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ABSTRACT

Most drought studies have been dependent on limited rainfall data that is available in
most parts of Africa. The new developments in space technology, especially satellite derived
products now provide new opportunities that can be used to study space-time characteristics of
drought. Thus the main objective of this study is to assess the potential of using satellite-derived
products to enhance the monitoring of meteorological drought within the East Africa. This

involved the validation of the satellite products using some available rainfall records.

Rainfall data used in this study was obtained from IGAD Climate Prediction and
Application Centre (ICPAC) and was from 2000 to 2009 for East Africa. The other data is a (10-
day) dekadal composite of Normalized Difference Vegetation Index (NDVI) images of the East
Africa obtained from VGT4Africa website. It contains a spatial resolution of 1 kilometer by 1

kilometer with an accuracy of 300m and runs from year 2000 to 2009 for the east Africa region.

The methods used in this study included the calculation of satellite based drought indices
using Vegetation Productivity Index from Normalized Difference Vegetation Index (NDVI)
values. These were then compared with drought severity index (DSI) derived from rainfall

records using some standard statistical methods.

The study has shown that drought indices based on Vegetation Productivity Index can
provide some realistic estimates of drought indices. There were however some challenges in
some stations where vegetation cover are not mainly dependent on rainfall but relied on

irrigation. The study has therefore provided some alternative methods that could be used for

regional drought monitoring.
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CHAPTER ONE
INTRODUCTION

1.0 Background

Droughts are like a cancer on the land with seemingly no recognizable beginning
(Mather, 1985); unlike floods, earthquakes, or hurricanes, during which violent events of
relatively short duration occur. Droughts covering a few hundred square kilometers do exist but
these are usually of limited duration and modest severity. It is more common for droughts to
cover relatively vast areas, a significant proportion of a continent or sub-continent approaching
millions of square kilometers (Mather, 1985).

Drought can be categorized broadly as either conceptual or operational (Wilhite and
Glantz, 1985). The encyclopedia of Climate and Weather (Schneider, 1997) defines drought as
"an extended period - a season, a year, or several years - of deficient rainfall relative to the
statistical multi-year mean for a region™. Operational definitions attempt to identify the onset,
severity and termination of drought episodes. As result it is frequently defined according to
disciplinary perspective, i.e. Subrahmanyam (1967) has identified six types of drought:
meteorological, climatological, atmospheric, agricultural, water-management and hydrological.

According to Wilhite and Glantz (1985) Meteorological drought is defined as a period
when rainfall is significantly less than the long-term average or some designed percentages, or
less than some fixed value.

Drought is basically associated with a period of abnormally dry weather compared with
averaged condition, which further results in a change in vegetation cover condition (Heim, 2002;

lucker & Choudhury, 1987). Drought is part of the environment. It occurs in every part of the

globe and adversely affects the lives of a large number of people, causing considerable damage



to economies, the environment, and property. It also affects countries differently, having a
greater impact on countries with poor economic conditions (IDIC,NDMC,1995).

Repeated drought in Africa in the last 30 years has had a disastrous effect on an economic
and social situation that already has serious problems. Today, in the aftermath of these
devastating droughts, planning and preparedness have become more important. Like most
disasters, droughts are inevitable in this part of the continent. Thus competent governments,
given foresight and funds, can build defenses against them. The enormous physical consequences
of drought and the huge financial cost of relief efforts (compared to prevention) have led Africa
to improve its drought management and preparedness scheme regularly.

East African countries; Tanzania, Kenya and Uganda are always suffering severe
droughts as a result of failed annual rains. With crops unable to grow, many people have been
left without enough food to eat. Examples of such drought years which have occurred are like
early 2002 and 2009. In the 1970s there was one major drought. In the 1980s this quickened to
once every seven years, in the 1990s, once every five years (Howden, 2008). The 2009 year's
drought is presumed to be the worst in east Africa since 2000, and possibly since 1991.

In Great Horn of Africa, drought usually affects several million people via its effects on
agriculture, water resources, fisheries, public health among many other sectors and quite often
results into loss of human and livestock lives. Droughts of 1983/84, 1998-2000, 2004-2005
resulted into serious environmental, social and economic consequences. Furthermore, droughts
have often wiped out decades of national development investments and infrastructures in the
region. Thus drought monitoring has become a central component in current strategies for
managing and monitoring environmental changes.

Traditionally, drought monitoring in the region has been based on the use of limited

2



rainfall observations. However, this method is deficient of continuous spatial coverage needed to
characterize and monitor the detailed spatial pattern of drought conditions. An alternative
method of monitoring is therefore necessary to counter this problem. The advancement in the
concept of vegetation monitoring or mapping which has greatly increased research on land cover
change to provide an accurate evaluation of the spread and growth of the world's vegetation
cover has been enabled by the use of satellite monitoring. This has become an important priority
and thus this study will enhance a drought monitoring system using vegetation that will examine
and highlight the possibility of having the same mechanisms used in drought monitoring using
rainfall.

With the current technological advances in communication and computers, remote
sensing has greatly improved our ability to measure the important characteristics and impacts of
weather related disasters. A well-integrated use of ground observations and earth- observation
satellite products can improve drought monitoring.

Ground observations of rainfall so far have a tremendous potential to analyze past,
present, and future weather conditions. But observ ations from meteorological satellites routinely
provide more complete, timely, and finer spatial coverage of terrestrial information. 1his
information is normally produced by transformation of the observed radiance into environmental
variables such as clouds, snow cover, sea ice, temperature, vegetation, and other meteorological
and geophysical components. Developed techniques transform the satellite-observed radiance
into more complex environmental phenomenon such as drought (Kogan. 1991).

Examples of drought monitoring methods based on satellite derived data used are like
modified perpendicular drought index (MPDI): which is a real-time drought monitoring method

that introduces vegetation fraction, which takes into account both soil moisture and vegetation

3



growth. Other indices are Enhanced vegetation index (EVI), Vegetation Health Index (VHI) and
Vegetation condition index (VCI). Limitation of the VCI comes in when deviation from the
mean does not take into account the standard deviation, and hence the index can be
misinterpreted when variability in the vegetation conditions in a region is very high in any one
given year (Thenkabail, et ai, 2004)

Different Satellite derived indices measure drought in different ways, and no single index
works under all circumstances (Heim, 2002). Another limitation in drought monitoring using
satellite data is the apparent time lag between a rainfall deficit and vegetation response [Reed,
1993; Di, 1994; Wang, et al., 2001J. Note that due to these limitations other ways have been
developed in drought monitoring, like blending science and art since there is no one ‘correct’ way
to measure drought.

Unlike above, this study will use drought indices derived from satellite observation alone
to study drought characteristics. Since soil moisture and vegetation growth are vital and
important indicators of drought events, an understanding of vegetation and water spectral

behavior is critical in estimating drought conditions.

11 Objectives

The main objective of this study is to assess the potential use of satellite-derived product,
Vegetation Productivity Index (VPI) in regional meteorological drought monitoring. The study
will focus on comparison of rainfall and satellite derived products for the case of SOND seasons.
To achieve this, the study will specifically:

(i) Indentify drought periods using rainfall drought severity index (DSI);

(i) Generate Vegetation Productivity Index (VPI);

(iiiy  Compare VPI and DSI drought products.



1.3 Justification of the study

Insufficient rainfall records from ground stations calls for alternative methods for drought
monitoring. This reason, together with the creeping phenomenon of drought makes the accurate
prediction of either its onset or end a difficult task. Since droughts are natural events whose
occurrences in time and space are complex and not fully understood, rainfall measurements are
always limited in spatial extend thus remote sensing allows investigation of a larger portion of

the East African countries than previously possible through station observations.

There is a need to keep track of drought conditions or effects and environmental changes
for the intention of monitoring and predicting the production of the marginal agricultural areas,

whether they are the result of shifting climate, human actions or a combination of these.

Much of the environmental research over the past decade has been focused on
investigating the entire region using the satellite technology. This region, to human observers,
appears quite large and due to the limitation of ground station observations it is hard to
understand the complex interactions between the region’s land mass, lakes and the ocean strip,

including the surrounding atmosphere.

The ability to address challenges of drought monitoring is limited both by the invisibility
of the changes and by uncertainty in our ability to have an early warning on them. This
emphasizes the importance of improving our understanding on vegetation changes and its
relationship to drought. The use of remote sensing products in East Africa during SOND season
can give detailed measurements, data and the information needed to begin to understand,

describe, and model the various trends of drought in the Eastern Africa region using productivity

classes.



East Africa is characterized by widely diverse climates ranging from semi arid to forest
over relatively small areas. Rainfall seasonality is complex, changing within tens of kilometers.
The annual cycle of East African rainfall is bimodal, with wet seasons from March to May and
October to December. The Long Rains (March to May) contribute more to the annual rainfall
than the Short Rains (September to December). Much of the interannual variability comes from
the Short Rains (coefficient of variability = 74% compared with 35% for the Long Rains)
(WWEF, 2006). Therefore, it's important to monitor Short Rain season which is crucial for
marginal areas. On synoptic view, this dissertation facilitates the study of meteorological drought
during the Short Rains (September to December) in a wider spatial and temporal extend which
will be very useful for studying landscape dynamics; that is phenological variations of vegetation

in respect to drought severity index.



CHAPTER TWO

LITERATURE REVIEW
2.0 Introduction

This chapter discusses the studies that have been done previously.

2.1 literature Review

Common to all types of drought is the fact that they originate from a deficiency of
precipitation that result in water shortage for some activity (Wilhite and Glantz 1985). Nearly all
drought indices are based on rainfall observations and drought definitions included this variable
either singly or in combination with other meteorological elements (World Meteorological
Organization 1975a). Early meteorological drought definitions incorporated some measure of
precipitation over a given period of time (Tannehill 1947; World Meteorological Organization
1975a; Wilhite and Glantz 1985).

A drought would exist if the criteria defining the drought were met, and the index would
then be a measure of the drought’s duration and/or intensity. During the first decade of the
twentieth century, the U.S. Weather Bureau identified drought as occurring during any period of
21 or more days with rainfall 30% or more below normal for the period (Steila 1987). During
this time, a drought measure frequently used was the accumulated precipitation deficit, or the
accumulated departure from normal. Most of these definitions were valid only for their specific
application in their specific region. Indices developed for one region may not be applicable in
other regions because the meteorological conditions that result in drought are highly variable
around the world.

Indices developed to measure the intensity of meteorological drought, for instance, were
inadequate for agricultural, hydrological, or other applications. These deficiencies were

recognized early (Henry 1906). The problems with developing an agricultural drought index, for
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example, include consideration of vegetation, soil type, soil moisture and evapotranspiration as
influenced by wind speed and the temperature and humidity of the air. Many of these climatic
elements were not widely measured, or could not be incorporated into a drought index. But over
time other indices were brought into picture and interest in satellite observation and subsequent
evaluation of drought were attributed to several characteristics of remote sensing. These include
the fact that remote sensing provides an advantage in permanent record or data archive, extra
visual information, and cost effectiveness in many cases (Johnson, et al., 1993).

From 1970's, studies have used satellite land observation data to monitor a variety of
dynamic land surface processes [e.g., Anderson, et al., 1976; Reed, et al, 1994; Yang, et al.,
1998; Peters, et al., 2002J. Satellite remote sensing provides a general view of the land and a
spatial context for measuring drought impacts. Effects of drought are evident on vegetation.
Reduced biomass production, increased fire danger, and other long-term changes can often be
linked to drought events as Peters, et al., (1993) has shown. Satellite observations of vegetation
can thus be used to monitor drought. One of the most popular product used is the Normalized
Difference Vegetation Index (NDV1).

The Normalized Difference Vegetation Index (NDVI) is used extensively in ecosystem
monitoring. The NDVI measures the changes in chlorophyll content (via absorption of visible
red radiation) and in spongy mesophyll (via reflected NIR radiation) within the vegetation
canopy. As a result, higher NDVI values usually represent greater vigor and photosynthetic
capacity (or greenness) of vegetation canopy [Tucker, 1979]. NDVTs role in drought monitoring
and assessment has been described several times during the last decade [Kogan, 1991; Kogan,
1995; Yang, et al., 1998: Ji and Peters, 2003; Wan, et al.. 2004].

In contrast to above, clouds, water and snow have larger visible reflectance than those of



near-inlrared (Ch 2). 1hus, those features yield negative index values. Rock and bare soil
covered areas have similar reflectances in the VIS/NIR bands and result in vegetation indices
near zero. Because of these properties, NDV1 has become the primary tool for mapping changes
in vegetation cover and analysis of the impacts of environmental phenomena.

The NDVI can be used not only for accurate description of continental land cover,
vegetation classification and vegetation phenology (Tucker, et al. 1982, Justice, et al. 1985) but
it is also effective for monitoring rainfall and drought, estimating net primary production of
vegetation, crop growth conditions and crop yields, detecting weather impacts and other events
important for agriculture, ecology and economics (Kogan 1987a).

Most of research and projects on vegetation monitoring from satellite observation are
based on NDVI calculated from data collected by the Advanced Very High Resolution
Radiometer (AVHRR) sensor. NDVI has been calculated from AVHRR data for more than 20
years, creating a useful time-series for monitoring. However, one limitation of NDVI for drought
monitoring is the apparent time lag between a rainfall deficit and NDVI response [Reed. 1993;
Di. el al., 1994; Rundquist and Harrington, 2000; Wang, el al., 2001]. Undoubtedly, NDVI is
especially useful for picking up seasonal and inter-annual variations in the overall condition of
vegetation, especially in relation to drought.

The science of remote sensing has been applied in vegetation monitoring with remarkable
successes, that iSNOAA Advanced Very High Resolution Radiometer satellite data are and have
been applied to regional vegetation monitoring in Great Horn of Africa. The collected data from
vegetation monitoring using remote sensing have been correlated with vegetation measures such
as biomass and leaf area index (Tucker 1979; Hatfield; and Holben, et al., 1980).

Studies which have been done on vegetation variation using satellite data include Tucker
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(1991), who did a study on contraction and expansion of the Sahara desert which extends
between -7,000,000 and -9,000,000 km2 in area. According to Tucker, information got suggests
that the Sahara has expanded toward the south. He alleged expansion was attributed by climate
variation (droughts) and also due to land mismanagement such as overgrazing, increased
cultivation, and firewood cutting. However, a 1984 field study by Hellden in the same area found
little evidence of such an expansion.

Patterns of vegetative cover in most places in East Africa are dependent on rainfall with
some exceptions of some irrigated areas. Rainfall is the key limiting factor in crop production.
Increasingly dense and accurate rainfall observations that can be analysed in real time are
required to monitor closely the progression of the cropping season. This is because in areas such
as arid land, great spatial and temporal variability of rainfall mean that interpolating between rain
gauge values to obtain estimates of the rainfall at a particular point can give rise to serious errors.
Proper monitoring for these regions therefore requires an impractically large number of gauges.
Even if such dense coverage were possible, the rainfall data on its own is insufficient to draw
useful information regarding the status of the plants.

Drought monitoring and mitigation in the Eastern Africa has remained largely responsive
and based on reaction after a drought has occurred. Consequently, it is not surprising that related
losses are much more than those caused by most of the other natural disasters (Ogallo, et al.
2004). The recurrent climate extremes like droughts in eastern Africa are largely associated with
rainfall anomalies.

Drought monitoring, climate prediction and timely early warning based on SSTs, Indian
Ocean Dipole, El Nino / La Nina events EI Nino / La Nina events, and other predictable climate
signals can be used as one of the best strategies for mitigating the negative impacts of drought
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and also for taking advantage of the good years, and / or good rains that may be received in other
parts of the country / region (Ogallo, el al. 2004). In any precondition season, it is common to
find that while one part of the eastern Africa is under severe drought stress, other parts of the
region are doing well. This might be due to the complexity in the climate patterns associated
with complex physical terrain, Ogallo (2003).

Drought has an impact on water sources like rainfall, ground water, reservoir storage and
streamHow. Therefore, the impacts of water deficit are a complex function of water source and
water use. The time scale over which precipitation deficits accumulate becomes extremely
important and functionally separates different types oftdrought. Agricultural droughts, for
example, typically have a much shorter time scale than hydrologic droughts.

The relationship of NDVI to rainfall is used as a basis for employing NDVI as an
indicator of meteorological drought. The onset of suitable moisture conditions for vegetation
causes the emergence and growth of plants. The resulting increase in the amount of vegetation
and in the photosynthetic activity leads to a consistent increase in the NDVI. When these
conditions cease, the resulting moisture stress will reduce biophysical rates (photosynthetic rate
and transpiration) which will result in a substantial fall in the NDVI (Bonifacio, el al.. 1993a).

The vegetation response to rainfall is well marked; a good example is in the Sahel where
detailed studies of the relationship between NDVI and biomass have been undertaken (Justice
and Hiernaux, 1986). The integrated NDVI over a suitable base or background value has been
used previously as a measure of total biomass production (Tucker, 1986).

2.2 Area of study
The region of East Africa is located within latitudes 5° N to 12° S, and longitudes 29° E

to 42° E. It consists of three countries namely Kenya, Tanzania and Uganda.
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Figure la: Map of the study region showing the East African countries

2.2.1 Physical features of the study region

The region is found in the eastern part of the African continent with the eastern side of it
Indian Ocean is located. The region is composed of the low lands, East Africa highlands,
riftvalley and the highest mountains in Africa, that isMt. Kilimanjaro (5895m) and Kipengere
Ranges in south-western Tanzania. Mt. Kenya (5199m), and Mt. Elgon (4321m) in Kenya
together with Mt. Ruwenzori (5109) in Uganda.

The region has several lakes, the major one being Lake Victoria at 1132m above mean
sea level covering an area of 68,000km and is the second largest fresh water lake in the world.
Others are lakes Turkana and Tanganyika found within the floor of the Great Rift Valley. The

central highlands make up the eastern and western escarpments of the Great Rift Valley, which
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enters the region from the north, passes southwards through Kenya into Tanzania and runs into
the South Africa countries. In the northeast neighbourhood of the region is the hthiopian
highland and between the East African and Ethiopian Highlands is a low level valley region
called the Turkana Channel.

There are large spatial and temporal variations in the rainfall characteristics over the
region due to the complex topographical patterns, the existence of many large inland lakes,
together with several other regional factors (Ogallo, 1982). The diversity in orography has
profound effects on the overall climate dynamics and the spatial distribution of key
meteorological parameters like wind, surface temperatures and rainfall. Indeje, et ul. 2000 has
stated the dominant roles of orography in climate dynamics.

2.2.2 Climatology of rainfall over the study region

Most parts of the region receive two major rainfall seasons in a year which follow the
movement of the ITCZ which lags behind the overhead sun. This is called bimodal rainfall
distribution (two rainy seasons and two dry seasons). The two dry periods, over most parts of
east Africa, run from mid-December to late February and from June to late September. The two
major rainfall seasons experienced over East Africa are locally referred to as the long rains
(March-May) and the short rains (October-December) with high rainfall areas concentrated over
the highlands and near the large water bodies. Large areas of the region including Eastern and
Northern Kenya, North Eastern Uganda, and Central Tanzania receive low rainfall.

The western parts of the region experience effects of Congo Airmass. Close to the
equator, bimodal regimes are well marked with the long rainfall concentrated within March to
May (MAM) while the short rainfall season occurring in late September to November/early

December (SOND). Regions in southern Tanzania experience their rainfall within a single
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season spanning the period November to March and this has been referred to as unimodal regime
(Ogallo, 1980).

Coastal regions and Western Kenya have three wet seasons exhibiting a trimodal regime.
This third rainfall peak within the year occurs from July to August mainly around the coastal and
western regions. Areas close to the water bodies receive substantial rainfall throughout the year,
Ininda (1995) Ogallo (1980). The regional features in the region interact with both the synoptic
and the large-scale systems to produce the observed rainfall distribution (Mukabana, 1992;
Asnani, 1993).

2.2.2.1 Inter Tropical Convergence Zone (ITCZ)

It is a boundary of meeting of hemispheric winds near the surface as a result of inter-
hemispheric monsoon wind systems over the region. It is the main synoptic scale system that
controls seasonal rainfall over the eastern Africa. The ITCZ is however noticeable in the wind
field near 700mb (Kiangi, et al., 1981). Over East Africa, the ITCZ has two unique components;
the normal east-west orientation called the zonal component and the north-south oriented
component referred to as meridional component in around November to March months.

22.2.2 Indian monsoons

The monsoon winds How in response to the differential heating between continent and
ocean. The East Africa region experiences northeast monsoons in December-February and the
Southeast monsoon in June-August. The continental heating is strongest when the sun is
overhead at any given location twice a year. This causes low-level hemispheric airmass
convergence called ITCZ. During March-May and September-November both monsoonal wind
currents are present with one withdrawing while the other advancing.

In transitional seasons, a strong zonal component brings equatorial warm and moist air
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into the Equatorial East Africa region from the Indian Ocean. Sadler, el a | (1987) have shown
warm surface waters (SST) over equatorial Indian Ocean during the transition months of April
and November. This moist equatorial air has a conditionally unstable lapse rate and responds
rapidly to low-level convergence with widespread cloudiness, showers and thunderstorms. The
east African monsoons are associated with relatively little rainfall.

2.2.2.3 Tropical cyclones

Tropical cyclones origins are almost invariably in the low latitudes between 5 and 20
degrees North or South of the equator. In these latitudes, the deviating Coriolis force is
sufficiently large to produce cyclonic circulation. According to World Meteorological
Organization (WMO) Intense depressions occur in several tropical southernAvestern Indian
Ocean regions during certain periods of the year and these are popularly known as cyclones in
the southwest Indian Ocean and Arabian Sea.

The tropical cyclones that influence weather in eastern Africa form in the West Indian
Ocean, equator ward of 20 degrees latitude. North of the equator, they form in northern spring
and late fall and move northward into the Arabian Sea. There are other names given to this
weather system elsewhere in the world. These systems rarely reach the East Africa coast,
however, there have been few occasions (e.g. October 1972, 1984) when cyclones in the region
reached the coast and caused increased rainfall as far as Somalia and northern Kenya. But their
effects is felt and can cause heavy precipitation for one or two days, when 200 km away from the
East African coast. Tropical cyclones cause severe weather that is destructive to both life and
property.

2.2.2.4 Global and Regional-scale Teleconnections

These include; El Nino Southern Oscillation (ENSO), global Sea Surface Temperatures
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(SSTs), Quasi-Biennial Oscillation (QBO), subtropical anticyclones and the Indian Ocean Dipole
mode are the major climatic systems that affect rainfall over eastern Africa region through
Teleconnections.

2.2.2.4.1 El Nino Southern Oscillation

Although research has long established that it is a global scale phenomenon (Wallace, el
al., 1998); The El Nino/Southern Oscillation (ENSO) phenomenon has been studied largely in
the context of the Pacific Ocean and adjacent regions. It is the most noteworthy interannual
climate variability which occurs as a result of instabilities in air-sea interaction in the Pacific
Ocean and it has impacts on regional climate extremes in many parts of the globe. Its episodes
lead to massive displacements of rainfall regions of the tropics, bringing drought to vast areas
and torrential rains to otherwise dry regions.

The most prevalent mode of interannual climate variability appears to be ENSO in sub-
Sahara Africa. It is characterized by rainfall anomaly pattern over eastern and southern Africa.
Tropical eastern Africa is one of the areas where global ENSO impacts have been reflected in
both precipitation and temperature anomalies. Interannual variability in rainfall over East Africa
during the October to December season correlates strongly with the Sea Surface Temperature
(SST) changes in the tropical Pacific associated with the ENSO phenomenon (Ogallo, 1988).

Many studies have investigated the relationship between rainfall received in east Africa
with ENSO (Ogallo, 1988; Indeje, 2000; Mutemi, 2003, among others). Mutemi (2003) for
example, found a strong relationship between rainfall over East Africa and evolutionary phases
of ENSO.

Ogallo, el al. (1988) correlated the global SST anomalies within the latitude 30° north

and south of the equator with the rotated principal component analyses (RPCA) modes of the
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Northern Hemisphere autumn rainfall over Eastern Africa for the period 1950-79. The study
suggested that about 36% of the short rainfall variation in East Africa could be explained by SST
variations in western Pacific and most of Indian Ocean where correlation values are near 0.6.

2.2.2A.2 Global Sea Surface Temperatures (SSTs)

Ogallo, el al.,, (1988) and Ogallo (1988) have shown that rainfall in the coastal and
western parts of East Africa has significant correlation with the Southern Oscillation Index and
SST over parts of the Pacific and Indian Oceans. In a study by Nicholson and Entekhabi (1987)
investigation of interannual variability of surface fields over the Indian Ocean, Cadet (1978)
indicated that Indian Ocean parameters might have significant influence on East African
weather.

2.2.2.4.3 Quasi-Biennial Oscillation

The Quasi-Biennial Oscillation (QBO) is the alternation in phase of the zonal winds in
the lower stratosphere with period of 26-30 months. There is vertical propagation in the phases
of the zonal winds leading to changes in vertical wind shear and the associated stability. Several
studies have reported the presence of the QBO in various atmospheric parameters and at different
regions of the globe. Indeje, el al., (2000) found a statistical association between rainfall over
East Africa and QBO to be strongest during the boreal summer season (June-August) and

weakest in boreal winter (December-February).
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CHAPTER THREE
DATA AND METHODOLOGY

3.0 Introduction

This chapter outlines the data sets which were used and the methods of analysis adopted
to achieve the objectives of the study.

3.1 Data
The data used here include dekadal NDV1 and rainfall records for the period 2000 - 20009.

Details of each are presented independently in the following.

3.1.1 Normalized Difference Vegetation Index (NDVI)

The data used in this study are (10-day) dekadal composites of NDVI images obtained
from Vegetation for Africa (www.vgtdafrica.org) website. NDVI is a vegetation sensitive
indicator that reflects the pattern of spectral responses of ground objects in the visible and near-
infrared regions of the electromagnetic spectrum. It is found to be a good indicator of the
vegetation characteristics over land surface. For example, Rouse, et al. (1974) defined NDVI as
(NIR-R)/ (NIR+R) where, NIR and R are the radiances or reflectances in the near- infrared and
red spectral channels respectively.

Chlorophylls in plant leaves causes considerable absorption in the red light region of the
electromagnetic spectrum in the incoming light while plant spongy mesophyll leaf structure
creates considerable reflectance in the near infra-red region of the spectrum (Tucker, 1979;
Jackson, et al, 2004, Tucker, et al, 1991). Asa result, vigorously growing healthy vegetation has
lower reflectance in the red light region and a higher reflectance in the near infra red region of
the spectrum. This ultimately results in higher NDVI values for the vigorously growing healthy

vegetations and it tends to become lower as the greenness of the vegetation decreases.
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These NDVI values are given the range of -1.0 to 1.0. Increasing positive NDVI values
indicates increasing amounts of healthy and vigorous green vegetations. The values closer to
zero and decreasing negative values indicate non vegetated features such as barren surfaces and
water, snow, ice and clouds. So, green and healthy vegetation reflects much less solar radiation
in the visible-red (Ch 1) compared to those in near-infrared (Ch 2). More importantly, when
vegetation is under stress, Ch 1 values may increase and Ch 2 values may decrease as stated
earlier.

The Normalized Difference Vegetation Index (NDVI) is defined as
NDVI = (Ch 2-Ch 1)/ (Ch 2+ Ch 1) oo (1)

Where near-infrared and visible-red are the radiation measured in channels 2 and 1,
respectively. The Vegetation NDVI product from VGT4A1RICA (ten day synthesis) is
composed by merging atmospherically corrected segments (data strips) acquired over a ten days
interval. All the segments of this period (dekad) are compared again pixel by pixel to pick out the
'best' ground reflectance values. These dekadal products provide data from all spectral bands, the
NDVI and auxiliary data on image acquisition parameters.

The NDVI data, which is disseminated via VGT4AFRICA, contains a spatial resolution
of 1 kilometer by 1 Kilometer, an accuracy of 300m and runs from April 1998 to date. Note that
the Vegetation Productivity Indicator (VPI) is used to assess the overall vegetation condition and
is a categorical type of difference vegetation index, whereby the actual NDVI is referenced
against the NDVI percentiles of the historical year.

The VPI method was originally developed by Sannier, et al., (1998) based on NOAA

AVHRR data for a study area in Zambia, and later on implemented by Herman Eerens for
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Europe for Monitoring Agriculture with Remote Sensing STATIistics (MARS-STAT) and Africa
Monitoring Agriculture with Remote Sensing FOOD (MARS-FOOD) / Global Monitoring for
Food Security (GMFS) Boogaard, et al., 2004 based on Satellite Pour I'Observation de la Terre
(SPOT) -VEGETATION data. It is commonly used in hydrology for the prediction of extreme
events.

The dekadal NDVI product used for this study was grouped into monthly averages which
were later clustered to give an averaged condition for the SOND season for the east Africa
region. This was done for the period between years 2000 to 2009.

3.1.2 Rainfall Data

Monthly rainfall data were obtained from IGAD Climate Prediction and Applications
Centre (ICPAC). The data used were from year 2000 to 2009 for the SOND season. ICPAC
database contains rainfall data from various locations of the Greater Horn of Africa (GHA). In
some cases, some stations were within the same homogeneous rainfall regimes. 1his led to
classify stations within similar homogeneous rainfall regimes in order to get a representative
station in the location used.

The stations used are:

Table 1: List of station used in the study

Station Station Name Long. Lat.
1 ARUA 30.917 3.05
2 KASESE 30.1 0.183
3 ENTEBBE 32.45 0.05
4 MANDERA  41.867 3.933
5 MARSABIT 37.9 2.3
6 WAIJIR 40.067 175
7 KISUMU 34.75 0.1
8 KISI1 34.783 -0.667
9 KERICHO 35.35 -0.367
10 NAKURU 36.1 -0.267
u NYERI 36.967 -0.5
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19
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The following map shows the stations used and are numbered as they appear in fable. 1

3.2 Methodology

EMBU
GARISSA
DAGORETTI
WILSON
MALINDI
MOMBASA
BUKOBA
MUSOMA
MWANZA
K1GOMA
TABORA
DODOMA
MBEYA
SONGEA
MTWARA

37.45
39.633
36.75
36.817
40.1
39.617
3181
33.8
32.917
29.633
32.833
35.767
33.467
35.583
40.183

-0.5
-0.467
-1.3
-1.317
-3.233
-4.033
-1.333
-1.5
-2.467
-4.883
-5.083
-6.167
-8.933
-10.683
-10.267

This section discusses the various methods that were employed to address the overall and
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specific objectives of the study.

3.2.1 Estimation of missing data

3.2.1.1 Estimation of missing vegetation data using moving average method

The most common method used for interpolation from images or grid points is based on
the computation of a weighted average of a representative sample of images or points in the
vicinity of the needed data. The interpolation method which will be used to estimate missing grid
points in case of missing data is moving average method. The Moving Average method assigns
values to grid nodes by averaging the data within the grid node's search ellipse (Franke, 1980).
To use Moving Average, a search ellipse must be defined and the minimum number of data to
use, specified. For each grid node, the neighboring data are identified by centering the search
ellipse on the node. The output grid node value is set equal to the arithmetic average of the
identified neighboring data. If there are fewer, than the specified minimum number of data
within the neighborhood, the grid node is blanked.

3.2.1.2 Estimation of missing rainfall data using the correlation method

Before starting the analysis, missing data are estimated using a method based on the cross
correlation between the rainfall observations over the stations and the ratio of the climatological
values of rainfall over the stations. The cross correlation between the station rainfall (rxy) is given

by:

—Z [(*, - *XV,- V)] (2)
[ - ™2 iy -y>2 1
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To compute these correlations between all the stations, a block of the data was taken over
a sub-period where the most of the data was available. If station Y, has a missing value at a
certain year, and the station is best positively correlated with station X which has available data

(Xa), the formula used to estimate Y, is:

Y =X 3)

Where | Y. = the missing data

X& the available data of the station with the highest correlation with
station whose data is missing.

X a=the mean value for the station with complete data

Ya = the mean value for the station with missing data

3.2.2 Homogeneity test

Homogeneity test was necessary for detection of errors in data and ensured that the data
sets were free from errors. The cumulative mass curve technique was used in this study. It is a
technique that involves accumulating monthly records for each station and plotting these values
against time. A single straight line indicates a homogeneous record whereas homogeneity
tendency is indicated by existence of one line fitted to the graphical plots of the cumulative data,
WMO (1970, 1986), Siegel (1956) and Basalirwa (1991).

3.2.3 Drought severity index

Various drought indices have been developed and used in many parts of the world
(including Africa) to monitor the spatial extent and severity of drought conditions. Generally,

drought indices are developed based on cumulative precipitation deficit. These provide guidance
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for the use of mitigation measures during a drought. In this study, rainfall data was used to
calculate drought severity index which responds well with the increase and decrease of
vegetation and as result drought detection through it. Periods associated with drought and its
effects are going to be monitored using the drought index.

The drought index is going to measure how much precipitation for the September -
December season has deviated from established averaged condition. The index is calculated by

dividing actual precipitation (observed) by the long term precipitation average (30 years) and

multiplying by 100%.

Y YLD 5 S I (4)

Where, _ N
P (i) = Actual precipitation (observed)

P (a) = Long term precipitation average (30 years)
This will be calculated for SOND season putting in mind that normal precipitation for a
specific location is considered to be 100%.

The Drought Severity Index Values are given as follows.

5 which is >175% Very wet (wettest on record)

4 which is 125-175% Wet

3 which is 75-125% Near normal

2 which is 25-75% Dry

1 which is 10-25% Generally dry

-1 which is <10% Extremely dry (driest on record)

Drought Severity Index is used to determine the drought periods. This meteorological

drought index responds to weather conditions that have been abnormally dry or abnormally wet.

3.2.4 Vegetation Productivity Index

Vegetation Productivity Index (VPI) gives the overall vegetation condition of the region
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in probability classes. This was possible by taking the actual NDVI readings and referencing it
against the NDVI percentile of an averaged image of a determined period for the best condition,
normal condition and worst condition for the whole region. The general principle of VPI is
explained in the Fig. 2. The green line represents the cumulative histogram, which is derived
from the historical NDVI values available for the considered period. The red line, which
connects the selected set of percentiles, forms an approximation of the true histogram.

Current observations are referenced to this approximate histogram, which allows deriving
their historical probability. Example, the blue point has a relatively high NDVI and hence a high
probability (89%). Sannier, et al. 1998, classified the probabilities in 5 groups (0-20%... 80-
100%). However, the original values are kept and the VPI is calculated based on the NDVI
values. NB: The VPI is produced based on SPOT-VGT NDVI values.

Source: SPOT-VEGETATION

Figure 2: Comparison of NDVI value and VPI Probability Class from VGT4Africa (Sannier, et al., 1998b).
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VPI-maps are created as follows for every period: For each pixel, the NDVI-percentiles
are read from the following 6 percentiles of the historical period that isO%, 20%, 40%), 60%, 80%
and 100%. By comparing the pixel’s actual NDVI-value with these percentiles, it is assigned to
one of the Five percentile groups (“productivity classes”). Note that VPI is used to qualitatively
identify areas with below normal vegetation development possibly linked to low vegetation
productivity as compared to what can be expected based on the historical range. VPI is used to
identify drought affected areas (Sannier, et al., 1998b).

The decoded VPI percentages indicate the probability of getting a lower NDV1 value
based on historical analysis of the NDVI values. Thus, a probability of 50% indicates that there
is a 50% chance of getting a lower value (and thus 50% chance of getting a higher value)
compared to the historical value range, indicating a fairly normal/average situation.

The VPI data generated contains continuous values from 0-255, whereas values ranging
from 10-210 indicate the probability level (to be re-scaled to the 0-100 range), values above 250
are flags (251=missing, 252=cloud, 253=snow, 254=sea, 255=background). lhe VPI is typically
classified in the five classes as explained above and colour coded (see Fig. 3) for visual
inspection. The class range from 0%-20%, 20%-40% is commonly colour coded as ‘red" for
below average, the 40-60% range is commonly colour coded as ‘yellow’ to represent neutral
condition or normal. The 60%-80%, 80% - 100% ranges are coded ‘green’ to show above normal
vegetation. Visual inspection consists of identifying ‘green’ and ‘red’ zones to identify the zones
with above or below normal vegetation development.

These inspections are done on seasonal basis throughout the year to evaluate the season
condition. It has to be noted that the VPI values given are sensitive to clouds in the original
NDVI image. This might lead to a below normal value which is not due to low vegetation

26



activity but due to the interference. Because of this, it is important to consider multiple periods to

see if the same trends persist.

Source SPOT-VEGETATION

HPVI f%]

Clouds
Missing

Figure 3: Example of a VPI Image from SPOT-VEGETATION used in VGT4Africa (Sannier, et al., 1998b).

3.2.5 VPI drought identification

Vegetation responds well to rainfall in the east African region, this is well portrayed
during the rainfall seasons; this is the duration when farming is intensified. The NDVI is a direct
measure of the radiative response to the vigour of the surface vegetation, and so will respond
indirectly to rainfall; this brings in the idea of monitoring meteorological drought using satellite
data.

Just like the drought index. Images were grouped from dekadal products to monthly
averages then SOND averages, where the average of each yearly SOND was obtained and data
extracted to give the actual VPI values. Using these values, VPl productivity classes were
specified and the readings were recorded to the required category. The final products were used

for comparison with the SOND DSI results.
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3.2.6 Trend analysis

SOND average time series were obtained from the rainfall drought index and the same
was repeated for VPl for each year and plotted. Then combining and checking the variation of
both indices, trends were observed and results given.

Trend analysis is the long-term movement in a time series. Examination of the trend
component in any time series analysis is significant since it shows whether the time series is
stationary or non-stationary. Trend can be linear or non-linear, and the objective approach to
examine this is through graphical and statistical approaches (WMO 1966). A graph of the time
series can indicate whether or not a linear relationship provides a good approximation to the
long-term movement, regression analysis may give the curve of the best fit.

Graphical approach method was used to examine trends and comparison of the DSI trend

and vegetation productive classes were employed to test the significance of the observed trends.

3.26.1 Graphical approach

In graphical method, the trend is visualized from the graphical representation of time
series. In time series, the trend at any point in time is represented by a weighted average of the
observed values near that point. The idea behind using time series is to allow a preliminary view
of the temporal evolution of rainfall drought severity index in respect to VPI classes. The
graphical method adopted in the study included plotting of time series through which by visual
examination an approximation of whether or not a general trend to the long-term movement can
be inferred. Also during the extraction of VPI values, images got allow easy determination of

variation of yearly SOND season with respect to the decadal average in wider spatial extend.
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3.2.6.2 Statistical approach

The visual methods of determining trends from graphs are very subjective and therefore
the objective approach towards determining the trend of any time series is to examine the
significance of any trend observed in the time series. Since some form of trend is the most likely
alternative to randomness in climatological time series, statistical tests are usually applied to

check the presence or the absence of trend (linear or non-linear).

3.2.6.2.1 Linear Regression

Linear Regression is a parametric statistical procedure that is typically used for analyzing
trends in data over time. However, with the usual approach of interpreting the slope of the
regression line, concentration trends may often be obscured by data scatter arising from non ideal
conditions, sampling and analysis conditions, etc.

If we expect a set of data to have a linear correlation, the simplest way to get the
regression formula for your data is to create a simple XY chart and add the Trendline formula
and correlation values from the Options dialogue. Also it is not necessary for us to plot the data

in order to determine the constants m (slope) and b (y-intercept) of the equation

Y M X+ D s (5)

Instead, we can apply a statistical treatment known as linear regression to the data and determine

these constants. NE3: Given a set of data with n data points, the slope, y-intercept and

correlation coefficient, r, can be determined using the following:

«Z bz)-z*2zZ~"

"="Z M -12Z2")1
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b = Zy ~ mZ
)

«Z M -z nrZ N

(8)

3.2.6.2.2 Coefficient of Variation (CoV)

To determine the Coefficient of Variation (CoV) calculation of average and standard
deviation was done. The arithmetic mean of a sample of n values of a variable is the average of

all the sample values written as

il C)

The standard deviation is the square root of the average of the square of the deviations

from the sample mean written as

22U-, -V

J o\ -1 (10)

The standard deviation is a measure of how the value fluctuates about the arithmetic
mean of the data. The Coefficient of Variation (COV) is a statistical measure of how the
individual data points vary about the mean value. The coefficient of variation, defined as the
standard deviation divided by the average or
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X (11)

Values less than or near 1.00 indicate that the data form a relatively close group about the
mean value. Values larger than 1.00 indicate that the data show a greater degree of scatter about

the mean.
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CHAPTER FOUR
RESULTS AND DISCUSSION

4.0 Introduction

This chapter presents and discusses the results that were obtained from the various
methods that were used to address the objectives of this study.

4.1 Results of estimation of missing vegetation data using interpolation method

Only one dekad in the stations used in the region had missing data for Entebbe region
recording 251 in NDVI value. The missing value for Entebbe region for dekad 3 in September
2006 was estimated using moving average method and the result was found to be 175.

4.2 Homogeneity results

Homogeneity test was done to check for consistency in the data in all the station used.
Results from the mass curves indicated that in general only straight single lines could be fitted to
all of the monthly seasonal cumulative rainfall records of the stations, which is indicative of
homogeneity of the records used in the study. Examples of the derived mass curves are shown in

figure 4 to 11. The results were indicative of good quality of rainfall records.

Figure 4: Averaged Monthly Cumulative total for SOND seasonal rainfall over Arua
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Figure 5: Averaged Monthly Cumulative total for SOND seasonal rainfall over Entebbe

Figure 6: Averaged Monthly Cumulative total for SOND seasonal rainfall over Wajir
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Figure 7: Averaged Monthly Cumulative total for SOND seasonal rainfall over Kisumu
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Figure 8: Averaged Monthly Cumulative total for SOND seasonal rainfall over Dagoretti
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Figure 9: Averaged Monthly Cumulative total for SOND seasonal rainfall over Bukoba
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Figure 10: Averaged Monthly Cumulative total for SOND seasonal rainfall over Kigoma
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Figure 11: Averaged Monthly Cumulative total for SOND seasonal rainfall over Mtwara

4.3 Results for identifying drought periods using drought severity index

Using drought index the following SOND results were obtained. The results in this
section show that east Africa has had variability in both excessive and deficient rainfall in recent
years. This is specifically shown for the earlier years of the current decade just like Hastenrath, et
al. (2007) has shown in his work. In particular, the frequency of anomalously strong rainfall
causing floods had gradually increased in the beginning of the decade.

Shongwe. Van Oldenborgh and Aalst (2009) in their report showed that there had been an
increase in the number of reported hydro-meteorological disasters in the region, from an average
of less than 3 events per year in the 1980s to over 7 events per year in the 1990s and 10 events
per year from 2000 to 2006, with a particular increase in floods and droughts.

In the period 2000-2006 these disasters affected on average almost two million people
per year. The major historical droughts in the last 20 years in the region were in: 1983/84,
1991/92, 1995/96, 1999/2001, 2004/2005 (led to famine) i.e. results for Kenya, as show in

table.2. Also the EI-Nino related floods of 1997/98 were very severe enhanced by unusual
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pattern of SSI in the Indian Ocean (IPCC, 2007) and might have led to the La Nina related
drought of 1999/2001 as also evidently shown by the results obtained for the three countries. The
1999/2000 La Nina was the most severe in 50 years and it led to the kind of readings recorded
for the year 2000 in most of stations.

Table 2. Drought Severity Index percentage for Kenya

20000 2000 2002 2003 204 206 206 200/ 2008 20

KENYA
6324 MNANCHRA 91% 2% 13 ™ 13% % D% U % 1%
6341 MARSABRIT 2% 8% 1B U B 6%  16% B 12 1M
63671 WAIIR 4% 12% Se%0 &  125% N 2% & % 1B
6308 KIUMUJ 106% B U ™ 1% 5% 16 4% 1B8% 1K
630 KH % 1B 106% N U % 1% [e ) 8% 1%
63710 KERG-D 1% 8% &% 8% 1% 4% 1% 81% B BN
63714 NALRU % & 1B % 8% &  12% I 1% 10
63717 NYeR > B 1 1% 12% 3%  19%%  101% % B
63720 BvRU % P2 P 1%  13P%0 o DN 1% Ge% %
63738 GARSA 43% ™  161% % 61% W 2% 16% % 1%
63741 NRBDAGCRETTI 101% % 14 D% B N 1™ N U 9%
63742 NRBWILSON 8% %  15% 6% % 3 18 & 1B 1%
6370 MALNDI 1% N 1% 6/  118% I A% D% 5% 1%
1 MOVBAGA 6% 5% 145% I 13% P BN &% %  100%

Table 3: DSI grouped to classes for Kenya

200 2001
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KEWYA
63624 VANDERA
63641 MARSABIT
63671 WAIIR
637108 KISUMUJ
6370 KISl
63710 KERGD
53714 NALRU
63717 NYER
63720 BvRU
63723 GARSSA
63741 NRBIDAGCRETTI
6372 NRBMILSON
6379 VALINDI
MOVBASA
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Just like year 2000, year 2001 was another worst hit SOND season with a dry period
lasting longer than any other SOND season in Kenya in the period of study. All the stations in
this year show varying conditions on average as shown in Table. 2. Garissa and Mandera were
the worst hit in year 2005 and show the lowest recordings in the region. Year 2000 drought
might have been attributed to the warming episodes in the Nino 3.5 region in the pacific. The
whole East Africa region in this year experienced the worst drought in the decade. Year 2002,
2004, 2006 and 2009 SOND seasons were wet but in year 2004 there was a tendency for near
normal conditions. Year 2003 and 2008 had near normal conditions, but year 2008 was having
some variations.

Table 4: Drought Severity Index percentage for Uganda

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

UGANDA
63602 ARUA 94% 121% 82% 4% 117% 114% 88% 96% 105% 103%
63674 KASESE 109% 93% 96% 67% 132% 87% 105% 123% 105% 84%
63705 ENTEBBE AIRP. 44% 126% 153% 88% 81% 46% 172% 8% 76% 135%

Table 5: DSI grouped to classes for Uganda

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

UGANDA
63602 ARUA 3 4 3 2 3 3 3 3 3 3
63674 KASESE 3 3 3 2 4 3 3 3 3 3
63705 ENTEBBE AIRP. 2 4 4 3 3 2 4 3 2 4

From the three stations used for Uganda, near normal conditions were observed
throughout the decade with the Entebbe region experiencing four wet years in year 2001, 2002,
2006 and 2009. Dry SOND seasons were recorded in 2000, 2005 and 2008. It is also evident that

year 2003, 2004 and 2007 were near normal and around the Entebbe region variability was well
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characterized in the great part of the decade. Year 2003 for these stations shows drought
prevalence and it is the lowest recorded in the last ten years.

Table 6: Drought Severity Index percentage for Tanzania

Table 7: DSI grouped to classes for Tanzania

On average Tanzania shows a fairly near normal tendency, this is recorded for year 2002,
2007 and 2008. Year 2001 and 2005 were far the driest SOND seasons in the decade having year
2005 as the worst drought experienced for the country. Unlike 2001 and 2005, 2006 SOND

season was the wettest in all stations during the period chosen for study. It is noted that changes
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characterized in the great part of the decade. Year 2003 for these stations shows drought

prevalence and it is the lowest recorded in the last ten years.

Table 6: Drought Severity Index percentage for Tanzania

h

TANZANIA
63729 BUKOBA
63733 MUSOMA
63756 MWANZA
63801 KIGOMA
63832 TABORA
63862 DODOMA
63932 MBEYA
63962 SONGEA
63971 MTWARA

Table 7: DS1 grouped tJ classes for Tanzania

TANZANIA
63729 BUKOBA
63733 MUSOMA
63756 MWANZA
63801 KIGOMA
63832 TABORA
63862 DODOMA
63932 MBEYA
63962 SONGEA
63971 MTWARA

2000

101%
119%

73%
115%
102%
168%
155%

98%
111%

2000

w ow B w W N W

2001

74%
82%
103%
71%
108%
48%
87%
53%
2%

i
2001

RN R D D W D W w N

2002

109%
151%
106%
96%
125%
95%
64%
110%
177%

2002

Gl W RN W W W B w

2003 2004
97% 87%
54% 57%
76% 110%
84% 97%
70% 149%

127% 108%
89% 115%
92% 95%
22% 223%

S

2003 2004

3 3
2 2
3 3
3 3
2 4
4 3
3 3
3 3
1 5

1

2005

58%
56%
84%
73%
35%
46%
59%
38%
26%

2005

R N D DD D w

2006

142%
128%
136%
159%
156%

83%
153%
179%
174%

2006

A oo A ow A &~ B P& B>

2007

115%
97%
97%

111%
70%
70%
87%

132%
3%

2007

B NN NN w

()

2008 2009
88% 129%
97% 149%
86% 128%

106% 81%
86% 100%
67% 187%
89% 101%
92% 113%
97% 61%

_____ [immmmmm e [}--

2008 2009

3 4
3 4
3 4
3 3
3 3
2 5
3 3
3 3
3 2

On average Tanzania shows a fairly near normal tendency, this is recorded tor year 2002,

2007 and 2008. Year 2001 and 2005 were far the driest SOND seasons in the decade having year

2005 as the worst drought experienced for the country. Unlike 2001 and 2005, 2006 SOND

season was the wettest in all stations during the period chosen for study. It is noted that changes
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in season in rainfall intensity tend to contribute towards determining a wet or dry year. Also
anomalously wet seasons are typified by more evenly distributed rains, whereas for drier than

average years the reverse tends to be true.

4.4 Results for vegetation productivity index generation

The yearly VPI images derived from the NDVI images are shown below (fig. 12 to 22)
these images were placed alongside to rainfall anomalies and ENSO charts for comparison. The
most prevalent mode of interannual climate variability appearing to be influential in this rainfall
season is ENSO. Since its effect characterizes rainfall anomaly pattern over eastern Africa,
charts have been drawn to show this. ENSO charts drawn show the warm and cold episodes
which are based on a threshold of +/- 0.50C for the Oceanic Nino Index (ONI) which is a 3
month running mean of Extended Reconstruction Sea Surface Temperature (ERSST.v3b) SST
anomalies in the Nino 3.4 region (5°N-5°S, 120°-170°W)], based on the 1971-2000 base period.
The cold and warm episodes are defined when the threshold is met for a minimum of 5
consecutive over-lapping seasons. Note that also rainfall anomalies plotted below show regions

ofabove normal rainfall (green), near normal (cyan) and below normal rainfall (yellow).
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Figure 12: Year 2000 SOND averaged VPI image and Rainfall Anomaly
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2000/01

S o &6 & & o o o
N o oM W N B O

anomalies in the Nino 3.4 region

§menth running mean of ERSST.v3b SST
<
o

augus septe octob nove dece januar febru
t mber er  mber mber y ary

--—--2000/01 06 -05 04 04 04 05 -06 -07 -06 -05 -04 -02

may june july march  april

Figure 13: Time evolution of changes to the oceanic Nino Index in 2000/01

Its observed that during a dry period in East Africa the oceanic nino index records the

lowest in the SOND period (Figure 12).
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Figure 14: Year 2001 SOND averaged VPI image and Rainfall Anomaly
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Figure 15: Time evolution of changes to the oceanic Nino Index in 2001/02

Just like time evolution of changes to the oceanic Nino Index in 2000/01,2001/2 follows
the same trend resulting to a dry period in East Africa.
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Figure 16: Year 2002 SOND averaged VPI image and Rainfall Anomaly

Changes to the Oceanic Nino Index (ONI)

2002703

3month running mean of ERSSTVSST
anomalies in the Nino 34 region

An increase in oceanic Nino Index shows a corresponding increase in the vegetation
cover in East Africa region. This is because rainfall received is a function of the nino index

change.
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Figure 19: Time evolution of changes to the oceanic Nino Index in 2003/04
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Changes to the Oceanic Nino Index (ONI)
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Figure 21: Time evolution of changes to the oceanic Nino Index in 2004/05
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Figure 22: Year 2005 SOND averaged VPI image and Rainfall Anomaly

Changes to the Oceanic Nino Index (ONI)
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Figure 23: Time evolution of changes to the oceanic Nino Index in 2005/06
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Figure 24: Year 2006 SOND averaged VPI image and Rainfall Anomaly

Changes to the Oceanic Nino Index (ONI)

Figure 25: Time evolution of changes to the oceanic Nino Index in 2006/07
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Changes to the Oceanic Nino Index (ONI)
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Figure 27: Time evolution of changes to the oceanic Nino Index in 2007/08
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Figure 29: Time evolution of changes to the oceanic Nino Index in 2008/09
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Figure 30: Year 2009 SOND averaged VP1 image and Rainfall Anomaly
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Figure 31: Time evolution of changes to the oceanic Nino Index in 2009/10

Note that the historical image referred is a SOND averaged situation for the whole 10

year period of study which is represented by the following image
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Figure 32: year 2000 to 2009 SOND averaged VPI image

45 Results for identification of drought years using VPI

From the Actual NDVI values. Vegetation Productivity Index results were obtained and
VPI productivity classes in percentage for SOND season for the past years were recorded as
shown in this section.

Just like the drought index, the results obtained for VPI show that the entire region has
experienced fluctuating vegetation cover in the past ten years. In particular, there is a
regeneration of the vegetative ground cover after the beginning of the period considered
especially towards the middle years and a decreasing tendency towards the end of the period in
most stations.

The obtained measurements are in support of the droughts we experienced in the

beginning of the decade and also towards the later years of the same decade. The Vegetation
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Productivity Index Values have been classified as follows.

e 5which is 80 < x < 100%
e 4 which is 60 < x < 80%
e 3 which is 40 < x < 60%
« 2 which is 20 < x <_40%
e lwhich is 0 < x < 20%

Table 8: VPI productivity classes in percentage for Uganda

Table 9: Classified VPI productivity classes for Uganda

20000 2000 202 2003 ¥ 2006 0 A6 0 A0/ 208 200

UGANDA
63002 ARUA 3 4 2 2 3 3 4 3 2 3
63674 KAEE 3 3 3 3 4 3 4 3 3 3
63706 ENTEEEEAIRP. 2 3 4 3 3 2 4 3 3 3

Just like the rainfall drought index, VPI productivity classes in table 6 above shows
neutral conditions throughout the decade with Arua region experiencing below average
vegetation cover in year 2002, 2003 and 2008 during the decade. The Entebbe region had a bad
year in 2000 and 2005. Most stations in Uganda were characterized by a higher productivity rate
thus giving higher VPI index values; this is specifically noted in year 2001, 2004 and 2006. Year

2006 was the most vegetated in the duration of consideration with year 2001, 2004 and 2009
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giving neutral conditions throughout the decade.

Table 10: VP1 productivity classes in percentage for Kenya

002 208 4 206 206 A0/ 208 A0

2000 201

63624 VANCERA
63641 MARSARIT
63671 WAIR
63708 KISUMJ

16379 K9l

63710 KRGO

63714 NALRU

63717 NvER

63720 BvRU

63723 GARSA

63741 NRBDAGCRETTI
63742 NRBWILSON
63799 MALINDI

63820 MOMBASA

Table 11: Classified VPI productivity classes for Kenya

202 2008 2004 206 206 07 2008 200

2000 201

KENVA
63624 MANDERA

| 63641 MARSABRIT

' 63671 WAJIR
63708 KISUMU

63709 KISl

63710 KERGD

63714 NALRU

63717 NYER

63720 BvRU

63723 GARSA

63741 NRBDACCRETT

63742 NRBWMLSCN
63799 VAUNDI

63820
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Just like year 2000 in the rainfall drought index, year 2000 VPI readings show that it was
the worst hit with a dry conditions lasting longer than any other SOND season in the country
during the decade. All the stations in this year show dry conditions on average. Year 2006 was
the best in ground vegetation cover showing a higher VPI percentage in the entire region while

year 2001, 2003, 2007 and 2009 shows varying VPI values in the region across the country.

Year 2000 conditions might have led to the worst drought in the decade at the time. Year
2002, 2004, 2006 and 2008 were above average years for Kenya but year 2009 had some stations
record below average conditions. Results also show that above neutral conditions were well
characterized in the great part of the decade but with one dry SOND vyear in 2000 and one

densely vegetated year in 2006.

Table 120 VVPI productivity classes in percentage for Tanzania

[ — “ I 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
wmm M m mmmmm,
TANZANIA

63729 BUKOBA 60 20 40 80 60 60 60 80 60 60
63733 MUSOMA 60 40 60 60 40 60 60 80 60 60
63756 MWANZA 40 60 60 60 60 80 80 80 40 60
63801 KIGOMA 40 40 60 40 40 20 80 60 60 60
63832 TABORA 60 40 80 60 60 40 60 60 60 80
63862 DODOMA 60 40 60 60 80 60 20 60 40 80
63932 MBEYA 80 60 40 40 60 60 60 60 60 60
63962 SONGEA 40 40 60 60 60 60 60 80 60 60
63971 MTWARA 60 40 80 40 60 60 80 60 60 40
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Table 13: Classified VPI productivity classes for Tanzania

________ -

2000 201 2002 28 2004 2005 2006 207 2008 2009

TANZANA

63729 BUKBA 3 1 2 4 3 3 3 4 3 3
63733 MLBOVA 3 2 3 3 2 3 3 4 3 3
6375 MAANZA 2 3 3 3 3 4 4 4 2 3
63301 KIGOVA 2 2 3 2 2 1 4 3 3 3
638 TABCRA 3 2 4 3 3 2 3 3 3 4
6382 DCDOVA 3 2 3 3 4 3 1 3 2 4
63032 MEYA 4 3 2 2 3 3 3 3 3 3
6302 ONEA 2 2 3 3 3 3 3 4 3 3
63971 MIVWARA 3 2 4 2 3 3 4 3 3 2

On average, Tanzania has neutral conditions but having year 2001 and 2002 as dry years.
Year 2002, 2006 and 2007 were above average years showing a much improvement in the
region. Tanzania has a dry and below neutral condition in the beginning of the period of study
but showing regenerating characteristics throughout the decade especially in year 2007.

Fairly near normal condition in the past ten years have been noted in year 2000, 2003,
2004. 2005, 2008 and 2009 but with a tendency of below average expectancy as you go towards
the end of the decade. Also noted is that for the most part of the decade, Tanzania has recorded
small variations in most of the stations and this might be due to human influence or irrigation
might have been used or both while an increasing trend from the beginning of the decade is
observed but decreasing gradually in the last two years. Note that the VVPI percentages and are

derived from the actual VPI readings which have been extracted from NDVI values.

46 Trend analysis results

46.1 Graphical approach

Except for some few years, in Uganda vegetation probability index has well mapped the

same trends noted in the drought severity index. This result shows that VPI can also be
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appropriate for drought monitoring in the stations adopted in the study since vegetation in the

region is slightly variable compared to the rainfall received.

ARUA

Figure 34: Time evolution of DSI and VPI, Kasese
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vegetation cover. Most of the observation show that monitoring of drought through VPI or DSI
can bring about the same result. But some years show that the vegetation cover may not have a
direct dependency on rainfall thus bringing in a complicated mechanism when determining the
effects of drought in such a region. A good example is when irrigation is used.

For the above three stations, the characteristics portrayed by the drought severity index
has been well mimicked by the vegetation index showing that towards the middle of the decade
there has been a better improvement in vegetation resources thus faring much better than the
expected average shown by the DSI.

VPI is very dependent on rainfall in the stations used in Kenya as the following charts
show, this means that there is a one to one relationship between rainfall and ground vegetation

cover.
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Figure 36: Time evolution of DSI and VP1, Mandera
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Figure 37: Time evolution of DSI and VPI, Marsabit
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Figure 38: Time evolution of DSI and VVPI, Wajir
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Figure 39: Time evolution of DSI and VPI, Kisumu
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Figure 40: Time evolution of DSI and VPI, Kisii
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Figure 41: Time evolution of DSI and VPI, Kericho
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NAKURU
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Figure 42: Time evolution of DSI and VPI, Nakuru
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Figure 43: Time evolution of DSI and VPI, Nyeri
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Figure 44: Time evolution of DSI and VPI, Embu
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Figure 45: Time evolution of DSI and VPI, Garissa
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NRB/DAGORETTI
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Figure 46: Time evolution of DSI and VPI, Dagoretti
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Figure 47: Time evolution of DSI and VPI, Wilson
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MALINDI
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Figure 48: Time evolution of DSI and VPI, Malindi
MOMBASA
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Figure 49: Time evolution of DSI and VPI, Mombasa
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Wajir, Kericho and Nyeri have an averaged neutral condition throughout the decade but
*ith some slightly variation in the rainfall drought index in year 2006 which shows a 100%

improvement on VPI and a record of wet season from DSI.

The same pattern for Wajir, Kericho and Nyeri in year 2006 is portrayed in Marsabit,
Kisumu, Mandera, Kisii, Garissa and Embu. But Marsabit, Kisumu, Mandera and Kisii shows a
slightly variation in both rainfall and vegetation index which might be as a result of either human

interference like farming, vegetation clearing or use of irrigation.

Most reports and studies done on the East Africa region show that despite the small
percentage SOND season annual rainfall contribution received in most parts, there is a vegetation
dependence in the season’s rainfall received for its growth. lhis is evident Irom the charts
plotted above (fig. 33 to 49) which supports the results of these findings and also brings in a

vegetation factor to consider while monitoring drought using rainfall in the region.

The time series also show that Vegetation Productivity Index corresponds well with the
Drought Severity Index and both can be used to asses and monitor drought in the Kenyan region

due to its one to one relationship.

VPI is indirectly dependent on SOND rainfall as the drought index DSI in nearly all
stations in Tanzania show. This indicates that even though vegetation is dependent on rainfall, its
variation might be influenced more by human means. So when it comes to drought monitoring

we must be also considerate to see a factor that will consider this human influence.

65



Classes

BUKOBA

Figure 50: Time evolution of DSI and VPI, Bukoba
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Figure 51: Time evolution of DSI and VPI for Musoma
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Figure 52: Time evolution of DSI and VVPI for Mwanza

Figure 53: Time evolution of DSI and VPI for Kigoma

67



4.5

TABORA

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
3 2 4 3 3 2 3 3 3 4
3 3 3 2 4 2 4 2 3 3

Figure 54: Time evolution of DSI and VPI for Tabora
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Figure 55: Time evolution of DSI and VPI, Dodoma
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Figure 57: Time evolution of DSI and VPI, Songea
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MTWARA
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Figure 58: Time evolution of DS1 and VPI, Mtwara

Few stations in Tanzania show a positive relationship between VPI and DSI, that is a
positive change in rainfall gives a positive change in vegetation growth and vice versa. Some
stations indicate that the vegetation probability index is indirectly dependent on rainfall received.
This complicates the methods used to monitor drought induced by either rainfall shortage or
human interference affects the people. In these few stations, the vegetation products or produce
got are either irrigation dependent and drought experienced is a function which is influenced by
both rainfall and ground water from rivers or bore holes.

The above charts show that the rainfall received in the region is of average expectation
and the vegetation cover is slightly dependent of the rainfall received, this is noted in Bukoba,
Musoma, Kigoma, Songea, Dodoma and Mtwara. Also just like the rainfall drought index, the

vegetation probability index in Mwanza, labora and Mbeya are characterized by a variation
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iom the expected average but with a tendency of going back to its normal condition. Dodoma,

jongea and Mtwara show a nearly one to one relationship between the two indices but with a

slight variation in the extremes.

162 Statistical approach

1.6.21 Linear Regression

To check if the data had a statistical relationship for the two indicators such that

systematic changes in the value of one variable are accompanied by systematic changes in the

other, the simplest way used to get this was through plotting a regression formula for the data by

creating a simple XY chart, a Trendline formula and correlation values calculation and the

following was obtained.

Slope, Intercept and rsqu Functions

y=-0.0242X+51594

Slope, Intercept and rsqu Functions

y=00182¢39 %5
Linear regression for ARUA for VPl |_|nearregre|sst|0nf0rt51m “
Interrupt 30344ADH ;ercep 0024242424
(0] A
Slope ' 0018181818 >
r2 0024242424
r2 0005565363

Figure 59: Linear Regression graphs of DSI and VPI, Arua
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Slope, Intercept and rsqu Functions

Slope, Intercept and rsqu Functions

y=00364x-69.891 y=00061x- 9046
I»e ar regression for ENTEBBE AIRP.  for  VPI Linear regression for ENTEBBE AIRP.  for DSl
Intercept 6989090909 Intercept-0048484848
Slope 0035363636 Slope 0006060606
2 0Qzrzrzrzr r2 0000439174

Figure 61: Linear Regression graphs of DSI and VPI, Entebbe

72



DSI in Arua (Fig. 59) shows a slight and slow but progressive reduction in rainfall
amount thus gradually the region becoming drier. This is duplicated in vegetation productivity
index tor the same region where there is reduction in vegetation cover and as a result vegetation
productivity decrease. Kasese and Entebbe stations show the opposite tendency where both
indexes show an improvement over the years as we move towards the end of the decade. The
vegetation productivity index in these two stations have a steeper slope in that their improvement

istaster in comparison to rainfall drought index improvement.

Figure 62: Linear Regression graphs of DSI and VPI, Mandera

In kenya, vegetation productivity index and drought severity index portray an increasing,
neutral and decreasing trends in the stations used for the study. For example: Mandera (Fig. 62),
Marsabit (Fig. 63), Wajir (Fig. 64) and Kisumu (Fig. 65) show a steady increase in both rainfall

and vegetation cover in their region.
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Figure 65: Linear Regression graphs of DSI and VP1, Kisumu

SOND season for these four stations that isMandera, Marsabit, Wajir and Kisumu has
improved especially in the last four years from 2006 to 2009 in the decade used tor this
dissertation study. This improvement has shifted the average condition ol the two indexes a bit
higher compared to the past six years. From the plots it is noted that year 2006 was a good year
in these stations for both rainfall measurements and vegetation cover. The slope for Kisumu and
Wajir is a little bit weak in growth as compared to Mandera and Marsabit which record the
steepest in these stations.

Kisii shows a peculiar trend between both indexes, this is as a result ol the drastic
changes in the vegetation cover which at the end result gives a neutral averaged situation on the
vegetation productivity classes and also gives a neutral tendency that is in contrast with the
decreasing rainfall recordings. The DSI shows a gradually growing drought phenomenon in the

decreasing drought index from above normal readings to below normal rainfall recordings.
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Figure 67: Linear Regression graphs of DSI and VPI, Kericho
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Figure 68: Linear Regression graphs of DSI and VPI, [Nakuru

For kericho just like kisumu, there is a gradual increasing lor the both indexes especially

towards the last two years at the end of the decade of the study. Among the station discussed
earlier, kericho so far has recorded the highest coefficient ol correlation, R of 65/0, showing a

rapid improvement in vegetation productivity in the region.

Unlike kericho, Nakuru's vegetation productivity improvement is more emphasized in
the last three years and as a result recording a correlation coellicient ol -mfo. This improvement
is also noticed in the rainfall drought index, that is the results show that as much as the rainfall
alters, the vegetation productivity rate also alters in the same direction. Positive for positive slope

and negative slope for negative slope in the other.
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Figure 69: Linear Regression graphs of DS1 and VPI, Nyeri

Nyeri records highest vegetation productivity class giving an 80% to 100% in the VPI
legend. This is the highest in the region and supports the kind of measurements of rainfall
recorded during the SOND season in year 2006. The region’s trend analysis show gradual
increase with a tendency a neutral position in most years in the decade ot the study.

Despite the gradual increase in vegetation productivity rate in Embu. the rainfall received
on average gives a near normal status with year 2006 giving a higher recording of the wettest
year so far in the country in the decade of the study. This is also noted for Garissa for both the
wettest year and gradual improvement in vegetation productivity.

Dagoretti and Wilson airport stations show a drastic decrease in vegetation productivity
rate thus resulting to a decreased vegetation cover. Even though the rainfall drought index in
these stations records a near normal rainfall, vegetation productivity decrease raises an alarm for

the environmental conservation in the region.
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Slope, Intercept and rsqu Functions Slope, Intercept and rspo Funchoos

Figure 72: Linear Regression graphs of DS1 and VPI, Dagoretli

Slope, Intercept and rsqu Functions
Slope, Intercept and rsqu Functions

y=00121x2L297
Linear regression for NRBAMLSON for VPI Linear regression for NNBAMLSON ~ for DSl

Intercept 172678787 Intercept-21.2969697

Slope 0084848485 Slope 0012121212

r2 0070707071 2 0002020202

Figure 73: Linear Regression graphs of DS1 and VPI, Wilson

Malindi and Mombasa record a slight improvement in both the vegetation VPI index and

rainfall DSI index. This gives an increasing trend to the plotted charts for Malindi and Mombasa.
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~Ncreasing rainfall and vegetation trend was due to an occurrence of El Nino that started in

tfnber 2006band lasted until early 2007.

Figure 74: Linear Regression graphs of DSI and VPI, Malindi

Slope, Intercept and rsqu Functions
Slope, Intercept and rsqu Functions

0233
linear regression for MOMBASA for VPl Linear regression for MOMBASA for DS
Intercept ~ -397.8 Intercept-142.7318182
Slope 02 Sope 0072727273
r2 01746081H 2 0.04363534

Figure 75: Linear Regression graphs of DSI and VPI, Mombasa
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The Tanzanian stations used in the study show a particular trend in their observed
recordings. These stations are divided into two groups, that is an increasing trend and a neutral
trend. Bukoba, Musoma, Mwanza and Songea show an increasind trend for both the vegetation
and drought rainfall index. This trend shows a positive relationship for both the two indexes such
that an increase in the rainfall index leads to a positive gradual increase in vegetation

productivity rate and vice versa.

The remaining Tanzanian stations recorded neutral or no change departing from the

average condition. This is evident in Tabora, Dodoma, Mbeya and Mtwara.

) Slope, Intercept and rsqu Functions
Slope, Intercept and rsqu Functions

y=C.1273x-25222 y=0.1091x-215.67
Linear regression for BKBA for WA Linear regression for BUKOBA for 03l
Interoept -Z2.2181818 Intercept-215.6727273
Sope 01zrzrzizr Sope 010905080
r2 0.19%530 r2 026560645

Figure 76: Linear Regression graphs of DSI and VPI, Bukoba
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Slope, Intercept and rsqu Functions
MO0788X-155.03

Linear regression for MUBOVA for VPl
Intercept ~ -155.030813
Slope 007878781
r2 0.1/

Slope, Intercept and rsqu Functions

H060&-11848
Linear regression for MUSOMA for  0Sl
Interoept-118.43434%
Slope 00808068061
2 0.08060861

Figure 77: Linear Regression graphs of DSI and VVPI, Musoma

Slope, Intercept and rsqu Functions
y=00667x-130.53

Linear regression for MAANZA for VPI
Interoept 130533333
Slope 0.063636%7
r2 007482032

Slope, Intercept and rsqu Functions

y=0.1273x-252Q2

Lirear regression for MAANZA for 09l

Intercept-22.0181818
Sope 0127272727
2 0468815047

Figure 78: Linear Regression graphs of DSI and VPI, Mwanza
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Sope, Interoept and rsqu Fundions Sope Interoept rsou Fundios

y=0.1273x-25262 y=0 0546x-10644
linear regression for KIGOMA for VPl Linear regression for KIGOMA for DS
Intercept  -%52.6181818 Intercept-106.4363636
Slope 012722z Sope 004544H
r2 020864406 r2 00846348

Figure 79: Linear Regression graphs of DSI and VPI, Kigoma

Slope, Intercept and rsqu Functions

Slope, Intercept and rsqu Functions

y=00606x-11848 y=0.0061x+15048
linear regression for TABORA for VPl Linear regression for TABORA for DS
Intercept 118484345 Intercept 1504848485
Slope 0.030650806L Slope 0006060606
r2 0.0/BbAG 2 0000618429

Figure 80: Linear Regression graphs of DSI and VPI, Tabora
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Slope, Intercept and rsqu Functions
y=00121x-21497
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Slope 002121212
r2 0086

Slope, Intercept and rsqu Functions

Linear regression for DODOMA for D
Intercepts
Slope 0
r2 0

Figure 81: Linear Regression graphs of DSI and VPI, Dodoma

Slope, Intercept and rsqu Functions
y=00061x+15048
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Linear regressionfor MBFYA for VPl
Interospt 1508845
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Slope, Intercept and rsqu Functions

y=0.0303x-57.842

Linear regression for MBEYA for
Intercept *57.84242424
Slope  0.03030303
r2 0.01546073

Figure 82: Linear Regression graphs of DSI and VPI, Mbeya

N

DSl

85



Slope, Intercept and rsqu Functions

H.1273X-2522
raregression for SONGEA for VPl
Intercept -2522181818
Slope 0127272727
r2 0460815047

Slope, Intercept and rsqu Functions

Linear regression for SONGEA for DSL
Intercept-2034242424
Slope 0103030808
2 0126921333

Figure 83: Linear Regression graphs of DSI and VPI, Songea

Slope, Intercept and rsqu Functions

y=-00061x ¢15048
jiear regression for MTWARA for  VPI
Intercept 1504848485
Slope 00068060606
f2 0000618429

Slope, Intercept and rsqu Functions

Linear regression for MTWARA for  DSI
Intercept 1365333333
Slope 0066666667
r2 0021696252

Figure 84: Linear Regression graphs of DSI and VPI, Mtwara
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Coefficient of Variation (CoV)

T*he Coefficient ol Variation (COV) for the stations used in this study show that the
iuon observed are within the mean value expected and no extreme were such severe beyond
expected range. The CoV results also as follows:

e 14: Coefficient of Variation (COV) results for East Africa

A B3] SO\Dmean SO\Dmean
A standard devigtion  standarddevigion XmenMA xmean [ GW\A=SIDBEMEAN GVEE=STIR/ME

m 073786 047140451 25 3 025436134 015713484
GEE 0421637 0471404521 3 3 0131761569 015713484
ITOBE AIRP, 0666667 06755965036 3 a1 022222222 0382450012
QWA

HANCERA 1154701 1766981104 3 27 0534900179 066437446
MASAT 0918937 0737864787 25 31 (328191637 0333020899
mu 0567646 0942800042 31 3 0183111681 0314260681
08 \(8) 073735 0737804787 31 29 0233000850 02MFHIH
m 05755% 0567646212 31 29 0832450012 0196740073
EVCHO 0567646 0575595036 31 29 0183111681 03019298323
IAKLRU 0567646 0666606567 29 3 0195740073
V\Bw 0783311 0575595036 33 29 0246503324 (0301929323
Bvel 0783311 14500553 25 3 0281718906 0351364184
GARSA 0523273 120007254 27 25 0304915779 0430025007
NRBDAGORETTI 0948533 01665665667 27 3 0351364184 022222222
NRBAVMSON 096302 0516496581 26 3 0871573763 872165627
NAIHOI 05755% 1100804935 31 29 0282450012 037486
MOVBASA 1449138 1000053 31 3 0467463766 0351364184
TANZANA

BUKOBA 05755% 01665066367 29 3 0801929323 BT
MUSOVA 0567646 (0516496581 29 3 019740073 0872165627
MAANZA 0737866 0B67646212 31 31 023300069 0183111631
OGOVA 0549837 567646212 25 29 (0330034634 0196740073
TABORA 0665667 Q737864787 3 23 0222222222 04436134
DCDOVA 0918937 1554002563 25 3 (328191637 051364184
VEEYA 05657646 Q0737864787 29 23 019740073 034436134
ONGEA 0567646 0675696036 29 31 0196740073 (0B3450012
MIVARA 0737856 1370320819 23 29 034436134 04754248
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Limitation of the study
One of the disadvantages of using drought severity index is that the mean, or average,
;cipitation is often not the same as the median precipitation, which is the value exceeded by
fo of the precipitation occurrences in a long-term climate record, lhe reason for this
<ecipitation on monthly or seasonal scales does not have a normal distribution. Use
sreent of normal comparison implies a normal distribution where the mean and median a
.onsidered being the same.

Satellite derived products are known to be affected by topography, variations in viewing
ad illumination angles, atmospheric influences, and variations in soil brightness, and since
NDVI has been for many years the Earth observation workhorse to quantity vegetation amount
tnd radiation absorbed it is therefore affected by this factors. For example, some authors have
shown how NDVI is increasing in the northern hemisphere, and they have deduced that
photosynthesis is therefore increasing. This observation might be accelerated by these factors.

There arc also many complications, limitations and causes of error associated with
satellite data, including sensor resolution and calibration, digital quantization errors, ground and
atmospheric conditions and (orbital and sensor) degradation. But NDVI data sets are generally
well-documented, quality-controlled and have been pre-processed to reduce many of these
problems. However, some noise is still present in the data sets. Such noise is mainly due to
remnant cloud cover, water, snow, or shadow, sources of errors that tend to decrease the NDVI
values. False highs, although much less frequent, can also occur at high solar or scan angles (in
which case the numerator and denominator in the NDVI ratio are both near zero) or because of
transmission errors, such as line drop-out.

To minimize the problem of false highs, the data are generally based on low-angle
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nervations wherever possible. Most errors thus tend to decrease NDVI values. This unusual
rif structure, with high NDVI values being more trustworthy than low ones, breaks the
iiimptions of many standard statistical approaches. Further complications can arise because the

mirstructure can vary intime and space.
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CHAPTER FIVE
SUMMARY, CONCLUSIONS AND RECOMMENDAI IONS

Summary

Meteorological drought in the three countries shows equal chances of occurrence in all
den used. This is shown by the average VP1 image for the SOND season, the whole region of
stem Africa has a 50% chance of improving vegetation cover and same chance in performing
-oily. But an exception is noticed in the Kenyan highlands, north eastern parts of Kenya,
ustal areas in Kenya and Tanzania and parts of southern Tanzania with a small portion in Mt.
eiimanjaro. This gives a negative implication in that the greater part of east African region is
object to effects of drought as the satellite product suggests.

It is shown that the conclusion for year 2000 is that the north eastern part of Uganda, Mt.
agon region and coastal strip of Kenya experienced a positive regeneration as compared to the
lining regions of East Africa. This implies that drought effects were more felt and
experienced in the later regions where degeneration was dominan

In year 2001, rift valley around Lake Turkana, some parts ot central Keny
coastal strip along Kenya-Tanzania border were hard hit by drought conditions as VP. shows in
figure 14 where the regions recorded 0-20% in the productivity class of VP1 and had an 80-100%
chance of improvement. The other parts recorded a good productivity rate of 60-80% with few
places having 40-60% in the same year.

In 2002, the eastern and southern sector of East Africa had a good year with a 60-80%
reading while the whole north eastern parts in Uganda and western side of Kenya performed
poorly, this is shown in figure ,6. From year 2003, regeneration of vegetation picked up in the

whole region with a maximum record being observed in year 2004. In 2005, few places in central
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f and north eastern Kenya recorded a low productivity rate while majority ot the region
,;jneutral conditions except for Kenyan highlands, western parts ol rift valley, southwest
rjjaand southern Tanzania which had 60-80% productiv it\ class

In 2006 SOND season, major improvement of 60-100% was recorded in most places with

central and western Tanzania recording neutral and low productivity rate. This shows that
and southern Tanzania during this

Jit was not experienced in Kenya, Uganda and eastern

season.
The best condition in east Africa was recorded in year 2007 where majority of the region

«ded a 60-80% and even some places had 80-100%, meaning that no more p

Mbe got at the time. This persisted to year 2008 where a maximum was recorded in the

Ural parts of the region. Year 2009 was bad for Kenyan central rift valley which recorded a

* tn VPI productivity class; this is similarly experienced in some parts of Tanzanian coast.

jerest of region recorded 40 to 80%.

il Conclusions
In eonol.siou. from .he »dy « >« “ode*“b b CH, * n
»»1,€ prodnoi. ,hch ... — d- eerm»>W »'—  *>IS "
SemOte sensing showed that meteorological drought can
em

ichange in vegetation cover condition.
a mat VPl index is more sensitive and

I
x monitored using VPI index and it can be concluded

well .1* changes of .egeiaii.o;
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Apendent on rainfall.

East African countries experience severe droughts as a result ot tailed rains. With crops
<t to grow, many people have been left without enough food to eat. Examples ol these
# years indentified by the study which have occurred are in year 2000, early 2002 and
I Note that also year 2009 drought is presumed to be the worst in east Africa since 2000 as
Jikd by the satellite product used in the study.

The evaluation of the potential use of satellite-derived products in regional drought
Storing focusing on comparison of rainfall and satellite derived products for the case oi
m season demonstrates that VP1 is a good indicator of vegetation response to rainfall
ages and thus also to rainfall drought index. It can be concluded that the VP1 is a uselul tool
dis capable of providing a good monitoring satellite system on drought.

W hen used along with traditional drought indices, based on rainfall or other weather and
ciliary information, VPI contributes toward the development of an operational drought index
* aid in making appropriate and timely decisions in response to drought. Prom the results
Med in the study, it is possible to state that satellite monitoring of drought is realistic and can be
sed in its monitoring. This has been proved by results of the objectives of this study.
L2Recommendations

The recommendations of this study are directed towards climate research scientists,
environmental scientist, environmental centres, Meteorological and Hydrological Services
NMHSs), 1CPAC and various professionals in all sectors that arc alkctcd by drought an

results.

521 Recommendations to climate research scientists

The data for this study was carried for the whole East Africa region and further study can 2(29



done for a specific region within the region for verification i.e. an individual country.

e Further enhancement of the vegetation index used in monitoring drought in the study should
be encouraged such that scenario development and modelling at regional and even local
levels are explored by the scientists aiming to have a good early warming mechanism.

» More validation of the satellite products should be done since human influence in vegetation
growth is difficult to analyse or separate from the main data.

5.2.2 Recommendation to Meteorological and Hydrological services

e Since satellite products are difficulty or expensive to get, meteorological and hydrological
centres should make them available with ease since most of them are linked to the satellite
data providers.

D.2.3 Recommendation to Research institutions

» Different research institutions within African countries should encourage collaborating
together to determine what is needed to promote the convergence of satellite monitoring
networks within Africa i.e. A good example is like what African Monitoring ol Ihe
Environment for Sustainable Development (AMESD) is doing.

e It is also recommended that research institution within the east African region work together
to develop a regional data base and data assimilation capability that highlights land surface
coverage for vegetation and water cycle processes using satellite products for research
colleges which can't obtain the data from foreign data bases i.e. in Europe, Asia or USA.

e There are a large number of experimental and operational products that are produced by
satellite monitoring that could benefit the non-governmental organizations (NGOs) if
extended or made available with clear understanding thus they should increase Capacity

building
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, According to reports from bodies like IPCC - Intergovernmental Panel on Climate Change on
climate change, climate variability and the frequency ol extremes are expected
general. In order to more effectively contribute to the understanding of droughts, a better

way of understanding the urgency of such extreme events workshops should be conducted by

these institutions to educate the public.
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