THE DEVELOPMENT OF AN INEXPENSIVE, PORTABLE, VERSATILE, MICROPROCESSOR BASED DATA ACQUISITION SYSTEM

CHIVERSITI' OF NATROL

2.

By

Aggrey Madahana

THIS THESIS HAS BEEN ACCEPTED FOR THE DEGREE OF <u>SC(1950)</u> AND A COPY MAY BE PLACED IN THE UNIVERSITY LIBRARY.

This thesis has been submitted in partial fulfillment for the Master of Science degree of the University of Nairobi.

JANUARY, 1990

DECLARATION

This thesis is my original work and has not been presented to any other University.

Hana

AGGREY MADAHANA DEPARTMENT OF PHYSICS UNIVERSITY OF NAIROBI

This thesis has been submitted to the University of Nairobi for examination with my approval as supervisor.

Norson

Prof. WILLIAM H. DRAKE DEPARTMENT OF PHYSICS UNIVERSITY OF MALAWI To my fiancee Judy Wambui Njuguna

1.6

-

Oh, who can lift enquiring eyes, And scan the star-bespangled skies, Yet argue, earthbound as the cod Mid wonders such, there is no God?

The flaming splendor of the noon, The gentler beams of silver moon, And far flung systems everywhere Their woundorous Architect declare.

Yet though His glory they reveal, Himself, His nature, they conceal; We grope for Him whom they declare Yet can but dimly find Him there.

Oh, love outshining starry gleam, That He should suffer to redeem! That He who all the heavens built Once bled to bear my sin and guilt!

Now skies indeed are softer blue, And every flower has lovelier hue; The one whom stars proclaim above As savior now I know and love.

J. Sidlow Baxter.

Acknowledgement

The knowledgeable man inevitably comes to the conclusion that the horizon of his knowledge is also the frontier of his ignorance. Frontiers pose new challenges as well as fears of pursuing a new experience. Our success in the new frontiers is partly dependent in one way or another on the contribution made to our work by various people whom we must always humbly acknowledge.

Special thanks to my supervisor Prof. William H. Drake for his invaluable contribution through out my research period on this work. His wide experience and far-sightedness kept me from deviating from the original proposal for this work. It was indeed his inspiration and inovativeness that led me to pursue this research.

I wish to also acknowledge the following people who have made some significant contribution to this work - Gerald Kotonya and Silvester Namuye both of Egerton University in Njoro, Phil Bates who is currently working on a microcomputer project in the University of Nairobi, for his help on using the Icebox emulator. Mjomba Kale a tutorial fellow in the Physics Department for letting me use his Amstrad computer to design the PCB artwork.

Lastly, Iam grateful to Francis Juma a technician in the Physics Department University of Nairobi, and to all persons who have made a contribution to this work, but are not mentioned here by name.

Abstract

An inexpensive, portable, versatile, microprocessor based data acquisition system is presented. The design and development of the system hardware and software is described. The system is software intensive consisting of 2 Kbytes of monitor program and 1 Kbyte of application programs. It is configured to operate on a Z-80 microprocessor running at 2 MHz. It is programmed using a microcomputer through a serial port to meet specific requirements of data to be acquired which include calibrating specific input devices. A maximum of 16 analog signals in the range of 0-5 Volts can be simultaneously monitored by this system. Data is logged in the system in two modes. In the normal mode it acquires data at a maximum rate of 1 reading in 2 microseconds. Whereas in the interrupt mode with the real time clock it takes 1 reading in 10 milliseconds. The main board storage capacity is 5 Kbytes but it has an additional capacity of 40 Kbytes on the RAM expansion card. The operation of the equipment has been tested by acquiring data from a network of resistors with voltage variations simulated manually by varying a potentiometer, over a period of twenty four hours, with readings taken at 60 minutes intervals. A minimum current of 0.35 Amp. at 5V is sufficient to drive the system when using normal chips and an estimated minimum of 0.10 Amp. for their CMOS versions.

Contents

Acknowledgement	i
Abstract	ii
Contents	iii
Introduction	1

Chapter One: System Design

1.1 Introduction	.5
1.2 Digital Data Acquisition Systems	.7
1.2.1 The Squirrel Data Acquisition system	.9
1.2.2 The campbell versatile progra-mmable data logger	.9
1.3 Project Requirements	.10
1.4 The Design Philosophy	14
1.4.1 Design criteria	14
1.4.2 Conceptual design of the data acquisition system	.16
1.4.3. Choice of Components	.17
1.5 Conclusion	19

(iii)

2

Chapter Two: The Integrated System

2.1	General Introduction	.20
2.2	Construction Detail	.21
2.2.	1 Circuit layout artwork design	.21
2.2.	2 Fabrication	.24
2.2.	3 Circuit check	.24
2.3	Physical Layout	.25
2.4	The Z80 Microprocessor	.25
2.4.	1 Clock circuit	.27
2.4.	2 Program break and restart signal	.28
2.5	Memory Interface Signals	.29
2.6	I/O Interface Signals	.33
2.6.	1 I/O parallel ports	.34
2.6.	2 Serial communication	.34
2.6.	3 Audio tape interface	.35
2.7	System Buses	.35
2.8	Conclusion	.39

Chapter Three: Hardware Development

3.1	Nascom Microcomputer System General Overview	40
3.2	MICROCOMPUTER INTERFACE SYSTEM (MIS)	45
3.2.	1 Decode module	46
3.2.	2 Digital to analog module	47

10-

3.3 Hardware Development	47
3.4 Keypad	50
3.4.1 Physical layout	52
3.4.2 Circuit configuration	55
3.4.3 Pin allocation	57
3.5 Display Unit	59
3.5.1 Pin assignment	61
3.5.2 Operation of the display unit	64
3.5.3 Scanning the seven segment display unit	64
3.6 Analog to Digital Converter Unit	67
3.7 General Desription of the A/D Converter Unit	68
3.7.1 Pin description and ciruit operation	69
3.8 The Real Time Clock	
3.9 Conclusion	78

Chapter Four: Software Development

4.1	Introduction	.79
4.2	Software Development Environment	.79
4.2.	l Program design	.80
4.3	Development Language	.81
4.4	Monitor Programs	.82
4.4.	l Initializing	.82
4.4.	1.1 Stack	.83
	2 Audio cues	
4.4.	3 Programming the 8255 PIA	

4.4.4 System control mode and data acquisition

tin	me interval	37
4.6 K	eypad Scanning Program	89
4.5.1 S	Scanning period and key bounce	90
4.5.2 H	Hexadecimal to seven segment conversion	92
4.6 Ap	oplication Programs	92
4.6.1 B	BCD to ASCII conversion	93
4.7 Da	ata Retrieval and Serial I/O	94
4.7.1 S	Serial data communication software	94
4.7.2 T	The printer routine	96
4.8 Su	ammary	97

CHAPTER FIVE : SYSTEM EVALUATION AND TESTING

5.1 Testing and Evaluation Overview	98
5.2 ICEBOX Emulator	99
5.2.1 General overview	100
5.2.2.1 Memory I/O decoding	101
5.2.2.2 Monitor program verification	102
5.2.2.3 Real time clock performance	103
5.3 DATA LOGGER TESTS	104
5.3.1 Experimental setup	105
5.3.2 Manual readings	105
5.3.3 Acquisition system calibration and reaings	105
5.3.4 Comments on the graphs	108
5.3.5 Transmission to the BBC microcomputer test	108

5.4 System Data Throughput	108
5.4.1 The sample rate	108
5.4.2 The amount of processing required	
5.5 Conclusion	110

CHAPTER SIX: CONCLUSION AND FUTURE WORK

6.1	Hardware/Software Partitioning	111
6.2	Conclusion,	12
6.3	Recomendation for Future Work	.14
6.3.	1 Hardware1	14
6.3.5	2 Software	115

REFERENCES	117
APPENDICES	

(Vii)

Introduction

In the field of scientific and engineering study, there are two main ways of obtaining information; analysis and experiment. Analysis is the use of agreed upon theories and mathematical formulae to predict and analyse physical situation. This method of obtaining information is the basis of theoretical physics. In experimentation we turn to the actual measurement of what happens and make conclusions based on the data gathered as well as our experience[1].

Scientific and technical advances in the past have provided a large quantity of theory and analysis. However inspite of this quantity, most general theory and analysis fail to provide sufficient detail of many phenomena of interest to us, or at least do not fully explain all phenomenon observed. For us to understand and capture detail, in different scientific phenomena, we must still have recourse to experiment. Introduction

The art of measurement which encompasses detection, acquisition, control and analysis is either done manually or automatically[2][3][4]. In performing an experiment manually, an observer (the experimenter) equipped with the appropriate measuring equipment observes an experiment and records the readings of his instruments as they respond to event changes from initial conditions. Detection in this first case depends to a large degree on the human senses sight, touch, smell, taste, sound, and mental perception. These senses serve as interfaces between the detecting devices or measuring equipment and the observer. Instrument readings (data acquired) and observations are recorded on paper and later translated into a form suitable for analysis such as tables, graphs, charts etc.

This method of data acquisition is limited to data collected from experiments whose time interval in detection is enough (60 seconds on the average) to accommodate the fastest human response to the observation and subsequent recording of the change. Furthermore the number of observations which can be monitored consecutively with a negligible time difference are also limited by the same factors mentioned above. Data acquired manually also pose tremendous challenges to storage, data compression, processing, and analysis. Manual acquisition of data therefore restricts the experimenter to a single event confined to a limited area or point in space. This restriction cannot be tolerated in experiments which require simetime.

2

taneous acquisition of data, and those that require a well spatially distributed sample of readings from a chosen area. Such an area can only be observed well by an instrument capable of making several almost simultaneous observations.

Measurements taken manually are highly subjective, with errors resulting from human factors such as misreading of scales, reaction time, misrepresentation, and zero reading error. What's more, large amounts of experimental data acquired and recorded on paper cannot be translated easily into a format which would readily facilitate the use of a microcomputer for analysis, thus limiting the speed at which one would arrive at a conclusion.

This method of acquiring data is not adequate for most scientific experiments involving more than one reading or many physical parameters to be monitored simultaneously; and is very limiting in current research where measuring accuracy, data processing speed and storage are critical factors in the analysis of most scientific phenomena.

On the other hand, automatic data acquisition involve using electronic instruments to take measurements and acquire data. The human element is minimised, and he becomes a mere operator of the 'automatic observer'. When all measurements are fully automated, human errors are substantially reduced. Introduction

This work is primarily aimed at helping to partly resolve measurement problems encountered by a team of microclimatology researchers from the Departments of Geography and Botany in the University of Nairobi. Research in this area involves simultaneous measurements of temperature, soil moisture, light radiation, and humidity, usually done over a period of weeks at predetermined time intervals. A versatile equipment capable of acquiring data of all the physical parameters mentioned in real time, at pre-programmed intervals of time, would be the most suitable device for these kind of measurements.

The main purpose of this work was to develop a versatile data acquisition system based on a microprocessor to be used for measurements in most scientific applications. Even though the original requirements were those of the microclimatology research. Other requirements based on general observations from three undergraduate experiments in the Physics Department were considered. The three experiments involve:-

1. The performance of solar cells,

2. Thermal conductivity, and

3. The Coffee cooling problem in the simulation laboratory exercises.

It was not essential to examine any of these experiments in detail since the requirements have to be as general as possible for the development of a versatile general purpose equipment.

4

1 2-

Introduction

In this thesis chapter 1 discusses the design requirements for the system, system. Chapter two examines the resulting integrated system. Chapter three deals with the development of the hardware on the Nascom microcomputer and chapter four covers the software aspects of the design. Chapter five deals with the testing and performance of the system in real time. In the concluding chapter evaluation of the project is presented and recommendation made for future work where necessary.

1.0-

5

Chapter 1

System design

1.1 Introduction

In general precision and accuracy become better as human errors are minimised in the process of taking measurements although the acquisition instrument and transducers do introduce their own intrinsic errors. An illustration of a general automatic data acquisition system is shown in fig. 1.1.1[5].

Data acquisition systems are used to measure and read signals obtained in basically two ways:-

- Signals originating from direct measurements of electrical quantities; dc and ac voltages, frequency and resistance.
- 2. Signals originating from transducers, strain gauges, thermo-

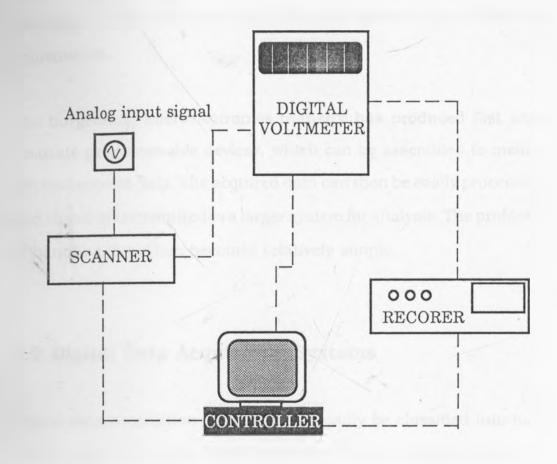


Fig. 1.1.1 A General Automatic Data Acquisition System.

couples, light sensors etc.

The equipment used may be either digital or analog. depending on the type of application. Accuracy and bandwidth are prime factors to be considered in the design of data acquisition equipment which range from single channel to multi-channel systems[6]. Single channel systems can monitor only one parameter at a time, while multi-channel data acquisition systems are equipped to make several readings in one cycle from either the same transducer or different transducers.

The burgeoning microelectronics industry has produced fast and accurate programmable devices, which can be assembled to measure and acquire data. The acquired data can then be easily processed and stored or transmitted to a larger system for analysis. The problem of handling data then becomes relatively simple.

1.2 Digital Data Acquisition Systems

Digital data acquisition systems can broadly be classified into two types. Those that require a host computer (usually a microcomputer) to acquire data and stand alone systems. The former are laboratory based systems designed to operate around an existing computer with a suitable interface circuit. The control and acquisition software on these systems are usually written in a high level language. These kind of systems are suitable for on-line control and processing of the acquired data, and results can be acquired in the form of graphical print-outs or charts. Some examples of systems that have been designed to operate from a host computer system include:- A paleomagnetic spinner magnetometer, which was interfaced to the KIM-1 microcomputer and developed by Thompson and Drake[7] in the Physics Department, University of Nairobi. Later, another microcomputer based data acquisition and instrument control system for an absorption calorimeter, was developed in the same Department by Mate[8]. In Mate's design, the host computer used for control and acquisition was the BBC microcomputer, the software being written in BASIC. Two other pieces of work centred around the Apple-2 microcomputer namely: A microprocessor based data acquisition system for thermo-fluids laboratory[9] and a microcomputer interface board for time resolving multi-channel scaling respectively[10]. In all the four designs, suitable interface circuits are utilised to read and transmit data from transducers to the host microcomputer system which is invoked to issue control signals when necessary to operate the experimental devices set up. The microcomputers mentioned are also used for other functions besides acquiring data.

On the other hand, stand alone data acquisition systems are developed solely for the purpose of taking measurements, strictly, they are not general purpose microprocessor equipment, although some may be utilised for functions other than the acquisition of data, by altering the software and incorporating additional hardware on the system.

We shall now review, briefly, two data acquisition systems currently available on the market and used extensively in the field (outside the laboratory environment), especially by environmental biology and

9

microclimatology research teams in the Departments of Geography, Crop Science and Botany of the University of Nairobi.

1.2.1 The Squirrel Data Acquisition System

The basic squirrel system used in field experiments is dedicated and programmed to measure one physical parameter. Thermistors have been hard wired to it and it is therefore configured to measure temperature only. However the versatile version of the squirrel is capable of measuring humidity, temperature, small ac and dc signals. It operates on an eight bit microprocessor. Data is logged by commanding the system to operate its logging program through a keypad. Under normal operating conditions the Squirrel's current consumption is about 20 milli-Amps. Data acquired by the squirrel can directly be down loaded into an IBM personal computer(pc) and used in a LOTUS 1-2-3 package for analysis[11].

1.2.2 The Campbell Versatile Programmable Data Logger

The campbell scientific inc. 21X micrologger is a versatile programmable data acquisition system based on the Hitachi 6303 CMOS central processing unit(CPU). The 21X system combines precision measurement with processing and control capabilities in one single battery operated system. Programs can be entered via a keypad which instructs the 21X to initiate measurement or control functions to process input data and store it. The system has 16K of ROM and 40K of RAM on board. It's workspace and user programming area utilises 11K of the RAM, so only 19K is available for low resolution data storage. Under normal logging conditions this logger consumes 60 milli-Amps of current for analog measurements and 10 milli-Amps in the quiescent condition. 21X has a throughput of 100 data values per second through its 16 channels of analog inputs, which can be expanded to a maximum of 192 channels. The acquired data is transmitted in ASCII format through a serial port into a larger system for analysis. When logging data, the system's real time clock is preprogrammed to invoke the CPU to run the data acquisition program at pre-determined intervals of time[12]. The two data acquisition instruments described above and others available locally are imported at guite exorbitant prices. oft-times they do not often meet the specification and requirements of local researchers fully.' Further the unavailability of replacement components for maintenance is a major handicap to the continual operation of these equipment. There is a need to design equipment which meet local specifications and yet easy to handle and use from the electronic layman's point of view.

1.3 Project Requirements

The project design requirements based on the environmental biology and physics experiments have broadly been summarized into the following areas and are briefly discussed below.

- 1. Detection.
- 2. Transducer requirement.

3. Data storage.

4. Data transfer.

5. Equipment physical dimension.

6. Cost.

7. System flexibility.

8. Power consumption.

9. Timing device.

The conceptual design of the system is shown in fig 1.3.1 :-The area under investigation in a microclimatology system requires simultaneous readings of data from selected points which are well distributed around the isolated area under consideration. The physics experiments cited in introduction chapter also require simultaneous reading of data. A set of readings for both investigations has to be taken simultaneously from several varying physical parameters. At least twelve input channels are required for the acquisition of data.

Data is to be acquired from transducers without the need of an operator switching the system from one channel to another. The equipment should be able to monitor the specified region over a period of at least 48 hrs, by automatically scanning all the input channels to acquire data from transducers.

16-

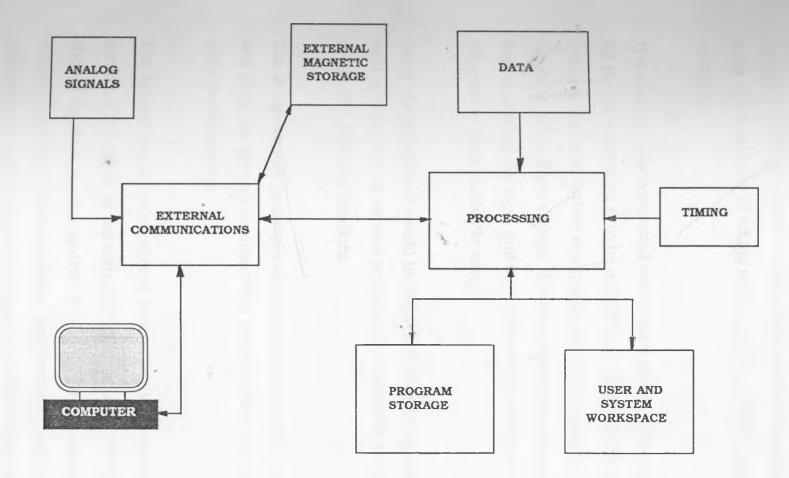


Fig. 1.3.1. Conceptual Block Diagram of the Data Acquisition System

1.

1

The time interval of acquiring data would vary from one experiment to another. The programs should incorporate flexibility to predetermine the frequency of taking measurements and storing the data in memory.

The amount of data expected over a given period of time will be large. All the data acquired is to be analysed by a microcomputer system, thus the data acquisition equipment should be capable of downloading data into a larger system. It should also have a means of storing data on a magnetic tape, and thus facilitating the acquisition of large volumes of data in remote areas.

Since the equipment would be employed to take measurements in field experiments in various remote sites, it should be easy to move about the different locations.

The design should be simple and relatively affordable. It should cost less than the present commercially available systems with comparable performances.

The system should be capable of measuring different types of parameters. Calibration of the transducers to be used for measurement should be done on the system. It should be possible to alter the systems software to suit specific applications. The processes of operating the system should be simple and easy to learn with as little detailed training as possible on the use of the equipment.

The equipment should be usable in regions where there is no electricity. It should be designed to operate on low power for reasonable periods of time, at least 48 hours.

Most of the experiments will involve accurate time measurements. Time should be measured in two ways. First the time of the day would be required, mainly for field experiments, and secondly a clock that can be reset and started at any desired moment to measure relative time intervals would be utilised especially for laboratory experiments (like a stop watch). In which case the microprocessors system clock would not be sufficient for both purposes and an external real time clock is required.

1.4 The Design Philosophy

1.4.1 Design Criteria

The development of this data acquisition system was influenced by the following factors:-

- 1. The development systems and equipment available in the Physics Department and the University of Nairobi as a whole.
- 2. The requirements already discussed in the previous section.

1 1

Chapter 1 : System Design

The design criteria is summarized as follows:-

- 1. The system was developed in modules on the Nascom microcomputer system which is described later in chapter two. The initial hardware design utilised all the existing Nascoms hardware and peripherals, useful to in it's development, such as interface kits, disc drive and a printer. While other parts of the system were separately developed by interfacing them to the Nascom microcomputer system and the software written for each of the modules.
- 2. The integrated system was assembled from all modules as separately developed on the Nascom microcomputer system. The components used were all available locally at affordable costs.
- 3. The circuit was kept as simple as possible without trading off the capabilities of the resulting system. The resulting system is designed to be easy to maintain and operate. The design was optimised by reducing the chip count, with an aim of lowering the cost of the integrated system.
- 4. The circuit board was fabricated on a double sided PCB board to ensure close fitting of components and thus decrease the physical dimensions of the integrated system.

16

1 0-

5. The instrument capabilities were tested by a simple method to read voltage variation from a set of 16 resistors of differing values. The voltage variations were simulated manually by a potentiometer.

1.4.2 Conceptual Design of the Data Acquisition System.

A block diagram of the design of the system is shown in figure 1.3.1 The main parts of the system are:-

1. Data storage:

The data storage comprises of two sections

i. Systems work space

ii. Temporary Data storage area

The systems workspace is the area needed to store temporary data used by the monitor program and is relevant to the operation of the system. The temporary data storage is required for the storage of data before it is transferred to a permanent storage such as the magnetic tape.

2. Program storage:

The programs were envisioned to be of two kinds: i. Monitor programs ii Application programs;

The monitor program is the main program required to manage the

system, while the applications programs cover the following; applications Real time clock, acquisition, calibration, basic user routines, cassette tape interface and down loading programs.

3. processing unit:

i. Systems microprocessor and clock

ii Time measuring device. The system will have a microprocessor and time measuring device for the acquisition of data.

4. External world communications:

Four essential means of communicating with the outside world utilised in the system are outlined below.

i. Analog to digital converter.

ii. Parallel input/output devices.

iii. Serial input/output device.

iv. Visual and audio cues.

1.4.3 Choice of Components

The microprocessor utilised is the Z80 since it is readily available and it also has a wide range of industry standard input and output support chips. The other main devices will include a 7071 real time clock selected for it's ease in programming and operation in different modes ; namely as a time keeping device and interrupt generating device.

The parallel input/output ports are designed using the 8255 PIO chip, while external serial communications is via the 6204. The AD8016 is preferred for the analog inputs since it allows more than twelve inputs of analog signals.

Address decoding is done using the 74ls138 and the 74ls139 decoder ICs.

The 4k memory 2716 ROMs are employed for the permanent storage of programs while the RAMs are implemented with several 4K and 8K 6116 and 6264 chips respectively.

1.5 Conclusion

We have discussed in this chapter the rationale behind the development and design of a versatile general purpose microprocessor based data acquisition system. The conceptual design of the system has also been presented.

1 0 ...

Chapter 2

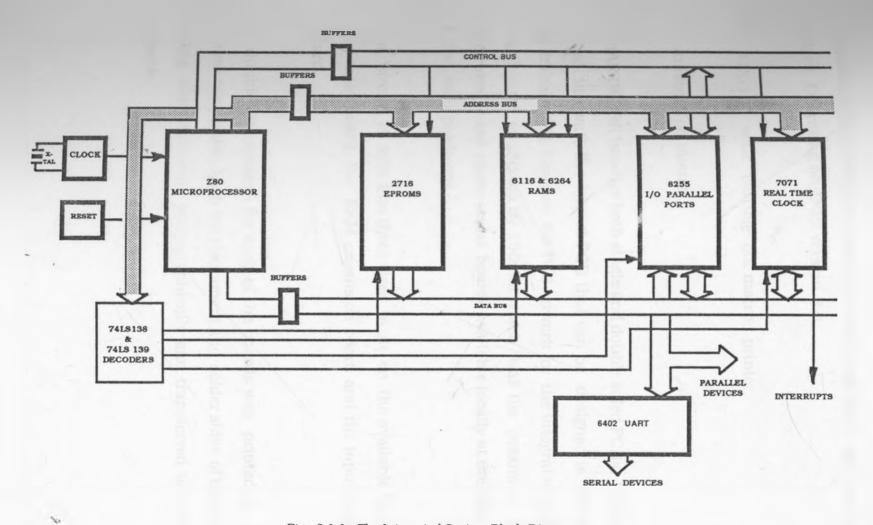
The Integrated System

2.1 General Introduction

The design and construction of the integrated system was based on concepts developed and discussed in chapter three and four. The individual modules developed on the Nascom system are integrated into one whole to operate as a stand alone system. The heart of this system is the Z80A microprocessor which replaces the Nascom computer in the conceptual design. The input/output operations and communications with the external world are accomplished through either the 8255 parallel ports for all operations which can be synchronised with the microprocessor's speed, or serially through the 6402 UART for asynchronous communications. Both the 8255 and 6402 chips replace the MIS kits employed in the development stage. The system is commanded or interrogated through the hexadecimal key pad provided. It can also be programmed by a host computer such as the BBC through the serial port.

The integrated system components were chosen to be compatible with the Z80 microprocessor, but not limited to the Z80 family devices, with a great deal of consideration being given to the cost and availability of the chips locally. A block diagram of the integrated system is shown in fig. 2.1.1.

2.2 Construction Details


Despite the complexity of the circuit, the construction was made relatively easy by using a double sided printed circuit board designed with the help of a computer aided design (CAD) package.

2.2.1 Circuit Layout Artwork Design

The artwork was designed and produced by the aid of "smARTWORK" PCB[28] layout CAD package. SmARTWORK is a PCB layout CAD package designed to produce and simplify the process involved in artwork design. Unlike the traditional artwork generated by using special tape on sheets of drafting film which is slow and requires considerable skill and experience to produce reasonable work. A CAD package such as smARTWORK enables both the novice and the expert in PCB design to produce professional artwork. The following hardware was used in the PCB layout design process:-

21

1.0-

1. Amstrad pc 1640 microcomputer with 640K RAM, and two disk drives. Operating on DOS version 3.3.

2. MX-100 wide carriage dot matrix printer.

3. Amstrad pc mouse.

SmARTWORK handles both single and double sided PCBs. With this listed hardware the largest PCB that can be designed is 400mm. by 250mm [28]. However the PCB artwork for the integrated system was limited to 250mm by 150mm which was the maximum size of double sided photo-resist boards available locally at the time the PCBs were produced.

The circuit is split into three sizes to fit on the available boards. The main board, the RAM expansion board and the input/output board.

A double size artwork for each of the boards was printed on the dot matrix printer. Both the component and solder sides of the board being later reduced photographically and transferred to acetate sheets.

23

1.0-

2.2.2 Fabrication

The fabrication commenced by exposing both sides of the photoresist board sandwiched between two sheets of acetate to UV light, for approximately 3 minutes. The exposed board was then developed, etched, striped and tinned to protect the copper tracks from corroding. This process took about an hour to complete production. Finally 1mm. and 0.8mm. holes were drilled on the board and components placed and soldered in position. Appendix D1 to D3 contain diagrams for the layout of components on the PCBs. Appendix D4 to D7 contain copies of the printed circuit board diagrams and a sample copy of a negative obtained from photographically reducing the double sized artwork of the PCB layout transferred to the acetate sheets.

2.2.3 Circuit Check

On completion, the boards were first inspected for any short circuits using a multimeter and any breaks in the circuit tracks were monitored physically. The performance of the main board was then tested using the Icebox emulator which confirmed that the decoding had been correctly designed and that all the mapped memories and input/output ports were not conflicting.

The RAM and I/O boards were then connected to the main board with 50 way ribbon cables plugged into the edge connectors and similarly their performance tested.

2.3 Physical Layout

The system has three main boards:-

1. The main board, consisting of the microprocessor Z80 with its clock circuit, the real time clock circuitry; centred around the ICM 7071 real time clock chip, 2K ROMs - 2716 for the monitor program, and 2K 6116 RAMS together with the associated decoding circuitry. The physical layout of the main board is shown in appendix D4.

2. The input/output board, having the analog to digital converter circuit implemented by the the ADC 0817 chip, the 8255 parallel ports, and the 6402 UART. Appendix D5 shows the physical layout of the input/output board.

3. The RAM expansion board. The physical layout of the RAM expansion board is shown in appendix D6. It has a capacity of 50 Kbytes memory space. The main components are five 2k 6116 RAMs and five 8k 6264 RAMs.

2.4 The Z80 Microprocessor

It has been mentioned that the heart of this data acquisition

system is the Z80 microprocessor. A pin diagram of the Z80 is shown in figure 2.4.1. The address bus is represented by signals A15, which is the most significant bit, through A0 the least significant bit.

Fig. 2.4.1 The Z80 Pin diagram

All the address lines are tri-state active high signals and are configured to address a total of 64Kbytes of memory. It can also address an additional 256 input/output devices. The input/output device address is held on only eight of these lines ie. A7 through A0.

The data bus signals are also tri-state active high, ranging from

D7 the most significant bit, through D0 the least significant data bit. Whereas the address bus is uni-directional, the data bus is bidirectional permitting data to be transferred either to the CPU from external devices or memory and vice-versa. The WAIT signal, and the BUSRQ (bus request) signal not in use in this design are held high through 10K resistors.

2.4.1 Clock Circuit

The Z80 clock circuit schematic diagram is shown in fig 2.4.1.1.

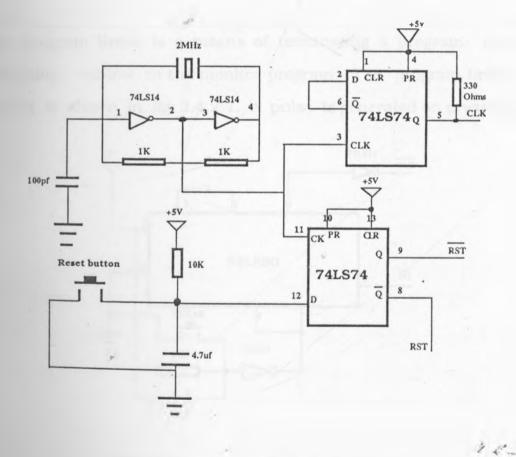


Fig. 2.4.1.1 System Clock and Reset Circuit

27

Chapter 2 : The integrated System

The initial signal is generated by a 2 Mhz crystal oscillator. A schmitt trigger circuit is used to generate square wave pulses from the crystal pulses that are later divided by two with the 74LS74 to give a 1 Mhz signal. An external clock pull up resistor of 330 Ohms used. adequately meets all the external ac and dc clock requirements. A 1 Mhz speed is chosen because speed is not so much a critical factor in this work and it also suits the clock requirements for the analog to digital converter circuit, without the use of additional dividing hardware.

2.4.2 Program Break and Restart Signals

The program break is a means of terminating a program and returning control to the monitor program. The program break circuit is shown in fig 2.4.2.1. A pulse is generated on pressing

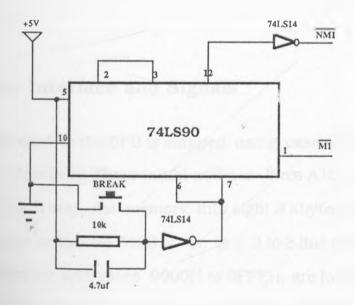


Fig. 2.4.2.1 Program Break Circuit

1.0.

the monitor key, to reset the 74LS90 decade counter to 9 and gate in the M1 instruction fetch signal. The decade counter then issues a low signal input to the non maskable interrupt input of the microprocessor, which then terminates the execution of the program, and returns control to the monitor program. In this case the system is not initialized again.

The system is restarted by using the reset key provided. The D flipflop 74LS74 is used to trim the reset signal produced on pressing the reset key. The RST signal is sent to the CPU. The inverse of this signal RST is sent to the 8255 chip. Unlike the program break key, the whole system is initialized on resetting. In this case all interrupts are disabled except the NMI signal. The IV and R registers are both set to 0000, and the system begins execution of the program at ROM address location 0000H again. The restart circuit is as shown in figure 2.4.1.1

2.5 Memory Interface and Signals

Memory interfaced to the CPU is mapped using cascaded 74LS138 and 74LS139 decoders. Three initial address lines A15, A14, and A13 are utilized to map the memory into eight 8 kbytes areas. This decoding is done by the 74LS138 which is a 3 to 8 line decoder. The first 8K of memory, addresses 0000H to 3FFFH, are located on the main board. The remaining addresses 4000H to FFFFH are chan; nelled to the bus for additional data acquisition storage. The RAM expansion card then utilizes some of this memory.

Address 0000H to 3FFFH (on the main board) are further decoded into four 2K areas using two cascaded 74LS139, 2 to 4 line decoders. The memory map of this address section is shown in figure 2.5.1.

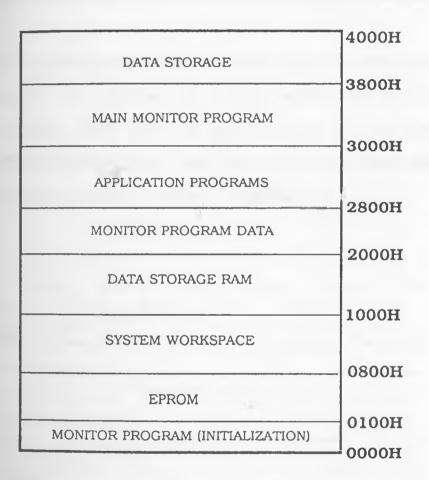


Fig 2.4.1 System Memory Map for the Main Board

The memory map was determined by the program development on the Nascom computer. The main program ROM is assigned location 0000H to 3FFFH because the program was developed from location 3000H on the Nascom microcomputer. Program execution for the Z80 microprocessor commences at location 0000H, therefore part of the initialization program begins at location 0000H. Control, is then later transferred to the monitor program at location 3000H after initialization. Each ROM and RAM chip is accessed when the right address appears on the address lines to enable the appropriate chip.

0.1

The ROMs are accessed when both the enable signal (EN) generated by the decoders with signals from address signals A15 to A11, and the read signal (RD) from the microprocessor are both low, while the EPROM program pin is held high all this time. The timing diagram for this operation is shown in figure 2.5.2.

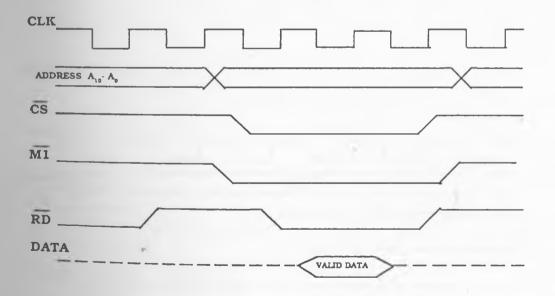
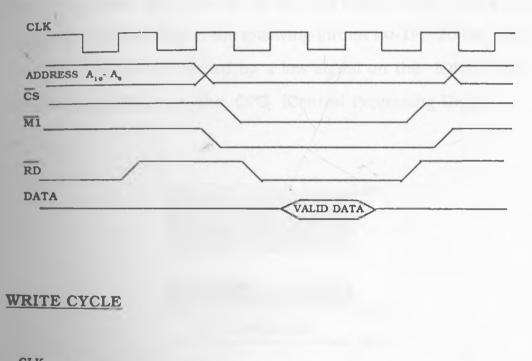


Fig. 2.5.2. ROM Read Cycle - Timing Diagram


31

1 6 ...

Chapter 2 : The integrated System

he RAMS are accessed in the same way as the ROMS but they have an additional write line for transferring data into memory. The write signal - WR must go low before data is written in the RAM selected by the chip select (CS) signal from the decoding chips. The timing diagram of the RAM read and write cycles are shown in figure 2.5.3.

READ CYCLE

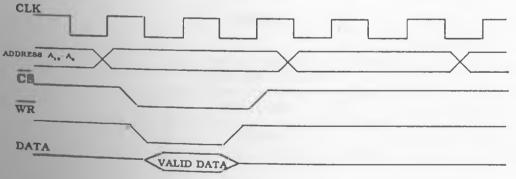


Fig. 2.5.3. RAM Read and Write Cycles - Timing Diagram

1 0.

2.6 Input /Output Interface and Signals

The input/output map is shown in figure 2.6.1. The three prime I/ O devices are the real time clock, the input output parallel ports and the analog to digital converter. The input output device is selected by the address lines A7 to A0. The 74LS138 decoder is used to decode the initial three addresses, these range from A7 to A5. Using these three signals, all the 256 input/output ports are mapped in to 16 areas in the following format 00-1F, 20-3F... etc. The I/O devices are selected by a low signal on the IORQ (Input Output Request) pin on the CPU (Central Processing Unit).

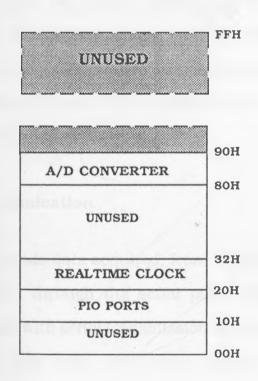


Fig 2.6.1. Input/ Output Map

1 6 -

2.6.1 Input /Output Ports

The Nascom interface kits were replaced by the 8255 parallel input/output ports. The 8255 was preferred to the components used in the MIS modules because they can be programmed and are cheaper to implement. The 8255 is a general purpose parallel microprocessor compatible input/output peripheral chip. This chip has three ports A, B, and C which are programmed to be either input or output ports. In this work, two chips are used and are mapped from location 10H to 17H. Ports 10H, and 12H are programmed as input ports and port 11H is configured to operate as an output port. The remaining ports 14H to 16H are not initialized in the monitor program even though they are used by some applications programs such as the printing service routine. They are available for any applications required and are programmed by writing a word to the control Ports 13H and 17H. A table of the control words is shown in table 4.4.3.2 of chapter 4

2.6.2 Serial communication

The system down loads data acquired, from memory into a larger system for analysis, through the serial port (6402 UART). The hardware associated with serial transmission is relatively simple. All the address lines, data lines and control signals are channelled through the parallel output ports. Data is transferred from memory to the UART when the input transfer buffer is empty and the system is ready to send some more data. This communication through a parallel port provides a means of isolating any external influences interfering with the system.

2.6.3 Audio Tape Interface

The data to be stored on a magnetic tape is transmitted serially to the tape recorder via port 14H of the 8255, through a four wire cable.

2.7 Buses

The three PCBs are inter-linked by using two buses created for this purpose. The buses are:-

CHIVERSITY OF NAIROL

- 1. The General bus
- 2. The Input/Output bus

The General bus can be used for interfacing memory or various Input/Output devices to the main board. The General purpose bus lines are shown in figure 2.7.1 including all the signal lines available on the Z80, +5V, the Ground and also avails six 8K memory select lines mapped from location 4000H onwards. The RAM expansion board uses all six of these decoded signals to access the memory. The decoding for the RAM board is shown in figure 2.7.2.

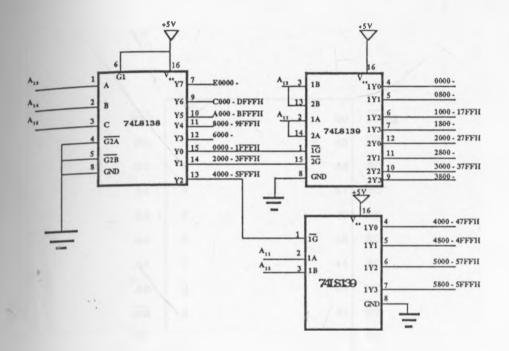

A11	1		50	A10
A12	2		49	A9
A13	3		48	A8
A14	4		47	A7
A15	5		46	A 6
CLK	6		45	A5
D4	7		44	A4
D3	8		43	A3
D5	9		42	A2
D6	10		41	A1
+5V	11		41	AO
D2	12	GENERAL BUS	39	GND
D7	13	ULNERAD DOS	38	RFSH
DO	14		37	MI
D1	15		36	RST
+5V	16		35	+5V
+5V	17		34	WAIT
NC	18		33	NC
MREO	19		32	WR
NC	20		31	RD
¥2	21		30	¥ 3
¥4	22		29	¥5
¥6	23		28	¥7
GND	24		27	GND
GND	25		26	GND

Fig. 2.7.1 The General Bus Pin Connections

1

4

1 0-

The board is not buffered since it was designed to be fully compatible with the main board whose bus is already buffered. Memory locations on the RAM board are accessed in the same manner to that described for the main board memory.

A second bus on the main board avails only the relevant signals required for input output operations Unlike the general bus it is limited in its scope of application. The Input/Output board is designed to be plugged into this bus. A pin diagram of the Input/ Output bus is shown in figure 2.7.3.

37

1 2.

Chapter 2 : The integrated System

RST	1		50	IORG
NC	2		49	MI
NC	3		48	NC
A 4	4		47	NC
A3	5		46	NC
A2	6		45	NC
A1	7		44	NC
AO	8		43	NC
RD	9		42	WR
NC	10		41	NC
CLK	11		41	NC
INT	12	I/O BUS	39	NC
=5V	13	1/0 805	38	=5V
=5V	14		37	=5V
D7	15		36	NC
D6	16		35	NC
D5	17		34	NC
D4	18		33	NC
D3	19		32	NC
D2	20		31	NC
Dl	21		30	NC
DO	22		29	NC
8255	23		28	NC
GND	24		27	GND
GND	25		26	GND

Fig. 2.7.2. The I/O Bus Pin Connections

ŧ.

.

38

12-

Chapter 2 : The integrated System

2.8 Conclusion

The integrated system hardware has been presented and described in this section. Only the bare minimum of hardware is utilized zxin it's design. The development of this integrated system is presented in chapters three and four.

i

12-

Chapter 3

Hardware Development

3.1 NASCOM MICROCOMPUTER SYSTEM GENERAL OVERVIEW

The Nascom-2 microcomputer system used in the development of this project has a Z80 microprocessor operating on a 4MHZ clock. It has a user friendly screen editor, and monitor program that allows quick entry and editing of programs in machine code. It is equipped with a dis-assembler (NAS-DIS) that provides a means of dis-assembling automatically the hand-coded program entered in the computer. Therefore, errors resulting from the hand-coded programs and mistakes made in entering the code in the computer can easily be detected and corrected. The output format of the dis-assembled program can be determined by the user on executing NAS-DIS, which resides in three EPROMs from locations C400H to CFFFH. The dis-assembler operates in two main modes; a simple mode for direct examination of memory and a more complex one, for producing labeled listings and source files[13]. When operating in the advanced mode the user has the flexibility of selecting the desired options in the dis-assembled document which include among others a cross reference listings of all the labels used in a program, and the assembler (ZEAP) source files.

Programs can also be directly developed using ZEAP which is available on disc and normally occupies and utilizes locations 1000H to 2000H as workspace (commonly referred to as an edit buffer). ZEAP is cold started at location 1000H and all its edit parameters are initialized to their default values and the workspace cleared. If desired it can be warm started at location 1003H without changing the edit buffer. The debugging of programs is readily facilitated by the use of single stepping facility which also provides a full display of all machine registers.

The Nascom system utilizes all the available data lines, address lines and control signals on its Z80 microprocessor to create a bus (NAS-BUS) around which the data acquisition system was developed. Fig. 3.1.1 shows the pin connections on the NAS-BUS. Using this bus system the computer can be easily expanded to meet user hardware requirements, ranging from memory expansion to interfaces for varied interactions with the external world. The system is equipped

41

		The second second		
CLK	1		26	Λ0
GND	2		27	A1
NC	3		28	A2
DO	4		29	A3
D1	5		30	A4
D2	6		31	A 5
D3	7		32	AG
D4	8		33	۸7
D5	9		34	A8
D6	10		35	٨9
D7	11		36	A10
NC	12	NAS-BUS	37	А11
IORQ	13		38	Λ12
NC	14		39	A13
RD	15		40	A14
INT	16	an mer den er	41	A15
WR	17		42	NC
NMI	18		43	NC
MREQ	19		44	NC
WAIT	20		45	NC
BUSREQ	21		46	V _{cc}
NC	22		47	V _{cc}
NC	23		48	V _{cc}
NC	24		49	V _{cc}
NC	25		50	GND

Fig. 3.1.1. The NAS-BUS Pin Connections

1

-

42

12-

to fully support serial terminals. However, with little modification in software and hardware, it can also support parallel terminals. The Nascom system used in developing this project was supported by the following peripherals:

1). Disc drive (Nascom)

2). Parallel printer (Epson FX-80)

The disc drive program is in an eprom starting at location D000H and supports the disc drive hardware card which fits directly on the system bus. All the programs developed on the Nascom were stored on a 5.5inch floppy disc. The Epson printer was connected to the computer via the parallel input/output port PL4. This port is located on the Nascoms I/O board. The parallel printer is driven by a relatively simple program developed and written in the Department of Physics by John Nicoll[14]; entitled PRLLPRNT and starts executing at location OC80H. This program cannot operate directly with ZEAP and some modification has to be made to drive the printer from ZEAP. Attempts to do this were not very fruitful partly due to the insufficient information available on the ZEAP program. The printer was useful in printing out the dis-assembled hard copy of the program which was further edited on the IBM pc to include comments and proper labels.

The Nascom system also has other capabilities that were not directly useful to the development of this project but are worth mentioning...

here. The main one is its BASIC program that occupies the area E000H to FFFFH, and enables the system to be programmed in BASIC. The real time clock module in the development stage, was tested by a program written in BASIC. The listing of this program is shown in appendix C1. The Nascoms microprocessor clock can be switched to operate at two speeds, 4Mhz and 2Mhz. The following were the disadvantages and shortcomings of the

Nascom-2 as a development system that made the evolution of this project cumbersome and difficult:-

- There is no repeat facility for the key board thus the speed of editing the program was severely reduced as time was wasted in moving the edit cursor on the screen.
- 2. The NAS-DIS system has to be executed every time the system is reset.
- 3. The source program could not be printed from the ZEAP disassembler hence no proper assembly program listing is available.
- 4. The Nascom is not a full development system hence it could not be used to check the hardware of the resulting system. Since it does not have 'ready made' programs for hardware debugging.
- 5. The program development was highly dependent on the Nascom's -

memory map, hence the memory map of the resulting system is not optimally designed.

3.2 The Microcomputer Interface (MIS) Kits

These kits, described by W.H.Drake[15] and P.R.Kirk[15a] were jointly designed by the Department of Physics, University of Nairobi and Department of Electronics, University of York. They were developed for quick and easy interactions of The Nascom system and the external world. Only two of the modules utilized for this work are described in this report. The MIS kits are designed to simplify the user input/output operations. The kits provide the user with a virtual device to communicate with the external world without much concern of the details of operations taking place in the communication, at the hardware level.

The kits are connected to the Nascom computer using a ribbon cable that avails all the systems control signals, address signals and data lines.

The two modules used were the Decode module and the Digital to Analog converter (D/A) module which are described in the next paragraphs.

18-

3.2.1 Decode Module

The top view of the Decode module is shown in appendix A1. All the necessary connections are shown on the module. The desired circuit can be connected using jumper wires, plugged into pins on top of the module, hence all changes and modifications were made with little difficulty. Eight address lines A0 - A7 have been decoded to provide a total of 256 input/output ports (I/O) all of which are made available to the user. However, only 16 ports are used simultaneously on the same module, which is more than what is needed on the average for most applications. In the development of this work only four ports were used simultaneously. Decoding is implemented by using two 74LS 154 ICs. The upper address lines A4 - A7 are decoded to provide the upper nibble of the port address which enables the chips' decoding the lower address lines A0 - A3. The control lines are buffered for use with the ports on the same module. The following control signals are available :

- 1). Input/Output request (IORQ)
- 2). Read signal(RD)
- 3). Write signal (WR)
- 4). Memory request (MREQ)

Also on the same board is an array of eight NOR and OR gates that are provided for any additional logic required for development and

interfacing.

3.2.2 Digital to analog module

The D/A module utilizes the 74LS363 input/output tri-state buffer for the data signals which are enabled by signals from the decode module. The data is accessed by enabling the buffers, using appropriate control signals and Likewise the data is latched into the buffer at the right instant. The buffers are cleared externally by applying a negative going pulse to the clear terminal, or through a software routine that sets its data to 0. The top view of the D/A module is as shown in Appendix A-2.

Both modules form a complete interface system. Interactions with the external world is realized through the instructions IN(port) for input communications and OUT(port) for output communications both of which are supported by the Z80 instruction set. Each of these modules has one input and one output port, hence three modules were used in the development phase to provide a total of six ports required in the development.

3.3 Hardware Development

The development of this project depended on the existing Nascom computer and the MIS kits hardware, which have been discussed-

and described in sections 3.2.1 and 3.2.2 of this chapter. The block diagram for the system development environment is shown in fig. 3.3.1.

The main parts of the system at this stage were:-

- 1). The Nascom computer
- 2). The MIS kits
- 3). Real time clock
- 4). Key Board
- 5). The display unit, and
- 6). The analog to digital converter

The Nascom system provided the memory and the Z80 microprocessor for the system as well as the program development environment for the software. The microprocessor and memory were enslaved to emulate the single board data acquisition system.

Only 8K the of Nascoms RAM was available for use during the development. The memory map of the resulting unit was dictated by the user RAM area on the Nascom system. This is because the program once developed could not be shifted easily to operate from another location due to the use of absolute jumps and the numerous vectors in the writing of the program. The memory map of the development system is shown in fig. 3.3.2.

1.0-

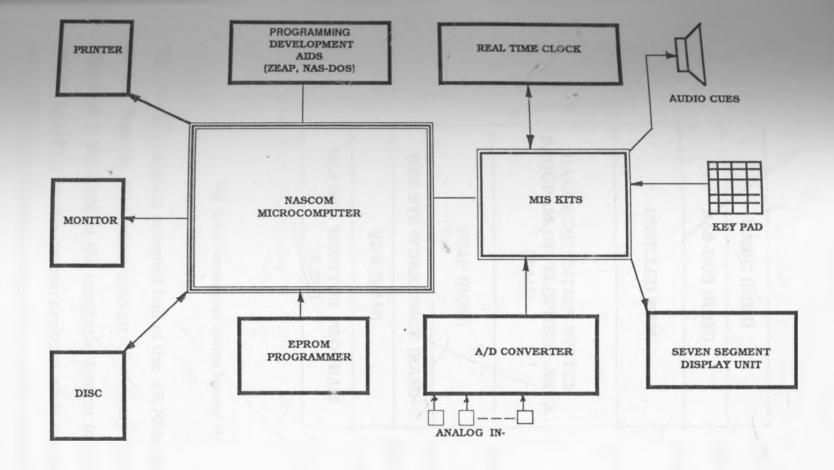


Fig 3.3.1 System Development Block Diagram

49

1

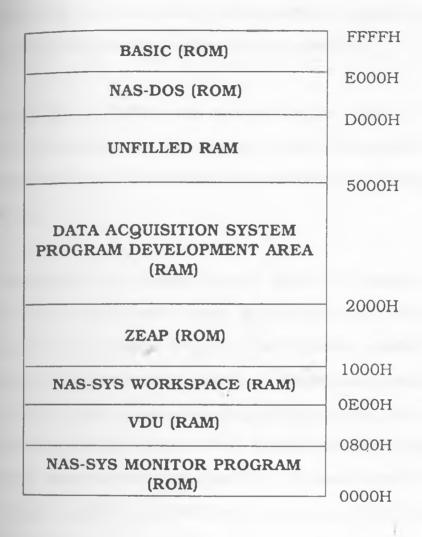


Fig. 3.3.2 Development System Memory Map

The monitor program occupied half of the 4K RAM space available on the Nascom. The same amount of memory space was later allocated to the ROM in the integrated system to occupy address 3000H to 37FFH for this monitor program, while the remaining area from 37FFH to 4000H was reserved for any other additional monitor'-- program subroutines and for application programs. The stack was not initialized in the development system since an attempt to do so interfered with the operation of the Nascom computer.

Locations 2000H to 2260H were reserved for the storage of data required by the system monitor program, and locations 2661H to 3000H were used both for the system's workspace and temporary data storage.

The Z80 microprocessor always begins to execute the monitor program at address 0000H when power is switched on or when the system is reset. The monitor program must therefore commence at this address. It was not possible however to develop the monitor program for this acquisition system starting at that address, because it is obviously the starting address of the Nascoms monitor program. The program was therefore developed from location 3000H and a solution sought to shift it to 0000H before blowing an EPROM for the integrated system.

Either a hardware or software solution could be implemented to solve this problem. In the hardware approach to the solution of this problem, the main program and initialization subroutine are developed from memory address 3000H and are blown on an EPROM. The appropriate microprocessor address lines are then inverted later, to start executing at location 3000H. This design is however wasteful as 8K of memory is lost which is 12% of the 64k capacity for the whole of the acquisition system. The software solution was therefore preferred: this involved developing the main program from address 3000H and an initialization subroutine routine from address 1000H on the Nascom microcomputer. The initialization program was then shifted to location 0000H by changing the most significant digit of the addresses from 1 to 0 including all the call and jump commands pointing to addresses in these locations, as the EPROM was blown. No errors resulted in this change because the initialization subroutine was relatively short.

The fixed data for the program was allocated location 2000H to 23FFH. This includes any data locations needed for additional programs that may later be developed and added to the main monitor program. Locations 1200H to 13FFH are reserved for the system and user stack, while the system RAM location starts at location 3800H to 4500H.

3.4 Keypad

3.4.1 Physical Layout

Fig. 3.4.1.1 shows the physical layout of the keypad. It has two main sections, the Numeric section that has the hexadecimal digits 0 to F, and the register and function keys section for editing the program_

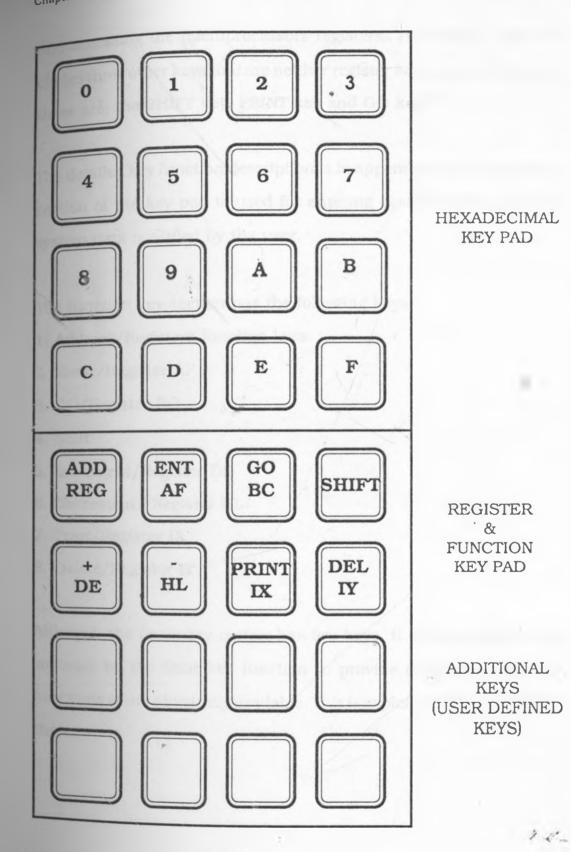


Fig. 3.4.1.1 Keypad Physical Layout

Ξ

53

and accessing the microprocessors registers. This section also includes three other keys that are neither register keys nor editing keys, these are: the SHIFT key, PRINT key and GO key.

The detailed key function description is in appendix B2. The numeric section of the key pad is used for entering desired addresses and system data specified by the user.

The function key section has the following keys :

- 1. Address/Registers function keys
- 2. Enter/Register AF.
- 3. GO/Register BC
- 4. Shift
- 5. Increment/Register DE
- 6. Decrement/ Register HL
- 7. Print/Register IX
- 8. Delete/Register IY

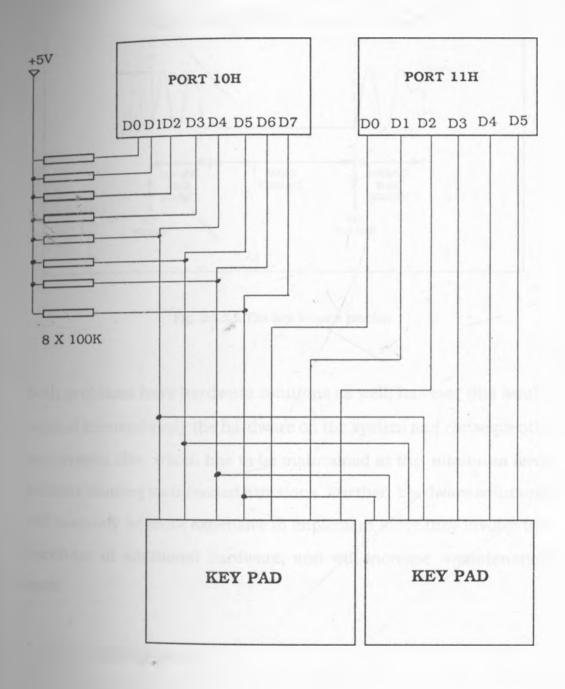
Although the basic key matrix has few keys, it is expanded in the software by the Shift key function to provide twice as many key functions as are physically available. This is explained later in chapter three.

1.1.

3.4.2 Circuit Configuration

The design of the key pad circuit is displayed in fig. 3.4.2.1. The pad which is non-encoded consists of pressure (or touch) activated switches arranged in a 6×4 matrix fashion[16]. Apart from the voltage pull-up resistors, it does not include any hardware to detect a key or hold data until a new key is pressed. All these functions are analysed and performed by a software routine with the minimal hardware. Thus possible hardware malfunction would only result from either broken terminals or dirty switch contacts.

Two common problems associated with keypads have been considered in the design, these are:-


1). Keybounce, which refers to the fact that when contacts of a mechanical switch close, they vibrate for a short time before closing[17]. The key bounce problem is illustrated in figure 3.4.2.2.

2). Roll-over, which is the problem caused by multiple keys pressed simultaneously.

Both keybounce and roll-over are remedied by software routines KYBNCE and RLLVER respectively.

55

12.

Fig. 3.4.2.1. Key pad Circuit Diagram

2 - 5 ---

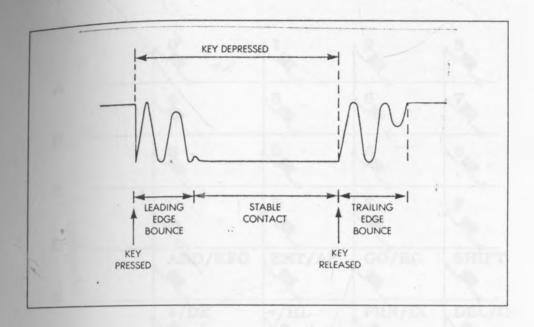


Fig. 3.4.2.2 The Key bounce problem

Both problems have hardware solutions as well, however this would expand tremendously the hardware on the system and consequently its physical size, which has to be maintained at the minimum level without limiting its intended functions. Further, hardware solutions will certainly be more expensive to implement since they involve the purchase of additional hardware, and will increase maintenance costs.

3.4.3 Pin Allocation:-

The matrix is connected to the input and output ports of the interface kits as shown in fig. 3.4.3.1. The ports are scanned by a software -

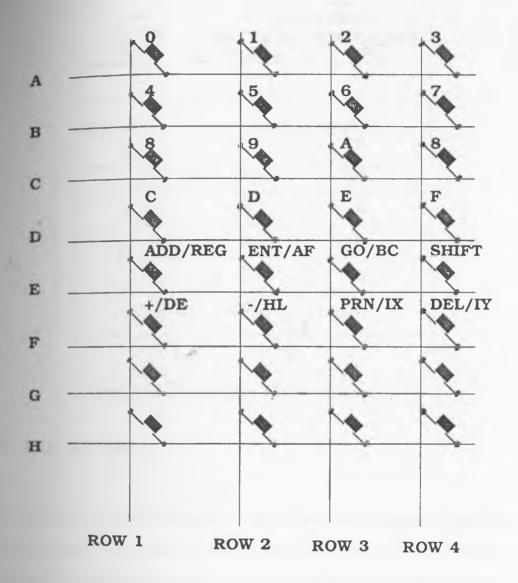


Fig. 3.4.3.1. Key Pad Matrix Schematic Diagram.

routine which writes to the keypad rows and reads the columns of the keypad matrix to detect a coincidence. The pins are allocated to the input port 10H and output port 11H as follows:-

58

PIN	IN/OUT PORT		
POSITION D0 - D7	PORT 10H (IN) COLUMNS	PORT 11H (OUT) ROWS	
0	1	А	
1	2	В	
2	3	С	
3	4	D	
4	HI	E	
5	HI	F	
6	HI	G	
7	HI	Н	

Table 3.4.3.1 In/Out Ports Key Pad Allocation

3.5 Display Unit

The display unit consisted of an array of six seven segment display units arranged to enable the user to read the input when entering programs or specifying control parameters. The status of the system is therefore monitored through these LEDs. A red filter is used to enhance the visibility of the display. The seven segment display units are TTL compatible and are directly interfaced to the output ports on the interface kits using transistors to drive the individual segments, and to enable each unit of the seven segment display system. The transistors also sink the excess current (40mA) to the LED as '-

shown in fig 3.5.1.

The current limiting resistors R were determined by the following simple equation:

 $I = (V_{cc} - (V_d + V_{cc(sal)}))/R$

where the used variables have the following meaning:

V_{cc} - the supply voltage (+5V)
 V_d - the port output voltage (+4v)
 V_{cc}(sat) - the collector/emitter saturation voltage (+0.5V)
 I - the Maximum allowable LED current

The resistance R from the equation above was determined as 1.2K.

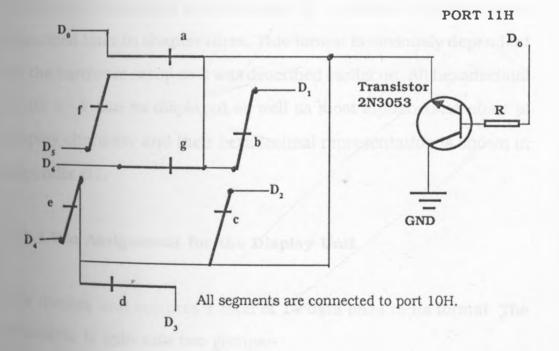


Fig. 3.5.1 A Single LED Interface

1.0-

Figure 3.5.2 shows the complete detail of circuit interconnection for the display system. The segments are driven by the pnp transistors 2N2904 and the units are enabled through the npn transistors 2N3053.

Transistors have been preferred in this design to IC drivers even though the later would be more compact and would reduce the number of components greatly. This is because the transistor design is easier to implement and certainly cheaper to maintain than the corresponding IC unit. The driver chips are not readily available locally whereas the transistors are. This advantage overrides all the other considerations.

The format of display is determined in a software routine and is described later in chapter three. This format is obviously dependent on the hardware setup as it was described earlier on. All hexadecimal digits 0 - F can be displayed as well as most alphabets. A chart of display character and their hexadecimal representation is shown in appendix B1.

3.5.1 Pin Assignment for the Display Unit

The display unit requires a total of 14 data lines in its format. The allocation is split into two groups:-

10-

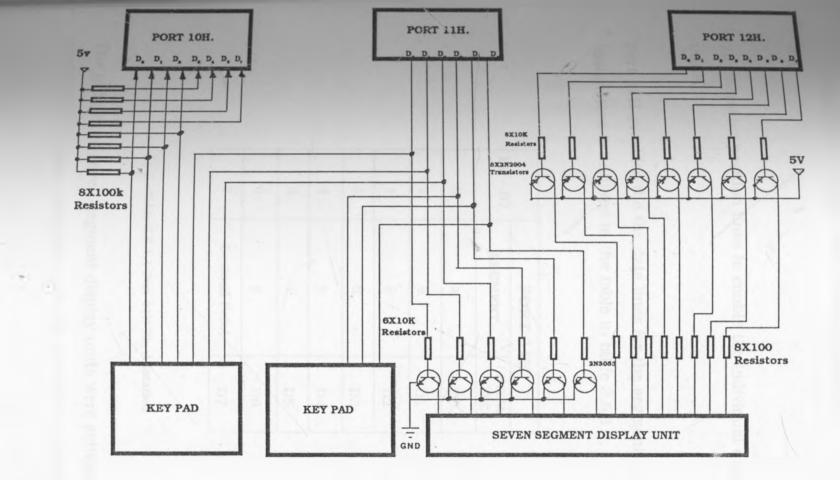


Fig. 3.5.2 Seven Segment Display System Schematic Diagram

62

1 11

Chapter 3 : Hardware Development

Chapter 3 : Hardware Development

1). Data lines to enable the individual segments and

2). character position lines to enable the individual seven-segment units.

Port 11H provides the the data lines for the segments. and the pin assignment is outlined in the table in table 3.5.1.1.

	PORT 11H				
D0 - D7	SEGMENT	DATA LINE			
0	а	DO			
1	b	D1			
2	с	D2			
3	d	D3			
4	e	D4			
5	f	D5			
6	g	D6			
7	Decimal Point	D7			

Table 3.5.1.1 Port 11H Pin Allocation

The individual seven-segment display units were activated through port 10H. The pin assignment for this is shown in table 3.5.1.2

Chapter 3 : Hardware Development

UNIT	PORT 10H			
POSITION (Left to Right)	DATA LINE			
0	D5			
1	D4			
2	D3			
3	D2			
4	D1			
5	DO			

Table 3.5.1.2 Port 10H Pin Allocation

3.5.2 Operation of the Display Unit

The display unit has six LEDS in a row each LED representing a character position numbered from left to right. Eight lines are used for the segment control and six for character position select. To display a character a corresponding word is issued to the segment lines and character position line is enabled.

3.5.3 Scanning the Seven segment Display

Two outputs are necessary for the seven segment display format; An eight bit output for the word to be displayed Wa, Wb,..... to Wg and decimal points as shown in fig. 3.5.3.1. A six bit control word is issued.

to position enable lines P1, P2,....,P6 for character position select. The seven segment display unit is continually scanned by the subroutine DISPLY in the monitor program.

With reference to figure 3.5.3.1 the principle of scanning is as follows:-

The program outputs a digital signal to select the character position. The hardware is configured to have only six such character display positions. The segment control lines Wa to Wg of the corresponding word for display are also activated at the instance the character position select signal is active. For instance if the digit position selection line is P1, then the first position ie. the left most position of the seven segment display unit is activated. If the segment control lines are holding a word 7F (BCD value 0111111) all the segment lines are then active, an eight("8") will be displayed in the left most position of the display unit.

The procedure of scanning the seven segment display unit method is summarized as follows:-

Apply a signal voltage to the character position selection lines PO, P1,...... Pn in the desired sequence. When the character selection line is activated, a voltage signal containing the corresponding output word format is applied to the segment control lines Wa, Wb,......Wg. After the digits are scanned once, the scanning is then repeated from -

Chaper 3 Hardware Development

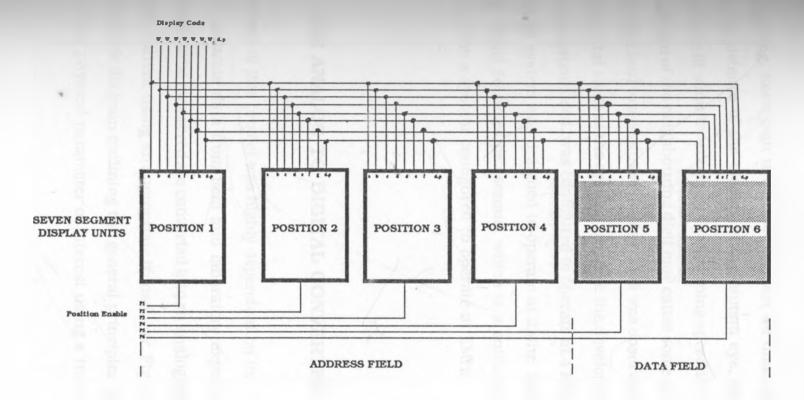


Fig. 3.5.3.1. Seven segment display scanning.

66

1

the beginning. Each digit is scanned at least 40 times per second. Due to persistence of the display to the human eye, all the digits appear to be lit simultaneously. If the scanning speed is too high the residual light of the neighbouring digit may cause some ghost images which might lead to a confused display. This was observed during the developmental stage of the system, because the development microcomputer system used, was configured to operate at 4 MHz while the acquisition system was designed to operate at 2Mhz. DISPLY scans the key board 50 times per second, which is a sufficient scanning frequency for a system configured to operate at 2MHz.

3.6 THE ANALOG TO DIGITAL CONVERTER

The success of this project was highly dependent on its capability to acquire accurate data from field and laboratory experiments. The parameters to be measured are converted into an analog signal, either voltage or current using an appropriate transducer. Fig. 3.6.1 below shows a block diagram outlining the general principles of measurement of any physical parameter of interest using a transducer[18].

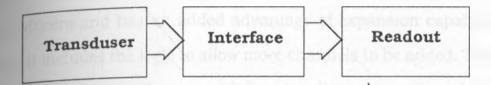


fig 3 6 1. Principle of Measurement of a Physical parameter using a Transduser[19]

In this project the physical parameters of interest deduced from the project requirements of section 1.5 include:- the measurement of light intensities, temperature, and current or voltage. The analog to digital converter is chosen to meet the general requirement for measurements of the above parameters. The transducer analog signal is converted into digital form with the 16-channel multiplexed A/D converter AD0816, which is described in the next section.

3.7 General Description of the A/D Converter

The AD0816 CMOS device incorporates both a multiplexer and an analog to digital converter on a single chip. The successive approximation conversion technique is implemented. This features have resulted into a system with a high resolution, fast, accurate and cheaper to use than discrete ICs. The conversion from analog to digitalChapter 3 : Hardware Development

is achieved entirely by the hardware. However, the channel and data select and storage is done by software routines. The 16 channel multiplexer is used to access any of the 16 input analog signals from the transducers and has an added advantage of expansion capability, since it includes the logic to allow more channels to be added. There is no need for external zero and full scale adjustments. The address inputs are already latched and decoded internally. Therefore it is simple to interface to a microprocessor. Data is transferred through the TTL tri-state outputs. It has an added advantage of low power consumption of 5mW at 298 Kelvin and can withstand temperatures in the range of 218k to 423k which covers sufficiently the laboratory and field operating temperature range requirements of between 10C and 40C.

The device comes in 40 pin DIP. The pin diagram of AD0816 is shown in fig 3.7.1. The analog voltage is quantized into 256 levels and takes 100uS to convert the signal. This is equivalent to 10 clock pulses when the device is operating at 1MHZ[20].

3.7.1 Pin Description and Circuit Operation

Fig. 3.7.1.1 and 3.7.1.2 show the circuit diagram and the development block diagram respectively of the A/D converter stage of the acquisition system. A small dc signal from a signal generator varying in the range of 20 60 mili-Amps was used to test the operation of this'.

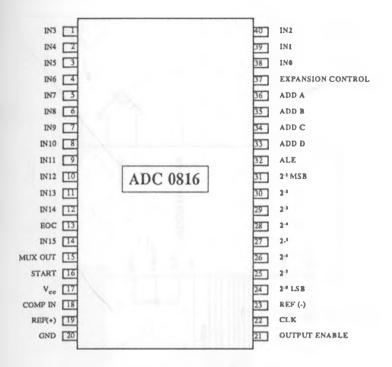


Fig. 3.7.1. Pin Configuratuion of ADC 0816

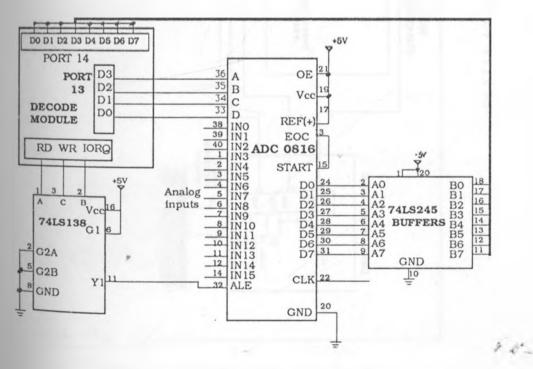


Fig. 3.7.1.1 ADC 0816 Interface Circuit Diagram

70

ANALOG A/D CONVERTER INPUTS +5V MODULE 1 5 INO - IN16 3-STATE V...... DATA LATCH ADDRESS LINES ٧... 38 C NASCOM MICRO. D NAS-BUS OUTPUT EOC CABLE START WR NOR ALE ADO816 CLK PORT 15 OE RD DATA LINES NO AULANA 3-STATE DATA LATCE NOR PORT 14 GND DECODE MODULE V A/D CONVERTER MODULE2 -

Chapter 3 : Hardware Development

71

110

Chapter 3 : Hardware Development

circuit.

i. Analog input pins (INO - IN15)

The 16 analog signal inputs to be measured are directly connected to the internal multiplexer through the input pins INO - IN15 and the desired channel monitored through a software routine that outputs digital information to the device to select the channel required. During the development the 16 channels were tested independently by shifting the analog signal input as the program was running and displaying the information on the Nascom system monitor. The performance of the analog to digital converter within the laboratory was quite satisfactory. Typical values obtained in this test are shown in appendix B2.

ii. Digital output data (DO -D1)

The digital output of the converted analog voltage was monitored on pins D0 - D7. This output is connected directly to the microprocessor, without external buffers for data lines, since it includes its own tristate buffers.

iii. Tri-State control.

The data is released from the buffers when the signal on the tri-state

buffer control is high (HI). In this design it is enabled by "ORing" the READ and the IORQ signals using the logic available on the decode module.

iv. Address signals (ADD A - ADD D)

The channels are selected and controlled in a software routine that outputs the control and select word at port 15H the pin assignment for the control word is shown in table 3.7.1.1.

PORT 15H				
ADDRESS LINE	PIN ALLLOCATION			
A	D3			
В	D2			
С	D1			
D	D0			

Table. 3.7.1.1. Port 15H Pin Allocation

the address of the selected analog channels are shown in table 3.7.1.2.

v. Expansion control

The channel select is toggled between the ON and OFF positions using the expansion control line. It is particularly useful in switching off the A/D converter when the microprocessor is no longer receiving

SELECTED	ADDRESS LINES				DECODED	EXPANSION CONTROL
Chrunne	D	С	В	А		
INO	L	L	L	L	80	HI
1N1	L	L	L	Н	81	HI
1N2	L	L	Н	L	82	HI
IN3	L	L	Н	Н	83	HI
IN4	L	Н	L	L	84	HI
IN5	L	Н	L	н	85	HI
IN6	L	Н	Н	L	86	HI
IN7	L	Н	Н	Н	87	HI
IN8	Н	L	L	L	88	HI
IN9	Н	L	L	Н	89	HI
INIO	Н	L	Н	L	8A	HI
IN11	Н	L	Н	Н	8B	HI
IN12	Н	Н	L	L	8C	HI
IN13	Н	Н	L	Н	8D	HI
IN14	Н	Н	Н	L	8E	HI
IN15	H	Ĥ	Н	Н	8F	HI

Table 3.7.1.2 A/D Converter Address Lines Input States

data from the later. This line however is continually enabled in the design since there is no need of having additional software to control this line whereas the real time clock performs more or less the same function.

vii. Clock

The clock driving the A/D is operating at 1 MHz this was chosen since it also is the operating speed of the microprocessor in the integrated system, thus eliminating any need for additional circuitry to dividethe clock pulses.

viii. Comparator IN

The comparator IN signal takes the signal from the multiplexer or some external circuitry such as an amplifier or signal conditioning circuit. This pin was connected to the multiplexer output - common. The end of conversion signal was connected to the start and address latch enable signals. In this case the converter will continuously convert the analog input signals. This design reduces the complexity of extra control signals that are required to co-ordinate the A/D converter functions.

3.8 The Real Time Clock

The real time clock is used for measuring time intervals between events in the acquisition process. Data can therefore be acquired in real time and analysed later. The development of the real time clock centred around the Nascom microcomputer only (i.e The interface modules were not utilised). The ICM 7170 real time clock chip was used. The pin diagram for the 7170 is shown in fig. 3.8.1[21].

The clock is configured to operate in two modes. First is the interrupt mode in which the time interval for interrupts is pre-programmed by the user to issue an interrupt signal at a desired time of the day.

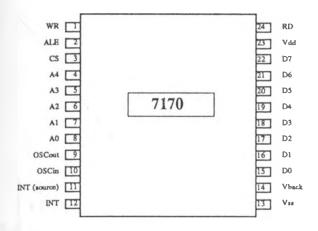


Fig. 3.8.1 7170 Real Time Clock Pin Diagram

Second is the normal mode in which the time at which a measurement is taken is stored in the RAM area of the real time clock which in turn issues an interrupt signal at the set time. All the data and address lines are buffered through the 74LS245 bi-directional buffers both to protect the chip and to drive the data and address lines. A diagram of the real time clock interface is shown in figure 3.8.2.

The address signals A0 to A7 are decoded to access the clock registers from 80H to 91H. The clock design incorporates a 3V battery backup which supports it when the system power goes down or is turned off. The timing diagram for the real time clock interface is shown in fig 3.8.3.

76

2.0-

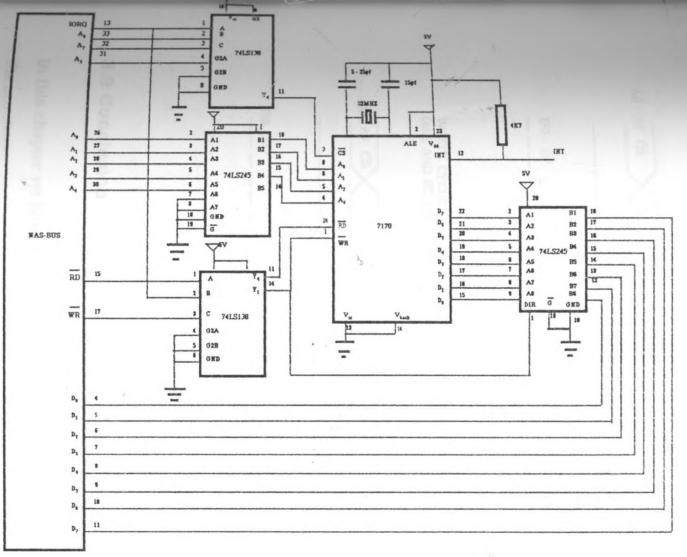


Fig. 3.8.2 The real time clock interface

Chapter 3 : Hardware Development

77

1.

.

÷.,

.

READ CYCLE TIMING DIAGRAM FOR NON - MULTIPLEXED BUS (ALE AND WR HI)

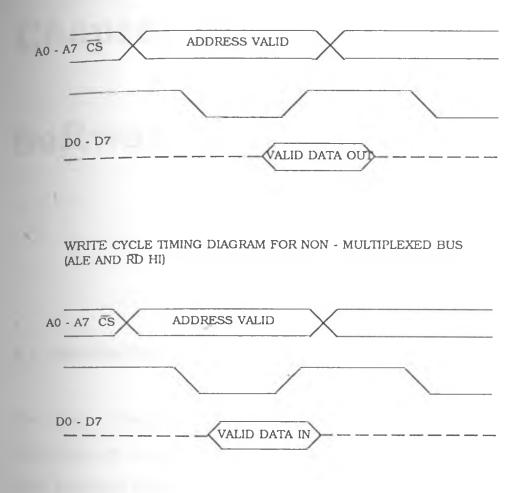


Fig. 3.8..3. 7170 Timing Diagrams

3.9 Conclusion

In this chapter we have presented the hardware of each module of the acquisition instrument developed on the Nascom microcomputer system. . The separate modules developed and described here were integrated to form the hardware for the stand alone system, which was discussed earlier in chapter two.

Chapter 4

Software Development

4.1 Introduction

This chapter describes the software development on the Nascom microcomputer system along with explaining the operation of the major programs of the acquisition system. The software development is based on a single board microcomputer monitor program which was initially designed by Gerald Kotonya, whose work is gratefully acknowledged.

4.2 Software Development Environment

The software was developed on the Nascom system and designed to run on any other computer or microprocessor based system with a similar hardware configuration. The Nascom together with the interface kits, provided a virtual machine which formed the frame work of the acquisition system's hardware.

Programs were first written in the ZEAP assembler and fixed to operate from location 3000H. The program in ZEAP could not be printed out because there was no serial printer available for use with the Nascom computer. Hard copies of the program were printed on the Epson FX80 parallel printer connected through port PL4 on the Nascom microcomputer, and driven by a printer routine program PRLLPRNT, which is listed in appendix C1. A complete list of the system programs for the acquisition instrument are shown in appendix C2.

4.2.1 Program design

The main program is broken into subroutines which are easily incorporated in application programs. A workspace is set aside for the main program's temporary data storage area. All the fixed data in the ROM is transferred to this area on initialization.

In designing the program the following considerations were taken:-

- 1. Acquisition of input signals and data.
- 2. Generation and conversion of output signals and data.

2.8

3. Memory allocation for main monitor program.

4. System initialization and constants in the program.

5. Timing sequences.

6. Memory allocation of data.

7. Memory allocation of systems workspace.

- 8. Length and precision of data.
- 9. External interrupt devices.
- 10. Real time clock control.

11 Nascom system capabilities. 12. User interaction.

1.41

4.3 Development Language

The software was developed using Z80 assembly language mnemonics, because the development system (The Nascom computer) uses a Z80 microprocessor and is limited in its high level language capabilities.

Program development is usually done on a full development system capable of fully emulating the system being designed, such as the Ice box by Micrologics UK Ltd,[30] but at the time this project was proposed none was available in the University. The Department of Physics however has since acquired the ICE box. The programs were blown into two 2716 EPROMs using an EPROM programmer. For the sake of clarity the programs are classified into two main areas:-

2.2.

- 1. Main monitor program.
- 2. Applications programs.

4.4 Monitor Programs

The monitor program is the main system program. It initializes the system, checks the memory RAMs, scans the key board for any inputs, displays information on the seven segment display, detects errors resulting from key board entries and provides program editing and execution capabilities. All of the following subroutines associated with the monitor program namely; INTLZE, LOOK, DSPLY, SOUND, CONVRT are described in the following sections. All the above subroutines are in the program listing in Appendix C3.

4.4.1 Initializing

The system is initialized by clearing the RAM, transferring program variable data into the temporary work space from the ROM data area, setting the system stack and initializing the input/output ports as well as configuring the 8255 programmable I/O device for either input or output operations. All these functions are implemented in subroutine INTLZE. This subroutine like most of the others can work independently. It can therefore be called by a subroutine CALL statement by a user who wishes to develop his own application programs for the acquisition system which is independent of the monitor program. The initialization of the program fixes Four main program functions; Beginning of stack, the audio cue frequency, the acquisition operation mode, the time interval for taking measurements, and configures the input/output operating modes. These fixed functions specify the default parameters used by the monitor program. The same parameters can be altered by a user applications program to meet the users unique measurement specifications.

4.4.1.1 The Stack

Only one stack is supported in the Z80 hardware even though more stacks can be simulated in the software. However software stacks have the disadvantage of increasing the complexity of the program and utilizing a lot of memory space [22]. For the above reasons only one stack has been used in this program. It has been employed for the following functions :-

- 1. To store the program environment during the real time clock interrupt processing.
- 2. Temporary storage of CPU registers in both the monitor and application program.
- 3. For saving the environment before transferring to or from subroutines.
- 4. Transfer of data between CPU and registers.

Subroutine INTLZE sets the stack to begin at location OFFFH and reserves 500 bytes for this purpose. The growth of the stack is not limited to this dimension and therefore the user has to limit it if any additional application programs are written to avoid it growing into the systems workspace. The stack register has also been used to facilitate the processing of strings of data acquired. When using the stack for this purpose no maskable or non maskable interrupts are permitted and no other subroutines that utilize the stack may be employed during the time of processing[23]. The program structure which was adopted for processing using the stack is shown below:-

LD (SAVP),SP	;Save current stack pointer.
LD SP, (DATA_ADDRESS)	;Initialize SP to data.
POP BC	;First byte in C, and next in B.
(PROCESSES DATA)	;Process here.
LD SP,(SAVP)	; Restore SP to original stack.

4.4.2 Audio Cues

Audio cues for this system tell the user some things that cannot be observed on the display unit, but may have taken place in the system. Cues are employed in this work to alert the user, of a task already accomplished by the microprocessor such as end of data transfer, errors in keypad entries. Cues have also been used to indicate a response to key inputs thus confirming that the depressed key has been detected. Subroutine SOUND is used to generate the audio output at a frequency of 1KHz for 30 milliseconds. The time duration of the cue can be altered by changing its value at location 2030H after the system is initialized. SOUND outputs a square wave signal through output port 11H on the 8255 to an external speaker.

4.4.3 Programming the Peripheral interface Adapter

The 8255 ports are utilized in this design to make the system more versatile. Subroutine INTLZE programs the 8255s to configure them as either input or output ports. The control word is issued to ports 13H and 17H respectively for both the 8255 chips. A summary of the 8255 port configuration is shown in figure 4.4.3.1.

The 8255 can be set to operate in any of the following three modes:-

- 1. Mode 0 Basic Input/Output.
- 2. Mode 1 Strobed Input/Output.
- 3. Mode 2 Bi-directional Bus

INTLZE programs the 8255 to operate in mode 0. But since it is programmable the users may define their own routines to reprogram the chip for different configurations.

10-

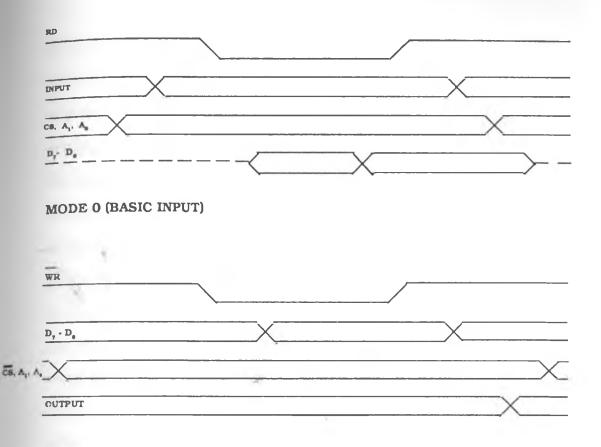
PORT ADDRESS	PORT	8255 IC1
10	А	KEY PAD
11	В	KEY PAD/DISPLAY
12	С	DISPLAY
13		CONTROL
		8255 IC2
14	А	UART
15	В	PRINTER
16	С	-
17		CONTROL

Table 4.4.3.1 8255 Port Addresses and Functions

Table 4.4.3.2 summarizes the mode 0 port definition. The appropriate control word sent to ports 13H and 17H is deduced from this table [24].

The control word number six (see table 4.4.3.1) issued to port 13H configures the first 8255 chip to operate with one input port and two output ports. Port A of this chip whose address is 10H becomes an input, port B whose address is 11H becomes an output and port C whose address is 12H in this instance also becomes an output. Similarly the second 8255 is programmed by issuing control word number 5 to port 17H which configures it as follows; port A whose address is 14H becomes an output, port B whose address is 15H also becomes an output and port c whose address is 16H becomes an ...

	A	В		GROUP A			GR	OUP B
DB	D2	Dl	D0	PORT A	PORT C (UPPER)	NO.	PORT C (LOWER)	PORT B
0	0	0	0	OUTPUT	OUTPUT	0	OUTPUT	OUTPUT
0	0	0	1	OUTPUT	OUTPUT	1	INPUT	OUTPUT
0	0	1	0	OUTPUT	OUTPUT	2	OUTPUT	INPUT
0	0	1	1	OUTPUT	OUTPUT	3	INPUT	INPUT
0	1	0	0	OUTPUT	INPUT	4	OUTPUT	OUTPUT
0	1	0	1	OUTPUT	INPUT	5	INPUT	OUTPUT
0	1	1	0	OUTPUT	INPUT	6	OUTPUT	INPUT
0	1	1	1	OUTPUT	INPUT	7	INPUT	INPUT
1	0	0	0	INPUT	OUTPUT	8	OUTPUT	OUTPUT
1	0	0	1	INPUT	OUTPUT	9	INPUT	OUTPUT
1	0	1	0	INPUT	OUTPUT	10	OUTPUT	INPUT
1	0	1	1	INPUT	OUTPUT	11	INPUT	INPUT
1	1	0	0	INPUT	INPUT	12	OUTPUT	OUTPUT
1	1	0	1	INPUT	INPUT	13	INPUT	OUTPUT
1	1	1	0	INPUT	INPUT	14	OUTPUT	INPUT
1	1	1	1	INPUT	INPUT	15	INPUT	INPUT


Table 4.4.3.2. Mode 0 Port Defination

specified function. The timing diagrams for mode 0 operations are shown in fig 4.4.3.1.

4.4.4 System Control Mode and Data Acquisition Time Interval

The system is designed to operate in two modes described in section 3.8 of chapter three. The Normal mode requires few parameters to be initialized in the program. To operate the system in this mode

1.1

program DATAINN and it's associated subroutine MEMO described in section 4.6 of this chapter are executed and then the system acquires data automatically. The default time interval between consecutive readings is 60 minutes. This time interval is set on initializing the system and may be altered at location 203AH by specifying the desired interval between measurements before executing the acquisition program DATINI in this particular mode.

If the interrupt method is desired for data acquisition the user has to specify the time at which a reading is to start and the interval required between readings. This is done by altering the default settings at locations 2040H 2041H and 2042H to set a new time for the commencement of measurement and location 2043H to 2046H to set the time interval between the measurements in hours, minutes. seconds and hundredths of seconds respectively. The default value for the time interval in this mode is 1 second. The reading commences as soon as the program is initiated. When this program is executed, the default values for time intervals and measurement commencement time are set. The first interrupt will then be issued at the programmed time of commencement to invoke measurement. The advantage of operating the system in this mode is that while not taking measurements it can be utilized to perform other functions like data transfer to the printer or to some external storage device. In effect the interrupt method involves programming the real time clock.

4.5 Keypad Scanning Program

Keypad scanning is implemented by the LOOK subroutine. On executing LOOK, a counter monitoring the number of times the keypad matrix columns and rows are scanned is set to zero. The scanning proceeds by progressively issuing a voltage to each of the rows of the matrix connected to port 10H beginning from D0. The

columns of the matrix connected to port 11H are then scanned for any voltage coincidences. The first word to be issued to port 10H on scanning is 01H (binary 00000001). columns D0 to D7 are then examined in sequence. If a key is depressed the corresponding column will have a voltage if it also is in the first column. This key is identified, it's internal code is stored in the systems workspace, and the correct display pattern shown at the desired position on the display unit. After the first scan the scanning counter is incremented and a voltage is issued to the second row in a similar manner. The columns are then scanned again for any voltages. This process continues till all the rows are completed after which it is repeated. If no key is found depressed the counter value in the program is also incremented and the scanning done again until a depressed key is encountered. The counter is used to store the position code of the key depressed and it is reset once the scanning goes through one complete cycle.

4.5.1 Scanning Period and Key Bounce

The keypad is usually depressed by hand to enter data or issue a command e.g. run a program or interrupt a program. As already described in the previous section, the microprocessor scans the keypad continuously to find any keys depressed. When a key is depressed and released it bounces for some time, so that the voltage on the key matrix column oscillates between 0 and 5 volts for a short

period thus creating the same effect as if the key is depressed in succession. A typical time response diagram for a depressed key is shown in figure 4.5.1.1. To avoid the key bounce problem the rate

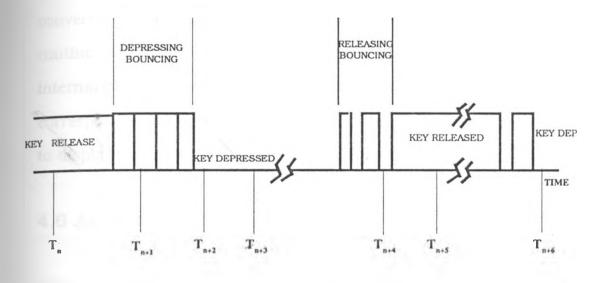


Fig. 4.6.1.1. Keypad Scanning Time Response[25].

of scanning the keypad has been selected taking into account the bounce period. The bounce time for most keys does not exceed 10 milliseconds, therefore the period of scanning the keypad is set to about 20 milliseconds. This is sufficient enough to ensure an error free scan. The program also takes into consideration multiple key depressions. Any multiple key depressions will return a key code that is none existent such a code will be ignored and the program LOOK searches the keypad again for a single depressed key.

4.5.2 Hexadecimal to Seven Segment Conversion

The format and method of displaying data and information visually on the display unit has already been discussed. Information is converted into the seven segment display format by the conversion routine CONVRT. When a key is detected during one LOOK cycle the internal code for the hexadecimal value of the key is converted to the corresponding seven segment display format. DISPLY is then called to display the key value on the seven segment display.

4.6 Application Programs

The application programs are the actual programs that determine the systems function. The main application program is composed of several subroutines and service programs to facilitate the processes of acquiring data, storing it in the battery backed RAMs and ultimately transferring it to other computer systems for analysis. The process of acquiring data is performed by two application programs DATAINN and DATAINI together with subroutine MEMO for storing data into memory.

DATAINN reads the real time clock register and the analog to digital converter inputs thus recording the measurements. The index register IX is used to point to the storage memory location. Time is stored in the first four consecutive locations beginning with that pointed by

IX and the corresponding data acquired from the digital to analog converter is stored in the next 16 consecutive locations ie. IX+4 for channel 1 to IX+19 for the last channel (channel 16). The storage memory location is then incremented by 15H and the next set of readings are taken. In the interrupt mode however the time indicated is the actual time of the day recorded from the real time clock registers at the instance the measurement is made. Three memory locations to store the time are used when acquiring data in this mode. The seconds value is stored in the location pointed by IX, the minutes and hours will follow in the next two locations, then comes the data in the next 16 locations making a total of 19 readings for each cycle of measurements. The routine for taking readings at the actual time of the day is RAMDATINI which is an extension of DATAINI, and is used in conjunction with the corresponding ram storage routine RAM-MEMO. The mode of operation of acquiring data is determined by the user. Both the normal and the interrupt modes can both be used with little adjustments in the software. This provision is not considered since only a few experiments may require a combination of both methods to acquire data.

4.6.1 BCD to ASCII Conversion

Data is acquired and stored in binary and has to be converted to a suitable format for down loading to a larger computer system for analysis. Conversions are done by subroutine BASCII which converts

eight bit binary presentations into ASCII representation. Numbers larger than a byte are stored in consecutive locations in memory and are preceded with an ASCII word for a carriage return to avoid ambiguity when transmitting.

4.7 Data Retrieval and Serial I/O

Most data is transferred to peripherals:- the printer and magnetic tape via the 8255 parallel ports. Port 15H is used in the transfer of data to a parallel printer by utilizing the user control functions. Data transfer to and from a tape is channelled through the same port as the printer by the program TAPEWR for writing to the tape and TAPERD for reading from a tape respectively. Subroutine PRINTER controls the output to the printer. This routine continually outputs data from a specified memory area to the printer. Serial communications are made through the 6402 Universal Asynchronous Receiver and Transmitter (UART) and is controlled by the service routine SERL.

4.7.1 Serial Data Communication Software

Serial communication software in this project has been adopted from earlier work done by Shiyukah[26]. In his work, the British Broadcasting Corporation (BBC) microcomputer system was interfaced to the Microprofessor (MPF) single board computer. The interfacing consists of two wires to interconnect the two systems. The MPF PIO is used for down loading data to the BBC through the RS 232 serial port. Software was written for the BBC to receive the incoming data and for the MPF to transmit it at the same baud rate as received. Some modifications were made on Shiyukah's programs for serial communication and used for the data acquisition system. The resulting program is entitled SERL in this work.

In the case of Shiyukah the MPF continually outputs data to the BBC. It is the easiest way of writing a program for serial communications, however there is a likelihood of missing out some data if the BBC is switched on after the MPF has began it's transmission. Therefore, in designing the down loading program of the acquisition system a different protocol is used for communication. Two signals are required for handshaking; the ready to send and the ready to transmit signals, which are used in addition to the existing basic communication lines ie. the signal (data) transmit and Ground.

The microprocessor on the acquisition system reads the Transmitter Buffer Register Empty status (TBRE) of the UART to inquire if it is ready to receive data for transmission. If TBRE is high, then a byte of data is transferred to the UART from memory for transmission to external devices.' The transmitter Buffer Register Load (TBRL) is forced low by the ready to receive line on the BBC. The UART at this point transmits the data in its registers to the BBC. For simplicity in software, the framing error, overrun error and data received error on the 6402 chip are disabled. The transmitted word has an additional stop bit but no parity bit. Transmission is done at a baud rate of 2400 [27]. After receiving a byte of data and storing it into memory, the BBC sends a handshaking signal again to indicate that it is ready to receive another byte of data. The ready to receive data line is connected to TBRL line of the UART. when TBRL goes low, data is transferred to the transmitter buffer register of the 6402 for transmission to the BBC. A timing diagram for the control of the UART is shown in fig 4.7.1.1.

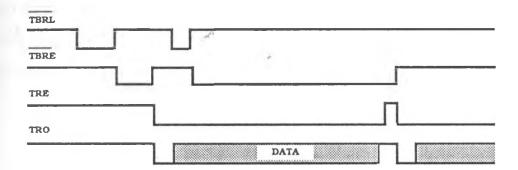


Fig. 4.7.1.1. UART Timing Diagram

4.7.2 The Printer Subroutine

Data in BCD format is dumped into a printer using the PRINTER routine. The beginning and ending of the data block to be printed are.

specified at locations 2031H and 2034H respectively. The program is then executed at location 34B2H which invokes PRINTER to send the data byte by byte to the printer connected to port 15H. The number of bytes to be printed on a single line can be controlled by the line size in location 2035H. The default is 20 bytes per line.

4.8 Summary

. . .

The monitor and application programs provide the basis of the acquisition processes. The performance of the system is dependent on the efficiency of the developed software. In the next chapter we will discuss the resulting integrated system which marries the developed software and hardware.

1 2-

Chapter five

System testing and Evaluation

5.1 Testing and Evaluation Overview

No instrument can be regarded functionally useful until it has undergone the appropriate tests and evaluation procedures to ascertain its' performance and capabilities thus confirming its' usefulness. Any method of testing can be employed, provided the parameters and functions to be evaluated are clearly specified. Two methods of testing have been employed in this work to evaluate the integrated system and to test it's performance.

The first method utilizes an automatic test equipment (A.T.E). An A.T.E can be employed at it's lowest level of sophistication to carry out simple GO/NO GO type of tests[29]. In this simple mode of A.T.E operation, no attempt is made to determine the actual values of vari-

ables involved in the operation of the system. Even though this mode of employing the A.T.E is simple it is nonetheless powerful enough to identify and isolate circuit malfunctions, especially those resulting from poor fabrication and faulty designs. At a higher level of sophistication, A.T.Es may be used to carry out a sequence of patterns to check the correct operation of test units under different operating conditions. The Icebox emulator was used as the A.T.E to test the integrated system.

A second method involved the designing of a simple experiment to simulate a data acquisition environment. This simple experimental scenario proved to be a reliable method of testing the actual performance of the integrated system in the "real world". Both methods are described in the preceding sections.

5.2 The ICE box Emulator

5.2.1 General overview

The Ice box emulator utilizes two microprocessors in its design; An internal control processor which controls all the emulator hardware e.g. Keyboard, display, serial communication etc., and an emulation processor which resides on the emulation interface board and whose sole function is that of emulation. This use of two processors has several advantages, the main one being that the emulator is protected

from any faulty target hardware hence allowing diagnostics to be performed. Secondly, the emulator CPU can be as close as possible to target system thus providing the best possible emulation[30]. Icebox can function in four modes:-

- Local/stand alone mode, using the in-built keyboard and hexadecimal display.
- Terminal mode, by connecting it (Icebox) to a standard serial terminal via the RS232 port.
- Computer mode intended for use when Icebox is connected to a host computer via the RS232 link.
- Automatic test equipment (A.T.E) mode, in which Icebox operates as an automatic programmable test equipment.

5.2.2 In Circuit tests using ICEBOX

All the three boards designed were separately tested using the Icebox emulator in both the computer and A.T.E mode. The IBM personal system/2 computer was used as the host system. Figure 5.2.2.1 shows the block diagram of the complete set up of the equipment for circuit tests.

1 0-

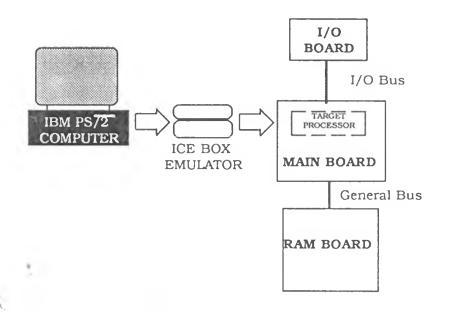


Fig. 5.2.2.1.ICE BOX In-Circuit Tests Block diagram.

The arget processor used on the icebox emulator interface was the **Z80**. This was then plugged into the mother board using the emulation header dual in line (D.I.L) plug, Which is connected directly to the processor on the interface to be tested, except for it's data lines which are buffered. Simple diagnostics were performed on the main board to verify three main functions of the design.

- 1. Memory and input output decoding.
- 2. Monitor program performance.
- 3. Real time clock performance.

5.2.2.1 Memmory and I/O Decoding

Icebox was used to check and verify that the memory and input/ output decoding on the main board had no hardware errors resulting from PCB fabrication. This was done by accessing each of the decoded memory chips as well as input/output ports thus verifying whether the memory is a RAM or ROM, according to the designed memory maps. Input/output performance testing was achieved in a similar manner. A small program was used to write random data into all the RAM's to evaluate their performance. The memory contents of the RAMs was then verified by displaying it on the VDU.

5.2.2.2 Monitor Program Verification

The monitor program was verified by the dis-assembly utility which directly dis-assembled the program to the terminal. The dis-assembled output consists of address, data, and mnemonics operand. All hexadecimal values were issued with leading zeros. A file was also created from the ROM readings and compared with that created from the EPROM programmer. Various subroutines of the monitor program were then executed and the output ports monitored for the correct output.

5.2.2.3 Real Time Clock Performance

12

The RAM registers of the real time clock was tested in the same way as that of the main board. The RAMs were accessed from the hostcomputer system and programmed to issue interrupts at 60 second intervals. The service routine associated with the real time clock in the monitor program was executed and the interval at which the interrupts were issued was monitored by an oscilloscope.

5.3 Data Logging tests

A rather crude but simple experiment was devised to test the performance of the data acquisition system. No specific transducer was employed in this test, instead direct measurements of voltages from an array of sixteen resistors was monitored. An advantage of using voltage measurements is that ultimately all physical parameters to be measured are converted to voltage values using appropriate transducers.

5.3.1 The Experimental Set-up

Fig 5.3.1.1 shows a diagram of the experiment set up to test the systems performance in acquiring data. Sixteen readings are taken from varying voltages across resistors representing the different readings which can be obtained from a set of transducers. The current in each of the resistors was individually varied by adjusting the potentiometer connected in series with each respective resistor. The voltage across the whole resistor network was varied by a single potentiometer connected to the whole network. The data acquisition instrument analog inputs were connected to the array of sixteen resistors in the network. Readings were then obtained both manually

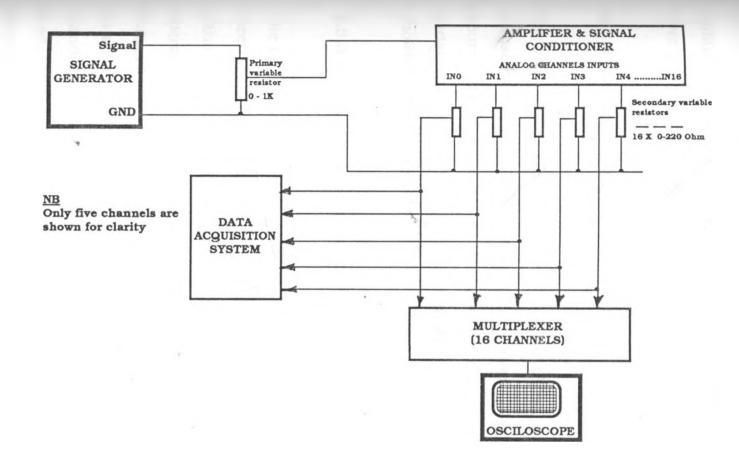


Fig. 5.3.1.1 Data acquisition test experiment

104

1

and automatically through measuring the voltage across each resistor which was arbitrarily varied by adjusting the potentiometer to simulate changes in a physical parameter with time. This was done over a period of 12 hours.

5.3.2 Manual Readings

The voltage across the resistor network was taken manually using an oscilloscope. The list of readings obtained over the period of twelve hours for all channels is shown in appendix E1. A graph of the voltage variations (from some sample points) with time for channel zero is shown in fig 5.3.3.1.

5.3.3 Acquisition Systen Calibration and Readings

The calibration of the integrated system is done in the software to meet the requirement for the measurement of different physical parameters. During this test, the A/D converter was configured to operate in the ratiometric conversion mode[31]. In a ratiometric conversion system the physical variable being measured is expressed as a percentage of full scale not necessarily related to an absolute standard. The software calibration was not therefore necessary in this mode. The voltage input to the AD0816 was determined in the following equation:-

12-

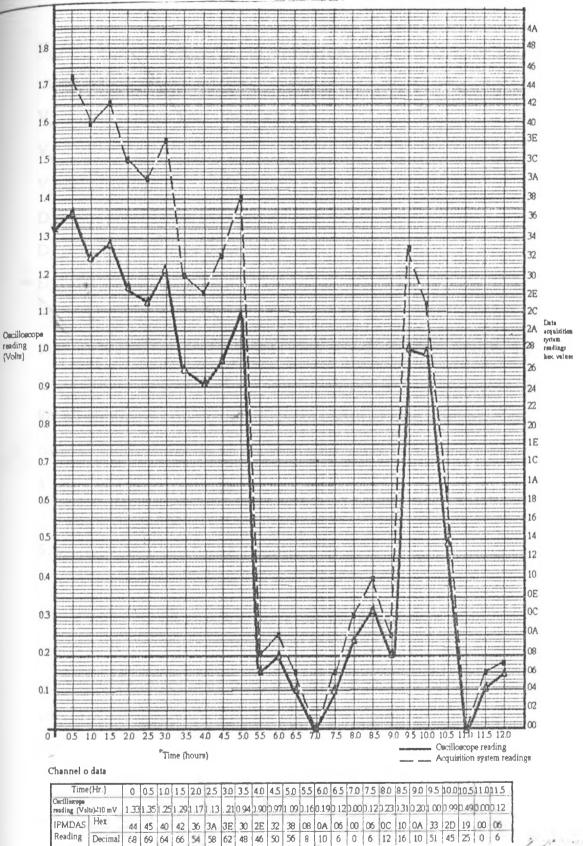


Fig. 5.3.3.1. Voltage graph for Manual and Automated Readings

 $V_{in}/(V_{is}-V_{z}) = Dx/(D_{max}-D_{min})$ in which the variables have the following meaning:- V_{in} =Input voltage into the AD0816 V_{fs} =Full-scale voltage V_{z} =Zero voltage D_{x} =data point being measured D_{max} =Maximum data limit D_{min} =Minimum data limit

The analog voltage reading was also obtained automatically by the acquisition equipment at the same instance as the manual readings for all channels and the readings for channel zero compared graphically for both methods as shown in fig 5.3.3.1. Appendix E1 shows a table of these readings.

5.3.4 Comments on the Graph

The graphs in fig 5.3.3.1 serve as an illustration that the data acquired manually is similar to that acquired by the data acquisition system. This is deduced from the general shape and identical variations of voltages with time (as seen in the graph). The resolution of the acquisition system is 20mv, and the manual readings taken from the centronix oscilloscope is 100mv, thus the readings are quite comparable. A further confirmation of the validity of the data is demonstrated in appendix E2.

107

10-

 $V_{in}/(V_{fs}-V_{z}) = Dx/(D_{max}-D_{min})$ in which the variables have the following meaning:- V_{in} =Input voltage into the AD0816 V_{fs} =Full-scale voltage V_{z} =Zero voltage D_{x} =data point being measured D_{max} =Maximum data limit D_{min} =Minimum data limit

The analog voltage reading was also obtained automatically by the acquisition equipment at the same instance as the manual readings for all channels and the readings for channel zero compared graphically for both methods as shown in fig 5.3.3.1. Appendix E1 shows a table of these readings.

5.3.4 Comments on the Graph

The graphs in fig 5.3.3.1 serve as an illustration that the data acquired manually is similar to that acquired by the data acquisition system. This is deduced from the general shape and identical variations of voltages with time (as seen in the graph). The resolution of the acquisition system is 20mv, and the manual readings taken from the centronix oscilloscope is 100mv, thus the readings are quite comparable. A further confirmation of the validity of the data is demonstrated in appendix E2.

Chapter 5: System Evaluation and Testing

5.3.5 Test of Transmission to the BBC Microcomputer

The data acquired from the experiment described in section 5.3 was transmitted to the BBC microcomputer to verify the capability of the system to transmit data to the BBC. The protocol of communication was described in chapter four. The data received by the BBC microcomputer shown in appendix E3 was identical to the one listed in appendix E2. Hence there was no apparent loss of data.

5.4 System Throughput

The throughput rate of a system is the rate at which a measurement can be taken, scaled to the equipments measuring units and the reading stored to final storage. We can generalize this by saying that the systems throughput is the rate at which data is transferred between different devices or components. The throughput for this data acquisition depends upon two major factors:-

1. The sample rate.

2. The amount of processing specified.

5.4.1 The Sample Rate

The fastest rate at which any measurement (sample rate) can be taken by an automatic equipment is limited by the transducer's response time, ie. the minimum time required for the transducer to record achange in the varying physical parameter. Digital equipment have a further limitation dependent upon the rate at which an analog signal can be converted to a digital reading. The A/D converter in this design is configured to operate at 1KHZ. At this speed, it takes approximately 200 micro-seconds to convert a single analog input signal into digital. The A/D converter therefore takes 3.2 milliseconds to scan 16 transducers. This is the minimum time needed to acquire data through all the 16 channels in one cycle of operation if the A/D converter is operating in the stand alone mode with no external program control or in the single instruction mode with multiple repetitions. For this system the rate of scanning the transducers is much lower because of the external control program required for the A/D converter.

5.4.2 The amount of processing Required

The primary factor affecting throughput is the amount of processing specified by the program for taking measurement. All processing called for by an instruction must be completed before moving on to the next instruction. The number of clock cycles in the processing program will therefore determine the actual throughput. using program DATAINN (which is the simplest in this system), the maximum throughput is 128 readings per second.

109

2 . ..

5.4.3 Current Consumption

The current consumption of the system was monitored during the system tests under laboratory conditions. The current supplied to the system was varied as the tests were carried and the mean value of the minimum current required to drive the system was found to be 0.354 Amp. at a 5V supply voltage.

5.5 Conclusion

Due to time constraints, not all modules developed and presented in chapters two and three are tested in the integrated system. The testing and possible debugging and these modules are left for future work. From the two tests of the performance of the system, we conclude that the system has demonstrated satisfactorily it's ability to acquire data, store it in memory and transmit it to another system for analysis.

Chapter 6

Conclusion and Future work

6.1 Hardware/Software partitioning

On examining the requirements of this project listed in chapter one section 1.5, the partitioning of the hardware and software has been carefully made to optimize the design of the system under discussion.

The hardware is kept to a minimum and most of the functions have been implemented in the software. The program is written to utilize this minimum hardware configuration without trading off the systems capabilities. This has resulted into an integrated system which is inexpensive, portable and powerful yet easy to maintain and handle both in the field and laboratory. The resulting system is also versatile and thus suitable for most scientific data acquisition. An inclination to software offers three main advantages namely; Flexibility, Development speed and Cost effectiveness.

6.2 Conclusion

In this thesis the development of a general purposes, inexpensive, portable, microprocessor based data acquisition system (IPMDAS) has been discussed and the designed presented, based on general requirements from two scientific areas of interest:-

- 1. Environmental monitoring and
- 2. Student laboratory experiments.

The equipment has been tested by simulating a data acquisition process in real time. It should be noted that this experiment was not meant to be an exhaustive treatment for the IPMDAS performance but rather a simple and sufficient test for evaluating its' usefulness. Further field tests need to be carried out for specific types of acquisition. The testing has proved that the system is capable of logging data at a considerable rate, and subsequently transferring the data to secondary storage or down loading the acquired data to the BBC microprocessor for analysis. The down loading feature is particularly useful because of the ease of manipulation of data in a high level language for analysis, and the use of already existing commercial packages such as the Instat and Lotus 1-2-3 for handling the row data statistically.

12-

IPMDAS has a main advantage of hardware simplicity compared to imported data acquisition systems. The system's hardware maintenance is likely to involve the replacement of a faulty chip or transistor only, which can easily be identified in case of a failure.

A summary of IPMDAS advantages over standard fixed configuration system designs are as follows:-

- 1. A particular requirement of any application can be catered for.
- 2. The data logger configuration can be easily extended to cope with any increase in requirements thus no need of purchasing a new system.
- 3. maintenance of the system is easy and faults can easily be traced.
- 4. The design allows for enhancement to incorporate better modules.
- 5. The system can be calibrated and used for a wide variety of applications with suitable transducers.

Incorporation of a facility to enter and edit a program is a useful dimension in the programability of IPMDAS. With this facility, temporary user defined programs can easily be incorporated in the system to meet their own peculiar data acquisition requirements such-

as calibration and software correction to experimental readings.

IPMDAS reflects an effort to design a cost effective programmable, easy to use, and powerful instrument for data acquisition.

6.3 Recomendation for Future Work

Due to time constraints the project has been developed up to the stage hitherto described. It is reasonable enough for use in the field and laboratory environments but still requires some improvements to make it more suitable for acquisition tasks.

We shall look at the future work required in two main areas namely, hardware and software. These recommendations are a reflection of the intended final IPMDAS design.

6.3.1 Hardware

IPMDAS can accommodate a large variety of transducers because of it's versatility. A provision is given for the sixteen multiplexed signals to be modified before the acquisition begins. Every transducer used in IPMDAS has to be evaluated to ascertain that it's output voltage level can be accommodated without the need of any modifications. Some signals will certainly require pre-processing such as Amplification, signal conditioning, linearization, filtering etc. before² the acquisition. Standard modules to meet these pre-processing requirements from a selected list of frequently used transducers need to be designed. These modules will increase the scope of measurements which IPMDAS can take.

An interface can also be designed to expand the number of input channels of IPMDAS. The environmental monitoring experiments may require more than sixteen channels for analog inputs and will therefore utilize these analog input channels expansion board.

The hardware has not been tested for use in severe environmental conditions because we did not address ourselves to such issues of the environmental impact on the system in this thesis. Since the instrument is intended for use in areas where it is likely to encounter a harsh environment, further research is needed to evaluate IPMDAS performance under these field conditions.

6.3.2 Software

The hardware on IPMDAS must be minimized at all times when modifications are made, unless costs and other factors strongly suggest that the bardware ought to take a higher precedence over the software in partitioning. The elegance of IPMDAS lies in it's software, however the existing application programs for acquisition are fairly general. Application programs for more specific types of acquisition should be designed and incorporated in the system these programs can reside in the unused ROM areas of IPMDAS.

The two IPMDAS programs i.e DATAINN and DATAINI have been designed with the assumption that all sixteen channels for acquisition are always in use. All these channels are therefore continuously scanned for inputs, however it serves no useful purpose to scan channels that have no data inputs. These programs need to be modified to allow for the number of channels in use to be specified. Raw data often has very little meaning to the researcher. To be useful, this data must be linearlized and scaled with the aid of a calibration curve in order to determine the real value of the variables monitored in appropriate engineering units. To achieve this we recommend the development of suitable algorithms for calibration, reduction and simple manipulation of data.

There are no limits other than memory capacity in the development of programs for IPMDAS. Other application programs and software changes not recommended here can still be made because of the simplicity and generality in IPMDAS's hardware, to improve it's performance.

18

References

[1]. Campbell, D.T and Stanley, J,

Experimental & Guasi-Experimental Design. American Education Research, 1963, pp. 1-25.

[2]. Gordon, B,

Principles of Experimentation and Measurements. Prentice-Hall Inc., pp. 1-10.

[3]. Sharma, G.R, Rangan, C.S and Mani V.S.V,

-A

Instrumentation Devices and Systems. Tata McGraw Hill Co. Ltd., 1983, pp. 1-7.

[4]. Cooper, W.D,

Electronic Instrumentation and Measurement Techniques. Prentice - Hall inc. 1978, pp. 450-453.

[5]. Fritschen, L.J and Lloyd W.G,

Environmental Instrumentation. Springer-Verlag, 1979, pp. 195 - 209.

[6]. Ibid, pp. 206 - 207.

[7]. Thompson, J.D and Drake, W.H,

Paleomagnetic spinner Magnetometer interface, Unpublished, 1980

[8]. Mate, P,

The Design of a Microprocessor Based Data Acquisition System and Instrument Control System for an Absorption calorimeter; University of Nairobi, MSc thesis, 1989.

[9]. Ball, S.K and Farouk, B,

Microprocessor based data acquisition system for thermo-fluids laboratory; Rev. of Sc. Inst. vol. 58 No.4, April 1987, pp. 657 - 659.

[10]. Martin, M.M and Cobb, C.L,

A Microcomputer Interface Board for the Resolved Multichannel Scaling; Rev. of sc. inst. Vol.58 No.8, August, 1987.

[11]. Squirrel Manual. Grant Instruments, 1982.

[12]. Campbell User manual, Campbell scientific inc., Logan, Utah. 1984.

[13]. Nascom 2 Microcomputer Documentation; Disassembler
 Manual, April, 1980. Nascom Microcomputers Division of

Lucas Logic Ltd.

[14]. Nicoll, J,

Parallel Printer Interface Driver Program, unpublished 1980.

[15]. Drake, W.H.

Low Cost Microprocessor Teaching System. ICTP Asian Regional College on Microprocessors. Colombo, Sri-Lanka 1985.

[15a]. Kirk, P.R,

Microprocessor Basics; Electronics Service, University of York, 1980.

[16]. Zaks, R,

From Chips to Systems: An Introduction to Microprocessors. Sybex inc., 1981, pp. 350 - 353.

[17]. Ibid. pp. 354

[18]. Namuye, S

A Low.Cost, Low Power Data Acquisition System; University of Nairobi Msc thesis, 1986, pp. 10b.

1 0 ...

[19]. Data Acquisition Hand book, National Semiconductor Corp., 1978, pp. 3.

[20]. Ibid. pp. 2-29 - 2-38.

[21]. Intel Semi Conductor Inc., 7071 Real Time Clock Data Sheets 1989

[22]. Barden, W.jr.,

The Z-80 Microcomputer Hand Book. Howard W. Sams and co., Inc., 1978, pp. 154 - 155.

[23]. Ibid. pp 156.

[24]. Intel Semiconductor Inc., 8255A/8255A-5 Programmable Peripheral Interface Data Sheets.

[25]. Microprofessor User Manual, Multitech inc. 1986 pp. 38.

[26]. Shiyukah, D

Microprocessor Control of and Electronic Vehicle; University of Nairobi postgraduate Diploma in Computer Science Project report, 1987, pp. 27 - 40.

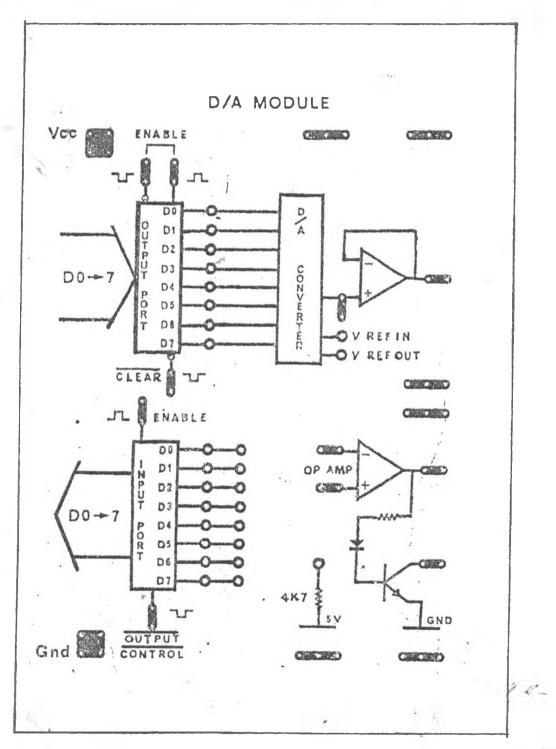
[27]. Ibib. pp 38

[28]. Smartwork User Manual; Wintek inc., 1984, pp. 1 - 5

[29]. Reference [4] pp. 440-450 [30]. Icebox Operating instructions handbook; Noral Logics Ltd UK. 1984, Section 1.5

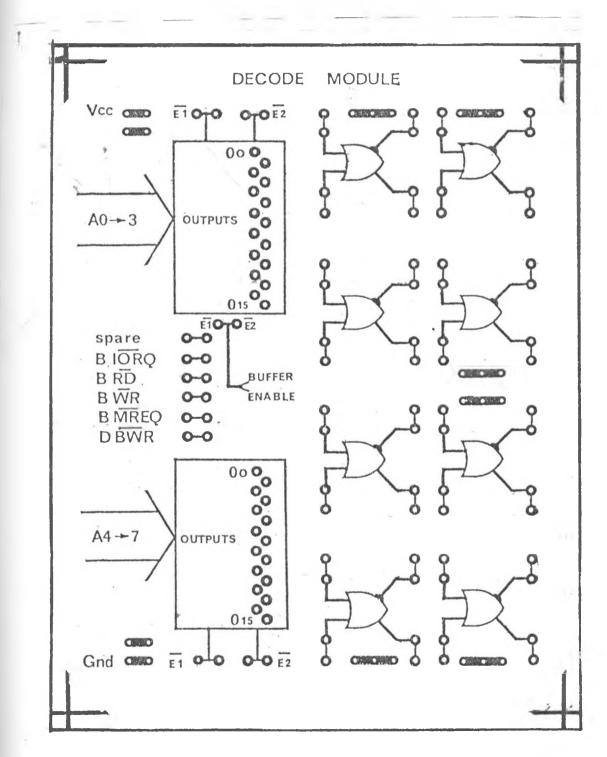
[31]. Reference [19], pp. 2-36 - 2-37.

2

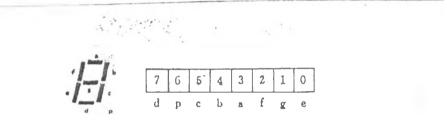

[32]. Reference [18], pp. 17.

. .

.


Appendix A1

Top view D/A Module


Appendix A2

Appendix B1

Hexadecimal to Seven Segment Display Conversion table

DISPLAY FORMAT:

CODE	BD.	30	7 8	BA/	36	AE	AF	38	8F	8E	ЭF	Α7	80	83
DATA	0	1	2	3	4	5	6	7	8	9	۸	8	С	D
DISP	0	1	2	3	Ч	5	6		8	9	R	Ь		Р
CODE	BF	ØF	AD	37	89	υ 1	97	85	2B	23	ΕΛ	1F	35	03
DATA	E	F	C	н	I	J	к	L	М	N	0	Р	Q	R
DISP	E	F	6	Н	_ L	Ľ	Ł	L	Ē	Π	۵	p	9	Г
CODE	A6	87	85	87	Α9	07	86	BA	83	AZ	32	02	CØ	69
DATA	s	т	U	V	ы	x	Y	z	(>	+	-	,	
DISP	5	F	U	Н	Ū	}-	Ч	111	C	C	-1			

124

22.

Appendix B3

Key Function Descreption

Numeric pad (0 - F)

The first four rows of the Keypad is the numeric pad it contains the hexadecimal numbers 1 to F and is used for entering the desired address, and data into a specified location or register.

Address/register key (Addr./reg.)

This key sets a memory address and is activated when the SHIFT is off. It must be followed by the specific address desired. SHIFT on activates the register key which sets a register name. The desired register is displayed on pressing the appropriate key.

Enter/register AF key (ent/AF)

Enter is activated with a SHIFT off and is used to confirm the set address and register the microprocessor responds by displaying the data contained in this address or register. When the SHIFT is on, the AF register key is activated it is used to access the data in register AF for any changes to be made.

GO/Register BC key

The Go key operates with the SHIFT off and it will commence program execution at the address shown on the display. The register BC keyaccess the contents of this register.

Shift key

The shift key toggles all the keys between upper functions and lower functions except the numeric keys. The lower functions are activated when the shift is off and the upper functions are activated on a shift on its default value is off.

Increment/register DE (+/DE) key

This is activated with a shift off and increments the memory address or register by one. The contents of register DE can be examined with this key when the shift is on.

Decrement/HL (-/HL) key

Decrement key is active when the shift is off location by one. and it decrements the address or register when the shift is on the HL register contents can be modified.

Print/IX (P/IX) key

The print key allows the contents of memory to be printed and is active with a shift off contents of the IX register can be examined and modified by the IX key which is active when the shift is on.

Delete/register IY (del/IY).key

When the shift key is off this key deletes one byte from the memory. This key is also used to examine the content of register IY with the shift on.

appendix C1

Parallel Printer routine program listing

;NAS-SYS Parallel printer driver

PIOADATEQU 04:Data output portPIOBDATEQU 05:Bit 0 is busy inputPIOACTLEQU 06:Bit 1 is strobePIOBCTLEQU 07UOUTEQU 0C77

BEGIN LD C,PIOCTL LD HL,OPTAB CALL OUT4 INC C ;c= PIOBCTL CALL OUT4 ;Set up PIO ;Setup dump at UOUT to point to driver LD HL,PARAOUT LD (UOUT+1),A

;Set printer strobe HI

LD A,OFFH OUT (PIOBDAT),A RST 28H :00H ends print message DEFM "PARALLEL PRINTER DRIVER DRIVER INSTALLED" DEFB ODH, OAH :CR & LF DEFM "TOGGLE WITH 'U' AND 'N' COMMANDS" DEFB ODH, OAH, OOH DEFB ODFH. 05BH :Return to NAS-SYS

Printer driver proper is here

PAROUT PUSH AF OUT (PIOADAT),A :Must be preserved **P1** IN A,(PIOADAT) BIT O,A :Look at printer busy JR NZ,PI ;Wait for no busy LD A.00 OUT (PIOBDAT),A ;Keep strobe low P2 DEC A JR

1 2-

DEC A OUT (PIOBDAT,A ;set srobe HI POP AF RET OUT4 LD B.04 OUT4 LD A.(HL) ;Output 4 bytes (HL) to (c) OUT (C),A DJNZ OUT4A RET OPTAB EQUB OFFH.0 ;port a is mode 3 all outputs EQUB 73H.07 ;Disable all interrupts EQUB OFFH.01 ;port B is mode 3 bit 1 out EQUB 73H.07 ;bit 0 in END

.

1.0-

Appendix C3

Main Program Listing

100	OBJ CODE	LINE	LABEL	SRCE C	ODE	COMMENTS	
•		0006 0007 0008	SING PROG UNIV Phys 1989 By A Surf	GLE BOARI SY: RAM DEVI (ERSTY OI ICS DEP) (GGREY M) PERVISED	D DATA ACI STEM ELOPED ON F NAIROBI ARTMENT ADAHANA BY Prof.	QUISITION THE NASCOM W.H. DRAKE	
0000 1000 1003 1007 1008 1007 100A 100D 100E 100E 100E 10E5 10E5 10E5 10E5 10E5	C30010 CD9017 D305 O306 C0030 CDE010 CDCA12 C9 00 CDCA12 C9 00 00 E5 D5 211000 29 110100 3E80 D310 41 10FE	0011 0012 0013 0014 0015 0075 0076 0077 0078 0079 0080 0081 0082 0083 0084 0085 0086 0087 0088	L10D7 L10E0	OUT JP CALL RET NOP PUSH PUSH LD LD LD LD LD LD	(13H),05 (17H),06 3000 10E0 12CA HL DE HL,0010 HL,HL DE,0001 A,80	: START HERE :POWER ON BEEP :SET 8255 IC1 :SET 8255 IC2 : EXECUTE MONITOR PROGRAM :KEY INPUT BEEP RESERVED FOR MAINTENANCE :************************************	
10F0 10F2 10F4 10F6 10F8 10F8 10FB 10FC 10FD 10FE 10FF	EE80 ED52 20F5 3E00 D310 D1 E1 C9 00 00 00	0089 0090 0091 0092 0093 0094 0096 0097 0098 0099 0099 0100		XOR	80 HL,DE NZ,10EB A,00 (10),A DE HL	PIN 7 ONLY ;CLEAR PORT ;RESERVE FOR MAINTENCE	;

2.00

LOC	OBJ CODE	LINE	LABEL	SRCE	CODE	COMMENTS
			;======			
			;Monito	r pro		r begins here
3000	C32C32	0100	,	JP	322C	;Goto startup location
3003	3E2A	0101		LD	A,2A	;Delimeter routine
3005	3E2220	0102		LD	(2022),A	,
3008	3E2A	0103		LD	A,2A	
300A	322320	0104		LD	(2023),A	
300D	C37E31	0105		JP	317E	;Execute PRINTER
3010	33	0106		INC	SP	
3011	33	0107		INC	SP	
3012	CDAC31	0108		CALL	31AC	;Display data of break address
3015	C332 32	0109		JP	3232	
3018	09 *	0110		EXX		
3019	08	0111		EX	AF,AF	;Enter routine
301A	200045	0112		LD	HL,(4500)	
301D	3A0245	0113		LD	A,(4502)	
3020	77	0114		LD	(HL),A	
3021	C33232	0115		JP	3232	
3024	00	0116		NOP		;USER DEFINED KEYS
3025	00	0117		NOP		;CAN BE PROGRAMMED HERE
3026	00	0118		NDP	1	
3027	00	0119		NOP		
3028	00	0120		NOP		
3029	00	0121		NOP		• ,
302A	00	0122		NOP		
3028	00	0123		NOP		
302C	00	0124		NOP		
302D	00	0125		NOP		
302E	00	0126		NOP		
302F	00	0127		NOP		
3030	0602	0128		LD	8,02	
3032	CDED31	0129			31ED	;Address routine
3035	C3E130	0130		JP	30E1	
3038	00	0131		NOP		
3039	00	0132		NOP		
303A	00	0133		NOP		
303B	CD1932	0134			3219	;Ready prompt
303E	1E04	0135		LD	E,04	
3040	FD212020	0136			1,2020	
3044	FD7300	0137			IY),E	
3047	CD3232	0138	L3047	CALL		
304A	F5	0139	P	PUSH		;save data to be used in key
304B	C5	0140		PUSH		;processing
304C	DD212120	0141		LD	IX,2021	

18-

LOC	OBJ CODE	LINE	LABEL	SRCE	CODE	COMMENTS
3050 3053 3057	DD7E00 DD212420 0602	0142 0143 0144		LD LD LD	A,(IX) IX,2024 B,02	
3059	DD4E00	0145	L 3059	LD	C,(IX)	
305C	DD7700	0146	10037	LD	(IX),A	
305F	DD23	0147		INC	IX	
3061	DD7E00	0148		LD	A,(IX)	
3064	1809	0149		JR	306F	
3066	08	0150		£Χ	AF, AF'	
3067	09	0151		EXX		;Real time clock
3068	CD6435	0154		CALL	3365	;interrupt
306B	D9	0155		EXX		;operates with
306C	• 80	0156		EX	AF,AF'	;routine DATAINI
306D	ED45	0157		RETN		
306F	0071 00	0158	L306F	LD	(IX),C	
3072	DD23	0159		INC	IX	
3074	10E3	0160			3059	
3076	DD212720	0161		LD	IX,2027	
307A	C1	0162		POP	BC	
3078	F1	0163		POP	AF	
	1809	0164		JR	3047	
307E	D9	0165	L 307E	EXX		
307F	08	0166		EX	AF, AF'	;Go routine
3080	E9	0167		JP	(HL)	,
3081	D9	0168		EXX		;Incr routine
3082	23	0169		INC	HL	
3083	CD4F31	0170			314F	
3086	D9	0171		EXX		;Decr routine
3087	C33232	0172		JP	3232	
308A	09	0173		EXX		
3088	28	0174		DEC	HL	Coop the low board 1 aval-
308C 308F	CD4F31 D9	0175 0176		CALL	3147	;Scan the key board 1 cycle ;Brk pnt routine4
3090	C33232	0177		JP	3232	, ark pire routilies
3093	D9	0178		EXX	JEJE	
3094	08	0179		EX	AF,AF'	
3095	220045	0180		LD	(4500),HL	
3098	7E	0181		LD	A,(HL)	
3099	320245	0182		LD	(4502),A	
309C	3EDF	0183		LD	A, DFH	;set restart loc
309E	77	0184		LD	(HL),A	•
309F	C37E30	0185		JP	307E	
30A2	00	0186		NOP		;user key vector
30A3	00	0187		NOP		;location
30A4	00	0188		NOP		

30A5	00	0189		NOP		
3046	00	0190		NOP		
30A7	00	0191		NOP		
30A8	3A0038	0192	L30AB	LD	A,(3800)	;Shift key
30AB	FE34	0193	Loono	СР	34	;routine
30AD	201B	0194		JR	30CA	310012110
JOAF	3E00	0195		LD	A,00	
3081	D314	0196		OUT	(14),A	
3083	3E30	0197		LD	A,30	
3085	320038+	0198		LD	(3800),A	
3088	210023	0199		LD	HL,2300	
3088	CD5236	0200		CALL	•	;V table
308E	3ÈCB	0201		LD	A,CB	
3000	320039	0202		LD	(3900),A	
3003	3E3B	0203		LD	A,38	
3005	322920	0204		LD	(2029),A	
3008	1814	0205		JR	30DE	
30CA -	3E01	0206	L30CA	LD	A,01	
3000	D314	0207		OUT	(14),A	
30CE	3E34	0208		LD	A,34	
30D0	320038	0209		LD	(3800),A	
30D3	3E00	0210		LD	A,00	
30D5	322920	0211		LD	(2029),A	
30DB	211023	0212		LD	HL,2310	
30DB	CD5236	0213		CALL	3652	
30DE	C37336	0214	L310E	JP	3673	
30E1	CD3132	0215	L31E1	CALL	3131	
30E4	4F	0216		LD	C,A	
30E5	1E04	0217		LD	E,04	
30E7	78	0218		LD	A, B	
30E8	FEOO	0219		СР	00	
30EA	280A	0220		JR	Z,30F6	
30EC	CB21	0221	L30EC	SLA	С	
30EE	10	0222		DEC	Ε	
30EF	20FB	0223		JR	NZ,31EC	
30F1	CD3131	0224		CALL		
30F4	1818	0225		JR	310E	
30F6	C826	0226	L31F6	SLA	(HL)	
30F8	10	0227	*	DEC	E	
30F9	20FB	0228		JR	NZ,30F6	
30F8	79	0229		LD	A,C	
30FC	86	0230		ADD	A,(HL)	

LOC OBJ CODE LINE LABEL SRCE CODE COMMENTS

10-

314B CD3232 0273 L314B CALL 3232 ;subroutine LOOK1 314E C9 0274 RET ;& SCAN1 begin he 314F D5 0275 L314F PUSH DE ;************************************							
3102 322A20 0233 LD (202A),A 3105 FE01 0235 CP 01 3107 2810 0236 JR Z,3126 3107 2810 0237 CALL 314F 3100 1821 0237 CALL 314F 3100 1821 0239 L310E ADD A, C 3107 78 0241 LD C, A 3110 78 0241 LD A, B 3111 FE00 0242 CP 00 3113 2811 0243 JR Z,3126 3115 69 0244 LD L, C 3118 2809 0246 JR Z,3123 3114 1608 0247 LD E, 08 ;100p 8 times 3120 10 0250 DEC E 121 2067 0251 JR NZ,311C 3121 2063 0252 L3125 JR 3061 13127 3203 0255 LD A,03 <	3101	3D	0232		DEC	A	
3105 FE01 0235 CP 01 3107 281D 0236 JR Z,3126 3109 C04F31 0237 CALL 314F 3100 1821 0239 L310E ADD A,C ;subrotine decode 3107 81 0239 L310E ADD A,C ;subrotine decode 3107 78 0241 LD A,8 ;subrotine decode 3110 78 0241 LD A,8 3111 FE00 0242 CP 00 3113 2811 0245 CP 01 3116 FE01 0245 CP 01 3118 2809 0246 JR Z,3125 3114 1E08 0247 LD E,08 ;100p 8 times 3112 2010 0250 DEC E 3121 2067 0251 3120 1D 0250 JR MZ_311C 3127 3128 3021 3121 2067 0251 JR MZ_314							
3107 281D 0236 JR 7,3126 3109 C04F31 0237 CALL 314F 310C 1821 0238 JR 3127 310E 81 0239 L310E ADD A,C ;subrotine decode 310F 4F 0240 LD C,A ;subrotine decode 3107 78 0241 LD A,B ;subrotine decode 3110 78 0241 LD C,A ;subrotine decode 3111 FE00 0242 CP 00 ;subrotine decode 3113 2811 0243 JR 7,3126 ;subrotine decode 3118 2809 0244 LD L,C ;subrotine decode 3118 2809 0246 JR Z,3125 ;loop 8 times 3116 FE01 0245 CP 01 ;loop 8 times 3112 20F9 0251 JR NZ_311C ;loop 8 times 3121 20F9 0251 JR 30E1 ;subrotine decode 3122 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
3109 CD4F31 0237 CALL 314F 310C 1821 0238 JR 312F 310E 81 0237 L310E ADD A,C ;subrotine decode 310F 4F 0240 LD C,A ;subrotine decode 3110 78 0241 LD A,B ;subrotine decode 3111 FE00 0242 CP 00 ;subrotine decode 3113 2811 0243 JR Z,3126 3116 FE01 0245 CP 01 3118 2809 0246 JR Z,3123 3116 FE01 0245 CP 01 3118 2809 0246 JR Z,3125 3111 E025 0248 L311C SLA L 3120 10 0250 DEC E 3121 20F9 0251 JR MZ_311C 3123 05 0254 L3125 JR 30E1 3127 3166 3127 3163 3127 3160 2257 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
310C 1821 0238 JR 312F 310E 81 0239 L310E ADD A,C ;subrotine decode 310F 4F 0240 LD C,A ;subrotine decode 3110 78 0241 LD A,8 ;subrotine decode 3111 FE00 0242 CP 00 ;subrotine decode 3113 2811 0243 JR Z,3126 ;subrotine decode 3115 69 0244 LD L,C ;subrotine decode 3118 2809 0246 JR Z,3123 ;loop 8 times 3110 CB25 0248 L311C SLA L 3120 1D 0250 DEC E 3121 205 0252 L3123 DEC B 3124 188B 0253 JR 30E1 3126 3127 3E03 0255 LD A,03 JA 3127 3E03 0258 L3127 JA JA 3127 1880 0253 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
310E 81 0239 L310E ADD A,C ;subrotine decode 310F 4F 0240 LD C,A							
310F 4F 0240 LD C,A 3110 78 0241 LD A,8 3111 FE00 0242 CP 00 3113 2811 0243 JR Z,3126 3115 69 0244 LD L,C 3116 FE01 0245 CP 01 3118 2809 0246 JR Z,3123 311A 1E08 0247 LD E,OB ;10op 8 times 311C CB25 0248 L311C SLA L 3120 1D 0250 DEC E 3121 20F9 0251 JR NZ_311C 3123 05 0252 L3123 DEC B 3124 188B 0253 JR 30E1 3127 3127 3203 0255 LD A,03 3129 3127 322A20 0256 LD (202A),A 3128 023731 0260 CALL 3137 3131 D9				L310E			subrotine decode
3110 78 0241 LD A,B 3111 FE00 0242 CP 00 3113 2811 0243 JR Z,3126 3115 69 0244 LD L,C 3116 FE01 0245 CP 01 3118 2809 0246 JR Z,3123 3111 1E08 0247 LD E,08 ;loop 8 times 3112 CB25 0248 L311C SLA L 3120 ID 0250 DEC E S121 2079 0251 JR NZ,311C 3123 05 0252 L3123 DEC B S121 2079 0251 JR NZ,311C 3123 05 0252 L3126 TNC HL S127 3E03 0255 LD A,03 3129 322A20 0256 LD (202A),A S127 S128 S127 JR 30E1 3131 D9 0259 L3131 EXX S135 S140	310F	4F			LD		
3111 FE00 0242 CP 00 3113 2B11 0243 JR Z,3126 3115 69 0244 LD L,C 3116 FE01 0245 CP 01 3118 ŽB09 0246 JR Z,3123 3111 1E08 0247 LD E,08 ;loop 8 times 3112 CB25 0248 L311C SLA L 3112 CB14 0249 RL H H 3120 1D 0250 DEC E 3121 20F9 0251 JR MZ,311C 3123 05 0252 L3123 DEC B 3124 1888 0253 JR 30E1 JR 3127 3E03 0255 LD A,03 JR 3129 322A20 0256 L312F JR S0E1 3131 D9 0259 L3131 EXX JIJS 3132 CD3731 0260 CALL J137	3110	78	0241		LD		
3115 69 0244 LD L, C 3116 FE01 0245 CP 01 3118 2809 0246 JR Z, 3123 311A 1E08 0247 LD E, 08 ; loop 8 times 311C CB25 0248 L311C SLA L 311E CB14 0249 RL H 3120 1D 0250 DEC E 3121 20F9 0251 JR NZ, 311C 3123 05 0252 L3123 DEC B 3124 1888 0253 JR 30E1 3126 23 0255 LD A, 03 3127 3E03 0257 CALL 314F 3127 3E03 0257 CALL 314F 3128 0253 L312F JR 30E1 3131 D9 0259 L3131 EXX 3132 CD3731 0260 CALL 3137 3135 D9 0261 EXX <	3111	FEOO	0242		СР		
3116 FE01 0245 CP 01 3118 Ž809 0246 JR Z,3123 311A 1E08 0247 LD E,08 ;loop 8 times 311C CB25 0248 L311C SLA L 311E CB14 0249 RL H 3120 1D 0250 DEC E 3121 20F9 0251 JR NZ_s311C 3123 05 0252 L3123 DEC B 3124 1888 0253 JR 30E1 3126 23 0254 L3126 INC HL 3127 3E03 0255 LD A,03 3127 3E03 0257 CALL 314F 3126 C3 0257 CALL 314F 3127 B80 0258 L312F JR 30E1 3131 D9 0259 L3131 EXX 3135 3132 CD3731 0260 CALL 3137 3138 <	3113	2811 🖕	0243		JR	2,3126	
3118 Ž809 0246 JR Z,3123 311A 1E08 0247 LD E,08 ;loop 8 times 311C CB25 0248 L311C SLA L 311E CB14 0249 RL H 3120 1D 0250 DEC E 3121 20F9 0251 JR NZ_s311C 3123 05 0252 L3123 DEC B 3124 1888 0253 JR 30E1 3126 23 0254 L3126 INC HL 3127 3E03 0255 LD A,03 3127 3E03 0257 CALL 314F 3127 3E03 0257 CALL 314F 3128 D202 0256 L312F JR 30E1 3131 D9 0259 L3131 EXX 3135 3132 CD3731 0260 CALL 3137 S136 3133 D9 0261 EXX 3138 FE00	3115	69	0244		LD	L,C	
311A 1E08 0247 LD E,08 ;loop 8 times 311C CB25 0248 L311C SLA L 311E CB14 0249 RL H 3120 1D 0250 DEC E 3121 20F9 0251 JR NZ,311C 3123 05 0252 L3123 DEC B 3124 188B 0253 JR 30E1 3126 23 0254 L3126 TNC HL 3127 3E03 0255 LD A,03 3127 3Z2A20 0256 LD (202A),A 3126 C3 0257 CALL 314F 3127 3Z9 0259 L3131 EXX 3131 D9 0259 L3131 EXX 3132 CD3731 0260 CALL 3137 3136 C9 0262 RET 3137 ED4600 0263 L3137 LD 8,(IY) 3138 FE00 0265	3116	FE01	0245		CP	01	
311C CB25 0248 L311C SLA L 311E CB14 0249 RL H 3120 1D 0250 DEC E 3121 20F9 0251 JR NZ_311C 3123 05 0252 L3123 DEC B 3124 188B 0253 JR 30E1 3126 23 0254 L3126 TNC HL 3127 3E03 0255 LD A,03 3129 322A20 0256 LD (202A),A 3127 3E03 0257 CALL 314F 3127 18B0 0258 L312F JR 30E1 3131 D9 0259 L3131 EXX 3132 3132 CD3731 0260 CALL 3137 J 3135 D9 0261 EXX 3136 C9 0262 3137 ED4600 0263 L3137 LD 8,(IY) 3138 3138 FE00 0265 <t< td=""><td>3118</td><td>Ž809</td><td>0246</td><td></td><td>JR</td><td>Z,3123</td><td></td></t<>	3118	Ž809	0246		JR	Z,3123	
311E CB14 0249 RL H 3120 1D 0250 DEC E 3121 20F9 0251 JR NZ_311C 3123 05 0252 L3123 DEC B 3124 1888 0253 JR 30E1 3126 23 0254 L3126 INC HL 3127 3E03 0255 LD A,03 3127 3E03 0255 LD A,03 3127 3E03 0257 CALL 314F 3127 3E03 0257 CALL 314F 3127 3E00 0258 L312F JR 30E1 3131 D9 0259 L3131 EXX 3136 3132 C03731 0260 CALL 3137 5 3135 D9 0261 EXX 5 5 3136 C9 0262 RET 5 5 3137 ED4600 0263 L3137 LD 8,(IY)	311A	1E08	0247		LD	E,08	;loop 8 times
3120 1D 0250 DEC E 3121 20F9 0251 JR NZ_311C 3123 05 0252 L3123 DEC B 3124 188B 0253 JR 30E1 3126 23 0254 L3126 INC HL 3127 3E03 0255 LD A,03 3129 322A20 0256 LD (202A),A 3127 18B0 0258 L312F JR 30E1 3127 18B0 0258 L312F JR 30E1 3131 D9 0259 L3131 EXX 3132 3132 CD3731 0260 CALL 3137 3135 D9 0261 EXX 3136 C9 0262 RET 3137 ED4600 0263 L3137 LD A,8 3138 FE00 0265 CP 00 00 3130 2002 0266 JR NZ,3141 JA 3144	311C	C825	0248	L311C	SLA	L	
3121 20F9 0251 JR NZ_311C 3123 05 0252 L3123 DEC B 3124 188B 0253 JR 30E1 3126 23 0254 L3126 INC HL 3127 3E03 0255 LD A,03 3129 322A20 0256 LD (202A),A 3127 CD4F31 0257 CALL 314F 3127 18B0 0258 L312F JR 30E1 3131 D9 0259 L3131 EXX 3137 3132 CD3731 0260 CALL 3137 3135 D9 0261 EXX 3136 3136 C9 0262 RET 3137 1337 ED4600 0263 L3137 LD 8,(IY) 3134 78 0264 LD A,B 3135 D9 0265 CP 00 3130 2002 0266 JR NZ,3141 3141 DD7E00	311E	CB14	0249		RL	H	
3123 05 0252 L3123 DEC B 3124 188B 0253 JR 30E1 3126 23 0254 L3126 INC HL 3127 3E03 0255 LD A,03 3129 322A20 0256 LD (202A),A 3127 CD4F31 0257 CALL 314F 3127 18B0 0258 L312F JR 30E1 3131 D9 0259 L3131 EXX 3137 3132 CD3731 0260 CALL 3137 3135 D9 0261 EXX 3136 3136 C9 0262 RET 3137 3137 ED4600 0263 L3137 LD 8,(IY) 3138 FE00 0265 CP 00 3130 2002 0266 JR NZ,3141 3141 DD7E00 0268 L3141 LD A,(IX) 3144 D028 0269 DEC IX J146	3120	1D	0250		DEC	Ε	
3124 1888 0253 JR 30E1 3126 23 0254 L3126 INC HL 3127 3E03 0255 LD A,03 3129 322A20 0256 LD (202A),A 3120 322A20 0256 LD (202A),A 3127 Table 0257 CALL 314F 3127 CD4F31 0257 CALL 314F 3127 D9 0258 L312F JR 30E1 3131 D9 0259 L3131 EXX 3132 C03731 0260 CALL 3137 3138 D9 0261 EXX 3137 ED4600 0263 L3137 LD A,B 3138 FE00 0265 CP 00 00 3130 2002 0266 JR NZ,3141 JIA 3141 DD7E00 0268 L3141 LD A,(IX) 3144 D028 0269 DEC IX 3146	3121	20F9	0251		JR	NZ,311C	
3126 23 0254 L3126 INC HL 3127 3E03 0255 LD A,03 3129 322A20 0256 LD (202A),A 3120 CD4F31 0257 CALL 314F 3127 1880 0258 L312F JR 30E1 3121 D9 0259 L3131 EXX 3132 C03731 0260 CALL 3137 3135 D9 0261 EXX 3136 C9 0262 RET 3137 ED4600 0263 L3137 LD A,B 3138 FE00 0265 CP 00 3130 2002 0266 JR MZ,3141 3131 D7E00 0268 L3141 LD A,(IX) 3144 D028 0269 DEC IX 3144 D028 0270 DEC B 3147 FD7000 0271 LD (IY),B 3148 CD3232 0273 L3148 CALL 3232 3148 CD3232		05		L3123	DEC		
3127 3E03 0255 LD A,03 3129 322A20 0256 LD (202A),A 312C CD4F31 0257 CALL 314F 312F 18B0 0258 L312F JR 30E1 3131 D9 0259 L3131 EXX 3132 CD3731 0260 CALL 3137 3135 D9 0261 EXX 3136 C9 0262 RET 3137 ED4600 0263 L3137 3138 FE00 0265 CP 00 31310 2002 0266 JR NZ, 3141 3138 FE00 0267 JR 3148 3141 DD7E00 0268 L3141 LD A, (IX) 3144 DD28 0269 DEC IX JI46 05 0270 DEC B 3147 FD7000 0271 LD (IY), B JI46 05 0272 RET JI48 SCAN1 begin he J148 CD3232 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
3129 322A20 0256 LD (202A),A 312C CD4F31 0257 CALL 314F 312F 18B0 0258 L312F JR 30E1 3131 D9 0259 L3131 EXX 3132 CD3731 0260 CALL 3137 3132 CD3731 0260 CALL 3137 3135 D9 0261 EXX 3136 3136 C9 0262 RET 3137 3137 ED4600 0263 L3137 LD 8,(IY) 3138 FE00 0265 CP 00 3130 2002 0266 JR NZ, 3141 3131 DD7E00 0268 L3141 LD A,(IX) 3144 DD28 0269 DEC IX 3144 DD28 0269 DEC IX 3144 DD28 0270 DEC B 3147 FD7000 0271 LD (IY),8 3148 CD3232 0273				L3126			
312C CD4F31 0257 CALL 314F 312F 18B0 0258 L312F JR 30E1 3131 D9 0259 L3131 EXX 3132 CD3731 0260 CALL 3137 3135 D9 0261 EXX 3136 C9 0262 RET 3137 ED4600 0263 L3137 LD 8,(IY) 3138 FE00 0265 CP 00 3130 2002 0266 JR NZ,3141 3137 IB0A 0267 JR 314B 3141 DD7E00 0268 L3141 LD A,(IX) 3144 D02B 0269 DEC IX 3146 05 0270 DEC B J 3147 FD7000 0271 LD (IY),B 3148 CD3232 0273 L314B CALL 3232 ;subroutine L00K1 3148 CD3232 0273 L314B CALL 3232 ;subroutine L00K1 3147 FD7000 0277 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
312F 18B0 0258 L312F JR 30E1 3131 D9 0259 L3131 EXX 3132 CD3731 0260 CALL 3137 3135 D9 0261 EXX 3136 C9 0262 RET 3137 ED4600 0263 L3137 L0 8,(IY) 3137 ED4600 0263 L3137 L0 8,(IY) 3138 FE00 0265 CP 00 3130 2002 0266 JR NZ,3141 3137 180A 0267 JR 3148 3141 DD7E00 0268 L3141 LD A,(IX) 3144 D028 0269 DEC IX 3144 D028 0269 DEC IX 3144 D028 0270 DEC B 3147 FD7000 0271 L0 (IY),B 3148 CD3232 0273 L3148 CALL 3232 3148 CD3232 0273 <							
3131 D9 0259 L3131 EXX 3132 CD3731 0260 CALL 3137 3135 D9 0261 EXX 3136 C9 0262 RET 3137 ED4600 0263 L3137 LD B,(IY) 3138 FE00 0265 CP 00 3130 2002 0266 JR NZ,3141 313F 180A 0267 JR 3148 3141 DD7E00 0268 L3141 LD A,(IX) 3144 D02B 0269 DEC IX 3147 FD7000 0271 LD (IY),B 3148 CD3232 0273 L3148 CALL 3232 ;subroutine L00K1 314E C9 0274 RET ;& SCAN1 begin he 314F D5 0275 L314F PUSH DE ;************************************							
3132 CD3731 0260 CALL 3137 3135 D9 0261 EXX 3136 C9 0262 RET 3137 ED4600 0263 L3137 LD B,(IY) 3137 ED4600 0263 L3137 LD B,(IY) 3138 FE00 0265 CP 00 3130 2002 0266 JR NZ,3141 3137 I80A 0267 JR 3148 3141 DD7E00 0268 L3141 LD A,(IX) 3144 DD2B 0269 DEC IX 3146 05 0270 DEC B 3147 FD7000 0271 LD (IY),B 3148 CD3232 0273 L3148 CALL 3232 ;subroutine L00K1 3148 CD3232 0274 RET ;& SCAN1 begin he 3147 D5 0275 L3147 PUSH DE ;************************************						30E1	
3135 D9 0261 EXX 3136 C9 0262 RET 3137 ED4600 0263 L3137 LD 8,(IY) 3137 ED4600 0263 L3137 LD 8,(IY) 3137 ED4600 0263 L3137 LD 8,(IY) 3137 FE00 0265 CP 00 3138 FE00 0265 CP 00 3130 2002 0266 JR NZ, 3141 3137 I80A 0267 JR 3148 3141 DD7E00 0268 L3141 LD A,(IX) 3144 DD2B 0269 DEC IX 3146 05 0270 DEC B 3147 FD7000 0271 LD (IY),B 3148 CD3232 0273 L3148 CALL 3232 3148 CD3232 0273 L3148 CALL 3232 ; Subroutine L00K1 3146 05 0275 L3147 PUSH DE ;*				L3131			
3136 C9 0262 RET 3137 ED4600 0263 L3137 L0 8,(IY) 313A 78 0264 LD A,B 313B FE00 0265 CP 00 313D 2002 0266 JR NZ,3141 313F 180A 0267 JR 314B 3141 DD7E00 0268 L3141 LD A,(IX) 3144 D02B 0269 DEC IX 3146 05 0270 DEC B B 3147 FD7000 0271 LD (IY),B 3148 CD3232 0273 L314B CALL 3232 3148 CD3232 0273 L314B CALL 3232 ;subroutine L00K1 3147 D5 0275 L314F PUSH DE ;####################################						3137	
3137 ED4600 0263 L3137 LD 8,(IY) 313A 78 0264 LD A,B 313B FE00 0265 CP 00 313D 2002 0266 JR NZ,3141 313F 180A 0267 JR 3148 3141 DD7E00 0268 L3141 LD A,(IX) 3144 D02B 0269 DEC IX 3146 05 0270 DEC B 3147 FD7000 0271 LD (IY),B 314A C9 0272 RET ;####################################							
313A 78 0264 LD A,B 313B FE00 0265 CP 00 313D 2002 0266 JR NZ,3141 313F 180A 0267 JR 314B 3141 DD7E00 0268 L3141 LD A,(IX) 3146 05 0270 DEC IX 3146 05 0270 DEC B 3147 F07000 0271 LD (IY),B 314A C9 0272 RET ;####################################				17177		0 (11)	
3138 FE00 0265 CP 00 313D 2002 0266 JR NZ,3141 313F 180A 0267 JR 3148 3141 DD7E00 0268 L3141 LD A,(IX) 3144 DD2B 0269 DEC IX 3146 05 0270 DEC B 3147 FD7000 0271 LD (IY),B 314A C9 0272 RET :************************************				F2121			
313D 2002 0266 JR NZ,3141 313F 180A 0267 JR 314B 3141 DD7E00 0268 L3141 LD A,(IX) 3144 DD2B 0269 DEC IX 3146 05 0270 DEC B 3147 FD7000 0271 LD (IY),B 3148 CD3232 0273 L3148 CALL 3232 3148 CD3232 0274 RET ;####################################							
313F 180A 0267 JR 314B 3141 DD7E00 0268 L3141 LD A, (IX) 3144 DD2B 0269 DEC IX 3146 05 0270 DEC B 3147 FD7000 0271 LD (IY),B 3148 CD3232 0273 L3148 CALL 3232 3148 CD3232 0273 L3148 CALL 3232 ;subroutine L00K1 314F C9 0274 RET ;&SCAN1 begin he 314F D5 0275 L314F PUSH DE ;####################################							
3141 DD7E00 0268 L3141 LD A,(IX) 3144 DD2B 0269 DEC IX 3146 05 0270 DEC B 3147 FD7000 0271 LD (IY),B 3148 C9 0272 RET ;************************************							
3144 DD2B 0269 DEC IX 3146 05 0270 DEC B 3147 FD7000 0271 LD (IY),B 314A C9 0272 RET :************************************				13141			
3146 05 0270 DEC B 3147 FD7000 0271 LD (IY),B 314A C9 0272 RET ;************************************				10141			
3147 FD7000 0271 LD (IY),B 314A C9 0272 RET ;************************************							
314A C9 0272 RET ************************************							
314B CD3232 0273 L314B CALL 3232 ;subroutine L00K1 314E C9 0274 RET ;& SCAN1 begin he 314F D5 0275 L314F PUSH DE ;************************************						(1)10	
314E C9 0274 RET & SCAN1 begin he 314F D5 0275 L314F PUSH DE :************************************				1.314R		3232	•
314F D5 0275 L314F PUSH DE ************************************				20140		GLUL	•
3150 C5 0276 PUSH BC scans the keyboa				L314F		DE	**************************************
				LUATI			scans the keyboard and the
and the state in the second states of							
					1 UUI		# coup grobid ploage

LOC OBJ CODE LINE LABEL SRCE CODE

1.0-

COMMENTS

LOC	OBJ CODE	LINE	LABEL	SRCE CODE	COMMENTS
3152	112220	0278		LD DE,2022	;routine scan does not return
3155	7E	0279		LD A,(HL)	;a key is pressed
3156	E60F	0280		AND OF	
3158	12	0281		LD (DE),A	
3159	4E	0282		LD C,(HL)	
315A	CD7131	0283		CALL 3172	;Delay
315D	70	0284		LD A,L	
315E	E60F	0285		AND OF	
3160	12	0286		LD (DE),A	
3161	4D	0287		LD C,L	
3162	CD7131	0288		CALL 3171	
3165	7C	0289		LD A,H	
3166	E60F	0290		AND OF	
3168	12	0291		LD (DE),A	
3169	40	0292		LD C,H	
316A	CD7131	0293		CALL 3171	;Check if address to be inserted
3160	F1	0294		POP AF	;is in RAM
316E	C1	0295		POP BC	
316F	D1	0296		POP DE	
3170	C9	0297		RET	
3171	13	0298	L3171	INC DE	;check for RAM address
3172	0604	0299		LD 8,04	
3174	CB39	0300	L3174	SRL C	
3176	10FC	0301		DJNZ 3174	
3178	79	0302		LD A,C	
3179	E60F	0303		AND OF	
3178	12	0304		LD (DE),A	
3170	13	0305		INC DE	
3170	C9	0306	1 7 1 7 5	RET	
3178	212720	0307	L317E	LD HL,2027	
3181 3182	7E	0308		LD A, (HL)	
3185	CD9431 86	0309 0310		CALL 3194	
3186	320144	0311		ADD A,(HL) LD (4401),A	
3189	28	0312		DEC HL	
318A	7E	0313		LD A, (HL)	
3188	CD9431	0314		CALL 3194	;Load parameters from
318E	86	0315		ADD A, (HL)	;toad parameters from ;step buffer into registers
318F	320044	0316		LD (4400),A	;check if parameters
3192	1808	0317		JR 319C	are legal. if yes
3194	0604	0318	L3194	LD B,04	; calculate the sum of all data
3196	CB27	0319	L3194	SLA A	; calculate the sum of all data ; to be output
3198	10FC	0320	LJI70	DJNZ 3196	"to be outhor
319A	2B	0321		DEC HL	
3198	C9	0322		RET	
0170	67	VJEL		ALL I	

LOC	08J	CODE	LINE	LABEL	SRCE	CODE

COMMENTS

7100	212708	0707	1710/	1.5		
3190	212720	0323	L3196	LD	HL,2027	
319F	0604	0324		LD	8,04	;loop 4 times
31A1	D9	0325	L31A1	EXX	1010	
31A2	CD3232	0326			3232	
31A5	D9	0327		EXX	(
31A6	77	0328		LD	(HL),A	
31A7	28	0329		DEC	HL	
31A8	10F7	0330			31A1	
31AA	18F0	0331		JR	3196	
31AC	212720	0332	L31AC	LD	HL,2027	;Dispaly data of break address
31AF	7E 🖗	0333		LD	A,(HL)	
3180	CD9432	0334			3194	;Dutput 2K square wave for 4000
3183	86	0335			A,(HL)	; cycles
3184	320344	0336		LD	(4403),A	; load parameters into registers
3187	2B	0337		DEC	HL	
3188	7E	0338		LD	A,(HL)	
3189	CD9432	0339		CALL	3194	;Dispalay data of address
318C	86	0340		ADD	A,(HL)	
318D	320244	0341		LD	(4402),A	
3100	ED5B0244	0342		LÐ	DE, (4402)	
31C4	280044	0343		LD	HL, (4400)	
3107	C38535	0344		JP	3585	•
31CA	E5	0345	L31CA	PUSH	8L	;Scan display
3108	05	0346		PUSH	DE	🕻 process address & keys
31CC	C5	0347		PUSH	8C	
31CD	F5	0348		PUSH	AF	
31CE	0E01	0349		LD	C,01	
3100	212220	0350		LD	HL,2022	
31D3	0606	0351		LD	B,06	
3105	7E	0352	L31D5	LD	A,(HL)	
3106	1622	0353		LD	D,22	
3108	SF	0354		LD	E,A	
3109	1A	0355		OUT	(11),A	
31DC	79	0356		LD	A,C	
31DD	D310	0357		OUT	(10),A	
31DF	23	0358		INC	HL	
31E0	CB21	0359		SLA	C	
31E2	10F1	0360		DJNZ	32D5	
31E4	3E00	0361		LD	A,00	
31E6	D310	0362		OUT	(10),A	;clear the display
3188	F1	0363	•	POP	AF	
31E9	Ci	0364		POP	BC	
31EA	D1	0365		POP	DE	
31EB	E1	0366		POP	HL	
31EC	C9	0367		RET		

1.0-

toc	QBJ CODE	LINE	LABEL	SRCE	CODE	COMMENTS
31ED	C5	0.368	LJIED	PUSH	BC.	;Address Subroutine
3188	212720	0369	LULLU	LD	HL,2027	suaross caprosexile
31F1	CD0032	0370			3200	
31F4	57	0371		LD	D,A	
31F5	CD0032	0372			3200	
31F8	5F	0373		LD	E,A	PRINTER subroutine
31F9	EB	0374		EX	DE,HL	************************
31FA	CD4F31	0375			314F	prints a block of specified output
31FD		0376		ΕX	DE,HL	to be invoked by the user
31FE	C1	0377		POP	80	the top and bettom of the block
31FF	69	0378		RET		is to specified at locations
3200	0604	0379	L3200	LD	8,04	;2008H. and 200CH.
3202	7E	0380		LD	A,(HL)	
3203	C827	0381	L 3203	SLA	A	
3205	LOFC	0382			3203	
3207	28	0383		DEC		
3208	86	0384			A,(BL)	
3209	2B	0385		DEC	HL	
320A	C9	0386		RET		
320B	212720	0387	L3208	LD	HL,2027	
320E	3E10	0388			A,10	
3210	0606	0389	17010	LD	B,06	
3212	77	0390	13212	LD	(HL),A	
3213	30	0391		INC	A	
3214	28	0392			HL	
3215	00	0393		NOP	7010	
3216	10FA	0394			3212	
3218	C9	0395	1 7010	RET	111	;load initializing word
3219 321A	E5 C5	0396 0397	L3219	PUSH PUSH		"TD90 INTERISTING MORG
321H	F5	0398		PUSH		
321C	212720	0399		10	HL,2027	
321F	3F16	0400		LD	A,16	
3221	0606	0401		LD	8,06	
3223	77	0402	1.3223	LD	(HL),A	
3224	30	0403		INC	A	
3225	28	0.104		DEC	IIL	
3226	10	0405		DJNZ	3223	
3228	F1	0406		рор	AF	
3229	C1	0407		POP	80	
322A	£1	0408		POP	HL	
3228	C9	0409		RET		
322C	CDBB32	0410	L322C	CALL	3288	;Look at key board
322F	CDOB32	0411			320B	;check hex to 7seg. display val. 🔧 🖑
3232	CDCA31	0412	L 3232	CALL	31CA	;Scan display

100	OBJ CODE	LINE	LABEL	SRCE	CODE	COMMENTS
					<u> </u>	
3235		0413		IN	A,(10)	
3237		0414		СР	FF	
3239		0415		JR	NZ,3223	
3238		0416	L3238		31CA	
323E		0417		IN	A,(10)	
3240		0418		CP	FF	
3242		0419		JR	Z,323B	
3244		0420		LD	D,A	
3245		0421		10	С,05	
3247		0422	L3247	LD	8,FF	
3349		0423	L3249		3249	
3248		0424		DEC	С	
3240		0425		JR	NZ,3347	
3248		0426		IN	A,(10)	
3250		0427		СР	D	
3251		0428		JR	NZ,3232	
3253		0429		SCF		
3254		0430		LD	8,FE	
3256		0431	L 3256	LD	A,B	
3257		0432		OUT	(10),A	;send to display
3259		0433		IN	A,(11)	;get keyboard input
3258		0434		CP	FF	
3250		0435		JR	NZ,3263	
325F		0436		RL	B	
3261		0437	1 70/7	JR	3256	
3263		0438	L 3263	LD	С,В	
3264		0139		ŁD	H,20	
3266		0440		LD	A,D	. Oise) sectors and its state
3267		0441			32AB	;Display register and its state
3264		0442		LD	D,B	
3268		0443		10	A,C	
3260		0444			32AB	
326F		0445		L.D	A,B	
3270		0446		LD	C,03	
3272		0447		ADD	A,8	
3273		0448		DEC	C	
3274		0449		JR	NZ,3272	
3276		0450		ADD	A,D	
3277		0451		LD	L,A	
3278		0452		LD	A,(KL)	
3279		0453		LD	(2021),A	
3270		0454		LD	A,0F	
327E	95	0455		SUB	L NC 7704	
327F	3033	0156		JR	NC,3384 A,(2029)	
3281	302920	0457		LD	н,(2023)	

LOC	OBU CODE	114E	LABEL	SRCE	CODE	COMMENTS
3284	FEOO	0458		CP	00	
3286	281D	0459		JR	Z,32A5	
3288	3A2920	0460		LD	A,(2029)	
3288	47	0461		LD	8,A	
328C	3A2120	0462		LD	A,(2021)	
328F	FEA8	0363		CP	A8	
3291	2812	0464		JR	Z,32A5	
3293	88	0465		CP	8	
3294	2090	0466		18	NZ,3232	
3296	FE30 •	0467		СР	30	
3298 329A	2006 33	0468		JR	NZ,32A0	
3298	33	0469 0470		INC INC	SP SP	
329C	3 E	0470		LD	A,00	
329E	1802	0472		JR	33A2	
3240	3E30	0473	L32A0	LD	A,30	
3242	322920	0474	L32A2	LD	(2029),A	
3245-	6E	0475	L32A5	LD	L.(HL)	
32A6	3A0038	0476		LD	A,(3800)	
3249	67	0477		LD	H,A	
32AA	E9	0478		JP	(HL)	÷
32AB	37	0479	L32AB	SCF		Register status subroutine;
32AC	0608	0480		LD	8,08	
32AE	05	0481	L32AE	DEC	8	
32AF	CB27	0482		SLA	A	
3281	38FB	0483		JR	C,32AE	
3283	C9	0484		RET		
3284	CDCA31	0485	L3284		31CA	
32B7 32BA	3A2120	0486		LD	A,(2021)	
3288	C 9 D 9	0487 0488	L328B	RET EXX		; Subrotine Look
32BC	08	0489	LJZDU	EX	AF,AF'	, Subiocine Look
32BD	00	0490		NOP		
32BD	00	0491		NOP		
328E	00	0492		NOP		
328F	00	0493		NOP		
3200	3E3B	0494			A,38	
3202	322920	0495			(2029),A	
3205	3E03	0496			A,03	
3207	322420	0497		LD I	(202A),A	
32CA	3E10	0498			A,10	;Printer width
32CC	320043	0499			(4300),A	
32CF	3ECB	0500		LD /	A , CB	

1.0-

LOÇ	08J CODE	LINE	LABEL	SRCE	CODE	COMMENTS
32D1 32D4 32D6 32D9 32DA 32DB 32DC 32DC 32DD 32DE 32E0 32E3	320039 3ECC 32FF45 FB CDEE32 CD9A36 F3 C9 3E30 320038 3E00	0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511		LD LD EI CALL DI RET LD LD	(3900),A A,CC (45FF),A 32EE 369A A,30 (3800),A A,00	;Clock setup loc. ;subroutine DATAINI aquires data ;in the interupt mode ;Acquire data ;disable interupt
32E5 •	0314 210023	0512 0513		OUT LD	(14),A HL,2300	;Initialize port 14H.
32EA 32ED	CD5236 C9	0514 0515			3652	;Celay
32EU 32EE 32F2 32F6	FD210746 DD210046 2608	0515 0516 0517 0518	L32EE	LD LD LD	IY,4607 IX,4600 H,08	;RIclock subroutine ;Scans the analog to digital ;converter unit when interupt
32F8 32F8 32FE 32FE 32FF	DD7E00 CD3833 FD7700	0519 0520 0521	L 32F8	LD _CALL LD	(IY),A	;mode
3300 3301 3303 3305	77 00 DD23 FD28 25	0522 0523 0524 0525 0526		LD NOP INC DEC DEC	(HL),A IX IY H	
3306 3308 3308 3308 3308	20F0 3AFF45 CD3833 FE00	0527 0528 0529 0530		JR LD CALL CP	NZ,32F8 A,(45FF)	
3310 3313 3315 3318	C27036 OF OF 210746 7F		L 3 318	JP LD LD LD	NZ,3670 C,OF HL,4607 A,(HL)	
3319 3320 332E 331F	CD4B36 ED79 OD 7E	0535 0536 0537 0538		CALL OUT DEC LD	364B (C),A C A,(HL)	;shift data for display
3320 3322 3324 3325	E60F ED79 2R 0D	0539 0540 0541 0542		AND Out Dec Dec	OF (C),A HL C	
3326 3328 3329	20F0 7f E60F	0543 0544 0545		JR LD AND	NZ,3318 A,(HL) OF	

1 . ..

LOC	OBJ CODE	LINE	LABEL	SRCE	CODE	COMMENTS	
332B 332D	CB57 C27036	0546 0547		BIT JP	2,A NZ,367	0	
3330	ED79	0548		OUT	(C),A		
3332	3CCC	0549		LD	A,CC	(c)	
3334	2AFF45	0550		LD RET	HL,(45	ir)	
3337 3338	C9	0551	17170		C 04		
333A	0E06 5F	0553	L3438	LD LD	C,06		
333B	D60A	0554		SU8	E,A 0A		
	. 3823	0555		JR	3462		
333F	78	0556		LD	A,E		
3340	E60F	0557		AHD	OF		
3342	CD7036	0558			3670	;DATAIN	
3344	CD3616	0559			3616	;this subroutine reads data for	
3347	3E10	0560		LD	A,10	;in normal mode	
3348	80	0561		ADD		,	
334A	47	0562		LD B	-		
334C	C9	0563		RET	, .		
334F	78	0564		LD	A,E		
3350	E6F0	0565		AND	FO		
3352	0604	0566		LD	8,04	a	
3354	CR3F	0567	L3354	SRL			
3356	10FC	0568		DJNZ	3354		
3358	47	0569		LD	8,A		
3359	AF	0570		XOR	A	;clear carry flag	
335A	81	0571	L335A	ADD	A,C		
3358	10FD	0572		DJNZ	335A		
335D	4F	0573		LD	C,A		
335E	78	0574		LD	A,E		
335F	91	0575		SUB	С		
3360	1801	0576		JR	3363		
3362	78	0577	L3362	LD	A,E		
3363	C9	0578	L3363	RET			
3364	0800	0579		IN	A,(00)		
3366	210048	0580	L3366	LD	HL,480	0	
3369	OEOD	0580		LD	C,0D		
3368	ED78	0581	L3368	IN	A,(C)		
336D	CD1234	0582			3410		
3370	OD	0583		DEC	C		
3371	ED40	0584		IH	8,(C)		
3373	80	0585		ADD	A,B		
3374	77	0586		LD	(HL),A		
3375	28	0587		DEC	HL		
3376	OD	0588		DEC	C		

LOC	OBJ CODE	LINE	LABEL	SRCE	CODE	COMMENTS
3377	36	0589		LD	A,01	
3379	89	0590		CP	C	
337A	20EF	0592		JR	NZ,3368	
337C	DBOO	0592		IN	A,(00)	
337E	2016	0593		JR	NZ,3366	
3380	1603	0594		LD	D,03	
3382	0130	0595		LD	C,10	
3384	210648	0596	L 3487	LD	HL,4806	;Subroutine update the RT clock
3387	E078	0597		IN	A,(C)	;for display
3389	CD1234	0598		CALL	3410	
338C	ED40	0599		IN	8,(C)	
338E	80	0600		ADD	A,8	
338F	* 77	0601		LD	(HL),A	
3390	23	0602		INC	HL.	
3391	15	0603		DEC	D	
3392	20F3	0604		JR	MZ,3387	
3394	CDAD34	0605		CALL	34AD	
3397	21AD35	0606		LD	HL,225C	
339A	CD5E36	0607		CALL	365E	
339D	0603	0608		LD	B,03	
339F	210348	0609		tő	HL,4803	
3302	7E	0610	13302	LD	A,(HL)	
3383	4F	0611		LD	C,A	F
33A4	CD1636	0612			3616	
33A7	05	0613		DEC		
3348	2800	0614		JR	2,3384	
330A	3E2F	0615		LD	A,2F	
33AC	D312	0616		OUT	(12),A	;send to the out pul port
33AE	CD3C37	0617			363C	
3381 3382	23 18EE	0618 0619		INC JR	HL 33A2	
3384	216022	0620	L3384	LD	HL,2260	
33B7	CD5E36	0621	10004		3658	
338A	0603	0622		LD	B,03H	;loop 3 times
33BC	210248	0623		LD	HL,4802	groop o treat
338F	78	0624	L34BF	LD	A,(HL)	
3300	4F	0625		LD	C,A	
33C1	CD1636	0626			3616	
3304	05	0627		DEC	8	
3305	280A	0628		JR	Z,33D1	
33C7	3E.3A	0629		LD	A, 3A	
3309	D312	0630		DUT	(12),A	
33CB	CD3C36	0631			3630	
33CE	28	0632		DEC	HL	
33CF	18EE	0633		JR	338F	
33D1	31 OD	0634	L33D1	LD	A,0D	
33D3	D312	0635		OVT	(12),A	

141

LDC	OSI CODE	LINE	LABEL	SRCE	CODE	COMMENTS	
3305	CD3C36	0636		CALL	363C		
3308	216422	0637					
3308	CD5E36	0638		LO	HL,2264 365E		
330E	210648	0639		LD	HL,4806		
33E1	0602	0640		LD	B,02		
33E3	CD1636	0641	L33E3		3616	;set decimal locations	
33E6	23	0642	20020	INC		Joop Goorway Junastano	
33E7	10FA	0643			33£3		
33E9	3E2F	0644		LD	A,2F		
33EB	D312	0645			(12),A		
33ED	CD3C36	0646			363C		
33F0	216822	0647		LD	HL,2268		
33F 3	CDSE36	0648		CALL	365E		
33F6	210848	0649		LD	HL,4808		
33F9	CD1636	0650		CALL	3616		
33FC	3EOD	0651		LD	A,0D		
33FE	D312	0652		OUT	(12),A		
33FF	12	0653			(DE),A		
3400	CD3C36	0654		and '	363C		
3403	C 9	0655		RET			
3404	CDEE32	0656		CALL	32EE ';	subrotine to intialize RTClock	
3407	CDED35	0657		CALL	35ED		
340A	CD3232	0658		CALL	3232		
340D	C3A830	0659		JP	30A8		
3410	0604	066 0		LD	B,04		
3412	C827	0661	L3512		A		
3414	10FC	0662			3512		
3416	C9	0663		RET			
3417	D9	0664		EXX		;Register keys subroutine	
3418	80	0665		EX	AF,AF'		
3419	3FCD	0666		LD	A,CD	processing the register keys to	
3418	320039	0667		LD		access registers and display the	
341E	ED430240	0668				;the data	
3422	ED530440	0669		LD	(4004),DE		
3426 3429	ED060640 F5	0670		LD	(4006),HL		
3429 3428	El	0671 0672		PUSH Pop	Hr HL		
3428 342E	220040	0673 0674		LD LD	(4000),HL		
342C 3432	DD220840 FD220A40	0675		LD	(4008),IX (400A),IY		
3432 3436	ED730C40	0676		LD			
3438	D9	0677		EXX	(400C),SP		
343B	08	0678		EXA	AF, AF'		
3430 3430	ED431040	0679		LD	нг,нг (4010),80	N	
3436	LDADIAAA	00/7		LV	(4010),80	,	
							1

LOC	OB1 CODE	LENE	LABEL	SRCE	CODE		COMME	ITS	
3440 3444 3447 3448	ED531240 221440 F5 E1 230540	0680 0681 0682 0683		LD LD PUSH POP	HL				
3449 344C 344F 3452	220E40 C38D36 3A0039 FECD	0683 0684 0685 0686		LD JP LD CP	(400E),HL 368D A,(3909) CD	-	;8ran	ch if	error
3454 3457 3457 3458	C27036 1601 1E04 216622	0687 0688 0689 0691		JP LD LD LD	NZ,3670 D,01 E,04 HL,2266				
345E 3460 3462	0E0B 0601 3E20	0692 0693 0694	L3462 L3464	LD LD LD DUT	C,0B B,01 A,20 (13),A	;output	control	byte	
3464 3466 3469 346B	D312 CD3C36 10F7 0602	0695 0696 0694 0698	13404	CALL Djnz LD	363C 3462 B,02				
346D 346E 3470 3473	7E D312 CD3C36 23	0699 0700 0701 0702		INC	A,(HL) (12),A 363C HL				
3474 3476 3478 3479	10F7 3E00 8A 2809	0703 0704 0705 0706		DJNZ LD CP JR	346D A,00 D 2,3484				
347B 3470 347E 3480	3E05 89 20CD 1600	0707 0708 0709 0710		LD CP JR LD	A,05 C NZ,348D C,00				
3482 3484 3486	18 09 3E27 D312	0711 0712 0713	L3484	JR LD OUT	348D A,27 (12),A				
3488 3488 348D 348E	CD3C36 1E03 43 3E20	0714 0715 0716 0717	L 348D L 348E	LD LD LD	363C E,03 8,E A,20				
3490 3492 3495 3497	D312 CD3C36 10F7 DD	0718 0719 0720 0721			(12),A 363C 348E C				
3498 349A 349C 349E	20D1 3E0D D312 CD3C37	0722 0723 0724 0725		JR LD	NZ,346B A,OD (12),A 363C	;Display	/ output		

٢.,

1 2-

100						
349E	210040	0725		LD	HL,4000	
3404	1601	0727		LD	E,01	
3146	1616	0728		LD	D,16	
3.168	71	0729	L34A8	LD	A,(HL)	
3499	41	0730		LD	C, A	
3400	CD1637	0731		CALL	3616	
3400	3802	0732		LD	A,02	
34AE	RB	0733		CP	С	
3480	2000	0734		JR	NZ,348F	
3482	0602	0735		LD	8,02	
3484		0736	L3484	LD	A,20	
3486	D312	0737		OUT		
3488		0739		CALL		
3488	10F7	0/39		DJNZ		
3480		0740	1.7686		E,00	
348F		0741	1.3581		HL	
3400	10	0742		INC	E	
3401	15	0743		DEC		
3402	20E4	0744		-3'R		
3404	3E0D	0745		LD	A, 0D	
3406	D312	0746		091 Call	(12),A 363C	
34C8 34C8	CD3C36 C33232	0747 0748		лр Јр	3232	
34CE	212720	0749		LD	HL,2027 ;register AF.	
34D1	3600	0750		LD	(HL),00	
3403	28	0751		DEC	HL.	
3404	360F	0752		LD	(HL), OF	
34D6	E0580040	0753		LD	DE, (4000)	
3400	C37A35	0754		JP	3570	
3100	212720	0755		LD	HL,2027 ;register BC	
34E0	3608	0756		10	(HL),08	
31E2	28	0757		DEC	HL	
34E3	3600	0758		LØ	(HL),0C	
34E5	E0580240	0759		LD	DE,(4002)	
34E9	C37A35	0760		JP	357A	
34E.C	1810	0761		JR	35FE	
34E E	181C	0762		JR	350C	
34F0	1828	0763		JR	351A	
34F2	1834	0764		JR	3528	
34F4	1840	0765		JR	3536	
34F6	1840	0766		JR	3544	
34F8	1858	0767		JR	3552	
34FA	1864	0768		30	3560	
34FC	1870	0769	1.7475	JR	356E	
34FE	212720	0770	L34FE	LD	HL,2027 ;registerDE	

LOC ORD CODE LINE LARFL SRCE CODE COMMENTS

LOC TOTAL LINE LABEL SPICE CODE COMMENTS

3591 00 0771 M0P 3500 00 0772 M0P 3502 00 0774 DEC C 3503 7° 0774 DEC HL 3504 3601 C775 LD (HL),0E 3506 L0580440 0776 LD Df,(4004) 3507 3602 212720 0777 LSOC LD HL,2027 ;Register HL 3507 364A 0777 LD (HL),4A	75.84		6.1.7.1					
3502 09 0773 DEC C 3503 7P 0774 DEC HL 3504 3604 0775 L0 (HL),0E 3504 3604 0775 L0 (HL),0E 3507 186E 0777 L0 UL,2027 ;Register 3507 364A 0779 L350C D HL,2027 ;Register 3511 28 0780 DEC HL								
3503 2* 0774 DEC HI 3504 3604 0775 L0 (HL),0E 3506 IDSR0440 0776 LD DI,(4004) 3507 186E 0777 JR 357A 3506 212720 0779 L350C LD HL,2027 3511 28 0780 DEC HL 7512 364B 0781 LD (HL),4B 3514 212720 0784 LD DE,(4006) 3518 1860 0783 JR 357A 3510 3601 0785 LD DE,(4006) 3521 212720 0784 LD HL,01 3522 ED50840 0789 LD DE,(4008) 3526 1852 0789 JR 357A 3520 212720 0790 L3528 LD HL,2027 3533 400 0794 LD HL 0 3534						0		
3504 360E C175 L0 (HL),0E 3506 L05B0440 0776 LD DE,(4004) 3507 186E 0777 L350C LD HL,2027 ;Register HL 3507 364A 0777 LD (HL),4A								
3506 LDSR0440 0.776 LD Df. (4004) 3500 186E 0.777 JR 357A 350C 212720 0779 L350C LD HL,2027 ;Register HL 350F 364A 0.777 LD (HL),4A								
3594 186E 0177 JR 357A 350C 212729 0778 L350C LD HL,2027 ;Register HL 350F 364A 0777 LD (HL),4A 3511 28 0780 DEC HL 7512 144B 0781 LD 0 (HL),4B 351A 10570610 C782 LD DE (4006) 351B 1860 0783 JR 357A 351A 212720 0784 L351A D HL,2027 351F 28 0786 DEC HL 3520 3601 0787 LD (HL),01 3522 ED580840 0788 LD DE (4008) 3526 1852 0789 JR 357A 3520 212720 0791 LD HL.2027 ;Register IY 3536 212720 0796 L3526 LD HL.2027 ;Register AF 3537 3605 0797 LD HL),4D 3534 1844 C794 JR 357A							1	
350C 212729 0779 L350C L0 HL,2027 ;Register HL 350F 364A 0777 L0 (HL),4A 3511 28 0780 DEC HL 7512 1448 0781 L0 (HL),4B 3514 10580640 C782 L0 DEC,4006) 3518 1860 0783 JR 357A 3516 212720 0784 L3510 LD HL,2027 3517 28 0786 DEC HL 3520 3641 0787 L0 (HL),01 3522 ED50840 0789 JR 357A 3528 212720 0790 L3528 L0 HL.2027 ;Register IY 3528 3601 0791 L0 (HL),01 3534 357A 3528 10 0792 DEC HL - 357A 3528 212720 0796 L3536 L0 HL,2027 ;Stack Pointer 3534 1058040 0799 L0 (HL),40)	
350F 364A 0177 LD (HL),4A 3511 28 0780 DEC HL 7512 1640 0781 LD (HL),4B 3514 10580640 0782 LD DE,(4006) 3518 1860 0783 JR 357A 351A 212720 0784 L351A LD HL,2027 ;Register IX 351D 3601 0785 L9 (HL),01 1556 157 10 (HL),4C 3520 364C 0787 LD (HL),4C 3526 1652 0789 JR 357A 3528 3601 0791 LD HL,2027 ;Register IY 3528 3520 28 0792 DEC HL 10 (HL),40 3530 FD580A0 0794 LD DE,(400A) 3534 3534 JR41 C794 JR 357A 3535 3605 0797 LO (HL),40 3536 3538 28 0798 DEC HL 357A							A	
3511 28 0780 DEC HL 7512 3448 0781 LD (HL),48 3514 1D580640 0782 LD DE,(4006) 3518 1R60 0783 JR 3574 3514 212720 0784 L351A LD HL,2027 ;Register IX 3510 3601 0785 LD (HL),01 3526 187 20 3520 3640 0787 LD (HL),40 3522 ED580840 0789 JR 3576 3528 212720 0790 L3528 LD HL.2027 ;Register IY 3528 3601 0791 LD (HL),40 3520 28 0792 DEC HL 3528 3601 0791 LD (HL),40 3534 JR44 0794 JR 357A 3538 28 0798 LD HL,2027 ;Stack Pointer 3537 3605 0797 LD (HL),41 5354 19580740 0800 LD LD HL,4000				£350C			(Register	HE
7512 :448 0781 LD (HL),48 3514 ID580640 C782 LD DE,(4006) 3518 1860 0783 JR 357A 3514 212720 0784 L351A LD HL,2027 ;Register IX 3510 3601 0785 LD (HL),01 3517 3520 364C 0787 LD (HL),4C 3522 ED508040 0788 LD DE,(4008) 3526 1852 0789 JR 357A 3520 212720 0790 L3528 LD HL,40 3521 28 0792 DEC HL 357A 3522 28 0792 DEC HL 357A 3526 187 0792 DEC HL 357A 3527 8601 0791 LD DE,(400A) 3534 3533 10580A40 0794 LD DE,(400A) 3533 3536 21720 0796 L3536 LD HL,907 ;Stack Pointer								
3514* ID 580640 C782 LD DE, (4006) 3518 1860 O783 JR 357A 3514 212720 O784 L351A LD HL,2027 ;Register IX 3510 3601 O785 LD (HL),01 3517 28 O786 DEC HL 3520 364C O787 LD (HL),4C 3522 ED520840 O788 LD DE, (4008) 3526 IP52 O789 JR 357A 3528 3601 0791 LD (HL),01 3528 3601 0791 LD HL,40 3520 28 0792 DEC HL 3526 10580A40 0794 LD DE, (400A) 3533 10580A40 0794 LD DE, (400A) 3534 JR44 0794 JR 357A 3535 10580A40 0797 LD (HL),40 3533 10580A40 0797 LD (HL),41 3535 3645								
3518 1860 0783 JR 357A 351A 212720 0784 L351A LD HL,2027 ;Register IX 351D 3601 0785 LD (HL),01 ;Register IX 351F 28 0786 DEC HL 3520 364C 0787 LD (HL),4C 3522 ED580840 0788 LD DE,(4008) 3526 1852 0789 JR 357A 3528 212720 0790 L3528 LD HL.2027 ;Register IY 3528 3601 0791 LO (HL),01 ;Stack Pointer ;Stack Pointer 3520 28 0792 DEC HL ;Stack Pointer ;Stack Pointer 3536 10580A40 0794 LD DE,(400A) ;Stack Pointer 3537 3605 0797 LD (HL),05 ;Stack Pointer 3538 28 0798 DEC HL ;Stack Pointer 3541 1846 0800 LD E,(400C) ;Stack Pointer <								
351A 212720 0784 L351A LD HL,2027 ;Register IX 351D 3601 0785 LD (HL),01 351F 2R 0786 DEC HL 3520 364C 0787 LD (HL),4C 3522 ED580840 0788 LD DE,(4008) 3526 1852 0789 JR 357A 3528 212720 0790 L3528 LD HL.2027 ;Register IY 3528 3601 0791 LD (HL),01 3520 2R 0792 DEC HL 3528 3601 0791 LD HL,001 3533 1D (HL),40 3530 FD5R0A40 0794 LD DE,(400A) 3534 JR44 0794 JR 357A 3536 212720 0796 L3536 LD HL,027 ;Stack Pointer 3537 3605 0797 LD (HL),46 3537 3544 212720 0800 LD DE,(4004) 3547 3547								
351D 3601 0785 LD (HL),01 351F 28 0786 DEC HL 3520 364C 0787 LD (NL),4C 3522 ED580840 0789 LD DE,(4008) 3526 LB52 0789 JR 3576 3528 212720 0790 L3528 LD HL,2027 ;Register IY 3520 28 0792 DEC HL 10 (HL),01 3520 28 0792 DEC HL 10 (HL),40 3536 10580A40 0794 LD DE,(400A) 3534 JR44 0794 JR 357A 3536 212720 0796 L3536 LD HL,027 ;Stack Pointer 3537 3605 0797 LD (HL),05 3538 28 0798 DEC HL 3536 212720 0802 L3544 LD HL,2027 ;Register Af' 3541 JR56 0801 JR 357A 354 216040 0803								
351F 28 0786 DEC HL 3520 364C 0787 LD (HL),4C 3522 ED580840 0789 JR 357A 3528 212720 0790 L3528 LD HL.2027 ;Register IY 3528 3601 0791 LD (HL),01 3520 28 0792 DEC HL 3520 28 0792 DEC HL 0 (HL),40 3530 FD580A40 0794 LD DE,(400A) 3534 1844 0794 JR 357A 3536 212720 0796 L3536 LD HL,2027 ;Stack Pointer 3537 3605 0797 LD (HL),05 3538 28 0798 DEC HL 3536 212720 0792 LD (HL),05 3537 3645 0197 LD (HL),05 3541 1846 0800 LD DE,(400C) 3547 3646 0803 LD (HL),06 3542 1836 0804 DE				L351A			;Register	IX
3520 364C 0787 LD (HL),4C 3522 LD5B0840 0789 LD DE,(4008) 3526 1852 0799 JR 357A 3528 212720 0790 L3528 LD HL.2027 ;Register IY 3528 3601 0791 LD (HL),01 3520 2R 0792 DEC HL 3528 3640 0793 LD (HL),01 3536 100 (HL),40 3520 2R 0792 DEC HL 100 (HL),40 3530 F05B0A40 0794 LD DE,(400A) 3534 JR44 0794 JR 357A 3536 212720 0796 L3536 LD HL,2027 ;Stack Pointer 3537 3645 0797 LD (HL),05 3538 28 0799 LD (HL),05 3542 1R36 0801 JR 357A 3544 212720 0802 L3544 LD HL,2027 ;Register Af' 3547 3646 08			0785					
3522 ED520840 0789 JD DE,(4008) 3526 IR52 0789 JR 357A 3528 3601 0791 LD HL.2027 ;Register IY 3520 28 0792 DEC HL 10 (HL),01 3520 28 0792 DEC HL 10 (HL),40 3521 3640 0793 LD (HL),40 3530 FD580A0 0794 LD DE,(400A) 3533 FD580A0 0794 LD DE,(400A) 3533 357A 3536 212720 0796 L3536 LD HL,2027 ;Stack Pointer 3535 3605 0797 LD (HL),05 3538 28 0799 DEC HL 3536 21720 0797 LD (HL),46 3536 10 (HL),05 3542 1R36 0801 JR 357A 3547 360A 0803 LD (HL),06 3547 3606 0803 LD (HL),06 3547 3606			0786		DEC			
3526 1R52 0789 JR 357A 3528 212720 0790 L3528 LD HL.2027 ;Register IY 3520 2R 0792 DEC HL - 3521 3601 0791 LD (HL),01 3520 2R 0792 DEC HL 3521 3640 0793 LD (HL),40 3530 FD580A40 0794 LD DE, (400A) 3534 JR44 0794 JR 357A 3536 212720 0796 L3536 LD HL,2027 ;Stack Pointer 3537 3605 0797 LD (HL),05 ;Stack Pointer - 3538 2B 0798 DEC HL - - - 3536 212720 0802 L3544 LD HL,2027 ;Register AF' 3541 1856 0801 JR 357A - - - 3542 1836 0801 JR 357A - - - - <td>3520</td> <td>3640</td> <td>0787</td> <td></td> <td>LD</td> <td></td> <td></td> <td></td>	3520	3640	0787		LD			
3528 212720 0790 L3528 LD HL.2027 ;Register 1Y 3528 3601 0791 LD (HL),01 3520 28 0792 DEC HL 3528 3640 0793 LD (HL),40 3530 F0580A40 0794 LD DE, (400A) 3533 F0580A40 0794 LD DE, (400A) 3534 JR44 0794 JR 357A 3536 212720 0796 L3536 LD HL,2027 ;Stack Pointer 3537 3605 0797 LD (HL),05 ;Stack Pointer ;Stack Pointer 3538 28 0798 DEC HL	3522	ED 580840	0789		LD	DE,(4008)		
3528 3601 0791 LD (HL),01 3520 28 0792 DEC HL 3522 364D 0793 LD (HL),4D 3530 F05B0A40 0794 LD DE,(400A) 3534 JR44 0794 JR 357A 3536 212720 0796 L3536 LD HL,001 3537 3605 0797 LD (HL),05 Stack Pointer 3538 28 0798 DEC HL Stack Pointer 3536 1844 0797 LD (HL),05 Stack Pointer 3536 19500040 0800 ED DE,(400C) Stack Pointer 3542 1R36 0801 JR 357A 3542 1R36 0803 LD (HL),06 3547 360A 0803 LD (HL),06 3547 360A 0805 LD (HL),06 3547 360F 0806 LD DE,(4004) 3550 1828 0807 JR 357	3526	1852	0789			357A		
3520 2R 0792 DEC HL 352E 3640 0793 LD (HL),40 3530 F0580A40 0794 LD DE,(400A) 3534 1R44 0794 JR 357A 3536 212720 0796 L3536 LD HL,2027 ;Stack Pointer 3537 3605 0797 LD (HL),05 ;Stack Pointer 3538 2B 0798 DEC HL ;Stack Pointer 3536 212720 0797 LD (HL),05 ;Stack Pointer 3538 2B 0799 DEC HL ;Stack Pointer 3536 264E 0797 LD (HL),05 3542 1R36 0801 JR 357A 3542 1R36 0802 LD HL,2027 ;Register AF' 3547 3604 0803 LD (HL),06 ;Stack Pointer ;Stack Pointer 3547 260 0804 DEC HL ;Stack Pointer ;Stack Pointer ;Stack Pointer 3550	3528	212720	0790	L3528 "	LD	HL.2027	;Register	IY
352E 364D 0793 LD (HL),4D 3530 FD5B0A40 0794 LD DE,(400A) 3534 JR41 0794 JR 357A 3536 212720 076 L3536 LD HL,2027 ;Stack Pointer 3537 3605 0797 LD (HL),05 ;Stack Pointer 3538 28 0798 DEC HL ;Stack Pointer 3536 218 0797 LD (HL),05 3537 3605 0797 LD (HL),4E 3536 364E 0797 LD (HL),4E 3537 3645 0800 ED DE,(400C) 3542 1836 0801 JR 357A 3542 1836 0803 LD HL,2027 ;Register AF' 3547 3604 0803 LD HL,0027 ;Register AF' 3547 3604 0803 LD DE,(4004) JS55 3547 3604 0805 LD HL,004 JR 3555	3528	3601	0791		LD	(HL),01		
3530 FD5B0A40 0794 LD DE,(400A) 3534 JR41 0794 JR 357A 3536 212720 0796 L3536 LD HL,2027 ;Stack Pointer 3537 3605 0797 LD (HL),05 ;Stack Pointer 3538 28 0798 DEC HL ;Stack Pointer 3536 3645 0797 LD (HL),05 3537 3605 0797 LD (HL),4E 3536 3647 0800 LD DE,(400C) 3542 1R36 0801 JR 357A 3542 1R36 0801 JR 357A 3542 1R36 0801 JR 357A 3547 360A 0803 LD (HL),06 3547 360A 0803 LD (HL),06 3547 360A 0803 LD HL 3550 JR28 0807 JR 357A 3552 212720 0808 L3552 LD HL,2027	352D	2B	0792		DEC			
3534 JR44 6794 JR 357A 3536 212720 0796 L3536 LD HL,2027 ;Stack Pointer 3537 3605 0797 LD (HL),05 ;Stack Pointer 3538 28 0798 DEC HL ;Stack Pointer 3536 3646 0797 LO (HL),05 3538 28 0798 DEC HL 3536 3646 0797 LO (HL),46 3537 3646 0800 LD DE,(400C) 3542 1R36 0801 JR 357A 3542 1R36 0801 JR 357A 3547 360A 0803 LD (HL),06 3550 JR28 0807 JR 357A 3552 212720 0808 L3552 LD HL,2027	352E	3640	0793		LD	(IIL),40		
3536 212720 0796 L3536 LD HL,2027 ;Stack Pointer 3539 3605 0797 LD (HL),05 ;Stack Pointer 3538 28 0798 DEC HL ;Stack Pointer 3536 364E 0797 LD (HL),05 3537 364E 0797 LD (HL),4E 3536 1050040 0800 LD DE,400C) 3542 1836 0801 JR 357A 3542 1836 0801 JR 357A 3547 3604 0803 LD (HL),06 3547 3604 0803 LD (HL),06 3547 3606 0803 LD (HL),06 3549 28 0807 JR 357A 3550 1828 0807 JR 357A 3552 212720 0808 L3552 LD HL,2027 ;Register RC' 3553 3608 0809 LD (HL),08 3557 28 0810 DEC HL	3530	ED5B0A40	0794		LD	DE,(400A)		
3539 3605 0797 LD (HL),05 3538 28 0798 DEC HL 353C 364E 0797 LD (HL),4E 353C 364E 0797 LD (HL),4E 353C 364E 0797 LD (HL),4E 353E FDSR0C40 0800 ED DE,(400C) 3542 1R36 0801 JR 357A 3542 1R36 0801 JR 357A 3547 360A 0803 LD (HL),0A 3549 2B 0804 DEC HL 3543 J60F 0805 LD (HL),0F 3547 360F 0806 LD DE,(4004) 3550 JR28 0807 JR 357A 3552 212720 0808 L3552 LD HL,2027 ;Register RC' 3555 3608 0809 LD (HL),0B 3557 28 0810 DEC HL 3558 360C Ö811 LD (HL	3534	1841	0794		JR	357A		
3538 28 0798 DEC HL 353C 364E 0797 LD (HL),4E 353E 10500C40 0800 LD DE, (400C) 3542 1R36 0801 JR 357A 3542 1R36 0801 JR 357A 3542 1R36 0802 L3544 LD HL,2027 ;Register AF' 3547 360A 0803 LD (HL),0A 3549 28 0804 DEC HL 3543 360F 0805 LD (HL),0F 3549 28 0807 JR 357A 3550 1828 0807 JR 357A 3552 212720 0808 L3552 LD HL,2027 ;Register RC' 3555 3608 0809 LD HL,008 3557 28 0810 DEC HL 3558 360C 5811 LD (HL),08 3558 10 10 11,00 3555 181A 0813 JR 357A 3560 212720 <t< td=""><td>3536</td><td>212720</td><td>0796</td><td>L3536</td><td>LD</td><td>HL,2027</td><td>;Stack Poi</td><td>nter</td></t<>	3536	212720	0796	L3536	LD	HL,2027	;Stack Poi	nter
353C 364E 0797 LD (HL),4E 353E 10500C40 0800 LD DE,(400C) 3542 1R36 0801 JR 357A 3542 1R36 0801 JR 357A 3542 1R36 0802 L3544 LD HL,2027 ;Register AF' 3547 360A 0803 LD (HL),0A 3549 2B 0804 DEC HL 3543 360F 0805 LD (HL),0F 3546 FDSB0F40 0806 LD DE,(4004) 3550 1828 0807 JR 357A 3552 212720 080B L3552 LD HL,2027 ;Register RC' 3555 360B 0809 LD HL,00B 3557 28 0810 DEC HL 3558 360C 5811 LD (HL),0C 3558 181A 0813 JR 357A 3556 181A 0813 JR 357A 3560 212720 0814 L3560 LD HL,	3539	3605	0191		LD	(HL),05		
353E FPSR0C40 0800 ED DE,(400C) 3542 1R36 0801 JR 357A 3542 1R36 0801 JR 357A 3544 212720 0802 L3544 LD HL,2027 ;Register AF' 3547 360A 0803 LD (HL),0A 3549 2B 0804 DEC HL 3546 FD5B0F 40 0806 LD DE,(4004) 3550 1R28 0807 JR 357A 3552 212720 0808 L3552 LD HL,2027 ;Register RC' 3555 3608 0809 LD HL,0027 ;Register RC' 3557 28 0810 DEC HL 3558 360C 5811 LD (HL),0B 3558 360C 5811 LD DE,(4010) 3558 181A 0813 JR 357A 3560 212720 0814 L3560 LD HL,2027 ;Register DE' 3563 3600 <td< td=""><td>353B</td><td>28</td><td>0798</td><td></td><td>DEC</td><td></td><td></td><td></td></td<>	353B	28	0798		DEC			
3542 1R36 0801 JR 357A 3544 212720 0802 L3544 LD HL,2027 ;Register AF' 3547 360A 0803 LD (HL),0A 3549 2B 0804 DEC HL 351A 360F 0805 LD (HL),0F 3540 FD5B0F40 0806 LD DE,(4004) 3550 IR28 0B07 JR 357A 3552 212720 0808 L3552 LD HL,2027 ;Register RC' 3555 3608 0809 LD (HL),0B 3557 28 0810 DEC HL 3558 360C 5811 LD (HL),0C 3558 360C 5811 LD DE,(4010) 3555 181A 0813 JR 357A 3560 212720 0814 L3560 LD HL,2027 ;Register DE' 3563 3600 0815 LD ML,2027 ;Register DE' 10	353C	364E	0797		LD			
3544 212720 0802 L3544 LD HL,2027 ;Register AF' 3547 360A 0803 LD (HL),0A 3549 2B 0804 DEC HL 351A 360F 0805 LD (HL),0F 3540 FD5B0F40 0806 LD DE,(4004) 3550 IR28 0807 JR 357A 3552 212720 0808 L3552 LD HL,2027 ;Register RC' 3555 3608 0809 LD (HL),0B 3557 28 0810 DEC HL 3558 360C 5811 LD (HL),0C 3558 3560 212720 0814 JR 357A 3558 181A 0913 JR 357A 3560 212720 0814 L3560 LD HL,2027 ;Register DE' 3563 3600 0813 JR 357A 3560 212720 0814 L3560 LD HL,2027 ;Register DE' 3563 3600 0815 LD H	353E	EDSB0C40	0800		LD	DE,(400C)		
3547 360A 0803 LD (HL),0A 3549 2B 0804 DEC HL 3547 360F 0805 LD (HL),0F 3547 360F 0806 LD DE,(4004) 3550 IR28 0B07 JR 357A 3552 212720 0R08 L3552 LD HL,2027 ;Register RC' 3555 3608 0809 LD (HL),0B 3557 2R 0810 DEC HL 3558 360C 0811 LD (HL),0C 3558 1814 0913 JR 357A 3556 181A 0913 JR 357A 3560 212720 0814 L3560 LD HL,2027 ;Register DE' 3563 3600 0813 JR 357A 3560 212720 0814 L3560 LD HL,2027 ;Register DE' 3563 3600 0815 LD HL,2027 ;Register DE' 2027	3542	1836	0801					
3549 2B 0804 DEC HL 3540 360F 0805 LD (HL),0F 3540 FD5B0F40 0806 LD DE,(4004) 3550 1828 0807 JR 357A 3552 212720 0808 L3552 LD HL,2027 ;Register RC' 3555 3608 0809 LD (HL),08 3557 2R 0810 DEC NL 3558 360C Ď811 LD (HL),0C 3554 FD5B1040 0812 LD DE,(4010) 3555 181A 0813 JR 357A 3560 212720 0814 L3560 LD HL,2027 ;Register DE' 3563 360D 0815 ID HL,2027 ;Register DE' 3563			0802	L3514	LD		;Register :	ne'
351A 360F 0805 LD (HL),0F 354C FD5B0F40 0806 LD DE,(4004) 3550 1828 0B07 JR 357A 3552 212720 0808 L3552 LD HL,2027 ;Register RC' 3555 360B 0809 LD (HL),0B 3557 28 0810 DEC NL 3558 360C 0811 LD (HL),0C 3554 FD5B1040 0812 LD DE,(4010) 3555 181A 0813 JR 357A 3560 212720 0814 L3560 LD HL,2027 ;Register DE' 3563 360D 0815 ID HL,2027 ;Register DE'		360A	0803			(IIL),0A		
354C FD5B0F40 0806 LD DE,(4004) 3550 1828 0B07 JR 357A 3552 212720 0808 L3552 LD NL,2027 ;Register RC' 3555 3608 0809 LD (HL),08 3557 28 0810 DEC NL 3558 360C 0811 LD (HL),0C 3554 FD5B1040 0812 LD DE,(4010) 3555 181A 0813 JR 357A 3560 212720 0814 L3560 LD NL,2027 ;Register DE' 3563 360D 0815 LD NL,2027 ;Register DE'	3549		0804		DEC			
3550 1828 0B07 JR 357A 3552 212720 0808 L3552 LD HL,2027 ;Register RC' 3555 3608 0809 LD (HL),08 3557 28 0810 DEC HL 3558 360C 5811 LD (HL),0C 3554 FD5B1040 0812 LD DE,(4010) 3555 181A 0913 JR 357A 3560 212720 0814 L3560 LD HL,2027 ;Register DE' 3563 3600 0815 LD HL,00 HL)		360F	0805					
3552 212720 0808 L3552 LD HL,2027 ;Register RC' 3555 3608 0809 LD (HL),08 3557 28 0810 DEC NL 3558 360C 0811 LD (HL),0C 355A FD5B1040 0812 LD DE,(4010) 355E 181A 0913 JR 357A 3560 212720 0814 L3560 LD HL,2027 ;Register DE' 3563 360D 0815 LD HL,0D HL)	354C	EDSBOE40	0806		LD	DE,(4004)		
3555 3608 0809 LD (HL),0B 3557 28 0810 DEC NL 3558 360C 0811 LD (HL),0C 355A FD5B1040 0812 LD DE, (4010) 355E 181A 0813 JR 357A 3560 212720 0814 L3560 LD HL,2027 ;Register DE' 3563 3600 0815 LD (HL),0D	3550	1828	0807		JR	357A		
3557 28 0810 DEC NL 3558 360C 0811 LD (NL),0C 355A FD5B1040 0812 LD DE,(4010) 355E 181A 0813 JR 357A 3560 212720 0814 L3560 LD NL,2027 ;Register DE' 3563 360D 0815 LD (HL),0D		212720	0808	13552			;Register	RC'
3558 360C Ď811 LD (HL),0C 355A ED5B1040 0812 LD DE,(4010) 355E 181A 0813 JR 357A 3560 212720 0814 L3560 ED HL,2027 ;Register DE' 3563 360D 0815 ED (HL),0D	3555	3608	0809		LD	(HL),08		
355A ED5B1040 0812 LD DE,(4010) 355E 181A 0813 JR 357A 3560 212720 0814 L3560 LD HL,2027 ;Register DE' 3563 3600 0815 LD (HL),00	3557	28	-		DEC			
355E 181A 0813 JR 357A 3560 212720 0814 L3560 LD NL,2027 ;Register DE' 3563 3600 0815 LD (HL),0D	3558	3600	0811		LD	(HL),0C		
3560 212720 0814 L3560 LD HL,2027 ;Register DE' 3563 3600 0815 LD (HL),0D	3550	E05B1040	0812		LD	DE, (4010)		
3563 3600 0815 LD (HL),00	355E	1816	0813		JR	357A		
	3560	212720	0811	L3560	LD	HL,2027	;Register	DE '
3565 28 0816 DEC HL	3563	3600	0815		LD	(HL),0D		
	3565	2R	0816		D F. C	HL		

145

~ ~						
3566	360E	0817		LD	(HL),0E	
3568	ED581240	0818		LD	DE, (4012)	
3560	1900	0819		JR	3574	· · · · · · · · · · · · · · · · · · ·
356E	212720	0820	L356E	LD	,	;Register HL'
3571	364A	0821		LD	(HL),4A	
3573	28	0822		DEC	HL.	
3574	3648	0823		LD	(HL),48	
3576	E05B1440	0824		LD	1 1 1	
357A	300039	0825	L366A		A,(3900)	
3570	FECD	0826		CP	CD	
	027035	0827			HZ,3570	
3582	DP212420	0828		LD	1X,2024	
3586	40	0829		1.0	С,О	
3587	CD9135	0830		CALL	3591	
358A	4R	0831		1.0	С,Е	
358B	009135	0832		CALL	3591	
358E	C33232	0833		JP	3232	
3591	19	0834	L3591	L0	A,C	;Register 7-segment display
- 3592	E60F	0835		AHD	10	;subroutine
3594	000635	0836		CALL	3546	
3597	007700	0837		LD	(IX),A	
3590	DD23	0838		INC		
3590	007100	0839		LD	(IX),C	
359F	DD2B	0840		ĐEC		
35A1	DD2B	0841		DEC	IX	
3583	DD2B	0842		DEC	IX	
35A5	C 9	0843		RET		
35A6	0604	0844	L35A6	LD	8,04	;Shift data for register display
3598	CB39	0845	13548	SRL	0	
35AA	10FC	0846		DJNZ	3548	
35AC	0.0	0017		RET		
35AD	3F 00	0848	L35AD	LD	A,OD	Subroutine resets the printer
35AF	D312	0849		OUT	(13),A	
3581	CD3C36	0850			363C	
35B4	69	0851		RET		
3595	C0A035	0852	L3585	CALL	35AD	Printer subroutine
3588	3E00	0853		LD	A,00	Prints a block of data from memory
358A	320043	0854		LD.	(4300),A	γ· /
3580	70	0855	L358D	LD	A,K	
35BE	4F	0856		10	C,A	
358F	CD1636	0857			3616	
3502	70	0958		LD	A,L	
3503	45	0859		LD	C,A	
3504	001636	0860			3616	
3507	0602	0861		LD	B,02	
0.167	ADAY	0.001		LU	0,72	

LOC ORTION LINE LABEL SPOE FORE COMPENIES

1.8-

LCC	071 COTE		14851	SPCE	COPE	004454125
3509	3E20	0862	L35C9		A,20	
3508	D312	0863		OUT	(15),A	;output tp printer port
35CD	CD3C36	0864			353C	
35D0	10F7	0865			3509	
35D2	3E20	0865	L35D2	LD	A,20	
3504	D312	0867		OUT	(15),A	
3506	CD3C36	0868			363C	
3509	7 E	0869		LD	A,(HL)	
35DA	4 F	0870		LD	С,А	
35DB	CD1636	0871		CALL	3616	
35DE	7 D	0880		LD	A, L	
35DF	88 🔹	0881		СР	E	
35E0	2018	0882		JR	NZ,35FA	
35E2	7C	0883		LD	A,H	
35E3	BA	0884		CP	D	
35E4	2014	0885		JR	NZ,35FA	
35E6	3FOD	0886		LD	A,0D	
35E9	D312	0887		OUT	(15),A	
35EA	CD3C36	0888		CALL	363C	
35ED-	0604	0989	135ED	LD	B-04	;save data to be used with RTC
35EF	212720	0990		LD	HL,2027	
35F2	3E1E	0891		LD	A,1E	
35F4	77	0892	L35F4	LD	(HL),A	
35F5	28	0893		DEC	HL	
35F6	3C	0894		INC	A	
35F7	IOFB	0895			35F4	
35F9	C9	0896		RET		
35FA	23	0897	L35FA	INC	HL	
35FB	3A0043	0898		LD	A,(4300)	
35FE	FE17	0899		СР	17	
35FF	17	0900		RLA		
3500	200E	0901		JR	NZ,3610	
3602	3E00	0902		LD	A,00	
3604	320043	0903		LD	(4300),A	
3607	3EOD	0904		LD	A,OD	
3609	D312	0905		OUT	(15),A	
3608	CD3C36	0906		CALE	363C	
361E	18AD	0907		JR	35 BD	
3610	3C	0908	L3610	INC	A	
3611	320043	0909		LD	(4300),A	
3614	188C	0910	•	JR	35D2	
3616	CD2A36	0911	13615		362A	;convert Hex to ASCII and send to
3619	D312	0912		OUT	(15),A	;printer port
3618	CD3C35	0913		CALL		
351E	79	0914		LD	A,C	
361F	E60F	0915		AND	OF	

10-

147

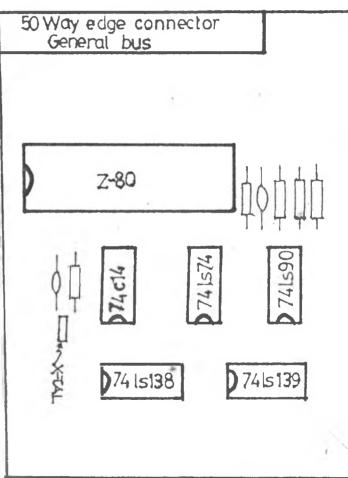
- 11	1.02	115		SOCE	Cutt	Curation .
3621	CD3036	0916		CILL	362A	
3524	D312	0917			(15),A	
3626	CD3C36	0918			3630	
3529	C9	0919		RET	5050	
362A	0604	0920	L362A	LD	B,04	convert key position to
3620	CB3F	0921	L362C	SRL		;key internal code
362E	TOFC	0922	L3020		3620	, ney internal seue
3630	FEOA	0923	L3630	CP	0A	
3632	C23936	0924	LUUUV	JP	P,3639	
3635	C630	0925			A,30	
3637	1802	0926		JR	353B	
3639	C637	0927	L3639	ADD	A,37	
3638	C9	0928	L363B	RET	n191	
363C	0812	0929	L363C	IN	A,(12)	: Subroutine for handshaking
363E	E601	0930	L0000	AND	01	:lsb of bit 7 indicates ready
3640	20FA	0931		JR	NZ,363C	, rob of bro i indicaceo (cad)
3642	3600	0932		LD	A,00	
3644	D313	0933		OUT	(13),A	
3546	3E01	0934		LD	A,01	
3648	0313	0935		OUT	(13),A	
364A	C9	0936		RET	1	
364B	0604	0937	L3640	LD	B,04	;Rotate four bits for the clock
364D	CB3F	0938	L364D	SRL	A	display in the address field.
364F	10FC	0939		DJNZ	364D	
3651	C 9	0940		RET		
3652	111020	0941	L3652	LD	DE,2010	;subrotine v - get display code
3655	060F	0942		L D	8,0F	
3657	7 E	0943	L3657	10	A,(HL)	
3658	12	0944		LD	(DE),A	
3659	23	0945		INC	HL	
365A	13	0946		INC	DE	
365B	10FA	0947			3657	
385D	C 9	0948		RET		
365E	0604	0949	L365E	LD	8,04	;subrotine OUT
3560	7 E	0950	L368D	LD	A,(HL)	
3661	D312	0951		OUT	(12),A	;sends data to the display unit
3663	CD3C36	0952		CALE	3630	
3566	10F8	0953		DJNZ	3660	
3568	3E2F	0954		LD	A,2F	
365A	D312	0955		OUT	(12),A	
355C	CD 3C 36	0956			3630	
367F	C 9	0957		RET		
3670	C33232	0958	L3670	JP	3232	
3673	340038	0959	L3673	l D	A,(3800)	
3676	FE30	0960		СР	30	

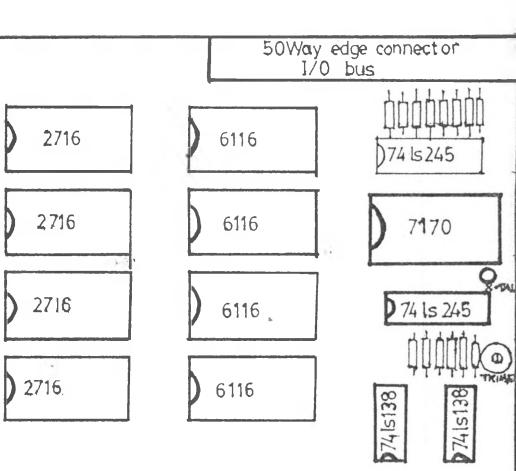
100	OBU CODE	LINE	LABEL	SPCE	C09E	COMMENTS
3678	2004	0951		JR	NZ,367E	
367A	3E3E	0962		LD	A, 3E	
367C	1802	0963		JR	3680	
367E	3E44	0964	L367E	LD	A,44	
3580	21272	0965	L3680	LD	HL,2027	
3683	0606	0966		LD	B,06	
3685	17	0967	L3685	LD	(HL),A	
3686	30	0969		INC	Α	
3687	28	0969		DEC	HL	
3688	10FB	0970		DJNZ	3689	
3688	C33232	0971		JP	3232	
358D	212720	0972		LD	HL,2027	
368A	C33232	0973		JP	3232	
368D	212720	0974	L368D		HL,2027	
3690	0606	0975		LD	8,08	
3692	3E24	0976		LD	A,24	
3594	71	0977	L3694	ŁD	(HL),A	
3595	30	0978		INC	A	
3696	28	0979		DEC	HL	
3697	10FB	0980			3694	
3699	C33232	0981		JP	3232	
369A	770040	0982			4000	;data input subroutine
369D	0610	0983			, 10H	;Scan 16 channells
369F	78	0994		LD A		
3700	D314	0985			[14],A	;Output to address control chanell
3702	DB13	0986			(13)	;read data
3704	77	0987		LD (}		
3705	22	0988		INC	łL	
3706	1006	0989		DJNZ		
3708	C 9	0990		RET		

÷

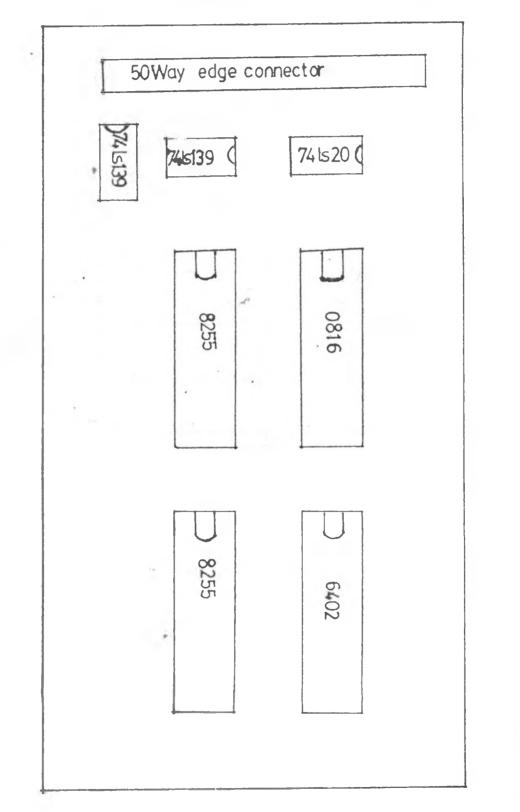
1 8-

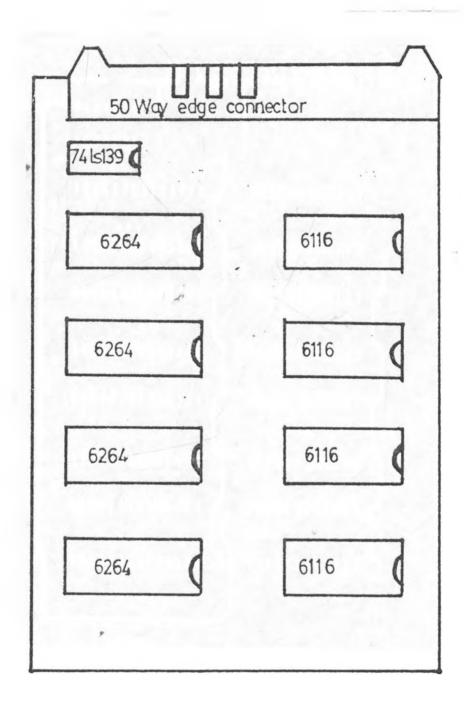
Appendix C4


Real Time Clock BASIC Test Program


10 REM REAL TIME CLOCK TEST PROGRAM 20 REM -----30 REM PROGRAMMED BY MADAHANA A. 40 REM SUPERVISED BY PROF. W. H. DRAKE **50 REM UNIVERSITY OF NAIROBI** 60 REM DEPARTMENT OF PHYSICS 65 REM UNIVERSITY OF NAIROBI 70 REM -----80 REM THE CLOCK IS PROGRAMMED FOR 12 HR. MODE 90 CN = 19 :CLS 100 OUT 14.3 :REM REAL TIME CLOCK CONTROL PORT ; f = 1.38Mhz 110 OUT 145.24 :REM 12 HR. MODE 120 HSC = INP(128) AND 127: REM READ HUNDREDS OF SECONDS 130 SC = INP(131) AND 63 : REM READ SECONDS140 MIN = INP(129) AND 15 : REM READ MINUTES 150 SCREEN 2,10 :PRINT " TIME" 160 SCREEN 7,10 :PRINT ":" 170 SCREEN 11,10 :PRINT "MIN" 180 SCREEN 14,10 :PRINT ":" 190 SCREEN 15,10 :PRINT'SEC" 200 SCREEN 19,10 :PRINT ":" 210 SCREEN 20,10 :PRINT "HSEC" 220 GOSUB 290 230 M = INP (200) :REM PM OR AM 240 IF M = 0 GOTO 270 250 SCREEN 23,10 :PRINT "PM" 260 GOTO 120 270 SCREEN 23,10 :PRINT "AM" 280 GOTO 120 290 MTH = INP (132) AND 15 :REM READ MONTH 300 DTE = INP (133) AND 31 :REM READ DATE 310 YR = INP (134) AND 127 :REM READ YEAR 320 DAY = INP (135) AND 7 : REM READ DAY OF WEEK 330 REM FIND WHICH DAY OF THE WEEK 340 IF DAY = 0 GOSUB 500 350 IF DAY = 1 GOSUB 520 360 IF DAY = 2 GOSUB 540370 IF DAY = 3 GOSUB 540 380 IF DAY = 4 GOSUB 560 380 IF DAY = 4 GOSUB 580 390 IF DAY = 5 GOSUB 600 400 IF DAY = 6 GOSUB 620 **410 REM PROCESS DATE HERE** 420 SCREEN 2,6 :PRINT "DATE" 430 SCREEN 6,8 :PRIINT ":" 440 SCREEN 8,8 :PRINT DTE 450 SCREEN 10.8 :PRINT "/" 460 SCREEN 11,8 :PRINT MTH 470 SCREEN 12,8 :PRINT 470 SCREEN 15,8 :PRINT YR 500 SCREEN 2,6 :PRINT "MONDAY ":RETURN 520 SCREEN 2,6 :PRINT "TUESDAY ":RETURN 540 SCREEN 2,6 :PRINT "WEDNESDAY ":RETURN 560 SCREEN 2,6 :PRINT "THURSDAY ":RETURN 580 SCREEN 2,6 :PRINT "FRIDAY ":RETURN 600 SCREEN 2,6 :PRINT "SUTURDAY ":RETURN 600 SCREEN 2,6 :PRINT "SUNDAY ":RETURN 480 SCREEN 15.8 PRINT YR 640 END

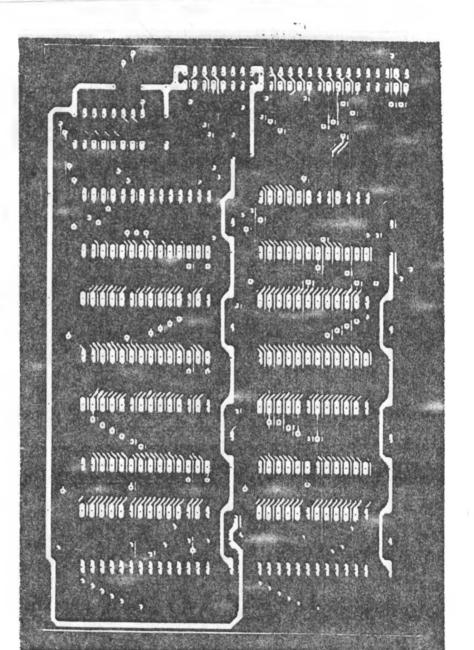
1 0-

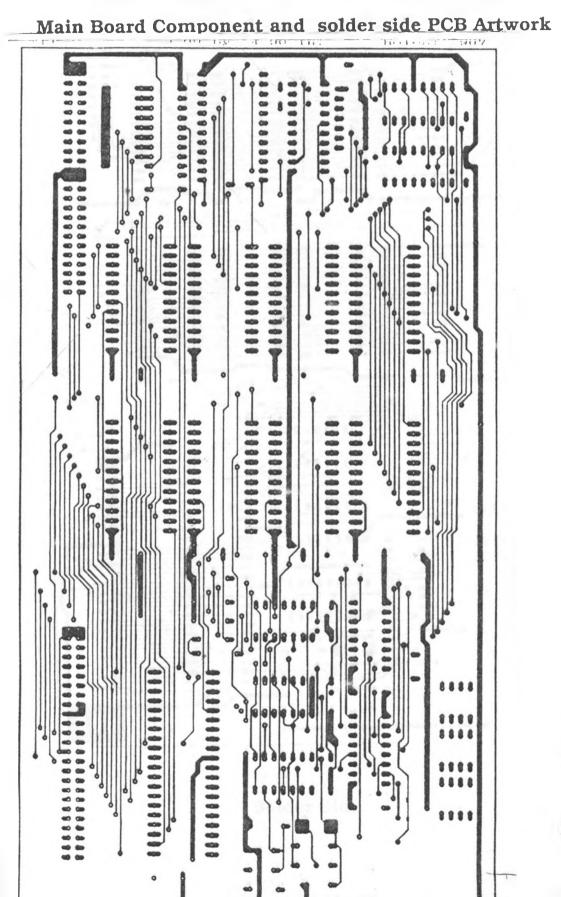


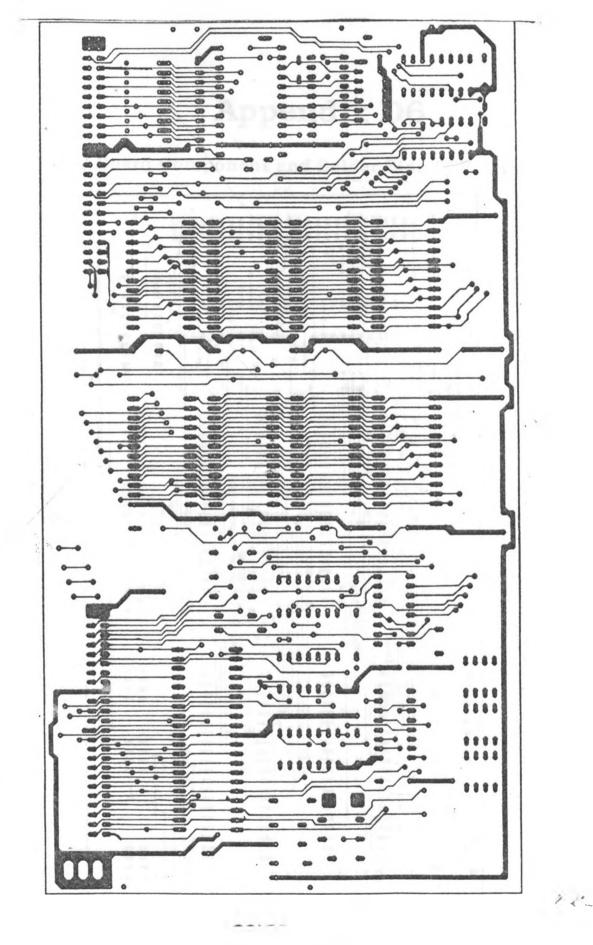

Appendix D2

I/O Board components Layout

Appendix D3

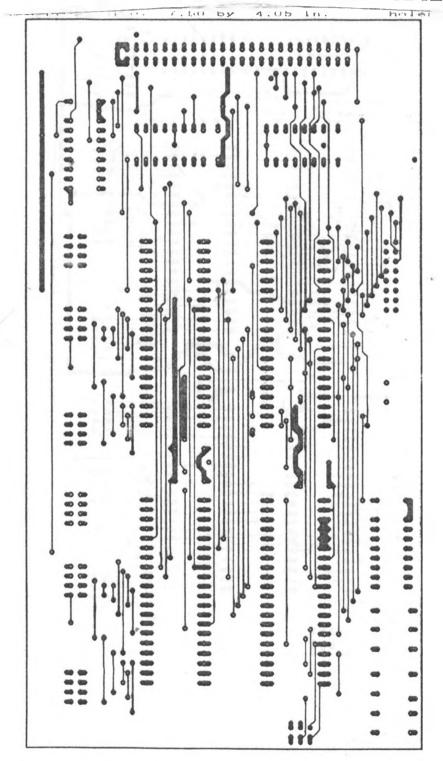

Ram Board components Layout


153

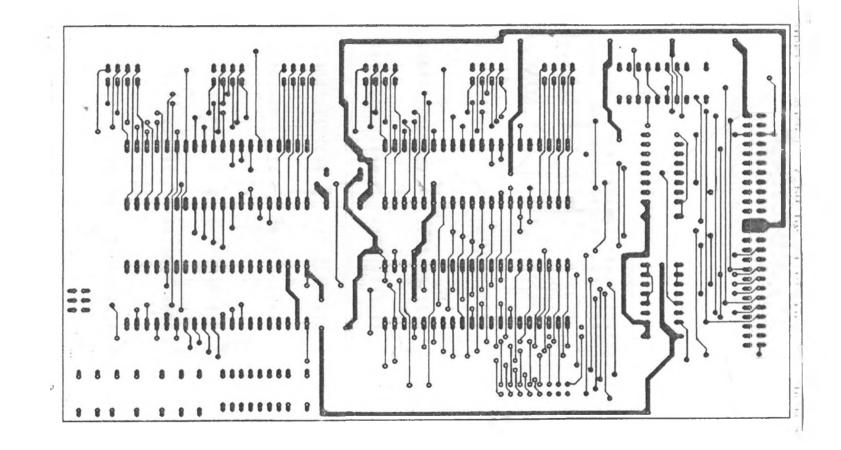

1 0-

Appendix D4 Ram Board PCB Artwork Negative

Appendix D5

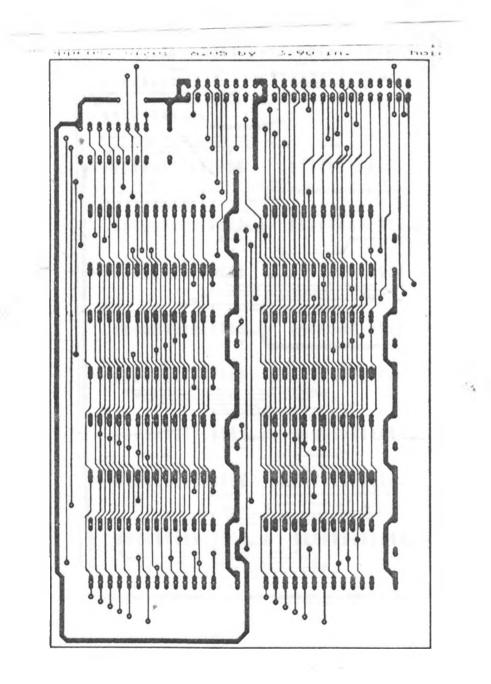


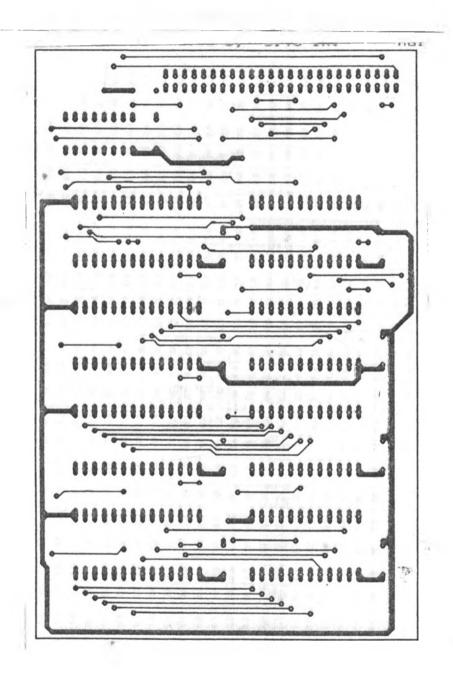
Solder Side


Appendix D6

I/O Board Component and Solder Side PCB Artwork

Component Side




158

Appendix D7

Component Side

Solder Side

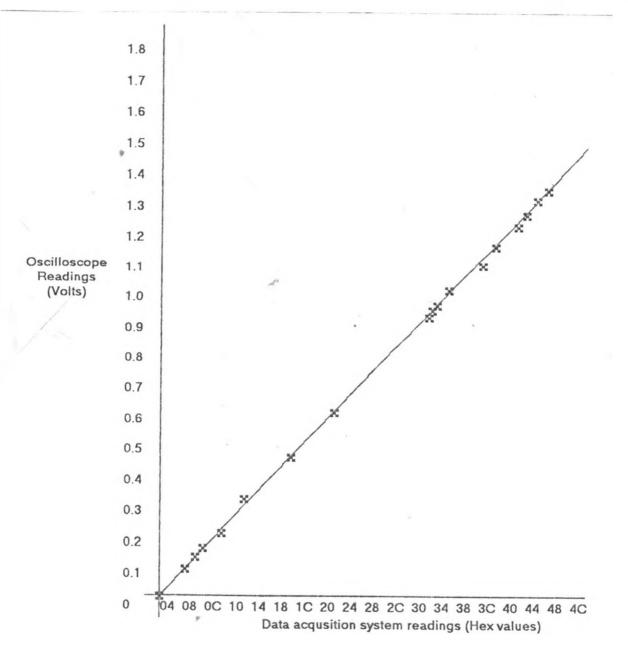
160

CHANNEL Trne 0 2 3 5 6 8 9 10 11 12 13 14 15 4 7 -(Hr.) HEX I VOLT HEX VOLT HEX WOLT HEX VOLT HEX | VOL' 0 02 0.0 4E 1.5 39 83 2.6 0.2 38 1.2 84 2.6 23 0.7 1.1 1B 0.5 CD 4.0 81 2.5 38 1.2 08 2D 0.9 coi 8.6 8D 2.1 48 1.4 6D 0.5 38 1.1 2.1 77 2.3 D7 4.2 21 0.6 42 1.3 53 1.6 55 1.7 03 0,1 18 0.5 67 20 3F 1.2 53 1.6 20 8.0 Œ 0.3 02 0.0 1.0 02 0.0 44 1.3 7A 2.4 OA. 0,2 26 0.7 AA 3.3 **6**A 2.1 52 1.6 3C 1.2 D4 4.5 82 2.9 23 0.7 1B 0.5 1E 80 2.8 16 0.6 0.4 37 1.1 48 0.1 1.5 1.4 8C 8.6 73 2.2 35 1.0 42 0.8 71 2.2 **4**D 1.5 OC 0.2 A3 8.2 36 1.0 æ 1.0 03 -06 02 58 4.8 48 1.5 2.0 11 0.2 30 1.4 67 4C 1.4 16 18 SF 1.0 19 62 1,9 1.9 45 20 03 35 27 2.0 0.4 0.5 1.9 84 0.4 - 64 1.3 0.9 0.1 1.0 0.8 2.5 23 0.6 48 1.5 AB 8.4 43 1.8 23 0.7 BC | 8.6 90 8.0 52 1.6 Æ 0,9 31 0.8 46 1.4 2A 0.8 63 1.6 4E 1.5 01 0.0 30 0.9 3.0 02 0.0 74 2.8 4F 1.5 37 44 1.4 10 0.3 11 10.8 09 0.2 1.0 20 0.6 1E 0.6 3A 1.1 2A 0.8 47 1.4 F1 4.7 25 0.7 18 0.5 3.5 26 0.7 0C 0.3 08 0.2 9E 8.1 04 0.1 CE 4.0 70 2.2 1E 0.6 38 1.2 00 3D 1.8 89 C9 8.9 96 2.9 8.8 12 34 1.0 16 0.4 32 2: 4.0 1.0 50 1.8 0.7 4D 1.5 35 11.0 D8 4.5 54 1.6 12 0.4 48 1.5 D4 4.1 20 0.6 26 0.7 27 0.7 07 10.1 . 60 , 2.1 œ 0,8 4.5 03 0.0 47 1.4 46 AB | 8.8 0F 10.8 28 0.8 82 2.5 15 0.4 10 0.5 46 34 1.1 26 20 1.4 -1.4 0.7 CD 0.8 73 22 AC 8.4 0.9 æ 5.0 36 1.1 1.2 66 2.0 48 1.5 8A 1.1 84 2.6 74 2.3 44 1.8 06 0.1 81 3.5 05 02 13 0.4 0.5 28 0.8 71 22 16 1A 0.4 5.5 09 02 27 8.0 37 1.1 10 0.8 20 0.6 44 1.8 2A 8,0 44 1.8 OF 0.3 03 0.1 90 2.8 10 0.8 4D 1.5 A7 3.3 AF 8,4 48 1.5 6.0 03 0.0 6E 2.1 **8**D 2.8 49 09 0.2 10 0.8 84 2A 0.8 1.3 A5 1D 11 0.8 2.5 7 2.5 50 1.4 8.0 41 8.2 0.6 27 0.8 81 1.6 6.5 14 0.4 49 1.4 64 1,9 OA. 0,2 00 0.8 A9 8.8 15 0.4 0F 0.3 0A 0.2 38 1.0 3C 1.2 48 1.4 107 82 2.5 07 0.2 0.2 81 0.9 7.0 35 1.0 OE. 0.3 96 11 82 0.9 52 2.9 98 2.9 0.3 01 4.1 2F 0.9 08 0.2 19 0.5 1B 0.5 1.6 34 1.0 29 0.5 16 0,4 10 **0.6** 7.5 04 0.1 Œ 0.8 70 2.4 06 0.1 01 0.0 73 22 04 0.1 50 1.7 02 0.0 69 2.1 75 25 24 0.7 1C 0.5 83 2.6 8C 2.8 57 1.7 8.0 15 0.4 1E 0.6 90 2.8 A6 8.2 87 1.1 27 0.8 7A 2.4 2E 0.9 51 1.6 œ 4.0 66 1.9 DC 36 0.2 1.1 04 0.1 -86 2.0 -8A 1.1 8.5 31 0.9 64 1.9 1Ċ 22 0.7 61 29 0.8 0.7 6C 2.1 87 2.6 3E 1.2 0A 0.2 02 0.0 25 33 AD 0.6 1.6 1.0 CD Ð.3 8.4 47 1.4 8.0 27 8.0 GA 0.2 18 0.5 81 2.8 02 0.0 1D 0.6 4C 1.5 15 0.4 31 0,9 31 0.9 18 0.5 20 0.6 26 0.7 94 16 Œ 4.0 2.9 0.4 9.5 28 0.9 28 0.8 BC 57 1.7 3A 0F 2.7 1.1 0.8 0E 0.3 48 1.4 10 0.3 59 1.7 94 2.9 28 0.8 50 63 1.9 07 0.2 62 0.9 1.6 10.0 0A 0.2 24 10.7 89 46 1.4 30 0.4 0.0 47 3F 8.2 24 8.3 01 1D 0.6 1.4 1.2 01 0.0 - A4 0.7 11 8.0 13 0.4 49 1.4 14 0.4 1D 0.5 24 0.7 2F 10.5 88 0,6 25 1.7 0.9 68 2.0 87 2.6 30 1.2 22 0.7 E7 4.5 SF 1.9 50 1.6 33 1.0 SD. 1.8 7E 25 30 0.9 11.0 0E 0.2 09 0.2 21 0.4 C3 8.8 01 0.0 **D**8 4.2 **8**E 44 1.4 0.4 55 1.7 01 0,0 40 88 4D) 38 1.2 15 1.3 1.1 89 1.1 1.5 1.1 11.5 04 0.0 72 2.2 2.7 00 23 -14 8.8 86 0.8 86 26 57 1.7 28 0.5 24 1.1 79 2.8 03 0.1 0,7 29 3.8 CA 0.8 A9 8.8 26 0.7 03 0.0 25 0.9 120 **B5** 8.5 Ë0 4.4 07 0.1 AA 8.2 57 1.7 45 1.8 25 0.9 D4 64 2.0 54 1.6 4D 21 4.4 4.8 DA 1.5 26 0.7 0.6

ppendi

×

E


IPMDAS Lab ora H 0 4 T 0 S et-D ğ e+ 2

0

- 7

Appendix E2

The straight line indicates that the readings acquired by the instrument agree well with those obtained manually for most points.

1 .

Appendix F1

System Schematic Diagrams

CHIROMO LOBRARY