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ABSTRACT
The objective of this study was to determine 

relationships between satellite derived outgoing longwave 
radiation (OLR) and several meteorological parameters using 
correlation and regression analyses. The meteorological 
parameters included rainfall, rain-days, moisture budget, 
cloud cover, incoming radiation and surface temperature. 
Principal component analysis (PCA) was further used to study 
the spatial and temporal characteristics of OLR and rainfall.

The first step in the study involved the estimation of 
the few missing records. The quality of the estimated 
records was examined before they were included in the study. 
Both point and areally averaged records were used in the 
study for the four standard seasons namely March-May, June- 
August, September-November and December- February.

The results from correlation analysis revealed 
significant correlation between OLR and the various 
meteorological parameters. The correlations between point 
records were generally weak compared to those obtained for 
areal records.

The largest values of correlations obtained for point 
and areal rainfall were 0.88 and 0.97 respectively. 
Similarly, the largest values of correlations observed for 
rain-days, moisture budget, cloud cover, incoming radiation 
and surface temperature were 0.89, 0.89, 0.84, 0.93 and 0.72
respectively. The surface temperature had the weakest 
correlations at all stations and seasons.

(xi)



The map patterns of longterm OLR values indicated large 
spatial and temporal fluctuations similar to those of centres 
of active convection. Some similarities in the spatial and 
temporal characteristics of the OLR and rainfall were evident 
from the PCA results. The spatial complexity of rainfall 
patterns in Kenya was also discernible from the PCA results 
which indicated that the six (6) significant rainfall rotated 
principal component (RPC) modes could account, for about 75% 
of rainfall variance while the three (3) dominant OLR RPC 
modes accounted for about 89% of OLR variance over East 
Africa.

The results from regression analysis indicated that 
useful rainfall estimates could be derived from OLR records. 
The skill of regression equations was high for areally 
averaged records and over arid and/semi-arid areas. In most 
cases, however, OLR accounted for rainfall variance ranging

(xii)

from 50 to 79%.
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1.0 INTRODUCTION
Most of the activities in East Africa are highly

dependent on rainfall. However, anomalous rainfall events 
like droughts and floods often lead to loss of life and 
property. Its influence on rainfed agricultural and pastoral 
activities, on which the economy of the three states of East 
Africa depends, is immense. Rainfall is highly variable both 
in. space and time, especially in the tropics where the 
variations in other Meteorological elements are comparatively 
small. The knowledge of rainfall distribution in space and 
time is, therefore, essential for solving problems related to 
all rain dependent activities. The understanding of its 
distribution in space and time is also important for the 
improvement of the general circulation models (GCM) since it 
is a good surface indicator of regions of convective 
activities and a measure of the released latent heat of 
condensation. It has been observed that latent heat released 
in the tropics, where above two-thirds of global 
precipitation occurs, has strong influence on the general 
circulation of both low and high latitudes (Simpson et al., 
1988; Liebmann and Gruber, 1988).

While rainfall is that important it is one of the most 
difficult meteorological elements to measure, especially over 
the vast oceans, thick forests and deserts where raingauge 
network is sparse or non-existent. Over the oceans, rainfall 
has normally been estimated from observations at coastal and 
island stations which are likely to be influenced by 
orographically induced circulations.
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The observations from raingauges are highly influenced 
by the shape of the gauges, their exposure to the wind and 
evaporation of the catch in the gauge in-between 
measurements. Convective rainfall, which dominates rainfall 
processes over the globe, is of small spatial scales and.its 
accurate observation in space and time would require a dense 
network of raingauges. Such a dense network is not easy to 
achieve due to the high costs involved. Finances to
establish such a network are not available to most of the*
developing countries.

In view of the above mentioned shortcomings of the use 
of standard raingauges, a lot of effort has been made to use 
remote sensing facilities (radar and satellite based sensors) 
to estimate rainfall. Remote sensing is the Art and Science 
of obtaining information about the object, area or phenomenon 
through the analysis of the data acquired by a device that is 
not in contact with the object, area or phenomenon under 
investigation.

Estimation of rainfall by radar improved the 
understanding of the distribution of the element in space and 
time. However, problems of attenuation and calibration limit 
the accuracy of radar for the determination of rainfall. 
Moreover, its fixed location and limited area of coverage (80 
to 100 km) makes it unsuitable for global scale measurements 
over the oceans. Another drawback of radar methods is that 
for each specific rain rate a certain relationship between 
reflectivity and rainfall must be determined (Hudlow, 1979, 
Sulakvilidze and Dadali, 1965).
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Due to the problems associated with the standard 
raingauges and radars, many attempts have been made to derive 
rainfall estimates from satellites. The advantages of the 
satellites include their ability to monitor large areas.

The limitations of satellite methods include huge 
expenses needed to set up a system, the interpretation of the 
satellite data and the need for ground truth data for 
comparison with satellite estimates. Also the derived 
relationships between satellite data and rainfall are not 
easily transferable from location to location. Despite these 
difficulties various methods that utilize satellite derived 
information have been developed. They include methods that 
use visible and infrared data (singly) , microwave data and 
data from more than one spectral band (multispectral) . The 
methods that use infrared data include those that use 
satellite derived outgoing longwave radiation (OLR). The 
details of these methods are given later in the text.

The outgoing longwave radiation (OLR) at the top of the 
atmosphere is known to be influenced by the incoming 
radiation, cloud cover, rain days, surface temperature and 
moisture budget (precipitation minus evaporation). Short and 
Wallace (1980) attributed diurnal variations in OLR to 
diurnal variations of surface temperature and cloudiness. 
Its large diurnal variation over dry lands has been 
attributed to daytime warming of the surface by the incoming 
solar radiation (Hartmann and Recker, 1986) and reduced soil 
moisture content (Liebmann and Gruber, 1988). Budyko (1969) 
established a linear relationship between OLR, surface 
temperature and cloud cover, and between OLR and the incoming
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radiation. North (1975) found a linear relationship between
OLR and surface temperature. Morrissey (1986) established 
the existence of a good correlation between OLR and the 
moisture budget.

The major objective of this study is to establish a 
relationship between rainfall and satellite derived outgoing 
longwave radiation (OLR) over Kenya. Such relationships may 
be .used to estimate rainfall after some calibrations. In 
view of the above mentioned influence of the incoming 
radiation, cloud cover, rain-days surface temperature and 
moisture budget on OLR, the relationships between these 
elements and OLR over Kenya are investigated. The details of 
the objective are given in the following section.

1.1 OBJECTIVE OF STUDY
The major objective of the present study is to

Ifestablish relationships between rainfall and satellite 
derived outgoing longwave radiation (OLR), which may be used 
to estimate both point and areal rainfall over Kenya. 
Relationships between OLR, and incoming radiation, cloud 
cover, surface temperature, moisture budget and rain-days are 
also investigated.

The study was divided into six stages. The first stage 
involved estimation of missing records. The second stage 
involved the testing of the quality of records. In the third 
stage rainfall was averaged over 2.5° x 2.5° latitude/ 
longitude squares and rainfall homogeneous regions adopted 
from Ogallo (1989).
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In the fourth stage the spatial characteristics of OLR 
and rainfall were investigated using Principal Component 
Analysis (PCA). Also the characteristics of OLR fluctuations 
are inferred from the longterm means of OLR.

In the fifth stage correlations between point and areal 
rainfall are computed. Also computed are correlations
between the other Meteorological parameters and OLR.

In the final stage, however, regression models for 
statistically significant relationship between OLR and 
rainfall are developed. The skills of the regression
equations were determined from the analysis of variance 
(ANOVA) principles.

The details of the methods used in the analysis are 
discussed later in the text after the review of literature 
relevant to this study.
1.2 LITERATURE REVIEW

Several Scientists, institutions and organizations have 
explored the possibility of estimating rainfall using 
satellite derived information and surface observed rainfall. 
The methods that have been suggested include those that use

(i) Visible and infrared data, singly,
(ii) Microwave data and

(iii) Data from more than one spectral band 
(multispectral).

The development of the methods that belong to the first 
category is based on the relationships between areas of 
active convection and rainfall, and areas with high albedos 
(visible) and comparatively colder temperatures (infrared)
(Kasahara et al.,1987) . The methods in this category include
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those suggested by Griffith et al. (1978), Stout et al. 
(1979), Heinman et al. (1987), Doneaud et al. (1987), Arkin 
(1979), Arkin and Meisner (1987), Barret et al. (1986), 
Dugdale and Milford (1985, 1989), and Motell and Weare
(1987) .

The method suggested by Griffith et al. (1978) uses 
visible or infrared satellite imagery data to estimate 
rainfall. The method uses the brightness (visible) and cloud 
top temperature (infrared) threshholds to identify rain 
clouds and areas covered by such clouds. The relationships 
are developed between normalised cloud and radar echo areas. 
The volumetric rain rate is finally determined from 

= 1 aE.......................... (i)

Where is the rain volume per hour (m3 h”1) I is the 
rain in units of m3 Km-2 h-1 (a function of echo growth 
trend) and AE is echo area (Km2) defined by lmmh-1 rain rate.

Good results have been obtained by the method in the 
tropics. The method is, however, complex especially with the 
inclusion of cloud development stages.

While the Griffith et al. (1978) method involved two 
steps to estimate rainfall, Stout et al. (1979) suggested a 
more direct method which estimates volumetric rain rate from 
the cloud area and its rate of change. The cloud areas are 
identified as in the Griffith et al. (1978) method. Their 
model may be expressed as

dAc
**v ao Ac + al {“ )dt
Where Ac is the area

............................... ( 2 )

cloud, dAc/dt the rate of
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change of cloud area, and aQ and a-̂ the regression 
coefficients.

The method requires satellite images taken at frequent 
time intervals which can only be obtained from geosynchronous 
satellites.

Heinmann et al. (1987) used Geostationery Operational 
Environmental Satellite (GOES) infrared data and manually 
digitized radar (MDR) to produce accumulated rainfall maps 
for Florida. The method assigns pixels with certain infrared 
temperatures an MDR value. This method suffers from the 
effects of cirrus and stratiform clouds which lead to over 
estimation of rain areas.

Doneaud et al. (1987) used a method which related area- 
time-integral of cloud areas, determined by infrared 
temperature threshhold, over alife-time of a storm to 
volumetric surface observed rainfall. The method is based on 
strong correlations between radar echo area coverage 
integrated over the lifetime of a storm and the radar 
estimated rain volume. It gives good results for convective 
rainfall. The effects of cirri, however, makes it difficult 
to identify the end times for the development of convective 
storms.

Arkin (1979) suggested a method which correlates the 
fraction of the area of a fixed region covered by clouds at a 
certain cloud top temperature to surface observed rainfall. 
The method assumes that areas of active convection and 
rainfall appear colder than inactive areas. Richards and 
Arkin (1981) investigated the skill of this method on varying 
spatial and temporal averaging scales, and threshhold
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temperatures. They found that the skill of this method 
improved with the increase in spatial and temporal averaging 
scales. The method was found to be insensitive to changes in 
the threshhold temperature in some temperature ranges. The 
best relationships were observed for 2.5° x 2.5° 
latitude/longitude squares and a temperature threshhold of 
235K.

Arkin and Meisner (1987) suggested a method which 
estimates rainfall from the product of the mean fractional 
cloud coverage of clouds colder than 235K in 2.5° x 2.5° 
latitude/longitude box, the length of the averaging period in 
hours and a constant. The method, commonly referred to as 
GOES precipitation Index (GPI) can be expressed as

GPI = SFct....................... (3)
Where GPI is the estimated rainfall in mm, Fc is the 

fractional cloud cover (varying between 0 and 1 and t is the 
length of the period (hours) for which Fc was the mean 
fractional cover. S is the slope which is estimated by 
regressing surface observed rainfall on the fractional cloud 
cover. It was fixed at 3iu;nh_1 in their work. This method 
gives good results in the regions and seasons dominated by 
convective rainfall.

It is known that clouds with equal cloud top 
temperatures can give different amounts of rainfall due to 
the effects of orography, windshear, and moisture conditions 
(Turpeinen, 1986) . Owing to this the ESOC (European Space 
Operation Centre) Precipitation Index (EPI) scheme 
(Turpeinen, 1986; Turpeinen et al;1987) suggested an 
improvement on Arkin's (1979) method by incorporating the
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upper tropospheric humidity (UTH). In the EPI method, the 
determined fractional cloud cover at a temperature colder 
than 235K (EPI) are segregated into three categories 
depending on the level of UTH during the period of 
observation. The segregated EPI's form multiple predictors 
of rainfall. Good results have been obtained by this method 
in the tropics, including Africa (Turpeinen, 1986; Turpeinen 
et al, 1987; Turpeinen and Diallo, 1989). The method has 
also given good results over the highly convective western 
facing slopes of Kenya (Turpeinen et al.,1987). The method 
was not applied to the eastern facing slopes of Kenya due to 
high cloud top temperatures in the region imposed by frequent 
orographic rainfall.

The Polar-Orbiter-Effective Rainfall Monitoring 
Integrative Technique (PERMIT) (Barret et al., 1986) uses 
four infrared image slots per day and appropriate temperature 
threshold to map daily rain areas. Then the rain /no-rain 
areas of the month are aggregated to form a map of PERMIT - 
estimated rain days for respective months. The final 
rainfall estimates are obtained by relating the surface 
observed rainfall to the first PERMIT rainfall estimates. The 
first PERMIT rainfall estimates are obtained by multiplying 
the PERMIT rain-days by mean rainfall per rain day obtained 
from climatological maps. The method was developed from a 
more data demanding Agricultural Drought Monitoring Technique 
(ADMIT), discussed later in the text. Barret and Power 
(1986) found ADMIT to have higher skill than PERMIT over the
Sahel.
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Dugdale and Milford (1985, 1989) and Ouma (1988) 
related Cold Cloud Duration (CCD) derived from satellite data 
to surface observed rainfall to estimate rainfall over parts 
of Africa. Flitcroft et al.(1986) used the same method to 
estimate rainfall over the Sahel. They indicated sparse 
rainfall network in the region to be a limiting factor.

Motell and Weare (1987) suggested a method which uses 
satellite derived outgoing longwave radiation (OLR) to 
estimate rainfall. This method which was adopted in this 
study is discussed later in the text.

The methods discussed by Ouma (1988) fall in this 
category.
All the methods discussed in this first category suffer from 
the difficulty of separating non-precipitating thick cirrus 
and stratus clouds from the precipitating clouds.

The methods that are based on microwave technique use 
measurements in microwave frequencies to estimate rainfall. 
Microwave frequencies have advantage over visible and 
infrared frequencies due to their capability to penetrate 
through precipitating and non-precipitating low clouds (Yeh 
and Liou, 1983). The methods that belong to this category 
can be grouped into two classes namely passive and active 
microwave methods. The passive microwave methods use the 
intensity of radiation emitted. The active microwave methods 
use the reflected portion of the beam directed to clouds to 
estimate rainfall.

Most of microwave satellite methods belong to the first 
type. They include those suggested by Wilheit et al. (1976, 
1977), Spencer (1984) and Rodgers and Siddalingaiah (1983).
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The passive microwave methods are developed on the basis of 
absorption and scattering of microwave radiation by cloud 
hydrometers. The methods that use absorption properties of 
liquid rain drops utilize microwave measurements in 
frequencies below 22GHz where absorption dominates. The 
absorbed radiation is associated with the emitted radiation 
by Kirchoff's law. These methods require a background with 
low and uniform emissivity (e.g Oceans) to identify rain 
areas (Wilheit et al, 1976, 1977, Vonder Haar and Hillger, 
1986; Houghton, 1979). Wilheit et al. (1976, 1977) used this 
method to interpret microwave measurement in terms of rain 
rates. The methods have limitations over land due to high 
emissivity which is highly variable due to surface roughness 
(Spencer, 1984; Wilheit, 1986). Spencer (1984), Rodgers and 
Siddalingaiah (1983) found that a combination of measurements 
in more than one microwave frequency had a higher skill in 
delineating rain areas than single frequency measurements 
over the land.

The methods that use the scattering properties of 
frozen cloud hydrometers employ measurements in frequencies 
greater than 60GHz (Wilheit, 1986). At such frequencies low 
brightness temperatures can be associated with convective 
rainfall. The method can be used to estimate rainfall over 
any background. However, it is more indirect than the 
absorption methods and suffers from the variability of the 
shapes and distribution of ice for individual rain rates.

In the frequencies ranging from 22 to 60GHz any form of 
attenuation (absorption or scattering) can dominate (Wilheit, 
1986).
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The passive microwave techniques suffer from non-linear 
relationship between rain rates and microwave irradiances 
which result in multiple rain rates for each microwave 
irradiance.

The tropical rainfall measuring mission (TRMM) intends 
to launch a radar on TRMM satellite which will make it 
possible to estimate rainfall from space by active microwave 
method (Simpson et al., 1988). The TRMM satellite is 
expected to have an altitude of 3 00km and an inclination of 
30° which will enable it to solve the beam filling problem 
and diurnal cycle' effects suffered by polar orbiting 
satellites with microwave sensors. (Shin and North, 1988).

The multispectral methods use measurements in more than 
one frequency. The principle behind the development of 
multispectral methods is that a single spectral band may not 
be able to reveal all the properties of clouds. The methods 
include those that use visible, infrared and microwave data 
as multiple predictors. Simpson et al. (1988) suggested that 
in order to obtain useful quantitative rainfall estimates, it 
is necessary to have additional sensors to those operating in 
the visible and infrared portions of the spectrum. The 
tropical rainfall measuring mission (TRMM) (Simpson et al. 
1988) intends to improve the measurements of tropical 
rainfall by utilizing information from passive microwave 
sensors, and visible and infrared portions of the spectrum.

The multispectral methods that use visible and infrared 
data as multiple predictors are based on the knowledge that 
while infrared temperature indirectly reveals the heights of 
cloud tops, the visible dote informs on the depth of clouds,
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their geometry and composition (Barret et al., 1986; Collier 
et al., 1989) .

Lovejoy and Austin (1979) used GOES infrared and 
visible data as multiple predictors to estimate rainfall over 
Montreal. They found that infrared and visible data had a 
higher skill in separating rain from no-rain areas than 
single spectrum data. However, this combination had a poor 
ski.ll in predicting rain rates.

The Agricultural Drought Monitoring Technique (ADMIT) 
(Barret et al., 1986) uses visible and infrared data as 
multiple predictors of rainfall. The method first classifies 
pixels into rain and no-rain using an established 
visible/infrared threshold curve. The first rainfall 
estimates are obtained as discussed in PERMIT. The final 
rainfall estimates are obtained by regressing the surface 
observed rainfall on the first satellite rainfall estimates. 
This method is capable of reducing the influence of diurnal 
circulations and non-precipitating cirroform and anvil 
expansion on rainfall estimates.

Negri and Adler (1987a) found that the explained 
variance of rainfall improved when infrared and visible data 
were used as independent multiple predictors. However, Negri 
and Alder (1987b) found that the results obtained from one 
parameter models (infrared or visible) were comparable to 
those obtained from multiple parameter model (infrared and 
visible). They attributed this to high correlations between 
visible brightness, mean cloud temperatures and cloud areas. 
The high correlation between visible and infrared data makes
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visible data to be a redundant source of information since 
cold clouds are, in most cases, bright.

The problems associated with the methods that use 
visible and infrared data include those that arise from 
registration errors between visible and infrared images, 
instrument calibration, time difference between images, 
illumination geometry, the emission of equal irradiances by 
precipitating and non- precipitating clouds and lack of 
visible images at night (Collier et al., 1989; Negri and 
Adler, 1987b).

The methods that employ infrared and microwave data 
have been suggested by Yeh and Liou (1983) , and Spencer 
(1984). Yeh and Liou (1983) used infrared and microwave data 
to infer various cloud parameters including water content. 
They obtained results which were qualitatively comparable to 
surface observed patterns. However, the quantities of 
rainfall derived from the estimated cloud water contents were 
higher than the surface observed rainfall amounts.

Spencer (1984) found that more variance of radar echo 
was explained when infrared and microwave measurements were 
employed as multiple predictors.

The methods discussed above are either involving or 
require the use of measurements from geostationery 
satellites. The methods that use satellite derived outgoing 
longwave radiation (OLR) are more direct and give good 
results in the tropics. The methods correlate rainfall to 
OLR values. They take advantage of easy interpretation of 
OLR in the tropics where low values of OLR correspond to 
regions of deep active convective clouds and high OLR values
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correspond to cloudless regions or regions of maximum 
subsisdence (Gruber and Winston, 1978; Knutson et al., 1986; 
Hartman and Short, 1980; Morrissey, 1986; Murakami, 1980; Lau 
and Chan, 1983; Liebmann and Hartman, 1982; Short and 
Wallace, 1970, Slingo et al., 1987, Heddingnaus and Krueger, 
1981).

Short and Wallace (1980) used this approach to infer 
diurnal variations of cloudiness and precipitation employing 
OLR data from NOAA polar orbiting satellites. They found 
that OLR exhibits diurnal oscillations similar to those 
exhibited by thermally driven convective clouds and 
precipitation. Lau and Chan (1983) used OLR data from NOAA 
polar orbiting satellite to derive the frequency of highly 
convective clouds (HCC) from which rainfall was estimated. 
They obtained the regression equation,

R = 0.05 +66.7 Nc ............ (4)
Where R is rainfall rate in mm/month and Nc is the 

number of days in a month in which the grid point daily OLR 
average falls below a threshold of 240Wm-2.

Morrissey (1986) found a good correlation between OLR 
and rainfall.

Motell and Weare (1987) related OLR to surface observed 
rainfall to estimate rainfall over the pacific. They used 
NOAA archived digital OLR data which were related to surface 
rainfall at small tropical islands. They derived the 
equation,

R = 1763.847 - 6.107 (OLR)......... (5)
Where R is the rainfall estimate in mm/month, OLR is 

the mean monthly outgoing longwave radiation. They



16

restricted the heights of stations to 30m above mean sea 
level. When they used stations of higher altitude and
latitude, they obtained relatively weak correlations. The

#weak correlations were attributed to the failure of 
relationships between OLR and rainfall in higher latitudes. 
However, the high altitudes of the stations used might also 
have affected the results. The relationships were found to 
be good equator-ward of 20° latitude. They found the method 
to give better result than methods that use visible imagery 
over regions dominated by stratus clouds. While ’stratus 
clouds may have similar brightness as convective clouds, 
their cloud top temperatures are higher than those of active 
convective clouds. The method was also found to overpredict 
rainfall in low mean rainfall areas and underpredict in 
regions of high mean rainfall.

The limitations of methods which use OLR include the 
difficulty to isolate regions of active convection from 
regions of inactive thick cirrus clouds (the so called cirrus 
contamination) (Morrissey, 1986; Simpson et al., 1988). It 
is also difficult to separate regions of low OLR caused by 
orography and the presence of ice and snow from those of 
active convection. In regions of high orography the signals 
from deep convection are contaminated by the signals from the 
surface (Lau and Chan, 1983) . While the elimination of 
cirrus contamination is not easy, the errors due to the 
influence of surface temperature are small in the tropics.

This method was adopted in this study due to its good 
results in the tropics and capability to give good rainfall 
estimates in regions of stratiform clouds. The eastern
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facing slopes of Kenya receive most of their rainfall from 
stratiform clouds. The OLR values were related to point and 
areal rainfall. Relationships between OLR and other 
Meteorological parameters were also investigated from 
correlation and regression analyses.

In the next section the data used in this study are 
discussed.
1.3. DATA

In this section, the data used in this study are 
discussed. The data included satellite derived outgoing 
longwave radiation (OLR), rainfall, rain-days, cloud cover, 
evaporation, incoming radiation and surface temperature. The 
OLR data are discussed in the first part of this section. 
The second part of this section discusses the other surface 
observed Meteorological data. Evaporation was used to derive 
the moisture budget discussed in section 2.3.

1.3.1 SATELLITE DERIVED OUTGOING LONGWAVE RADIATION (OLR) 
DATA

The rainfall of East Africa, like that in other 
tropical regions, is dominantly from deep convective clouds. 
Some of these clouds extend as high as the tropopause level. 
They are, therefore, seen by satellites as regions of cold 
temperatures and low OLR. This, together with the fact that 
spatial variations of temperature in the tropics are small, 
makes it easier to interpret OLR data in the tropics. Low 
and high values of OLR generally correspond to deep active 
convective and cloudless regions, respectively (Janowiak et 
al., 1985; Short and Wallace, 1980; Gruber and Krueger, 1984;
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Motell and Weare, 1987; Liebmann and Gruber, 1988; Knutson et 
al., 1986; Bess et al., 1989).

The monthly mean outgoing longwave radiation (OLR), as 
observed from NOAA polar orbiting satellites for the period 
1974 to 1986, were used in this study. The total OLR data 
were derived from window channels measurements which have 
varied between 10.5 and 12.5 micrometers from satellite to 
satellite. The measurements in the window region ensure 
that OLR is a factor of only the brightness temperature of 
the radiating surface. In this window region, most clouds, 
except for thin cirrus, absorb essentially all the infrared 
radiation upwelling from beneath them, and emit radiation 
almost like perfect absorbers. In conditions of overcast, 
OLR measurements contain no direct information about the 
atmosphere below the cloud top (Pearson and Stogaitis, 1989; 
Fritz and Winston, 1962).

Various algorithms have been in use to derive the total 
OLR from window channel measurements. They include those of 
Gruber and Krueger (1984), Abel and Gruber (1979) and 
Ellingson and Ferraro (1983).

Changes in the methods of deriving the total OLR from 
window channel measurements, equator crossing times and 
window channels introduce inhomogeneity in the data (Janowiak 
et al., 1985, Hartmann and Short. 1980; Gruber and Krueger, 
1984; Lau and Chan 1983).

The inhomegeneity caused by changes in the algorithms 
and window channels are easy to eliminate using the suggested 
algorithms (Janowiak et al.,1985). However, the
inhomogeneity caused by different equator crossing times is
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^iffieult to eliminate but may be minimized by taking the 
average of twice daily OLR measurements. Since monthly OLR 
data were used in this study, the inhomogeneity due to 
equator crossing time is considered negligible.

Eventhough NOAA polar orbiting satellites, like other 
asynchronous satellites, undersample small spatial and 
temporal scales, advantages of these satellite over the 
geosynchronous satellites include global coverage, high 
vertical resolution and minimum geometric distortion (Salby, 
1989) .

Garcia (1981) found that NOAA polar orbiting satellite 
data gave results comparable to those of high resolution 
geostationary satellite. NOAA polar orbiting data avail the 
longest continuous record of OLR vital for climatological 
analysis.

The monthly and seasonal OLR were used in this study. 
Both grid point and areally averaged values were used. The 
OLR were averaged over 2.5° x 2.5° latitude/longitude squares 
formed by joining the OLR grid points (figure lb) . The 
resolution of OLR was 2.5° x 2.5° latitude/longitude (figure 
la) .

1.3.2 RAINFALL, EVAPORATION, INCOMING RADIATION,RAIN- 
DAYS, CLOUD COVER, AND SURFACE TEMPERATURE DATA

The monthly rainfall totals used in this study were 
obtained from 119 stations evenly distributed over Kenya 
(Figure 2a). The locations of the stations are indicated in 
table 1. The rainfall was also averaged over 2.5° x 2.5° 
latitude/longitude squares and climatological homogeneous 
region (figures lb and 2b). The period of study was
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restricted by the availability of OLR records. The OLR were 
available for the period 1974 to 1986.

Other records which were used included incoming 
radiation, cloud cover, rain-days, evaporation and surface 
temperature. The evaporation data were used to estimate the 
moisture budget discussed in section 2.3.

In the next section the climate of East Africa is
discussed.
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Table IS THE LIST OF STATIONS USED IN THE ANALYSIS

STATION NAME Number LOCATION 
Lat. Long.

(E)
ALTITUDE Ft. 
Above M.S.L

Lodwar Met.
Kupri Irrig. Sch 
Oropoi Police Post 
Chepunyal Chiefs 
office 
Lokori
South Horr Catholic 
Mission
Tuum Pri. School 
Maikona Catholic 
Mission 
Baragoi D.O's 
office
Laisamis Police 
post
Soldo Police Post 
North Horr Police 
Post
Sabarei Police Post 
Ileret Police Post 
Marsabit Met.
Buna Police Post 
Moyale Met 
Wajir Met.
Rhamu Police Post 
Elwak
Gurar Police post 
Mandera Met.
Kitale Met.
Leissa Farm 
Kisumu Met.
Port Victoria 
Rusinga Hydromet.
Maji Mazuri 
Kericho DC's Office 
Jamj i
Kericho Met 
Nakuru Met.
Narok
Bondo water 
U.O. East Africa 
Chorllim ADC 
Namandala Farm 
Kaibubich 
Cherengani 
Nzoia Sugar 
Lugari Forest 
Nangina Catholic 
Mission

8635000 3°07'N
8735005 2°06'N
8634007 3°48'N
8835032 1°36'N
8836009 1°57'N
8736000 2°06'N
8736001 2°09'N
8737005 2°56'N
8836001 1°3 6'N
8638000 1°3 6'N
8638000 3°3 3'N
8637000 3°19'N
8536000 4°21'N
8536001 4°19'N
8738000 2°19'N
8739000 2°48'N
8639000 3°32'N
8840000 1°4 5'N
8641001 3°56'N
8740000 3°47'N
8639001 3°22'N
8641000 3°56'N
8834098 1°01'N
8835039 1°10'N
9034025 0°06'S
8933026 0°07'N
9034103 0°2 5'S
9035028 0°01'S
9035003 0°23'S
9035001 0°29'S
9035279 0°2 2'S
9036261 0°16'S
9135001 1°06'S
9034036 0°03'S
8935062 0°15'S
8834013 . 1°02'N
8834017 1°03'N
8835031 1°12'N
8835034 1°03'N
8934138 0°45'N
8934016 0°40'N
8934030 0°17'N

35°37' 1600
35°28' 2300
34°219 3000
35°17' 7800
36°54' 2500
36°54' 3600
36°47' 4800
37°3 8' 2000
36°48' 4500
37°48' 1904
38°39' 2400
37°04' 2200
36°54' 2500
3 6°14' 1400
37°59' 4413
39°01' 2000
39°03' 3650
40°04' 800
41°14' 980
40°57' 1200
39°35' 3000
41°52 9 1085
34°59' 6100
35°02' 6000
34°45' 3769
33°59' 4100
34°08' 4860
34°42' 7680
35°17' 6500
35°11' 6000
35°21' 7160
36°04' 6141
35°52' 5200
34°17' 4000
35°05' 6500
34°48' 6500
34°56' 6000
35°17' 9000
35°19' 7300
34°56' 5980
34°54' 5544
34°06' 4000
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Kabgendi
Kapsowar
Kapsiwowi
N/Hill
Kissi D.O's office 
Miwani Sugar II 
Miwani I
Lumut Chiefs office 
South Marmet 
Naivasha D.O office 
Nyeri M.O.W.
Muchene 
Kitito 
Meru Met.
Poror Forest post 
Nanyuki Met.
Ragati Forest St.
Rumuruti
Mutara
Nginyang
Garissa Met.
Balambala P.P.
Bura Pol. St. 
Masalani P.P.
Tana River Exp.
Muddo Gashi 
Liboi
Muddo Gashi Police 
post
Makindu Met
Voi Met
Masangoleni
Bachuma Range Res.
Dagoretti Met. HQS.
Nairobi Water
Eastleigh Met. (MAB)
Mdigo Farm
Jomo Kenyatta (JKIA)
Langata
Machakos D.C.
Mukuli Forest 
Kitui Agriculture 
Kitui Water 
Olkutai Camp 
Mtito Andei 
Bamba Res.
Lamu Met.
Lamu D.O.
Malindi Met.
Malindi Water 
Garsen Water 
Karawa Vet 
Lake Kenyatta 
Ganze Disp.
Rabai Chief's Camp 
Mackinnon Road 
Majiya Chumvi 
Mazeras Res.

8935001 0°02'N
8935002 0°59'N
8935130 0°07'N
8935160 0°03'N
9034001 0°03'N
9034007 0°03'S
9034012 0°03'S
8835017 1°25'N
8936023 0°03'N
9036002 0°43'S
9035017 0°02'S
8937078 0°06'S
9037016 0°59'S
8937065 0°05'N
8836003 1°14'N
8937022 0°03/N
9037015 0°23'S
8936001 0°16'N
8936014 0°07'N
8936020 0°57'N
9039000 0°25'S
9039001 0°02'S
9139000 1°06'S
9140007 1°47'S
9140006 1°4 2'S
8939000 0°4 5'N
8940003 0°22'N
8939000 0°4 5'N
9237000 2°17'S
9338001 3°24'S
9238005 2°22'S
9338022 3°48'S
9136164 1°18 ' S
9136158 1°17'S
9136087 1°16'S
9136096 1°22'S
9136168 1°19'S
9136198 1°18'S
9137010 1°31'S
9137106 1°29'S
9138000 1°22'S
9138014 1°22 'S
9237018 2°3 5'S
9238009 2°05'S
9339016 2°32'S
9240001 2°16'S
9240003 2°23'S
9340009 3°14'S
9340005 3°10'S
9240010 2°16'S
9240012 2°39'S
9240014 2°24'S
9339012 3°32'S
9339043 3°56'S
9339002 3°44'S
9339023 3°49'S
9339048 3°59'S

35°18' 6200
35°33' 7500
35°36' 8500
35°09' 6700
34°09' 5800
34°57' 4670
34°58' 4000
35°33' 3200
36°22' 7600
36°26' 6234
37°57' 6000
37°32' 7400
37°18' 4800
37°39' 6000
37°3 6' 7900
37°02' 6200
37°02' 6600
36°34' 6090
36°42' 6000
36°019 3000
39°38' 420
39°04' 625
39°57' 370
4 0°06 9 200
40°07' 300
39°11' 800
40°52' 300
39°11' 800
37°50' 3280
38°34' 1837
38°09' 2300
38°57' 1300
36°45' 5900
36°50' 7800
3 6°52' 5371
36°45' 6200
3 6°55' 5329
36°52' 5637
37°01' 5015
37°05' 5000
38°01' 3860
38°00' 3570
37°15' 4000
38°08' 300
39°31' 800
40°54' 10
40°26' 65
40°06' 65
40°06' 150
40°07' 200
4 0°12' 16
40°41' 10
39°41' 600
39°34' 539
39°03' 1175
39°23' 800
39°33' 535
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Makamini Chief 9339049 3°59 'S 39°15' 650
Kwale Agriculture 9439001 4°04 'S 39°41' 1294
Gazi Sugar 
Mwangulu Chief's

9439004 4°25 'S 39°30/ 150

office 9439027 4°25 'S 39°07' 400
Simba Hills 9439043 4°22 'S 39°25' 800
Mombasa Old Obs. 9439002 4°04 'S 39°41/ 53
Kinango Agr. 9439015 4°08 'S 39°19' 1000
Moi Airport (Mombasa)9439021 4°02 'S 39°37' 185
Acher's Post 8937035 0°13 #N 36°23 9 6750
Msabaha 9340007 3°16 'S 40°03' 300
Buchuma 9338022 3°48 'S 38°57 * 1300
Mtwapa 9339036 3°56 'S 39°44' 70
Thika Met. 9137048 1°01 'S 37°06/ 4800
Machakos Dam 9137098 1°33 'S 37°14' 5160
KARI Muguga 9136121 1°13 'S 36°38' 6875
Kisii Met 9034080 0°41'S 34°47' 4200
Marimanti 9037160 1°14 'S 37°55' 4000
Koiwa 9035260 0°37 'S 35°19' 7400
Hola 9140006 1°28 'S 40°00/ 300
Mumias 8934133 0°22 'N 34°30' 4270
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Figure la:

'I «

OLR grid point locations over East Africa.

Figure lb: 2.5° x 2.5° Latitude/Longitude square grids 
located over Kenya
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Figure 2a: The locations of Meteorological stations used in
the study.

ligure 2L>: Cliiuctco.Logical Homogeneous regions over East 
Africa (adopted from Ogallo, 1989) .
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1.4 THE CLIMATOLOGY OF RAINFALL OF EAST AFRICA
Eventhough East Africa lies in the equatorial belt, it 

has complex spatial and temporal patterns of daily and 
seasonal precipitation due to the influence of topography and 
the distribution of bodies of water (oceans and lakes). Lake 
Victoria, with an area of about 83,000 square kilometers, is 
known to have a strong influence on the climate of the 
region, especially the areas in its neighbourhood. These 
areas have a trough over them throughout the year caused by 
differential heating between the lake and land, located over 
the land and lake at daytime and night respectively. The 
presence of the trough renders these areas to have no 
distinct season of rainfall and have rainfall almost 
throughout the year.

The major synoptic features that influence the weather 
of East Africa are the intertropical convergence Zone (ITCZ), 
Mascarene high, Arabian ridge, the tropical easterly waves 
and the tropical depressions/cyclones. Of these, the most 
important and the one with maximum influence on the seasonal 
rainfall of the region is the ITCZ. Its surface position, 
which determines the onset and withdrawal of seasonal rains, 
is highly variable in time. The migration of the ITCZ
follows the movement of the overhead sun lagging it by four 
to six weeks (East African Meteorological Department (EAMD), 
1962; Griffith, 1958). Its intensity determines the
intensity of seasonal rains. At low levels, it is very
diffuse over East Africa due to the influence of 
orography Kenya, Uganda and parts of Tanzania near the 
quator have two rainy seasons in a year associated with the
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northward movement (March - May) and Southward retreat 
(September - November) of ITCZ, respectively.

During the June- August season (Northern summer) East 
Africa is under the influence of South East/South West 
Monsoon airmass. Most parts of Kenya and Tanzania receive
little rainfall. This is mainly because the south east/south 
west monsoon airmass over East Africa is diffluent in the low 
levels and flows parallel to the coast and East African 
highlands. Also there is a quasi-permanent inversion near 
700 Hectopascals (Hpa) over the region during this season. 
These factors inhibit the occurrence of widespread rainfall. 
However, Uganda and Western Kenya receive rainfall in this 
season associated with lake Victoria circulation and the 
dynamic trough over Central Africa (Anyamba, 1984). The 
areas are also influenced by the moist Congo airmass.

During the December-February season, the region is 
under the influence of North east monsoon airmass (Anyamba, 
1984). Tanzania receives rainfall in this season associated 
with the ITCZ in Southern Africa. Also parts of the region 
near large water bodies receive rainfall due to the influence 
of local circulations. Most parts of Kenya and Uganda are 
dry during this season.

The easterly waves are known to influence the weather 
of the region. Most of their influence is felt along the 
coast (Fremming, 1970; Lumb, 1966). Njau (1982), Lumb (1966) 
and Fremming (1970) suggested a link between East African 
rainfall and easterly waves.

Tropical depressions/cyclones over south Indian ocean 
and Arabian sea influence the weather of the region either by
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passing near or hitting parts of the region. They also have 
indirect influence on the weather of the region by changing 
the tracks of the airmasses influencing the weather in 
particular seasons.

The Congo airmass and remnants of extratropical weather 
systems which penetrate the region influence the weather of 
the region, especially during June-August season.

The sea surface temperatures (SST), through their 
influence on the position and intensity of ITCZ, have a 
significant influence on the weather of the region. The SST 
also determine favourable conditions for the formation of the 
tropical depression/cyclones whose influence on the weather 
of the region has been noted earlier in the text.

A detailed discussion of the climatology of rainfall of 
East Africa may be obtained in Asnani (1982), Asnani and 
Kinuthia (1979), Ogallo (1988, 1989), Brown and Cochome'
(1973), Griffith (1958), Tomsett (1969), Trewartha (1961), 
Johnson and Morth(l960) and other texts.

2.0 METHODOLOGY
In this chapter, the various methods which were used in 

this study are discussed. The methods include those used to 
estimate missing records, moisture budget and areal rainfall, 
mass curves, Principal Component analysis (PCA), correlation 
and regression analyses.

2.1 ESTIMATION OF MISSING RECORDS
Most climatological records have gaps which must be 

filled before such data may be used for the continuous
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studies like in the case of time series analysis. The 
methods which have been commonly used to estimate missing 
data include isopleth, isopercentile, correlation, arithmetic 
mean, regression, Thiessen polygon and Empirical Orthogonal 
Function (EOF) methods.

Only a brief account of arithmetic mean and regression 
methods which were used in this study are included here. The 
details of other methods can be obtained in many references 
including Basalirwa, (1979), WMO (1960, 1966, 1974), Grimmer 
(1963), Chow (1964), Shaw (1988), Thiessen (1911).

It is however important to note here that the choice of 
stations used was restricted to those with a maximum of 5% 
missing data, provided the missing data was not for 
consecutive years, to avoid dilution of the records (WMO, 
1970, 1974).

2.1.1.ESTIMATION OF MISSING DATA FROM ARITHMETIC MEAN METHOD
The estimation of missing data by arithmetic mean 

method requires the knowledge of a neighbouring station which 
is best correlated to the station with missing data. Hence; 
under this method, the first step is to identify a
neighbouring station which has the highest correlation with 
the station with missing records.

Correlation coefficient can quantify the degree of 
correlation between pairs of variables. In this study simple 
correlation coefficient (r) was used to determine the
neighbouring station which was best correlated to the station 
with missing data. If r is significantly different from 
Zero, then the oair of variables are sicmif icantlv
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correlated.
The neighbouring station with the highest correlation 

coefficient (r) and reliable record was used to estimate the 
missing records as shown in equation 6

( 6 )

XAj is the missing record of station A in the jth year,XBj 
the record for station with reliable records B in 
year j, and XA and XB are the longterm averages for 
stations A and B, respectively based on the period of records 
available at A. i

This method generally requires long period of records 
in order to generate stable averages for individual stations. 
It also requires relatively homogeneous distribution of 
station in the catchment. Such a network could include all 
the best correlated neighbouring stations which are required 
to estimate the missing records.

2.1.2 ESTIMATION OF MISSING RECORDS FROM THE REGRESSION
METHOD

Like the arithmetic mean method, the method requires 
the identification of the best correlated neighbouring 
station to be used in the estimation of the missing records 
of the station with unreliable records. The method used in 
the previous section was us.ed to identify the best correlated 
neighbouring station. A regression equation was then used to
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express the relationship between the stations instead of 
using the arithmetic mean method as expressed in equation 6.

Equation 7 gives an example of linear regression 
equation which can be used to express the linear relationship 
between the two stations.

XAj = a + bXBj................ (7)
XAj is the record of station A in the jth year, XBj is 

record for station B in year j, and a and b are regression 
constants. The details of regression analysis will be 
discussed later in the text.

Once a and b have been determined from the available 
records, equation 7 can be used to estimate future missing 
values at station A (XA j )  if the records at station B (XBj) 
are available.

Like the arithmetic mean method, this method gives good 
results only when the stations A and B are within the same 
homogeneous climatological zones.

2.2 QUALITY OF THE RECORDS
Most climatological records are characterised with 

inconsistencies which may be caused by changes in the 
location and exposure of the raingauge, technology, 
instrument type and microclimate. Errors associated with 
data collection, transmission and processing may also 
introduce heterogeneity into the records. The inclusion of 
estimated data into the records may also introduce
heterogeneity into such records.
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It is therefore, necessary to check for the quality of 
climatological records before such data are used in any 
climatological analyses.

The most commonly used methods of testing the quality 
of data include the run test, mass and residual mass curves 
methods. Only a brief account of mass curves analysis, which 
was used in this study, is included here. A brief discussion 
of.double-mass curves method which can be used to homogenize 
heterogeneous records is also included. The details of the 
various methods may be obtained in various references 
including Ogallo (1981); Thom (1966) and WMO (1966).

2.2.1 MASS AND DOUBLE MASS CURVES
Mass curve analysis involves the plotting of cumulative 

climatological records against time. The patterns of these 
graphs can be used to test for the quality of the records. A 
single straight line is obtained for nearly error free 
(homogeneous) records. Other patterns indicate heterogeneity 
in the records.

If the records are heterogeneous, the next step would 
be to correct for heterogeneity. The method commonly used to 
adjust heterogeneous records is the double mass curves. The 
principles of the double-mass curves analysis are similar to 
those of mass curves. Double-mass curves analysis, however, 
plots the cumulative values of the heterogeneous records 
against the cumulative values of records from a homogeneous 
station or parameter. An example of double mass curve 
analysis is given in figure 3a. Two lines, AD and DE (figure 
3a), are obtained for heterogeneous records while only a
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Figure 3a: An illustration of mass curves analysis.
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single line (AB) is obtained for the homogeneous records. 
The slopes of the two lines, AD and DE, can be used to adjust 
the heterogeneous records. If the records lying on AD are 
Known to be homogeneous, all later records which are lying on 
DE are adjusted to obtain homogeneous records which are lying 
on DF.

Further details of these methods can be obtained in 
many references including Chow (1964), WMO (1970, 1974,1983) 
and Kohler (1949).

Under this study, the quality of all records were 
tested using the mass curves analysis. Double mass curves 
were used to homogenize any heterogeneous records. The 
homogeneous rainfall records formed the fundamental base for 
further analysis.

2.3. ESTIMATION OF THE MOISTURE BUDGET
The moisture budget (MB) can be expressed as
MB = P - E ....................  (8)
Where P is the Precipitation and E is Evaporation 
The moisture budget is expected to be large and 

positive in regions of active convection and rainfall 
(Morrissey, 1986). It is negatively correlated to OLR.

In this study, all stations, except for Kericho and 
Meru, had negative monthly moisture budgets. The dry days 
in-between the wet days limit the computation of monthly 
moisture budgets. It should also be noted that most rainfall 
of the region is received during particular periods of the 
day leading to high solar heating in clear sky conditions. 
Such heating may lead to high evaporation which may exceed



35

the received rainfall. The derived moisture budgets were 
correlated to OLR to investigate the relationships.

2.4 METHODS USED TO ESTIMATE AREAL RAINFALL
The outgoing longwave radiation (OLR) data which were 

used in this study were available on 2.5° x 2.5° latitude/ 
longitude resolutions. It has been noted that the accuracy 
of . rainfall estimation techniques that use visible and 
infrared satellite data improve with increasing averaging 
area (Vonder Haar and Hillger, 1986). Arkin (1979), and 
Richard and Arkin (1981) found the best estimates of rainfall 
when rainfall was averaged over 2.5° x 2.5° latitude/ 
longitude square (about 6 x 104 km2).

In this study both point and areally averaged OLR and 
rainfall records were used to examine the relationships 
between OLR and rainfall. The OLR were averaged over the 
2.5° x 2.5° latitude/longitude squares. The rainfall records 
within the respective squares grids were used to obtain areal 
rainfall values.

It was noted that the OLR grid points were sometimes 
located over areas with different spatial and temporal 
rainfall characteristics. An attempt was therefore made to 
include areal rainfall estimates from the homogeneous 
climatological zones adopted from (Ogallo, 1989) (figure 2b).

The methods commonly used to estimate areal rainfall 
include arithmetic mean, Thiessen Polygon, Isohyetal, 
Isopercentile and Principal Component Analysis (PCA) methods. 
Most of these methods are laborious especially when
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estimating many records. It was noted in section 1.3.2. that 
a total of 119 stations, evenly distributed over Kenya, was 
uSed in this study. The less laborious methods, namely the 
arithmetic mean and Principal Component Analysis (PCA), were 
used in this study. The skills of these methods have been 
discussed by Ogallo (1986, 1989) and Basalirwa (1979). Only 
a brief account of arithmetic mean and Principal Component 
Analysis (PCA) methods is included here. The details of the 
various methods can be obtained in many references including 
(Basalirwa, 1979; Chow, 1964; Shaw, 1988; WMO, 1965, 1970, 
1974; Nemec, 1972; Linsley et al., 1949).

Under the arithmetic mean method, records from
locations which are enclosed within the square grid or 
homogeneous region are areally averaged using arithmetic mean

method. The areal rainfall value (Xt) may be expressed 
as

_ l M
* t  = - E xj t  -------------------------- (9)

M j=l

Where M is the number of stations, Xĵ . the records from 
station or grid j during the period t.

In equation 9, each -station is given equal weight (1/M) 
during the averaging. It is, however, known that there are 
significant differences in the total areal rainfall 
variability. Many attempts have, therefore, been made to 
give different weights to individual stations. A good 
example is the use of Thiessen Polygon method. The weighting 
functions which have been used in this study were based on



the time coefficients of the dominant PCA modes. This may be 
expressed as

* _ 1 M
Xt = “E ajxjt (10)

:m 3=1 J J

Where Xt and Xjt are the same as in equation 9, while
the constants a^, a.2 ......., a j. are the regression

weights for the dominant principal component mode over the 
region. Details of. these methods can be obtained from 
Johnson (1980), Ogallo (1986) among many other references. 
The basic principles of PCA are, however, discussed later in 
the text.

The point and areal records were subjected to several 
analyses in order to examine relationships between CLR and 
rainfall, incoming radiation, rain-days, cloud cover moisture 
budget and temperature.

These analyses included correlation and regression 
analyses. Correlation analysis included the use of Principal 
Component Analysis (PCA).
2.5 CORRELATION ANALYSIS

Correlation coefficient can be used to quantify the 
degree of relationship between variables. The simplest 
measure of rhe degree of relationship between pairs of 
variables is the simple correlation coefficient (r) , which 
can be expressed as

37
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N
£ (Xt “ X) (Yt - Y)

r = *=— -----------------------------
................................................................. .............  ( 11)N _ N
V { (Xt - X)2 } {£ (Yt - Y)2}

M t=l t=l

Where Xt and Yt are independent variables at times t, X 
and Y arithmetic means of Xt and Yt at time t, respectively.
N is the length of records.

The simple correlations coefficient r is significantly 
different from Zero when the variables are significantly 
related. r is positive or negative when the variables are 
positively or negatively correlated and Irl = 1 when the
variables are perfectly correlated. The statistical
significance of r may be estimated, using the standard t - 
test, as indicated in (12).

tN-2
( 12)

tN_2 is the student t - distribution value with N-2 
degrees of freedom and N is as defined in equation (ii) 
above. The details of t - test can be obtained in many 
standard references including (WMO, 1983; Wannacott and 
Wannacolt, 1985; Battacharyaa and Johnson, 1977).

There is often some time lag in the relationships 
between many physical variables. Such time lagged
relationships are obtained from lagged correlation
coefficient (r̂ ) which may be expressed as
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(13)

Where K is the time lag and the definitions of the 
other variables are as in equation (11).

It should be noted from equations (11) and (13) that rQ 
= r when time lag K = 0.

In this study relationships between satellite derived 
outgoing longwave radiation (OLR), and rainfall, incoming 
radiation, moisture budget, cloud cover, rain-days and 
surface temperature were independently examined by computing 
the zero lag and lagged correlation coefficients based on 
point and areal records.

Correlation analyses which were discussed in the 
previous section examine the relationship between two 
variables keeping the others constant. This method assumed 
that the relationships between OLR, rainfall, rain-days, 
moisture budget, cloud cover, incoming radiation and surface 
temperature were independent which may not necessarily be 
true for many physical variables which are often closely 
related. In the next section an attempt is made to use
principal component analysis to examine relationships between 
several variables and locations.
2.6 PRINCIPAL COMPONENT ANALYSIS

The principal component analysis (PCA) and factor 
analysis (FA) are some of the models that can be derived from 
the Empirical Orthogonal solutions. The basic principles of
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the Empirical Orthogonal analysis are derived from the 
concept of the variance. A measure of association for the 
set of variables is first calculated.

This is followed with the construction of a set of 
orthogonal functions that can represent the measured 
variables. In factor analysis the orthogonal functions are 
defined as exact mathematical linear transformation of the 
original data. The unique variance accounted for by the 
common set of orthogonal functions (factors) is also 
considered. Under the principal component analysis (PCA), 
the unique component of a variable is neglected.

Geometrically the Empirical Orthogonal functions 
(eigenvectors) are linear projections of the standardized 
measured variables in the orthogonal vector space. The 
factor coefficients represent the ordinates of a point 
representing a variable in this space.

A mathematical model for factor analysis (FA) 

represented by M common empirical orthogonal functions 
(factors) and n unique factors can be expressed as:

zi = ailFl + ai2F2 +....+ a^F,, +lm m diui

i = 1, 2, ........ . M ............ (14)
Where is the variable i in the standardized form, F^ 

represents the common orthogonal function (factors), the
unique factor for variable i, a ^  the standard multiple 
regression coefficient of the variable i on the common factor 
and d^ is the regression loading of the unique factor, which 
is often very difficult to estimate for physical variables.
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The regression coefficients (loadings) can be obtained from 
the correlation and covariance matrices of the variables 
(Harman, 1967; Richman, 1981). The correlation matrix was 
uSed in this study to derive the regression weights 
(loadings). The advantages of correlation matrix include
equal weighting of all stations or gridpoints to avoid bias 
positioning of the synoptic centres. They can also be used 
to assign perfect position correlation between a variable and 
itself by setting the diagonal of the input matrix to unity. 
The loadings derived from the correlation matrix can be 
regarded as correlation coefficients of the grid points 
(locations) with a specific orthogonal function (Richman, 
1981; Karl et al. 1982; Barnston and Livezy, 1987). Principal
Component analysis (PCA) was used in this study since the 
unique properties of the individual variables/locations are 
extremely difficult to estimate mathematically. The value 
of d^U^ in equation (14) was, therefore, set to zero in this 
study.

The principal components (factors) are always extracted 
in the descending order of eigenvalues. This ensures that 
only a few factors which explain the highest portion of the 
variance are considered. The first factor explains as much 
variance as possible followed with the second and so forth.

Under the PCA, variables or locations which are inter­
related cluster together onto similar vector spaces(factors). 
This concept has been used by many authors to examine complex 
relationships between large numbers of variables (Grimmer, 
1963; Ogallo, 1980, 1986, 1989; Barring, 1987; Mungai, 1984;
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Gregory, 1975; Wolter, 1989, Janowiak, 1988; Richman, 1981; 
Dyer, 1975).

The PCA concept was used in this study to study the 
patterns of the interlocation correlations between rainfall 
and grid point OLR values.

The unique properties of the PCA and other Empirical 
Orthogonal functions (factors), which make them powerful 
topis to study complex relationships between many variables, 
include:
1 . their reduction of thd volume of data by replacing the 

measured variables and intercorrelated variables by a 
smaller number of uncorrelated variables . (Principal 
Components),

2. their capability to reveal the spatial and temporal 
patterns of the physical processes, depending on the 
data being analysed. The shape of the map pattern of 
each principal component may have some resemblance to 
the patterns for the variable itself,

3. Principal components (PC's) and their coefficients are 
orthogonal in time (statistically independent),

4. the principal components do not require equidistant 
points of the observations unlike most of the other 
orthogonal functions (Kutzbach, 1967).
The use of the principal component analysis, however, 

required the identification of the number of factors which 
must be included in the solutions. The methods commonly used 
to determine the number of the PC's to include in the
solutions are discussed in the next section.
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2.6.1 DETERMINATION OF THE NUMBER OF SIGNIFICANT PRINCIPAL 
COMPONENTS (FACTORS)

There are always as many factors (eigenvectors) as the 
number of variables involved in the analysis. It 
is,therefore, necessary to determine the number of 
significant factors that can represent the underlying 
physical phenomena effectively. The inclusion of very few 
factors (underfactoring) or very many factors (over 
factoring) can distort the map patterns obtained from rotated 
principal components (RPC's). ’

The methods commonly used to determine the number of 
significant factors include Kaiser's criterion (Kaiser, 
1960) , Scree test (Catell, 1966), the natural logarithm 
method (LEV) (Craddock and Flood, 1969; Craddock and 
Flintoff, 1970) and the use of sampling error in the 
eigenvalues (North et al., 1982). The methods ensure that 
only a few factors extracting substantial amount of the total 
variance that may not be considered as noise are retained in 
the solutions.

The Scree test method plots eigenvalues against the 
corresponding ordinate eigenvector numbers. The truncation 
value is near the point where the graph becomes a straight 
line.

Noting that in Meteorology noise eigenvalues are in 
geometric progression, Craddock and Flood (1969) suggested a 
method (LEV) which plots the natural logarithms of the 
eigenvalues against the ordinate numbers of their principal 
components. The truncation value is near the point where the 
graph becomes a straight line.
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North.et. al. (1982) among others, suggested the use of 
sampling errors of the eigenvalues in the determination of 
the number of significant principal components (factors). 
The method compares sampling errors for the eigenvalues with 
separation in the neighbouring eigenvalues. It requires that 
eigenvalues be separated by at least one or two times the 
sampling error of the eigenvalue (Barring, 1987). Hence, the 
sampling error (A(2/N)1/2) indicates whether a sample 
eigenvalue is a faithful representation of the eigenvector 
(factor). Here, A and N represent the eigenvalue and total 
number of records, respectively.

Kaiser's criterion retains all eigenvectors with 
eigenvalues greater than one.

Ogallo (1989) compared the applicability of the four 
methods in East African rainfall. He found no significant 
differences in the results obtained from the four methods for 
the East African rainfall records.

In this study, Kaiser's criterion was used since it was 
readily available in our computer subroutine.

It has been observed that rotated principal components 
(RPC's) give better map patterns of the relationships between 
the physical variables than the direct solutions given in 
equation (14) . This is due to the fact that while the 
principal components are mathematically orthogonal, the 
underlying physical processes may not be orthogonal. The 
rotation does not affect the total variance explained by the 
eigenvalues. A brief account of the rotation is given in the
next section.
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2.6.2 ROTATION OF PRINCIPAL COMPONENTS (FACTORS)
The two methods commonly used in the rotation of 

factors are the varimax (orthogonal) (Kaiser, 1959) and 
oblique rotations. Under the varimax method, all the factors 
are rotated through ninety degrees (90°) while retaining the 
orthogonality of the factors.

The oblique rotations include oblimax, oblimin and 
promax. Under these methods the orthogonality principle 
discussed under the varimax approach is relaxed and some 
correlation is allowed between the factors. Although this
method is a more powerful approach (Richman, 1981) its
application is handicapped by the difficulty in the
estimation of the degree of associations between the
clustered variables. The varimax solution, which has been 
widely used by many authors, has been adopted in this study. 
The study of the rainfall and OLR relationships was based on 
both unrotated and rotated PCA solutions.

2.6.3. PHYSICAL REALITY OF THE PRINCIPAL COMPONENTS (PC'S)
It is always necessary to determine whether the 

correlation patterns derived from Principal component 
analysis (PCA) are physically realistic and climatologically 
stable. The methods commonly used to determine the 
robustness and consistency of the principal components (PC's) 
patterns include the use of interstation correlations, PCA 
for a subgroup of the data, e.g the only locations/variables 
which have been clustered together, PCA for subperiod of 
records and vector plotting the variables into the vector 
space of the dorminant factor(s).
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The methods that subject subgroup data to PCA assume 
that all stations/variables which were clustered together 
when all stations are subjected to PCA have similar temporal 
variations. Hence, only one factor would be significant if 
the subgroup is subjected to PCA.

Under the subperiods methods, the period of study is 
subdivided into two or more subperiods which are 
independently subjected to PCA. The PCA map, patterns 
obtained from the subperiods should be comparable to the ones 
obtained from complete period if the PC's are physically 
realistic and stable.

Under the vector plotting, the regression weights on 
pairs of factors are used to cluster variables into the 
vector space of the dominant factors. The clusters depict 
the map patterns of the PC's with variables clustering near 
the axis of the respective dominant PC.

Inter-station correlation method compares the map 
patterns obtained from the correlations between the stations 
and spartial patterns of the dominant PCA modes. The map 
patterns should be comparable if the PC's are physically 
realistic.

Details of these methods can be obtained in many 
references including (North et al., 1982, Richman, 1986; 
Rinne and Jarvanoja, 1979; Barnston and Livezy, 1987).

In this study, inter-station correlation was used to 
determine the stability and consistency of the PCA patterns.
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2.7 REGRESSION ANALYSIS
For any pair of variables which have significant 

correlation coefficient (r) , the next step is generally to 
determine the nature of the relationship. This is often done 
by determining the best regression equation governing the 
relationship.

A linear relationship model which expresses a 
Meteorological variable (Yt) as a function of OLR (X̂ .) may be 
expressed as

Yt = a + bXt....................... (15)
Where a and b are regression constants. The regression 

constants (a and b) can be estimated from available records.'
In this study an attempt was made to determine the 

functional relationships between various Meteorological 
variables and OLR at the various locations. The functional 
relationships (regression equations) were developed only for 
locations where the correlations coefficients (r) were 
statistically significant. The statistical significance of 
the regression constants, together with the variance of 
rainfall which can be accounted for by OLR were estimated 
from the Analysis of variance (ANOVA) principals. Details of 
ANOVA together with other regression principles can be 
obtained from Wannacott and Wannacott (1985), Battacharyya 
and Johnson (1977) and Fisher (1958) among other references.

3.0 RESULTS AND DISCUSSIONS
In this Chapter, the results obtained from various 

methods of analysis are discussed. The methods include
estimation of missing records, areal rainfall estimation,
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quality control tests, correlation, principal component and 
regression analyses. Also discussed are the spatial patterns 
of the longterm means of outgoing longwave radiation (OLR). 
The results from each method are discussed independently in 
the following sections.

3.1 RESULTS OF QUALITY CONTROL TESTS
Figures 3b and 3c give the general patterns of mass 

curves which were obtained when point and areal records were 
subjected to mass curve analysis. The results from the mass 
curves declared all stations and areal records homogeneous.

The fact that all point and areal records were declared 
homogeneous indicates that the estimated point and areal 
records were realistic. The homogeneous records formed the 
base for all further analyses. The results obtained from 
these analyses are discussed in the following sections.

3.2 THE SPATIAL PATTERNS OF KEAN OLR VALUES OVER EAST AFRICA
In this section the spatial patterns of mean OLR values 

are discussed season by season for the four standard seasons, 
March-May, June-August, September-November, and December- 
February.

Figure 4a gives an example of the spatial patterns of 
the mean OLR values during the March-May (long rainy) season 
as represented by the peak rainfall month of April. During 
this season most areas of East Africa receive at least 50mm 
of rainfall (figure, 4b). The region benefits from the 
presence of the Intertropical convergence zone (ITCZ) which 
is located near the equator during this season. From figure
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4a it can be seen that the whole region has low OLR values as 
expected. The lowest values of OLR are observed over parts 
of the region which are frequented with thunderstorms (WMO, 
1953) and receive the highest rainfall amounts during this 
season. Such areas include Uganda, Western parts of Kenya, 
and Western and South eastern parts of Tanzania. The arid 
and semi-arid part of Kenya, which have the lowest 
thunderstorms cases and receive the lowest rainfall amounts 
(<200mm) during this season, have relatively higher OLR 
values.

Figure 5a gives an example of the spatial patterns of 
mean OLR values during the September-November season which 
was represented by her peak rainfall month of November. This 
is another season when most parts of East Africa near the 
equator receive rainfall (figure , 5b). The region benefits 
from the presence of ITCZ which passes over it in this season 
as it retreats to the southern hemisphere. The season is 
commonly referred to as short-rainy season due to short 
duration and low magnitudes of rainfall at most locations 
during this season. Figure 5a shows that OLR values at most 
locations during this season were relatively higher than 
those observed during long-rainy season. However, the lowest 
OLR values were still observed over Western parts of the 
region which receive the highest rainfall amounts during this 
season.

Figure 6a gives an example of the spatial patterns of 
the mean OLR values during the June-August season. The 
season was represented by her peak rainfall month of July.
During this season, all parts of the region, except for
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Western Kenya and most parts of Uganda, are generally dry 
(figure, 6b) . The parts of the region near large water 
bodies also receive rainfall during this season. It is the 
wettest season at some locations to the north eastern parts 
of Uganda. Figure 6a indicates that the lowest OLR values 
were observed over Uganda and Western parts of Kenya which 
receive the highest rainfall amounts during this season. 
These wet areas benefit from the lake Victoria circulation 
and the moist westerly airmass from the Atlantic and 
Congo/Zaire basins which is locally known as the Congo 
airmass (EAMD, 1962, Trewartha, 1961).

The Coastal areas are amongst the regions which receive 
rainfall during this season. The OLR values are, however, 
relatively high over these areas. The major features in 
coastal areas during this season are the East African low 
level jetstream (Findlator, 1968) and land/sea breeze. The 
sea breeze is very shallow (Asnani and Kinuthia, 1979). 
Another dominant feature over the region during this season 
is the Eastern Africa ridge which imposes low level 
divergence and subsidence over most parts of the region. 
Such conditions are not favourable for the development of 
deep convective clouds associated with low OLR values.

Figure 7a gives an example of the spatial patterns of 
the mean OLR values during December-February season which was 
represented by her pick rainfall month of January. During 
this season, the ITCZ is located in the Southern hemisphere. 
It reaches its furthest southern position over Africa during 
February. Only southern Tanzania and parts of the region 
near large water bodies receive substantial rainfall during
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Figure 4a: The spatial patterns of mean OLR values (Vim"2 ) during April.
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. — pFigure 5a: The spatial patterns of mean OLR values (Wm ) 
during November.

3? F. 1*" 40*

Figure 5b: The spatial patterns of mean rainfall values (mm)
during November (Adopted from Tomsett, 1969). Shaded area
receives over 100mm.
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Figure 6a: The spatial patterns of mean OLR values(Wm 2) 
during July.

Figure 6b: The spatial patterns of mean rainfall values (mm)
during July (Adopted from Tomsett, 1969). Shaded area
receives over 100mm. *
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Figure 7a: The spatial patterns of mean OLR values (Wm ) 
during January.

Figure 7b: The spatial patterns of mean rainfall values (mm)

recei?esaoverY 100mm?Pted fr°m TomSett' 1969> • Shaded area
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this season (Figure 7b). Figure 7a shows that low OLR values 
are concentrated over Southern Tanzania and areas 
neighbouring large water bodies as is expected during this 
season.

The above results indicate that the spatial and 
temporal variations of OLR are similar to those observed in 
rainfall over East Africa. In almost all the seasons the 240 
Wm-2 isoline generally corresponds to the monthly total 
rainfall of 50mm (e.g figures 4a - 4b, 6a - 6b, together with 
7a - 7b) . It was also observed that areas frequented by 
orographic rainfall (figures 5a and 6a) have higher OLR 
values than potential convective areas. It has been noted 
that areas frequented by orographic rainfall have high cloud 
top temperatures (Turpeinen, 1986; Arkin et al. , 1988). The 
eastern parts of Kenya including the coastal areas receive 
most of their rainfall from layer clouds and have very few 
thunderstorm cases (WMO, 1953).

Since the spatial patterns of OLR and rainfall were 
found to be close, an attempt was made to determine the 
dominant spatial OLR and rainfall modes from the method of 
principal component analysis (PCA). The results of this 
analysis are discussed in the next section.

3.3. RESULTS FROM PRINCIPAL COMPONENT ANALYSIS (PCA)
In this section the results obtained when OLR and 

rainfall records were subjected to Principal Component 
analysis are independently presented under two separate
subsections.
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3.3.1 RESULTS FROM PCA OF OLR
Tables 2 and 3 give the eigenvalues and variances 

explained by each principal component (factor) for the 
intermonthly and seasonal OLR records, respectively. It can 
be seen from table 2 that only the first three factors 
derived from intermonthly OLR records satisfy Kaiser's 
criterion (Kaiser, 1960) of significant eigenvectors. The 
three factors explained about 89% of the OLR variance.

Table 3 shows that for the seasonal records three, 
four, six and four factors were significant during March-May, 
September - November, June-August and December-February, 
respectively. The significant factors accounted for over 86% 
of OLR variance during all seasons. The significant factors 
obtained with each OLR record were subjected to Varimax 
(orthogonal) rotation.

The spatial patterns of the loadings of the three 
significant rotated factors for the intermonthly records are 
given in figure 8. Figure 8a gives the spatial patterns of 
the first rotated principal component (RPC). The figure 
shows that this RPC was dominant over most of Tanzania. 
Maximum loadings were concentrated over southern parts of 
Tanzania which receive maximum rainfall during December - 
February season (figure 7b).

Figure 8b shows that the second RPC mode was dominant 
over the coastal areas and to the east of central Highlands. 
The maximum loadings were concentrated along the coast which 
benefits from the land/sea breeze associated with the Indian 
ocean circulation. The third RPC mode was dominant over 
nnr+-h vnct-ovn of the region (figure 8c) . The maximum
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loadings were observed over Uganda and Western parts of Kenya 
which receive substantial rainfall during June-August season 
(figure 6b) due to the influence of lake Victoria circulation 
and the moist westerly airmass from the Atlantic and 
Congo/Zaire basin which is locally known as the Congo airmass 
(Trewartha, 1961? Tomsett, 1969; Henderson, 1949; Thompson, 
1957; EAMD. 1962).

Figure 9 gives the spatial patterns of the dominant RPC
modes for March - May seasonal OLR records. It is evident
from these figures that the three spatial modes which were
dominant in the intermonthly OLR records were still
discernible in March-May seasonal records. March-May is
generally the major rainfall season for most parts of the
region. The rainfall received during this season accounts»
for the largest proportion of the annual rainfall total at 
most locations (Tomsett, 1969).

The spatial patterns of the dominant RPC modes which 
were observed with September-November seasonal records are 
shown in figure 10. Figure 10a shows that the first RPC mode 
was dominant over all parts of the region. Maximum values 
were, however, concentrated to the east of central Highlands. 
Table 3 indicates that this mode extracted the highest 
seasonal OLR variance. About 64% of the seasonal OLR 
variance could be accounted for by the first RPC mode alone 
during this season. The high degree of the spatial 
homogeneity in the weather characteristics during the short- 
rainy season has been discussed by many authors including 
Ogallo (1989) and Nyenzi (1990). Figures 10b and 10c 
indicate that the RPC modes which were dominant over the
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coast and North western parts of the region with the 
intermonthly and the march-May seasonal records were still 
discernible in the September-November OLR records. The 
fourth RPC, which was unique for the September-November 
season had maximum loadings over south eastern parts of 
Tanzania (figure lOd).

Figure 11 gives the spatial patterns of the six 
significant RPC modes which were obtained with the June- 
August seasonal records. It is evident from table 3 that the 
first RPC mode accounted for the least seasonal OLR variance 
when all the four standard seasons are compared. The season 
is generally dry apart from the Western parts, which ar.e 
under the influence of the Congo airmass, and areas near 
large water bodies. The figure indicates that the dominant 
RPC modes which were observed with the intermonthly, March- 
May and September-November records were still appearing in 
June-August seasonal records. The RPC modes which were 
unique for the June-August season had maximum loadings over 
the south eastern, central and western parts of Tanzania 
(figures lib, lie and Ilf) . Some of these regions are 
located close to the large south western lakes of Tanzania.

The spatial patterns of the dominant RPC modes which 
were obtained with December-February seasonal OLR records are 
given in figure 12. Figure 12a indicates that the first RPC 
mode was dominant over the southern parts of Tanzania which 
receive maximum rainfall during this season. The rest of the 
region is relatively dry during this season apart from areas 
near large water bodies. The other two RPC modes had spatial 
patterns similar to those dominant with the intermonthly
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records and during the previous seasons (figures 12b and 
12d). The fourth RPC mode, which was unique for this season, 
had maximum loadings over north eastern Kenya, which is 
generally dry during this season.

It may be concluded from the above analysis that three 
RPC modes were dominant in the OLR records throughout the 
year. The dorinant modes had maximum loadings centred over 
the east of the central Highlands including coastal areas, 
southern Tanzania and north western parts of the region. The 
results also indicated that some of the RPC modes were 
uniquely associated with certain seasons and regions. The 
largest number of unique RPC modes was observed during the 
June-August season. The largest degree of spatial 
homogeneity in the rainfall characteristics was however 
observed during September-November season.
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Table 2: PCA Results of the Intermonthly OLR Records
Factor Eigen- Proportion of Variance Explained ( %) 

value __ _______
By the Factor Cumulative

1 13.9818 48.2 48.2
2 9.0465 31.2 79.4
3 2.6506 9.0 88.6
4 0.7882 2.7 91.3

Table 3: PCA Results of the Seasonal OLR Records r

Season ~Factor Eigen-Propotion of 
value

Variance Explained (%)

By factor Cumulative

March-May 1 14.7479 52.7 52.7
2 8.5819 30.6 83.3
3 1.3144 4.7 88.0
4 0.6692 2.4 90.4

SEPT.-NOV. 1 17.8586 63.8 63.8
2 2.9297 10.4 74.2
3 2.1335 7.7 81.9
4 1.4587 5.2 87.1
5 0.7683 2.7 89.8
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JUNE-AUGUST 1 11.3983 40.7 40.7
2 5.5964 20.0 60.7
3 3.4376 12.3 73.0
4 1.7164 6.1 79.1
5 1.2871 4.6 83.7
6 1.0096 3.6 87.3
7 0.7513 2.7 90.0

DEC.-FEB. 1- 13.5845 48.5 48.5
2 6.0130 21.5 70.0
3 3.6328 13.0 83.0
4 1.0568 3.7 86.7

/
5 0.8298 3.0 89.7
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Figure 8a: The spatial patterns of the loadings (X 100) of 
the first intermonthly OLR RPC.

figure 8b:
Second

The spatial 
intermontly

patterns of 
OLR RPC. the loadings (X 100) of
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Figure 8c: The spatial patterns of the loadings (X 100) of 
the third int^rmontly OLR RPC
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Figure 9a: The spatial pattern of the loadings (X 100) of the 
first March - May Seasonal OLR RPC.

Figure 9b: The spatial pattern of the loadings (X 100) of the
second March-May Seasonal OLR RPC.



66

Figure 9c: The spatial pattern of 
third March-May Seasonal OLR RPC the loadings (X 100) of the
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Figure 10a: the spatial patterns of the loadings (X 100) of 
r„ne first September-November Seasonal OLR RPC.

30E 3? 3l 36 38 10 t2E

(X 100) of
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Figure 10c 
the third

: The spatial patterns of the loadings 
September-November Seasonal OLR kp .

(X 100) of

Figure lOd: the spatial patterns of the loadings (X 100) of
rhe fourth September-November Seasonal OLR RPC.
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Figure lla: The spatial patterns of the loadings (X100) of 
the first June-August Seasonal OLR RPC.

The spatial patterns of the loadings
cond June-August Seasonal OLR RPC. (X100) of
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Figure 11c: The spatial patterns of the loadings (X100) of 
the third June-August Seasonal OLR RPC.

Figure lid: The spatial patterns of the loadings (X100) of
the fourth June- August Seasonal OLR RPC.
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Figure lie: The spatial patterns of the loadings (X100) of 
the fifth June-August Seasonal OLR RPC.

the o' 3Pat-̂-a'L patterns of the loadings (X100) of
ixth June-August Seasonal OLR RPC.
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Figure 12a: The spatial patterns of the loadings (X 100) of 
the first December-February Seasonal OLR RPC.
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Figure 12c:The spatial patterns of the loadings (X 100) of 
the third December-February seasonal OLR RPC.

Figure 12d:The spatial patterns of the loadings (X 100) of
the fourth December-February Seasonal OLR RPC.



74

3.3.2 RESULTS FROM PCA OF RAINFALL
Tables 4 and 5 give the eigenvalues and variances 

explained by the various factors for the intermonthly and 
seasonal rainfall records, respectively. Table 4 shows that 
the first six intermonthly rainfall RPC modes were 
significant on the basis of Kaiser's criterion (Kaiser, 
1960) . The six factors explained about 75% of the 
intermonthly rainfall variance with the first one accounting 
for about 42% of the total spatial rainfall variance. This 
RPC mode had maximum loadings to the east of the central 
higlands (figure 13a). It is evident from rainfall and OLR 
results that while six intermonthly rainfall RPC modes 
accounted for only 75% of the rainfall variance over Kenya, 
only three RPC's accounted for about 89% of intermonthly OLR 
variance over the whole of East Africa. This could be a 
reflection of the spatial complexity of rainfall 
characteristic over the region.

The second and third intermonthly rainfall RPC modes 
were dominant over the coastal and north western areas, 
respectively as is evident from figures 13b and 13c. The 
last three intermonthly rainfall RPC modes were dominant over 
the Rift Valley region south of the equator, north eastern 
and lake victoria regions, respectively (figures 13d-13f).

The results from the PCA of the seasonal rainfall 
records which are given in table 5 show that seven and six 
RPC modes were significant during the major rainfall seasons 
of March - May and September - November, respectively. Eight 
and eleven RPC modes were, however, significant during 
December-February and June-August seasons respectively. The
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roporti°ns of seasonal rainfall variance explained by the 
gigriificant factors were about 80, 84, 83 and 84% for the
March-May, September-November, June-August and December- 
February seasons, respectively with the first inodes for the 
respective seasons accounting for about 36, 49, 23 and 43% of 
the rainfall variance. The spatial patterns of these RPC 
modes are given in figures 14-17.

It is evident from these figures that the RPC modes 
which were dominant in the intermonthly rainfall records were

t
still revealed in the RPC patterns of the individual seasons. 
The March-May, June-August and December-February seasons, 
however, had some RPC modes which were unique for the 
respective seasons (figures 14g , 16b, 16i, 16g, 16h, 16k,
17e and 17h). Similar results have been obtained by Ogallo 
(1989), Nyenzi (1990) and Barring (1987).

It may be concluded from the results from the Principal 
Component Analysis of OLR and rainfall that the spatial 
characteristics of OLR are less complex compared to those of 
rainfall. Six intermonthly rainfall RPC modes, for example, 
accounted for about 75% of rainfall over Kenya while only 
three intermonthly OLR RPC modes could extract about 89% of 
the intermonthly OLR variance over the whole of East Africa. 
The dominant seasonal weather characteristics were however, 
discernible from the PCA results of both OLR and rainfall. 
The OLR, like rainfall, had the maximum spatial relationships 
during the September-November season. The stability of the 
observed OLR and rainfall RPC modes are discussed in the next
section.
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Tabl® 4! PCA Results of the Intermonthly Rainfall Records

Factor Eigenvalue Proportion of Variance Explained (%)

By Factor Cumulative

1 15.6742 42.4 42.2
2 5.1362 13.8 56.2
3 3.0292 8.2 64.4
4 1.5988 4.4 68.8
5 1.3117 3.5 72.3
6 1.0741 2.9 75.2
7 0.9275 2.5 77.7

Table 5: PCA RESULTS OF SEASONAL RAINFALL

SEASON FACTOR EIGENVALUE Proportion of Variance explained 
(%)

By factor Cumulative

Mar-May 1
2
3
4
5
6
7
8

12.8264
7.1692
2.6624
2.4026
1.3765
1.3056
1.1297
0.8999

35.6
19.9
7.4
6.7
3.8 
3.7 
3.1
2.5

35.6
55.5 
62.9
69.6 
73.4
77.1
80.2
82.7

Sept-Nov 1 17.7256 49.2 49.2
2 4.3881 12.2 61.4
3 3.8823 10.8 72.2
4 1.6739 4.7 76.9
5 1.3249 3.6 80.5
6 1.2551 3.5 84.0
7 0.8416 2.4 86.4
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june-Aug.

Dec-Feb.

1 8.1537 22.7 22.7
2 4.7616 13.2 35.9
3 3.4360 9.5 45.4
4 2.7814 7.8 53.2
5 2.5894 7.1 60.3
6 1.9088 5.3 65.6
7 1.5653 4.4 70.0
8 1.4145 3.9 73.9
9 1.2171 3.4 77.3
10 1.1396 3.2 80.5
11 1.0603 2.9 83.4
12 0.9371 2.6 86.0

1 15.3320 42.6 42.6
2 4.6193 12.8 55.4
3 2.4557 6.8 62.2
4 1.9485 * 5.5 67.7
5 1.8601 5.1 72.8
6 1.7090 4.8 77.6
7 1.2263 3.4 81.0
8 1.1470 3.2 84.2
9 0.8965 2.5 86.7
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Figure 13a:The spatial patterns of the loadings (X 100) of 
the first intermonthly rainfall RPC.

Figure 13b:The spatial patterns of the loadings (X 100) of
the second intermonthly rainfall RPC.



r

Figure 13c:The spatial patterns of the loadings (X 100) of 
the third intermonthly rainfall RPC.

i_^9Ure spatial patterns of the loadings (X 100) of
ne fourth intermontly rainfall RPC.
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Figure 13e:The spatial 
the fifth intermonthly patterns of the loadings 

rainfall RPC. (X 100) of

Figure 13f:The spatial patterns of the loadings (X 100) of
the sixth intermontly rainfall RPC.



Figure 14a: The spatial patterns of the loadings (X 100) of 
the first March-May Seasonal rainfall RPC.

figure 14b: The spatial patterns of the loadings
nG second March-May Seasonal rainfall RPC. (X 100) of
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Figure 14c: The spatial patterns of the loadings (X 100) of 
the third March-May Seasonal rainfall RPC.
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Figure 14e: The spatial patterns of the loadings (X 100) of 
the fifth March-May Seasonal rainfall RPC.

Figure 14f: The spatial patterns of the loadings (X 100) of
the sixth March-May Seasonal rainfall RPC.
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Figure 14g: 
the seventh

The spatial patterns of the loadings (X 100) of 
March-May Seasonal rainfall RPC.
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Figure 15a: The spatial patterns of the loadings (X 100) of 
the first September-November seasonal rainfall RPC.

figure 15b: The spatial patterns of the loadings (X 100) of
second September-November Seasonal rainfall RPC.



86

Figure 15c: The spatial patterns of the loadings (X 100) of 
the third September-November Seasonal rainfall RPC.

rG 15d : The snatiaT ^^^^nvrw- f  ̂ i _ - j i /«» che fonv-f-i  ̂ ; -- ~**c loadings (X iuuj orr rtli beprember-November Seasonal rainfall RPC.
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Figure 15e: The spatial patterns of the loadings (X 100) of 
the fifth September-November Seasonal rainfall RPC.

The sPatial patterns of the loadings (X 100)
lxth September-November Seasonal rainfall RPC. of
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Figure 16a: The spatial patterns of the loadings (X 100) of 
the first June-August Seasonal rainfall RPC.

Figure 16b: The spatial patterns of the loadings (X 100) of
the second June-August Seasonal rainfall RPC.

i
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" I u«  “ c: The sPatial patterns of the The third June-August Seasonal rainfal. loadings
RPC. (X

Figure 16d: The spatial patterns of the loadings
the fourth June-August Seasonal rainfall RPC.

100) of

(X ICO) 07
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Figure 16e: The spatial patterns of the loadings (X 100) of 
the fifth June-August Seasonal rainfall RPC.

the^ixth ̂ June-August Seasonal "rainfall R P C ^  (X 100>
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Figure 16g: The spatial patterns of the loadings (X 100) o 
the seventh June-August Seasonal rainfall RPC.

Figure 16h: The spatial patterns of the loadings (X 100) of
the eighth June-August Seasonal rainfall RPC.



Figure 16i: The spatial patterns of the loadings (X 100) of 
the ninth June-August Seasonal rainfall RPC.

igure 1 6 j : The spatial patterns of the loadings (X 100) of
ne tenth June-August seasonal rainfall RPC.
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Figure 16k: The spatial patterns of the loadings (X 100) of 
the eleventh June-August Seasonal rainfall RPC.
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Figure 17a: The spatial patterns of the loadings (X 100) of 
the first December-February Seasonal rainfall RPC.

Figure 17b: The spatial patterns of the loadings (X 100) of
the second December-February seasonal rainfall RPC.
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Figure 17c: The spatial patterns of the loadings (X 100) of 
the third December-February Seasonal rainfall RPC.

Figure 17d: The spatial patterns of the loadings (X 100) of
the fourth December-February seasonal rainfall RPC.
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Figure lie: The spatial patterns of the loadings (X 100) of 
the fifth December-February seasonal rainfall RPC.

Figure 17f: The spatial patterns of the loadings (X 100) of
the Sixth December-February Seasonal rainfall RPC.
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Figure 17g: The spatial patterns of the loadings (X 100) of 
the Seventh December-February Seasonal rainfall RPC.

Figure 17h: The spatial patterns of the loadings (X 100) of
the eighth December-February seasonal rainfall RPC.
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3.4 STABILITY OF THE DERIVED RPC PATTERNS
In this section the stability of the RPC inodes derived 

from the intermonthly and seasonal OLR and rainfall records 
are discussed. Figure 18a gives the spatial patterns of the 
correlations between the 17th OLR gridpoint (figure la) , 
which is located at 5°S 32.5° E over Southern Tanzania, and 
the other East African OLR grid points for the intermonthly 
OLR records. The spatial patterns of the correlations 
closely resemble the patterns of the loadings of the RPC mode 
which was dominant over southern Tanzania (figures 8a, 9b and 
12a) . Similar results were obtained with the other grid 
points (figures 18b and 8b together with 18c and 8c).

T

Examples of the patterns of the interstation 
correlations are given in figure 19 using intermonthly 
rainfall records. Similarities between the spatial patterns 
of interstation correlations and the corresponding rainfall 
RPC modes are still evident from figures 19a and 13a, 19b and 
13b, 19c and 13c, 19d and 13d, 19e and 13e together with 19f
and 13 f.

The close similarities between the patterns of the 
spatial correlation maps and those of the dominant RPC modes 
confirm that the RPC patterns observed in the previous 
sections were stable and physically realistic.

Detailed results from correlation analysis are 
discussed in the next section.
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other grid points and the seventeenth grid point.

otho^S °^R inter<3rid point correlations between th°ther grid points and the fifteenth grid point
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Figure 18c: OLR intergrid point correlations between the 
other grid points and the first grid point.
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Figure 19a: Interstation correlation between the other 
rainfall stations and Makindu Meteorological Station.

♦

Figure 19b: Interstation correlation between the other
rainfall stations and Malindi Meteorological Station.
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Figure 19c: Interstation correlation between the other 
rainfall stations and Kitale Meteorological Station.

Figure 19d: Interstation correlation between the other
rainfall stations and Nairobi Water Station.
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Figure 19e: Interstation correlation between the other 
rainfall stations and Mandera Meteorological Station.

Figure 19f: Interstation correlation
rainfall stations and Port Victori

between the other 
Rainfall Station.
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3.5 RESULTS FROM CORRELATION ANALYSIS
In this section the correlations between OLR and the 

Meteorological variables are independently discussed for the 
four standard seasons namely March-May, June-August, 
September-November and December-February.

3.5.1 CORRELATIONS BETWEEN OLR AND RAINFALL
The results from t-test indicated that correlation 

values ^0.48 were statistically significant. Figure 20 
gives the spatial patterns of correlations between point OLR 
and rainfall records during the various seasons. The spatial 
patterns of correlations during the major rainfall season 
(March-May) are presented in figure 20a using the peak 
rainfall month of April. It is evident from figure 20a that 
although there were significant correlations between point 
OLR and rainfall records, the values were generally small. 
The largest correlation value of 0.77 was observed at Lamu. 
The smallest correlation values were observed over Central 
and Northern Rift Valley regions. Both regions have strong 
influences of thermally induced Meso-scale circulations 
associated with the complex regional topography which include 
the Great Rift Valley and Mt. Kenya.

OLR is a good measure of tropical convection. As has 
been noted earlier in the text, March-May (long-rainy) is the 
major rainfall season of Kenya. The small correlation values 
which were observed at most of the locations during this 
season is an indication of the complex nature of the patterns 
of convective rainfall systems over Kenya during this season. 
The complexity of rainfall characteristics during the season



105

have been observed by many authors including Ogallo (1989). 
The regional systems like topography, land/sea breezes and 
other thermally induced Meso-scale systems have significant 
modifications on the large scale monsoonal wind systems. 
Such small scale convective phenomena may also not be 
represented effectively by twice daily NOAA polar Orbiting 
Satellite Observations.

Figures 21, 22 and 23 give the spatial patterns of 
correlations between the various OLR grid points (figure lb) 
and rainfall areally averaged over the various homogeneous 
climatological regions during the various seasons. Figure 21 
indicates that the magnitudes of correlations were generally 
larger when compared with the point correlation values. The 
largest correlation values for the various regions ranged 
between 0.55 and 0.90. The largest correlation value of 0.90 
was observed in climatological region 2 (figure 21a) It is 
also evident from figure 21 that rainfall from some 
climatological regions were strongly correlated with OLR 
records while others, especially those located in the 
neighbourhood of large water bodies and with complex 
topography, had relatively small correlation values.

Examples of the patterns of correlations which were 
obtained when both OLR and rainfall records were areally 
averaged are given in figure 24 for the various seasons. 
Both OLR and rainfall records were averaged over 2.5° x 2.5° 
latitude/longitude squares located over Kenya as shown in 
figure lb. It can be seen from figure 24a that the values of
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correlations during long-rainy season ranged between 0.38 and 
0.89. The largest correlation values are still observed over 
the eastern and north eastern Kenya.

A general comparison of figures 20a, 21 and 24a 
indicates that the values of correlations obtained with areal 
records were generally larger than those obtained with point 
records. The improvement in the relationships between 
infrared satellite data and rainfall with increasing spatial 
and temporal averaging scales has been noted by Richards and 
Arkin (1981).

Areal averaging is capable of minimizing the effects of 
errors which may exist in the records and localized factors 
which introduce spatial differences in the patterns of 
correlations.

The results for the OLR and rainfall correlations 
during September-November (short-rainy) season are given in 
figures 2 0b, 22 and 24b as represented by the month of 
November. The rainfall for this season is centred around the 
month of November. It is evident from these figures that the 
correlation values for short-rainy season were generally 
larger when compared to the values which were obtained for
long-rainy season. Better correlations between rainfall and

(
synoptic systems during short-rainy season have also been 
observed by Ogallo (1989) and Nyenzi (1990). The largest 
correlation values for both point and areally averaged 
records ranged between 0.86 and 0.97.

The spatial patterns of correlations between OLR and 
rainfall during June-August season as represented by the 
month of July are shown in figures 20c, 23 and 24c. This
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season is generally dry except for Western Kenya, Lake 
Victoria regions and parts of the coastal areas. The Western 
parts of Kenya are under the influence of the moist Congo 
airmass during this season. The figures show that
correlation values were generally small for both point and 
areally averaged records. The largest correlation values 
were centred around the northern coastal areas where Lamu had 
a peak value of 0.60.

The relatively small values of correlations which were 
observed over western and coastal areas during June-August 
season can be attributed to the complex patterns of regional 
systems during this season. Unlike the long-and short-rainy 
seasons when the country is under the influence of the ITCZ, 
rainfall during this season is generally associated with 
large water bodies whose land/sea breeze may not be 
represented effectively by twice daily NOAA polar orbiting 
satellite measurements. The other dominant regional systems 
during this season are the East African low level jetstream 
(along the coast) (Findlator, 1968) and Congo/Zaire airmass 
over Western Kenya (EAMD, 1962; Trewartha, 1961; Henderson, 
1949) . The convergence in the southerly winds course 
substantial rainfall over the coastal areas during this 
season (EAMD, 1962).

During December-February season, most parts of the 
country are dry. Only areas near Lake Victoria and the 
Indian Ocean receive substantial rainfall. Correlation 
values observed over the relatively wet areas were generally 
small for both point and areally averaged records. The
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Figure 20a: Correlations between point OLR and rainfall 
during April.

Figure 20b: Correlations 
during November. .. ec pcmc OLR and rainfall



109

Figure
during

20c: Correlations between point OLR and rainfall 
July.
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Figure 21: Correlations between regional areal rainfall 
during April and OLR at: (21a) grid point 3 (21b) grid point

Figure 22:Correlations between regional areal rainfall during 
November and OLR at (22a) grid point 3 (21b) grid point 4.



r

Figure 23: Correlation between regional areal rainfall during 
July and OLR at grid point 13.
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largest correlation values were observed in the coastal 
areas.

It may be concluded from these results that 
correlations between OLR and rainfall were statistically 
significant in some seasons and locations. The correlation 
values were highest for areally averaged records and during 
September-November season.

3.5.2 CORRELATIONS BETWEEN OLR, AND RAIN-DAYS, MOISTURE
BUDGET, CLOUD COVER, INCOMING RADIATION AND SURFACE 
TEMPERATURE

Good temporal distribution of rainfall is vital for 
rainfall dependent activities. The total number of rain-days

T

reflect the general spread of the total rainfall received 
during the month. On the other hand, the moisture budget, 
expressed as the difference between rainfall and evaporation, 
gives an indication of the moisture available for convective 
development. Large and positive moisture budgets are 
expected over active convective areas (Morrissey, 1986).

It should also be noted that the clouds, which have a 
maximum influence on OLR, are good indicators of centres of 
active convection. The incoming radiation and surface 
temperature, however, reflect the amount of solar energy 
available for convective developments.

It had been noted earlier in the text that June-August 
and December-February seasons are generally dry over most 
parts of Kenya except for areas near large water bodies. 
More emphasis will, therefore, be put on the relationships 
during the major rainfall seasons, March-May and September-
November.
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The results from t-test indicated that correlation 
values ^0.48 were statistically significant. Figures 25 -29 
give the spatial patterns of correlations between OLR, and 
rain-days, moisture budget, cloud cover, incoming radiation 
and surface temperature, respectively, during the various 
seasons.

It is evident from figure 2 5a that the values of 
correlations obtained with the number of rain-days during 
long-rainy season, which was represented by the peak rainfall

t

month of April, were generally small especially over the 
highly convective western parts and coastal areas which 
normally have large numbers of rain-days. These areas have 
strong diurnal cycle in convection which may not be 
effectively represented by twice daily OLR satellite 
observations. The local satellite crossing times (which have 
varied between 2.00 and 9.00 am/pm for morning/ afternoon 
observations respectively (Janowiak et. al, 1985)) may not be 
able to represent accurately the strong diurnal cycle in 
convection over these areas. Significant correlations were, 
however, observed over most of the dry areas.

During short-rainy season, whose rainfall is centred 
around the month of November, significant correlations were 
observed over most parts.of the country (figure 25b). The 
largest correlation values were observed over the western
parts. The largest correlation values of 0.84 and 0.89 were

✓
observed at Dagorretti and Kitale for long-and short-rainy 
seasons, respectively.

Correlations between OLR and moisture budget records 
are given in figure 26 for the two manor rainfall seasons.
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The relatively small correlation values over the highly 
convective western parts during long-rainy season are quite 
evident from figure 26a. Relatively small correlation values 
were also observed over the coastal area. Large correlation 
values were again centred over the relatively dry areas where 
moisture availability and large-scale convergence are 
dependent on the convergence of South easterly and north 
easterly monsoonal wind systems associated with the regional 
location of the ITCZ. It should also be noted that clouds 
over dry areas have stronger longlived updrafts which lead to 
higher maximum rain rates and steeper drops in brightness 
temperatures than in moist areas (Simpson et al., 1988). ,

Over the western and coastal areas, sea lake/land 
breeze, Katabatic/Anabatic winds, westerly incursions of 
moist air from the Atlantic and Congo/Zaire basin and other 
thermally induced meso-scale systems interact to produce 
strong but complex spatial and temporal variations in 
regional convective patterns. Such complex variations and 
the associated strong diurnal cycle in convection may not be 
effectively represented by twice daily NOAA polar orbiting 
satellite observations. It can, however, be seen from figure 
26b that relatively large correlation values were observed at 
most locations during the short-rainy season as in the case 
of the number of rain-days. The largest correlation value of 
0.89 was observed at Voi during the short-rainy season.
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Figure 27 gives the spatial patterns of correlations 
obtained with cloud cover during the various seasons. The 
figure shows that the correlation values were still generally 
small especially over the highly convective western parts and 
coastal areas during all the seasons. Relatively large 
correlation values were again observed over the relatively 
dry areas. The largest correlation value of 0.84 was 
observed at Narok during short-rainy season (figure 27b). 
The small correlation values over the western and coastal 
areas may be attributed to the limitations of polar orbiting 
satellite observations to effectively represent the strong 
diurnal cycles in convection over these areas. '

The spatial patterns of the correlations obtained with 
the incoming radiation during various seasons are given in 
figure 28. The patterns are generally similar to those which 
were obtained with the previous variables. The western parts 
and coastal areas are still having relatively small 
correlation values. These areas are frequented with 
cloudness which greatly influence the incoming radiation 
(Trewartha, 1968).

Figure 29 gives the spatial patterns of correlations 
obtained with the surface temperature during March-May and 
September-November seasons. The figure shows that the values 
of correlations were small at most locations. The largest 
correlation value of 0.72 was observed at KARI Muguga during 
the long-rainy season (figure 29a). All the correlation 
values during June-August and December-February seasons were 
insignificant.
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2 5a:

Figure 25: Correlations between
(25a,) April (25b,) November. point-OLR and raindays during
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Figure 26: Correlations between point OLR and moisture budget
during (26a) April (26b) November.



119
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Figure 27a: Correlations between point OLR and cloud cover 
during April.

Figure 27b: Correlations between point OLR and cloud cover
during November.
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Figure 27c: Correlations between point OLR and cloud cover during July.
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Figure 28b. Correlations between point OLR and the incoming
radiation during November.
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Figure 2Sd: Correlations .jetween point OLR and the Incoming 
radiation during January.
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Figure 29: Correlations between point OLR and surface
temperature during (29a) April (29b) November.
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The weak relationships observed with the surface 
temperature may be attributed to the complex characteristics 
of maximum and minimum temperatures under cloudy conditions. 
The cloudiness has the effect of reducing the diurnal 
temperature range (Trewartha, 1968). It should also be noted 
that OLR has no direct information on the earth surface under 
overcast conditions (Pearson and Stogaitis, 1989).

It may therefore be concluded from this section that 
relationships between OLR and the Meteorological parameters 
were quite weak over Kenya especially in the western parts, 
near large water bodies and over regions with complex 
topographical patterns. The highest correlation values were 
concentrated over the relatively dry parts where moisture 
availability and large scale convection are totally dependent 
on the convergence of the monsoonal winds, and drops in cloud 
brightness temperatures are steep (Simpson et al., 1988). 
Significant correlations between OLR and the Meteorological 
variables were, however, observed during September-November 
season.

In the next section an attempt will be made to develop 
regression equations which may be used to describe the 
functional relationships between OLR and the various 
Meteorological variables.
3.6 RESULTS FROM REGRESSION ANALYSIS

It was observed in the previous sections that 
relationships between OLR and Meteorological variables were 
generally weak during all seasons in most areas apart from 
the relatively dry parts and during September-November
season. The correlation values which were observed over
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western and coastal areas during long-rainy season were less 
than 0.48. This indicates that OLR accounted for less than 
25% of the variance of most of the meteorological variables 
used in the study. It was further observed that the 
correlation values were generally larger when areal records 
were used. The regression equations discussed in this study 
will, therefore, be limited to seasons which had significant 
correlation values between OLR and meteorological variables.

The regression equations obtained with the various 
meteorological variables are given in tables 6 and 7. It can 
be seen that the constants (a) had confidence levels above 
95% in all cases apart from two cases involving the incoming 
radiation. The results from the analysis of variance (ANOVA) 
indicated that all values of the slopes (b) were significant 
above 95% confidence levels. The tables also show that only 
the incoming radiation, which is positively correlated to 
OLR, had positive slopes.
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Table 6: Regression Equations obtained with Rainfall during
various seasons

SEASON Averaging Constant 
Area

(a)+ve Slope (b)-ve
VR

VALUE C.L VALUE C.L %

SEPTEMBER- REGION
NOVEMBER 1 515 >99 1.85 >99 53

2 1126 >99 4.09 >99 74
3 2018 >99 7.29 >99 81
4 1588 >99 5.81 >99 74
5 1740 ‘ >99 6.33 >99 76
6 920 >99 3.21 >99 66
7 1870 >99 6.20 >99 42
8 2087 >99 7.28 >99 94
9 1733 >99 6.30 >99 77
10 1107 >99 4.01 >99 79
11 1024 >99 3.90 >99 71
12 1132 >99 3.97 >99 83

SQUARE
I 1129 >99 4.18 >99 74

II 1272 >99 4.56 >99 61
IV 1574 >99 5.83 >99 71

MARCH-MAY REGION
1 789 >99 2.97 >95 36
2 1102 >99 4.15 >99 81
4 780 >99 2.20 >95 55
5 789 >99 2.77 >99 49
6 751 >99 2.56 >99 61
8 1210 >99 4.10 >99 59
9 1304 >99 4.78 >99 61
10 657 >99 2.43 >99 67

SQUARE
I 749 >99 2.61 >99 62
II 827 >99 2.91 >99 79
III 1220 >99 4.52 >99 48

JUNE-AUGUST REGION
3 271 >99 0.92 >99 49

SQUARE
I 975 >99 5.53 >95 35
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Key: C.L : - Confidence level
V R : - Maximum variance which can be explained 

by the regression equation

Table 7 : Regression Equations obtained with the other
Meteorological variables.

SEASON STATION VARIABLE CONSTANT (a) COEFFICIENT(b) VR
VALUE C.L VALUE C.L %

SEPTEMBER- 9037016 RN 91.5 >99 -0.30 98 38
NOVEMBER 9136158 RN 66.6 >99 -0.23 98 42

8935181 RN 102.0 >99 -0.39 98 46
8739000 RN 58.1 >99 -0.20 >99 44
8834098 RN 84.3 >99 -0.32 >99 79
9034025 MB 1369 >99 -6.08 >99 52
9135001 MB 935 >99 -4.34 >99 55
9237000 MB 3129 >99 -12.5 >99 69
9338001 MB 1901 >99 -7.84 >99 79
8840000 MB 1475 >99 -6.07 >99 77
9338001 CC 13.1 >99 -0.03 98 44
8737000 CC 19.2 >99 -0.05 >99 48
9135001 CC 19.2 >99 -0.06 >99 71
9136164 RD -255 90 +2.80 >99 53
9135001 RD -620 95 +4.43 >99 66
8937065 RD -470 90 3.59 >97 50

MARCH-MAY 9136158 RN 55.5 >99 -0.18 >99 53
9136164 RN 71.1 >99 -0.26 >99 71
9237000 RN 62.2 >99 -0.22 >99 45
9137000 RN 93.5 >99 -0.32 >99 67
9035279 MB 699 >99 -2.98 >99 49
8937000 MB 1358 >99 -5.98 >99 53
9237000 MB 1144 98 -4.98 98 42
9338001 MB 687 98 -3.30 98 45
8840000 MB 1345 >99 -6.03 >99 59
9136164 RD -163 75 +2.54 98 44
8937065 RD -797 >99 + 5.28 >99 86

DEC-FEB. 8937065 RD -1131 >99.5 + 6.81 >99 79
8639000 RD -633 95.0 + 3.96 >99 64
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KEY:
RN: Rain - Days, MB:- Moisture Budget, CC: Cloud Cover
RD: Incoming radiation
CL: Confidence level
VR: Maximum variance which can be explained by the

regression equation.

Table 6 further shows that during the short-rainy 
season OLR regression equations accounted for more than 60% 
of rainfall variance at all locations with exceptions of 
regions 1 and 7. It was observed in the previous section 
that correlations value for regions 1 and 7 were 
approximately 0.73 and 0.65, respectively. The maximum 
variance accounted for by the regression equations during 
this season was 94%. It is also evident from table 6 that in 
general OLR based regression equations accounted for
relatively low percentage of rainfall variance during the 
long-rainy season.

The correlation coefficients for the dry seasons of 
June-August and December-February were generally not 
significant. No regression equations were derived for these 
dry seasons.

Table 7 shows that the maximum variance of the 
meteorological variables were again accounted for by the 
regression equations during September-November season. In 
general, however, the regression equations accounted for 
lower proportions of the variance for most of the 
meteorological variables. Tbe relationships between OLR and
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these meteorological variables were even poorer during June- 
August, March-May and December-February seasons. The 
incoming radiation, however, had significant relationships 
with OLR during the dry December-February season. This may 
be explained in terms of close relationships between OLR and 
the incoming radiation in clear sky conditions.

It may be concluded from the result from this section 
that useful estimates of meteorological variables can be 
derived from OLR records, especially for rainfall over 
certain locations and seasons. OLR, however, accounted for 
between 50 and 79% of rainfall variance in most cases. The 
highest variance of the meteorological variables was 
explained during September-November season.

3.7 SUMMARY AND CONCLUSIONS
The objective of this study was to determine

relationships between OLR and several meteorological 
parameters using correlation and regression analyses. PCA 
was further used to study the spatial and temporal 
characteristics of OLR and rainfall.

It is evident from the results of the study that 
significant correlations existed between OLR and the various 
meteorological variables. Weak correlations were, however, 
observed between point records especially over areas with 
complex orographic patterns, Lake Victoria and coastal 
regions. Improvement on correlation values were observed when 
areal records were used.

The largest correlation values which were obtained with 
point and areal rainfall records were 0.88 and 0.97
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respectively. Similarly the largest correlation values which 
were observed between OLR, and rain-days, moisture budget, 
cloud cover, incoming radiation and surface temperature were 
0.89, 0.89, 0.84, 0.93 and 0.72 respectively. The surface 
temperature had the weakest correlations at all stations and 
seasons.

In general, the OLR had the best relationship with all 
meteorological variables during September-November season.

The patterns of mean OLR values indicated large spatial 
and temporal fluctuations similar to those of centres of 
active convection. In most seasons the 240 WM OLR isoline 
generally corresponded to the monthly total rainfall of 50mm. 
The maximum OLR values were, however, concentrated over the 
relatively dry areas while the lowest OLR values were 
concentrated over the highly convective regions.

The results from PCA revealed some similarities in the 
spatial and temporal characteristics of OLR and rainfall. 
Three (3) and six (6) spatial modes were dominant in the 
intermonthly OLR and rainfall records throughout the year, 
respectively. The three dominant OLR RPC modes accounted for 
about 89% of OLR variance over East Africa while the six 
rainfall RPC modes accounted for only 75% of rainfall 
variance over Kenya. This difference may be an indication of 
the complex nature of the spatial rainfall characteristics. 
The PCA results also revealed that some RPC modes were unique 
for some seasons and regions.

The maximum number of significant seasonal OLR RPC 
modes, based on Kaiser's criterion were three, four, six and 
four for the March-May, September-November, Tune-August and
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December-February seasons respectively. The significant RPC 
inodes accounted for over 86% of seasonal OLR variance in all 
seasons.

Similarly, the maximum number of significant seasonal 
rainfall RPC modes were seven, six, eleven and eight which 
accounted for over 80% of seasonal rainfall variance during 
the respective seasons. The seasons with the best and worst 
spatial coherence in both rainfall and OLR patterns were 
September-November and June-August seasons respectively.

Results from regression analysis indicated that useful 
estimates of meteorological variables can be derived from OLR 
records, especially rainfall over certain locations and 
seasons. OLR, however, accounted for between 50 and 79% of 
rainfall variance in most cases. The highest variance for 
the meteorological variables were explained during September- 
November season.

Data availability is one of the major problems in the 
region. The results from this study provide relationships 
between OLR and various meteorological variables which may be 
used to derive useful meteorological information from OLR in 
the absence of the standard meteorological observations.

3.8 SUGGESTIONS FOR FUTURE WORK
The mean OLR maps presented in this study were based on 

only thirteen (13) years of OLR records. WMO requires all 
climatological statistics to be based on at least 30 years of 
continuous records. One of the major future task is to 
determine whether the statistics obtained with the currently
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available data will be the same when the long period records 
become available in future.

While March-May and September-November are the major 
rainfall seasons of the region, PCA, correlation and 
regression analyses revealed that OLR and meteorological 
variables have the best relationships with the synoptic 
systems during September-November season. The differences in 
the patterns of the relationships between OLR and the 
meteorological variables during the two seasons need further 
investigation.

The OLR data used in this study was obtained from polar 
orbiting satellite, which observe a point only twice daily; 
These may have limitations especially regarding temporal 
resolutions. The performance of the methods which use data 
from geosynchronous satellites should be investigated.

It is well known that there is some timelag between the 
observed strong convections and the raingauge records. The 
use of continuous hourly records could also enable lagged 
relationships between OLR and rainfall to be determined.

The single parameter models, like the ones derived in 
this study, may not be able to incorporate all the 
characteristics of the meteorological variables. The
performance of the methods which utilize satellite data from 
more than one channel (multispectral) needs some 
investigation. The skills of the methods which use microwave 
radiation data may also be investigated.

It should, however, be noted that despite the 
simplicity of the method used in this study, which considered



only the OLR as the predictor, the results obtained seem to 
be very reasonable.
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