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Abstract

It is important that a consumer get the quality of a product she/he wants.
Consequently, the quality of a finished product should be controlled to a desired
level. This is done through statistical quality control. We have Univariate process
control and multivariate process control. In the first case, one is interested in
controlling one quality characteristic of a product, whereas in the second case,
one is interested in controlling more than one quality characteristics of a product.
This project deals with both cases with special emphasis on the second.

Finally, we have looked at multivariate process control using the method of
principal companent analysis.
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Ihapter 1

INTRODUCTION

1 Statistical quality control charts.

:ne best a manufacturer can do is to find out the causes of variability in the product
Ind device means to control each contributing factor within appropriate limits,
hereby controlling the quality of the product. This has to be done since the products
should have the quality the consumer expects as the progress of an industry
depends on the successful marketing (elling) of quality products. This is done by
quality specifications from the arrival of raw materials, through their processing to
the final product. However, complete elimination of the assignable causes of
variation may not always be possible or even if possible, it may be uneconomical.
Thus, statistical quality control is a system of planned collection and use of data for
detecting causes of variation in the quality of a product. More specially it is a system
of variation and maintenance of a desired level of quality by careful planning, using
proper equipment, and controlling inspection and by taking corrective action where
necessary. This is a most powerful productivity technique for effective diagnosis of
lack of quality (lack of conformity to settled standards) in any of the materials,
process, machines or end products. Statistical quality control therefore consists of
techniques which help in the separation of the assignable causes from chance causes
of variation thus signaling whenever assignable causes of variation are present in a



process. To achieve this stated aim statistical quality control has three main
objectives:

() It defines a goal or standards which the manufacturer may strive to
achieve (Specification),

(i) Itserves asan instrument for attaining the defined goal (production),

(1) 1t serves as a means of judging whether the goal has been achieved

12 Setting limits on control charts

In order to exercise control over a process, we set limits on the variability due to
chance occurrences. This is done by the use of control charts. If w is a sample
statistic that measures some quality characteristic of interest with mean xw and

standard deviation 6w then the control chart limits proposed by Shewhart (1931)
are given by
UCLWE pwtk5w
CLWEpw (1)
LCLw=pw-Kks,
where
UCL wlenotes the upper control limit
CLwis the central ling,
LCLwis the lower control limit

k 15 the distance of the central line from the control limits.



When k=3, the control limits represented by (L1) are called Shewhart 3-sigma limits,
To apply these limits, a random sample of size n from a production process is taken
at reqular intervals. The relevant sample statistic is computed for each sample and
plotted on a control chart with limits as in figure 1.1. The pattern of the plotted

points on the control charts indicates whether the process is in control or otherwise
In relation to the control chart limits.

Shewhart control chart

Sample of observation in order of production
Figure 1.1
When a sample statistic w falls outside the control limits or when eight consecutive

samples points plot above (or below) the central line, the process is said to be out of
control,otherwise it is in control.

/



1.3 Types of control charts
Control charts can be classified into several types. Here, we briefly mention three
types. The first type control charts are for variables which are used when the quality

characteristics are measurable . These charts include the X-chart, R- chart, S2- chart,
S chart and the moving average chart. The second type is the control charts for
attributes. These charts are used for quality characteristics, which can be observed
only as attributes classifying an item as defective or non-defective (conforming or
not conforming to specifications). The P-chart and the C-chart are used in this case.
The third type is the cumulative sum (CUSUM) control chart that is used primarily
to maintain the current control of a process when detection of a small shift in the
process is of interest.

In the next three sections, we shall briefly discuss some of the univariate control
charts mentioned above.

1.3.1. X-control chart

The X-chart monitors variability between sample sub-groups. Samples of size n are
drawn from a production process and the sample means of the relevant quality

characteristics are calculated. The means are then plotted on the X-Chart. If we set
the type 1 error of the test to be, saya =0.0027, then k = 3and the 3-sigma limits of

the X- chart are given by



UCL =p+36/ yfn
CL=p 12)
LCL=p-35/

The control status of the process is then determined as in figure L1

Generally, p and 6 are unknown and are estimated from preliminary samples taken

when the process is believed to be in control.

1.32. R-control chart

If the measure of interest is the variance (52 of the quality characteristic, several
different control charts can be used. All of these control charts assume that random
sample of size n is available and the characteristic is normally distributed. The range
chart (R-Chart) Is used to monitor process dispersion for small sample sizes (rEIQ).

If X(jbe the ) observation in the ih for (j=I,2,....,n;i=l.2,....,m) then the i-sample

mean is given by

X, ='Zx.'n
and the grand mean is given by

X =YJLx1Inm
_ | * "TM
The 1hsample range is given by
R(=max (xy)- min (xy) for i=l,2,....,m >



Similarly, the average sample range Is given by

R="Ri[m

it can DB shown that E(R) =Sod 2 anc*var(R) =0 =S(0"
Where o is the standard deviation of the sample characteristic assumed to be
|cnown and since most of the distribution of R is within the interval E (R) +3 [var
(R)] the control limits for the R-Chart are given by

UCL = g0 [d2+ 3ch] =DSo

CL =SDz2 (13)

LCL = s0 [0 3da] = Daso
A 3-sigma R-chart is as in figure 1.2

R-Chart

Sample lots in order of production
Figure 1.2

Sample range falling outside the control limits implies that the process is out of
control, otherwise it is in control.



1.3.3. S- control chart

If n>10, the range method for estimating 5o loses efficiency and we have to resort to
the standard error chart (S Chart) which also monitors process dispersion and
variability within sample units. The 3-sigma control limits for the S- chart are given

by
UCL, =50(Q+ 3V(l-02) =Bseo

CL, =60Ca (14)
LCL, =80 (0 +3V(1- C4)) =Bsbo

A 3-sigma S-Chart is shown in figure 1.3

S-Chart

Standard
Error S

Figure 13



U.4 S2-control chart

This chart also monitors dispersion of a product. It is based on the sample variances.
Here we assume that the sample characteristic is normally distributed. Since

(n) S2/ Sq has a chi-square distribution with (n-1) degrees of freedom, it follows
that
P Baxana ()] (n-l) <S2<62x2 (n-1), @a) [ (n-1)] = 1-0
The control limits for the S2-chart are then given by
UCL=52xn, (ai2) [ (ne) (19)
LCL =8 2 xan, (1-ar2)! (nel)
Guttman, Wilks and Hunter (1965) have pointed out that it is customary to use only

an upper control limit, since the chi-square distribution is always positive. The
upper control limit is given by

UCL =52X%n-1a/(n-I)

Therefore, S2-chart is equivalent to the tests involving simple hypothesis against a
simple alternative involving 52

Ho52=62
against
H, :62%52
The critical regions for this test are the regions above the UCL and below the LCL as
in (L5) ' f"



Y\& note that, it Is customary to constructing the charts for monitoring process
dispersing 1. the R- Chart, S- chart and S2-Chart. If any of these charts indicate that

the process is in control, we construct the X -chart, which monitors variability
between samples. If on the other hand the charts for monitoring process dispersion

Indicate the process Is out of control, we do not need to construct the X-Chart.

14 Problem statement

No two objects are identical. Items produced in large quantity under the same
operating conditions will differ in quality upon inspection. This variability may be
due to chance or assignable causes. Chance causes are variations brought about by
Interacting factors which are random in nature and can neither be predicted nor
controlled. Assignable causes on the other hand are variations resulting from
multiplicity of factors e.g. defective or sub-standard raw materials, new operation,
Improper handling and setting of machines, mechanical defects e.t.c. Therefore in
view of this the assignable causes can be identified, controlled and possibly
eliminated where possible. When the variability of the product is only due to chance

causes, the process Is said to be under control (in control) otherwise it is out of
control.



Chapter 2

multivariate process control

21 Multi -characteristic control charts

There are many situations in which it is necessary to simultaneously monitor two or
more correlated quality characteristics. Such problems are referred to as multivariate

quality control problems. To be able to monitor two or more correlated quality
characteristic we normally use multi-characteristics control charts.

2.2 Literature Review

The development of multi-characteristic control charts is necessarily based on
Hotelling T2control charts. Hotelling (1974) proposed the use of the A-random
variable in a control chart setting for the testing of bombsights although he did not
actually use %@-control charts because the covariance matrix (Z0) was unknown.
His papers are primarily devoted to the case for Zo unknown. A fundamental
assumption in the development of the j 2-control chart Is that the underlying
distribution of the quality characteristics is multivariate normal.

Ghare and Torgerson (1968) discussed the use of a multi-characteristic control
chart referred to as the Q-control chart to monitor the central tendency of a number
of measurable quality characteristics on one control chart. The quadratic form of the
multivariate normal distribution has chi-square distribution. Thus, ah appropriate

10



confidence region can be defined and a control chart constructed to monitor the
stability of the pattern of variation of variables. As a special case of the Q-
control chart, a bi-characteristic control chart was developed to identify the
presence of a single assignable cause of variation. The Q-control chart Is
particularly effective when two or more quality characteristics are
correlated. This is because the use of separate control charts to individually
monitor each quality characteristic separately suffers from the weakness of
Ignoring the correlation between the variables which affects the type | error.
Therefore in this case, we might erroneously conclude that a process is out-
of-control when it is actually in control.

Montgomery and Klatt (1972) developed an appropriate model for the
economic design of Hotelling T2-control chart to maintain quality control for
two or more related variables. They assumed that the process is subject to
occurrence of a single assignable cause of variation and the time between
occurrences has an exponential distribution. In order to formulate the cost
function, they assumed that the state of the process (in control or out-of-
control) is detected exactlyv at the same time a particular sample is drawn.
This assumption underestimates the cost-function when the sample size is
exceptionally very large and the inspection procedure is complicated. A two-
stage grid search was used to find the optimal parameters of the Hotelling
control chart (T2-control chart). Montgomery and Klatt (1972) presented a
cost model for a multivariate quality control procedure to determine the



optimal sample size, sampling frequency and control chart for the sample
means constant.

Montgomery and Klattt found that by minimizing the average run
length (ARL) of an out-of-control process for a large fixed valued of the ARL
of an in-control process, we can determine the sample size (n) and the
control chart constant (/2pa when there are two correlated quality

characteristics, where p is the number of variables and a is the size of type |
error) thus

()  For a large positive correlation, (po>0), a large sample size is
needed to detect large positive shifts in the sample means than
small positive shifts. (p0 is the correlation between the two
variables)

()  Alarger sample size is required to detect shifts for p0>0 than
for p0<o.

/

Jackson (1980) presented an overview of principal components and its
relation to quality control. Alt and Smith (1988) have given an excellent
review of the multivate process control methods.

12



2.3  Multivariate control charts

To illustrate the need for multivariate control charts, consider a
manufacturing plant where the product is a plastic film. Let the usefulness
of the film depend on its transparency (x,) and its tear resistance (x2)

Further assume that the two quality characteristics are jointly distributed
as bivariate normal and the standard values are

|Joi, Poz, s1 and so2 With a correlation  between these two characteristics.
We can therefore display these values as follows:

M): Pg 2.1
£ 0: /a 02 (2 2)
pAAR O

where Eois the covariance matrix.

A sample of size n is drawn from the process at reqular intervals and
measurements of both variables x, and x2 are obtained.

If we focus our attention on monitoring the process means, one way of doing
this is to ignore the correlation between the characteristics which results to
type Lerror and monitor each process mean separately. For each sample of

13



size n we take an unbiased estimate of juoi which is denoted by Xi and plot

It against sample lots on an X-chart with the limits
UCLi = poi + 380i/V/n
CLi = poi (2.3)
LCLi = poi- 380i/Vn

Here, 3-sigma limits developed by Shewhart [1931] are used to determine
the control limits for the first quality characteristic.

Another X-chart is also set up to monitor the process mean of the tear
resistance variable (x2).
The control limits are thus given by
UCL2 = P + 3802/ W
Cl2 =P (24)
LCL2 = P 3802/ VI

14



X-chart for variable x, (i=l, 2)

UCL= fi+ 380NV

CL=|id
Sample Means

LCLi0d - il

Figure 2.1

If the mean of any sample lots falls outside the respective control limits or if
eight consecutive points falls above the central line, the process is said to be
out of control hence, there'is evidence of assignable causes of variation.



The Elliptical and Rectangular control Regions

X2 LCLxi UCLxi

Figure 2.3
If the pair of sample means falls within the rectangular control region, the
process IS considered to be in control otherwise it is out of control.

The use of separate control charts or the equivalent rectangular region
can be very misleading because when we ignore the correlation coefficient
between the variables will results to type | error. The appropriate control
region is elliptical in nature as in Figure 2.3 above. A processes considered

out of control if the pair of means (X ,, X 2) falls outside the elliptical region.

On the other hand, if we use the rectangular region, we may erroneously
conclude that both process means are in control which is demonstrated by

16



region A, one is out of control and the other in control denoted by region B
and both process means are out of control that is represented by region C.

In practice, individual, X-charts are used in conjunction with the
-chart to determine which process mean is out of control. When this is

dong, it IS recommended that the type | error of each one of the charts be
st equal to a/p where p is the number of variables and a is the overall type
lerror. For example when p=2 as in our case and a=0.0054, the type I error
of each chart will be set at 0.0027 which means 3-sigma limits are
computed as in equations (2.3) and (2.4).

In some instances, estimates of po and £o0 may be derived from such a

large amount of past data that these values may be treated as parameters
and not their corresponding estimates. Duncan (1974) states that the
values for the parameters could also be selected by management to attain
certain objectives. These are referred to as standard or target values. In a
case where there are no set values, (standard values) poand £o are usually

estimated from rational subgroups taken when the process Is believed to be
In control. In the sequel, control charts will be presented for both standards
given and values estimated. In both cases, we will employ two
characteristics for easy interpretation. These control charts will be referred
to as bivariate control charts which can be extended to more than two
characteristics.

17



2.4 Control charts for the process mean

In this section, the X-chart when a process has more than one quality
characteristic is considered. However, we will restrict ourselves to two
quality characteristics that can be extended to three or more quality
characteristics as we have mentioned above. The cases when [i0is known

and when it is unknown are considered.

2.4.1 Control charts for the process mean when p0is known

In the univariate case, the process has only one quality characteristic. |If
this quality characteristic is normally distributed with mean pQand

standard deviation s0, the probability that a sample mean will fall between

MZ"5,/Vn (29)
IS (1- @ where Z'y 1s such that
P(Z>Z") = al2 " (26)

This is the basis for the control charts presented in equations (2.3) and (2.4)
which were earlier discussed (univariate case). It is customary to use 3.0 in
place onr]as proposed by Shewhart (1931), which gives

a=0.0027. In case of sample mean X-plotting outside the control limits,
assignable causes of variation are sought.



Suppose random samples of a given size are taken from a process at

reqular intervals and an X-chart is maintained to determine whether or not
the process mean is at the standard value p0. This is equivalent to repeated

significance tests of the form.

HO: p=po

against
H: p~*Po

27)

Normally, the X-chart is used with upper and lower control limits.

Equivalently, we could use an X-chart with only upper control limits (UCL).
This is done by noting that

;- X-£(X)

(2.8)
IS distributed as a standard normal variable.
Here,

E [X] =p0and War (X) =50/Vn
which gives us

Z =\ [X-po]/s0] as the standard normal variable.
Thus

19



Z2 = \In [XJio] / 502 has a chi-square distribution with 1 degree of

freedom. The sample values of Zz are then plotted on a chart whose upper
control limit i

(29)
where / 23 Is the percentage point of a chi-square distribution on 1 degree
of freedom.

The x1-chart has the disadvantage of not being able to distinguish the runs
on either side of the mean. However, hypothesis testing based on j 2-chart

concept is important in that it provides the foundation for the extension of
the univariate control charts.

In the present set up the univariate null hypothesis in (2.7) will be
rejected If

.10,

Where
Xl =[Vh(X-M)SP - ntx-u.mjr'tx-u,) (2.11)
In quality control, rejection of Ho would imply that the process is out of

control. A natural generalization to a multivariate case Is.to reject the
hypothesis in equation (2.7)
It

2.12

20



~here

%0 = N[X-Ho] X0-, (X-u0) (213)
A denotes the (pxl) vector of samples mean and Zo IS a pxp variance-
covariance matrix
For p=2
%o -N(NPo) [(X Ho) 50 +(X2-p@)8

-2Pobar-, 8@ -1(X 1-maa)(X2-m(2)] (2.14)
Where p0 is the correlation coefficient between the two variables. Equation

(214) s that of an ellipse centered at (jj0 p® shown in figure 2.3. For

bivariate quality characteristics, a control region is the interior of such an
ellipse. In particular, a vector of sample means resulting in a point outside
the elliptical region indicates that the process is out of control. By
Bonferroni’s inequality, the probability that each process mean is at the
standard value Is at least 1-a.

The x2-chart has assoclated with It an operating characteristic curve or

equivalently a power curve. The power indicates the probability of detecting

a shift in the process mean on the first sample taken after the shift has
occurred.

IftMdenotes the power of the chat, then
n@A=Pr [x] >x],a\ (2-19)

Al



here %P denotes the non central chi-square random variable with p
degrees of freedom and non centrality parameter

A=n (lapo) Lo'Hp-Po)
por two quality characteristics

| A=n(l-p0) ((p,-p0) 6a +(42"w) de

-2 p0AQL" (2.16)
Afundamental assumption in the development of the %-chart is that the
underlying distribution of the quality characteristics is multivariate normal

242 Control charts for the process mean when p0is
unknown

Ifthe mean jro is unknown, it must be estimated from preliminary samples

taken when the process is believed to be in control. These preliminary
samples are referred to as rational subgroups. We shall denote by m the
number of subgroups. The standard values used In section 2.4.1 are
replaced by their unbiased estimates obtained from the m rational
subgroups. For example [adin equation (2.3) would be replaced by the
average of the sample means obtained from each rational subgroups and
any one of the several measures of variability would be used in place of 5a

*Hillier (1969) developed a two-stage procedure using probability limits for
determining whether the data for the first m subgroups come from a process

22



Aat Is In control and whether future subgroup data from this process
exhibit Statistical control.

For each of the m subgroups, a random sample of size n is obtained

and the (pxI) vector of sample means (Xi) is calculated so is the (PxP)
sample variance-covariance matrix (S,). If there is statistical control within

each subgroup then estimates of the process mean vector and the process
variance - covariance matrix are given by

Xi- LXijin and Si=Z(Xr Xi)2/(n-I)
therefore

X =LXi/m and 5=LSi/m

where Xiand Si denote the th sample mean and sample variance of the m
subgroups. The overall mean and variance of the m subgroups are given by

Xand Srespectively.

For known standard values of p and Z, the test statistic is given by equation
(213). Ifthe values of nand E are unknown, then they are replaced by their
unbiased estimates and the resulting statistics is
T20i = n(Xi-X)'S-HXi-X) ] (2.17)
fori=l,2,...m
where
T20,l follows the Hotellings T -distribution.
For two quality characteristics, equation (2.17) bechmes

23



T = (n/det (§) [X u-Xi)2S2z2+(X2lk X 22512
2(X U-X) (X2»-X2)Si2) (2.18)

Det (9 = Si2S2-Siz22

where
Si2=E Sai, i/m
S2=S Sxillm
Siz=LSi2i/m
It can be shown that T=0. is distributed as
Ci[m,n,p,]Fpmn-mp
where
omnmp 19 the F-distribution
and
Ci[mnp) = P m- [% (2.19)

To determine whether the process Is in control when the first m subgroups
are obtained, the mvalues of T20,1 are plotted on a chart with
UCU =Ci [m,n,p) Fpmn-tnpsia

:P m']l n']. Fp,mn-m-p+l,a ' (2.20)
(mn-m-p+1
LCLx =0

24



It T20., for one ormore of the m initial subgroups falls out of control, such
subgroups are discarded. Control limits are then recalculated using the

remaining subgroups. X and S are also recomputed and new control
limits are determined with (m minus the number of discarded rational

subgroups). Inthe case (p=l) equation (2.19) becomes
Ci(mnl) = (m-iun-ll = (m-le (n-1)
n-1

(mn-m) m (n-
therefore
UCLx = (irr}iIJFI,m(n-I),a (221)
and
T201 =n({- Xi2 (2.22)

S2
where Sz is the average of the sample variances obtained from each
subgroup.

Flmn), d=t2 m(n-l),az2
therefore

l-a =pr{(Xi- X)2/S2<[(m-1)/m) Am(m)a]

Pr[(Xi- X) V/(S2((m-1) fm) ) t{viale]

19 - pr{X - AWSz <Xi<X+A4VS/] *(2-23)
Where

Aa =V ((m-l)/m)trn(n-I),ar2 /
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Aus, the multivariate result reduces to the univariate one, hence the
Intervals for the individual characteristics are obtained by using

Aa = V((m- )/ mtm(n-l) a/2p
and for P =2, the upper and lower control limits for each variable are given
by

x tas \5,

2.5 Control charts for the process dispersion

In Multivariate situation, it is usually desired that the covariance matrix of
the process remains at a standard value LO. This is checked by taking a
random sample of size n and the value of some sample statistic I

determined from the (pxn) data matrix. Thus if S denotes the (pxp) sample
variance-covariance matrix.

v K
s3] s2
5. S, 18,

where the diagonal elements Su = Siz (i=1,2,.....p) are the sample variances
and the off diagonal elements SIS (i#j=l2,.1p) are the sample
covariance’s.
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por hivariate characteristics we get

Where
siz= g -2
Sp= 4 (2
Sa1= (X U* 41X#-1)

a2 ’(‘9‘*2* *2)

The sample correlation coefficient for the i* and j* variables is given by

Yij = Sij/SiS]
The generalized sample variance denoted by |S| is a commonly used scalar
measure of multivariate dispersion. For bivariate characteristics

| Sl = Si2S22-Si22= Si2522(|-122).
Johnson and Wichern (1982) pointed out that one of the properties of |S|
s that distinctly different covariance matrices can have the same
generalized variance. In view of the last property it is recommended that

any procedure based on |S| is to be accompanied by the appropriate
univariate procedures to monitor dispersion.
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2.5.1 Control charts for the process dispersion when £0is known
2.5.1.1 The |s| *-control chart when £0 Is known

The |S|™-control chart is the multivariate analogue of the S-chart. This
control chart makes use of two approaches. In the first approach, we make
use of the distributional properties of |S|12. For hivariate quality
characteristics, it can be shown that

2n-1) S| |EQ|™ s distributed as j 2ata. In view of this expression, the
control limits for the |S| -chart are as follows:
UCL =[lfol % Z22v4a2] 12(n-I)

(2.24)
LCL=[IS01 % X2m4-47] 12(n-])

where
1£0]” = 80idalv (1-p 02).
therefore, for each random sample of size n,

IS| A = (Sid S22-Si22)~ = SiS2V(l-ri22) is computed.

IS|~ >UCL

or

IS |~ < LCL,
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then dispersion of the process is said to be out of control thus assignable

causes are to be sought. The exact distribution of |S|7fz for more than two
quality characteristics is unknown.

The second approach to the construction of the |S|\écontrol chart utilizes
only the first two moments of |S|” and the property that most of the

distribution of |S|*Is within three standard deviations of its expected
value. Since
IS1=(n-)-P|Lo[£" 2k
where the chi-square random variables are independent, it follows that
E[|S|1] = (n-I)-pr|Zo|ra r(r+(n-k)/2)/ r[(n-K)/2]
It follows therefore that

E[IS[*] = 120|2(2/(n-1) P2 ¥ (n12)/r [(n+p) 12]

-1 S0[*63 (2.25)
and
E[IS]]= [Eof (n-T) -PTi{rk)
= |Eol/M (2.26)
Now
Var[[S[*I =E [[S[]-(E [[S[%
- 12,| (bi-b32) . (2.21)

with this, the upper and lower limit for a |S| -control chart are given
respectively by
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UCL=E[|S|"]+3Vvar [|S|"]
LCL =E[|S|"]- 3Wvar [|S]| %].
It follows that the control limits for Eoare given by

UCL = [EQJ" (bs + 3V (bi-bs?
CL = [E017bs (229)

LCL = |E0L* (b - 3< (bi-b3)
In the univariate case, b3 G, b, =1,

[Eo|"=s0 and the control limits in (2.28) reduce to those stated in the
univariate case(1.1). In the bivariate case

bi= (n-2) / (n-1)

b3=(/(n-1)(r(n/2) r[(n-2)/2)]
If n=10, bi=bs =0.889 and bi-b32=0.099. Then, the UCL=1.8311E01-2 and
since LCL is negative, hence UCL=0
2.5.1.2 The s2-control chart when Eo is known '
The Sz -control chart is also used in the multivariate case to monitor
process dispersion. This is equivalent to repeated tests of significance.
Anderson (1984) has shown that the likelihood ration test for

HXE=BEo
against
Hi: E"Eo
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modified to be unbiased (the power of the test is greater than or equal to the
significance level) is based on the following statistic:

We=-p (n-1) - (n-DIn[|S|]+ (n-D)In[|Zo]] + (n-1) tr (Zo-iS) (2.29)
where tr (Z7S) is the sum of the diagonal elements of Z*S. For bivariate
quality characteristics

tr (Zo-S) = (1-p 02)-1[S2i/82Q) + (Szz/ s2@) - 2 p ofSi2f s0isce)]
He further showed that W* is asymptotically distributed as seapay2 and

has presented the upper 5% and 1% points for the exact distribution of W
For two quality characteristics and n-1=9 degrees of freedom, the upper 5%
and 1% percentage points are 8.52 and 12.38 respectively. In our case the
process dispersion is considered out of control at the 5% level if W*>8.52
and at the 1% level if W*>12.38. A natural generalization is that a process

dispersion will be out of control Iif W*>UCL at the specified level of

significance. |

We notice that |S|” is plotted on the charts described by both equation
(224) and (2.28). The difference between the two charts is that the control
limits in equation (2.24) and (2.28) are probability limits and 3-sigma limits
respectively. We also note that the range chart is used to monitor the
variability of each quality characteristics but the multivariate analogue Is
not presented, as it is relatively intractable.
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2.5.2 Control charts for the process dispersion when Eo is unknown

When there are multiple quality characteristics, two variations of the

S| -chart were presented for monitoring process dispersion when Eo is
known. The first was a probability limit chart with control limits as stated in

equation (2.24). These limits are applicable only when there are two quality
characteristics.

Let |S*|" denote the average of the square roots of the generalized
sample variance. This implies that

IS = 1mZ |Si| "

then, |S*[*/ b3 is an unbiased estimate of |Eo| *thus the control limits
for process dispersion when Eo is unknown are as follows:

UCL = [|S*| % " 22n4,(&2)]2s(n-1) (2.30)
LCL=[ [S*|" [ 22a,(l-al2)l2bs(n-])
Wwhere the constant bsis as defined earlier. The chart for |S*| 2 when Eo i
known uses the 3-sigma limits already discussed in the previous section

and is applicable for any number of quality characteristics.
Therefore for Eo unknown, the control limits are obtained by substituting

S| ™ hafor [Eo|™ inequation (2.28).

3



This results to the following limits for process dispersion when £.0is
unknown:

UCL = IS*|  (I+(3/ b3 V(bi-b3)
CL = |$¥|* (231)
LCL = |S*| % (I- (3/ba)V(bi-b)

For the univariate case the limits given in (2.31) for a |S*| Y. control chart

are identical to those for the S-chart(2.19) with the bs and ba factors stated
as

Cz (m,n,p) =p(n-1) (m+1)/ (mn-m-p+1)
Another procedure which could be used to investigate process dispersion
when Lois unknown is obtained from equation (2.29). This is the likelihood
ratio statistic for testing

HO: L = £0
against
Hi: LtLo
To obtain the corresponding procedure in this section, we need the

unbiased estimates of |£0| b and Lo

Ifwe let [So| denote the average of the generalized sample variances from
the mrational subgroups, then

10| =1/mE£|Si|.
Using the result in equation (2-26), it can be verified that JSO|/bi is an
unbiased estimate of |Zox, . ) *
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Further, let Sr1denote the inverse of the sample variance-covariance matrix
for subgroup 1, i=l, 2, ...,m.
Kshirsagar (1972) showed that (n-p-2) Sia/(n-1) is an unbiased estimate of
S0'l-
Therefore if

S*=1/m E Srl,
then

(n-p-2) SM/(n-I)
15 also an unbiased estimate of Eox which is obtained for the m rational
subgroups. Therefore to obtain the procedure for determining the control
limits for this section, we substitute |SO|/bi for |EQ| and (n-p-2)S*/(n-I) for
Eox in equation (2.29). The revised values of W¥, i=1,2,..m, would still be
plotted on a control chart with

UCL = Zp(p+\)/2

The control limit factors used in this section for both p=I and |6>I are
independent of the number of subgroups. However, at times these factors
depend on the number of subgroups (i.e. they should be a function of m)



Chapter 3

data collection and analysis

31 Simulation study

In this section, we generated 25 samples of size 10 each from a motor
production company where the products are piston rings of various
diameters (Xi) and thickness (X2).The two quality characteristics are jointly
distributed as bivariate normal with means uoi =30, goi= 15, variances
80i2= 8, sz =4 and correlation coefficient p =0.5.

Table 3.1 provides data for X and x 2control charts for the means of Xi and
Xeata=0.05.

Table 3.2 provides data for X and x~control charts for the means when
they have been disturbed as indicated 3.1.1.

Table 3.3 provides data for dispersion control charts namely R-chart,
S-chart, S2-chart, |S|”-chart (probability chart), |S|*-chart (l.S/)G-sigma
limits chart) and W*-Chart at a =0.05.

Table 3.4 provides data for control charts in Table 3.3 when the variances
have been disturbed as indicated 3.1.1.
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Control chart data for the means of Xiand X2

Table 3.1
32.68
30.00

16.90
15.00

UCL>
Clo

UCLI
CLi

UCL = 220b=5%

0.5 (correlation coefficient)
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LCL2- 13.10 po

21.32

within their respective control limits and the values 0i>2 <UCL =5.99

Table 3.1 shows an in-control situation as all values of Xiand Xz lie

LCLi



1 Means and variances when disturbed.
( por these samples poi is increased by 30 +0.5i for i=1,........ 10

b for these samples jae s increased by 15 +0.51 for 1=1,......
L For these samples, |iol and poz are Increased by 30 +0.51 and
15 +0.51 respectively fori=1,.......,5
Samples 1to 10 the variance is shifted as (E@= s x 0.2i,for I= 1,.........10).

Samples 11 to 20 the variance is shifted as (@2=4 x 0.2i, for I= 1,....... 10)

Samples 21 to 25 the variances are shifted as (®,=s x 0.2 and

§2=4 X 0.2i, for i=l,.....5).
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Control chart data when means are disturbed.

<

X|

13 2§.5§2 115 —r§2§
24 29.708 15. .
3 R 1379 33
13 31337 15974 75627
59 31439 13.903 19913/
53 37.803¢ 14240 131677
73 32,9074 15,635 17231
03 331174 16.123 36787
03 319344 15039 18.6077
108 34,6754 14.483 25,453/
1D 20299 14508 26,741
12D 20870 15500 30191
13h 30240 15.920 213117
1h 20000 15.062* 138197
5h 30637 16.978* 113 A
15h 20937 17313* 15931
17h 20,880 17401 99.397]
18h 30500 1811% 39103/
o = b
20 . . .
T
93¢ 131 i 331
26 37°009 16,910+ 191837
95 39938 17021 143897

Table 3.2

UCL = *221005=5.99
The values in Xi_chart marked. by d falls outside the control limits
indicating an out of control status in the process.

The valued in X2 cheirt. marked by e falls outside the control limits
Indicating an out control situation in the process.

The values in x| chart marked by / shows an out of control situation since
their value are greater than UCL=5.99 | >
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Control limits for the process dispersion in table 3.3.

Chart Qualitv Characteristic | Oualitv Characteristic 2

R-Chart  UCLI = 15.471 UCL2=10.94
CLi =8.712 CL2=6.16
LCLi = 1.949 LCL2=1.378
S-Chart  UCLi =4.720 UCL2=3.337
CLi =2.751 CL2=1.945
LCLI =0.779 LCL2=10.52
S2-Chart  UCLI = 15.04 UCL2=7.52

In table 3.3 the process is in control because all the values for the

process dispersion charts falls within their respective control limits as
shown above.
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Control chart data for process dispersion when variances are disturbed.
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Control limits for process dispersion in table 3.4
probability Limits for |S|”- Chart (a=0.05)
UCL=7.851
LCL= 1.880

1.96-Z Limits for |S|* - Chart

UCL=7.3750
CL=4.3544
LCL=0

W - Chart (a=10.05)
UCL =8.52
Table 3.4 indicates an out-of control situation for samples 9 and 10

using 1.96-E limits on |S|/2- chart.

The probability limits for |S|”-chart shows an out-of control status

for samples 4, 21 and 22. Both [S|*-chart and W*- chart register
out - of control on samples 4 and 21.

It seems that |S|"-chart with the probability limits has performed
better than the other charts for W*-Chart, this is not surprising since
It is based on a large sample test statistic. A better picture would
probably emerge if larger studies involving more than 100 samples
were conducted since this reduces the sub-group variability.
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Chapter 4

PRINCIPAL COMPONENTS AND FACTOR ANALYSIS

4.1 Residuals associated with principal components

Most statistical techniques involve operations on single response variables
such as weight, pressure specific gravity, temperature, concentration.
However, there are a number of occasions where more than one response
variable is of interest in a problem .These variables should be studied
collectively so as to take advantage of the iInformation about the
relationships among them. This is the field of multivariate analysis as
pointed out earlier. Multivariate techniques are extension of univariate
techniques such as t-tests or the analysis of variance.

Principal components and factor analysis are two techniques, which are
finding increasing application by quality engineers who are concerned with
processes with more response variable. This method is a procedure in its
own right. It is used to simplify simultaneous interpretation of a number
related variable.

Principal components are used as a data reduction technique, a diagnostic
tool as well as a control device. In this case, we are concerned with control

situation using a method of principal components together with its
associated residual analysis.

43



Inthe early days of principal component analysis, most of the attention was
devoted to ways of obtaining characteristic root and vectors from a
covariance matrix and the interpretation of the root and vectors. Effort has
since then shifted to the problems of inference, such as estimation and test
of hypothesis concerning these parameters to deeper examination of new
tools for the application of these techniques.

The improved understanding of principal components as a data reduction
tool, their role in applications such as regression analysis and multivariate
quality control and the availability of high speed computer and convenient
software packages have made incorporation of principal components
techniques in routine data analysis not only feasible but also common.

This increased use implies imperatives such as model fit questions in
general and examination of residuals in the model in particular. The
problem is similar to those in regression analysis and need a test for outliers

4.2 Matrix algebra to principal components analysis

Given two related quality characteristics, we can carry out the method of
principal components in order to check the control status of the process. We
first obtain the means of each quality characteristics, the variances and the
covariance between the two qualities. In this case, the means will be
donated by

4



X
and the covariance matrix Is

where X =Lxij is the mean of the Ith quality characteristics and

§) = (nLxik Xk -LxikEjK)/n(n-1) is the covariance between the Kh and the it
quality characteristics

The correlation coefficient r between X, and xyis given by
Cov(X,X,)

Tij

The important point from matrix algebra related to the method of principal
component s that a pxp symmetric non-singular matrix such as the
covariance matrix S may be reduced to a diagonal matrix L by

premultiplying and post multiplying by a particular orthonormal matrix U
as shown helow:

L=U'SU (4.1)
The diagonal elements of L are Ii, I2—,Ip which are the characteristics
roots, or eigenvalues of S. The columns of the orthonormal matrix U denoted
by Ui, Uz,...,UPare the characteristics vectors or eigenvectors of S.
The characteristic root can be obtained without using formula (4.1).
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This can be done by using the characteristic equation
1S-11]=0 (42)
where |'1S a 2X2 identity matrix i..

10
|

0 1

On evaluating equation (4.2) we get ap* degree polynomial in | from which
the values of characteristics roots are obtained,
for p=2, we have

1S-111= D

0 1=0

L]§I2 Si
that i

Si22-(S? $2-5,21-521+12) =0
We can therefore solve for 1 whose values will be 1, and 12.The
characteristic vectors may be obtained by solving the equations

[S-1il)t,= 0 | (43)
and
(44)
fori=l, 2,..,p
Equation (4.3) is evaluated as
<z, = '0



These are homogeneous equations with two unknowns therefore, in order to

S0lve them, assume tU =1 which helps us {0 work with one equation.

Therefore

Ui —
K

Similarly, we can use 12 and let t22=] hence

S-121] t2 s2-12 s V0

sn  s2-i2 12 o

Uz 2

'lhh
The matrix U= [u, |u 2] is orthonormal hence
uru,=l,uz2'uz=land ui'uz=o.
Therefore

usu is a diagonal matrix.
Equation (4.2) and (4.3) are used for small values of p. For large values of p,

Iterative procedures for obtaining characteristic vectors are used.

4.3 Principal components to statistical analysis
The sample covariance matrix S is the basis for the statistical applications

of the method of the principal components. For p-quality characteristics the
matrix S is given as shown below
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Where the leading diagonal elements si2, s are the variances of the i
variables and the off diagonal elements sij are the covariance’s between the
i* and jmvariables. If the covariances are non-zero, then the variable are

related otherwise they are not.
A principal axis transformation transforms p correlated variables xi,X2,..., Xp
into p new uncorrelated variables zi,Z2,— ,zp where the coordinate axes are

described by the vectors Ui. Thus,
Z=Uic) (45)

where x and x are pxl vector of the original variables and their means
respectively .These transformed variables are the principal components of x.
The i+ principal component is denoted by

Z,=U'(x-X) (4.6)
which has mean zero and variance . .For example, if p=2,
Then
/= U (X-X)
Therefore

Var (Z1) =1y, var (2) - 1 2
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Ifyou wish to transform a set of variables x by a linear transformation

z=U"(x-x), Whether U is orthonormal or not, the covariance matrix of the
original variables by the formula

SEUSU (4.7)
Although we have said that U is orthonormal, this is not a sufficient
condition for the Zi's to be independent. Only a transformation such as
principal axis transformation will produce anS,, which is a diagonal matrix
L as earlier stated. The fact that S. is diagonal means that principal
components are uncorrelated. If the coefficients for the first vector are
nearly equal and both positive, this means that the first principal
component Is related to the variability which both measurements have in
common .If there are no correlated errors of measurements, it would be
assumed to represent process variability. For diagnostic purpose, we
determine the correlation of each of the original variables. )
The correlation of the I'h principal component z, and j horiginal variable ] is
given by

(48)

Principal component have also another property in that equation (4.5) can
be re-written as

X=X+UZ (49)
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gince U is orthonormal that is LHAUNThis helps us to determine the
original data if we know the values of the principal components. In other
words each observation is made up of a linear combination of the principal

components. If we know the population covariance matrix Z, we would
operate on it just as with S. The characteristic roots of Z would be obtained

by

The characteristic vectors associated with the roots would be the population
values.

4.4 Scaling of principal components
We have two ways to scale characteristic vectors as indicated in the
following equations

G Vi :V7,U (4]'0)
(i) Wi=uis V7, /(41]‘)

The first transformation gives
V'V=L (412)

which means that the vectors are orthogonal but not of unit length.
Further,

2=V SV (4.13)
which implies that the transformation given by the following expression

oz ViX) | % (4.14)
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~n produce a new variable with zero mean and variance liz which i
Acorrelated. These are now principal components, which are scaled to their
respective characteristic root rather than a unit length as in equation (4.5)
another useful relationship

S =W (4 -15)

shows that the covariance matrix can be obtained directly from its
characteristics vectors. Scaling the principal components as in equation
(4.15) is useful since the components will be in the original units of the
problem if the x variables were all in the same units.

Using the transformation in (4.11), we have

Yi=Wi'(x-x)

(4-16)
1from which we have
L-i=WW @-17)
and
L=W'SW (4-18)

The variables obtained from this transformation are uncorrelated and have
unit variance.

Relations (4.5), (4.14) or (4.16) are used to express principal components as
regards scaling. These relations differ only by a scale factor. U-vectors are
desirable from a diagnostic point of view since the vectors have the
advantage that the coefficients are restricted from -1 to +1.

ol



V-vectors have the advantage that the principal components in that mode
are expressed in terms of the units of the original variables.W-vectors
produce components that have variance.

4.5 Generalized measures of principal components to variability

We present two ways to describe the variability of a set of related variables
namely

() the determinant of the covariance matrix |S|
(i) the sum of the variances of the variables
SizAS2.... tSr2
here SiztSz2t....+Sp2= trace of S written as TrS. Trace of S means the sum
all leading diagonal elements of S which are the variances.
There are other measures of generalized variability but the above two are
commonly used. An important property of principal components is that the
variability as specified by any measure is preserved as follows
IS|=|L] (4.19)
where the determinants are related to the area or volume generated by asset
of variables .Equivalently,
TrS=TrL . (4.20)
Relation (4.20) implies that the sum of the characteristic roots (the

variances of the principal components) is equal to the sum of the variances
of the original variables.
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fhis shows that the characteristic roots may be treated as components of
variance. If we obtain the ratio of each characteristic roots to the total, we

obtain a proportion of the total variability associated with each principal
component.

4.6 Principal components for quality control
When we use the method of principal components for quality control, one
has to calculate the deviations from the means and then use any of the
three principal component transformation given by equations (4.5),(4.14) or
(4.16) to calculate the measure of overall variability T2 where
Tozy'Y (4.2)

which follows the Hotellings T2-distribution as discussed earlier.
for p=2

To=Y 2tY22
The scaling for principal components adopted is a matter of choice .The
scaling in (4.16) is preferred since it gives a set of principal components with
unit variances. Control charts for these components can be constructed
except that individual components are controlled instead of their means and
the tabulated value of T2 Is given by

(2)



Therefore, any observation vectors with values of T2>T2P,n,awill imply an out
of control situation on the T-chart. We point out that T2-chart has only an
upper limit since Tz s always positive. It is worth noting, that the control
charts for the principal components should be used together with the T2-
chart .If T21s in control, one should proceed normally otherwise if it is out of
control, one should revert to the individual control chart for the principal
components so as to determine the nature of the trouble, that is to check
which variable cause an out of control status.

A control ellipse can also be used to judge whether a process is out of
control or otherwise .However, this is only possible for two quality
characteristics. It is important to note that T2can be obtained directly from
the original variables without the use of principal components. However, the
principal component approach is easier to handle and has many desirable
properties that cannot be obtained directly from the original variables
especially when a larger number of variables is under study.

4.7 Extension of principal components to more than two variables.

In the previous sections, we have discussed the approach of principal
components when there are two correlated quality characteristics. In this
section, we briefly outline how the method of principal component is applied
In the case of more than two variables. It is necessary to note that the
principal component method works well for . large number of variables
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however, the two variable situations has an advantage in that, the operation
and relationships can be demonstrated in a simple manner.

A greater part of the computational procedures to obtain the roots and
vectors In a sequential manner is as follows, we begin with the largest root
and its associated vector, the next largest and so on. When we scale these
V-vectors the variability left unexplained by the first principal component is
S-ViV'i, the variability unexplained by the second two is S-ViV'i-V2V2 and
S0 On.

If the covariance is matrix is of full rank p, there will be p positive
characteristic roots whose rank will be in descending order .If however, the
covariance is not of full rank say r<p, there will be r positive root and the
remaining p-r roots will be zero. This occurs when one or more linear
relationships exist among the original variables so that knowledge of a
subset of them would allow us to determine the remainder without error. In
such a case, we will require r principal components to reconstruct the
original data.Suppose it is given that p=2, this is extended to p=3 by setting
Xs=Xi+X2 and immediately the first two variables are obtained, the third

variable would be known by default. The covariance matrix would therefore
be

V,V,+V2oV2= =W



where v has only two columns instead of three as the two principal
components will completely reconstruct the original data.

It is customary to have the first few roots, say k<p explain most of the total
variability where we use percentage of TrS as a yardstick .If the remaining
(0-k) roots are equal, it means that the remaining (p-k) vectors are not
different and are all of the same length with arbitrary rotation. The closer
together the roots are, the larger will be the standard errors. If the
remaining (p-k) roots are equal and do not differ significantly such that we
use only k vectors, then it is impossible to reproduce the exact covariance
matrix. However, if the percentage of the total trace represented by these

remaining roots is small, the first k vectors will be used adequately for
reconstruction.
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4.8 Simulation study for principal components

In this section, we generated one sample of size 10 each from a motor
production company where the products are piston rings of various
diameters(Xi) and thickness(X2.The two quality characteristics are jointly

distributed as bivariate normal with means poi=30,p.0-15,variances

50i2=8, 5022=4 and correlation coefficient p=0.5.

A and B represent process shift with jaoi=32, [i02=17, and goi=33, po2=19,
respectively.

C represents recording error whereas D is an outlier.

Observations
Sample number X, X2
1 27.54 14.32
2 35.35 14.38
3 31.67 15.69
4 21.87 15.23
) 29.46 14.72
6 28.28 16.38
T 33.58 13.92
8 29.93 15.18
9 28.93 15.83
10 21.26 15.28
A 35.93 19.10
B 37.02 18.67
C 26.23 12.18
D 36.12 18.36

Table 4.1

of



Principle components data chart

rriple number X1-X1 XZ-X 2 L. 22 ZVA sza Y, yz T2

1 .2.44 -0.77 0.06 0.50 .0.24 1.09 0.36 0.31 0.23
2 5.37 .0.71 3.74 3.07 15.17 6.70 0.84 .0.08 0.71
3 1.69 0.60 2.68 2.72 10.87 5.93 0.95 0.44 1.10
4 2.11 0.14 -1.02 0.71 .4.14 -1.55 0.14 0.61 0.39
5 .0.52 .0.37 1.65 -1.83 -6.69 3.99 -0.69 -0.63 0.87
6 -1.75 1.29 -1.70 - 1.59 -6.90 .3.47 -0.51 0.04 0.26
7 3.60 21.17 3.83 3.60 15.54 7.85 1.16 .0.03 0.21
8 .0.05 0.90 - 1.14 1.16 4,63 .2.53 -0.40 .0.20 0.20
9 1.05 0.74 -0.05 0.18 -0.20 0.39 0.14 0.53 0.30
10 .2.72 0.19 - 4.63 4.79 -18.78 -10.45 -1.70 .0.98 3.85
A 5.95 401 2.27 1.06 -4.31 -3.16 .2.61 2.21 11.70
B 7.04 3.58 1.28 3.12 1.30 .3.63 2.32 - 3.36 13.03
C 3.75 .2.91 -1.70 2.13 -0.18 1.41 4.03 .2.08 16.25
D 6.14 3.27 1.53 2177 - 3.89 2.81 3.74 2.04 18.27
Table 4.2 T2 10.005-10.04

In Table 4.2 samples 1to 10 shows an-in control status since T2 values are
less than critical value 10.04. |
Samples A B, Cand D indicate an out-of control situation with T2-critterion
as T2>10.04, therefore control charts for Y,and Y2would be constructed to
determine the nature of the trouble. These in conjunction with charts for Xi,
X2 and T2 Could be used as diagnostic checks on assignable causes such as
outliers, recording errors and process shift which fail to be signaled by the
charts for the individual characteristic x, and x2.



4.9 Conclusion

Given some data from a production process, we start by constructing the
process dispersion charts namely the R-chart, S-chart, and S2-chart, which
monitor the variability within samples. Ifthe process dispersion registers an
In-control status, we proceed to construct the X-chart, which monitors
variability between samples

The numerical results in table 3.1, shows that for those points, which
registered an in-control status using x 2-chart, all the individual charts
registered the same .Further, those points which registered an out-of-
control situation with the x 2-chart registered the same with at least one of
the individual charts. It would therefore seem reasonable to construct the
Individual charts to determine which quality characteristic is the cause of
the trouble. The |S 1U2-chart with the probability limits seems to perform
better than the |S|X12-chart using 1.96 -sigma limit and W*-chart.

4.10 Areas of further Research

In the principal component analysis, in case the T2-chart registers an out-of
control status, one should revert to the individual chart to discover the
nature of the trouble.

Further, since our project is based on bivariate process control in which we
restricted ourselves to two quality characteristics, we recommend that more
research should be carried out on more than two quality characteristics.
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