitudes 34°10' and 34°20' East. It is a south westerly extension of the Kavirondo fault 

trough lying between Kaniamwia escarpment to the East and the Gwasi massif, which is a dormant 

volcano, to the West (Allsopp and Baldry, 1972).

Its floor slopes gently at the shore of Winnam gulf. The broader northern end contains Ruri hills with 

carbonatite complex surrounded by conical volcanic plugs of hard lava. The Gwasi and Kaniamwia 

support ferruginous tropical and halomorphic soils of rocks rich in ferromagnesian minerals. Also, the 

escarpment contains mixed soil formations of red-brown, friable clays, gray molted clays and gray 

compacted loamy sands with high levels of Na, Mg and Ca. The South Ruri hill with cores of calcite 

supports largely shallow stony soils with relatively high thorium content (Achola, 2009).
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4.3.2 Lambwe HBRAs

Homa mountain is one of active HBRA in Kenya with part of it being geothermally active. The mountain 

is located on the southern shore of the Winnam gulf near the north-eastern shore of Lake Victoria in 

western Kenya, Homa Bay County. Homa mountain is 1754 m high and 600 m above the lake. Homa 

mountain is one of four alkaline complexes (Fig 4.2) lying within the Winnam Rift which extends 

westwards from the equatorial portion of the Gregory Rift into Lake Victoria (Clerk and Roberts, 

1986).Volcanic development of Homa mountain was revealed and four stages of carbonatite intrusion 

have been reported. The main igneous and related activity at Homa mountain occurred during Miocene 

and early Pliocene time and resulted in the emplacement of ijolite at shallow depths and a very well 

developed series of carbonatites and carbonatitic breccias, mostly as a complex of concentric cone sheets. 

Melilite bearing rocks are known to exist in the region (Barbe, 1974). Within the melilitite clasts, 

carbonated ferromagnesian phenocrysts occur in a matrix containing smaller crystals of carbonated 

perovskite, clinopyroxene, ore and melilite (Bahat, 1979). The carbonatite comprise sovites, alvikites, 

ferro-carbonatites and late-stage grey carbonatites. The sovites are coarse grained calcitic rocks with 

accessory apatite and pyrochlore and are characteristically associated with intense feldspathization of 

country rock and are the earliest carbonatites to be emplaced (Clarke et ah, 1979). The alvikitesare coarse 

to medium grained, often well foliated and contain individual grains of magnetite, apatite, pyrochlore and 

country rock fragments. Alvikites comprise over 90 % of all carbonate intrusions at Homa mountain. The 

ferro-carbonatites are dense, dark brown to black rocks containing large proportions of iron and 

manganese oxides. They contain a suite of accessory (including REE) minerals e.g. monazite, fluorite, 

barite and dahlite (Flegg et al., 1977).

4.3.3 Olkaria (Control Site)

Olkaria geothermal area is located within the greater Olkaria volcanic complex in the south central Kenya 

rift valley. It consists of a series of lava domes and ashes. The intrusive portions of these magmas are 

responsible for the high heat flow in the area (Macdonald and Scaillet, 2006).The area is dominated by a 

peralkaline rhyolite dome contrasting to the meta luminous rocks that more commonly form silicic dome 

fields. It is bounded to the north by Eburu complex, to the east and south by Longonot and Suswa 

volcanoes respectively, and to the west by the western rift margin. On the basis of surface outcrops, the 

main products of volcanism are alkali ryolite lava and pyroclastic rocks while trachyte and basalt-hawaiite 

lava has been minor products (Bruno and Ray, 2003). The area has active geothermal features mainly hot 

springs and fumaroles (Simiyu and Mwakio, 2000).
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4.4 Sampling

The geothermal matrices (rocks, soils) were sampled in and near physical features (rivers, fumaroles and 

hot springs) by digging a few centimeters into the physical features to obtain non- contaminated samples. 

Carbonatite rocks associated with high radioactivity were selected from the faults in these regions and 

stored in stopper polythene bags while soil was sampled in places where thermal water was in contact 

with the surface. Fig 4.2 shows a map of the sampling regions

4.5 Simulate Sample Preparation and Analysis Procedure

For the calibration of the LIBS technique with respect to the analysis of heavy metals (As, Cr, Cu, and 

Pb) in rocks and soils, a set of samples containing As, Cr, Cu, Pb and Ti over a broad range of 

concentration (10 ppm - 1.5 %) was made by spiking kaolin and synthetic rocks models with the oxides of 

these elements. Synthetic rock was prepared my mixing calcium carbonate and silica to the ratio 5:2 

equivalent to their occurrence in carbonatite rocks. For spiking, the relative atomic mass the elements’ 

was calculated. The ratio of element to its compound was calculated and used to calculate the amount in 

grams of the compound that corresponded to the concentration in ppm. The amount of each of the 

elements was small (approximately tens of micrograms) and as such could not be weighed on an 

electronic balance. Therefore, the model mass and element mass were multiplied by a factor of 100. A set 

of three samples per analyte concentration were prepared to span the range of interest. 30 % of binder 

(starch) was added to each sample and a total mass of the mixture was hand ground in a mortar using a 

pestle for about 3 minutes. 2 g of the mixture was used to make pellets by pressing the powder under a 

hydraulic press at 10 tonnes for 2 minutes. The final dimensions of the pellets were 2.5 cm of diameter 

and about 1mm thickness. The pellets were then stored in petri - dishes
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Fig 4.2; Geographic Map of Homa Mountain and other volcanic regions along the Kenya Rift Valley and a section showing regions where rocks 

and soils were sampled.
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Spectral calibration of LIBS spectrometers was done for the wavelength range of 200-980 nm using Spectrasuite 

software and Mercury-Argon (HG-1) calibration light source (Ocean Optics, Inc.) composed of the lines shown in 

Table 4.3. The light from mercury-Argon 1 (HG-1) calibration source was directed to the LIBS optical fibre, the 

integration time was adjusted and set to 100ms in order to observe several peaks within the wavelength range of 

the spectrometer. The pixel number, wavelength indicated at the point of maximum intensity of the peak and the 

actual wavelength of the emission lines from mercury and argon using the National Institute of Standards and 

Technology (NIST) elements catalogue were recorded in a tabular form.

4 6 L IB S  Calibration for Qualitative and Quantitative Analysis

Using OriginPro 8.0 software, the data obtained above was used to plot a third order polynomial with actual 

wavelength being the dependent (Y) variable and pixel number as the independent (X) variable. From the results, 

the four coefficients (X-intercept, first coefficient, second coefficient and third coefficient) and adjusted R square 

were calculated and recorded. These new coefficients were used to overwrite the old coefficients saved in the 

EEPROM memory chip of the spectrometer using the USBProgrammer software. The calibration procedure 

described above was repeated for other six spectrometers until minimum deviation from the actual wavelength 

was achieved (HR2000+ Operation Manual, 2010).

Table 4.3 HG-1 Mercury- Argon calibration lines (nm)

Hg Ar
248.200 334.148 667.728 772.376
253.652 365.015 675.283 794.818
265.204 365.484 687.129 800.616
275.278 366.328 696.543 801.479
280.346 404.656 703.025 810.369
289.360 407.783 706.722 811.531
292.541 434.749 714.704 826.452
296.728 435.833 727.294 840.821
302.150 546.074 737.212 842.465
312.567 576.960 738.398 852.144
313.155 579.066 750.387 866.794

After calibration, LIBS spectra for kaolin and synthetic rock samples were obtained and the intensities of spectral 

lines corresponding to As, Cr, Cu, Pb and Ti in all LIBS measurement were calculated by fitting a Gaussian 

function (to compensate for broadening mechanisms caused by high temperature and pressure during plasma 

Solution) to the spectral line responses of the above elements using Origin pro 8.0 programme. The lines selected 

for univariate calibration based on criteria of avoiding lines which are spectrally interfered, saturated, self- 

absorbed and resonance, are shown in Table 4.4. Multi-signal univariate calibration curves were obtained by 

Plotting the LIBS intensity for the element lines verses their known concentrations in synthetic samples. These are
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shown in figures 5.9.2. The concentration of an element in any unknown and/related sample may be obtained by 

recording the LIBS spectrum of the unknown sample and by using the calibration curve equation.

4.6.1 Limits of Detection (LOD)

Detection limit is the lowest concentration of the analyte that can be detected and determined to be present in a 

sample using an analytical technique (Cremers and Radziemski, 2002; Marwa et al., 2004). LOD can be estimated 

using the equation (IUPAC, 1997).

(4.1)

where <Xb is the standard deviation of the back ground intensity and S  is the sensitivity which is given by the ratio 

of the intensity to the concentration (Jagdish and Surya, 2007; Sirven el al., 2006).

Table 4.4 Emission lines used for univariate 
calibration in soils and rocks
Element/ state X  (nm) Element/ state X  (nm)

As I 234.984 Pb I 261.418

As 11 278.022 Pb I 280.200

As II 431.566 Pb f 283.305

Pb I 504.258

Cr II 276.258

Cr II 276.665 Ti II 334.941

Cr II 284.324 Ti II 336.123

Cr II 425.433 Ti II 337.280
CrI 425.433 Ti II 338.377
CrI 427.481 Ti I 365.349
CrI 428.973 Ti I 398.176

Til 398.976
Cu 11 212.604 Ti I 399.864
Cu II 221.811 Ti I 498.173
Cu I 249.215 Ti I 499.951
Cu I 324.754

Cu I 521.820
—
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4 .7  Multivariate Data Analysis

4.7.1 Spectral Preprocessing

LIBS spectra for the models (kaolin and rock simulate) and field soils and rock samples were pre-processed prior 

to analysis by chemometrics techniques in order to remove noise and redundant data, to enhance sufficient 

information within the data as well as to extract information in the data in a form suitable for further analysis. 

Several methods namely standardization, normalization and mean centering were tested to find the method that 

gave the optimal results. In mean centering, the average value of the variables is subtracted from each variable to 

ensure that all results are interpretable in terms of variation around the mean. In normalization, a spectrum is 

normalized by calculating the area under the curve for the spectrum to correct the spectra for indeterminate path 

length. Out of these methods; standardization resulted to better calibration and classification models. 

Standardization is a row oriented transformation which centers and scales individual spectra. It removes scatter 

effects from spectral data and each spectrum is standardized using only the data from that spectrum. This method 

was chosen because all variables are put approximately on the same scale thus variables of low concentrations 

assume equal significance to those of high concentrations (Mark, 2001; Richard, 2003).
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C H A P T E R  FIV E

R E SU L T S  AND D ISC U SSIO N

5.1 Selection o f Em ission Lines fo r Q u an tita tiv e  Analysis

The spectral region used (200 -980 nm) to record the emission lines contained most of the strong lines of As, Cr, 

Cu, Pb and Ti. From the spectra of the samples shown in Fig 5.1, there are many emission lines that are excitable 

and can be employed for quantitative analysis. Since all of these emission lines cannot be used due to the fact that 

some have undergone spectral broadening, saturation and spectral overlap, selection of lines for qualitative and 

quantitative (classical) determination of the elements in the analyzed samples was done to obtain lines that were 

not spectrally interfered, non- saturated, non -resonance (non -resonance lines undergo self-absorption easily due 

the presence of atoms having nearly the same wavelength as emitted radiation hence re absorbing the light 

emitted)and not self-absorbed. By careful comparison and evaluation of emission lines based on intensity and 

reproducibility (% RSD) of line intensities, four lines of each element were selected. The lines are shown in table

5.1 and they compare well with those reported by other researchers using emission spectroscopy techniques 

(Christoph et al., 2009; Bousquet et al., 2007; Gondal et al., 2009; Ciucci et al., 1996; Niangfang, 2009). The 

profiles of some lines are shown in Fig5.2 while others are shown in Appendix I.

The species for each element that are excitable and detectable lines in LIBS for soil and rock matrices are shown 

in Table 5.1. Most of Ti lines (both ionic and atomic)were detected, As and Pb had few lines that were detected 

and most of them were atomic, this is due to the fact that these elements have high ionization potential and most 

of the laser pulse energy absorbed is used to only atomize the elements. Of the molecules excitable, H„ (656.281 

nm), CH (844.6 nm) and O (777 nm) bands were observed (Appendix VI). Titanium has low ionization potential 

(Ti=6.82eV, Pb=7.42 eV, Cu=7.73 eV, As=9.82 eV) and as such, it can easily be excited up to first ionization 

state using even low laser pulse energy.

From Table 5.1(a) and (b), it can be seen that there are similarities in the lines detected for both rock and soils for 

As, Pb and Ti while emission lines for Cr and Cu are different in rocks and soils. This is due to difference in the 

thermo physical and thermochemical properties of samples. The thermo-physical/chemical matrix composition of 

each sample determines the ease of ablation and detection of embedded trace elements due to factors such as 

surface reflectivity, conductivity and constituents’ melting and boiling points
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fable 5.1 Lines detected and observed in soil and rock

Element/ state X  (nm) (soils)
As 1 234.984 Element/ state X  (nm) (soils)
As II 278.022 Pbl 261.418
As II 431.565 Pb I 280.200

Pb I 283.305
Cr II 276.258 Pbl 504.258
Cr II 276.665
CrI 284.324 Till 334.941
CrI 357.868 Ti II 336.123
CrI 428.973 Ti II 337.280
Cu II 212.604 Ti II 338.377
Cu II 221.811 Ti I 365.349
Cu I 244.164 Ti I 398.176
Cu I 324.754 Ti I 398.976
Cu I 515.324 Til 399.864

—  Ti I 498.173
Ti I 499.951

Element/ state X  (nm) (rocks)
As I 234.984
As II 278.022 Element/ state X  (nm) (rocks)
As II 431.565 Pb I 261.418

Pbl 280.200
Cr II 276.258 Pbl 283.305
Cr II 276.665 Pbl 504.258
Cr II 284.324
CrI 425.433 Ti II 334.941
CrI 427.481 . Till 336.123
Cr I 428.973 Ti II 337.280

Ti II 338.377
Cu II 212.604 Til 365.349
Cu II 221.811 Ti I 398.176
Cu I 249.215 Ti I 398.976
Cu I 324.754 Ti I 399.864
Cu I 515.324 Ti I 498.173
Cu I 521.820 Ti I 499.951
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Fig 5.1: LIBS spectra for soil model showing; (a) 200-980 nm spectral range and (b - d) expanded regions of the spectrum showing some emission 

profiles of spiked elements and molecular bands.

31



5 2 Optimization of Laser Parameters for Geothermal Sample Analysis 

5 2.1 Effect of Laser Pulse Energy on LIBS Intensity

The profiles of emission lines that were used to study the effect of laser pulse energy (LPE) on the intensity of the 

lines are shown in Fig 5.2, for the case of kaolin.

Cu II Cu I

F'g 5.2: Examples of profiles of emission lines used for optimization measurements.

T° find the variation of LPE with LIBS signals, four lines for Cu and Ti were monitored for kaolin at different 

p E . This variation is represented in Fig5.3.1. From the figures, the spectral line intensities showed linear
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dependence on the LPE up to 45 mJ then flattered off slightly as the energy was increased. From 25 mJ, the 

intensity increases with increase in LPE, reaching a maximum at 45 mJ then decreases slightly.

Fig5.3.1: Optimization graphs showing Cu II (212.604) and Ti II (336.123) line intensities as a function of laser 

pulse energy in kaolin.

F'g5.3.2: Variation of intensity with respect to laser pulse energy for Cu and Ti lines in a rock simulate.

Unlike kaolin, the dependence of line intensity on LPE is non-uniform and has limits at 40 mJ for rock simulate. 

This is due to the nature of matrix such as thermo-physical/chemical matrix composition, surface reflectivity, 

c°nductivity and constituents’ melting and boiling points of the rock simulate. The intensity increases
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monotonically from 15 mJ, reaching a maximum value at 40 mJ for 0.4 ps and 45 mJ at 0.8 ps then decreases as 

LPE increases. The nature of Fig5.3.2 for 0.4 gs (bending above 45 mJ) may be attributed to saturation of the 

detector at this line intensity. The intensity of plasma light is very high at this integration time such that the 

detector starts responding nonlinearly (due to large amount of light entering the detector) to the intensity of the 

light entering through the optical fiber. This effect reduces as the integration time increases because at higher 

integration time, less plasma is recorded due to large interval between observation of plasma and recording of the 

same plasma (Jagdish and Surya, 2007).

Furthermore, at low energy (below 25 mJ), shot to shot variation is. The non- linearity of line intensities at high 

LPE could also be due to plasma shielding such that most of the energy is re-absorbed by the plasma resulting in 

less material ablated hence less species detected (Jagdish and Surya, 2007). In addition, high LPE (> 45 mJ) 

produces very dense and hot plasma (~ 20000 K) that absorbs the incoming laser energy leading to increase in 

continuum and decrease in signal intensity (Cremers and Radziemski, 1989).

Signal to noise ratio (SNR)for these emission lines were computed by taking the ratio between the line intensities 

and medium noise amplitude that was obtained by averaging three spectral regions of mostly pure noise (200-205 

nm, 825-834 nm, 948-952 nm) for kaolin and (200 -  205 nm, 264-269 nm, 471-479 nm) for rock simulate. These 

regions were selected as they were characterized by very weak emission lines whose intensities were comparable 

to the background. Fig 5.4.1 shows the results of variation of SNR to increase in LPE.

Fig5.4.1: Dependence of SNR of selected Cu and Ti lines on the laser pulse energy at 0.4ps (blue), 0.8ps (red) 

and O ps (green) in kaolin.
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Fig5.4.2 Dependence of SNR of selected Cu and Ti lines on the laser pulse in a rock simulate at different 

integration times.

From Fig 5.4, SNR for Cu and Ti lines increases with the LPE and inversely with the integration times. Since the 

curves in Fig 5.4 show almost similar characteristics for both Cu and Ti, it can be concluded that the optimal 

conditions that generate LIBS signals having high SNR and non-saturated high line intensity for analysis of Cu 

and Ti in soil and rock matrices is achievable at low integration time and high (45 mJ) LPE. These results may be 

generalized for other heavy metals.

5.2.2 Q-Switch Delay (td)

Q-switch delay optimization was done so as to find the optimal time at which background continuum is minimum 

and the intensity of elemental analytical lines is optimal. Five spectra were taken at delay times ranging from 80 

ps to 250 ps at intervals of 10 ps. Fig5.5shows two spectra taken at 80 ps - 230 ps Spectra taken at low delay time 

(80 ps) indicate that the background continuum is high due to inverse Bremsstrahlung caused by high temperature 

expanding plasma (Jagdish and Surya, 2007). From the spectra in Fig 5.6 (b), it can be seen that emission lines 

from the elements have peaks with low intensity at 80 ps (illustrated by Cu I 324.754 and Cu I 327.396 lines) and 

which are narrower, sharper and have higher intensity at 150 ps. This is due to the fact that at early times, the 

plasma is dominated by white light continuum which inhibits the observation of emission lines from elemental 

species. As the plasma expands and cools, the continuum decays away and (atomic) line emissions dominate as a 

result of radiative recombination of the charged particles in plasma, which becomes prominent only at lower 

temperatures after expansion of plasma (Cremers and Radziemski, 1989).
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b  Wavelength (nm)

Fig 5.5: LIBS spectra showing the effect of td on the emission lines of elements in (a) kaolin and (b) rock simulate.
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Comparison of Fig 5.5 (a) and (b) reveals that the plasma continuum dominates the spectra in early stages (80 ps) 

0f plasma development while the line emission, which is characteristic of elements present in a sample, becomes 

evident at longer (150 ps) delay times. Therefore, considering low background continuum, higher emission line 

intensities and relatively low % RSD, optimal results for LIBS line intensity can be achieved at 150 ps.

— ■ — Intensity 
— %RSD

a Q-Switch delay (ps)

Intensity

Q-Switch delay (ps)

Fig 5.6.1: Optimization for LIBS intensity with respect to % RSD of Cu and Ti in kaolin as a function of delay 

time.

—»- Intensity 
—*—%RSD

'̂g 5.6.2: Optimization for LIBS intensity with respect to % RSD of Cu and Ti in synthetic rock as a function of 

delay time.
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5.2.3 Optical Fiber-to-Sample Distance

The effect of optical fiber to sample distance was also investigated. This is because light emitted from the plasma 

contains qualitative and quantitative information about the species present, and as such determination of the 

species in a sample depends linearly on the amount of material ablated and hence the amount of light detected by 

the spectrometer and optical fiber. It can be seen that at a distance of 10 mm, more emission lines are observed 

(Fig5.7) implying that at this distance, most light emitted by the sample plasma is collected by the optical fiber 

hence most species detected; below this value, there is overlap between plasma and optical fiber and therefore, 

only a little amount of light enters the optical fiber and is detected. Above this value, the plasma is formed above 

the sample surface hence most of the light entering the optical fiber is due to the ablation of air and a little of the 

sample (Tognoni el al., 2002). In Fig5.7 it is illustrated that intensity of emission lines of elements also depends 

on the distance between the optical fiber and the sample. As it can be seen, at optimal distance (10 mm in this 

case), the intensity of Cu lines (324.754 and 327.396 nm)is much higher than at other distances. This also implies 

that when recorded plasma light has high intensity, more species are detected hence more intense lines for 

elements (Muhamad, 2006).

300 600 900

cui — 4mm
8mm

3 2 4 . 7 5 4  ------- 10mm

Fig 5.7: LIBS spectra (200 - 980 nm) taken at different distances from the optical fiber and (b) a section of the full 

spectrum extracted from (a) illustrating this variation.
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At the above laser parameters (45 mJ LPE, 0.8 ps tg, 150 ps td and 10 mm optical fiber to sample distance) an 

average of three spectra at different points on the sample surface were acquired from kaolin and rock simulate at 

different number of ablation per laser scan. Intensities of emission lines at each value were evaluated (Fig 5.8). 

Increasing the number of ablations per laser shot results in a substantial decrease in intensities of emission lines 

due to increase in the crater depth that inhibits amount of plasma viewed by the optical fiber (Tognoni et al., 

2002; Sneddon, 2002) hence reduction in line intensities. Therefore a single ablation laser shot was found to be 

optimal in yielding higher line intensities.

Similar optimization results have been reported by other researchers. Gondal et al. (2008) studied the relationship 

of signal intensity and laser pulse energy, and the results showed that signal intensity increased linearly (r2=0.996) 

with increasing pulse energy from 10 m J to 30 m J. Wisbrun et al. (1994) investigated the effect of repetition 

rates i.e. delay time(td) and integration time (tw) on signal intensity and SNR using soil and sand samples, and the 

results showed that the optimum repetition rate for soils was 1 Hz, the optimum time parameters were element- 

dependent, but a common setup could be found, and td was more significant than tw in controlling the LIBS signal 

intensity and stability. In the optimization of laser parameters for soil analysis by LIBS, Sirven et al. (2008) found 

out that emission intensity (signal) was proportional to the laser energy, when the laser-produced plasma was in 

the optically thin region. Furthermore, the variation in the intensity of Cr atomic lines as well as that of the 

background emission, with the gate delay indicated that the continuum background emission was dominant in the 

first several microseconds but decayed much faster than the atomic line signal.

The optimal experimental parameters for LIBS on soils and rocks were obtained at 45 mJ LPE, integration time of 

0.4 ps, 150 ps delay time and 10 mm optical fiber- to- sample distance for a single ablation hence demonstrating 

LIBS as a rapid elemental analysis that can is applicable to in-situ measurements by just obtaining spectrum using 

only one ablation. These results aimed at optimizing the reproducibility of intensity measurements, while at the 

same time achieving plasma conditions where the hypotheses of LTE, stoichiometric ablation and thin plasma are 

fulfilled. Although the optimal conditions for rocks and soil analyses have been achieved, the best indication that 

LIBS has not yet overcome the experimentation stage to become a routine methodology is given by the variety of 

different experimental configurations reported in the literature (Tognoni et al., 2002). Hence each different 

arrangement is the answer to the versatility of the LIBS technique.

5 .2 .4 . Number of Ablations per Laser Scan
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Fig 5.8: Variation of line intensity with respect to number of pulses used to obtain the spectrum of (a) kaolin and (b) rock simulate.

40



5 3 Calibration for Quantitative Determination of Trace Element Concentrations

Quantitative calibration (multi signal standard addition method) of soils and rocks was carried out using kaolin 

and synthetic rock as soil and rock models respectively. The calibration curves for the models are shown in Fig 

5 9.1. Calibration curves for at least three emission lines for each element were prepared and the curves with 

favorably good LOD, sensitivity and R2 were selected for quantitative analysis. The results for these parameters 

and the lines are shown in Table 5.2(a). Calibration graphs for elements in rock simulate are shown in Fig 5.9.2.

Calibration curves from soil show more analytically meaningful linear relationship between line intensity and 

trace metal concentration, and LODs obtained are comparable to those obtained by other researchers as discussed 

below. In this work, the best LOD obtained from selected best lines for detection of As, Cr, Cu, Pb and Ti in soil 

and rocks (Table 5.2 (a) and (b)). For rocks the values obtained were somewhat higher due to existence of the 

elements at a relatively high concentration than in soils.

Table 5.2(a) LOD and R2 values for determination of elements in soils (from univariate
calibration)

Element R2 LOD (ppm) Sensitivity (Cg/spg)
As I 278.022 0.730 2.4 2.6
Cr 11 276.258 0.908 5.1 1.5
Cu 11 221.811 0.967 3.1 3.9
Pb 1 280.200 0.969 7.6 • 20.3
Ti 11 336.123 0.957 120 450

Table 5.2(b) LOD and R2 values for determination of elements in rocks from (univariate

calibration)

Element R2 LOD (ppm) Sensitivity(Cg/spg)

As 1 (234.984) 0.936 8.3 1.02
Cr I (276.665) 0.846 6.1 0.85
Cu II (212.604) 0.889 9.0 1.77
Pb I (280.200) 0.944 3.0 28.59
Ti II (336.123) 0.957 180 1140
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'§ 5.9.1: Examples of univariate calibration curves for As, Pb, Cr, Cu and Ti in soils.
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5.9.2: Examples of univariate calibration curves for As, Pb, Cr, Cu and Ti in rocks.
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In comparison to other research carried out previously using univariate approach for LIBS in air at atmospheric 

pressure and choice of best line, Chengli et al. (2009) analyzed the content of Pb in soils and obtained the LOD of 

g ppm. On investigating the effect of delay time and gate width on signal intensity using soil samples, Wisbrun et 

al. (1994) found the LOD of 10 ppm (Pb), 20 ppm (Cu) and 10 ppm (Cr). Similar results were found by Frank el 

a/.(2001), who carried out research on the analysis of heavy metals in soil using LIBS, the values obtained were

3.3 ppm- As, 2.5 ppm-Cr, 3.3 ppm Cu, 17 ppm Pb and 48 ppm Ti. Gondal et al. (2009) found the LOD for Cr to 

be 2 ppm when they carried out an online monitoring of remediation of Cr polluted soils using LIBS. In their 

research on determination of trace elements in volcanic rock samples using LIBS, Yamani et al. (2009) found the 

LOD of these elements to be 4 ppm (Cr), 14 ppm (Cu) and 3 ppm (Pb). Therefore we can say that the LIBS 

system used in this work is capable of analyzing trace elements with LOD below ten ppm and the results are in 

most cases lower (hence superior) to those published earlier.

5.3.1 PLS Calibration and Prediction of Trace Elements in Soils and Rocks

PLS calibration and prediction models were developed based on full spectrum (200-545 nm) and spectral regions 

containing line intensities of the elements of interest taking into consideration the minimum ends of the peaks for 

selected lines and using the Unscrambler software (version 9.8, CAMO). LIBS spectra were first averaged to one 

spectrum per sample and pretreated by standardization method (Richard, 2003).

The models were developed with the PLS regression using the spectral data obtained from the model (kaolin and 

rock simulate) samples at the concentration ranges stated in Section 4.5. Predictive ability of the PLS models was 

evaluated by full cross-validation. Full cross validation systematically leaves one sample out from the original 

samples as the validation data and uses the remaining samples as the training data (Zhe et al., 2011). This 

procedure was repeated until every sample was used once as the validation data. Full cross-validation is a 

conservative model evaluation method that helps to select the model with the best predictive ability (Sirven et al., 

2006).

Results from the PLS analysis are presented in terms of correlation coefficients (R2), root mean square error of 

calibration (RMSEC) and standard error of prediction (SEP). An independent set of spectral data (five samples 

with different concentrations of As, Cr, Cu, Pb and Ti) was set aside for prediction purposes so as to evaluate the 

capability of the model generated in predicting future similar samples. Fig 5.10 shows PLS calibration curves 

from partial spectra for As, Cr, Cu, Pb and Ti in soils. Regression coefficient (R2) and the root mean square error 

°f calibration (RMSEC) are summarized in Table 5.3
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Full spectrum (200-545 nm) Feature selection
Table 5.3. R2 and RMSEC values for soils using PLS calibration models_____________

Element RMSEC (ppm) SEP (ppm) R2 RMSEC (ppm) SEP (ppm) R2

As 3.76 11.72 0.968 0.73 3.98 0.999
Cr 92.44 136.72 0.927 2.87 5.03 0.991
Cu 1.44 1.10 0.999 0.15 0.76 0.999
Pb 0.65 1.91 0.982 0.28 0.29 0.997
Ti 2300 234.78 0.974 500 152.00 0.991

Full spectrum region of 200 -  545 nm was chosen because the region contained mostly atomic and ionic lines of 

the elements of interest, beyond this region, atomic lines of C, H, O and N are dominant hence contain more 

redundant information. Partial spectra were selected by choosing regions containing As, Cr, Cu, Pb and Ti 

emission lines within the 200 -  545 nm range.

It can be seen that RMSE in all PLS models with spectral regions are better (lower) than those in the full spectra 

model. Specifically, compared with the full spectra model, the PLS models with spectral region have lower 

RMSEC values while high calibration quality is maintained as indicated by SEP values (Table5.4). The lower 

RMSEC value indicates that the proposed spectral region based PLS models are more robust than the full spectra 

based model for measuring samples with matrix out of the calibration set. This is because variables influencing 

concentration of these elements in the spectra are fully captured in regions containing elements while in the full 

spectrum, variables from other elements apart from As, Cr, Cu, Pb and Ti and noisy regions contribute to model 

development thus affecting the prediction results (Yang et al., 2010).PLS models were used to test their 

applicability on standard reference materials (SRM) soil samples IAEA soil 1 having different concentrations of 

the elements except Ti. Results of univariate and PLS prediction of the concentrations are shown in Table 5.4 (a).

Table 5.4(a) Comparison of univariate multi signal (using best line) and PLS calibration in prediction of 
element concentration in SRM for soils ______________
Sample Method As (ppm) Cr (ppm) Cu (ppm) Pb (ppm)

Soil 1 SRM (reference) 28±3 104±9 30±6 38±7
Univariate 46 40 36 18
PLS (full spectrum) 14 230 15 25
PLS (feature selection) 32 123 27 39

%RSD 9 12 7 2
* % RSD value for best model

In Table 5.4 (a), it can be seen that PLS results improved as indicated by the respective values of percent relative 

standard deviation, whereas classical approach had poor prediction. This is because with PLS, all the spectral 

regions with chemical content of the elements of interest are simultaneously taken into account and modeled with
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respect to many features (line shape, intensity, spectral interference, broadening) unlike in classical approach 

vvhere only the intensity of one or multi signal spectral line is considered; as such some of the important 

information not related to the intensity (spectral interference, line broadening) but influencing the concentration is 

left out (Labbe et al., 2008). Therefore, for linear relationships, PLS calibration should be used in LIBS analysis 

of soils. PLS results using full spectrum performed very poorly because of so many variables influencing the 

model but not important being taken into account. That is, noise influence, interference from emission lines of 

other major elements present in sample e.g. Ca, Mg and spectral overlap between emission lines of different 

elements close together, hence affecting the modeling ability of PLS.

Furthermore, the choice of spectral regions containing emission lines for elements of interest yields models which 

contain main quantitative information, this helps to avoid the use of the noise in the spectrum thus becoming more 

robust over a wide concentration range. Similar results were obtained by Niangfang (2009) who found that PLS 

regression using the reduced spectral range (300-350 nm) containing Cu and Zn peaks produced the best results 

among all the spectral ranges, which indicated that use of the suitable spectral range in the PLS regression 

improved the LIBS analytical performance.

Results from this study indicate that the use of PLS significantly improves the quantitative analytical capacity of 

LIBS. The application of PLS in analysis of LIBS spectra has great potential for constructing robust calibration 

models for trace quantitative LIBS analysis and providing reliable prediction of element concentrations consistent 

with conclusions of previous studies (Clegg et al., 2006; Labbe' et al., 2008; Gottfried et al., 2009; Martin et al., 

2010). PLS results for rocks SRM showed poor results as shown in Table 5.4 (b), this can be attributed to non­

linearity in the variation of concentrations with respect to line intensities resulting from complex sample thermo 

chemistry, hence linear models like PLS do not yield satisfactory results. As a result, nonlinear method of 

calibration was carried out using ANNs.

5.3.2 ANNs Calibration for Prediction of Trace Elements in Rocks

For rock models, classical calibration showed nonlinear relationship (this can be seen from the non-uniform 

distribution of points and low values of R2in Fig 5.9.2) in variation of intensity with respect to concentration. 

Furthermore, normalization by internal standard of emission lines for these elements using Ca or C line could 

have led to improvement of the result but this was not obtained because there were no suitable lines for Ca1C to be 

Used as internal standards. This is due to the fact that most of the lines were not near the region containing 

dements of interest hence not suitable for analysis. As such, calibration with neural network was performed on 

the data set of the simulate spectra at different concentrations.
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A two layer (in -  built with back propagation training function) neural network (NN) was generated for As, Cr, 

Cu, Pb and Ti using Matlab version 7.8 (The Mathwork, Inc). Since using full spectra requires large memory due 

to large a large number of data, data compression was necessary for neural networks computation. Data 

compression was done by selecting spectral regions of containing the elements to be analyzed. Spectral regions 

containing emission lines of elements studied in this work were utilized as inputs in the network while their 

measured concentrations were fed into the network as targets i.e. expected outputs. Back propagation training 

functions with Levenberg-Marquardt (LM) algorithm was used to train the feed forward networks for non-linear 

regression because it obtains lower mean square errors compared to other algorithms due to its faster rate of 

convergence hence advantageous for accurate training (Howard el al., 2009).

The training session consisted of assembling training data, creating the network object, training the network and 

simulating the network response to new inputs. The number of neurons in the hidden layer was chosen based on 

the mean square error (MSE) and the training performance of each network during the training session; training 

was repeated several times until the best results of low MSE and satisfactory performance were achieved. 

Training stopped automatically when the validation error increased thereby avoiding over fitting. After 

developing the NN model, results were tested by simulating the output of the neural network with the measured 

input data which were compare to the measured outputs. These results were saved in the computer. Sample 

training performance plots are shown in Fig 5.12. The figure shows mean square error (MSE) starting at a higher 

value and decreasing to a smaller value (the network is learning). Three lines in the plot are for training, 

validation and testing. Three lines arise because the inputs fed into the network are divided into three sets; 60 % 

for training the network, 20 % for validating how well the network generalizes and 20 % to test how the network 

will perform on new set of data. The training stopped when validation increased for five (e.g. Fig 5.11 (a) and 

nine (Fig 5.11 (b)) iterations, which occurred at iteration 11 and 15respectively. By epoch 5 (Fig 5.11 (a)) and 9 

(Fig 5.11 (b)), no significant over-fitting had occurred; the test and validation sets behaved in a similar manner. 

Advantage of ANN over other methods is that over fitting is automatically avoided by stopping the training when 

validation error increases beyond the expected low limit (Howard, 2009). Calibration graphs obtained from ANN 

model developed are displayed in Fig 5.12.
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Fig5.11: Performance plots for (a) As, (b) Cr, (c) Cu, (d) Pb and (e) Ti ANNs calibration showing the training pattern of the network.
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5.3.3 Validation of the PLS and ANNs Models

The developed models (ANNs and PLS) were used to predict the concentration of the above elements in rocks 

standard reference materials obtained from United State Geological Survey (SCO-1). SCO-1 is typical of the 

Upper Cretaceous silty marine shales, intermediate between fine-grained offshore shales and coarser near shore 

marine siltstones. The rock is medium dark-gray silty shale having thin lighter colored silty laminations. (United 

States Geological Survey Certificate of Analysis, Cody shale-SCO-1). Prediction from ANNs showed 

improvement compared to PLS result because ANN performs better in modeling nonlinear relationships. Table

5.4 (b) shows the results for three models used to predict concentration of trace elements in SRM rock samples.

From Table 5.4(b), it can be seen that not all results obtained from NN models are closer to the certified 

concentration of the above elements in SRM rock samples. This can be attributed to the slight difference in the 

nature of the simulate matrix and actual rocks as well as complex sample thermochemical properties hence slight 

deviation in the results. In the case of prediction the elements concentrations in rocks, ANN calibration curves can 

be used to predict the concentrations of As, Cr, Cu and Ti while univariate calibration methods for Pb prediction. 

PLS methods are linear techniques meant for solving relationships which are linear. In case of nonlinear variation 

of concentration in relation to spectral intensity (caused by extreme matrix effect and complex sample 

thermochemistry) as in the case of rocks univariate calibration graphs, the performance of PLS is less sufficient 

and this is why the predicted values from PLS in rocks SRM are less accurate compared to those from ANNs 

models. Models that yielded better results for rocks (see Table 5.4 (b)) were used to predict the concentration of 

soils and rocks samples respectively, from Lambwe and Olkaria. Tables 5.5 show the concentration of five 

elements detected in the field samples.

Table 5.4 (b). Prediction ability of different methods for elements in SRM (rocks)
Sample Method As

(ppm)
Cr (ppm) Cu (ppm) Pb (ppm) Ti (ppm)

SRM (reference) 12±1 68±5 29±2 31±3 0.38±0.06
SCO-1 Univariate BDL 58 9 28 0.21

ANNs 9.17 72 25 26 0.28
PLS (full spectrum) BDL 139 34 7.5 0.33
PLS (feature selection) 9 98 11 17 0.19

% RSD* 19 4 10 12 11
*Values calculated using the best model
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T ab le  5 .5  Predicted concentration o f  the elem en ts in the sam ples

Category

Element Concentration (ppm) in rocks 

Sample As C r) Cu Pb Ti (%)

HGR9 67 130 55 53 0.13
HBRA HGR22 26 145 54 44 0.32

HGR 30 20 118 41 47 0.09(geothermal)
HGR 34 27 145 33 44 0.14
HGS 4 42 149 47 45 0.23
HGS 8 12 120 31 31 0.19
HGS 12 18 147 64 45 0.34
HGS 22 38 127 46 44 0.32
HGS 23 113 109 42 45 0.47
HGS 33 139 137 120 43 0.18

HNP 1 11 146 45 40 0.22
HNP 2 47 149 37 29 0.18
HNP 15 13 149 53 45 0.17HBRA
HNP 16 20 149 71 44 0.20

(non- geothermal) HNP 18 26 150 40 39 0.19
HNP 19 7 149 60 44 0.18
HNP 24 29 147 67 66 0.29
HNS 21 17 149 56 44 0.28
HNS 27 80 150 85 46 0.18
HNS 29 21 150 69 0.30

NBRA GSA-1 76 149 76 95 0.26

(geothermal) GSA-2 13 87 84 94 0.10
GSA-3 37 150 80 84 0.16
GSB-2 53 55 108 91 0.03
GSB-3 67 116 109 87 0.18



Element Concentration (ppm) in soils
Category Sample As Cr Cu Pb Ti

(%)
HGR 17 4 50 5 24 0.52
HGR24 27 100 13 17 0.73
HGR 25 37 78 13 30 0.75
HGR 30 15 73 11 26 0.94
HGR 32 22 72 13 25 1.07

HBRA HGR 34 26 75 13 27 1.43
(geothermal) HGS 7 24 73 15 24 0.85

HGS21 54 108 22 15 0.79
HGS 22 63 90 23 18 0.76
HGS 23 50 88 35 29 0.91
HGS 31 25 53 12 31 0.73
HGS 33 38 65 13 34 0.84

HNP2 17 51 10 24 0.86
HNP 14 18 52 7 26 0.72

HBRA HNP 16 36 64 13 24 0.99
(non-geothermal) HNP 17 35 51 10 33 0.38

HNP 18 12 37 4 34 0.46
HNP 20 9 31 5 32 0.61
HNS 27 20 35 8 32 0.48
HNS 29 24 36 7 35 0.47

NBRA GFA 40 40 12 12 0.60
(geothermal) GFC 26 39 9 16 0.62

GSB 32 18 8 33 0.38
GSC 37 28 9 29 0.45
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The overall range of concentrations for trace elements in rocks was as follows; As (7 -139 ppm), Cr (87- 150 

ppm), Cu (33-120 ppm), Pb (30-95) and Ti (0.03 - 0.47) %. While concentrations of As, Cr and Ti are slightly 

higher in HBRA geothermal, Pb and Cu were found to be lower in HBRA and higher in NBRA geothermal. 

Elevated Pb and Cu concentration in NBRA geothermal region could have been enhanced by geothermal 

activities i.e. fluids which are known to contain Pb, which results to increased concentration of Pb relative to a 

HBRA geothermal (Ozgur, 2002).

The predicted concentrations lie within the range reported by other researchers in similar fields. Achola (2009), 

analyzed some radioactive elements (U, Th, K, Ti and Pb) in Lambwe rocks (HBRA non geothermal rocks) using 

X-ray fluorescence (XRF) technique and found that they had elevated level of Pb and Ti in the range (41 -  1560 

ppm) and (0.27 - 2.2 %) respectively. Rustem (2003), carried out an analysis of major and trace element 

concentration in selected rocks from a hot spring (NBRA geothermal) to find the effect of these elements on 

human health; trace elements had varied concentration with Cr (40-152 ppm), Cu (7-32 ppm), Pb (8-110 ppm) 

and Ti (0.08-0.53 %).

Other researchers include: Lucia et al. (1998) (Cr: 35-108 ppm, Cu: 13-68 ppm and Ti: 0.18-2.36 %); Wendy and 

Mary (1997) (Ti: 0.14-0.25 %); Weaver et al. (1972) (Ti: 0.114 - 1.95 %); Hammes et al. (2007) (Ti: 0.11-0.85 % 

Cu: 16-43 ppm, Cr: 4-43 ppm, As : 40-64 ppm); Ohde (2004) (As: 13-130 ppm) and Yamani et al. (2009) (Cr: 

285-1519 ppm, Cu: 52-380 ppm, Pb: 10-92 ppm). Hence it may be concluded that LIBS coupled with multivariate 

chemometrics techniques is capable of quantitative determination of trace element concentrations in HBRA 

geothermal field matrices (rocks).

On the other hand, the overall ranges of trace element concentrations in soils were as follows; As (4-63 ppm); Cr 

('.8 -108 ppm); Cu (4-35 ppm); Pb (12 -  35 ppm) and Ti (0.30 - 1.43 %). Concentrations of these elements in soils 

were found to be generally lower than that in rocks except Ti. This is because, already elevated levels of these 

elements in HBRA are further enhanced by underground geothermal activities as geothermal fluids contain traces 

of these elements.

Research on geochemical and radionuclide of Tuzia geothermal field (NBRA geothermal) revealed that in soil 

samples, heavy metals were found to be in higher concentration in the vicinity of hot springs, with Cr being on 

average 40 ppm (Alper et al., 2008). Stuat et al. (2004) carried out an analysis of trace elements in soils from 

Longonot volcano using XRF and ICP-MS; concentration of these elements were in the range of; Cr (4-53 ppm), 

Cu (6-49 ppm), Pb (7-24 ppm) and Ti (0.33-0.832 %). Kursad et al. (2002) investigated heavy metals in the 

volcanic soils from Turkey and detected four heavy metals to be in excess levels in the soils with Pb (40-130 

Ppm) and Cu (9-25 ppm). Similar results were reported by Adamo et al. (2003) ( Cr: 45-335 ppm, Pb: 23-100
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ppm), Amaral et al. (2006) (Ti: 0.38-0.70 %, Cu: 18-58 ppm, Cr: 22-55 ppm, Pb: 17-83 ppm), Laurent et al. 

(2003) (Cr: 52-95 ppm, Cu: 29-52 ppm, Pb: 89-155 ppm, Ti: 0.58-1.22 %) and Emmanuel et al. (2008) (Cr: 35- 

108 ppm, Cu: 6.5-164 ppm).

Correlation coefficients for the concentration of the elements in the soils and rocks are shown in Table 5.6. 

Correlation coefficients help in understanding the relationship between the occurrence and concentrations of the 

trace elements. If the correlation is close to one (positive correlation), it implies that the elements are linearly 

related to each other such that if one exist at higher concentration in the sample, the other element also exists at 

higher concentrations and vice versa. On the contrary, if the value is close to negative one (negative correlation); 

it means the elements are anti-correlated such that if one exists at high concentration, the other will be in low 

concentrations and vice versa.

Table 5.6 Pearson correlation coefficients for the elements in the samples using the mean concentrations

Soils As Cr Cu Pb Ti
As HBRAG 0.7 0.8 -0.3 0.0

HBRANG 1.0 0.7 0.9 -0.2 0.2
NBRAG 0.0 0.6 -0.0 -0.1

Cr HBRAG 0.7 0.6 -0.7 0.1
HBRANG 0.7 1.0 0.8 -0.8 0.7
NBRAG 0.00 0.7 -0.9 0.9

Cu HBRAG 0.8 0.6 -0.1 0.1
HBRANG 0.8 0.8 1.0 -0.6 0.5
NBRAG 0.9 0.7 -0.8 0.6

Pb HBRAG -0.2 -0.1 -0.1 0.1
HBRANG -0.1 -0.7 -0.6 1.0 -0.9
NBRAG -0.0 -0.9 -0.8 -0.9

Ti HBRAG 0.0 0.0 0.1 0.1
HBRANG 0.1- 0.0 0.5 -0.9 1.0
NBRAG 0.1 0.9 0.6 -0.9

Note: HBRAG - HBRA geothermal, HBRANG - HBRA non 
geothermal, NBRAG - Non HBRA geothermal areas.

Rocks As Cr Cu Pb Ti
As HBRAG -0.1 0.6 0.2 0.2

HBRANG 1.0 0.5 0.3 0.0 -0.2
NBRAG 0.3 -0.2 -0.0 0.5

Cr HBRAG -0.1 0.3 0.3 -0.2
HBRANG 0.3 1.0 0.2 -0.3 -0.2
NBRAG 0.3 -0.6 -0.2 -0.8

Cu HBRAG 0.6 0.3 0.2 -0.0
HBRANG -0.3 0.2 1.0 0.5 0.2
NBRAG 0.2 -0.6 -0.2 -0.5

Pb HBRAG -0.2 0.3 0.2 -0.0
HBRANG -0.0 -0.3 0.5 1.0 0.6
NBRAG 0.0 -0.2 -0.2 0.0

Ti HBRAG 0.2 0.2 -0.0 -0.0
HBRANG -0.2 -0.2 0.2 0.6 1.0
NBRAG 0.3 0.0 0.3 0.9

In HBRA geothermal areas As, Cr and Cu were positively correlated but they were negatively correlated with Pb 

and Ti. For elements in NBRA geothermal soils, As was highly correlated to Cu and negatively with Cr, Pb and 

Ti. Cu and Ti were positively correlated to each other but negative with As and Pb. Ti was only correlated 

Positively with Cr and Cu. We can therefore conclude that concentration and interrelationship of these elements 

are different (not high for all the elements and vice versa) in HBRA non geothermal, NBRA geothermal, and 

HBRA geothermal soils. Weak correlation patterns were observed in rock samples due to the distribution of the 

dement concentrations in rocks
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Therefore a HBRA geothermal area is uniquely characterized by positive correlation of As and Cr concentrations 

in soils while a NBRA geothermal area is characterized by negative correlation of Cu with Pb and Ti, and Pb 

with Cr and Ti.

Although concentrations of these elements have been found to occur naturally in soils at levels below 30 ppm, 

110 ppm, 100 ppm, 200 ppm for As, Cr, Cu and Pb respectively (ANZECC/NHMRC Guidelines 1992, EPA 

1986a), contaminated soils (including HBRA soils) usually contain more than the threshold values.

Ti concentration was found to be higher in soils than in rocks (by 0.62 % in HBR geothermal, 0.40 % in HBRA 

non geothermal and 0.37 % in NBRA geothermal areas). This could be due to rock weathering enhancement of 

the radionuclides and other heavy trace element concentrations in soils thereby elevating the concentration of 

most elements including Ti (Adel and Arabi, 2006).

Although concentration of some elements e.g. As in some samples (HGR 25, HGS 22, HGS 33, HNP 17, HNP 

18, GFA, GSB and GSC) are above the recommended level, most of them (Cr, Cu, Pb) are within the range 

recommended by US Environmental Protection Agency (EPA 1986a) and as such, they are not yet a threat to the 

surrounding population.

In conclusion, LIBS coupled with multivariate calibration techniques developed have successively applied to 

qualitative and quantitative analysis of trace elements in geothermal field matrices. The results obtained so far 

indicate that LIBS is a rapid, noninvasive technique that can be used for analysis of environmental samples which 

in turn can help in monitoring of soil contamination.

5.4 Classification of Rocks and Soil using Chemometric techniques (PCA and SIMCA)

5.4.1 Principal Component Analysis

The data matrix obtained from LIBS spectra (full spectra: 200 -  545 nm, elemental concentrations, spectral 

regions containing emission lines of As, Cr, Cu, Pb and Ti) of the soil and rock samples were first pre-treated by 

standardization method and then subjected to PCA in order to have an overview of existing trends and discover 

the main property variations in the data. PCA as the basic tool for data analysis simultaneously provides a visual 

representation of relationships between samples and variables as well as insights into sample homogeneities and 

heterogeneities (Mark, 2001). In this case, all individual measurements on rocks and soils were referred to as 

samples, while the spectral intensities taken at each particular wavelength were referred to as variables. Using 

^scrambler (CAMO) software version 9.7, PCA was performed on the pretreated spectra. A total of 6 principal 

c°mponents (PCs) was used which carried total explained variance of 94 %. The score plot in Fig 5.13.1 shows
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the coordinates of the spectra in the plane of first and second PCs, PCI (63 %) and PC 2 (14 %) which contains 

77 % of the total spectral information.

PC 2 H B R A

Fig 5.13.1: PCA score (a) and (b-c) loading plot for soils taken based on the full spectra.

Fig 5.13.1shows the PC scores and loading plot for LIBS analysis of the three different classes of soils analyzed 

simultaneously using PCA. Clearly, the samples of each class tend to cluster together and in almost all cases are 

fairly well separated from the other classes. Of these, non HBRA geothermal soils appear to be the easiest to 

distinguish based on their distance from the other classes. It is also interesting to observe the dispersion of the 

HBRA geothermal soils class along the PC directions, e.g. HBRA non geothermal soils have clustered along PC 

HBRA geothermal samples are distributed along PC 1 downwards while non HBRA geothermal soils are 

negatively correlated to the HBRA geothermal ones as they lie on the negative side of PC 1. Exploration of the
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loading plots revealed that each of the group is characterized by different spectral signatures for elements. HBRA 

geothermal soils were found to contain mostly Ca, Ba and Mg (see associated wavelengths in Appendix 

VI) HBRA non geothermal soils on the other hand had characteristic emission lines of Ti. Strong lines of Ca and 

Mg are repetition and therefore their influence is captured in PC 1.

Samples from Olkaria (non HBRA geothermal) were characterized by strong lines of A1 and Fe. The clustering 

was based on spectral features in the UV-VIS range. This is expected because previous studies have shown that 

soils in Lambwe valley (a HBRA area) have exchangeable high content of Na, Mg, Ca and highly alkaline 

(Allsops and Baldry, 1972; Bahat, 1979; Clerk and Roberts, 1986) while Olkaria (a non-HBRA) is characterized 

by ferruginous and silica minerals (Marshall et al., 2009; Macdonald and Scaillet, 2006). From the loading plot 

for the full spectra, it can be concluded that PC 1 contains information (intensities) of Ca, Mg, Si, Fe and Al while 

PC 2 gives information about concentration of Ti and Si in the samples.

Fig 5.13.3: PCA score (a) and loadings plot for soils taken based on feature selection.

In terms of elements mentioned above (As, Cr, Cu, Pb, Ti), it can be seen that there exist four different groups, 

with non HBRA soils clustering in two sub groups i.e., one group far away from the rest and the other lying close 

to Lambwe soils. On exploration of the loading plot (on the right hand side of Fig 5.13.2 the pixel numbers 

^present wavelengths for the elements of interest as they occur in the LIBS spectrum), it was found that samples 

ln the 1st quadrant (HBRA geothermal) were characterized by emission lines of Pb and Cr hence in agreement
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with results obtained using full spectrum although the cause of clustering has been narrowed down to the elements 

of interest, i.e. As, Cr, Cu, Pb and Ti.

Soils sampled from fumaroles (Olkaria) were found to be characterized by As, Cr and Pb lines (4th Quardrant), 

those sampled from the streams were associated with Ti lines. Ti lines were also found to be associated with 

HBRA non geothermal soils. This can be seen from the clustering of the samples in 2nd quadrant. This is expected 

because from earlier studies, the level of Pb in rocks sampled from Lambwe valley was found to contain elevated 

levels of Pb and Ti, (Achola, 2009) due to the presence of NORM in carbonatites. PCA scores and loadings plot 

for rock samples based on the full and partial spectra are shown in Fig 5.13.3.

* HBRA geothermal 
HBRA non geothermal

♦  NBRA geothermal PC 2

Mg Mg

Fig 5.13.3: PCA score (a) and (b) loading plots for rocks based on the full spectra.

From the PCA score plot for rocks based on the full spectra above, there is no clear clustering. Samples from 

Lambwe valley are evenly distributed from PC2 downwards to PCI. Some of the samples from Olkaria have been
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grouped together with those from Lambwe. But there exists a cluster of rock samples from Olkaria grouped on the 

3rd quadrant. Assessment of the loading plots in indicated that rocks sampled from Olkaria (sampled in two 

different streams) had high concentration of Fe and Ti. Olkaria rocks having high content of Si clustered far away 

(this is supported by presence of silicic volcanics/trachyrhyolites in Olkaria (Williams, 1972; Marshal el al., 

2009)) from the others while those with high content of Fe clustered close to those from Lambwe.

Reason for clustering is because Kaniamwia escarpment in Lambwe valley largely supports ferruginous soils on 

rocks rich in ferro - magnesium minerals (Allsop and Baldry, 1972) thus rocks rich in Fe are found in the region. 

Furthermore, from the study of the loadings plots, LIBRA rocks were found to be associated with strong emission 

lines of Ca and traces of Ba. This can be due to carbonatite rocks common in both HBRA (geothermal and non -  

geothermal).The high content of Ca and Mg from Lambwe rocks (Homa mountain) is mainly due to sovites and 

alvikites carbonatites containing calcitic and magnetitic rocks found in Homa mountain (Clerk and Roberts, 

1986). From this analysis, PCI contains chemical information of Ca, Fe and Ti while PC 2 contains that of Mg 

and Si. The scores and loading plots in the Fig 5.13.4 were plotted with respect to the region of the spectrum 

containing emission lines of five elements (As, Cr, Cu, Pb and Ti).

HBRA

4 8  4110 4 t5  I  005 i l l  1 .8  »  MS 0 30 03S l «  045
PC* r o d s * *  . . . j U q t W

Fig 5.13.4: PCA score (a) and loadings plot for rocks based on feature selection.

In terms of feature selection, there was no much difference in the clustering of rocks in relation to sources of 

°figin. From the loading plot, HBRA geothermal rocks were characterized by Ti lines. HBRA non geothermal 

which do not show clear clustering were associated with emission lines of Cu and Pb. The cluster of non HBRA 

geothermal close to Lambwe rocks group was found to be characterized by the presence of Ti while some samples
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were clustered in accordance with As. It should be noted that the rocks from Olkaria (non HBRA geothermal) 

were sampled from two different springs thus the different in spectral features of trace elements.

From the score plots for soils and rocks, the three classes for soils are correctly discriminated based on intensities 

of As ,Cr, Cu, Pb and Ti; but for rocks, those from Lambwe (HBRA geothermal and HBRA non geothermal) were 

not well classified due to similar characteristics of most emission lines of Ti and Cu. It was also observed that 

there was not much difference of the results using the entire spectrum and spectral regions of emission lines. This 

means that classification of samples depends on intensities of atomic components strongly influencing the 

distribution of elements in the samples.

PCA results based on the predicted concentrations of As, Cr, Cu, Pb and Ti are shown in Fig 5.13.5 and Fig 

5.13.6 for soil and rocks.

■ HBRA (geothermal)
* HBRA (non-geothermal)
* NBRA (geothermal)

PC 2

ig 5.13.5: Scores (a) and loading (b) plots for soils analyzed using predicted concentrations of five elements.

rom the plots in Fig 5.14.7 and Fig 5.14.8, although there was no clear clustering for soils, association of trace 

elements with sources of soils origin can be seen. HBRA geothermal soils are mostly characterized by the 

concentrations of Cr, Ti and Cu; HBRA geothermal are influenced by Pb concentrations; while NBRA 

geothermal are classified by the concentrations of As. In rocks on the other hands, HBRA rocks have clustered 

together, being characterized by As and Ti concentrations. NBRA exhibit no clear cluster although they are 

characterized by Pb and Cu concentrations.
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Fig 5.13.6: Scores (a) and loading (b) plots for rocks analyzed using predicted concentrations of five elements.

From all the PCA score plots, it can be said that use of full spectrum for discrimination of soils and rocks with 

respect to sources of origin gave satisfactory results as there was a clear distinction of sample classes based on the 

origin. Probably because full spectra contain more chemical components that have strong influence on the 

samples such that trace element’s contribution to clustering is minimal PCA enables one to identify and 

discriminate a HBRA geothermal, HBRA non geothermal and a NBRA geothermal area using spectra from soils 

but it cannot be relied on to correctly identify rocks from HBRA geothermal and HBRA non geothermal (this 

might be due to strong influence of major elements in carbonatite rocks).

Based on these results it can reasonably be concluded that LIBS spectra provide vital information e.g. spectral 

signatures for atoms, elements and molecular components which can be used in routine monitoring analysis for 

variations in soils from different environmental sources e.g. HBRA geothermal, HBRA non geothermal and 

NBRA geothermal. Also PCA has helped to identify primary elements i.e. Ca, Mg, Fe and Si in soils and rocks 

which help in distinguishing between HBRA geothermal, HBRA non geothermal and NBRA geothermal area. On 

the contrary, while PCA is a valuable tool for recognizing similarities and differences between sample types based 

on specific chemical signature criteria, it does not automatically provide class memberships of unknown samples 

due to its unsupervised nature.

To assign class membership, SIMCA technique was employed. Assigning class membership is more important 

because it simplifies the task of determining similarities and differences between samples by providing
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information on whether a sample belongs to a particular class or not based on the probability calculated from F- 

value of that sample in relation to already existing classes.

5.4.2 SIMCA Classification of Soil and Rock Samples

SIMCA was opted for, to identify samples as belonging to multiple (overlapping) classes and not constrained to 

producing a classification of samples into strictly discrete (non-overlapping) classes because it enabled 

independent modeling of the classes as opposed to an overall variance modeling as performed in PCA (Ashwin et 

al, 2011).

In the first step, a PCA classification model was developed (based on atomic spectra from full spectral range of 

200- 545 nm) in which the training set consisted of HBRA geothermal samples as class 1, HBRA non geothermal 

sources as class 2 and non HBRA geothermal samples as class 3. With LIBS data (pre - treated by 

standardization), a SIMCA model with 5 PCs for each class (explained variance > 97 %) and 5 % as the 

significance level for critical distance was the one that provided the best results. In each class, two thirds of 

samples were randomly selected as training set while the remaining third were set aside to be used as test set. 

Figure 5.14 shows Cooman’s plots for the classification model constructed with the training set of three classes

mentioned above.
/

In the Cooman’s plot for soil, SIMCA has clearly distinguished Olkaria (non HBRA geothermal) soils (2nd 

quadrant) from Lambwe soils (HBRA geothermal and HBRA non geothermal soils) which is further illustrated by 

larger (> 0.3) sample to model distance. All the three categories of soils were within the limits of their class as 

none of the samples was located in the region of the Cooman’s diagram common to the two classes. The 

prediction capacity of the SIMCA model was determined by analyzing the set of external test samples (12 for 

HBRA geothermal, 9 for HBRA non- geothermal, 5 for NBRA geothermal) that had not been used at any time to 

generate the model and the results are displayed in the classification table shown in Table 5.7. From Table 5.7, 

nearly all the samples were correctly classified (100 % correct classification) except those from HBRA 

geothermal class (some samples from a NBRA geothermal class exhibit similar characteristics as those from 

HBRA area due to the present of similar content of Fe to those from HBRA as seen in PCA score plot in Fig 

5.13.2. One sample from this class was not classified in any group (false negative) but most (11) were correctly 

classified. The overall classification of 96 % was achieved for all the samples.
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Fig. 5.14: Cooman’s plot for classification models developed for; (a) soils and (b) rocks.

Table 5.7(a) SIMCA test set results (soils)
Class No. in class Correct % correct

HBRA (geothermal) 12 11 92
HBRA (non- geothermal) 9 9 100
NBRA (geothermal) 4 4 100
Total 25 24 96

Table 5.7(b) SIMCA training set results (rocks)
Class No. in class Correct False positive

HBRA (geothermal) 39 39 39
HBRA (non- geothermal) 47 47 47
NBRA (geothermal) 8 8 8
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SIMCA classification for rocks showed an overlap of classes (Fig 5.14(b) and Table 5.7(b) such that most 

samples were classified into more than one group (false positive, e.g. HBRA geothermal rocks and non HBRA 

geothermal rocks in the Cooman’s plot). This can also be seen in the PCA score plot (Fig 5.13.3) in which there 

lacks a clear cluster. This is because of strong influence of Ca, Mg and Fe present in carbonatite rocks that 

overshadows influence of elements such as As, Cu, and Ti resulting from geothermal activities. Classification 

results for soils and rocks based on the predicted concentrations of the elements are shown in Fig 5.15.
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Fig 5.16: SIMCA classification results based on predicted concentrations for (a) soils and (b) rocks.

As seen previously, classification based on predicted concentration did not yield satisfactory results because most 

samples have been misclassified i.e. classified in more than one group as seen in the plots.

To test the applicability of SIMCA models in classification of future samples, an independent set of field samples 

which were sampled from a different HBRA region (Bala hills) at a different period of time (2007) was prepared. 

Single LIBS spectra from the samples were acquired and used for classification. It turned out that soils were 99 % 

correctly classified while rocks had 90 % classification as some of the rocks were doubly classified (false 

positive). The models having performed well in an independent set of samples proved that the models can be used 

for classification of future samples with > 90 % correct classification. The classification results for the 

independent set are shown in Fig 5.16.
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As it can be seen, soil and rocks samples lay close to the HBRA geothermal sample classes. This is true because 

the independent set of samples were obtained from a HBRA geothermal source five years earlier than the model 

samples. Therefore SIMCA technique has proved to be a perfect tool to use in environmental modeling.

SIMCA technique improved the classification from PCA model; it is also more reliable than PCA because a 

sample is only classified to a class for which there is a high membership probability. With this model, spectra 

from any unknown sample can be used to determine if the unknown sample comes from a HBRA geothermal, 

HBRA non geothermal or non-HBRA geothermal source. This will make it easy to identify geothermally active 

areas in the future without having to go through the tiresome process of well geothermal potential determination.

In conclusion, the models developed for both calibration and classification have been utilized to interpret HBRA 

geothermal reservoir characteristics through the correlation of the trace element concentrations and the clustering 

of samples according to spectral signatures of major elements i.e. Ca, Fe, Mg and Si as well as trace elements. 

Classification models developed can be used for geothermal prospecting instead of the normal method of 

geothermal temperature gradient determination. Predicted concentrations have indicated that the trace elements 

levels are within the acceptable limit hence not a threat to the surrounding population and environment.
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CHAPTER SIX

CONCLUSION AND FUTURE PROSPECTS

In this work, Chemometric -LIBS techniques have been developed and employed for quantitative and explorative 

analysis of HBRA geothermal field matrices. Firstly, optimization measurements were carried out on laser 

parameters namely; Q-Switch delay, integration time, sample-to- optical fiber distance, LPE and the number of 

laser ablations per scan required in order to obtain optimal LIBS spectra for quantitative analysis of trace atomic 

signature in FIBRA geothermal soils and rocks. Multi- signal standard addition (classical method) was performed 

by spiking different trace concentrations of As, Cr, Cu, Pb and Ti in kaolin and rock simulate to mimic real soils 

and rock samples respectively.

The performance of obtained calibration curves was tested and used to predict concentration of these elements in 

certified reference materials. Results obtained demonstrated the application of multivariate calibration techniques 

in quantitative analysis of trace element concentrations in soils and rocks using chemometrics. PLS and ANNs 

were performed on LIBS spectra to develop calibration models which were used to predict concentration of trace 

elements in geothermal field matrices. Classification techniques PCA and SIMCA were applied on soil and rock 

spectra from HBRA geothermal field matrices for purpose of finding the similarities and differences between 

HBR geothermal, HBRA non geothermal and NBRA geothermal matrices.

Optimization parameters have been established for the quantitative analysis of soils and rocks using the multi -  

signal univariate calibration technique. Parameters namely LPE, integration time were found to depend on the 

nature of matrices under investigation. LIBS proved to be potentially viable in quantitative characterization of 

geothermal field matrices (soils and rocks). With LIBS, it was possible to detect and identify viable analytical 

lines for As, Cr, Cu, Pb and Ti which were used for quantitative analyses of these elements in the matrices.

Univariate calibration curves developed from the emission lines intensity were not satisfactory in prediction of 

element concentrations in the field matrices due to the limitation of using intensity of a single line per element and 

as such, multivariate chemometrics techniques (PLS and ANNs) were developed. In LIBS spectra, intensity of 

emission lines is not linearly dependent on the concentration of element species in the sample due to factors such 

as matrix effect, spectral interferences and broadening mechanisms involved in plasma evolution; as a result, it 

was important to perform calibration using multivariate chemometrics techniques, which take into consideration 

all the underlying factors. Results from univariate analysis of simulate soils and rocks indicate that univariate 

calibration is not sufficient to overcome inter-element effects and non - linear relationships between elements 

concentration and their LIBS intensity.
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Limits of detection were determined and found to be favorably good (below 10 ppm for trace elements) hence 

with LIBS; it is possible to detect the elements in soil and rock matrices at low levels. The advantage of using 

PLS is that the full spectral information for the elements of interest are used and as such, factors not related to the 

species concentration but affecting the species e.g. spectral interference and line broadening are accounted for in 

the quantitative model. In classical calibration method, there is a great challenge on the time taken to compute the 

intensity of all lines for element and the choice of which lines to be used. Furthermore, a lot of time is spent in 

generating calibration curves for the lines of elements, especially for elements having many lines like Ti.

PLS and ANNs calibration models have been developed which are more accurate than SAM as they can easily 

and simultaneously predict concentration of trace elements analyzed in different samples using a single LIBS 

spectrum of a soil and rock sample. PLS showed improved prediction in soils but did not perform well in rocks 

due to nonlinear characteristics of LIBS spectra for rocks arising from the thermo physical and thermochemical 

properties in the rock simulate. Therefore, PLS technique was found to be suitable in solving linear problems 

while ANNs was best for nonlinear problems.

It was also found that concentration of the trace elements was different in three categories of classes of samples 

studied with HBRA geothermal area having higher concentration of the five elements compared to HBRA non 

geothermal and NBRA geothermal area. This may be due to enhanced radioactivity in HBRAs. In a HBRA 

geothermal soil, As was found to be highly correlated to Cr, but negatively correlated in NBRA geothermal soil. 

Cr was negatively correlated to Ti in HBRA and positively correlated in geothermal area. Pb was strongly anti­

correlated to Cr and Cu in a geothermal soil but less correlated in HBRA. Therefore, to characterize and explore a 

field as geothermal or not using the concentrations, the correlation of these elements should be determined and 

assessed.

PCA performed better on samples classification using full spectra than in cases of spectral regions containing five 

elements. This is because major elements (Ca, Mg, Fe and Si associated with geothermal and HBRA activities) 

that strongly influence clustering vary in the three classes discussed so far i.e. HBRA geothermal, HBRA non- 

geothermal and NBRA geothermal. In comparison to PCA, SIMCA showed even better classification capability 

as it clearly distinguished samples in relation to their origin based on atomic spectra of UV-VIS spectral range.

SIMCA and PCA were successfully applied to classify and distinguish the origin of the geothermal field matrices 

(HBRA, or non-HBRA) based on LIBS atomic signatures in a manner applicable to geothermal resource 

characterization and environmental impact modeling. Classification models developed by SIMCA could be used 

in future for geothermal prospecting by making it easier to identify geothermal ly active areas without going 

through time consuming processes like geothermal gradient determination. It has also been found that the
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concentrations of trace metals (As, Cr, Cu, Pb and Ti) in the soil and rocks vary from one source to the other in all 

the three classes of sampling, being higher in HBRA geothermal. Their concentrations (in soils) were such that 

they do not pose any environmental risk or health hazard to human beings (although they are high in HBRA areas, 

they are still within the acceptable levels).

It is concluded from the present study that in the soil and rock samples of the Lambwe Valley, the concentrations 

of the heavy trace metals analyzed were nominal and do not pose any potential health hazard to the general public. 

However, this data may provide a general baseline level for the area studied and may also serve as a guideline for 

future measurement and assessment of trace elements in the case of any abnormal health hazards from the area. A 

HBRA geothermal area is uniquely characterized by elevated levels of As and Cr concentrations in relation to 

low concentrations of Ti and vice versa in soils; while a NBRA geothermal area has negative correlation of Cu 

with Pb and Ti, Pb with Cr and Ti.
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APPENDICES

Appendix I: Profiles of emission lines for elements used in generating calibration curves

Asl

Wavelength (nm)

Fig I (i): Profiles of As lines used for univariate calibration.



In
te

ns
ity

 (
a.

u)
 

In
te

ns
ity

 (
a.

u)

Cull

a Wavelength (nm)

Cull

b Wavelength (nm)

Cul

c Wavelength (nm)

Cul

Fig I (ii): Profiles for Cu lines used in calibration.
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Fig I (iii): Profiles for Pb lines used for univariate calibration.
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Fig I (iv): Profiles for Ti and Cr lines used in univariate calibration.
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Appendix II: Examples of LIBS spectra for geothermal matrices
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Fig II (i): Spectrum for a soil taken from a HBR geothermal active river in Lambwe valley.



Fig II (ii): Spectra for a rock taken from a HBRA geothermal source in Lambwe valley.
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Appendix III: Optimization graphs for different elements in model matrices

-•-Intensity  -'-Intensity

c Q-Switch delay (ps)

Fig III (i): Optimization graphs showing the variation of LIBS intensity and % RSD of Cu lines in kaolin at 

different delay times.
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Fig III (ii): Optimization graphs showing the variation of LIBS intensity and % RSD of Ti lines in kaolin at 

different delay times.



Fig III (iii): Optimization graphs for Cu and Ti lines in kaolin. The graphs show the variation of SNR with respect 

to the laser pulse energy at 0.4ps(blue rectangles), 0.8gs(red rectangles) and 1.3ps (green triangles).
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Fig III (iv): Optimization graphs showing the variation of SNR of Cu lines in a rock simulate at dilferent laser 

pulse energy.

%



Ti II 336.12 
^ * -0 .4  ns 

- ^ 0 .8  ns
—*—1.3 jis

16 1

12 -

8 -

4

0  -I----------------------1---------------------- .----------------------1
20 30 40 50

Laser Pulse Energy (mJ)

Ti I 500.72 
^ —0.4 (xs
HB—0.8 ps 
—̂ 1 .3  ps

Fig III (v): Optimization graphs showing the variation of SNR of Ti lines in a rock model at different laser pulse 

energy.
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Fig III (vi): Optimization graphs showing the variation of LIBS intensity and % RSD of Cu lines in a rock 

simulate at different delay times.
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Fig III (vii): Optimization graphs showing the variation of LIBS intensity and Relative standard deviation of Cu 

lines in a rock simulate at different delay times.
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Fig III (viii): Variation of intensity with respect to laser pulse energy for Cu lines in a rock simulate.

94



In
te

ns
ity

 (
a.

u)
 

In
te

ns
ity

 (
a.

u)

Laser Pulse Energy (mf) b Laser Pulse Energy (ml)

Fig III (ix): Variation of intensity with respect to laser pulse energy for three titanium lines in a rock simulate.
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Appendix IV: Classical calibration curves for different elements in the sample matrices

As 1431.563 Q 1 276.258

QD 276.65

c Concentration (ppm)

Q D  284.324

d Concentration (ppm)

Fig IV (i): Calibration curves for As and Cr from rock simulate.
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a Concentration (ppm)

Pb 280.20

Pb 1261.418

Pb 1283.305

d Concentration (ppm)
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cun 221.811

f  Concentration (ppm)

Qj II224.164

Fig IV (ii): Calibration curves for Cu and Ti lines from rock simulate.
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Ti II 338.377 Ti I 398.976

Fig IV (iii): Calibration curves for Ti lines from rock simulate.
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Appendix V: Emission lines for elements influencing the clustering of samples in PCA plots

Table 1. Loadings resulting from PCA
Element Emission lines (nm)
Ca 315.887,

430.253,

Ba 230.474,

Mg 279.553,

Ti 323.653,
499.107,

Al 237.312,

Fe 234.350,
358.119,

Si 250.690,

317.933, 364.441, 370.603, 373.690, 393.366, 396.847, 422.613, 428.301, 428.936, 
431.863,442.514,443.569, 445.478,487.813,518.885, 526.181,527.027, 534.947

233.527, 315.854, 455.403,493.401

280.270, 285.213,383.230,383.829,516.733,517.268, 518.885

325.291, 332.294, 334.188, 336.123, 337.28, 338.377, 453.558, 455. 549, 498.173, 
499.951

308.215, 309.271, 394.401, 396.152

238.204, 239.563, 259.940, 263.132, 274.648, 274.932, 275.574, 339.240. 357.010, 
361.878, 373.486, 374.949, 382.056, 390.648, 421.618, 438.354, 440.475

251.611,252.851,288.158_______________________________________________

A p p e n d ix  V I: S p e c tr a  fo r  m o le c u la r  lin e s  in  ro c k s

Fig VI. Examples of molecular lines observed in the samples.
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Appendix V: Emission lines for elements influencing the clustering of samples in PC A plots

Table I. Loadings resulting from PCA
Element Emission lines (nm)
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237.312, 308.215, 309.271, 394.401, 396.152

234.350, 238.204, 239.563, 259.940, 263.132, 274.648, 274.932, 275.574. 339.240. 357.010, 
358.119, 361.878, 373.486, 374.949, 382.056, 390.648, 421.618, 438.354, 440.475

250.690, 251.611,252.851,288.158_______________________________________________
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Fig VI. Examples of molecular lines observed in the samples.


