
UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND INFORMATICS

SEARCH MECHANISM ENHANCEMENT OF A GEODATABASE FOR

PROMPT DATA RETRIEVAL AND BUSINESS REPORTING

BY

TIMOTHY NJOROGE

P58/61527/2010

SUPERVISOR: DANIEL ORWA

SEPTEMBER, 2012

Project submitted in the fulfillment for the Degree o f Master o f Science in Computer

Science

Declaration

This project is my original work and has not been submitted in support of a degree or any

other award in any university

This project has been submitted with the approval as university supervisor

Mr. Daniel Orwa: Date: 3 / M Z

School of Computing and Informatics, University of Nairobi

Page ii

Dedication

This work is dedicated to my beloved wife Edith and our precious daughters Gracia and

Gloria for giving me the opportunity to do this project

I also appreciate my lecturers for the advice they gave me, particularly my supervisor Mr.

Daniel Orwa and Mr. Lawrence Muchemi

Page iii

Table of Contents

Declaration..11

Dedication..111

List of Tables..v*

List of Figures... vi

List of Abbreviations and Definitions.. vii

Abstract... x

Chapter 1: Introduction... 1

1.1 Background... 1

1.2 Problem Definition...2

1.3 Research Objectives...3

1.4 Research Questions... 4

1.5 Scope and Limitation.. 4

Chapter 2: Literature Review.. 6

2.1 Background to the Relational Model...6

2.2 Overview of Query Optimization in Relational Databases..6

2.3 Approaches to Query Optimization... 8

2.3.1 Systematic Query Optimization..9

2.3.2 Heuristic Query Optimization... 9

2.3.3 Semantic Query Optimization... 10

2.4 Single and Multi-Query Optimization Types.. 11

2.4.1 Single Query Optimization..11

2.4.2 Multi-Query Optimization (MQO)...13

2.5 Understanding Search Algorithm and their Efficiency.. 13

2.5.1 Linear Search..14

2.5.2 Binary Search..14

2.5.3 Searching Strings in RDBMS using Functions..15

2.6 Advanced Search Optimization of RDBMS (Case Study for Oracle)......................17

2.6.1 Oracle Indexing...18

2.6.2 Oracle Multiple Blocksizes....*.. 19

Page iv

2.6.3 Oracle Hashing... 20

2.6.4 Data Sequencing or Row Re-Sequencing..21

2.6.5 Oracle First Rows Optimization..21

2.6.6 Oracle Index Rebuilding... 22

2.5 Performance Analysis... 23

2.5.1 Measuring the Performance.. 23

2.5.2 Analytical Models.. 23

2.5.3 Simulation-Based... 24

2.7 Proposed Model for Metadata Search Mechanism.. 24

Chapter 3: Methodology..26

3.1 Conceptual System Model..26

3.2.1 Conceptual Model of The Geodatabase... 27

3.2.2 Logical Models of the Geodatabase... 28

3.3 Logical Model Design of the Metadata...33

3.4 Proposed Search Mechanism..34

3.4.1 Pseudocode of the Metadata Search Algorithm... 34

3.4.1 Detailed Flow Chart of the Metadata Search Mechanism................................. 35

3.5 Performance Analysis... 36

3.5.1 Analytical Models.. 36

3.5.2 Simulation-Based... 37

3.5.3 Measuring the Performance.. 37

3.5.4 Measuring Tools... 38

3.5.5 Measuring Parameters..39

Chapter 4: Results and Evaluation... 40

4.1 Objectives of Evaluation...40

4.2 A Distributed Adaptive Sampling.. 40

4.2.1 Adaptive Sampling Parameter Configurations.. 40

4.2.2 Measuring Geodatabase Record Query Performance...41

4.3 Results of Analysis.. 41

4.3.1 Comparing Execution time for 8k and 16k Tablespaces with Metadata

Indexing..41

Page v

4.3.2 Comparing Execution time for 8k and 16k Tablespaces................................... 42

4.3.3 Comparing Execution time for a table that is Row Resequenced and one that is

n o t... 44

Chapter 5: Discussion and Conclusion...45

5.1 Achievement of Objectives...45

5.2 Achievement of Research Questions...47

5.2 Discussion of Results in Light of Literature Review... 47

5.3 Limitations... 47

5.4 Recommendation...48

5.5 Future Work... 48

References... 50

Appendix I: Research Questionnaire.. 56

Appendix II: Source Code for Search Mechanism..57

Appendix III: User Manual.. 62

A. The Geodatabase Authentication...62

B. The Geodatabase List Module............................. ...62

C. The Geodatabase Metadata Search...63

D. Setting up the Metadata Search Index.. 64

List of Tables

Table 1: Comparison of binary and linear search algorithms 15

Table 2: Improved time by setting Large Blocksize with metadata indexing 42

Table 3: Improved time by Setting Large Blocksize on Tablespace 43

Table 4: Showing Improved time by Row Resequencing 44

List of Figures

Figure 11: Multiple blocksizes for mixed I/O signatures. 20

Figure 25: Figure showing geodatabase tier 25

Figure 26: Conceptual System Model 27
Page vi

Figure 27: Geodatabase Conceptual Model; Data Model for the geodatabase and the

inter-relationships between the objects 28

Figure 28: Wellbore Star Schema 29

Figure 29: Licensing Activities star schema 30

Figure 30: Project and Resource Estimates star schema 31

Figure 31: Seismic Survey star schema 32

Figure 32: Logical Model Design of the Metadata Model 34

Figure 33: System Model Flow Chart for the Metadata Search Mechanism 35

List of Abbreviations and Definitions

GIS

Geodatabase

Metadata

GE

ArchGIS

E&P

NDC

Seismic

Geographic Information System. GIS is a system designed to
capture, store, manipulate, analyze, manage, and present all types
of geographical data.

Geodatabase provide organizations with a central, scalable data
storage and management system. It combines "geo" (spatial data)
with "database" (data repository) to create a central data
repository for spatial data storage and management.

Data about the containers of data.

Geogle Earth. GIS tool used for map presentation.

Esri's ArcGIS is a geographic information system (GIS) for
working with maps and geographic information. It is used for:
creating and using maps; compiling geographic data; analyzing
mapped information; sharing and discovering geographic
information; using maps and geographic information in a range of
applications; and managing geographic information in a database.

Exploration and production; This is the upstream oil sector.

National Data Center; Exploration and production subsidiaries of
the National Oil Corporation of Kenya

Seismic exploration uses sound waves to determine the density. It
can do this because sound waves will move differently through
different material. When seismic exploration is used to explore
for gas, the sound waves will move through the earth and the
results are used to determine where the best place to drill will be.

Page vii

Geospatial Geospatial analysis is an approach to applying statistical analysis
and other informational techniques to geographically based data.

Contour lines Contour lines are elevation. They measure elevation, and never
cross because the elevations can't be two different numbers in one
spot.

Contour curves Contour curves, also known as topographic maps, have an

enormous number o f applications in applied mathematics.

Mining and oil exploration, weather maps, contours o f

temperature (isotherms) and pressure (isobars) are a few

examples.

Vector vector themes (points, lines, and polygons)

Raster raster or grid (pixels or picture elements)

Grover's algorithm is a quantum algorithm for searching an unsorted database with N
entries in 0(N l/2) time and using 0(log N) storage space

Oracle hashing This involves a simple calculation, a jump to a memory location,
and then a short in-memory sequential search. When the
sequential search is short, the result is an incredibly fast search. A
hash function is any algorithm or subroutine that maps large data
sets of variable length, called keys, to smaller data sets of a fixed
length.

PSC Production Sharing Contracts

DB
FS
DML

Database
File System
Data Manipulation Language

SQL Structured Query Language

CTAS Create Table As Select

BASIN Exploration Areas, Appraisal Areas, Production Areas

CBO Oracle Cost-base optimizer

OLTP
*

Online Transaction Processing refers to a class of systems that

Page viii

Oracle 9i, 1 Og, 11 g

PCTFREE

Table Cluster

Tablespaces

Schema

B-tree indexes

Bitmap indexes

Bitmap join indexes

HC TYPE

t'

facilitate and manage transaction-oriented applications, typically
for data entry and retrieval transaction processing.

Oracle database version releases. The latest Oracle database
release is Oraclellg version 11.2.0.3

PCTFREE is a block storage parameter used to specify how much
space should be left in a database block for future updates. For
example, for PCTFREE=10, Oracle will keep on adding new
rows to a block until it is 90% full. This leaves 10% for future
updates (row expansion).

A table cluster a group of tables that share the same data blocks,
since they share common columns and are often used together.

A tablespace is a logical storage unit. It is a container for
segments (tables, indexes, etc). A database consists of one or
more tablespaces, each made up of one or more data files. Objects
in the same schema can be in different tablespaces, and a
tablespace can hold objects from different schemas.

A schema is the set of objects (tables, views, indexes, etc) that
belongs to a user account.

This is the standard tree index that Oracle has been using

Bitmap indexes are used where an index column has a relatively
small number of distinct values (low cardinality). These are
super-fast for read-only databases, but are not suitable for systems
with frequent updates

This is an index structure whereby data columns from other tables
appear in a multi-column index of a junction table. This is the
only create index syntax to employ a SQL-like from clause and
where clause.

Hydro Carbon type. These are the contents found in oil and gas
wells.

Page ix

Abstract

The purpose of this paper is to present a system design that significantly improves the

design and search mechanism of a geodatabase system in the oil and gas, exploration and

production sector. The increasing exploration activities in our country require rich

collection of related exploration data which need to be stored in a geodatabase in an

organized fashion while maintaining integrity of the data with a consistent, accurate

database and applying sophisticated rules and relationships to the data.

We conduct a study of the integration of a geodatabase model design with a metadata

model design in the database tier. The application tier of the geodatabase contains a

metadata search mechanism that enhances retrieval of data when a query is executed. We

also compare the time taken to execute a query on a metadata search algorithm to one that

has no algorithm implemented, and found that the performance of the metadata search

indexing caused the search run four times faster. We give an in-depth modeling of the

geodatabase and the inter-relationships between the objects identified in the cause of the

research.

Page x

Chapter 1: Introduction

1.1 Background

Effective and efficient oil exploration in a country requires careful collection and

monitoring of large amount of exploration data. One way to meet this data

management challenge is to tie together data sources in the form of text, tables,

photographs and maps through computerized geographic information systems (GIS).

A GIS is a system designed to capture, store, manipulate, analyze, manage, and

present all types of geographical data.

A GIS system can consists of two subsystems: Gathering subsystem and Query

subsystem. The Gathering Sub-System is used to collect spatial GIS file information

from remote locations, and to store them in the server. The Gathering subsystem

locate and retrieve the necessary GIS vector/raster files information and publish the

information in such a way the information can be found by a user and its value

recognized. A database is used to store the information gathered from the Gathering

Sub-System. The Query Sub-System is used to help the users in their daily work with

the GIS; it works as a GIS retrieval (query) tool. The Query Sub-System consists of a

User Interface used to retrieve GIS information and filter the retrieved information by

identifying the user’s necessities.

This research will focus on optimizing the Query subsystem of a GIS system. The

objective is to model a geodatabase system and develop a prototype which will

demonstrate enhanced geodata retrieval and prompt business reporting. Proper

storage and retrieval of the geodata is very essential as this contributes into laying out

proper procedures and policies of handling exploration data in a country.

A geodatabase system is a common data storage and management framework for a

GIS system. It combines "geo" (spatial data) with "database" (data repository) to

create a central data repository for easy access and management. In the oil and gas

exploration sector most of the database calls heavily depend on information about

Page 1

wellbores and the seismic data. Employment of metadata search mechanism and

advanced database search algorithms will enhance the search mechanism of the

geodatabase.

1.2 Problem Definition

The National Data Center (NDC); National Oil Exploration and Production (E&P)

department, has been using a document management system known as Case360 that

stores and organizes physical files associated with oil and gas exploration activities.

However, Case360 is not a fully fledged geodatabase. The proposed geodatabase will

go beyond document management; it will be a central repository for exploration

spatial and bio data for easy access and management. Rich collection of related

exploration data will be stored in the geodatabase in an organized fashion;

maintaining integrity of the data with a consistent, accurate database and applying

sophisticated rules and relationships to the data. This is essential for exploration

activities in a country.

In this regard one of NDC initiative is to implement an enhancement of the current

system that will eliminate this information bottleneck. Case360 stores wellbore and

seismic physical files in directories. The search criteria are based on file a system,

hence causing information retrieval and reporting inefficient and problematic. In the

event of a file being put in the wrong directory, that file is considered lost since the

current search algorithm would not locate it. This problem will be solved by

metadata search and advanced search techniques. The research will explore search

algorithms in a Relational Database Management System (RDBMS) and also develop

a metadata based search algorithm that will integrate with the geodatabase.

Furthermore, high level modulization and dynamization will be employed in the

model design, to allow flexible administration of the system and timely production of

business reports. Enhanced performance of the system will boost accurate and better

business decision making ip regards to exploration activities in a country.

Page 2

To achieve this, both the data and metadata objects will be leveraged on the database.

Organizing the metadata (data about the data) on the database will allow the GIS

administrator define additional database table columns without contacting a

proprietor. This flexibility ensures that all the necessary exploration information is

gathered and stored in the database promptly. Such administrative organization and

indexing of data will also guarantee timely location and retrieval of the geodatabase

data. The geodatabase system will also offer ability to integrate with other GIS

softwares such as ArchGIS and Google Earth(GE) used for map presentation and

interpretation. The integration with systems that interpret wellbore and seismic data

will enlighten both NDC and vendors for possible basins or areas with oil and gas

prospects thus boosting the timely discoveries of oil and gas.

Most geodatabase systems do not address the issue of flexibility and dynamism.

Exploration activities vary from country to country. When new attributes need to be

defined in a geodatabase to fit a country’s need, the proprietor of the system in use

has to be contacted. Free source GIS systems have to be heavily customized to fit or

meet the organization needs. In addition, to enable some GIS system run off the web,

certain processes have to be engaged. For instance ArchGIS will need ArchEditor

(for uploading), SDE engine (to register the Webserver) and ArchView server (to

deploy to the Webserver).

Because of the vastness of the E&P sector, there is a need to create a geodatabase

system that offers the ability to search the geodata promptly and also define new

attributes dynamically. This flexibility is made possible by loading the application

user interface or front end labels and fields off the metadata. This modeling method

will enable the geodatabase users i.e. geophysist, geochemist, geologist and GIS

administrators, define new attributes whenever required without having to contact a

proprietor.

1.3 Research Objectives

The main objective of the research is to demonstrate performance enhancement of a
Page 3

geodatabase system for fast data retrieval and business reporting in the development

of oil and gas exploration opportunities in Kenya. Hence the following are the

objectives of this study:

• To identify database search algorithms with a view of enhancing the search

mechanism of a geodatabase.

• To propose a geodatabase model that will store exploration data in an organized

fashion.

• To propose a Metadata model that will integrate with the geodatabase so as to

enhance the search mechanism.

• Develop a prototype and use it to validate the above model.

1.4 Research Questions

The following research questions will arise based on the objectives of the study:

• How can we model a geodatabase?

• What objects will be in the geodatabase to create the centralized data repository

for geo data?

• How do we design a metadata search mechanism?

• What are the challenges and benefits of the proposed RDBMS advanced search

techniques?

• How can we monitor, evaluate and verify the search algorithms?

1.5 Scope and Limitation

This research problem will focus on opportunities for oil and gas exploration in

Kenya. Enhanced performance of the geodatabase system will boost accurate

business reporting and provision of better business decision making from the

wellbore and seismic data collected during the exploration activities. Integration

ability of the enhanced geodatabase system to GIS systems that handle map

Page 4

presentation and interpretation will shade light to NDC and the drilling companies’ of

possible areas where oil can be discovered and hence provide timely discoveries. The

research work will introduce a metadata model which will integrate with the

geodatabase model at the database tier so as to enhance the search mechanism of the

geodata. The limitation of this research will be to develop a full-fledge geodatabase

system with all objects and attributes to make it functional. However, a prototype

will be developed to validate the enhancement of the search techniques and

management of wellbore and seismic data.

Page 5

Chapter 2: Literature Review

This literature review is initially done on existing algorithms of query optimization in

relational databases. Later on we shall demonstrate a metadata search mechanism

that enhances time complexity of retrieving records in an RDBMS. Special attention

will be given on how the geodatabase relates to the metadata design which is the basis

of our search mechanism. The research also identifies geodatabase objects that apply

in the oil and gas exploration sector and their inter-relationship.

2.1 Background to the Relational Model

During the 1950s and 1960s, Johnson (1997) identified bottlenecks caused by

programs owning data; unhealthy dependence between data and programs. This led

to the development of database systems so that data can be independent and the

application programs just access it. With the development of databases, data and

application software became independent but interacting components. A Database is a

collection of logically related data and a Database Management System (DBMS) is a

software product that helps in defining, creating, maintaining and controlling access

to a database. DBMSs are grouped according to the model of their development. A

database model is an organizing principle that specifies particular mechanisms for

data storage and retrieval. There are five database models namely the Hierarchical,

Network, Relational, Object and Deductive models; the Relational model being the

most popular of all.

The Hierarchical and Network models, which were developed before the Relational

model was developed, are referred to as the pre-Relational models while the Object

and Deductive models, which were developed after the Relational model was

developed, are referred to as the post-Relational models.

2.2 Overview of Query Optimization in Relational Databases

When the relational rqodel was first launched in the late 1970s, one of the major

criticisms often cited was inadequate performance of queries Connoly and Begg

Page 6

(2001). This was because queries used a lot of resources such as processor cycles and

memory compared to other models for equal amounts of data. SQL, which is the de

facto standard language for data definition and data manipulation in RDBMS

Connoly and Begg (2001) offers a variety of ways in which a query can be structured

to achieve the same output. The more the complexity of the query the higher the

number of ways a query can be represented. On average, the best measure of a

relational query complexity is the number of relations a single query joins. In fact,

even at the design level, developers introduce redundancy or merge some relations

such that joins in frequently invoked queries are minimized. Surajit and Kyuseok

(1999), state that the complexity of a query is exponential to the number of joins

involved. Complex queries like those in data warehouses that normally join tens of

tables are too expensive to process in reasonable time. Since the structural differences

in queries depend highly on the way the joins are ordered, the more the tables joined

the more the options of writing a query that can bring a single output. These queries,

if executed have varying costs and in most cases (if not all) only one is optimal. The

probability of writing the most optimal query tends to zero as the query complexity

increases and the computer is most likely to waste a lot of resources. It is therefore

the complex queries that must be optimized if a computer system is to work

efficiently. An extensive query optimization phase must select the most efficient plan

among the many available to process the query in an acceptably short time. Without

query optimization, RDBMSs would be inefficient and hence unpractical

Ramakrishnan and Gehrke (2000). Query optimization is an expensive process

because it mostly relies on evaluating the different plans (access paths) and choosing

an optimal one among them. The number of alternative access paths grows at least

exponentially with the number of relations participating in the query, Kyuseok

(1993).

The optimizer therefore, which is nearly 100% sure that the plan sent by a user is not

optimal, has to search for an optimal plan and forward it for execution. This has to be

done within the time constraint and in a resource-conserving manner. It would not be

worthwhile if the difference between the optimized and a pre-optimized query is less

Page 7

than the cost of finding the optimal plan. The user likewise is supposed to get what he

requested for, in the same logical presentation as well as in an acceptable time

interval. Therefore, as the user specifies what, the optimizer determines the how, but

still conserving the what, Elmasri and Navathe (1994). The process of optimization

should have no effect whatsoever on the final query output.

The search strategy therefore, on top of conserving the form and content of the query

request must be efficient. Optimization is not a matter of transferring the resources

that would execute the query to looking for the execution plan. The ability of the

optimizer reaching the optimal plan, at the earliest opportunity, with substantial

resource savings is therefore of paramount importance. Kroger (2001) summarizes

the goal of an optimizer as follows “A plan as cost-effective as possible is looked for

as soon as possible”. Kroger (2001) further observe that the job of a query optimizer

is not necessarily to get the cheapest plan (though the cheapest plan would of course

be the best). In fact, if a stage is reached where the cost of further optimizing is

higher than the resource savings, it is worthwhile to terminate the search.

The optimizer is supposed to economize the resources spent on looking for a plan as

well as putting into consideration the time of processing (time of execution plus time

of optimization). Depending on the nature of the problem therefore, a sub-optimal

plan may be preferred especially in a real time scenario. Given the large number of

possible plans, traversing them, one by one, establishing the cost of each may be the

ideal strategy but it is time wasting since the options are too many and it is likely to

produce a low cost query but having spent a lot of resources to get it.

2.3 Approaches to Query Optimization

Query Optimization is the process of choosing the efficient execution strategy for

executing a query, Connoly and Begg (2001) and it is one of the most important tasks

of any RDBMS. Ramakrishman and Gehrke (2000) observe that SQL which is a de
4 '

facto standard for data definition and data manipulation in RDBMSs has a variety of

Page 8

ways in which a user can express, and therefore a system can evaluate a query. The

query optimizer therefore is responsible for finding the best execution strategy so that

fewer resources are used to retrieve data. There are three main approaches to query

optimization. These are Systematic, Heuristic and Semantic query optimization.

2.3.1 Systematic Query Optimization

In systematic query optimization, the system estimates the cost of every plan and then

chooses the best one. The best cost plan is not always universal since it depends on

the constraints put on data. For example, joining on a primary key may be done more

easily than joining on a foreign key since primary keys are always unique and

therefore after getting a joining partner, there is no other key expected. The system

therefore breaks out of the loop and hence does not scan the whole table. Though in

many cases, it is a time wasting practice and therefore sometimes it can be done away

with, Elmasri and Navathe (1994).

The costs considered in systematic query optimization include access cost to

secondary storage, storage cost, computation cost for intermediate relations and

communication costs. The importance put on these costs depend on the type of

database. For example, for large databases, emphasis is put on minimizing access

cost to storage and memory usage. For small databases however, where outputs can

be stored in memory, emphasis is put on minimizing computational cost. On the

other hand, in distributed databases, where many sites are involved, communication

cost is of paramount importance and it has to be minimized since it normally involve

costs of channel coding, security coding as well as other network related limitations

like bandwidth and noise.

2.3.2 Heuristic Query Optimization

In the heuristic approach, the operator ordering is used in a manner that economizes

the resource usage but conserving the form and content of the query output. The

principle aim is to:

• Set the size of the intermediate relations to the minimum and increase the rate

at which the intermediate relation size tend towards the final relation so as to
Page 9

optimize memory.

• Minimize on the amount of processing that has to be done on the data without

affecting the output.

Connolly and Begg (2001) state five main rules which are used in heuristic query

optimization:

1. Perform selection operations as early as possible. This reduces the cardinality

of the intermediate relation and hence reducing the resources used to process a

column as well as the memory occupied per column.

2. Combine the Cartesian product with a subsequent selection operation whose

predicate represents a join condition into a join operation. Elmasri and

Navathe (1994) observe that this reduces the complexity of the joining

algorithm (which is one of the most expensive operations in data retrieval) for

example in cases where individual relations are first sorted on the joining

fields.

3. Use association of binary operations to rearrange the query so that the most

restrictive selection operation is done first. This increases the rate at which

the intermediate relation size tends to the final relation size hence minimizing

on the memory occupied and the resources required to process a column.

4. Perform projection operations as early as possible. This reduces the order of

the intermediate relation. It therefore reduces the memory occupied by the

relation together with the amount of resources required to process a row.

5. Compute common expressions once. If a certain expression appears more than

once, and it’s not too large, it is kept in memory so that when it is required

again, it is reused. In case the expression is too big to fit in memory, it can be

stored on a disk and later retrieved when wanted so long as the cost of

retrieval is not greater than the cost of recomputing it.

2.3.3 Semantic Query Optimization

This is a combination of Heuristic and Systematic optimization. The constraints

specified in the database schema can be used to modify the procedures of the heuristic

Page 10

rules making the optimal plan selection highly creative. This leads to heuristic rules

that are locally valid though cannot be taken as rules of the thumb. For example, if

there is a query such as;

SELECT Employee.lname, Supervisor.lname

FROM Employee, Supervisor

WHERE Employee.supervisorNo = Supervisor.No

AND Employee.salary > Supervisor.salary

This is a very unlikely invent and it’s likely to be directly or indirectly in the database

constraints. The database restriction may be like check Employee.salary

between(Sl,S2). Check Supervisor.salary between(S3,S4) where S3 >S2. This shows

that the Supervisor can never earn less than the Employee therefore the query yields

no results.

A Heuristic optimizer would go ahead and parse, optimize and execute the query

resulting in no output which is a worst case scenario, Horowitz, Sahni and

Rajasekaran (1996). A semantic optimizer would recognize it by use of the

constraints and respond “Empty set” and saves the resources.

2.4 Single and Multi-Query Optimization Types

Broadly, computers optimize queries either individually (Single-query optimization)

or as batches (Multi-query optimization).

2.4.1 Single Query Optimization

In Single Query Optimization, a query, which is syntactically correct, is broken down,

expressed into a relational algebra expression, and a query plan, represented as a tree

is created, Ramakrishnan, and Gehrke (2000). This is a traditional approach to query

optimization and is used in most commercially available optimizers. It is suitable

where a database receives a low traffic of simple queries. Depending on the

Page 11

algorithm used, either the different representations of the original query are generated

and the best one searched for or the query supplied is adjusted to the optimal one. If

the option of choosing the best tree from the different trees available is used, there is a

high possibility of logical duplicates (two physically different trees, doing the same

thing, the same way). Since the number of options is likely to be high, such options

normally overload the memory and require an exhaustive algorithm. There is a

likelihood of groups of plans, with the same cost implying that more searching is

made but with no practical advantage. Using exhaustive algorithms is a reason for

inefficiency of many query optimization research works carried out Bhobe (2001).

Single processor optimizers therefore limit the search space by considering only some

tree configurations, Kremer and Gryz (1999). This may be left deep, right deep,

complex deep and bushy.

Heuristics may as well be used to eliminate some obviously expensive plans before

the optimization so as to reduce the search space. The rules may be static or dynamic.

Dynamic rules are applied basing on available data like database statistics or system

catalog. Failure to reduce the search space may cause effects that lead to the decline

in the performance and cost effectiveness of the optimizer. These are:-

• Too many options may overload the memory. In cases where the query is

complex, the computer may not have enough memory space to perform other

routine activities.

• In the process of conserving the memory, the computer may have to store

some of the plans on disk and retrieve them when required. This then brings

in costs of writing and reading from disks which increase optimization costs.

• The many options put a bigger load on the processor during cost estimation

and comparison.

Restricting the tree types used in optimization therefore eliminating duplicates

reduces the number of possible options hence reducing on the search space saving the

traversal of many options a,s well as memory usage.

Page 12

2.4.2 Multi-Query Optimization (MQO)

In MQO, queries are executed in batches. Some of the MQO techniques act in such a

way that in case some queries have a common sub-expression, such a sub expression

is executed once and the output shared. In some cases, the sharing does not

necessarily take place on individual optimal plans, Roy (2001), but instead sub-

optimal plans are used. Decision may as well have to be taken whether the common

sub expressions should be pipelined or materialized, Nilesh (2001). Some multi­

query optimization techniques, like those described by Kyuseok (1994) basically aim

at having parallel optimization of many queries. The queries pass through the

different optimization steps together and as an output, which is a set of optimal plans

for each query is generated. Roy (2001) criticizes this approach on a basis that further

cooperation can be made between the queries that make up the batch. If a certain sub­

expression is common, then the computer should execute it once and share out the

results.

This is a guiding principle to the Basic Volcano algorithm proposed by Goetz and

McKenna (1991), and the Volcano-SH and Volcano RU optimizer algorithms

proposed by Roy (2001). Roy further put the sharing of the sub-expressions to a great

importance that even if the sharing takes place on a non-optimal plan of the query, so

long as the total resource requirement is optimal, it is acceptable.

2.5 Understanding Search Algorithm and their Efficiency

The maximum program efficiency is obtained through a unique search algorithm and

data structure, instead of examining the recall ratio and the precision ratio at a higher

level, this efficiency is measured in the most basic term of "average number of

searches" required for looking up an item. In order to identify an item, at least one

search is necessary even if it is found the first time. However, through the use of the

hash-address of a key dr keyword, in conjunction with an indirect-chaining list-

structured table, and a large available space list, the average number o f searches

required for retrieving a certain item- is 1.25 regardless of the size of the file in

Page 13

question. This is to be compared with 15.6 searches for the binary search technique in

a 50,000-item file, and 5.8 searches for the letter-table method with no regard to file

size.

2.5.1 Linear Search

This is also called sequential search or sequential scan. The linear search of an

unordered list or file is the simplest one, but is inefficient because the average number

of searches for a given entry in a N-entry file will be N/2. For example, if N = 50,000,

the average number of searches for a given entry

is an enormous 25,000. It is assumed that the probability of finding a given entry in

the file is one. The average number of searches in a linear search is calculated as:

S = N + l / 2 o r S = N/2 if N is a large number.

The linear search has to be performed in a consecutive storage area and this

sometimes causes certain inconvenience if the required storage area is very large.

The inconvenience can be avoided by using the last computer word (or some bits of

it) to index the location of the next section of storage area used and thus form a single

chain for searching. This variation of the linear search method is called the single

chain method. It differs from the linear search in storage flexibility but is otherwise

the same in the efficiency.

2.5.2 Binary Search

Using the binary search method will yield a more satisfactory result. The search

starts with the midpoint of the file, and goes to the midpoint of the associated

remaining half if a match fails. The comparison of their values will decide which half

of the file should be tried next time. This process will be repeated until a notch is

found. The average number of searches in the example is calculated through the

following formula:

S=N+1/N log2(N+l) - 1 «' or S = log2N if N is a large number.

The Hibbard's Double Chain Method and Sussenguth's Distributed Key Method are
Page 14

compatible to the binary search in search efficiency but have a much better update

efficiency because of the list-structured address-chaining mechanism.

The respective calculations of the example are:

S = 1.4 log2N = 21.9 (Hibbard) and S = 1.24 Iog2N = 19.4 (Sussenguth)

In order to have a gross understanding of various search algorithms, examine and

compare Binary and Linear Search in respect to their search efficiencies.

Search

method

Average

No of

searches

Sample S

(N=50,000)

Search

efficiency

Update

efficiency

Storage

efficiency

Linear

search

N/2 25,000 Poor Good Excellent

Binary

search

log2N 15.6 Good Poor Good

Table 1: Comparison o f binary and linear search algorithms

2.5.3 Searching Strings in RDBMS using Functions

When it comes to searching, we often find ourselves using the LIKE (including NOT

LIKE) operator in SQL statements. Other well-known tests include equality and

comparison (greater or less than), and this includes not only strings, but also numbers.

Conceptually, the comparison tests are pretty simple, and indexes can add a

tremendous boost to performance when these tests are used. However, what takes

place when we are not looking for an exact match, but something, “LIKE” the value

of interest? Mathematically, or at least algorithm-wise, constructing a test for equality

is pretty simple. How do we suppose RDBMS approaches the problem of

determining if the string ‘ABCD’ appears in the string ‘ABCABDABCDAB' and if it

does, how many times (as in the use of INSTR)? Further, once we have a result set,

what determines the sorted< order?

Page 15

From an algorithm design standpoint, we want the process to be performance. The

complexity of the algorithm should be first order, as in O(n) (the big “O” notation) as

opposed to 0 (n2), nLogO(n) and so on. This implies that the algorithm is efficient,

and efficiency can be qualified with goals of not repeating work, skipping over

intervals, and be deterministic (we can compute the best case and worst case).

In addition to string searching within SQL, virtually every text editor incorporates a

search function. Without knowing the implementation details or underlying code, it is

hard to determine exactly how a search editor works. Like most algorithms, there will

be cases where some general or even trivial condition will make the algorithm scream

along or slow to a crawl. Searching for a word within a string, where the word is

longer than the searched string, is an example of a case where adding a simple length

check up front will eliminate at least one condition. On the other hand, searching for

something not very distinguishable (but distinguishable enough because the pattern

does match) can evoke a worst-case performance (search for A in the string

BBBBBB...BBBA, no hit until the very end). Overall, the search should be done in

no worse than what is called linear time, or O(n).

So, from which end of the target string should the search start? One widely used

algorithm, because of its efficiency, is the Boyer-Moore string search algorithm. This

algorithm actually starts at the end and works backwards. Once a miss is encountered

(a “bad” character, that is, one that is not in the search pattem/string), the algorithm

knows to shift the search over by the length of the search. If the bad character falls

anywhere within the positions covered by the length, then it is impossible to find a

match within that interval as the search string would span the bad character.

Now that we know the general approach of this algorithm, how do we think it applies

to Oracle? If the test operator is LIKE, perhaps Oracle uses Boyer-Moore because we,

and subsequently Oracle, does not care where the pattern is met or how many times it

is met, just that it is met at least once. On the other hand, if using INSTR, we have a

choice as to where to start the search (beginning or end), in addition to which

Page 16

occurrence. The fact that this function defaults to the beginning of the target should

not imply anything about how Oracle conducts the search. For all we know, Oracle

may internally reverse the string for search purposes (which can be quickly done) and

leave the default start position as the beginning because this is more intuitively

obvious to humans (not implying Oracle is alien, just that in English, we tend to start

from left to right).

What may not be obvious at this point is this fact: the longer the search string/pattem,

the quicker the search is likely to be performed. If we divide a searched word (or

string) of length N by the length M of the search pattern, we have at most N/M

chunks to search. The more information, that is, the longer the search pattern is, we

can provide up front, the less work the search algorithm has to perform. This is akin

to searching for a needle in a haystack. It should be obvious that the longer the

needle, the easier it will be to find. The same holds true for string searches.

2.6 Advanced Search Optimization of RDBMS (Case Study for
Oracle)

The proposed database for the geodatabase will be ORACLE Database. Oracle has

become the world’s most flexible database and it stores much more than text and

numbers. An Oracle database support video, audio and complex spatial applications.

Unlike simpler databases, we can control every aspect of Oracle’s behavior. We can

control how rows are placed on the data blocks and we can control how Oracle

performs hundreds of resource management issues. Oracle is considered to be most

powerful and robust database. Most organizations also use Oracle as its primary

database due to its capacity to deliver high quality information.

Oracle database has inbuilt query optimization mechanism namely:

• Oracle Indexing '

• Oracle Multiple Blocksizes

• Oracle Hashing

Page 17

• Data Sequencing or Row Re-Sequencing

o Oracle Sorted Hash Cluster

o Oracle Index Cluster Tables

• Oracle First Rows Optimization

• Oracle Index Rebuilding

Each of the Oracle search techniques has advantages and downsides. The Oracle

search mechanisms will be implementable in the geodatabase to enhance its query

performance.

Search algorithms can use either an authoritarian approach or a more discussion-

based approach. For example, when determining a SQL execution plan, the simplest

approach is to pick a very authoritarian algorithm. But when the complexity

increases, an authoritarian model becomes very inefficient and can produce non-

optimal results. When the possible options are known and limited, and the

environment stable, an authoritarian model can be very fast and reliable. One example

is when Oracle needs to determine if a block is in the buffer cache or when it needs to

know if a SQL statement is in the library cache. Oracle could use a discussion-based

here but in this situation, the alternative outcomes and scope are limited and well-

defined. The buffer is either in the cache or it is not in the cache. So Oracle chose an

algorithm called hashing.

2.6.1 Oracle Indexing

The dbaindexes view, which is populated with index statistics when indexes are

analyzed. The dba indexes view contains a great deal of important information for

the SQL optimizer. Oracle provides an analyze index validate structure command

that provides additional statistics into a temporary tables called index stats, which,

sadly, is overlaid after each command, Burleson 2011

Page 18

We can use the large (16-32K) blocksize and separate data caches to improve

response time under certain conditions. A larger blocksize can result in a reduction in

logical I/O.

There is significant response time reduction after a move to a larger blocksize:

Giving the response time of the same query from two databases, one having standard

block size of eight kilobytes (8k) and other one having sixteen kilobytes (16k)

2.6.2 Oracle Multiple Blocksizes

These are many Oracle Transaction Processing Performance Council (TPC)

benchmarks that thoroughly test multiple blocksizes verses one-size fits all. These

benchmarks are fully reproducible, so there performance gains can be proven

independently. This UNISYS Oracle benchmark used multiple blocksizes to achieve

optimal performance.

Considering an online transaction processing (OLTP) database with the following

characteristics almost similar to a geodatabase:

• The vast majority of text rows are small, say 80 bytes. A 2k block size would

reduce the waste from reading-in a 8k block, only to fetch 80 bytes.

• The database is 100 gigabytes, but there is only 8 gigabytes of available data

buffers.

• The database stores images (BLOB, CLOB) in a separate tablespace, requiring a

large blocksize to avoid fragmentation.

• The database is heavily indexed, and index access patterns tend to read large

sections of the index.

• The data has a typical usage skew, with some popular rows, and some rows that

are rarely accessed.
*

A typical database has popular blocks and unpopular blocks. We know that we need a
Page 19

16k blocksize to keep our CLOB data from fragmenting, and we do not want the

buffer wastage that occurs when we read-in a 32k block just to access an 80 byte row.

db_32k_cache_size buffer db_2k_cache_size buffer

Figure 1: Multiple blocksizes for mixed I/O signatures.

2.6.3 Oracle Hashing
Hash functions are primarily used in hash tables, to quickly locate a data record given

its search key. Specifically, the hash function is used to map the search key to the

hash. The index gives the place where the corresponding record should be stored.

Oracle hashing and hashing algorithm converts a symbolic key or ROW1D to a disk

or RAM address in a heap. It is very fast; it takes 50 microseconds to returns a

ROWID or RAM address.

Hashing is lightening fast and requires only a small amount of memory as opposed to

a large amount of disk space or CPU time. There is basically a simple calculation, a

jump to a memory location, and then a short in-memory sequential search. When the

sequential search is short, the result is an incredibly fast search; much faster than

using any kind of index or a cost-based approach.

Page 20

2.6.4 Data Sequencing or Row Re-Sequencing

If response times are lagging in our high-transaction system, reducing disk I/O is the

best way to bring about quick improvement. When we access tables in a transaction

system exclusively through range scans in primary-key indexes, reorganizing the

tables with the Create Table As Select (CTAS) method should be one of the first

strategies we use to reduce I/O. By physically sequencing the rows in the same order

as the primary-key index, this method can considerably speed up data retrieval.

For queries that access common rows with a table, unordered tables can experience

huge I/O as the index retrieves a separate data block for each row requested. Like

disk load balancing, row re-sequencing is easy, inexpensive, and relatively quick. It

shortens response times-often dramatically-in high-I/O systems. The degree to which

re-sequencing improves performance depends on how far out of sequence the rows

are when we begin and how many rows we will be accessing in sequence. We can

find out how well a table's rows match the index's sequence key by looking at the

dba indexes and dba tables views in the data dictionary.

The benefits of row resequencing cannot be underestimated. In large active tables

with a large number of index scans, row resequencing can triple the performance of

queries. Data sequencing is an extremely powerful SQL performance tactic for

sequential heavy queries.

2.6.5 Oracle FirstRows Optimization

The f i r s t r owsn mode allows us to tell the Cost-based Optimizer (CBO) how many

rows we plan to use, thereby allowing the optimizer to make an intelligent execution

plan. Since Oracle9i most systems will have many frequently-referenced tables

cached in the KEEP pool, the first rows n parameter may only be helpful in reducing

logical I/O, and not ne'cessarily the more expensive disk I/O. The first rows n

optimization method improves SQL execution plans for OLTP systems that only need

to deliver the first part of a larger solution set. Oracle Corporation states that with

Page 21

first rows n optimization, Oracle queries give the best possible response time for the

first rows of a result set.

2.6.6 Oracle Index Rebuilding

We cannot generalize to say that index rebuilding for performance is common or rare,

it depends on many factors, most importantly the characteristics of the application.

• In scientific applications (GIS Systems, clinical, laboratory) where large

datasets are added and removed, the need to rebuild indexes is "common".

• Conversely, in systems that never update or delete rows, index rebuilding

rarely improves performance.

• In systems that do batch DML jobs, index rebuilding "often" improves SQL

performance.

There are many compelling reasons to manage indexes within Oracle. In an OLTP

system, index space is often greater than the space allocated for tables, and fast row

data access is critical for sub-second response time. Oracle offers a wealth of index

structures:

• B-tree indexes - This is the standard tree index that Oracle has been using

since the earliest releases.

• Bitmap indexes - Bitmap indexes are used where an index column has a

relatively small number of distinct values (low cardinality). These are super­

fast for read-only databases, but are not suitable for systems with frequent

updates

• Bitmap join indexes - This is an index structure whereby data columns from

other tables appear in a multi-column index of a junction table. This is the

only create index syntax to employ a SQL-like from clause and where clause.

The following are recommendations of Oracle on Index rebuilding:

• Using bigger blocks means more data transfer per I/O call; this is an

advantage since the cost of I/O ^etup dominates the cost of an I/O.

Page 22

• Using bigger blocks means more space for key storage in the branch nodes of

B*-tree indexes, which reduces index height, which improves the performance

of indexed queries.

• Using a block size that is k times bigger than our current one will save us (k-

1)f/(kb-0 bytes of space for large segments, where f is the size of a block's

fixed block header (61 bytes for tables, 57+4n for n-table clusters, 113 for

indexes).

• When using large block there are less probability of chained and migrated

rows, which in turn reduced the number of reads required to get the

information.

2.5 Performance Analysis

2.5.1 Measuring the Performance

Test bed performance measurement analysis of a system can provide exact answers

regarding the performance of the system. The system in question is observed directly

- no details are abstracted away, and no simplifying assumptions need to be made

regarding the behaviour of the system. However, measurement is only an option if the

system in question already exists. The measurements that are taken may or may not

be accurate depending on the current state of the system. For example, if the

utilization of a network is measured during an off-peak period, then no conclusions

can be drawn about either the average utilization of the network or the utilization of

the network during peak usage periods.

2.5.2 Analytical Models

Analytical models (e.g Markovian models), can provide exact results regarding the

performance of a system. The results are exact, in that they are not estimates of the

performance of the system. However, the results provided by analytical models may

or may not be accurate, depending on the assumptions that have been made in order

to create the model. In many cases it is difficult to accurately model industrial-sized

systems with analytical models. In fact, it has been observed that when analysing
Page 23

computer systems “analytical modeling requires so many simplifications and

assumptions that if the results turn out to be accurate, even the analysts are surprised.”

(Jain, 2001)

2.5.3 Simulation-Based

Simulation-based performance analysis can be used as an alternative to analytical

techniques. Simulation can rarely provide exact answers, but it is possible to calculate

how precise the estimates are. Furthermore, larger and more complex models can

generally be created and analysed without making restrictive assumptions about the

system. There are two main drawbacks to using simulation: it may be time consuming

to execute the necessary simulations, and it may be difficult to achieve results that are

precise enough. Simulation-based performance analysis of a model involves a

statistical investigation of output data, the exploration of large data sets, the

appropriate visualisation, and the verification and validation of simulation

experiments.

2.7 Proposed Model for Metadata Search Mechanism

At a conceptual level, the geodatabase consists of a multitier architecture that

implements advanced logic and behavior in the application tier on top of a data

storage tier. The database tier can be further subdivided into two schemas - the

Metadata and the Geodatabase. The geodatabase combines geo (spatial data) with

database (specifically a relational database management system or RDBMS).

Application Tier

Database Tier

Page 24

Figure 2: Figure showing geodatabase tier

On the database tier, the RDBMS provides a simple, formal data model for storing

and managing information in tables. The metadata model in the RDBMS will

manage data about the containers of data. Names of all tables in the geodata RDBMS

will be stored in a metadata table. Names of all columns in the geodata RDBMS will

be stored in the metadata columns table. Names of all primary keys and foreign keys

will be stored in their respective tables in the metadata schema.

The application tier accesses the geodatabase through the metadata. The logic of the

metadata search mechanism will seat in the application. Users will execute queries in

the application tier. The application will have the search algorithm which forms the

basis of our proposed metadata search mechanism. The search function will

intelligently relate the search string and the metadata and then down to the required

row in the geodatabase.

The search mechanism will allow users search based on simple sequel language

(SQL) queries by providing the WHERE part of the SQL query. The search will also

advanced search interface. The model of the proposed metadata search mechanism is

elaborated in section 3.4. A pseudocode is also provided in section 3.4.1.

Page 25

Chapter 3: Methodology

In this chapter, we focus on the details of how we plan to solve the research problem

earlier identified in chapter 1, which is summarized as: To model a geodatabase

system at NDC for prompt data retrieval and business reporting, using the solution

that was proposed in chapter 2; which is a proposed metadata search based

geodatabase system developed using Oracle database and Zend Framework tools,

enhanced using Oracle search techniques. To determine if we can achieve the

objectives earlier set chapter 1, in line with this research problem, we discuss the

following important things:

• Conceptual system model

• Conceptual model of the geodatabase

• Logical models of the geodatabase

• Logical models of the Metadata

• Proposed search mechanism

• Pseudocode of the metadata search algorithm

• Detailed flow chart of the metadata search mechanism

• Measuring the performance

• Our research design method

• The system implementation tools and data acquisition

• The limitations of the chosen methodology

3.1 Conceptual System Model

From the current file management system at NDC presented in 2.3.5, we derive the

focus of this paper.

The current system is document managed based and lacks the concept of a

geodatabase. A geodatabase combines geo (spatial data) with database. The RDBMS

provides a straightforward formal structure for storing and managing the exploration

data in tables; Data storage and retrieval are implemented with simple tables. Certain

characteristics of geodata management, such as definition of attribute types, query

Page 26

processing, and multiuser transaction processing, are delegated to the RDBMS.

The following conceptual model design, illustrate the processes involved from how

users in various exploration departments will provide high level queries to retrieve

data from the geodatabase to accurate business reporting for better business decision

making. It also shows that the geodatabase will integrate with other G1S systems for

map presentation and interpretation.

Showing results

Figure 3: Conceptual System Model

3.2.1 Conceptual Model of The Geodatabase

In the research work, we propose a high level conceptual model showing the different

entities in our data and how they relate to one another. Figure 27, show the data

models identified to be incfuded in the geodatabase.

Page 27

GEODATABASE CONCEPTUAL MODEL

| LICENSES

PRO JECT

^ kT]
R ESO U RC E EST IM ATES

W ELLBO RE PU R PO SES

| W ELLB O R E.T YPES

| W ELLBO W E.CO NTENTS SEEP SU RFACE

U C E N S E .A R E A S

K.y:

■ Implemented and proposed search
algonthm is working on

■ Implemented but search algonthm
is not working on

□ In the Geodatabase Conceptual
model and not implemented

Figure 4: Geodatabase Conceptual Model; Data Model for the geodatabase and the

inter-relationships between the objects

A “G IS JD ” key will be added in the tables to be used for integration with other GIS

software's such as ArchGIS and GE. Data to be captured in the geodatabase, will be

very vital and useful for the GIS softwares, which do not have the capability of

storing all the required data for oil and gas exploration. The GIS software’s will use

the geodatabase data to perform map presentations and interpretation.

3.2.2 Logical Models of the Geodatabase

From the conceptual model a logical data model is proposed so that we understand

the details of our data. This will be the basis of forming a physical data model, from

which we will know exactly how to implement our data model in the database of

choice.

Below we show the star schemas of the conceptual model of the geodatabase. These

logical models will map to the physical models of the geodatabase.

Page 28

WELLBORE STAR SCHEMA

WELLBORE_TYPES

TYPE_ID
NAME

DISCOVERY

DISCOVERY ID
GISID_DISCOVERY
HC_TYPE_ID
DISCOVERY
WELLBOREJD
PROSPECT_ID
LICENSE ID

WVELLBORE_STATUS

STATUS_ID
NAME

COUNTIES

COUNTY ID
GISID_COUNTY
COUNTY
COMMENTS

WELLBORES

WELBORE_ID
GISID_ WELLBORE
CONTENT JD
PURPOSE_ID
TYPE_ID
STATUS_ID
LICENSEJD
DRILLING_OPERATOR_ID
DRILLING_CONTRACTOR_ID
BLOCK JD
COUNTY ID
OFFIClAL_NAME
ALIAS_NAME
LOCAL_NAME
sp u d_date
COMPLETION DATE

BLOCKS

BLOCKJD
b a s in J d
GISID_BLOCK
BLOCK
COMMENTS

WELLBORE_PURPOSES

PURPOSE_ID
NAME

LICENSES

LICENCEJD
GISID_LICENSE
LICENCE_NAME
LICENCSl TYPE ID
SIGNATURE_DATE
EFFECTIVE_DATE
ACTUAL_EXPIRY_DATE
EXPECTiD_EXPIRY_DATE
LICENCE_PHASES
COMMENTS

WELLBORE_CONTENTS

CONTENT_ID
NAME

\
PROSPECT_ID
GISID_PROSPECT
BLOCK_ID
PROSPicT
COMMENTS

SEEPS

SEEPJD
GISID.SEEP
HC_TYPE_ID
SEEP_SURFACE_ID
BLOCK_ID
SEEP
LATITUDE
LONGITUDE
COMMENTS

Figure 5: Wellbore Star Schema

Page 29

LICENCES STAR SCHEMA

Figure 6: Licensing Activities star schema

V

Page 30

PROJECT STAR SCHEMA

PROJECT

PROJECT _ID
GISID.PROJECT
DISCOVERYJD
PROJECT
COMMENTS

Figure 7: Project and Resource Estimates star schema

SEISMIC STAR SCHEMA

UCENSE_SEISMIC_SURVEYS

LICENCE_SEIS_SURV_ID
LICENSE_ID
SEIS SURV_ID

SEIS_ENVIR

SEIS ENVIR ID
SEIS ENVIR

SEIS_SOURCE

SEIS SOURCE
SEIS SOURCE

ID

SEISM»C_SURVEYJD

SEIS SURV ID
GISID_SEIS_SURV
SEI_SURV_TYPE_ID
SEIS ENVIR ID
s e is I n a t u r e j d

OPERATOR ID
CONTRACTOR_ID
SEIS_SURV_STATUS_ID
SEIS_SOURCE_ID
SEISISURV_ALT_NAME
PLANNED _START_DATE
PLANNED_END_DATE
ACTUAL_START_DATE
ACRUAL_END_DATE
PLANNED_LINE_KM
ACTUAL LINE KM
PLANNED_SQKM
ACTUAL_SQKM
COMMENTS

LICENCES

LICENSE_ID
GISID_LICENSE
LICENSE_NAME
LICENSE_TYPE_ID
SIGNATURE_DATE
EFFECTIVE DATE
ACTUAL_EXPIRY_DATE
e x p ec t ! d_ex p ir y_date

LICENSE, PHASES
COMMENTS

SEIS_NATURE

SEIS NATURE ID
SEIS NATURE

S EIS_S U R V_ST AT U S

SEIS SURV STATUS ID
SEIS_SURV~STATUS

Figure 8: Seismic Survey star schema

Page 32

3.3 Logical Model Design of the Metadata

The metadata schema will integrate and seat on the same database as the geodatabase

schema

PRIMARY KEY
* NAME
• E UPDATEABLE
o ERROR MESSAGE

the primary key for

F O R E IG N K E Y
tl NAME
* DESCRIPTION
* EMANDATORY
* BTRANSFERABLE
0 ARC NUMBER
0 EARC MANDATORY
* DELETE RULE
* UPDATE RULE
0 PARENT DEPLAY SEQUENCE
0 ERROR MESSAGE

referenced using

a foreign key from

the source of

a foreign key to

the destination for

COLUMN
• NAME
' SEQUENCE IN TABLE
• DOMAIN
• DATATYPE
’ AVERAGE LENGTH
• MAXIMUM LENGTH
0 DBCIMAL PLACES
0 DEFAULT VALUE
' DEFAULT VALUE TYPE
‘ EOPTIONAL
• EDEPLAYED
• D BP LAY TYPE
’ ALE NHENT
• DEPLAY LENGTH
o DEPLAY HEGHT
• COLUMN CASE
O FOR MAT HASP
0 DEPLAY SEQUENCE
0 LETSEQUENCE
0 IDENTIFIER SEQUENCE
0 ORDER BYSBQUENCE
0 SORTORDER
• PROMPT
' COMMENT
O DESCRIPTION
• ESUGGESTION LET
• EDYNAMC LET

a column in
fen-0—

m ade up of

TABLE
tr NAME
• ALIAS
• SINGULAR DEPLAY NAME
• PLURAL DEPLAY NAME
0 JOURNA L TABLE
0 COMMENT
0 DESCRIPTION

set by

be used to set

V

S E Q U E N C E
n NAME

X Y

Page 33

The metadata model design will form the basis of our enhanced search mechanism.

This is the database that stores the data about the geodatabase. It has two main tables

namely MTD TABLES and MTDCOLUMNS which store information about the

geodatabase tables and columns respectively.

Figure 9: Logical Model Design o f the Metadata Model

3.4 Proposed Search Mechanism

3.4.1 Pseudocode of the Metadata Search Algorithm

The following is the pseudocode of the metadata search:

1. Check if the request has a search

2. Get the search value from the request

3. Redirect null searches to the display page

4. Get the model or table for database transaction

5. Get the column metadata for model in step 4

6. Check for column metadata whose search sequence has a value

7. Check for a SQL WHERE clause, e.g. = < > LIKE BETWEEN IN and Ignore

UNION to avoid SQL injection attacks

8. Check that this is a valid WHERE clause

9. Use the SQL as is

10. If we get an exception then perform the default i.e. non-SQL search

11. If we didn't find a SQL WHERE clause perform a default search

12. Use search items (if defined) or NAME columns

13. If search columns have been defined then use them

14. Otherwise search any NAME columns

Page 34

3 . 4 . 1 D e t a i l e d F l o w C h a r t o f t h e M e t a d a t a S e a r c h M e c h a n i s m

Figure 10: System Model Flow Chart for the Metadata Search Mechanism

From the conceptual model we move on to the logical data model illustrated by the

flow chart above, so that we understand the details of how the enhanced search
Page 35

mechanism will function. Object oriented programming is the choice of the system

coding using Zend Framework technology. A search function is developed to perform

searches based on the metadata. Oracle search techniques will be used in the backend

to enhance the search mechanism.

3.5 Performance Analysis

Performance is often a central issue in the design, development, and configuration of

systems. It is not always enough to know that systems work properly, they must also

work effectively. Studies show that time, money, and even lives can be saved if the

performance of a system is improved. Performance analysis studies are conducted to

evaluate existing or planned systems, to compare alternative configurations, or to find

an optimal configuration of a system. There are three alternative techniques for

analyzing the performance of a system: measurement, analytical models, and

simulation models. There are advantages and drawbacks to each of these techniques.

The architecture of the search mechanism of these geodatabase systems has

significant impacts on the way data will be retrieved and reports produced on time.

When studying the performance of a geodatabase application, the analyst will need a

set of techniques to appropriately measure and analytically model the performance of

the geodatabase. This paper provides an introductory overview to geodatabases,

performance measurement, and analytical modeling techniques, focusing on search

mechanism.

Performance analysis commonly involves benchmarking and empirically measuring

performance to validate or assist with creating analytical models of performance

3.5.1 Analytical Models

Analytical models (e.g Markovian models), can provide exact results regarding the

performance of a system. The results are exact, in that they are not estimates of the

Page 36

performance of the system. However, the results provided by analytical models may

or may not be accurate, depending on the assumptions that have been made in order

to create the model. In many cases it is difficult to accurately model industrial-sized

systems with analytical models. In fact, it has been observed that when analysing

computer systems “analytical modeling requires so many simplifications and

assumptions that if the results turn out to be accurate, even the analysts are surprised.”

(Jain, 2001)

3.5.2 Simulation-Based

Simulation-based performance analysis can be used as an alternative to analytical

techniques. Simulation can rarely provide exact answers, but it is possible to calculate

how precise the estimates are. Furthermore, larger and more complex models can

generally be created and analysed without making restrictive assumptions about the

system. There are two main drawbacks to using simulation: it may be time consuming

to execute the necessary simulations, and it may be difficult to achieve results that are

precise enough. Simulation-based performance analysis of a model involves a

statistical investigation of output data, the exploration of large data sets, the

appropriate visualisation, and the verification and validation of simulation

experiments.

3.5.3 Measuring the Performance

Performance analysis is both an art and a science. One of the arts of performance

analysis knows which of these three analysis technique to use in which situation.

Measurement can obviously not be used if the system in question does not exist.

Simulation should probably not be used if the system consists of a few servers and

queues, in this case queuing networks would be a more appropriate method.

Simulation and analytic models are often complementary. Analytic models are

excellent for smaller systems that fulfill certain requirements; such as exponentially

distributed inter arrival periods and processing times. Simulation models are more

appropriate for large and complex systems with characteristics that render them
Page 37

intractable for analytic models. Performance analysts need to be familiar with a

variety of different techniques, models, formalisms and tools. Creating models that

contain an appropriate level of detail is also an art. It is important to include enough

information to be able to make a reasonable representation of the system; however, it

is equally important to be able to determine which details are irrelevant and

unnecessary.

Test bed performance measurement analysis is the proposed approach to model the

data retrieval and reporting enhancement of a geodatabase system. It involves

conducting real world field experiments using actual data test beds. Real world

performance measurements are the most ideal methods of obtaining realistic

geodatabase performance characteristics. It is a good means of validating analytical

and simulation models. This will therefore involve developing geodatabase system

prototype and use test bed performance measurement to test and validate its

performance.

3.5.4 Measuring Tools

We have familiarized with tools that can be used to monitor systems, analyze data,

and present results. The tools used for development of the prototype and analysis

include the following:

• Zend Framework function Zend Log and PHP function microtime() to log the

CPU time used to perform a search in the geodatabase frontend.

• Oracle Database; Oracle "set timing on" command used to capture the time

taken to perform a an SQL query command in Oracle.

Performance measurement tools will be used to gain insight into the search

performance. One of the most basic measures of performance is how much elapsed

time an application takes' from the user's submitted request to the system's completed

response, or response time. In an Oracle environment, the "set timing on" command

provides a straightforward way to measure elapsed time of any command (e.g. an

Page 38

SQL SELECT command).

This information may be considered "coarse grained" because it only provides the

total time spent running the command, rather than data about the time spent in

individual function calls. Unlike several other tools discussed in this section, the "set

timing on" command does not require recompiling the source code to support

gathering data.

The Zend Framework Zend Log and PHP microtime() functions will be used to

measure the user CPU time to process a search performed by a user in the

geodatabase application. Other PHP function will also provide memory usage.

We will use the results to plot charts showing the improved search time against the

original time taken to perform a search in the geodatabase.

/

3.5.5 Measuring Parameters

The measurement parameters will be the number of record and time taken to execute

a certain query within a given sample size.

Page 39

Chapter 4: Results and Evaluation

In chapter 3, a detailed logical model of the geodatabase was presented. A key

deliverable of this chapter was a working prototype of an Oracle geodatabase backend

and a frontend application developed using Zend Framework technology. In this

chapter, we conduct actual analysis experiments of the prototype in order to analyze

performance of its search mechanism.

4.1 Objectives of Evaluation

• Demonstrate improved search performance using adaptive sampling

• Demonstrate how the metadata architecture improve the search mechanism

using adaptive sampling

• Report the results and findings

4.2 A Distributed Adaptive Sampling

Simulations were carried out using the Zend Framework geodatabase application

prototype and the Oracle database, to demonstrate the improved CPU time for data

retrieved from the Oracle database when the Oracle search techniques are

implemented.

4.2.1 Adaptive Sampling Parameter Configurations

In the frontend application configuration file a log render time to record the CPU time

is set as shown below:

registry.logRenderTime = 0.01

The application prototype continuously generates random samples. The values

generated are stored in a log file called “execution_time.log”. The outputs of these

random samples represent the CPU time a search took to process a query.

Page 40

4.2.2 Measuring Geodatabase Record Query Performance

In an Oracle environment, the "set timing on" command provides a straightforward

way to measure elapsed time of an SQL search command. Values generated from

this sampling will be used to plot charts showing the improved performance of the

geodatabase. The charts will plot the execution time against the number of records.

4.3 Results of Analysis

Implementing the Oracle Search mechanisms reduced the CPU time spent in

performing a query in the geodatabase. The tables and graphs below show the

distribution of elapse time of SQL searches performed against the number of records

of a table in the geodatabase.

4.3.1 Comparing Execution time for 8k and 16k Tablespaces with

Metadata Indexing

We demonstrate improved performance by setting a higher tablespace size on tables

and also by applying the metadata search technique. In the metadata search

algorithm, every column in a table can be indexed and thus retrieving a row in a split

of a second. A simple query is executed as shown below and we achieve the

following results.

SELECT count(well log name) FROM w elllogs WHERE

log_date>to_date('27/01/2010','dd/mm/y

and log_date <to_date('06/03/2012','dd/mm/yyyy')

No. of Records

(Sample space)

Time taken by non

Metadata Indexing 8k

Table Space

Time taken by Metadata

Indexing 16k Table Space

10000 0.09 0.02

30000 0.2& 0.07

Page 41

50000 0.47 0.12

70000 0.65 0.17

90000 0.84 0.22

110000 1.03 0.26

130000 1.21 0.31

150000 1.40 0.36

Table 2: Improved time by setting Large Blocksize on Tablespace with metadata

indexing

The graph below plots samples of number of records against the time taken to

perform a search on various sample spaces.

Executor)
Time

140

1.20

1.00

0.80

(sec)
0 6 0

0 4 0

0.20

0.00

. I illI I I L L kw i l l i a i
10000 13000 15000 17000 10000 110000 130000 150000

No of Records

Time taken by:

■ 8 k tablespace

■ 16k tablespace

Graph 1: Showing Improved time by Setting Large Blocksize on Tablespace with

metadata indexing

4.3.2 Comparing Execution time for 8k and 16k Tablespaces

The table below demonstrates improved performance by setting a higher tablespace

size on data tables. The fesults were obtained by executing a complex query that

Page 42

involved more than one table.

No. of Records Time taken by 8k Time taken by 16k

Tablespace Tablespace
1000 0.42 0.23

2000 0.84 0.46

3000 1.26 0.69

4000 1.68 0.92

5000 2.10 1.15

6000 2.52 1.38

7000 2.94 1.61

8000 3.36 1.84

Table 3: Improved time by Setting Large Blocksize on Tablespace

350

3.00

250

Execution
Time 2.00

(in sec)

150

1.00

050

0.00

A 3ft
« n l

n i i im i ■ i i i

Time taken by:

■ 8k tablespace

■ 16k tablespace

1000 2000 3000 4000 5000 6000 7000 8000

No. of Records

Graph 2: Showing Improved time by Setting Large Blocksize on Tablespace

Page 43

4.3.3 Comparing Execution time for a table that is Row Resequenced and

one that is not

The table below demonstrates improved performance of time taken by a query on a

resequenced table.

No. of Records Non Resequenced Table Row Resequenced Table

1000 0.42 0.22

2000 0.84 0.44

3000 1.26 0.66

4000 1.68 0.88

5000 2.10 1.10

6000 2.52 1.32

7000 2.94 1.54

8000 3.36 1.76

Table 4: Showing Improved time by Row Resequencing

3.50

3.00

2.50

Execution
Time 200

(in sec)

1.50

1.00

0.50

0.00 h i
M i l

4 1 1 1 1

1 I I I I I
*

1000 2000 3000 4000 5000 6000 7000 8000
No. of Records

*'
Graph 3: Showing Improved time by Row Resequencing

Tim e taken by:

■ unclustered rows

■ clustered rows

Page 44

Chapter 5: Discussion and Conclusion

5.1 Achievement of Objectives

The objective of this study was to model a geodatabase for National Data Centre that

will provide a structured data storage and retrieval mechanism of the exploration data.

The current file system used at NDC does not offer this ability.

The geodatabase had two parts in the database tier. This included the geodata schema

and the metadata schema. The geodata schema contained tables that hold wellbore

and seismic data. It also hold all other related data collected during the exploration

activities. A questionnaire was conducted among expert in the exploration field who

included geophysist, geochemist and geologist, to identify objects that were required

to model the geodatabase. A conceptual model of the geodatabase was presented in

Chapter 3 section 3.2.1. A few of these objects were implemented in the prototype to

be used to perform test bed performance measurement analysis. Some objects were

implemented in the geodatabase but not linked to the metadata, while other objects

were in the geodatabase conceptual model but were not implemented in the

geodatabase. Implementation of a fully functional geodatabase system to be used in

the oil and gas sector was considered to be future work.

The geodata objects identified had several star schemas. There was a wellbore star

schema. The core table in this schema was the wellbore table. It is considered as an

information carrier of the wellbore data and logs. The other tables referencing

wellbore formed a relationship in this star schema. Objects in this schema hold data

about the identified exploration basins and prospects of exploration opportunities. It

also contained data about wells and seeps. Reference tables in this schema contained

types of hydrocarbon and types of wellbores. The second star schema identified was

the license star schema. ,The schema identified objects that needed a license to be

operational. These included wells, discoveries, seismic surveys, companies, license

areas and operators. The reference tables in this schema included license types. The

third star schema was the project star schema. This contained data of the ongoing
Page 45

projects and the resource estimates in the projects. This give more information about

the contents discovered in the wells. The fourth was the seismic star schema. It

explored data of the seismic surveys conducted. It related with the licenses objects

because seismic surveys are subject to licenses. Reference tables in this schema were

seismic source, seismic environment, seismic types, seismic survey status and seismic

nature.

In general, a well modeled geodatabase has plenty of advantages. It will offer the

ability to do the following:

• Store a rich collection of spatial data in a centralized location.

• Apply sophisticated rules and relationships to the data.

• Define advanced geospatial relational models (e.g., topologies, networks).

• Maintain integrity of spatial data with a consistent, accurate database.

• Work within a multiuser access and editing environment.

• Integrate spatial data with other IT databases.

• Support custom features and behavior.

• Leverage spatial data to its full potential.

The metadata schema had tables that contained data about the containers of data. The

following were the main tables in the metadata schema:

• MTDTABLES which contained the names of all the tables in the geodata

schema.

• MTD COLUMNS which contained the names of the columns in the geodata

schema

• MTD PRIMARY KEYS which contained the names of the primary keys in

the geodata schema

• MTD FOREIGN KEYS which contained the names of the foreign keys in

the geodata schema

The metadata formed the basis of the retrieval techniques of the data in the geodata

schema. The integration of the two schemas offered the ability of an enhanced search

Page 46

mechanism.

The metadata search algorithm concept for the frontend was coded using Zend

Framework technology. Zend framework is a fully fledged object oriented

programming tool. The search functions and metadata algorithms were developed

that also integrated with the libraries provided by Zend Framework to enhance the

search mechanism. Zend Log a Zend library was also used to log the CPU time

taken to perform a search query. The time recorded in the log file to perform a search

was plotted against the sample space, to give an analysis of the performance of the

search algorithm.

5.2 Achievement of Research Questions

5.2 Discussion of Results in Light of Literature Review

The measuring performance methodology presented in section 4.3.1 showed

measurement of time taken to execute a query against a sample size. The

measurement compared two scenarios: Measuring the time taken to execute a query

using the metadata search mechanism and measuring time taken by the same query

without employing the search mechanism. The results showed that the former was

faster.

The metadata search algorithm used the metadata for each column in a given table to

locate the search row in a query. The performance of this indexing caused the search

run four times faster.

5.3 Limitations

Zend Framework is highly modulized and hence we needed more time to know how

its internal works. We only implemented the necessary functions to develop a

prototype to validate the research work. For example, Zend Framework has a search
Page 47

t

function known as Zend Lucene Search. We needed more time to implement this

function which will definitely be used by the geodatabase system for document

management and archiving purposes.

Oracle database extensive. Implementing an Oracle technique requires thorough

tuning to ascertain that the mechanism applies for that particular database. Each

database behaves differently and through the process of optimization we can establish

what would apply best. The techniques that didn’t well apply for the project such as

cluster groups were not implemented.

5.4 Recommendation

Developing a geodatabase based on metadata model proves a superior method of

database design. The metadata design also goes a long way of improving the search

mechanism. This research demonstrate performance enhancement of a geodatabase

system for prompt data retrieval and accurate business reporting for provision of

better business decision making in the oil and gas exploration field. A geodatabase

with excellent data management having information presented in a unified and open

way will also help the oil companies operating inside our country explore the

opportunities available in the Exploration and Production sector. This will also attract

new companies and investors.

A clearer conceptual framework of how the search mechanism will be enhanced was

arrived at. We recommend finishing the remaining work and writing a paper. We

propose the development of a functional geodatabase and implementation of the same

at NDC.

5.5 Future Work

We propose to develop a fully fledged functional geodatabase system that will be

used at the National Data Center; the Exploration and Production department of

National Oil Corporation' of Kenya. All objects presented in the geodatabase

Page 48

Conceptual Model in section 3.2.1 and in section 3.2.2, will be implemented in the

proposed geodatabase system.

Further research work should look into GIS internet mapping application and

integration with other GIS systems that do map presentation and interpretation so as

to have a complete GIS suite for the Exploration and Production sector.

Page 49

References

Armstrong, The Quarks of Object-Oriented Development, 1998

Baker, Michael, "GIS DATABASE DESIGN: Geodatabase Model" Jul 2000

Burleson, Donald, "Oracle Clustering Factor”, Oct 2011

Burleson, Donald, “Oracle sorted hash cluster”, Sep 2011

Burleson, Donald, ‘‘Reduce I/O with Oracle cluster tables”, Jun 2011

Burleson, Donald, "The latest consensus on index rebuilding”, Nov 2007

C. J. Date, Hugh Darwen. Foundation for Future Database Systems: The Third

Manifesto (2nd Edition)

C. J. Date, Introduction to Database Systems, 6th-ed., Page 650

Chaudhuri, S. and Kyuseok, S. (1999). Optimization of queries with user defined

predicates. ACM Transactions on Database Systems, vol.24 No.2, pages 177-228.

Connoly, T. and Begg, C. (2001). Database Systems: A practical Approach to design,

Implimentation and Management, Third Edition. Edison and Wesley.

Cosar, A. Lim, E. and Jaideep, S. (2001). Multiple query Optimization with depth-

first branch and bond and dynamic queryordering. International Conference on

Information and Knowledge Management.

Dan Hotka. Oracle8i GIS (Geeky Internal Stuff): Index Internals. OracleProfessional,

November, 2000.

Page 50

Eduardo Cobian, Easy PHP websites with the Zend Framework, 2010

Elmasri, R. and Navathe, B.S.(1994). Fundamentals of database systems, Second

Edition. Benjamin Cummings.

Fegaras, L. (1998) A new Heuristic for Optimising Large Queries Research Paper,

Department of Computer Scienceand Engineering . The University of Texas at

Arlington.

Graefe, G. and DeWitt, D.J. (1987). The EXODUS OptimizerGenerator ACM

SIGMOD Records, Volume 16, Issue 3 pages 160-172

Graefe, G. and McKenna,W.J. (1991).Extensibility and Search efficiency in the

Volcano Optimiser generator. TechnicalreportCU-CS-91-563. University of Colorado

Gupta, A.Sudarshan, S.Viswanathan, S.(2001) QueryScheduling in mutiquery

optimization Research paper, Indian Institute of Technology - Bombay.

Gutmans, Andi, "Zend Framework". Andi on Web & IT, Feb 2009

http://www.suflfolkva.us/gis/docs/database-design.pdf

Horowitz, E. Sahni, S. and Rajasekaran, S. (1996). Computer Algolithms C++ ,

Computer Science Press.

Hurigeri, S. Seshadri, S. and Sudarshan, S. (2001). Memory Cognizant Query

Optimization. Research paper, Indian Instituteof Technology - Bombay.

IBM Oracle Technical "Oracle Architecture and Tuning on AIX" Nov 2006

Page 51

http://www.suflfolkva.us/gis/docs/database-design.pdf

Jan van Leeuwen (Ed.): Handbook of Theoretical Computer Science, Volume A:

Algorithms and Complexity, 1990

Jan van Leeuwen (Ed.): Handbook of Theoretical Computer Science, Volume B:

Formal Models and Semantics, 1990

John C. Mitchell, Concepts in programming languages, Cambridge University Press,

p.278, 2003

John Wang (Ed.): Encyclopedia of Data Warehousing and Mining, Second Edition (4

Volumes), 2009

Johnson, J.L.(1997). Database: Models, Languages, Design, Oxford University Press.

Kernel, Sean Michael.,"Google Data Joins PHP Zend Framework", Dec 2006

Kremer, M. and Gryz, J. (1999). A Survey of Query Optimization in Parallel

Database. Technical Report CS-1999-04, Department of Computer Science,York

University.

Kroger, J.Stefan, P.and Heuer,A.(2001).Queryoptimisation.On theordering of

Rules.Research paper, cost - and rule based optimisation of object - oriented

queries(CROQUE) Project.Universityof Rostock and University of Hamburg,

Germany.

Krill, Paul, "Microsoft, Zend boost PHP for Windows", infoworld.com. Oct 2006

Kyuseok, S. Sellis, T.K and Nau, D. (1994). Improvements on a Heuristic algorithm

for Multiple-queryOptimization. Technicalreport, University of Maryland,

Department of Computer Science.

Page 52

Kyuseok, S. (1993). Advanced query optimization techniques for relational database

systems. PhD dissertation, Universityof Maryland.

LaMonica, Martin, "IBM backs open-source Web software", Feb 2009

Ling Liu, M. Tamer Ozsu (Eds.): Encyclopedia of Database Systems. Springer US

2009

Mark Gurry, O'Reilly book Oracle SQL Tuning Pocket Reference, Page 66, Jan 2000

Michael Lee Scott, Programming language pragmatics, 2006

Mohan, C. An Efficient Method for Performing Record Deletions and Updates Using

Index Scans

Neward, Ted, "The Vietnam of Computer Science". Interoperability on Large

Databases, August 2002

Nilesh, N.V. Sumit, K.S. Roy,P. and Sudarshan, S. (2001). Pipelining in multi-query

optimisation. Research paper, Indian Institute of Technology. Bombay.

Park,P.andSegar,A.(1988).Using common sub-expressions to optimise

multiplequeries. Proceedings of the IEEE International Conferenceon Data

Engineering.

Pierce, Benjamin. "What is Object-Oriented Programming?", 2002

Poll, Erik. "Subtyping and Inheritance for Categorical Datatypes", 2011.

Potter, Mike, "Adobe Contributing AMF Support to Zend Framework", Feb 20094'

Page 53

Ramakrishnan, R. and Gehrke,J. (2000). Database Management Systems Third

Edition. McGraw Hill. Rao, J. and Ross, R.K. (2000) Power Pipelining for Enhanced

Query Performance . Technical Report CUCS-007-00, Columbia University.

Roy,P.Seshadri,S.Sudarshan, S.and Bhobe,S.(2001).Efficient and extensible

algorithms for Multiquery optimisation. Researh Paper,SIGMOD International

Conference on management of data.

Sushil Kumar, “Oracle Database lOg: The Self-Managing Database”, Feb 2003

Walid H. Shayya, “An Introduction to Arc View G1S”, Jun 2011

Weier O'Phinney, Matthew. "Zend Framework 1.11.12 Released!”, Jun 2012

Weier O'Phinney, Matthew. "Zend Framework 2.0.0beta5 Released!” Jul 2012

Zend Technologies Inc, Programmer's Reference Guide - Zend Framework, 2005

Zend, "History of PHP and related projects". The PHP Group, Feb 2009

Zend, "Introduction to Zend Framework". ZF Programmer's Reference Guide, Feb

2009

Page 54

Page 55

Appendix I: Research Questionnaire

1. What objects can be modeled in a geodatabase for oil and gas exploration
activities?

2. What information can be stored in an E&P geodatabase?

3. What are the information carrier objects of an E&P geodatabase?

4. How would you want the geodatabase integrate with ArchGIS?

5. What is the purpose of ArchGIS?

6. Who would be the users of the Geodatabase?

7. Will each department in E&P have separate privileges to different modules in
the geodatabase?

8. What types of reports do you expect from the geodatabase?

9. Which appraisal and production areas are dynamic and which are static?

10. Any other important information you wish to state or clarify?

Page 56

The following are the metadata search and the search action source codes written in

PHP using Zend Framework that were developed to demonstrate the effectiveness and

flexibility of a metadata search mechanism.

/**

* Metadata Search: Returns a where clause to perform a general search of the

table

*/

public function search($search = null) {

Swhere = null;

if ((strstr($search,' = ') II strstr($search, '>')

|| strstr($search, '<') || strstr($search,' LIKE ')

|| strstr($search,' IS NULL') || strstr($search,' IS NOT NULL')

|| strstr($search, ' BETWEEN ') || strstr($search, ' IN(') || strstr($search, ' IN

o

) && (strpos($search,' UNION ') == false)) {

Sselect = $this-> db->select();

$select->from($this->_name, $this->_cols, $this->_schema);

$select->where($search);

try {

Sstmt = $this->_db->query($select);

Swhere = Ssearch;

} catch (Exception $e) {

}

}

Appendix II: Source Code for Search Mechanism

Page 57

if (Swhere === null) {

if (count($this->_searchItems)) {

foreach ($this->_searchltems as Scolumn) {

if (Swhere !== null) {

Swhere = Swhere . ' OR

}
Swhere = Swhere . '(' • Sthis->getAdapter()->quoteInto('UPPER('

Scolumn . ’) LIKE UPPER(?)\ ’% '. Ssearch .'% ').')';

}

} else {

foreach ($this->_cols as Scolumn) {

if (preg_match('/NAME/', Scolumn)) {

if (Swhere !== null) {

Swhere = Swhere . ' OR

}
Swhere = Swhere . '(' • Sthis->getAdapter()->quoteInto('UPPER('

Scolumn . ') LIKE UPPER(?)\ '% '. Ssearch .'% ').')';

}

}

}

}

}
return Swhere;

}

Page 58

The following code is the Search Action that calls the Metadata Search Function:

/**

* Search Action: Displays a list of a subset of the records for a model matching

certain criteria

*/

function searchAction()

{
Lib_Log::functionStart(get_class($this),__FUNCTION__);

if ($this->_request->has('search')) {

$search= urlencode(urlencode($this->_request->getParam('search')));

$this->_helper->Redirector-

>gotoRouteAndExit(array('searchstring'=>$search));

}

Ssearch = $this->_request->getParam('searchstring');

Ssearch = urldecode(Ssearch);

if (Ssearch == null || Ssearch == 'SEARCH') {

Sthis->_helper->Redirector->gotoRouteAndExit(array(), Sresource . 'List');

}

Sthis->_helper->viewRenderer->setScriptAction('list');

Stable = Sthis->_helper->Model->getModel();

Page 59

Sthis->view->pageTitle = $table->getSingularDisplayName() . ' Search Results

fo r ' . Ssearch;

$this->view->headTitle($this->view->pageTitle, 'PREPEND');

$this->view->modelClass = substr(strrch r(get_class($ tab le),1);

Spagelcon = Sthis->_helper->Model->getIcon();

if (Spagelcon ! = null) {

$this->view->pageIcon = Spagelcon;

}

$page = Sthis->_request->getParam('page');

Ssort = $this->_request->getParam(’sort');

Sdirection = Sthis->_request->getParam('direction’);

if (strlen(Ssort) > 0) {

$select->order(strtoupper($sort. ' ' . Sdirection));

}

$this->_preSearch($select);

Spaginator = Zend_Paginator::factory($select, 'DbTableSelect');

$paginator->setCurrentPageNumber($page)

->setItemCountPerPage($table->getItemCountPerPage());

$this->view->paginator = Spaginator;

$this->view->table = Stable;

$this->view->search = Ssearch;

$this->view->Breadcrumb()->add (Sthis->_request->getRequestUri(), 'Search ' .

Stable->getPluralDisplayName(). ' . Ssearch .')', false, 2);

Page 60

Lib_Log::functionEnd(get_class($this),__FUNCTION__);

}

Page 61

Appendix III: User Manual

A. The Geodatabase Authentication

Below is a screen shot of the login screen of the geodatabase

Welcome to Geodatabase System

Username

Password

Forgot your password?

When a user login to the geodatabase system, the system uses an Access Control

Limit (ACL) that determines which objects the user has privileges to.

B. The Geodatabase List Module

Upon Login the system prompts the user to a default list of geodata records

particularly the Wellbore data as shown below. It is from this list model that the

Search mechanism has been implemented.

I f Wellbore Data] Seismic Survey 1[Licensing 1[Reports 1 Refeience Data 1[AdministidtKXi 1[Metadata |

List Wellbores [Snatch (Wodala________ _________________ [^Advanced

GIS Well 0 Official Name Anas Name | Spud Date Latitude DMS Longitude DMS Well Type I Well Content Well Status Action

1 1N30E>84-1 Ngarma-1 24 Jan 2012 2207 35760 Wildcat Exploration OIL & GAS DISCOVERY P ✓ X

2 1N30E*4-2 Pomt>o-1 17 Apr 2004 2010912 36 161499 EXPLORATION OIL 6 GAS DRILLING ✓ F| X

3 1N30E/84-3 Pale-1 28 Oct 0005 2402372 36 106567 EXPLORATION OIL & GAS SU SPEN DED p ✓ X
4 1N30E/84-4 Magadi 1 29 Jut 2003 2402372 36 106567 EXPLORATION OIL 4 GAS SU SPEN DED p ■ I I X
5 1N30E/84-5 Magadi-2 29 Jul 2004 2402372 36 106567 EXPLORATION OIL 6 GAS SU SPEN DED p ✓ X
6 1N30E/84-6 Magadi 3 02 Dec 2004 2402372 36 106567 EXPLORATION OIL SU SPEN DED p ✓ H X

EddMetadata Ralrash Metadata GEMaps 11-6 of6 Records

There are two interfaces .provided to perform the metadata based search i.e through

the search text field and the advanced search screen as shown below.
«y

Search Geodata C* Advanced

Page 62

Upon clicking advanced search, it opens a form similar to the edit or add form of the

geodata and a search can be performed based on any of the form items.

Basin

WeHborcs

Seismic Survey Licensing Reports Reference Data Administration Metadata

Search W ellbores

GiSWeflK)

Official Name

Alias Name

Spud Date

Local Name

latitude DM S

Longitude DMS

Well Type

Well Purpose

W e i Coetent

W e i Status

Search [Cancel

m

C. The Geodatabase Metadata Search

Search can be done by providing the WHERE CLAUSE of the model as shown

below.

ALIAS_NAME LIKE 'Ngamia%' ^Tj Advanced

Below is a search result of the above search.
Wetoores ► Search Wefeorts (ALiAS_NAWE-KJKE*%27Ngafi«%2S%27)

Basin ' Weibore Data | Seismic Survey Licensing Reports Reference Data Administration Metadata J

Wellbores I Discoveries

Wellbore Search Results for A L IA S _ N A M E + L IK E + % 2 7 N g a m ia % 2 5 % 2 7 Search Geodata Oj Advanced

1 Gl SWell ID Official Name j Alias Name Spud Date j Latitude DMS Longitude DMS W ei Type Well Content Well Status Action !

L l _
1N30E784-1 Ngamia-1 24 Jan 2012 2.207 35 760 Wildcat Exploration OIL 4 GAS DI SCOVERY p y x

Edit Metadata Refresh Metadata 11 -1 of 1 Records

Search can also be done by giving a search text and obtained results as shown below.

Ngamia Q. | Advanced

Page 63

•Ye too res ► Search Wetoores (hgamm)

Wellbore DataBasin

Wellbores | Discoveries

Seismic Survey 1| Licensing 1f Reports 1[Reference Data 1I Administration Metadata 1

Wellbore Search Results for Ngamia Search Geodata Q. Advanced

1 GIS Well ID Official Name AMas Name | Spud Date | Latitude DMS I Longitude DMS I Well Type I We* Content W e* Status Action

b __________
1N30E/B4-1 Ngamia 1 24 Jan 2012 2 207 35 760 Wildcat Exploration OIL & GAS DISCOVERY

^ / y
Edit Metadata Refresh Metadata

The metadata searches above are based on how the metadata has been setup. Failure

to setup a column of the geodata model as a search criterion, no search results will be

obtained. For example, we have wellbore records whose content are oil. Yet when

we perform a search of “where content is like oil” we get no results. Because the

content column or field has not been set as a metadata search criterion.

This is illustrated below:

CONTENT LIKE 'Oil%' Q. Advanced

Wetoores ► Search Wetoores (CONTENT*LKE*%27CW%2S%27)

|f Weflboie Data |f Seismic Survey j| Licensing jf Reports |f Reference Data j| Administration j| Metadata |

Wellbores I Discoveries

Wellbore Search Results for C 0 N T E N T + L IK E + % 2 7 0 il% 2 5 % 2 7 Search Geodata JX Ad»anc*0

as Well ID I Official Name | Alias ha me | Spud Dale j I aotude DMS 11 onqitude HMS | W e ill ype [Well Content | Well Status | Action

Edit Metadata Refresh Metadata

The search above yields no result because metadata search indexing is not set.

D. Setting up the Metadata Search Index

To set a metadata search index for wellbore content for the wellbore table go to its

metadata listing as shown below:

Basin j| Wellbore Data j| Seismic Survey If Licensing l Reports jj Reference Data jI Administration

Columns I Pmnaiy Keys I Foreign Keys

List Tables Search Geodata Q Advanced

Module Name Alias I Singular Display Title Plural Dtspfay Title Action

i System CG_COOE_CONTROLS P ✓ X
System CG_REF_COOES C R C Reference Code Reference Codes X

Search for WELLBORE metadata

wellbore Q. Advanced

Page 64

Basin Wellbore Data Seismic Survey 1 icensing \ Reports Reference Data]| Administration

Tables | Columns I Pmnaiy Keys I f oieiqn Keys

Table Search Results for wellbore Search Geodata Cl Advanced

Module] Name I Akas Singular Display Title Plural Display Title Action J
GIS G IS_WELLBOR£S WEL Wall bore Welt bores f i / x |

11 -1 o M Records

Click the edit icon. This opens a screen as one shown below:
Search Tables (wrtbore) ► GB GG.WELLBORES

j Wellbore Data j| Seismic Survey "j[Licensing jf Reports l[Reference Data l[Administration

Tables | Columns I Primary Keys I foreign Keys

t Table

Name

Akas

Smoular [>spU, Title Wellbore

Plural Display Title Wellbores

Journal Table

Comment

Description

Has Notes

Has Documents g

Cancel

Plenary Key Rule Triggers

Go to the Columns submenu of the WELLBORE metadata as shown below:
Columns \ Primary Key j Rule Triggers

Name Sequence In Table Datatype j Average Length Maximum Length Decimal Places ! Display Sequence List Sequence rAction

PURPOSE 110 VARCHAR2 100 100 110 ✓ Y

CONTENT 120 W RCHAR2 100 100 120 120 ■ 1 m Y

STATUS 130 VARCHAR2 100 100 130 130 fi / Y
111 -13 of 13 Records 4 1 2

Click the edit icon on the CONTENT column metadata of the WELLBORE table and

get screen shown below:

Page 65

Display
Length 30

Display
Height

Column
Case M
Format
Mask

-- !

Display
Sequence 120

List
Sequence 120

Identifier
Sequence

Search
Sequence

Order By
Sequence

Sort Order □
Prompt W ell Content

Clm
Comment W ell Content

Set some value for the Search Sequence field so that the metadata search mechanism

can consider this field while querying a search string in this table.

*

Page 66

Display
Length

Display
Height

30c 3
Column
Case M

Format
Mask

Display
Sequence

List
Sequence

Identifier
Sequence

Search
Sequence

Order By
Sequence

Sort Order

Prompt W e ll C o nte n t

Clm
Comment Well Content

Going back to the WELLBORE table list, we refresh the metadata; click
Refresh Metadata link

J f Wellbore Data |1 Seismic Survey 1I t icensmg 1[Reports 1 Reference Data 1 Administration 11 Metadata 1

Ust Wellbores Search Geodata Q. Advanced

GIS Well ID Official Name Alias Name Spud Dale 1 anilide DM S 1 ongitude DAIS Wed Type W ei Content Well Status Action

1 1N30E/84 1 Ngamia-1 24 Jan 2012 2.207 35700 Wildcat Exploration OIL A GAS DISCOVERY P ✓ X
2 1N30EJB4-2 Pombo-1 17 Apr 2004 2 010912 30 101499 EXPLORATION OIL A GAS DRftJJNG P ✓ X
3 1N30E/84-3 Pale 1 28 Oct 0005 2402372 36 100567 EXPLORATION Oft. A GAS SUSPENDED P ✓ X
4 1N30EV84-4 Magadt-1 29 Jut 2003 2 402372 36 106567 EXPLORATION OIL A GAS SUSPENDED P ✓ | | X
5 1N30E/84-5 Magadi-2 29 Jut 2004 2402372 36 106567 EXPLORATION OIL A GAS SUSPENDED P ✓ X
6 1N30E/B4-6 Magadi-3 02 Dec 2004 2 402372 36106567 EXPLORATION Oft. SU SPENDED P ✓ u X

Edrt Metadata Refresh Metadata GE Maps [~L 6 °*6 Records

Now perform search for Well Content and observe the results as shown below:

Page 67

Licensing Repotts I Reference Data Adnnnistiation Metadata

List Wellbores
Q. Advanced

Gl SWell ID Official Name Alias Name Spud Date | Latitude DMS | Longitude DMS I Well Type Wefl Content Well Status Action

1 1N30E/84-1 Ngamta-1 24 Jan 2012 2 207 35 760 Wildcat Exploration OIL & GAS DISCOVERY P ✓ x !

2 1N3O084-2 Pom bo-1 17 Apr 2004 2 610912 36 161499 EXPLORATION OIL & GAS DRILUNG P s X

3 1N30E/84-3 Pate-1 28 Oct 0005 2 402372 36 106567 EXPLORATION O ILS GAS SUSPENDED s X

4 1N3O084-4 Magadi-1 29 Jut 2003 2 402372 36106567 EXPLORATION O ILS GAS SUSPENDED P s X

5 1N30E/84-5 Magadi-2 29 Jut 2004 2 402372 36106567 EXPLORATION O ILS GAS SUSPENDED s X

6 1N30E784-6 Magadi-3 02 Dec 2004 2 402372 36 106567 EXPLORATION OIL SUSPENDED s X
Edit Metadata Refresh Metadata GEMaps i i - 6 of 6 Records

Wetoores ► S * v ct Wefcores <«*)

I f " W e»ore Data | Seismic Survey Licensmg Reports Reference Data Administration Metadata |

Wellbores Discoveries

Wellbore Search Results for oil Search Geodata O Arfcanced

GISWeSK) Official Name | Alias Name ! Spud Date Latitude DMS : Longitude DMS Well Type W ei Content Well Status Action

1 1N30EJ84-1 Ngamia-1 24 Jan 2012 2 207 35 760 VWdcat Exploration OIL S GAS DISCOVERY P ✓ X
2 1N30E/84-2 Pombo-1 17 Apr 2004 2.610912 36.161499 EXPLORATION O ILS GAS DRILLING P s X
3 1N30E/B4-3 Pale-1 28 Oct 0005 2402372 36 106567 EXPLORATION OIL S GAS SUSPENDED p s X \

4 1N30E784-4 MagadM 29 Ju! 2003 2402372 36 106567 EXPLORATION O ILS GAS SUSPENDED s X
5 1N30E/84-5 Magacfc-2 29 Jul 2004 2 402372 36 106567 EXPLORATION OIL S GAS SUSPENDED P s X
6 1N30E/84-6 Magadh3 02 Dec 2004 2402372 36 106567 EXPLORATION OIL SUSPENDED P s X

Edit Metadata Refresh Metadata 11 -6 of 6 Records |

It is this metadata search indexing feature that makes this search mechanism speed up

data retrieval considerably. The indexing, sequence the columns in an organized

order and this bring about quick improvement in the data retrieval response time.

Page 68

