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Abstract

The existence of direct, sum decompositions and factorizations of hounded linear 

operators acting on a Hilbert space appears to he one of the most difficult questions 

in the theory of linear operators. The direct sum decomposition problem is closely 

related to the invariant suhspace problem, which to date has very few affirmative answers 

regarding it. In this thesis we study the direct sum decomposition and factorization of 

some classes of operators in Hilbert spaces with a view to determining properties of the 

direct, summands of these operators, their invariant and hyperinvariant subspace lattices 

and factors for such operators.

This thesis is organized as follows: Chapter 1 is an introduction and is devoted largely 

to notations and terminology and examples of various concepts that we shall use in the 

rest of this t hesis.

Chapter 2 deals with the orthogonal direct sum decomposition of an arbitrary op­

erator into a normal and a completely non-normal part. In this chapter we show that 

a general operator T  decomposes in this manner. We give conditions under which an 

operator has nontrivial normal and direct summands. We study this decomposition 

for operators in the same equivalence classes (quasisimilar, similar, unitarily equivalent, 

almost-similar operators). We give conditions under which a non-normal operator is 

normal.

Chapter 3 is on the direct sum decomposit ion of a contraction operator into a unitary 

and a completely non-unitary (c.n.u.) part. We give conditions under which a non- 

unitary operator is unitary. We show that a general operator enjoys this decomposition 

upon re-normalization (by dividing the operator by its norm). In so doing we show 

that t he problem of decomposing an operator into a normal and a c.n.n. part can be 

deduced from t he decomposition of a contraction operator. We pay special attention to 

the c.n.u parts of an operator and t he shift operators which play a very important role 

in t his kind of decomposition. We rise t he canonical backward shift as a model to aid t he 

decomposit ion of such operators. We also deduce the characteristic functions of some 

classes of operators and use t hem t o determine t he nat ure of t he original contraction
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operator.

In Chapter 4, we study t he invariant and hyperinvariant snhspaees for some classes 

of operators. Wo show that, these snhspaees reveal a lot. of information about the direct 

sum decompositions of linear operators. We investigate the topological structure of 

Lnl(T ) and Hyjierlnt(T) for some operator classes containing T. We show that there is 

a one-to-one correspondence between the invariant lattice and the regular factorization 

of the characteristic function of a contraction operator T. We generalize this result to 

arbitrary operators.

Chapter 5 is on the factorization of some operators as a product of simpler operators 

(self-adjoint, unit ary, normal, project ions, idempotents, n-t h roots of t he ident ity. cyclic, 

scalar, etc.). We find necessary and sufficient conditions under which an operator can 

be expressed as a product of such simpler operators. We give necessary and sufficient 

condit ions on t he minimal number of such operator fact ors by improving on some known 

results.

By a canonical model of an operator we mean a natural representation of the operator 

in terms of simpler operators, and in a context in which more structure is present.

Most of the results in t he direct sum decompositions of an operator T  will revolve 

around its nearness to being a normal operator ( [T *,T ] =  T*T — TT* =  0 ) and its 

nearness to being a unitary operator ( D^  =  / — T*T  =  0 or D f. =  I  — TT* =  0 ).
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L 2( [a ,l>})\ The Hilbert space of all complex valued Lebesgue measurable functions / 

defined in the interval a <  x <  b with the property that |/|2 is Lebesgue integrable and 

inner product (f .y ) =  f*  f(x)tj{x)dx.

J'{k) : the k"1 Fourier coefficient of the function / defined on the unit circle t©
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r (T ): The spectral radius of T, which is the radius of t he smallest circle in the complex 
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Ad ©  A/": Direct sum of Ad and J\f
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m, |.|: the normalized (i.e m (c© ) =  1) Lebesgue measure on t®
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Chapter 1

Preliminaries

1.1 Introduction

In this thesis we study the direct, sum decompositions and factorizations of some classes 

of operators on Hilbert spaces. The idea of decomposing an operat or (or an operat or- 

valued function) into parts, which are easier to investigate than the original operator, 

is fundamental to the theory ol operators. The so-called direct sum decomposition is 

one of many known kinds of decomposit ions. The direct sum decomposit ion has been 

largely motivated by the work of Nagy and Foia.s [53] from which it results that any 

operator can be decomposed as a direct sum of normal and completely non-normal 

(c.n.n) parts and that a cont ract ion operator can be decomposed as a direct sum of a 

unitary and completely non-unit arv (c.n.u) parts (where any of these direct summands 

could be missing). Wold [77], while studying stationary stochastic processes, discovered 

th(' decomposition of an isometry into the unitary and the completely lion-unitary parts, 

which has since been referred to as the von Neumann-Wold decomposition of an isometry.

Canonical decompositions are often t he first step in constructing models of operators. 

By a description of the structure of an operator usually means one of the following: the 

determination of an equivalent operator on a prescribed class of concret e (often func­

tional) models; a specific method of reconstructing it from a class of simpler operators 

(for example, in the form of a direct-sum or factors); the discovery of a basis in which 

the operator has its simplest, form; a complete description of the lattice of invariant and 

hyperinvariant subspaces; the identification of maximal chains of invariant subspaces



(triangular rcprescnt.at.ion) or maximal chains of reducing suhspaces (diagonal or direct- 

sum representation); or the construction of a sufficiently wide functional calculus. The 

invest igation of invariant subspaces is a natural first, step in t he at tempt to understand 

the struct ure of operators. The powerful structure t heorems t hat are known for finite- 

dimensional operators (the Jordan form) and normal operators (the spectral theorem) 

provide, in essence, decompositions int o invariant subspaces of special kinds. No com­

parable theorem exists for general operators on an infinite dimensional Hilbert space. 

Although the general operator remains a mystery, one can say quite a bit about the 

invariant subspaces of a handful of specific operators.

The study of the structure and properties of an arbitrary operator on a Hilbert 

space is essentially equivalent to t he st udy of its complementary parts, its invariant and 

hyperinvariant lattices, its characteristic function and its factors.

Several Mathematicians have proved some interesting results on operator decomposi­

tion and factorization. Williams [70] has demonst rated that every operator T  is unit arily 

equivalent to the direct sum T\ ©7[> where T\ is normal and T2 is pure (completely non­

normal) and that if Ad is a reducing subspace for T2 and T2\M is normal, then M  =  {()}. 

Stampfii and Wadhwa [GO] while working on hyponormal operators proved that a hy- 

pononnal operator which is similar to a normal operator must act ually be normal. Lee 

and Lee [50] studied a larger class -that of /cquasihyponormal operators and proved 

that if a p-quasihyporiormal operator T  has a finite defect index t hen it is normal. Nagy 

and Foias [53] have introduced a classificat ion of contraction operators t hat depends on 

t he asymptotic iterates of T  and T*. They proved that a contraction T € B(7i) is a 

direct sum of a unitary and a completely non-unitary part and that for an isometry, 

t his decomposit ion coincides wit h the von Neumann-Wold decomposition for isometries, 

where the completely non-normal part in this case is a unilateral shift (cf. Wold [77]). A 

similar result was proved by Fuhrmann [24] that any contraction T  € B (H )  has a unique 

decomposition with respect to the decomposition of 7i  into a direct sum H - Ho ©  Hi 

of reducing subspaces of T  such that T\nu is unitary and T |>q is completely non-unit ary. 

Wu [85] proved t hat if T  is a contract ion wit h finit e defect indices then T  is quasisimilar 

t o an isometry if and only if t he complet ely non-unitary part of T  is quasisimilar to an 

isometry.
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While working on the problem of writing mi operator as a product of "nice” or simpler 

(normal, self-adjoint (hermitian), unitary, etc. ) operators, Wu [84] proved that, a 

unitary operator on an infinite dimensional space is a product, of (sixteen) positive 

operators, an unexpected result in a finite dimensional Hilbert space, given the results 

of Ballantine [7] that if an operator is identified with a finite square matrix, t hen it is 

the product of positive operators precisely when its determinant, is non-negative. W u’s 

[84] result was improved by Phillips [57] by showing that, every unitary operator on an 

infinite-dimensional Hilbert space is a product, of six positive operators.

Some operator t heorists have studied t he open quest ion of t he existence of nont rivial 

invariant subspaces. Kubrusly [45] has shown that if a contraction has no nontrivial 

invariant subspace, then it is either a Coo, a Cn or a Cm contraction. A similar result 

was proved for the class of hyponormal contract ions by Kubrusly and Levan [44] that, 

if a hyponormal contraction T  has no nontrivial invariant subspace, then it is either 

a Coo or a C 10 contraction. Duggal and Kubrusly [1G] characterized the completely 

non-unit,ary part of a contraction using the Putnam-Fuglede(PF) Theorem. Hoover [89] 

proved that quasisimilarity preserves the existence of nontrivial hvperinvariant subspaces 

and Herrero [37] has shown that quasisimilarity does not preserve the full hyperlat tice.

• Few results exist in the literature on the intrinsic properties of t he pure direct sum­

mand of an operator in the direct sum decomposition of an operator. Some authors 

have given a classification of an operator depending on its direct summands. How­

ever, to-date open questions remain un-answered: Does every operat or decompose 

into a direct sum? Which classes of operators decompose into non-trivial direct 

summands? This question is motivated by t he most celebrated invariant subspace 

problem: Does every operator on a (separable) Hilbert space of dimension greater 

than one have a nontrivial invariant subspace? In this thesis we will give an at­

tempt. at the invariant subspace problem and come up with a partial solution to the 

problem for some classes of operators. We show t hat for any non-zero operator T. 

the invariant subspace problem is reduced to t he class of contractions: Does every 

contraction have a nont rivialjnvariant. subspace?

• There are many results in the literature about the direct, sum decomposition of a 

contraction operator into a unitary and a complet ely non-unit ary part but very few



results linking this decomposition to an arbitrary operator are known. We look at. 

how we can subject an arbit rary operator to t his decomposition. We note t hat any 

operator T  divided by its norm (normalized) is always a contraction operator.

• In this t hesis, we show that t here is a one-to-one correspondence between t he in­

variant lattice and the regular factorization of the characteristic function associated 

with a contraction operator.

• Topological properties of invariant and hyperinvariant subspaces of operators have 

not been extensively studied. We shall describe these special subspaces for some 

classes of operators and use t hem to achieve a direct sum decomposit ion of an 

operator on a Hilbert space.

• We show that if an operator is invertible it factors into a product of simpler oper­

ators. We give necessary and sufficient conditions for an operator to enjoy such a 

product factorization. We determine a criterion for the optimal number of factors 

a given operator could have in its factorization.

We aim to.generalize results in order to apply them to a wider class of operators. Finally, 

we establish a connection between direct sum decompositions, invariant, hyperinvariant 

and reducing subspaces and the factorizations of an operator. For instance, as an ap­

plication we show t hat anv direct sum decomposition of a cont raction operator int o a 

unitary part and a complet ely non-unit ary part can Ire directly discerned from the direct 

sum decomposition of an operator into normal part and a completely non-normal direct 

part. We investigate an operator whose invariant subspace lattice satisfies a certain 

purely latt ice-theoretic condition and whether or not it has a nontrivial hyperinvariant 

subspace and determine how this relates with the decomposition of such an operator. 

We shall describe up to unitary equivalence all the c.n.u. contractions which possess 

a constant characteristic function. In case one of the defect indices is finite, we show 

t hat the characteristic function is constant if and only if the c.n.u. operator admits a 

direct sum decomposition such t hat each summand is one of t he bilateral weighted shifts 

with weight sequence {..., 1, A, 1 . 0  <  A <  1, or the unilateral shift or the adjoint 

of the unilateral shift.. A consequence of this is that the characteristic function of an 

irreducible cont raction is const ant if and only if it, is one of t he shift operators described
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above, which arc examples of homogeneous operators. We use the (c.11.11.) contrac­

tion operators to put the notion of decomposition on a rigorous footing and obtain a 

decomposition of any operator, by first re-normalizing it. to a contraction.

1.2 N otation  and Term inology

In what follows, capital letters H, H i ,H 2, 1C, /C,, /C2, etc denote Hilbert spaces or 

subspaces of Hilbert spaces, and T, T\, T2, A. B, etc denote bounded linear opera­

tors where by an operator we mean a bounded linear transformation from H into 7i. 

Bv B (H ) we denote the Banach algebra of bounded linear operators on H. B(H\,H>) 

denotes the set of bounded linear operators from Hi to H 2- For an operator T, we 

denote by T *, ||Xj|, Ran(T ), K er (T ) the adjoint, norm, range and kernel of T. re­

spectively. We reserve the symbols Z, N, R, C, D. c®  for the sets of integers, pos­

itive integers, real numbers, complex numbers, open unit disc in C, and unit circle 

in C, respectively. By <x(T), 11(7’), w (T ), r (T ) we denote the spectrum, numer­

ical range, numerical radius and spectral radius of T, respectively where rr(T) =  

{A  6 C  : XI — T  is not, invertible}, ( i.e. Ker(X I — T ) ^  {()} or Ran(XI -  T) ^  

n , W (T ) =  { (T x ,x ) : Hzll =  1, *  6 H }, r (T ) =  5«;>{|A| : A G o (T )}  =

max{|A| : A G a (T )}  =  lim„ ||r"||i, w {T ) =  5up{|A| : A G \V (T )}. We denote by 

(Tp{T) =  {A G C  : Ker{X I — T ) ^  {0 } } ,  which is the set of all eigenvalues of T  

and is called the point, spectrum of T. The set of those A for which (X I -  T) has 

a densely defined but unbounded inverse is the continuous spectrum: crc(T) =  {A G 

C : Ker(X I — T ) =  { 0} } ,  Ran(XI -  T ) =  H  and Ran(Xl -  T ) ?  H. If (XI -  T ) 

has an inverse that is not densely defined, then A belongs to the residual spectrum: 

<tr (T ) =  { A g C :  Ker(XI — T ) =  {0 } }  and Ran(XI -  T ) ^  H. The parts aP(T ),a c (T ) 

and o r (T ) are pairwise disjoint and o (T ) =  aR(T )U o c (T )U a R(T ). We also define the 

approximate point spectrum of T : a„p(T ) =  {A G C : (X I — T ) is not bounded below}.

A subspace (closed linear manifold) XA C 77 is said to be invariant under an operator 

T  G B (H ) if x G M  => Tx G M  or TXA C  Ad, and T  is said to have a nontrivial 

invariant, subspace (n.i.s) if there is a subspace {()} ^  Jvt ^  H  invariant for T. A  

subspace XA C H  is said to be a reducing subspace, for T  or reduces T  if it. is invariant 

under both T and T*. An operator T on a Hilbert space H  is reductive if every invariant
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subspace of T  reduces T. We denote by AA I lie closure of a subspace AA of H.

A lattice £  is a. partially ordered set such that, every pair of elements of £ has a 

supremum and an infinnuu in £ (i.e. if there exists a unique a € £ and a unique b € £ 

such t hat a =  x V y and b =  x A y for every pair ./• G £ and y G £). The lattice of 

all invariant subspaees of T  will be denoted by Lal(T ). If A is any subset of 13(H), we 

denote by A' the connnutant of A. i.e. A' =  {T  G B (H )  : ST =  TS f<rr every S in A }. 

Specifically, {T }  =  { 6’ G 13(H) : ST  =  TS}. The biconnnutant or double columnt ant 

of T  G B (H )  is defined and denoted by {T }"  =  |.4 G B (H ) : AS =  SA. for all S G

{ ^ }  }  -  { 7>(T) : T  G B (H ), J) a polynomial). A subspace M  C H  is said to be a 

nontrivial hyperinvariant subspace (n.h.s) for a fixed operator in T  G B (H ) if {( )} ^  

AA ^  H  and SA4 C AA for each S in {T }  . The lattice of all hyperinvariant subspaces 

of T  will be denoted bv Hyperlat(T).

A subspace lattice £  is called commutative if for every pair of subspaces AA, Af G £. 

the corresponding projections PM  and Py  commute. A lattice £  is said to be totally 

ordered if for every AA and Af in £. either AA C Af or Af C AA. The heiyht of a lattice 

£  of subspaces of H  is defined to be the length of the longest path from {()} to H. In 

general, the lattice £ =  (p (f i ) ,C ) has height card(Q). for a finite set fl where <p(S2) 

denotes the power set of f7 and card(fi) denotes the cardinality of Q.

For subspaces (closed linear manifolds) AA. Af of a Hilbert space H. Ad1 and AA<$Af 

will denote the orthogonal complement of AA and the orthogonal direct sum of AA and 

Af, respectively.

An operator is said to be inducible if it. has a nontrivial reducing subspace (equivalently, 

if it has a proper nonzero direct summand).

An operator T  is said to be: 

an involution if T 2 =  I, 

self-adjoint if T  =  T*, 

a projection if T 2 =  T  and T* =  T, 

unitary if T *T  =  TT* =  I. 

norm al if T *T  =  TT*, 

an isom etry if T*T  =  /, 

co-isom etry if TT* =  /, 

a partial isom etry if T  =  TT*T,
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quasinorm al if [T 'T , T] =  0.

compact if for each hounded sequence {./'„} ill I lie domain ki. tlw; sequence 

{Tx,,} contains a subsequence converging to some limit in the range, 

hyponorm al if T*T > T T " , 

sem inorm al if either T  or T * is hyponormal,

J*-hyponormal if (T *T )P >  (TT *)»'. where 0 <  p <  1, 

seini-hyponorm al if (T *T )i >  (T T *)* ,

quasihyponorm al if T ’ -T '2 -  (T ’T)*’ >  0, equivalenUy if T ‘ [T ’T  -  T T ')T  >  0, 

^/-hyponorm al if ||(c/ -  T)*.r|| <  M\\(zl -  T )j:||, for all complex numbers 2 and for 

all x € A i C  ki and M  some positive number ( i.e. M  >  0 ),

paranorm al if ||Tr||2 <  ||T2.r||. for all unit vectors x 6 ki. equivalently if. ||7"j ||2 <  

||T.r||||.r||, for every x € ki.

/-paranorm al if ||7".i:||A' <  ||T*'.r||||x||*-1, for all x € ki and k >  2 some integer, 

A-quasihyponorm al if T*k[T 'T  -  T T * )t a' >  0, for k >  1 some integer, and every 

x € ki,

7>-quasihyponormal if T* ^(T*T )P -  (T T ')v^jT >  0.

(p. A;)-quasihyponormal if T * * ( (T T ) ' ’ -  {T T ')v^jTk >  0. where 0 <  p <  1 and k a 

positive integer,

dominant if lor each A 6 C  there corresponds a number M\ >  1 such, that \\{T — 

A/)*x|| <  M X\\(T -  A/).r||. for all x € ki.

subnorm al if it has a normal extension. That is, if there exists a normal operator B  

on a Hilbert space K. such that ki is a subspace of K. and the subspace ki is invariant 

under the operator B  and the restriction of B  to ki coincides with T. That is, T =  B\n, 

a contraction if ||T|| <  1,

left shift operator if Tx =  y, where x =  {xu x2, ...) and y =  (x2,x3, ...) 6 £2, 

right shift operator if Tx =  y, where x =  (aq,x2, ...) and y =  (0 ,xx,x2, ...) e P.

A 11 operator T  € B{ki) is a unilateral shift if there exists a sequence {kiu, ki\, ...} of 

pairwise orthogonal subspaces of ki such that:

(a) ki =  kit) 0  ki\ 0  ...

(b ) T spans kin isomet rically onto ki,l+1.

An operator T  € B(ki) is:

a scalar if it is a scalar mult iple of the ident ity operator ( i.e. T =  al, a 6 C ),
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positive if (Tx,x ) >  0, for all 0 ^  x E H.

H ilbert-Schm idt if ||T||-2 <  oo where ||T||2 =  {  \\Tc„||~} * is the 2-norm

and {e,,} is an orthonormal basis for H,

an » -th  root of identity if Tn =  I . n a positive; integer,

2-nornial if T*T2 =  T2T*.

An operator T is quasinilpotent if a (T ) =  {()}. That, is, if r (T ) =  limn ||71,'||1|/’' =  0.

An operator T is nilpotent if Tn =  0 for some positive integer n.

Given a contraction T E B (l i ),  both ( I  — T*T) and ( I  — TT*) are positive operators 

and hence have unique square roots. We define D j =  ( I  — T*T)^ and D j- =  ( I  — T T ')*  

and call them the defect, operators of T . The respective dimensions (ranks) dj• and dt-- 

are called the defect indices of T.

An operator T  G Z?(7d) is strongly stable if the power sequence { T " } converges strongly 

(in the sense of the strong operator topology (S O T )) to the null operator (equivalently,

T n — > O strongly or ||Tnx|| — ♦ 0 for every x € H ).

A  contraction operator T  € B (7i) is of class:

Ci. if lim ||T"x|| -fr 0, strongly as n —> oo, for every x ^  0,

C i  if lim||T*"x|| 7A 0, strongly as n —> 00, for every x ^  0,

Co. if dim ||T"x|| —» 0, strongly as n —► 00, for every x G TL.

C.o if lim ||T*"x|| —♦ 0, strongly as n —> 00, for every x E li ,

Cij if T e C i.D C .j,  (0 < i , j  <  1).

An operator T E B (7 i) is called a proper contraction if ||Tx|| <  ||x||, for every 

0 ^ x e H.

The maximum (largest) subspace in H  which reduces an operator T  to a unit ary (respectively, 

normal) operator is called the unitary(normal) subspace in H  of T.

An operator T E B(TL) is said to be pure or completely non-normal (c.n.11.) if there 

exists no nontrivial reducing subspace M  C H  such that T\M  (the restriction of T  to 

M )  is normal, that is, if T  has no direct normal summand, equivalently if the normal 

subspace is {()}. When the subspace M  is invariant under the operator T. then T  in­

duces a linear operator TM  =  T\m  on the space M .  The linear operator TM is defined 

by Tm (x ) =  T (x ), for x E M .  A part of an operator is a restriction of the operator to 

an invariant subspace.

A  contraction T E B (7 i) is said to be completely non-unilary (c.n.u) if t here exists no

8



nont rivial reducing; subspace ol A4 C Tt of T  on which T act s Militarily, or equivalently 

if its unitary part acts on the zero space {()}.

II 1C is a Hilbert space, Tt C /C is a subspaee, S G B(IC) , and T  G B(Tt). then S is a 

dilation of T (and T  is a power-compression of S ) provided that Tn =  I\S"\n, 

n =  0 , 1 , 2 , where Bn denotes the orthogonal projection of /C onto Tt.

Let, Tt and K. be Hilbert spaces. An operator X  G B(Tt.lC) is invertible if it is injective 

(one-to-one) and surjective (onto ); equivalently if I\er (X ) =  { ( ) }  and Ran (X ) =  1C. 

We denote the class of invertible linear operators bv G(TI.IC). The commutator of two 

operators A  and B , denoted by [A. LI] is defined by [A .B ] =  A B  — BA. Two opera­

tors T  G B {H ) and S G B(IC) are similar ( denoted T ~  S ) il t here exists an operator 

X  G G (H ,K ) such that X T  =  SX  ( i.e. T  =  X ~ lS X  or S =  X T X ~ l ).

Linear operators T  G B (H )  and S G B(IC) are unitarily equivalent ( denoted T  =  S ), 

if there exists a unitary operator U G Q(TI.IC) such t hat UT =  SU  ( i.e. T  =  U*SU 

or equivalently S =  U T U * ). Two operators are considered the ’’ .same” if they are uni­

tarily equivalent since they have the same properties of invertibilitv, normality, spectral 

picture ( norm, spectrum, spectral radius).

An operator X  G B(Tt. 1C) is quasiinveiiible. or a quasi-affinity if it is an inject ive opera­

tor with dense range ( i.e. I\cr(X ) =  { ( ) }  and B an (X ) =  1C: equivalently, K e r (X ) =  {0 } 

and I\ er (X *) =  {( ) } -  thus A' G B(Tt,IC) is quasiinvert ible if and only if A'* G B(IC.Tl) 

is quasi invertible).

An operator T  G B (H ) is a quasiajjine transform, of S G B(JC) if there exists a quasiin- 

vertible X  G B (H ,K ) such that X T  =  SX. Two operators T  G B {H ) and S G B(K.) 

are quasisimiliar ( denoted T ~  S ) if t hey are quasiaffine transforms of each other ( 

i.e., if there exist quasiinvertible operators X  G B{TL.K.) and Y  G B(IC.Tt) such that 

X T  =  S X  and YS  =  T Y  ).

It is easily verified that quasisimilarity is an equivalence relat ion and also t hat T* is 

quasisimilar to S* whenever T is quasisimilar to 5 and that similar operators are, of 

course, quasisimilar but not conversely ([45]).

Quasisimilarity was introduced by Nagy and Foias [53] in their theory on infinite- 

dimensional analogue of the Jordan form for certain classes of contractions as a means of 

studying their invariant subspace struct ures. It replaces the familiar notion of similar­

ity which is the appropriate equivalence relation to use with finite dimensional Hilbert

!)
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spares. In finite dimensional spaces quasisimilarily is I lie same t iling as similarity. l»ut, 

in infinite dimensional spaces it is a much weaker relat ion.

Two operators .4 and 13 are said to he almost-similar (denoted .4 13) il' there exists

an invertible operator N  such that the following two conditions are satisfied.

.4 *.4 =  N ~ l{B ,B )N  

.4* +  A =  +  B )N

An operator X  G B (H .IC ) rnlr.rf.mnen T  G B (H )  to S G B(IC ) if X T  =  SX. In such 

a case we say that T  is intertwined to S. Note that T  is a quasiaffine transform of S 

il there exist s a quasiinvert idle operat or int ert wining T  to S. T  is said to he densely 

rut.erf.wined to S if there exists an operator with dense range int ertwining T  to S.

The multiplicity fi(T ) of T  G B (H ) is the minimum cardinality of a set K. C H  such 

t hat OC
n  =  \/ r x .

7 1 = 0

For the unilateral shift operator S+, /i(5+ ) =  <lim (Ker(S+)) and for the backward 

shift. /r(S£) =  dim (Ran(S+)L) =  dim(I\er(S+ )). We view the Hardy space H2 as a 

subspace of L~ on the unit circle by replacing convergent power series by their boundary 

functions. The Lebesgue spaces Lv are defined with respect to normalized Lebesgue 

measure on c®. It is known that, the Hardy space H°° is the space of bounded analytic 

functions on ID> in the suprenmm norm, which we sometimes view as a subspace of Lx . 

A bounded linear operator T acting on the complex separable Hilbert space is called 

homogeneous if a (T ) C ID) and <p(T) is unitarily equivalent to T  for every € Ad(D), 

the group of Mobius funct ions on t he unit disc.

1.3 Inclusions o f O perator Classes and Examples

It is well known that the following inclusions hold and are proper ( see [1], [25] ).

Normal C Quasinormal C Subnormal C Hyponormal C M  — hyponomnid

10



H ypononnal C  p —h i/ponnrmtd < p  <  1) C  si7 1ri—hypoi 1 o n a id  C  j)—liy]><riiormal(0 <

Hypononnnl C M  -  hyponorinnl C Dominant 

Unitary C Normal C Quasinormal C Binomial 

Unitary C Isometry C Partial Isometry C Coatraction 

Unitary C Isometry C 2 — normal C Binormal 

Projection C Self — adjoint C Normal C liyponormal

quasihypononnal C paranormal

p — quasihypononnal C (j;. A;) — quasihypononnal

k — quasihyponormal C (p, A;) — quasihypononnal

Normal C Quasinormal C Subnormal C Hypononnal C Paranormal

Hilbert — Schmidt C Compact.

We note that a (p, l)-quasihyponormal operator is p-quasihyponormal and t hat a (1. A:)- 

quasihyponornial operator is A -quasihyponornial.

We give some examples to show t hat these inclusions are proper. The following example 

shows an isometry which is not unitary.

Hyponormal C

11



Example 1.1

(.i.'i , :i.'2, ...) =  x. This shows t hat T*T — /. That. is. T  is an isometry. On the

I  =  T*T ^  TT* ^  I . This shows that T  is an isometry which is not unitary. Indeed, 

it is clear in this case t hat T is a part ial isometry which is not unitary: since T (x ) =

T(x\, X'2, ...) =  (0, x.\,X‘i, ••). Thus, T  is a partial isometry which is not unitary. Also, T 

is a contraction which is not unitary, since ||T|| <  1.

Remark 1.1

W e observe that in Example 1.1 above, T* is a partial isometry which is not an isometry 

and that it is a contract ion which is not an isomet ry. This is from the fact that ||T’ || =  1 

and hence a contraction but not an isometry since TT* ^  I.

E xam p le  1.2

There are operators which are self-adjoint but are not projections.

. It easy to check that T  is self-adjoint but not a projection.

Exam ple 1.3

There are operators that are projections but are not unitary.

. Then T  is a projection which is not a unitary operator.

Exam ple  1.4

Every hyponormal operator is paranormal. This assertion follows from:

IITt II2 =  (Tx,Tx ) =  (T*Tx,x ) <  \\T*Tx\\ < \\T2x\\,

for every unit vector x 6 TL.



Example 1.5

Consider S+ : R - — ► R" defined by S+ (x ,y ) =  ((),./'). Then S+ is a unilateral shift 

given by the matrix 5+ =  l ** |j j  . The multiplicity of S+, /t(S+) =  dim (I\rr{S+)) =

dim(span

one.

0
— 1. Thus, in this example, S+ is a unilateral shift of multiplicity

Exam ple  1.6

Trivial examples of Con.Cni,Ciu and C ji are: the null operator, a backward shift, a 

unilateral shift and the identity operator.

/
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Chapter 2

On normal and completely 

non-normal summands of an 

operator

In this chapter we study the decomposition of an (arbit rary) operator into a direct sum 

of its normal and completely non-normal(c.n.n.) parts . By a decomposition we mean 

separation of an operator into parts. This matches a requirement of isolating ’simple” 

direct summands of an operator. We give a deeper characterization of the normal and 

completely non-normal summands for T € B (H ).  We use the properties of the direct 

summands to classify the original operator T.

Unlike other forms of decompositions of an operator, such as polar and cartesian decom­

positions which do not transfer invariant subspaces from the parts (factors or ordinary 

summands) to the original (decomposed) operator, direct sum decomposition does have 

this property. In fact an invariant subspace for a direct summand is invariant for t he 

direct sum. By the Spectral Theorem [4G, Theorem G.43], for every compact, normal 

operator T  € B (H )  there exists a countable resolution of the identity { A }  on 7i and 

a set of scalars { Aa}  such that T =  Ylk^Pk- where {Aa} =  oP(T ), the set ol all (dis­

tinct) eigenvalues of T, and each Pa is t he ort hogonal projection onto the eigenspace 

Ker(Xi;I — T). Since by [45, TheSrem 0.14 and page 75], t his ordinary sum of projec­

tions can be translated int o a direct sum, we find t hat a normal operator is unit aril)' 

equivalent to a direct sum of simpler operators, which are indeed normal since pro ject ion



operators are normal. This means that, a normal operator is unitarily equivalent, to a 

direct, sum of scalar operators, which are easy to handle.

Every hounded linear operator T  on a Hilbert space has an ort hogonal decomposition 

T =  T\ ® X-1, implemented through a restriction of T  to a reducing subspace, where T\ 

is normal and Tjj >s pure or completely non-norml (c.n.n.), which means that no part or 

restriction ol T> to a reducing subspace is normal. It is well known that either of these 

two summands may be absent.

It is well known [45, page 22] that in a finite-dimensional sett ing quasinormality, subnor­

mality and hvponormality all collapse to normality. This means that in such a setting 

such operators will have no pure direct summands.

The following results will be useful in the sequel. We start with the following known 

result due to [53].

Lem m a 2.1 [53] For any operator T  € if |A| =  ||X|| if > an eigenvalue of T then

K er (T  — X I) is reducing.

Lemma 2.1 gives rise to t he following consequences.

C oro llary  2.2 If T is pure (c.n.n) and if ||T|| =  r (T ), then there are no eigenvalues A 

for which |A| =  ||T||.

Rem ark 2.1

We note that o {T ) =  <rp{T) for operators T  acting on a finite dimensional space. How­

ever, <7p(T) may be empty in an infinite dimensional space.

Exam ple 2.1

Consider t he unilateral shift, T : L2 — > ( 2 on the Hilbert space C2 of all square summable 

infinite sequences of complex numbers, given by

T (x i ,x -2.x3, ...) =  (0,x-i ,X2,x :i, ...) for every ( r i,X2, x3, ...) 6 C2. Suppose that A 6 C  is 

an eigenvalue of T. Then there exists a non-zero eigenvector (.-rq, x-2, x3, ...) 6 f2 such that 

(0 ,.ri,x2,x3, ...) =  A(x i , x2, -̂ 3, - )  =  (Axi, A.r2, Ax3, ...), so that Axj =  0 and Ax, =  x<_, 

for every i >  1. If A =  0, then t he Second condit ion implies that, X\ =  x2 =  x3 - ... =  0, 

a contradiction again. It follows that the operator T. which is a unilateral shift, has no 

eigenvalues and thus ap(T ) =  0.



C oro llary  2.3 If T  € 13(71) is dominant, with T  =  T\ ©  Tj wheiv. 7) is nonnal and T, 

is purr., llum T> is dominant.

R em ark  2.2

We not e Unit Corollary 2.3 applies t o all subclasses of dominant operators: hyponormal, 

M-hyponormal. We now investigate the decomposition of (p, A:)-quasihyponormal oper­

ators, which are an extension of /ehyponormal operators, A;-quasihyponormal operators 

and /i-quasihyponornial operators.

Aluthge [1], Arora and Arora [5] and Kim[43] introduced yehyponormal, /squasihyponormal 

and (/>, A')-quasihyponormal operators, respectively. These operators share many inter­

esting propert ies wit h hyponormal operators. VVe give and prove conditions under which 

such an operator is normal.

Theorem  2.4 If T £ 13{7i) is a (p, k)-quasi.hyponornial operator and S* 6 13(H) is a 

p-hyporwrmal operator, and if T X  =  X S  where X  : 1C — > H  is an injective hounded 

linear operator with dense range (a quasiaffinity), them. T is a normal operator unitarily 

equivalent to S.

R em ark  2.3

Theorem 2.4 says that a (p, /i')-quasihvponormal operator which is a quasiaffine transform 

of a cop-hyponormal operator is always normal. We need the following result.

Proposition  2.5 [65] If T  € B (H ) is a hyponormal ope.ra.tor and. 5 “1TS =  T* for an 

operator S, where 0 ^  11(5'), then T is self-adjoint..

R em ark 2.4

From Proposition 2.5 we conclude that T  is normal, since a self-adjoint operator is 

normal. From this result, we also deduce t hat, if a hyponormal operator is similar to its 

adjoint, then it must be normal. We extend the result of Proposition 2.5 to the class of 

p-hyponormal operators as follows.

Theorem  2.6 If T or T* is p-hyponomial, and S is an operator for which 0 (f IF (S ) 

and ST  =  T*S, then T is self-adjoint and hence normal.

To prove this theorem we use the following lemma.

!(>



Lem m a 2.7 [75] If T  € B{Ti) is any opemlor such, lhal. S 1TS  =  T *. where 0 ^  IT (.S'), 

then. rr(T) C R.

P ro o f  o f Theorem  2.6. Suppose that, T or T’ is hyponormal. Since cr(S) C IF (S'). 

S is invertible and hence S T  =  T 'S  hccomes S~lT ’ S =  T =  (T *)*. Applying Lemma 

2.5 to T’ we get, a {T *) C R. Then a (T ) =  a (T *) =  a (T *) C R. Thus w 2{(t(T ) )  =  

m2(a (T * )) =  0, for the planar Lebesque measure m2. Applying Put nam’s inequality for 

//-hyponormal operators T  or T’ (depending upon whic h is //-hyponormal), we get

\\(T'T)P -  (7 T ‘ )1  <  £  [  [  r2p~1 dr(10 =  0 
P .1 Ja(T)

or

||(77’*)7< _  (7 *7 )/'|| <  £  f  f  r2p~ldr<l0 =  0.
117 Jn(T ‘)

It follows that T  or T* is normal. Since o (T ) =  n (T *) C R. T  must be self-adjoint. We 

extend the result of Theorem 2.6 to the class of //-quasihyponormal operators. We use 

the following lemma.

Lem m a 2.8 [43] If T e B (H ) is a (//, k)-quasihyponorm<d operator, then T has the 

following matrix representation:
/ T\ T2 x

T =A  o T,
with respect to the decomposition Ft =  Ran(Tk) ©  I\er(T’k), where

T\ is p-hyponormal on Ran(Tk) and Tk =  0. Furthermore. o (T ) =  rr{T[) IJ{()}.

The following result due to [43] is useful.

Theorem  2.9 [43] If T  is a (p,k)-quasihyponormal operator and S is an arbitrary 

operator for which 0 £ IF (S ) and ST =  T’S, then T is a direct sum of a self-adjoint 

(and hence normal)  and a nilpotent operator.

C oro llary 2.10 If T  or T* is a p-quasihyponormal operator and S is an arbitrary 

operator for which 0 £ IF (S ) and ST  =  T ’S, then T is self-adjoint, (and lienee normal).

Proof. If T  is //-quasihyponormal, then by Lemma 2.8, for k =  1, T  has the matrix 

representation 

/ T\ T2 x
T =

0 0
where T\ is //-hyponormal on Ran(Tk)  and a (T ) =  er(7j) (J {0}.
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Since T\ is self-adjoint, and T> =  0 by Theorem 2.9, T =
7j 0

is also self-adjoint.
V 0 () /

On the other hand, il T* is (/>, A:)-quasihypononnal, t hen using Theorem 2.9 we conclude 

that T  is self-adjoint (and hence normal).

Lem m a 2.11 The restriction T |_vi of a (p. k)-quasihypon<mnul operator T on Tt to an 

invariant subspace Ml is also a (j), k)-quasihypononnal operator.

R em ark  2.5

From Lemma 2.11, we conclude that the direct summands of a (p, A:)-quasihyponormal 

operator T  are again (p, A:)-quasihyponormal.

We need the following results.

Theorem  2.12 (  Ldvmer-Heinz Theorem [40, Proposition A\) If A and B  are operators 

such that A > B  >  0 then Aa >  B" for any a € [0,1].

Theorem  2.13 (Hansen's Inequality [40, Proposition B\) If A >  0 and B <  1, then 

(B *A B )‘ >  B*A*B  for all h € (0. 1].

Lernina 2.14 If T  € B(TL) is a (p. k )- quasih.ypmwnnal operator and Ml is an invariant 

subspace of T for which T\M is an injective normal operator, then Ml reduces T.

Proof. Suppose that P  is an orthogonal projection of Tt onto Ran(Tk). Since T  is 

(p, A)-(juasiliyponormal, we have T*k T*T )P — (T T ’ )p')T k' >  0. If we'let S =  PT\m ,

then clearly, p ( (T *T ) ' ' -  {T T * )A p  >  0. Put 7j =  T\M  and T -
r , t2

0 T-i
on

Tl =  M l®  M l1. Clearly, 5  =  T\ if Ml =  Ran(Tk) . Since by assumption 7j is an 

injective normal operator, we have Q < P  for the orthogonal projection Q  of TL onto Ml 

and Ran(T () — Ml, because Jj has dense range. Therefore, Ml C Ran(Tk) and hence 

Q ( {T 'T y  -  {T T 'Y ^ Q  >  0.

Since T  is (]>, A:)-quasihyponormal, using t he Ldwner-Heinz inequality and Hansen’s in­

equality, we have

J =  Q (T Q T *YQ  < Q {T T 'Y Q  <  (Q T 'T Q Y  =  f  “ j .  Since

Ti is normal, we have, by Ldwner’s inequality,

(  (T iT (Y  0 

\ 0 0

is



(7 7 * )§ =
|*\C(r ,r ,*)

. So
(  (T iT jy  o 

 ̂ 0 0 

T| 7,* o \
V 0 Dv )  

it follows t hat 7 =  0 and hence 7  is reduced by A T

A * B J

and hence .4 =  0 and 77* =

| =  Q {T T *)VQ 

Since 77* =  |

_ / (7 ,7 ,* )+  .4.4* 0 

\ 0 0 

7,7,* + 7 ,7;  7 ,7 ; )  

7 ,7 ; 7 ,7 ; J

7, 0

R em ark  2.G

Lemma 2.14 says that 7  = V 0 t3
a direct sum of nontrivial complement ary parts.

We state the following result important result which has been proved in [40].

|, where 7, - 7|.v,. That is, 7  decomposes ink

Theorem  2.15 [46] Let 7  € B(7i). The following assertions are pairwise equivalent, 

(a ) M  re.due.es 7.

T\m  0
(b ) 7  — 7|_vi ©  7|_v,j- —

(c ) P T  =  TP, where P  =   ̂

orthogonal, projection onto AT

0 T\m x

f 'M
0 0 /

1 : H  =  M  ©  M 1 — ♦ H  =  M  ©  M x .

: hi =  A4 ©  A4X — ♦ hi =  Ad ©  A4X ?,s t/ie

From Theorem 2.15 we note that, if M  reduces 7, then the investigation of 7  is reduced 

to the investigation of the restrictions 7|.v, and 7|^x, which have a simpler structure 

than t hat of 7.

The following result proved in [64] will come in handy in this chapter.

Theorem  2.16 [04, Lemma 1] If 7  is a pure p-hyponormal operator, then crp(T) =  0.

Lem m a 2.17 If 7  G B(7i) is paranormal, then the restriction 7|x to an invariant 

subspace A4 is also paranormal.

Proo f. Let x 6 M. be an arbitrary vector. Then we have,

l|7|^||2 = l|T *||2 < ||72x ||||x || = ||(7 |a,)2x-||||x ||.

This implies that T\m  is paranormal.

Theorem  2.18 If H  is finite-dimensional andT is an M-hyponomml operator on H. 

then 7  is normal.

1!)



Remark 2.7

We note that Theorem 2.18 can be extended to the class of dominant operators and in 

general to any arbitrary operator acting on a finite-dimensional Hilbert space.

The next result, due to [51] is useful.

Theorem  2.19 [51] If T 6 13(H), th.cn there exists a redu ring subspace. A4 of 7i (pos-

R em ark 2.8

Theorem 2.19 is a version of Theorem 2.15 and gives uniqueness of t he decomposit ion. 

In the following result, we use the notation [T*, T ] =  T’T  -  TT*. We use Theorem 2.19 

to prove the following result.

Theorem  2.20 Lei. T be an operator on H. If K =  Ran(T*T — TT *) is the smallest 

reducing subspace of T, then T\k is the completely non-normal summand of T.

Proo f. Let K. be as defined in t he theorem. From Theorem 2.19. T =  T\ ©  75 

on M. ®  Adx , where T\ is completely non-normal and T2 is normal. Since [T*,T ] -

reducing subspace of T  containing the range of [T *,T ]. If this containment is proper, 

then T\ itself could further be reduced into Tn ©  Tv2 on K. ©  /Cx , where /Cx is the 

orthogonal complement of 1C in AT  But the definition of K. implies that [T*2,Ti2] =  0, 

which contradicts the fact that T\ is complet ely non-normal. Therefore, 1C =  A T  which 

completes the proof.

R em ark 2.9

Nzimbi, Pokhariyal and Khalagai [50, Theorem 2.9] have shown t hat Theorem 2.20 holds 

for the class of 2-normal operators. We give an example of a basic non-normal operator.

sihly trivial) such that T\m  is normal and T\ ^x is completely non-normal. Fur thermor e, 

the. decomposition is unique, and

M  =  p| Ker(TnT * -  T*mTn)
m,n=0
OC OC
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A unilateral shift, is a non-normal operator.

Proposition  2.21 An isometry is purr if and only if it is a unilateral shift.

Proof. Suppose that T is an isometry and that T =  Tx (BT-j, where Tx is normal and 

T-i is completely non-normal. Since T  is pure, T\ is missing and Tj is pure. Hence 

TT* Y  T*T =  I =  TfT>. Thus T is an isometry which is not a co-isometry and 

hence must be a unilateral shift. Conversely, suppose T  is a unilateral shift. Then 

T*Tx Y TT*:i: for every 0 ^  x G A4 C hi. This proves t hat, T  is pure.

R em ark 2.10

Proposition 2.21 is a special case of Theorem 2.16. Indeed, by [45, Remark 5.5] any 

pure operator is a unilateral shift or a direct sum of unilateral shifts. We investigate the 

direct sum decomposition for similar, quasisimilar and unitarily equivalent operators.

Lem m a 2.22 Lei. T G B(7i\) be a p-quasihyponorinal operator and N  G B (hi-fi be a 

normal operator. If X  G B(hi2-hix) has dense range and satisfies T X  =  X N , then T  

is also a normal operator.

Example 2.2

the decomposit ions hix — R a n (T )^K er (T * ) and B.2 =  Ran(N )(& Ker{N*), respectively. 

Since TX =  X N  and X  has dense range, we have X (R a n (N )) =  Ran(T). If we denote 

the restriction of X  to R an (N ) by X\, then „Yi : Ran (N ) — * Ran(T) has dense range 

and for every x G Ran (N )

AiAT,x =  X N x  =  T X x  =  T1X 1X,

so that, X\N\ - T\X\. Since T{ is p-hyponormal by Lemma 2.8, there exists a hyponor- 

mal operator T\ corresponding to T\ and a quasiaffinity Y  such that T {Y  — YT\, where

TiYX 1 =  YTiX 1 =  YXxNx.

Since T A j has dense range, T\ is normal, and so 7\ is normal. Thus the inecpiality 

(T,*T1)P >  {T T *  +  T2T *)v >  {T\T{) -  {TfTxY

Tx =  |7’1|1/2P|7'1|1/2, with Tx =  U\TX\ and Tx =  ITjI'^t/ITil1/2.

Thus, we have
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implies that T2 =  0. Hence T  is normal.

We state t he next result for quasisimilar p-quasihyponorma.l operators.

Theorem  2.23 Let Tj G B (H ,) (i =  1,2) be, injective, p-quasihypononnid operators 

.such, that. T\ and T2 are. quasisimilar and let, T, — Ni ©  Vj on Hi =  Hu  8)H l2. where N, 

and Vi are the normal and pure parts of Tt, respectively. Then .V) and N2 are unilarily 

equivalent and there exist. X , G B (H 22. H\2) and Y, G B{H\>, H 22) with dense ran yes 

such, that V\X, =  X ,V2 and YtV\ =  VjY ,.

Proo f. There exist quasiaffinities X  G B(TL2,H\) and Y  G B (H \ .H 2) such that. T\X

X T 2 and VT, = T 2Y. Let A' := and Y  := We show that 

=  X 2N 2 and

X2

\ *3  AA
X , =  X 4 and Y. =  Y4. A simple matrix calculation shows that V\ X 3 

V2Y:i =  Y3N\. We claim that X 3 =  YA =  0. Indeed, letting M  =  Ran(X :i), the suhspace 

M. is invariant under V\. So let Vj =  V\\m  and let X-} : H2l — ♦ M  he defined by 

X 3x =  X 3x for each x G H<\. Since V[ is injective ;>quasihyponormal ( since by Lemma 

2.11 t he restriction of a p-quasihyponormal operator to an invariant subspace is also 

p-quasihyponormal), X :i has dense range, mid Vj X 3 =  X':iX2. Hence V[ is normal by 

Lemma 2.22 and hence M. reduces Vj. Since Vj is pure, we have that M  =  {()}. and 

hence X 3 =  (1. Similarly, we have Y3 =  0. Thus, it follows that X\ and Vj are injective. 

Since N ]X i  =  X\N2 and VjN\ =  A^Vj, by [7G, Lemma 1.1], we have that A j and X2 

are unitarily equivalent. Also, we can notice that X 4 and Vj have dense ranges and 

VjAq =  X 4V2 and VjVj =  V2Y4, which completes the proof.

Rem ark 2.11

For any operator T  G B {H ) the self-commutator of T, [T*.T ] =  T *T —TT* is always self- 

adjoint. Recall that an operator T  is normal if it commutes with its adjoint. It is easy to 

check that the operator [T*,T ] is normal. We use this notion to give a characterization 

of normal and quasinormal operators.

Theorem  2.24 Let T  G B (H ) such that T  =  7j ©  Tj with T\ normal and T2 pure. T is 

normal if and only if [T2,T2] =  0.

Proof. Suppose T  G B (H ) is normal. Then T*T  — TT* =  [T>*,T_>] =  0. Con­

versely, suppose [T2*,T2] =  T2T< — T2T2 =  0. Since T2 is pure this holds only if T2 =  0. 

A simple computation shows that T *T  =  TT*. This proves that T  is normal.



Remark 2.12

We note t hat. Theorem 2.24 can lx- proved easily by using the 1'a.et, that, T  lias no pure 

purl,. Recall that, an operator T  6 Zi(H ) is quasinormal if it, eommut.es with T 'T . 

Equivalently, il (T 'T  — T T ')T  =  0. We use this fact to prove the following result..

Theorem  2.25 T € B(TL) is quasinonnal if and only if [T \T ]T  =  0.

Proof. The proof follows easily by imit at ing Theorem 2.24 above.

We investigate the direct summands of a quasinormal operator.

Theorem  2.26 Every direct summand of a quasinonnal operator is again quasinormal.

Proof. Let Ad lie a reducing subspace for T G B(TL). Suppose that T =  T, ©  Tx 

on hi =  Ad ©  Ad1 where T\ =  T\m  and T2 =  T|.vî  and T  is quasinonnal. Then

r * r r  = t*txT\ ® t.;t,t2 = txt;t, © t,t2t2 = tt*t .
This shows that T*TXTX =  T .T .T , and TfT2T2 =  T2TfT2 (i.e [T*,Ti}T{ =  0 and 

['Tf.T>]T2 =  0) and hence by Theorem 2.25, T\ and T2 are both quasinonnal.

Rem ark 2.13

Theorem 2.26 says that the restriction of a quasinonnal operator to a reducing sub- 

space is always quasinonnal. We give conditions under which a hyponormal operator is 

quasisimilar to an isometry.

Coro llary  2.27 Let T be a hyponormal operator whose c.n.n part has finite multiplicity. 

Then T is quasisimilar to an isometry if and only if its normal part, is unitary and its 

c.n.n. part, is quasisimilar to a unilateral shift.

Proof. Let T  1 le hyponormal with the decomposition T =  T\ (&T2 and suppose that T 

is quasisimilar to an isometry V  =  U  ©  5, where T\ is normal, T2 is c.n.n., U is unitary 

and S is a unilateral shift. By [33, Proposition 3.5], Tj is unitarily equivalent to U  and 

hence unitary. Since by assumption T  is quasisimilar to V, and by Clary [14] quasisim­

ilar hyponormal operators have the same spectra, and by [29], ||7’|| =  r(T)  =  r {V )  =  1, 

where r (T ) and r ( V )  are the speeiral radii of T and S, respectively, then this proves 

that, T2 is quasisimilar t o S.
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Remark 2.14

We need (lie following result to give mid prove conditions under which ap-quasihypononnal 

contraction is normal. This result will also he useful in Chapter Three.

Theorem  2.28 [44] The c.n.u. part of a paranormal contraction is of class C.o.

R em ark  2.15

Since by [25] the class ol p-quasihypononnal operators is contained in the class of para­

normal operators , the c.n.u part of a p-quasihyponormal contraction is of class C.o-We 

use this assertion to prove the following result.

Theorem  2.29 Let T  € B(Tl) be. a p-quasihypononnal contraction. If dr <  oo , then 

T is normal.

Proof. Since T  is a contract ion, we have the decomposition T  =  T\ ©  T2 with respect 

to the decomposition Ti =  Ti\ (BT(>, where T\ =  T\ni is unitary ( hence injective with 

Ktr{T\) =  { 0} ) and T2 — T\n2 is c.n.u. p-quasihyponormal. Since by Theorem 2.28 

the c.n.u. part of p-quasihypononnal contraction is C 0, T2 is of class C.0. On the other 

hand, since T\ is unitary, the deficiency index dTl =  0 and hence dTi =  rank(Drf) =  

rank (D r ) < 00. Since T2 € C.o, T  6 C(). Thus, there exists an inner function / such 

t hat f (T )  =  0. By [GO, Theorem 2], t he planar Lebesgue measure of the spectrum of T 

is zero. This proves that. T  is normal.

Rem ark 2.1G

Takahashi and Uchiyama [G7] proved that if T  is a hyponormal cont raction with Hilbert- 

Schmidt defect operator, then T  is c. 11.11. and T  is of class Cm are equivalent.

We give the following generalizat ion to the class of p-quasihyponormal operators.

Theorem  2.30 Let T  6 B(7i) be a p-quasihyponormal. contraction such that, the defect 

operator Dr is of Hilbert-Schmidt class. Then T  is completely non-normal if and only 

if T is of class Cw-

Proof. Suppose that T  is a c.n.n. p-quasiliyponormal contraction. Then by Theorem 

2.27, T  is of class C.o. Define M  =  {x  € H  : T nx — ► 0, n =  1, 2,...}. Then M  is a T- 

invariant. subspace and the restriction operator T\M  is of class Coo and D'2fi =  IM — T{T\

24



2
is of trace-class. That is, X )0(| D r K ,e„) <  oo or equivalently, Jf,,, \DT\l,2en <  oo 

lor an orthononnal basis {c „ } of A T  I3v Nagy and Fonts [53, Theorem 2], (lie planar 

Lebesgue measure of the spectrum of T  is zero. But by Lee and Lee [50] the planar 

Lebesgue measure of the spect rum of any e.n.n. p-quasihypouormal operator is positive. 

This implies that Ad =  {( )},  and hence T  is of class C  m. Conversely, suppose T  is of class 

C m. For a normal operator N, Ar G C.ii and N  G Co. are equivalent. So the condition 

T € C jo excludes the existence of any non-t rivial normal direct summand. This means 

that T  is completely non-normal.

Coro llary  2.31 Let. A and B be hyponorrnal operators. Assume Unit the e.n.n. part of 

A lias finite multiplicity. If A is quasisimilar to B then their normal, parts are unitarily 

equivalent.

Proof. The result follows easily from Corollary 2.27 and by the application of the fact 

that quasisimilar normal operators are unitarily equivalent (see Hastings [33]. Williams

[70]).

Note that from Corollary 2.31, we cannot conclude that quasisimilar hyponorrnal op­

erators have quasisimilar pure parts. By [33], if .4 and B  are quasisimilar hyponorrnal 

operators and A is pure, then B  is also pure.

Definition 2.1

An operator T  G B(7i) is called quasi triangular if there exists an increasing sequence 

{P n }^ !  of finite rank (orthogonal) projections such that Pn — > I  (strongly, a — > oc) 

and ||TP„ — PnTPn\\ — > 0 as n — ♦ oo (see [37].[54]). Recall that an operator T  is 

reductive if every T-invariant subspace reduces T. We give some decomposition results 

for quasitriangular operators.

Theorem  2.32 If A is completely nonnormal and reductive, and if T commutes with 

A, then T is quasitriangular .

Proof. By Hoover [39], since A is reductive, and AT =  TA , then T  is reductive and 

hence every invariant subspace of T  is reducing. Thus every invariant subspace of T  is

2 5



also an invariant, subspace for 7*. If T* has an eigenvalue A, let, A4a =  Kcr(XI — T*). 

Clearly, M \  is T*-invariant and ^ ’-invariant. Thus M \  is hyperinvariant for T * and 

t hus reduces T. Now suppose that T  is nonquasit riangular and let Ad be t he span of 

all eigenvectors ol T*. The subspace Ad reduces T  and T |_vt is diagonal, so it must be 

that, T\m i is nonquasitriangular. But then by [3] T*\m l would have an eigenvector, a 

contradict ion of t he choice of Ad. Thus T  is quasitriangular.

Rem ark 2.17

We note that Theorem 2.32 is not generally t rue for all reductive operators. For consider 

T  =  I . Thus T  commutes with every linear operator A  but T =  I  is not quasitriangular. 

Thus t he complete nonnormality of A  cannot be dropped.

This fact leads to t he following result.

C oro llary  2.33 Every reductive operator T  € B(7i) is quasitnanyular.

Proof. Suppose T is reductive. Then T =  0  T2. where Ti is normal (hence) qu­

asitriangular, and the completely non-normal T2 commutes with itself and is therefore 

quasitriangular by Theorem 2.32.

Rem ark 2.18

We now look into the normal parts of a dominant operator. We first note that a hy- 

ponormal operator which is similar to a normal operator must lie normal. It is known 

from the definition that every hyponormal operator is dominant. First, we need the 

following two corollaries due to Stampfii and Wadhwa [G5].

Coro llary 2.34 [6G]. Let T  € B (7i) be hyponormal. If T is similar to a normal 

operator, then T is normal.

Rem ark 2.19

We note that Corollary 2.34 also follows easily from Proposition 2.5 and t he Proof of 

Lemma 2.7. We give a simplified but detailed proof to the following corollary.

Corollary 2.35 [GG]. Let T  € B {7 {). Let. T\V =  W N  where N  is normal and \V is 

any non-zero operator in B (H ).  Then T  has a nontrivial invariant su.bspa.ee.
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Remark 2.20

We note that Corollary 2.35 applies t o quasiaffine t ransforms of all reducible oporat.ors 

wit h a finite-dimensional direct, summand (remember: normal operators are reducible).

C oro lla ry  2.3G [19]. Ltd .4 € B {H X), B  G B {U > ) and X  E B {H 2,H X) be such that 

A X  =  X B . If either A is a pure, dominant operator or B* is a pure M-hyponormal 

operator, then X  =  0.

R em ark  2.21

The following results show that t he results on decomposit ions of (7;, A;)-quasihvponormal 

operators can be strengt hened to subclasses.

Theorem  2.37 An operator T  E B (H ) is k-quasihyponormal if and only if
(  r, t2 '

T with respect to the decomposition H  — Ran(Tk) ®  Ker(T*k), where
\ o  r 3 /

777i -  TiT; > TAT; and Tf =  0.

P roo f. This result follows easily from Lemma 2.8.

C oro llary  2.38 If T is k-quasihypononnal and the spectrum, of T has zero Lebesyue 

measure, then T is a direct sum of a normal operator and a nilpotent operator.

Proo f. The hypothesis implies that T  is of the form in Theorem 2.37 with spectrum of T\

of zero area measure. Therefore T\ is normal and hence T2 — 0. Hence, T =

where T\ is normal and Tf =  0, i.e. T:i is nilpotent. This proves the result. 

R em ark 2.22

From Corollary 2.38, it is clear t hat the direct summand T:i is completely non-normal.

C oro llary  2.39 If T  is k-quasihypononnal and the spectrum of T has zero Lebesyue 

area measure, and K er (T ) C K er(T * ) (equivalently, K er (T ) D Ran(T) — { ( ) } ) ,  then T  

is normal.

Proof. Suppose that T  satisfies all the assumptions in Corollary 2.38. From Theorem 

2.37 and Corollary 2.38. T =  T\ ®  Tii where T\ is normal. If Tk =  0 and T-2 ^  0. then 

Ran(T ) D K er (T ) =  {()}. Thus =  0 and thus T =  T\ ©  0, which is normal.
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Theorem  2.40 If A is a completely non-normal, operator of norm one., such that. .1 * .4 — 

AA* is a projection, then A is a. unilateral shift. The conclusion is also true if the norm 

condition is not assumed.

Proof. We show (hat

(1) A is quasinormal,

(2) AA = I\er(I — .4*.4) reduces .4.

(3) K er (I -  A *A ) C Kcr(A *A  -  .4.4*).

Write P  =  .4*.4 — .4.4*. Since for all x € AA

IN I2 >  P * l l 2 =  (A*Ax, x) =  (AA *x,x ) +  (Px , x ) =  ||.4*.r||2 +  ||P*||2,

it follows that if P  =  I, ( hen A*P  =  0. This implies that (A *P )* =  0, and hence PA  =  0. 

This shows that (.4 M )T  =  .4(.4*.4), which proves (1). If x G AA, then x -  A*Ax. — 0. 

Thus

Ax -  (A *A )A x  =  .4:/: -  A {A*A )x  =  A (x  -  A*Ax) =  0,

so (hat, AA is invariant under A*. Similarly, replacing x bv .4*.r we get that AA is invariant 

under A. .This proves (2). Finally, since P is idempotent, it follows that

T*.4 -  .4.4* =  .4*.4.4*.4 -  .4.4*.4*.4 -  .4*.4.4.4* +  .4.4*.4.4*.

Since A"A  commutes with both A and A*, this can be written as

A*A -  .4.4* =  .4‘ .4(.4*.4 -  .4.4*).

In other words, P  =  A* AP, or, (7 — A *A )P  — 0. It follows that Ran (P ) C AA, or, AA _L 

K e r (P )(since range and kernel of a projection operator are algebraic complements) and 

since A  is completely non-normal, K er (P ) includes no non-zero subspace that reduces 

A. Thus AA1 =  {0 }, which means that .4 is a unilateral shift.

Rem ark 2.23

From [5G] an operator T  € B (7i) is 2-normal (denoted T e [27V]) if T*T2 =  T2T ’ . We 

investigate the direct sum decomposition of 2-normal operators.

Proposition  2.41 [5G, Proposition 2.1] Let T  G B(fH) have the, direst, sum decompo­

sition T — T\ ©  T'2 with respect to the decomposition Ti — Hi ©  Tti- If T  G [2Ar] then 

each direct summand Ti, i =  1,2 is 2-normal.

28



Proo f. Suppose that, T 'T 2 =  T2T*. Them a simple operator multiplication shows that, 

T 'T 2 =  T 'J 2 ©  T.jTf and T2T ' =  T 2T; ©  T.jT.j. Since T e [27V], we have T{T'2 ©  

T-2 T'j =  7f r*  ©  T;T.:. Equating respect ive direct summands gives T {T 2 - T 2T" and 

T fT j =  T;T',. Hence 7) € [27V], i =  1.2.

R em ark  2.24

Nzimbi, Pokhariyal mid Khalagai [5G] have claimed t hat t he converse of Proposition 2.41 

is also true. This leads to the following result,.

Proposition  2.42 [56, Proposition 2.2] Let T be a normal, operator. Then T is 2- 

normul.

Proo f. Since T  is normal, so is T *. Thus T 'T '2 =  (T*T )T  =  (T T ')T  =  T (T 'T ) =  

T (T T * ) — T2T*. This completes the proof.

R em ark  2.25

The converse of Proposition 2.42 does not hold in general. For instance, if T =

^ . t hen a simple matrix multiplication shows that T  is 2-normal but. not normal

(indeed, in this case T  is pure). This shows that a 2-normal operator T decomposes as 

T  =  T\ ©  T2 where 7) is normal and T, is completely non-normal and any of t hese direct 

summands could be missing. We give conditions under which a 2-normal operator turns 

out to be normal (That is, T  has no non-trivial pure summand).

We give a condition for which a 2-normal or quasinormal operator is normal.

Proposition  2.43 [5G, Proposition 2.G] If T € 77(77) is 2-normal and quasinormal 

and injective, on Pnn([T*. T ]), then T is normal.

Proof. The assumption that T  is 2-normal and quasinormal implies that T 'T 2 =  t 2T* 

and (T 'T  — TT*)T  =  0. A simple calculation shows that T  is normal.

R em ark  2.26

By Proposition 2.43, an operator which is both 2-normal and quasinormal has no nonzero 

c.n.n direct summand. We note that we can not merely drop any or both of the 2- 

normality or quasinormality condit ions in Proposition 2.43. If T  is the unilateral shift

/ 0 0

V 1 ()
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on £2 (lien T has an infinite matrix representation T = A sim­

( i ) 0 0 .
•• ^

1 0 1) .

0 1 0 .

\ : ■■ )
ple computation shows that T  is qumsinonnal lmt not 2-normal. Also, T*T  

din</( 1.0,0,...) ^  di(ifj(0,0,(),...). Thus T  is not normal.

TT * =
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Chapter 3

On unitary and completely 

non-unitary summands of a 

contraction operator

In this chapter we study the decomposition of a contraction operator into a direct sum 

of unitary and completely non-unitary parts. We investigate properties of the e.n.u 

summands of contraction operators.

Nagy and Foias [53] have shown that every contraction operator T  can he written as a 

direct sum of a unitary and a completely non-unitary (e.n.u.) part and that any of t he 

direct summand could be missing. Recall that a contraction is completely nonunitary 

(e.n.u.) if it has no nonzero unitary direct summand; equivalently, if t he restriction of 

it to any nonzero reducing subspace is not unitary. We start with some preliminary 

results. The following result which appears in [24] is useful.

Proposition  3.1 [24] If T  € B (H ) is an isometry and Ad is an invariant subspace for 

T such that TAd =  Ad, then Ad reduces T and T |,vj is unitary and

m  c  p| t " h .
7 1 = 0

Rem ark 3.1 **'

We give some results on contractions with defect, indices. We begin wit h following well 

known result.

:u



Lem m a 3.2 [85] L< t T be a am line lion with finite, defect indices. Then Hit following 

statements are equivalent:

(i ) T is quasisimilar to a unilateral shift.

(ii) T is of class C|().

Lem m a 3.3 Let. T be a C\. contraction with finite defect indices. Let. T  have the trian-

( T *
1

0 T2
and C w, respectively.

be of type
C l *

0 c  „
. Then T\ and T2 are of class C\

From Lemma 3.3 we state the following result about isometries.

Lem m a 3.4 Let. T  6 B(TL) be an isometry. If T has the decomposition T — T\ ©  T2 

with respect, to the decomposition Tt — .M ©  , with AA reducing, then T\ € C\\ and

T2 € (T'k).

Rem ark 3.2

Note that aim of the direct, summands in Lemma 3.4 may lie missing. This is the famous 

von Neumann-Wold decomposit ion of an isometry ( see [45], [47] ) which is a consequence 

of the Nagv-Foias-Langer decomposition of a general contraction operator as a direct 

sum of a unitary operator and a c.n.u. operator. If T\ is missing in Lemma 3.4, then 

T  is a pure isometry or a completely nomuiitary isometry and hence a unilateral shift. 

From Lemma 3.4 we can conclude that every isometry on a Hilbert space is either a 

unitary operator, a unilateral shift or a direct sum of a unitary operator and a unilateral 

shift operator. Nagy and Foias [53] have proved that every contraction T  of class C\\ is 

quasisimilar to a unitary operator U  and that since quasisimilar unitary operators are 

unitarily equivalent, t he operator U is uniquely determined up to unitary equivalence. 

P ro o f of Lem m a 3.4. If T  is an isometry then A =  lim,,-.^ T*nTn — I  and I\er(I — 

A ) =  Tt and hence M  =  K er (I — .4) D K er (I — .4,) - K er (I  — .4.) is a reducing 

subspace, where .4, =  \imn̂ 00TllT*n. By the Nagy-Foias-Langer decomposition with 

.Ad =  K er (I — A*) we have that Tl.vi is unitary and T\M c is a completely non-unitary
V

isometry on A41, which means a unilateral shift.

Note that the proof also follows immediately from Proposition 2.21 and Corollary 2.27.
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anLem m a 3.5 Let T be a c.n.u contraction with finite defect, indices and, let M  hi 

invariant subspace of T.

(i )  If T is quasisimilar to an isometry, so is T |_vi.

(ii.) If T is quasisimilar to a unilateral shift, so is T\m -

Lem m a 3.6 [80, Corollary 3.9]. LctT  = Ti<X>T> andS =  Si(l)S‘2 be contract ions, where 

T\ and Si arc of class C\\ , T2 and S2 arc. of class C .0 and T2 has finite multiplicity. 

Then T is quasisimilar to S if and only if T\ is quasisimilar to S\ and. T2 is quasisimilar 

1.0 S'2 ■

R em ark  3.3

We use Lemma 3.6 to prove the following result for hyponormal contractions. We use 

the fact that quasisimilar normal (unitary) operators are unitarily equivalent.

Coro llary 3.7 Let T and S be hyponormal contractions. Assume that the c.n.u, part 

of T  has finite multiplicity. Then T  is quasisimilar to S if and only if their unitary 

parts are. unitarily equivalent and c.n.u parts are quasisimilar to each other.

Proof. The conclusion follows from [16, Lemma 1], Lemma 3.6 and the fact that 

completely non-normal (and hence completely non-unitary) hyponormal contractions 

are of class C .0 by Theorem 2.28 since every hyponormal operator is paranormal.

Rem ark 3.4

Duggal and Kubrusly [16] have proved that t he completely non-unitary direct summand 

of a contraction T  is of class C .0 if and only if T  has the PF (short for Putnam-Fuglede) 

commutativity property: whenever T X  — X.J* holds for some isometry J € B(K.) and 

some A' € B (H ,)C ), then T*X  =  X  J. Contractions with the PF property include 

dominant and paranormal operators . This result has been extended by Duggal and 

Kubrusly [16] to the class of ^-paranormal operators.

Corollary 3.8 If a contraction T  € B (T i) is k-quasihyponormal or k-paranormal, then 

the completely non-unitary direct summand of T is of class C o ­
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Rem ark 3.5

We: now characterize cont ract ion operators using shift- operators on Hilbert, spaces. This 

characterizat ion makes the analysis of contract ion operators easier to handle since we 

investigate t heir act ion on funct ion Hilbert spaces rat her t han vector Hilbert spaces. We 

study the universal model of operators on finite and infinite dimensional Hilbert spaces. 

Shift operators have the following remarkable property: Up to unitary equivalence and 

multiplicative constants, the class of operators T =  S*|.vi , where S is a shift operator 

and M  is an invariant subspace for .S’*, includes every bounded linear operator on a 

Hilbert space. This result, was proved by Rota [G3].

Let Ti be a Hilbert space with inner product ( , ) n and norm | . |w. By H ^ (D ) we mean 

the Hardy space of all H-valued holomorphie functions

H Z ) - £ > ; * >
.7=0

on ID for which the quantity

^  \f{rei0%dO  =  £  |aj& r*  <  oo, 0 <  r <  1.
j=n

It is easy to see that H^(ID) is a Hilbert space with inner product, given by

(/. <>)* =  lim 2TT Jo (K reW)'!l (re ie))ndO =  («j> bi)n

as r | 1 for any f (z )  =  Y^o nj z  ̂ all(l fliz) =  Y t f  bi~J ' n ^ ie space.

Thus M ^ (D ) is isomorphic with l2H via the correspondence between function and its 

Taylor coefficients. Where there is no confusion we write H2(D ) for H ^ (D ) and £2 for 

As a result of this isomorphism we obtain t he following results.

Theorem  3.9 The operator of multiplication by z on H ^ (D ) defined by S : J (z ) - —* 

z f (z ) for all f (z ) in H ^ (D ) is a shift, operator of multiplicity dirn(7i) and the adjoint 

of S is S* : / (* ) — + IZUhTEl.

Proof. Note that (S f )(z ) =  z f (z ), / € H ^ (D ). Define the Fourier transform from

H  to H ^ (D ) by (a i,a2,a3...) — + / where f (z )  =  Y j l o aj z j- Tluis' S(YJLo ,lj zi) =  

E r = o « i^ +1 =  YyLa nj-i~ 3- Clearly, the Fourier transform is a unitary equivalence



between a shift operator and the operator S. Since every operator unitmily equivalent 

to a shift, is a shift, S must he a shift operator. The rest of the assertion follows from 

t he fact, that t he mult iplicity of a shift on 77 is equal to and the adjoint of a

shift operator is unitarily equivalent to S*.

C oro llary  3.10 Every shift operator on a Hilbert space 77 is unitarily equivalent to 

multiplication by z on for some choice of 77.

R em ark  3.6

Let 7i  be a separable Hilbert space. To every completely non-unitary (c.n.u) contraction 

T  on 77, Nagy and Foia.s [53] associated a contraction-valued holomorphic function Or 

on the open unit disk D such that 0-/ (0) is a pure contraction. We call this function 

the characteristic function of the operator T. Conversely, given any holomorphic func­

tion 0  oil D , there exists a completely non-unitary contraction 7© whose characteristic 

function coincides with ©.

We will try to characterize completely non-unitary contractions in terms of their charac­

teristic fund ions. We first investigate completely non-unitary contractions with constant 

characterist ic functions.

Recall that Dj- =  (/ — T * )1//2 and Dy- =  (1 — TT * )1/2 are the defect operators associ­

ated with a c.n.u contraction T and the range closures in the norm topology of 77. T>t 

and T>r- of Dt and D T- , respectively, are called the defect spaces. We say t hat two 

operators A € B(H\. 772) and B  € B{K,\, 7C2) coincide if there exist unitary operators 

U : 77 2 — * 771 and V  : IC\ — ♦ /C2 such that VA U  =  B. The operator-valued func­

tions Qi(z) : 77, — * K-i, i =  1.2 are said to coincide if there exist unitary operators 

U  : 772 — ♦ 771 and V  : K.\ — + £ 2 such that V@\(z )U  =  © 2(2), for all 2.

We construct an inner-outer factorization for operator-valued holomorphic functions that 

are of bounded type on a disk or half-plane. Let f] =  D or T, where D =  {z  : |z| <  1} 

and T =  {2 : Im z >  ()}, the unit disk and half-plane, respectively. If .4 € Hg(H)(f2), 

then:

(i) A is an inner function if the operator T(.4) : / — ♦ Af, f  € is a partial

isometry on m

(ii) A  is an outer function if \ /{A f  : f  G H ^(f2 )} =  (Cl) for some subspace M. of 77. 

A function G HI00 is said to be inner provided \qz\ =  1 almost everywhere on R. For
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such ip, I lie: sot i^H2 = {ipf : J' 6 H2} is a closed subspaee of H 2. Inner functions of t he 

form
Zn +  11 2 -  Zn— a;;) ih=:;

lor in and n nonnegative integers and { ; „ }  a seciuenco in <9D\{/}, with Yl„ i+(- p <  

oo, zn =  xn+iyn are Bins dike products with zeros {zn}  and t heir multiplicity is defined 

to be t he number ol factors if this number is finite, and infinite if not . In general, we 

define the multiplicity of an inner function to be the dimension of the subspace H2© ^ H 2. 

It can be shown that an inner function <p has finite multiplicity if and only if it is a finite 

Blaschke product, in which case the elements of H2 ©  <^H2 are all rational functions. 

The function identically zero is both inner and outer. The canonical shift, operators on 

H ^ (D ) and H^(<90) are defined by S : f (z ) =  z j (z ) on H ^ (P ) and S : f {z )  =  ^ f ( z )  

on H ^(T ).

These operators are unitarily equivalent by means of the isomorphism

f (z )  —  F (z ) =  i r 1/2( ;  + 1) - 17 ( ^ 4 ) ,
~ + 1

from H^(1D)) onto H^(OD).

We recall that a contraction T  is said to be proper if ||Tx|| <  ||x|| for all nonzero vectors 

x € 7i. Recall that an operator X  6 B(Tt,IC) is a quasi-invertible or a quasi-affinity if 

it has trivial kernel and dense range, (i.e, K e r (X ) =  { 0}  and Rnn (X ) =  X ).

Using the preceding concepts we give the following results.

Lem m a 3.11 Let T be a contraction between two Hilbert spaces. Then the following are 

equivalent.

(i ) T  is a proper contraction.

(ii ) T* is a proper contraction.

(Hi) (/ — T 'T ) l/2 is quasi-invertible.

(iv ) ( I  — 7 T * )1/2 is quasi-invertible.

Proof. (i)<t=s>(ii): First note that the contraction T  is a proper contract ion if and only 

if K e r ( I - T ’T )1/"2 =  {0 }. If T  is a proper contraction, then polar decomposit ion shows 

that ( I  -  T*T )'/2 and (/ — T T * )1/'2 are unitarily equivalent, which implies the stated 

equivalence.

( i )< = »  (iii): If T  is a proper contraction, then K er (I  — T 'T )'/2 =  {()}.
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This means that ( I  — T *T )'/2 is injective and hence has dense range. Thus ( I  — T "T )'^2 

is quasi-invert ible.

(i) = > (iv ) ,  (ii)<£=> (iii) and (ii) = >  (iv): The equivalence of (i) and (ii) shows that 

( I  — T T * )xt2 is quasi-invert ible as well. Note that, the equivalence of (ii) and (iii) implies 

the equivalence of (iii) and (iv). Finally, if (/ — T*T ) l//2 is quasi-invertible, then it is 

obvious that T  is a proper contraction, which shows that (iv)=t> (i), ( i v )= >  (ii).

Definition 3.1

T  € B (H ) is strongly stable if the power sequence {T 71}  converges strongly to the null 

operator (equivalently, X"‘ — ► O  strongly or ||T’n.r|| — * 0 for every x € 'H). Clearly 

every strongly stable contraction is clearly completely non-unitary and is thus a proper 

contraction and satisfies Lemma 3.11.

Exam ple 3.1

The operator B  =
/ 1 / 2 0 \ j(  ( l / 2 ) 2n Mis strongly stable since B*”B n =
V 0 o / 1̂ <) o ;

0 0 

0 0
as n — ♦ oo. It is clear that B  is completely non-unitary. A  simple matrix 

computation shows that T  satisfies Lemma 3.11.

Definition 3.2

A bounded linear operator T  acting on the complex separable Hilbert space 7i  is called 

homogeneous if a (T ) C D and <f(T) is unitarily equivalent to T  for every € Ad(D).

Rem ark 3.7

Homogeneous operators were investigated in several works (see [6], [13]). It. was proved 

by Bagclii and Misra [6] that ii T is a homogeneous contraction such that the restriction 

T|p7. of T  to the defect, space T>j■ is of Hilbert-Selnnidt class, then T  has a constant 

characteristic function. Let Ad(P ) denote the set of all injective, analytic mappings of the 

open unit disc D onto itself. That js, M (D ) =  {/  : D — ♦ D, / 1 — to— 1, analyiic on ED}. 

Any element of Ad (ID) is of t he form

<PkJz) = ~ s id. he on, a e d.
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These mappings are known as the Mobius transformations of the unit disk P.

Nagy and Foias [53] have shown that for any <p G Ad (D ) and for any contraction T  G 

13(H). the Mob ins transform <p(T) is unitary (c.n.u) if and only if T  is unitary (c.n.u, 

respectively). Thus the contraction T  is homogeneous if and only if the unitary and 

completely noil-unitary parts are bot h homogeneous.

Let us assume that T  G B (H ) is a completely non-unitary contraction. We consider t he 

characteristic function 0 y  of T defined by

9 t ( z) =  ( - T  +  zDT' { I - z T - ) - lD T)\Vr G B (D t ,V t .), z € P,

where Dp =  (/ — T *T )1̂ , Dr- =  (/ — TT* ) 1 are the defect operators, and D-y =  

Bnn(Dr), Dr- =  R a n {D y ) are the defect spaces of T. The mapping

&T : D -— ► B (D t , T>t ' ) ,

is a contraction-valued, analytic function, and by [78], 0/ (0) =  —T\t>r is a pure (proper) 

contraction, that is, ||T'.7'|| <  ||3.-|| for every 0 /  i 6 T>r■ We note that c.n.u contractions 

T\ € B (H \ ) and 75 G B (H -i) are unitarily equivalent if and only if their characteristic 

functions 0T, and 0 ^  coincide. That is, there exist unitary transformations U  : Dyi — * 

T>r2 and V  : Vy- — ♦ Dy- such that © ri(~ ) =  ^© ^ (z jt/ , z GD.  We show that if the 

characteristic function of a c.n.u contract ion T  is constant, i.e, 0-/-(;) =  0 7 (O), for every 

j GD,  then T  is a homogeneous contract ion.

Nagy and Foia.s [53] have proved that ar c.n.u. contraction T  G B (H ) of constant 

characteristic function is a weighted bilateral shift with special operator weights. We 

claim, however, that all unitary operators also have this property.

Theorem  3.12 Let T be a homogeneous c.n.u. contraction. If T|p7. is compact, then 

the characteristic function of T is constant.

Proof. Suppose T  is a homogeneous c.n.u. contract ion with chracteristic function 0 r- 

By [G, Theorem 2.9], 0 o <̂ _1 coincides with 0  for each 0  G .M (D ). By [6, Theorem 2.10], 

since 7"’|p7, is compact, T  is unitarily equivalent to a c.n.u. contraction with constant 

characteristic function. This proves that 0 r  is constant.
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Exam ple 3.2

Some homogeneous cont ract ions with non-const ant characterist ic functions are those of 

class C(K). i.e. those that are strongly stable. These are backward weighted shifts with 

weight sequence {«>„ =  (1 +  n )l/2{c +  n )~l/2}%Ln, where r >  1.

We also note that if T  is a c.n.u. contraction and (-)•/■ is constant, then T  is the 

orthogonal direct sum of a unilateral shift , a backward shift and a Cn-contraction.

R em ark  3.8

Isometries comprise a rather special class of C\- contractions. They are the contractions 

T  € B(Tt) for which ||Tx|| =  ||x||, lor every x € Tt. It is easy to show that every isometry 

has a nontrivial invariant subspace. Since a unitary operator is a normal isometry, it 

follows that t he unitary contractions comprise a set of particularly well-known operators. 

By Kupin [48] every invariant subspace M  of a model operator Te defines a certain 

regular factorization of the characteristic funct ion 0  =  0 L>0i of a contraction T. These 

model operators have been characterized as multiplication or composition operators in 

H2. The following canonical decomposition will be useful.

Theorem  3.13 [53, Theorem 7.3.2]. To every contraction T on a Hilbert space Tt 

there corresponds a uniquely determined decomposition of Tt into an orthogonal sum of 

subspaces reducing T, say Tt — Ttu (&Tt\, such that T{) =  T |Wo is unitary and Tx =  T\Ttx 

is c.n.u. In particular, for an isometry, this canonical decomposition coincides with the 

von Neumann-Wold decomposition.

R em ark  3.9

For a contraction T  with decomposition T  =  T() ©  7\ as in Theorem 3.13, we have 

D t =  0 © D Tl, Dt - — 0 ©  D r* , T>t - D 7- and T>-j- =  V T- . These results lead us to the 

following result.

Coro llary  3.14 Let T € B(Tt) have the decomposition in Theorem 3.Id, then 

0 r (A ) =  0 Tl(A).



Proo f. A simple! computation shows t hat,

(-)v(A) =  0 W l ( A)

=  [ - ( 7b © r , )  +  a  (£)•/;; ,,//■•)(/ -  A ( 7] ;  © r r ) ) - ' £ > W l ]

=  e 7;,(A) +  (-)7l (A)

= e7,(A).

R em ark  3.10

The conclusion of Corollary 3.14 follows from the fact, that the characteristic function 

of a unitary cont ract ion operator is identically zero.

Recall that a function Q r is an outer function if 0 7-H -(TV ) =  H *(£ )7-.). Recall that if 

/C is a Hilbert space, H  C  /C is a subspace, S € B(K.) , and T  6 B (H ), then S is a dilation 

of T  (and T  is a power-compression of S ) provided that Tn =  P hS"\h , n =  0.1.2,... and 

Pn is the projection on 7H. We now characterize contractions T  with unitary quasi-affine 

transforms in terms of their characterist ic function 0 r .

Proposition  3.15 Let H  be a Hilbert space, and let. T be a contraction on H such that, 

K er (T ) == {0 }. The followim/ assertions are equivalent.:

(a ) T has unitary quasi-affine transforms:

(b ) T belonys to the class Ci.

Proposition 3.16 Let. Ti be. a separable. Hilbert, space and let T  be a contraction on H 

such that. Ker(T ) =  {0 }. The following assertions are equivalent:

i) T has unitary quasi-affine transforms;

ii) the characteristic function QT of T is outer and Ker(Q r) f lH 2(T>t ) =  {0 }.

Proof. Assume without loss of generality that T  is a c.n.u contraction. It, is well known 

that the following are equivalent: (a) T  is of class Cy, (b) 0 7- is an outer function; (c) 

the operator A =  Pffin '■ B  — ♦ H  ( where 1Z =  DffL^U’fTt, U+ =  U\IC+ and U is unitary 

dilation of T, U+ is isometric dilation of T and /C+ =  \Jff U'ffiH) has dense range. Also 

the following assertions are equivalent: ( 1) A is injective; (2) K ct(Q t ) n Mi2(T>T) =  { 0}-

Rem ark 3.11

From Theorem 3.13, we conclude that. T  € C  \ if and only if its characteristic function 

Qt is outer. In the decomposition in Theorem 3.13 it, is not excluded that 7f() or Hi is
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possibly the subspace {()}. Furlhermore, Ho is given by

Ho =  e H  : ||r'.r|| =  ||:/:|| =  ||T*”7:||, n =  1,2,...}
oo

=  P i {:/■• € H  : T kTkx =  x =  TkT ,kx}
fc=i

is called the unitary subspace of T  and it is the maximal reducing subspace on which 

its restriction is unitary. We give another characterization of the unitary space: If T 

is a contraction, then ||T"+1.r|| <  ||7’nx|| for all x € H  and the sequences 

and {T ’nT*n}  are inonotonically decreasing and hence converge strongly to positive con­

tractions .4" and .4;, respectively with T* A 2 T  =  A2 and T* A 2 T  =  A2. By using the 

unique positive square roots A and .4, of A2 and A2, respectively, we can represent Ho 

as follows.

Ho =  {x  <E H  : |jA x [| =  ||A.x|| =  ||x||}

=  {x  € H  : A2x — A 2tx — x }

=  K er{I -  A ) D I<er[I -  .4,).

It is clear that K er (A ) =  {x  € H  : Ax — 0}  and

I\er(I -  A ) =  {x  € H  : -4x =  x }

=  { x e H :  ||r*x| =  ||x||, n =  1,2,3,...}

are invariant under T  and T\kf.t(i - a ) i-s an isometry and K er(A  — A2) =  Ker(A ) ©  

K e r (I  -  A ). We give an example to illustrate this fact.

Exam ple 3.3

Let T  be the backward unilateral shift on H  =  f2. It is not difficult to show that T is a 

contraction on ( 2. A  simple calculation gives that A =  0 and I  — A =  /, K er (A ) =  H  

and K er (I  — .4) =  {()}. Hence, Ker(A  — A2) =  K er (A ) ©  K e r (I  — A ) =  H  ©  {( ) }  which 

we identify with H.

R em ark 3.12

If T  is completely non-unitary (has no nonzero unitary direct summand), then the 

unitary subspace Ho -  K er (I — A ) fl K e r (I  — A , )  - { 0}.
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Recall that a contraction T  € Coo if -4 =  .1, =  O. We give some results on t he nature 

ol direct summands of some classes of completely non-unit ary cont ractions.

Proposition  3.17 If T  E B(Tt) is a normal amlmclion, limn Urn c.n.u pari, of T is 

of class Co„.

P roo f. Suppose T  is normal and T =  T\ ©  T> with T\ unitary and T> completely lion- 

unitary. It is easily verified by Mathematical Induction that T*"T ’‘ =  T^T*11 for every 

n >  1. By Theorem 2.28, T2 is of class C (). It suffices to show that T2 is of class Co.. 

Since T2 is of class C.o , then ||T2*''|| — ► 0. Since T  is normal, .4 =  lim„ T2 'Tf =  

lim„ T ]‘T ;T‘ =  .4. =  O. Thus T> e C (K).

R em ark  3.13

T  and T* have the Putnam-Fuglede property if and only if .4 =  .4,. We note that 

Proposition 3.17 also follows from t he fact that T  has the Putnam-Fuglede property (see 

Nzimbi, Pokhariyal and Klialagai [55, Corollary 2.3]).

Proposition  3.18 If A 6 B(Ti) is a normal contraction and B  € B(7i) be similar to 

A then the c.n.u part of B  is of class Coo-

P roof. The result uses Proposition 3.17.

Rem ark 3.14

We note that by Lemma 3.G and Corollary 3.7, Proposition 3.18 also holds when we 

replace similarity with either quasisimilarity or unitary equivalence. The following result 

gives a further decomposition of normal operators and appears it in [17].

Lem m a 3.19 [17, Lemma 1] If A is a normal contraction such that .4" is normal 

for some integer n >  2, then there exist direct sum decompositions 71 =  H n ©  H v 

and An =  A\-nn is a normal Cu ©  Coo type contraction and Av =  ,4|x is a. pure Coo 

contraction.

Rem ark 3.15

Note that if a contraction is pure then it must be c.n.u but t he converse is not generally

/ 0 4 \
true. For consider the operator with the matrix T  =  | ]. Then T  6 Coo and T  is

V 2
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normal. Thus not all Coo contractions an: pun;. Equivalently, t here is no Coo contract ion 

with a unit ary part. A pure Cm cont raction is c.n.u and has a t riangnlat ion as in Lemma 

3.19.

Lem m a 3.20 . Let T  be a C\\ contraction on Tt and U be a. unitary operator on /C. 

If there, exists a one-to-one operator X  : Tt — > 1C such that X T  =  U X , then T is 

quasisimilar to the. unitary operator U\y Hcic-

Proof. Since T , being a C\\ contraction, is quasisimilar to a unitary, the assertion 

follows.

Rem ark 3.16

We note that there are C n  cont ractions which are not normal (and hence, not unitary).

For consider the operator with matrix A  simple computation shows that

T  6 Cn but T  is non-normal. The conclusion in Lemma 3.20 cannot be ext ended to cover 

similarity. For instance, take an arbitrary integer n >  1 and let Tn =  sliift({uJic}fL _oc) 

be a bilateral weighted shift on f2 with weights w* =  1 for all A: except for A- =  0 where 

ujo =  (n +  1) . Each Tn is a lion-unitary Cn-contraction similar to a unitary operator, 

and T  =  0 ^=1 T„ is a Cn-contraction not similar to any unitary operator. Thus if 

T  € C jj. then T is quasisimilar to a unitary operator, in which case , there exists an 

increasing sequence {M „  } n6pj of T-invariant subspaces that span Tt (i.e., VneN -Mu =  Tt) 

such that each part T|.m „ is similar to a unitary operator. This remark leads to the 

following result.

Coro llary 3.21 . A nonunitary Cn contraction is similar to a unitary operator if it is 

invertible.

Proof. We prove this assertion by the method of contradiction. Suppose a c.n.u. 

T  € C\\ is such that T  =  X ~ lU X . where U is unitary and suppose that T  is not 

invertible. Then t his is an absurdity since the right hand side is invertible while t he left 

hand side in not. This completes the proof.

Rem ark 3.17

We extend Corollary 3.7 on hyponormal contractions and unilateral shifts to wider classes 

of operators: that of p-quasihyponormal contractions and isometries.
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Theorem  3.22 . Let T be a p-quasihypononnal contraction whose c.n.n part has Jinite 

midliplicily. Then T is quasisimilar to an isometry if anti only if its normal purl is 

unitary and the c.n.n (hence c.n.u) part, is quasisimilar to a unilateral shift.

Proof. Assume that T =  Tn ©  Tv is quasisimilar to an isometry V  =  U ©  S. where T„ 

is normal, Tv is c.n.n., U  is unitary and S is a unilateral shift. By the Put nam-Fuglede 

theorem [25], Tn unitarily equivalent to U whence unitary. By ([14], Theorem 2),([04], 

Corollary 12) and ([40, Theorem 5]), V  and T  have the same spectra ( since t hey are 

quasisimilar p-hyponormal operators),

Ill’ll =  r (T ) =  r (V ) =  1.

By Corollary 3.5 and Wu ([80], [85]), Tv is quasisimilar to S.

R em ark 3.18

Takahashi and Uchiyama [07] have proved that if T  is a hyponormal contraction with 

Hilbert-Schmidt defect operator, then the following assertions are equivalent.

(a ) T  is c.n.n.;

(b ) T  is of class Cm-

We give a generalization of this result to p-quasihyponormal contract ions.

Theorem  3.23 Let T be d p-quasihyponormal contraction such that the defect operator 

D t is of Hilbert-Schmidt class. Then T is completely nonunitary if and only if T is of 

class Cm.

Proof. The proof follows from the proof of Theorem 2.30 with c.n.n. replaced with 

c.n.u.

We now characterize some contraction operators in terms of their characteristic func­

tions.

Corollary 3.24 If T  € B (Tl) is an isometry then the characteristic function 0x is 

identically zero almost everywhere.

Proof. We first prove the result, for a unitary T. For a unitary operator T. Dr =  

D t . - 0 and V T =  D rH  =  {0 }. Therefore, 0 ^  =  — T|p7. =  —T|{o) =  0, V A 6 D. 

Since D t — 0 for a unilateral shift T. we also have that 0 r  =  0. Since by t he von
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Neumann-Wold decomposition an isometry is a direc t sum of a unitary and a unilateral 

shift,, the result follows.

R em ark  3.19

Note that in the proof of Corollary 3.24 0-/ is constant sinc e Or(O) =  0/-(A).

We prove the following import ant property erf the characteristic function of an operator.

Theorem  3.25 Let T G B (H ). Then 0/,/( A) =  A'0-/-(A:A), A E i  holds for any 

A; G 3D.

P roo f. By a simple computation and using the definit ion we have

0 *r (A) =  -  kT +  A(/ -  kkTT*)l/2{ I  -  (A:A)T*)_1(7 -  k k T 'T )xr‘

But, since k G 3D, k — einB, 0 <  6 <  2fl and n =  0. ±1, ±2,.... Thus kk =  1. Thus,

the previous equality becomes

© fcT(A) =  \ -  kT +  A(7 -  T T * )]/2{ I  -  (k \ )T * )~ l{I  -  T *T ) 1/2

Similarly,

A:0r (A:A) =  -  AT +  (kk)X(I -  T T * )X/2( I  -  (kX )T*)~l( I  -  T 'T )X/2 

Once again, since k G 3D, kk =  1. Thus t he above equality simplifies to

k@T(k\) =  -  AT +  A(/ -  T T * )X/2( I  -  (k \ )r )~ x( I  -  T *T )x/<

This completes the proof.

Definition 3.3

Two contraction-valued analytic functions 0\ : D — * B (V ti ,‘Dt^) and 6̂  : D — » 

coincide if there exist unitary operators

U : Dtj — > Dt .,

V  : D T2 — > D Tl

such that @2(•?) =  UQ\(z)V, for alT : g D. This definition leads to the following result.

Coro llary 3.26 If c.n.u contractions T\ and T2 are. unitarily equivalent, then their 

characteristic functions coincide.



Proof. Suppose 7j hi id T2 uro unitarily e(|uivalent, c.n.u coni radii ms. Then there exists 

a unitary operator U such that 7j =  U*T>U. Using the definition of the characteristic 

function we have

Or, (* )  =  Qu -tM z )

=  ~ {U 'T 2U ) +  z I -  (U 'T 2U )(U 'T .1U ) (/ -  zU 'T fU ) - '  (/  -  (U *T fU ){U *T2U

=  ~ {u ' t2u ) +  z i - u ' ( t2t '2) u  ( / -  zU 't ; u ) - 1 ( / -  u * {t ; t2) u \

= U’Qt,{z)U, 2  6  D .

Without loss of generality, we let V  =  U*. 

Rem ark 3.20

Corollary 3.20 says that the characteristic function, modulo coincidence, is a complete 

unitary invariant for c.n.u. contractions. This indicates that it should he possible to 

recover a c.n.u. contraction, up to unitary equivalence, from its characteristic func­

tion. The following result characterizes c.n.u. contractions with constant characteristic 

functions. -

Theorem  3.27 [41]. If  T is a c.n.u. contraction and the characteristic function Or 

is constant, then T is the orthogonal sum of a unilateral backward shift and a C\ \ - 

contraction.

Rem ark 3.21

Theorem 3.27 says that a c.n.u contraction with a constant characteristic function de­

composes as a direct sum of a unilateral shift and an operator quasisimilar to a unitary 

operator. We note that since T  is c.n.u., the C\\ part cannot he unitary, otherwise this 

would contradict the complete non-unitarity of T. We now invest igate conditions for a 

partial isometry implying quasinormality and paranormality.

Theorem  3.28 Let T  6 B (H ). Then T is a quasinormal partial isometry if and only 

if T  is the direct sum of an isometry and zero.

Proof. If T  is a partial isometry and quasinormal, then T  =  P T  =  TP, where 

P  -  T "T  is the projection on M  — Pan(\T\). Thus the space A4 reduces T  and T\m  is



an isomet ry. This means that T =  S ©  0, where S is an isometry. Conversely, suppose 

T =  S 0  0, where S is an isomet ry. Then

T*TT  =  (S*S  ©  0) {S  ©  0) =  S ©  0 =  T =  (S  ©  0) {S 'S  ©  0) =  TT*T.

We now give a result on normal and subnormal partial isomet ries.

Theorem  3.29 Let T be an operator on a Hilbert .space TL. Then

(i ) T  is normal partial isometry if and only if T is the direct sum of a unitary operator 

and zero.

(ii) T  is subnormal partial isometry if and only if T is the direct .sum of an isometry 

and zero.

Proof, (i). Since T*T =  TT* and K er {T )x coincides with Ran{T) and therefore 

^U'rr(T )1 is unitary, then T =  U ©  0 on K er (T )1 ©  K er{T ). The proof of the converse 

is obvious and we leave it.

(ii) If T  is subnormal, then T  is hyponormal. That is, T*T >  T T ‘ , so I\er[T )L D 

Ran(T).  It follows that K e r ( T ) x is invariant under T. and hence it reduces T. Clearly 

T\Av-rf/’)1 is an isometry, so T  =  5 ©  0 on K e r {T )L ©  Ker (T).  where S is an isometry. 

The converse follows from [25. §2.0.2].

We introduce the following useful definition.

Definition 3.4

Let Tt be a Hilbert space and A 6 D (H ). An operator A is left invertible if it has a left 

inverse X  € B{Ti) such that X A  =  l ■ An operator A is right invertible if it, has a right 

inverse such that A X  =  I. An operator is said to be semi-invertible if it is left or right 

invertible.

We note that this definition makes sense only in an infinite dimensional Hilbert space 

since in finite dimensions every semi-invertible operator is invertible.

Theorem  3.30 For any T  6 B(Tl) the following statements are equivalent:

(a ) T  is left invertible,

(b ) T  is injective and Ra.n{T) is closed,***•’
(c ) T* is right invertible,

(d ) T* is surjective,

(e ) 0 £ oav{T ).
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Remark 3.22

Recall that the spectrum of an operator is never an empty set. Not e t hat if T  is a finite- 

dimensional operator (i.e. Ran(T ) is finite-dimensional, if 7i is finite-dimensional), then 

(t(T ) =  ap(T). A special example of a left invertible operator is an isometry since 

T*T  =  1.

Definition 3.5

The deficiency of a left invertible operator T  is dinifRai^T)1). The deficiency of a 

right invertible operator T  is di:in(Ker(T)). The deficiency of a semi-invertible operator 

is a nonnegative integer or +oo. A  semi-invertible operator is invertible if and only if 

its deficiency is zero. An isometry S is a unilateral shift if S*n converges to 0 in the 

strong operator topology. The deficiency of a unilateral shift S is usually called the 

multiplicity of S. Equivalently, we take the multiplicity of a shift operator S € B (H ) 

to be the minimum dimension of a cyclic subspace for S. Usually, multiplicity of 5 is 

dim ^Ker(S*)) (cf. [01]). For any Hilbert space Tt. the mult iplicity of the shift operator

S{(\), c j, ...) =  (0, Co,ci,c2, ...)

on £2(7i) is equal to the dimension of H, since a simple calculation shows that Ker(S*) =

n .

We now use the deficiency of a contract ion operator to characterize its direct summands.

Proposition  3.31 An isometry T  € B(7i) with deficiency 0 is a unitary operator.

Proo f. Suppose that T  is an isometry with deficiency zero. Then T*T  =  / and 

K er (T ) =  {()}. Since T has deficiency zero, R.an{T) =  H. Thus T  is injective and 

surjective and hence invertible. This implies that T*T =  I =  TT*. Hence T  is a unitary 

operator.

Rem ark 3.23

From Proposition 3.31, an isometry with deficiency zero has no nontrivial c.n.u. direct 

summand. This result gives a condition under which an isometry turns out to be unitary. 

Next we investigate isometries with nonzero deficiency indices and t heir decomposit ions.
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Proposition  3.32 (i )  Every isometry with nonzero deficiency is a direct sum of a uni­

lateral shift and a unitary operator.

(ii ) Two shifts are unitaiily equivalent if and only if they have the same multiplicity.

Proof. Note t hat (i) gives the von Neumann-Wold decomposit ion and I lie proof follows 

from Proposition 2.21, Lemma 3.4 and [45, § 5.1].

(ii) Let Sj £ B (7 ij) j  =  1,2 he the shift operators. If Si and Sj have the same 

multiplicity, then the subspaces ICj =  Ker(S*), j  =  1,2, have the same dimension. 

Hence there is an isometry 11 o which maps IC\ onto K.2- For any / £ Ti\, define

OC OC

\Vf =  Y , Si W»ki */ / =  E 5>^ '
o o

( This is because each f  £ H  has a unique representation / =  Sjkj, where kj £ 

1C, j  >  0 ). Then IV is an isomorphism (injective and surjective and indeed unitary 

by construction) from Tt\ to Hi such that S> 1V =  IVSi. Thus S\ and are unitarily 

equivalent. In the other direction, if S\ and S2 are unitarily equivalent, then Ker{S\) 

and A'erjiSJ) are isomorphic (and hence of the same dimension). Hence S\ and S’2 have 

the same multiplicity.

Rem ark 3.24

Just like the unilateral shifts, all bilateral shifts of t he same multiplicity are unitarily 

similar.

We now study the universal model of bounded linear operators.

Shift operators are very applicable in operator theory owing to the following remark­

able property [Cl]: up to unitary equivalence and multiplicative constants, the class of 

operators T — S*|x > where S is a shift operator and A4 is an invariant subspace for 

S*, includes every bounded linear operator on a Hilbert space. Using [01] we give the 

following result.

Theorem  3.33 [61] Let, T £ B (H ) such that. ||T|| <  1 and\\THx\\ — ♦ 0 for each x £ 7i. 

Let S be a shift operator on a Hilbert space Q of multiplicity >  dim ((I — T ’T)7i). Then 

there exists an invariant subspace Jvt of S* such that T  is unitarily equivalent to S* |.m .
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Remark 3.25

Theorem 3.33 says that any T  € is unitarily equivalent to a part of a backward 

unilateral shift . II T £ B (H ) does not satisfy t he hypothesis of Theorem 3.33, t hen cT 

will satisfy the hypotheses for any c ^  0 such that ||rT|| <C 1. In t his case, it. is necessary 

to choose a shift, operator S whose multiplicity is di,m(H).

Rem ark 3.2G

We now show that the st udy of general contract ions can be reduced to the study of the 

completely nonnormal (c.n.u.) contractions. First we need the following result.

Corollary 3.34 For every contraction T  6 B (H ) there exist reducing subspaces Ho.Hi 

for T  such that

(ii.) T  |x, is completely nonunitary, and 

(in ) T |x0 is a unitary operator.

The spaces Ho and H\ are uniquely determined by conditions (i)-(iii).

Rem ark 3.27

Corollary 3.34 shows that the study of general contractions can lie reduced in many 

cases to the study of the completely non-unitary ones. Clearly a unilateral shift is a 

completely nonunitary operator and we use it to study general contractions.

It is important to understand the structure and relative posit ion of the invariant sub­

spaces of an isometry. Recall that an isometry V  6 B (H ) is a unilateral shift if there 

is a closed subspace M. C H  (called a wandering space) such that the spaces { V nM } ( f  

are mutually orthogonal ( that is, C\(f=f)V "H  =  {0 } ) and
OO

// =  0 \ / "A 4 .
7 1 = 0

The dimension of the subspace M  is called the multiplicity of V.

We show that the direct sum decomposit ion in Proposition 3.1 and Lemma 3.4 is unique.

Theorem  3.35 Let V  be an isometry on the Hilbert space H. Then there exists a unique 

reducing subspace Ho for V  such that 

(%) V\-h„ is a unilateral shift, and 

(ii ) V\fie7io ls a unitary operator.
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Proof. The sequence of subspaces { V V'H }^‘=U is obviously decreasing so that, we have

n  = ( ©~ „ (V ’"H © i/"+1H)) © ( n~ (l v nn)\

We set Ho =  (B^={)(V nn  e  V 1,+lH ) =  © ~ „  V HM ,  M  =  H Q  VH. Thus M  is a 

wandering subspace and V\nn is a shift. From the above (equality, Hu is reducing and

H © H „  =  n ~ ()P "H .

Thus V (H  ©  Ho) =  n^=1K "H  =  flJJl{)V','H  =  H  ©  Ho and Ho has all the properties (i) 

and (ii). Now V\nn >s completely nonunit ary so that the uniqueness of Ho follows. This 

proves the result .

Coro llary 3.36 An isometry V  E B(TL) is a unilateral shift if and only if limn_ 3C ||V/*"x|| 

0 for all x E H.

P roof. Assume V is a shift so that
OC

M c H .
?!=()

Then V ,nx — 0 for x E V nM .  Since the sequence { V*n is bounded in norm and

the spaces { V nM }^ L 0 span H. it follows that linr„__||P*".r|| =  0 for every x E H.

Conversely, if V  is not a shift and Ho is as in Theorem 3.35, then ||P'l"'.r|| =  ||.r|| for 

every x E H  ©  Ho. The corollary follows.

Rem ark 3.28

We give results characterizing c.n.u. contractions of class C.o in terms of their multiplici­

ties. These results apply to hyponormal, quasihyponormal and paranormal contractions 

and to operators that have t he Putman-Fuglede (PF ) property. Recall from Corollary 

3.8 that the c.n.u. parts of these contractions are of class C.o. We use //(X1) to denote 

the multiplicity of T. First we need the following result for a general operator T.

Lem m a 3.37 Let T E B (H ) and S E B [K ) and X  E B (H ,IC ) be such that SX =  X T  

and X H  =  IC. Then ,/(S) <  ,t(T ).

Proof. If Ad C H , card (M ) =  fi(T ) and V “ 0 T llM  =  H , then X M  C £ , card (X M ) <  

/r(T), and V ®  o SnX M  =  \J™=0X T "M  = X H  =  K. Therefore //(S) <  card (X M ) =  

/j(T ),  which was to be proved.

r.i



Remark 3.29

Lemma 3.37 says (hat. if S' and T are densely intertwined then /t(5) <  fi(T).

C oro llary  3.38 IJ T  € is a contraction of class C.o then /i (T ) <  dinif'Df)-

Proof. It is clear that the minimal isometric dilation U+ € B(K.+) of T  is a unilateral 

shift of multiplicity dim(T>T- ) -  If P  denotes the projection of /C+ onto H, we have 

T P  =  PU+ so that /i (T ) <  i i (U+) =  diin(T>T• ), by Lemma 3.37.

Lem m a 3.39 For every operator T  6 B (H ) of class C.o there exists a unilateral shift. 

U  € B(IC) and an operator X  € B{K.,'H) with dense range such that

(i ) T X  =  X U ; and

(ii) The multiplicities of U and T are equal.

Proo f. Let U+ € B{Tti+ ) be the minimal isometric dilation of T, and choose a set A4 C 

TL such that c.ard(M) =  p (T ) and V,^=o T 7,.M =  7i. Define K. - \Ĵ = „ U +M . U =  C/+|jc 

and X  =  P h\ic- The relation T X  =  X U  follows because TPn — Pw£/+ . Then (XIC) =  

V “ „ XU™ X I =  V,T=o TnX M  =  V,?=o T nX i — H  so that X  has dense range. Thus U is 

a unilateral shift (as the restriction of a unilateral shift) and p (U ) <  card (M ) =  fi(T). 

The opposite inequality p (T ) <  g {U ) follows from Lemma 3.37.

Rem ark 3.30

By Lemma 3.39, quasisimilar completely non-unitary contractions have the same mul­

tiplicity and hence are unitarily equivalent. Duggal and Kubrusly [16] have shown that 

c.n.u paranormal operators are of class C 0. The preceding results can be used to char­

acterize the c.n.u. parts of such contractions.

Let T  € B(7 i) be a completely non-unitary contraction with minimal unitary dilation 

U  € B(IC). For every polynomial p(X) =  0j\ j  we have

p (T ) =  PnP(U ) |„,

which shows that the functional calculus p — ♦ p(T ) might be extended to more general 

functions We generalize this result and define / (T ) by

f (T )  =  Pnf (U )\n , f  e L°°.
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While the mapping / — ► f (T )  is linear, it is not generally multiplicative, and it is 

convenient, to find a snhalgehra in L 00 on which t he functional calculus is multiplicative. 

It turns out there is a unique maximal algebra that will do the job for all operators 

T\ this algebra is H°°, which is the set of all bounded analytic functions on D. Every 

function u E H°° can be extended a.e. on c®  via taking radial limits:

u(eu) =  lira litre").r—1

H 00 is a subalgebra of Lx . This follows easily since H°° is a subspace of consist ing

of all bounded analytic functions u in O wit h norm Halloo =  sup|.|<J |(/.(z)|.

Lem m a 3.40 If T E B {H ) is of class Co then T is of class C.0.

P roof. We need to prove that liin„_00 ||71*”x|| =  0 for each x E H. Assume that 

T E C o - Then u (T ) =  0 for some u E H^XIO }. Let U+ E B (K + ) be the minimal 

isometric dilation of T, where IC+ =  \f^ U n7i. Let 7Z =  n,T=o U+hi be the residual part 

of /C+, and A =  U+\n. We have

T(Pn\n) =  (■P-h \h )A .

Consequently, we have

(B h Itc) =  u {T ){P -h \-r)  =  0.

By the Fisher-Riesz theorem, the function </,(£) defined by w(£) =  limr_ j  u (rf ) is different 

from zero for almost every £ E 3D and by the spectral theorem a (A ) =  lim,— j u(rA ) - 

limr_ i  anrnAn has dense range. Thus Pn\n =  0 and therefore P-r [h =  0, and

0 =  \\Pn*\\ =  II lim U+T*nx\\ =  lim ||rBx||.
7i—*oo n — *oc

This proves the lemma.

The following result is a consequence of Lemma 3.40.

Coro llary  3.41 Every operator of class Co is also of class Coo-

Proof. Let T  be of class C o .  By Lemma 3.40, T  is of c lass C .o -  The corollary follows 

from Lemma 3.40 applied to T*.



Remark 3.31

We now study t he relat ionship of the characteristic function of a C» contraction T  and

subspaces. Recall that a function a G H°° is inner if |u(e?,)| =  1 almost, everywhere on 

c®. Recall also that the inner function v such that wH°° =  {u  G H^0 : u (T ) =  0} is 

called the minimal function of T. We denote t he minimal function of T  by nij- Let. 

0 and O' lje two functions in Hf*. We sav that 0 divides O', denoted 0\0' if O' can be

be an inner function.

Proposition  3.42 Let T  G B(TL) be a c.n.u. contraction, A i be an invariant, subspace

decomposition f i =  A4©A/". Then T is of class Co if and only if T\ and T% are operators 

in class Co- If T is of class Co then mTi\mT and m-r^niT, and

t hat u(T\) =  0 and u(T>) =  0 so that T\ and T-> are of class Co and nix, and mj^ divide 

mT.

Conversely, assume that T\ and 7^ are of class Co, 0\ =  mx, and 02 =  niT-2- If x2 G 

Af we have 0 =  02(T2)x2 =  I\ 0 2{T )x2 and therefore 02{T )x 2 G M .  Consequently, 

{0\0-2){T)x2 =  0l(Ti)02{T )x2 — 0. Since {0\02)(T )\M =  ^2(^1 )^i =  0 we conclude that 

Ker{0\02)(T )  D A4 UJV and this clearly implies that (0102){T )  =  0. We conclude that 

T  is an operator of class Co and in j divides 0{02. That is, 01x17717̂ mx2.

R em ark 3.32

Clearly T =  T\ ©  T2 =  0 ©  0. A  simple computation shows that nix — t while mr, =  t 

and m-T2 =  t. Thus in this case m j  ^  nip,inr2 ■ We note that equality holds only when 

Ad is a hyperinvariant subspace for T.

t he characteristic functions of the direct summands or restrictions of T  to invariant,

written as 0 =  0.(j> for some 0 G H 00. Clearly, if 0 and O' are inner, then such (j) must

be the matrix of T with respect, to the

Proo f. We have u (T ) =
u{Ti) *

0 u (T2)
for every u 6 H 00. If u(T ) =  0, we conclude

We note that we do not in general have mT =  mTlmT2- For consider T =



Proposition 3.43 Let. T  e

divisor of mT. If T = Tx

0

13(H);) hr. an operator of class Olt and let. 0 he an inner 

is the matrix of T with respect, to the decomposition

H  =  AA $  A /" ,  with M  =  I\er(0 (T )), then my, =  0 and vir2 =  in-r/d.

Proof. We have 0(7",) =  0 (T )|*vr(fl(T)) =  0(T\{t:o(t )j-=o) )  =  ^|{o} =  0 since 6 is isometric 

on <90. This shows that mTl\0. It is also clear that {0 } =  mr (T )H  =  0 (T )(m T/9 )(T )H  

so that

(mT/9)(T)N C (■mT/0)(T)H C Ker(9(T)) = Af

and consequently (mT/9 )(T 2) =  Ptf(m.T/9)(T)\jg =  0. We have mTl \0, mT3\{mT/0) 

and by Proposition 3.42, 0(mr /0) =  mr\mTiniT2- These relations imply rnTl =  0 and 

niT2 =  mT/0.

The following is a consequence of Proposition 3.42.

Lem m a 3.44 Assume that T  G P (H ) is a contmction and AA is an invariant suhspa.ee

for T  and AT =  H Q  AA, andT =  ( ) is the Irian aviation of T with respect to
\ 0 T2 )

the decomposition H  =  AA ®Af. If T is of class C,K) then hotli T\ and T2 are of class

C„o.

Proof. Assume T G Cm. Then we have 7j‘ =  V l\M , T*n =  PM T*n\M ) Tf" =  T "1 \N , 

and Tf  =  Pj^T" for n >  1. It clearly follows that T\ and T2 are of class Coo. 

Alternative Proof. T  € Cm implies that Tn — > 0 and T*n — ► 0 ms n — ♦ oc. Thus

lim (T T Y  =  lim T nT  ©  T nT? =  0 ©  0,
n—*oo n—»oo

which implies that T[l — » 0 and T2 — ► 0 as n — ♦ oo . Thus both T\ and T2 are in 

class Coo-

The following results show that we can generalize the results on contractions to general 

operators. We use the fact that every operator suitably multiplied by a positive scalar 

becomes similar (in fact unitarily equivalent) to a part of a canonical backward unilateral 

■shift, [03],

Proposition 3.45 Every part of a unilateral shift is again a unilateral shift..



Remark 3.33

II A i  is an invariant subspace for S+ (so that S+ |_vi is a unilateral shift), then M L is 

an invariant subspace for S*+. It is then natural to ask what kind of operator is S+N-i.. 

More generally, which operators are parts of a backward unilateral shift? The answer to 

this question was given by Rota [03] and it was as surprising as it, was remarkable: all 

operators, up to a scaling factor and up to similarity. That is, every operator suitably 

multiplied by a positive scalar becomes similar (in fact unitarily equivalent.) to a part 

of a canonical backward unilateral shift. In ot her words, canonical backward unilateral 

shifts are universal models. This is Rota’s Theorem. This gives us the motivation to 

give the following results which are consequences of Theorem 3.33.

Theorem  3.46 Let T be an operator on a Hilbert space 7i. If r (T ) <  1, then T is 

similar to a part of the canonical backward unilateral shift, on £2+ {H ).

Proof. Suppose r (T ) <  1, or, equivalently, J2kLa ||TA'||2 <  oo, and set IT : H  — ♦ 

R an (W ) C (,2+(T{) as follows.

A - 0

so that
OC 3C

i n i 2 <  y , =  ii» n i 2 <  ( E  ii7* f ) N i 2
A - 0 A -0

for all i £  H. Therefore IT is a bounded linear transformation which is also bounded 

below. Thus Ran(W ) is closed in t\(Ti) and hence Ran{\V) is a subspace of C2+(H ). 

Let S+ be the canonical unilateral shift on fl+ (H ) so that S*+r  =  ©£L()x*+ i for all 

x =  € f2+ {H ). Note that

30
W Tx  =  0 r H 1T =  S'+\Vx

k=0

for all x 6 H. Thus Ran(W ) is an invariant subspace for 5|, and hence 5^|r„„(u ) : 

Ran (IT ) — ► Ran(W ) is a part of S+ such that

r ^ i K - 1(5 ;| fl,m(ir))ii/.

This proves the result.

Corollary 3.47 An operator T is similar to a shirt, contraction if and only if r (T ) <  1.



Proof, riii! proof is the same as in Theorem 3.46.

Rem ark 3.34

Corollary 3.47 characterizes similarity to a strict cont.ract.ion. By Halmos [32] similarity 

to a strict contraction is easier to handle t han similarity t o a general contraction. The 

following result is obtained by strengthening Theorem 3.33.

Theorem  3.48 An operator T is unitarily equivalent to a part of a canonical backward 

unilateral shift, if and only if ||T|| <  1 and T" — ♦ 0.

Proof. Use the Proof of Theorem 3.33.

Rem ark 3.35

YVe note that every operator suitably multiplied by a scalar becomes unit arily equivalent 

to a part of a canonical backward unilateral shift (equivalently, becomes a part of a back­

ward unilateral shift). In other words, every operator T  € B (H ) is unitarily equivalent 

to a multiple of a part of the canonical backward unilateral shift S+ on C‘+ (H ), so that 

S'+ € B{(-+ ('H )) is a universal model for B(7i). Since operators that are multiples of 

each other share the same invariant subspaces, the above result leads to a reformulation 

of the invariant subspace problem: Take any (nonzero) operator on a Hilbert space TL 

(of dimension greater than one) and consider a multiple of it, say T, that is a strict 

contraction (e.g divide the original operator by the double of its own norm). Then by 

Theorem 3.49, T  is unitarily equivalent to where S+ is the canonical unilateral

shift on f+ (A4 ), where M  is any subspace of TL such that R.an(I — T*T ) C M  C TL and 

N  C is an invariant subspace for S+ (so that dim(Af) =  dimlfH) >  1). Kubrusly

[45] has given a generalization of these results.

Theorem  3.49 [45, Theorem 6.11] A completely nonunitary contraction on a Hilbert 

space TL is unitarily equivalent to a part of the direct sum of the canonical backwaid 

unilateral shift on and the canonical backward bilateral shift on f2(Tt).

Rem ark 3.36 w

We give results on unitary and c.n.u summands of ahnost-similar contraction operators. 

These result s are due to [54].



Corollary 3.50 [54, Corollary 2.3] Let A G B (H ) and supjmse that. A ~  S+, where 

S+ devotes the. unilateral shift of finite multiplicity. Then A is a completely non-unitary 

contraction such that R.e(A) ~  Q where Q is a quasidiayonal operator and. Rif A ) denotes 

the real part of A.

Proof. Since .4 »  S+, A* A  =  N - l{S'+S+) and A* +  A =  N~\S\  +  S+)N , where N  is 

an invertible operator. Since S+S+ =  I, A*A =  I. That is, A is an isometry (indeed, a 

c.n.ii isometry). It is clear by operator multiplication that 5+ +  S+ a is quasi-diagonal 

operator Q. Hence R.e(A) % Q.

Proposition  3.51 [54, Proposition 2.12] Let. A G B(fH) such that A is almost similar 

to an isometry T . Them the unitary and completely non-unitary summands of A are 

isometric.

Proof. Since T  is an isometry, by the von Neumann-Wold decomposition ([45. § 5.2]), 

T =  S+ (BU, where U is unitary and S+ is t he unilateral shift. Since .4 ss T. there exists 

an operator N  such that

A* A =  N - l (s+ © uy(s+  0  u) N

=  N -\S*+S+ ® U *U )N

=  N  ( I  ©  I )N .

Now, suppose A  =  A x ©  -42, then A"A =  {A\AX ©  A^A?). This shows that (.4].4) ©  

-42-42) ~  / ©  /. From this equation, it follows that .4*.4, % /, z =  1,2. This means that 

there exists an operator N  such that .4*.4, =  N ~ ] IN  =  I. Thus A*A, =  I. This proves 

that the direct summands of A  are isometric.

The following is a consequence of Corollary 3.51.

Corollary 3.52 If an operator A  G B{TL) is such that A* is almost similar to a c.n.u. 

coi.som.etry, then A has no unitary d.ire.ct summand.

Proof. Suppose A =  A\ ©  A2. By an application of the proof of Corollary 3.51. we get 

that the direct summands of A  areMinitary. But the c.n.u part of an operator cannot 

be unitary. This means that Ai =  0 or A\ acts on the null space {()}. Thus .4 has no 

unitary direct summand.
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C oro llary  3.53 [54, Corollary 2.13] Let .4 € B (H ) lx- a contraction. If A is unilarily 

equivalent, to a unitary operator T. then A is unitary.

R em ark  3.37

Corollary 3.53 says that an operator which is unilarily equivalent to a unitary operator 

has no completely lion-unitary direct summand.

Proposition  3.54 [54, Proposition 2.14] If A. B  € B (H ) are contractions such, that
a.s

A «  B  and B is c.n.u, then A is c.n.u.

Proof. By the Nagy-Foias-Langer decomposition for contractions [45. § 5.1], B =  U ® C  

on H  =  H i ©  Tix, where U -  B |«, is the unitary part of B  and C  =  B\n2 is the 

completely noil-unitary part of B. Since B  is c.n.u, the unitary direct summand U 

is missing or 7i\ =  {0 }. Without loss of generality we suppose that B =  C. Then 

A*A =  N ~ '(B *B )N  =  N - '(C * C )N .  This shows that A*A  is similar to C *C  (i.e. 

A*A  ~  C*C ). Now suppose A =  .4) ©  A, where .4| is unitary and A2 is c.n.u. Then 

[A\A\ ©  A2A2) ~  C*C. This holds if and only if the direct summand A\ is missing. 

That is, A =  A2. Hence A is completely non-unitary.

C oro llary  3.55 [54, Theorem 2.15] If A 6 B(fH) is normal, then A ~  ,4’ .

Proof. The result follows easily from the fact that .4.4* =  A*A =  N ~ ] (A A * )N  =  

N ~ 1(A *A )N  and A +  .4* =  .4* +  .4 =  .V - ‘ (.4 +  A * )N  =  Ar-'(.4 * +  A )N .

Rem ark 3.38

We note that the converse of Corollary 3.55 is not true in general, for consider A =  

^ and N  =  ^ V By matrix computation gives .4M  =  N ~ l(A A * )N  and

A* +  A =  N _1(.4 +  A*)N . That is, .4 .4*, although A is not normal.

Rem ark 3.39

We conjecture that Corollary 3.55 can be strengthened to the class of normal cont ractions 

as follows.

Conjecture 3.56 If A € B(Ti) is a normal contraction and B  € B(TC) such that A ~  

B, then the c.n.u part of B is of class Cqq.

/ 0 0 

U o
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Chapter 4

On invariant and hyperinvariant 

lattices of operators

In this chapter we study the invariant and hyperinvariant subspaces of some classes of 

operators in Hilbert, spaces. We give a shot at the open invariant and hyperinvariant 

subspace problems : Does every operator on an infinite dimensional Hilbert, space have 

a nontrivial invariant (hyperinvariant) subspace ? These two problems are both unre­

solved and are of importance for understanding the structure of Hilbert space operators. 

Invariant subspaces play a key role in studying the spectral properties and canonical 

forms of operators. The invariant and hyperinvariant lattices come in handy to de­

termine whether it is possible to isolate the parts (direct summands) of a given linear 

operator. The basic motivations for the study of invariant subspaces come from the in­

terest in the structure of operators . The well known Jordan-canonical-form theorem for 

operators on finite-dimensional spaces can be regarded as exhibiting operators (to within 

similarity) as direct sums of their restriction to certain invariant subspaces. The fact 

that every mat rix on a finite-dimensional complex vector space is unitarily equivalent to 

an upper triangular matrix follows immediately from t he existence of nontrivial invariant 

subspaces for operators on finite-dimensional spaces. We denote the lattice of invariant 

subspaces and hyperinvariant subspaces of T  by Lat(T ) and Hyperlat(T), respectively. 

If 7i  is any Hilbert space and T £  B (H ),  and M  € Lat(T), then the representat ion of



T  with respect, to the decomposition M  <& M x of H  is upper triangular:

where Tj =  T |.vt (the restriction of T  to A i) and where T? and Tj are operators mapping 

Adx into M  and .Adx respectively. Thus there are various relat ions between t he structure 

of an operator T  and Lat.{T). Also, knowledge of hyperinvariant suhspaees of T can 

give information about the structure of the commutant of T. The commutant of an 

operator T  is very useful since it contains all quasiaffine transforms of an operator and 

its very nature reveals information about operators quasisimilar, similar, or unitarily 

equivalent to T. Recall that a complete lattice is a partially ordered set(poset) in 

which all subsets have both supremum(join) and an infimum(meet). We show that if 

the algebra generated by T  coincides with the commutant of T, then every invariant 

subspace is hyperinvariant. In particular, this is the case for injective unilateral shifts 

and in general any completely non-normal (or completely non-unit arv) operator. Since 

the set of all the invariant subspaces of an operator T  can be partially ordered by 

inclusion, then Lat(T ) is a complete lattice.

The following definitions will be useful in the rest of this chapter.

Let T € B (H ). Then Lat{T) =  {A t C H : T M  C A t},  and HyperLut(T) =  { A t c H :  

S M  c  At. whenever S € B (H ) commutes with T }. If Ad € Lat(T), then T  has an 

upper t riangular form relative to the decomposition H — A i ©  A41:

■p — (  Pm T\m-  \
\ 0 P ^ T I ^ x  )

where Pm  denotes the orthogonal projection of 7i onto the subspace At. Such a repre­

sentation is called a triangulation of T.

We investigate the structure of invariant and hyperinvariant lattices of operat ors sharing 

a certain spectral property: quasisimilar, similar, unitarily equivalent, with a view to 

determining whether we can isolate t he direct summands of one operator if the other 

operator enjoys this property. We will study a subset of Lat(T ), which we denote by 

Bed(T ), of reducing subspaces for which T decomposes as a direct sum of two comple­

mentary parts. We note that Red(T ) is not in general a lattice. This is because both 

At and A tx are in Red(T) hut the pair {A \ ,A ix } has no supremum and infimum in

(il



perinvariant. sul(space, Ilicai so has the other. That is quasisimilarity preserves nontrivial 

hyperinvariant subspaees. It is well known (see [S]) t hat, similarity of operators preserves 

compactness, cyclicity, algebraicity, and the spectral picture (i.e. the spectrum, essen­

tial spectrum, and index function), and that similar operators have isomorphic lattices

subspaces but also nontrivial invariant subspaces.

Definition 4.1

An operator T  G B (H ) is cyclic if there exists a vector x 6 7i for which the list

space 'H.

Exam ple 4.1

It is clear t hat il T has an eigenvalue, then the corresponding eigenspace is an invariant 

subspace. Since every operator T : C “ — * C" has eigenvalues it follows that T has 

nontrivial invariant subspaces whenever n >  2. However, on 7i  there are many linear 

operators that, do not have eigenvalues, e.g. the unilateral shift operator T : H  — ♦ H  

defined by T(ai,a-2,a3, ...) =  (0, (i\, a >, <7:t, ...) as proved in Example 2.1. However, the 

unilateral shift T  has nontrivial invariant subspaees. To prove this , we let M.„ Ire the 

subspace of (a of square summable sequences such that the first n components are zero.

Then it is clear that for each x G M „ ,  we have Tx G ,M „+ i C M.„. Thus M n is 

an invariant subspace for T. We show that the unilateral shift has plenty of invariant

of complex-valued analytic functions on the open unit disc D =  { :  G C  : |:| <  1} C C. 

More precisely, we set **

of invariant subspaces and hyperinvariant subspaees. That is, similarity of operators 

(which implies quasisimilarity of operators) not only preserves nontrivial hyperinvariant

{x, Tx, T2x , ..., T" lx } spans (and is therefore a basis) for a finite-dimensional Hilbert

That is

subspaces, by using the Fourier transform. We define the Hardy space H 2 to be the space

OC OC

H 2 =  {/  : P  — * C : f (z ) =  £  anz" for : G D ,  £  |an|2 <  oo}



and determine the Fourier transform from 7i to HI2 by

/oo  =  $ > * - " •
7 1 = 0

Note that the Hardy space H 2 contains all the polynomials. On the space H2 we can 

define the operator of multiplication by z as

(M J ) (z )  =  z f (z ),  / €  H 2.

Then
OC 00 . 0 0

M z(J 2  anzn) =  «nzn+i =  £  « » - i  2".
7 1 = 0  7 1 = 0  71= 0

and it is easy to see that the Fourier transform provides a unitary equivalence between 

T  and Mz. Now let { c-j, c2, c „ }  be a finite subset of D. Then we can set

At =  {/  € H2 : f {a )  =  0, i =  1 , 2 , 3 , n} .

It is easy also to see that A t is a closed subspace of H2 and it is cleai' that A t is invariant 

for M z. It is also easy to see that At is a nontrivial subspace of H2. In fact, since 1 € A t  

we have At ^  H 2, and we also note that

i = l

is a polynomial in At , p ^  0, hence At ^  {0 }. Thus we have a new invariant subspace 

for the unilateral shift T, and one can go on one step further: Let {c i,c2,...} be an 

infinite subset of P, and set

M  =  {/  € H2 : f (d )  =  0, i =  1,2,3,...}.

As before it is easily seen that At C H2 is an invariant subspace of M z, and that 

At 7̂  H 2. However, in this case, it is not clear that At A {  0 }.  It is easy to check that 

also, {()} and R" are always T -invariant, and span^u\,V2, • ••, j  is T-invariant, where v,q

are eigenvect ors of T. Also, if T  has the block upper triangulation T =

(i:s



with Tu € Rrxr, then M  = -invariant

Suppose M  is a T-invariant subspace. Suppose that we pick a basis (i — {vi,V2, ..., ig } 

of M  and complete it to a basis of TL. Then with respect to this basis, the matrix

and TL =  M. ©  AA± . The operator Ti2 =  0 if and only if M  reduces T. in which case the 

operator T  is decomposed (reduced) into t he (orthogonal) direct sum of the operators 

Tu und T'22- T =  Tu ©  T'22-

Thus, on a finite-dimensional complex Hilbert space every operator has an eigenvalue, 

and eigenspaces of non-scalar operators are nontrivial and hyperinvariant, so that every 

operator on a finite-dimensional complex Hilbert space of dimension greater than 1 has 

a nontrivial invariant subspace ( hyperinvariant , actually, if it is non-scalar). The 

invariant subspace problem trivially has a negative answer in a real space. For instance,

Euclidean real space but, of course, it has a nontrivial invariant subspace when acting on 

the complex space C 2). This is in general the case with rotations of a two-dimensional 

real vector space.

We need the following known results which are proved in [18].

Coro llary  4.2 [18, Corollary 2.2]. Let T € B (T i) be a k-t.h root of a p-h.yponorm.al 

operator. If T is compact or Tn is normal for some integer n >  k, then T has hyperin­

variant subspaces.

Definition 4.2

Let T, A, B  6 B(Tl). We say that T intertwines the pair (A .B ) if TA =  BT. If T 

intertwines both (A ,B )  and (B. A ), we say that T  doubly intertwines A and B.

Rem ark 4.1

We investigate the relationship of t he invariant subspaces of such operators A  and B, 

when T  is an arbitrary operator and when T  is a quasiaffinity. We try to answer the

the operator on R2 has no nontrivial invariant subspace (when acting on the

Theorem  4.1 [18] Let T be a k-th root of a p-hyponorrnal operator. If T is compact 

or Tn is normal for some integer n > k, then T is a (generalized) scalar operator.

(it



quest ion whether quasisimilarity preserves nontrivial invariant subspaces.

Lem m a 4 . 3  // T  G  B ( 'H ) doubly intertwines A and B and Lat(A) n  Lat(B ) is trivial 

then T is either 0 or a quasi.ajjinity. The. same is true, if T  commutes with A and B  

and Lot (A ) fl Lat(B ) is trivial.

Proo f. T  doubly commutes the pair {A ,B ) implies that TA  =  BT  and TB =  AT. 

Since TA =  B T  then Rnn(T ) G  Lat(B ) and K er(T ) G Lot (A ). Since TB  =  AT, 

we deduce that Ran(T) G  Lat(A ) f l  Lal(B ) and I\er(T ) G  Lat(A) f l  Lal(B ). We run 

t hrough t he following two cases.

Case 1: II Run(T) =  {( )} then T  =  0. If Ran(T ) =  hi, then K er (T ) =  { ( ) }  and hence 

T  is one-to-one or injective and has dense range, hence a quasiaffinity.

Case 2: If T commutes with A and B, i.e. TA  =  AT  and TB =  BT, then by the 

argument above, Ran(T) G  Lot (A ) D Lot (B )  and K cr (T ) G  Lat(A) (1 Lat(B ). Thus by 

the same argument either T =  0 or T  is a quasiaffinity.

Rem ark 4.2

The triviality of L<it(A)nLat\B) follows from the orthogonality of K er (T ) and Ran(T). 

Strengthening Lemma 4.3 to similarity shows that Lat(A ) is isomorphic to Lal(B).

T h e o r e m  4 . 4  Let. A ,B  G  B(Tt). If A2 =  B 2 and A has nontnvial invariant, subspar.es 

then B  has nontrivial, invariant, subspaces.

Proof. We prove this result by contradiction. Suppose Lat(B ) is trivial. That is, 

Lat(B ) =  { ( ) }  or Tt. Then La,t(A) fl Lat(B ) is trivial also. Denote T  =  A +  B. Then 

TA =  {A +  B )A  =  A2 +  BA, B T  =  B (A  +  B ) =  BA +  B 2\ 

and

AT =  A (A +  B ) =  A2 +  AB, TB  =  (.4 +  B )B  -  AB  +  B 2.

This shows TA  =  BT  and A T  =  TB. Thus T  doubly intertwines A and B.

If T =  0. then A =  —B  or A =  B  =  0. Both cases imply that La.t(B) is nontrivial, 

which is an absurdity, since we had assumed Lat(B ) to be trivial. We admit that T  0, 

so by Lemma 4.3, T  is a quasiaffinity doubly intertwining A and B. Using [58, Theorem 

G.19], we deduce that B  has nontrivial hyperinvariant subspaces, which is once more 

absurd. We conclude that Lat(B ) is nontrivial.



Theorem  4.5 If A and 13 arc v-iljHdc.nl operators of nilpoteney index 2 having no 

nontrivial common invariant subspae.es, then A and B are. quasisimilar.

Proo f. II Lot(A ) fl Lat(B ) is trivial, then T  =  A +  B  is nonzero because if T =  0, 

then Lat(A) =  Lat(B ) and nilpotent operators have nontrivial invariant snbspaces. 

Consequently, A  and B are quasisimilar since T  is a quasiaffinity doubly intertwining A 

and B  by Theorem 4.4.

The following theorem will come in handy in the sequel.

Theorem  4.G (Spectral Theorem ) [46. Theorem 0.14] If hi is a finite dimensional 

Hrlhcrt space and T  E B(hi) is self-adjoint, then there exists an orthononnal basis 

Tn for hi and real numbers X\, A2, ..., A„ such that

Tipi =  Anpi, 1 <  i < n.

The matrix (/,j) =  ({Tpj,<pi)) corresponding to T  and y?i, i/>2, ...,y>„ is the diagonal 

matrix
/ A , 0 \

l  0 An )

A natural question is whether this spectral theorem can he generalized to the case where 

T  is self-adjoint and hi is infinite dimensional. That is to say, is there an orthonormal 

basis for hi and numbers Ai, Aa,... such that

T<pi =  \i<pi, 1 < i l

This means that the matrix corresponding to T  and ^ 2,... is an infinite dimensional 

diagonal matrix. It is known that the spectral theorem admits an important gener­

alization to compact self-adjoint operators. For an arbitrary operator T, the matrix is 

triangular. The following examples are useful in understanding the notion of an invariant 

subspace for T  acting on infinite dimensional Hilbert spaces.

Exam ple 4.2

• 1. Let {ipi, tp-2, ...} be an orthononnal basis for hi. Suppose the matrix correspond­

ing to T  G B{hi) and {<£„} is upper triangular, that is,

tij =  (Tipj.ipi) =  0, i > j .

GO



11 the matrix (/.,,) is lower triangular, i.e., t,, — 0 i f  i <  y, th«>n for <vuh //, 

spon { tpn+i, ̂ Pn+2,...}  is <m invariant subspace for T.

• 2. Define T  on L?[a,b], the Hilbert space of square integrable funct ions on [a, b], by 

(T f ) ( l )  =  k (t,s)f(s )ds, for A: € (L~[a,b\ x L2[n,b]).

For each I e [a, 6], t he space

•M t =  {/  6 L2[a,b\ : f  =  0 a.e. on [a,/.]} is invariant under T.

Rem ark 4.3

We now investigate invariant subspaces of some classes of operators. We start, with I lie 

following results for M-hyponornial operators.

Theorem  4.7 If T £ B (7 i) is an M -hyponorm.nl operator on Ji, then the set 

AC =  {x  6 7i : ||(T* — 2/ )j:|| =  M\\(T — ~/).r||, ;  6 C } is a dosed subspaee of 7i.

Proo f. For x € AC, we have

||(r -  zl)x\\2 =  M 2\\(T -  zl)x\\\

which yields

( ( m 2( T ' - zI ) ( T - zI ) - ( T - zI ) ( T ' - zI ) ) x,x)  =  0 .  ( 4 . 1 )

In view of the M-hyponormality of T, (4.1) holds if and only if

(M 2(T* - zI){T - zI ) - ( T - zI)(T* - zI))t =  0 (4.2)

From (4.2) it follows that AC is the kernel of the operator

M 2(T* -  z I ) (T  -  z l ) -  {T  -  z I )(T *  -  zl).

and since by Kubrusly [45, § 0.1], the kernel of any operator T  is closed, AC is a closed 

subspace as desired.

Rem ark 4.4

Note, similarly, that if T* is M-hyponornial on H, then the set AC =  {x  G H : \\(T -  

2/)j;|| =  A/||(r* — z/):r||f z € C } is a closed subspace of hi. When M  =  1 (i.e., T  is a 

hyponormal operator), it is well known t hat the space AC is an invariant subspace under



T , and the restriction T |< is normal.

We investigate whether an A/-hyponormal operator has a nontrivial invariant subspaee. 

To do this wo need to study t he cigenspaces of A/-hyponormal operators.

T h e o r e m  4.8 Suppose that the subspaee 1C of TL reduces an operator T on Tt. Then T  

is M-liyponormal if and only if T\m and T |Ci. arc M-liyponormal.

Proof. Lc;t T =  T\ ©  T2, where T\ =  T\k and T2 =  T ^ j.. If T  is A/-hypononnal, t hen 

there exists a real number M  such that.

M T -ziyxJh  < M \\(T -zI)x\\,

for all x 6 H  and for every complex number z. But on 1C, T  =  T\ and T* =  Tj*. Thus 

for any vector x e 1C we have

lien -  =  II( T -  ziyx\\ <  M\\(T -  ~/).r|| =  M||(Ti -  z l )x ||.

This shows that T\ is A/-hyponormal.

Similarly, for x € /C1 we have,

\ m  -  z iy x II =  ||(T -  2/)*x|| <  M\\(T -  z l )x || =  M\\(T2 -  z l )x ||

showing that T> is AZ-hyponoruml. Conversely assume that T\ and T2 are A/-hyponormal 

operators. It is well known that for every x € H, x =  x.\+x2, where x\ € 1C and x2 € K.L. 

Hence for all complex z and for all vectors £ TL we have,

\\{T-ziyxf  = \\(T-ziyx1 + ( T - z i y x 2\\2 

=  IKTj -  z iyx i  +  (T2 -  z l ) 'x 2\\2 

=  || (Ti — zl)*xi\\2 +  ||(72 — zl)*x2\\2 

<  A/21|(7’, -  ~ / )x i||2 +  M*\\(T2 -  2/)x2||2 

=  A/2||(T -  zl)x.x\y +  M '2\\(T -  z l)x2\\2 

=  A/2||(T — zl)x\\2

which proves the AZ-hyponormalityUf T.

Theorem 4.9 Let T be an M-hyponormal operator. Then the span of all eigenvectors 

<>f T reduces T.
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Proo f. We shall divide the proof into four steps.

Step 1- By the definition of A/-hyponormality of T,

{x  € H  : Tx =  Ax} C {x  G H  : T*x =  Ax}

for all complex numbers A.

Step 2- For each complex number A , the subspace K. =  {x  E H : Tx =  A./:} reduces 

T  since for any x E 1C, we have T (Tx ) — A (T x ) which implies that Tx is in 1C. Also 

T (T 'x ) =  A (T x ) =  A(Ax) =  A (T *x ) showing that T*x is in 1C. This shows that 1C is 

invariant under both T  and T*. Hence K, reduces T .

Step 3- If Aj ^  X>. then by [74, Proposition 2(i)], {x  E TL : Tx =  Apr} _L {x  E H  : 

Tx =  A2x}.

Step J, -The span of all the eigenvectors of T  reduces T  and the restriction of T  to that 

span is normal.

The proof follows from steps ( 1), (2), (3) and using the fact that the restriction of T  to 

any of its eigenspaces is normal from step (2).

Rem ark 4.5

Note that Theorem 4.9 applies to all operator subclasses of the class of Jl/-hyponormal 

operators. The subalgebra of all operators generated by an operator T  E B (H ),  denoted 

by W *(T ) will be called the (unital) weakly closed (von Neumann) algebra of T. We 

use this algebra to investigate the structures of the invariant and hyperinvariant lattices 

for various operators.

Theorem  4.10 If an operator A  E B (H ) is in the weakly closed algebra generated by 

an operator B  E B (7i), then Lat(B ) C Lat.(A).

Proof. Since A E IF *(£ ), then QPM =  PM Q  where Q E W * (B )' =  {B } ' n  {B * } ’ is an 

orthogonal projection in { B } ‘, M. E Hyperlat(B), hence Pm APm  =  Pm  A, where Pm  6 

\V*{A) is the orthogonal projection of hi onto Ad. This means that M  E Hyperlat(B) C 

Lat(B ) = >  M. E Lat(A). This proves the result.

Rem ark 4.6 w

Theorem 4.10 can be strengthened to conclude that if A E \V’ (B )  then Hyperlat(B) C 

Hyperlat(A). This follows from the fact that for any operator T. Hyperlat{T) C Lat(T).



Theorem  4.11 Similar operators have isomorphic, lattices of invariant, and hyperinvari- 

ant subspaces.

Proof. Suppose A, B  G B(TL) such that. .4 =  X ~ 'B X .  Then X A  =  B X  and A X  =  X B . 

The rest of the proof follows from Lemma 4.3 and Remark 4.2.

R em ark  4.7

We want to show that quasisimilarity preserves hyperinvariant subspace lattices lmt does 

not in general preserve invariant subspace lattices. First, we need the following results.

P roposition  4.12 If T\ and T< G B ('H ) air. quasisimilar (with quasi affinities X  and 

Y  in B (H )),  then X Y  G {T , } ' and Y X  € {T .}\

P roof. Suppose T\ ~  T2 wit h quasiaffinit ies X  and Y . Then T\ X  =  XT, and TfY =  

YT\. Post-multiplying the first equation by Y  and using the second equation we have 

T\XY  =  X T fY  =  XYT\ , which proves that X Y  G {T j }  . Post-multiplying the second 

equation by X  and using the first equation, we have T fYX  =  YT\X =  Y X T ,, which 

proves that Y X  G {T2} ‘.

We give some definitions which are useful in our next results.

Definition 4.3

A  quasiaffinity X  is said to have the hereditary property with respect to an operator 

T  G B (H ) if X  G {T } '  and X (M )  =  M  for every M  G Hyperlat fT).

Definition 4.4

If T\ and T2 are quasisimilar and there exists an implementing pair (A', Y ) of quasi­

affinities such that X Y  has the hereditary property with respect to T\ and Y X  has the 

hereditary property with respect to T2, then we say that Tj is hyper-quasisimilar to T2 

and denote it by T\ ~  T2.

R em ark 4.8

We note that hyperquasisimilarity is an equivalence relation which is strict ly stronger 

than quasisimilarity. Clearly, from Definition 4.4. two operators T\ and T> are hyper­

quasisimilar if there exist quasiafliuit.es X  and Y  satisfying XT\ =  TTY, TfY =  YT2, 

and the additional conditions that YXJYtl — M\ and X Y M 2 =  Xd2l for every
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M i  G Hyperlat(T\) mid M 2 € Hypcrlat(T2). If C\ mid C2 arc any t wo complain lat­

tices, we write C\ =  C2 to signify that there exists an order preserving isomorphism 

of one onto the ot her. When we say that two operators have isomorphic lattices of 

invariant subspaces there are two things that can be meant. First, they are isomorphic 

as abstract lat tices and second, t hey are isomorphic as lat t ices of subspaces of Hilbert 

space, that is, there is a bounded invertible operator from one Hilbert space onto the 

ot her that, maps the first lattice onto the second.

Theorem  4.13 If T\ and T> are hyper-quasisimilar then Hyper lat(T\) =  HyperlatfTf).

Proo f. Since Ti ~  T>, we have quasiaffinities A" and Y  satisfying Y X M  i =  M \  

and X Y M 2 =  M 2, for every M \  G Hyperla.t(T\) and M 2 G Hyper lot,(T2). Using 

Proposition 4.12, X Y  G {T i }  and Y X  G {T2}  1 M \  G Hyperlat.(T2) for every M\ G 

Hyperlat(Ti) and M 2 G Hyperlat(Ti) for every M 2 G Hyperlut(T2). This means that 

every hyperinvariant subspace of T\ is a hyperinvariant subspace of T> and vice versa, 

which proves the result. □

Note that Theorem 4.13 also holds when =  is replaced with = .

Theorem  4.14 Suppose X  G BCH) is a quasiaffinil.y and 0 ^  U '(A ),  where W (X ) 

devotes the numerical range of X  . Then X  has a hereditary property with respect to 

every T  G B (H ) such that X  G { T } \

P roof. We prove the result by contradiction. Suppose that X  G { T } ‘ and M  G 

Hyperlat(T) such that X M  /  M .  there exists a vector x G M Q X M  and {X x ,x ) =  0. 

This is an absurdity. Hence X M  =  M .  Thus X  has a hereditary property with respect 

to every T G B (H ) such that X  G { T } ' .

Corollary 4.15 Suppose X  G B(7~t) is a quasiaffinity and there exists 0 <  9 <  n  such 

that B  =  Re(e,f>X ) is positive definite (i.e., (Rx, x) >  0 for every r / 0  in 7i). Then X  

has the hereditary property with respect to every T  in B(7i) for which X  G { T } ' .

Proof. If (A x , x) =  0, then

(Rx, x) =  ^ ( e " A  +  e~wX * )x ,x ) =  0,

so x =  0. By Theorem 4.14, we conclude that A  has the hereditary property with 

respect to every T  in B (H ) for which A  G { T } ' .
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R em ark  4.9

In the following result, we denote by t lie direct sum of n copies of H. for any ordinal 

a satisfying 1 <  n < u. That is. H ln) =  ® 0<*<„ H k with H k =  H  for every A:.

Theorem  4.10 Suppose {5 „ }„ ev o.nd { Tu}„eN ore hounded sequences of operators in 

B (7 i) until S =  0 „ g N Sn and T  =  ® „ 6N T„. Suppose, moreover, that {X „ }„ eN is a 

sequence of invertible operators such that

X ,:lSnX n =  Tn, ,16 N.

Then S and T are hyperquasisirnilar and consequently

HyperlatS =  HyperlatT.

Proof. As is well known,

belong to B {H {^ )  and satisfy S X  =  X T  and Y S  =  TY. Moreover

' >  -  ........... -  y  v
u6N IIX.II IK X .)-1!

is a posit,ive operator and X Y  and Y X  have the appropriate hereditary properties by 

Theorem 4.14. The result follows from Theorem 4.13.

Definition 4.5

An operator T  6 B(Tt) such that there exists a nonzero polynomial p satisfying p (T ) =  0 

is called an algebraic operator.

Rem ark 4.10

Foias and Pearcy [22] have shown that the class of algebraic operators has a good supply 

of nontrivial hyperinvariant subspaces. Their result was motivated by the following well 

known theorem of Halmos [29]. *»■

Theorem  4.17 [29] Suppose T  6 B(TL) and p is movie polynomial of minimal degree 

such that p (T ) =  0. If p(z) has the factorization ]>(z) =  (z — A, )qi...{z — Xk)'u where
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A|,A2, arc. the. distinct zeros of p, then rr(T) =  {Ai, A2, ..., A*} and T is similar 

to an operator 7j of the. farm

T\ =  (A| / +  Afi) ©  ... ©  (A*,./ +  Nk)

where N\,...,Nk are nilpotent operators.

As an easy consequence of Theorem 4.17 we give the following result,.

C oro llary  4.18 With the notation above,

Hyperlot(T) =  Hyperlat(N\) ©  ... ©  Hyperlat(Nk)

R em ark  4.11

The following concepts are useful.

Definition 4.6

A  partially ordered set fi is said to be a directed set. if every pair { x . y } of elements in 

n is bounded above. In this case, Q is said to be directed upwar d. If every pair y ) of 

elements in Q is bounded below, t hen we say that fi is directed downward.

R em ark 4.12

We note also that since Lai(T ) and Hyperlat(T) are lat tices and since by Kubrusly 

[46, §1.6], lattices are directed both upward and downward, any subspace generated by 

two or more invariant or hyperinvariant subspaces is also an invariant or hyperinvariant 

subspace, respectively.

We need the following concepts.

Definition 4.7

A subalgebra A  C B (7i) is said to be rejlexive if A  =  AlyLat(A), where AlgLat(A ) — 

{T  € B (H ) : Lnt{A) C Lat(T )}. An operator T  € B(T-l) is said to be reflexive if the 

weakly closed (von Neumann) subalgebra generated by T  in B{Ti) is reflexive. We need 

the following terminology.

The dual space (or conjugate space) of a normed space X , denot ed by X *. is the normed 

space of all continuous linear functionals on X  (i.e., X * =  jS (A ,F ),  where F stands 

either for the real field R or the complex field C, depending on whether X  is a real



or complex normed space, respectively). We note that X* is a Banach space for every 

normed space X, since X* =  B (X ,¥ ) and (IF, | |) is a Banach space. If X  ^  {()},  then 

X* {()} and hence X ** =  (X *)*, the dual of X* is again a non-zero Banach space, 

called the second dual of X. It is easy to show that X  can he ident ified with a linear 

manifold (a  closed subset) of X**. That is, X  is naturally embedded in its dual X** (see 

[40], Theorem 4.00, p. 200).

Now, let 4* : X  — > X** be the natural embedding of the normed space X  into its second 

dual X**. If <I>(T) - X** (i.e. <I> is surjective), then we say that X  is reflexive. In 

Kubrusly [40, Example 3Q], it is shown that every finite-dimensional normed space is 

reflexive. It is clear that, every reflexive normed space is a Banach space, but the converse 

is not true in general. There exist nonreflexive normed spaces. If X  is separable and 

X* is not separable, then X  ^  X** and X  is not reflexive. This provides a necessary 

condition for refiexivity.

Rem ark 4.13

Consider the linear spaces and equipped with their usual norms (|| and || ||i, 

respectively). Since C+ is a linear manifold of the linear space £+, equip it with the 

sup-norm as well. Recall that 1'+, the set of all scalar-valued sequences that converge 

to zero, and t\_ are separable Banach spaces but the Banach space is not separable. 

It is not difficult to check that (4+)* =  and (^+)* — P.+ and so (£+)** =  t°£. Thus 

( l+ is a separable Banach space with a nonseparable dual, since {t\ )*  is not separable 

because (£+)* — £+ and separability is a topology invariant. Hence, is a nonre­

flexive Banach space. It is clear that t\ C and that (£+) =  l\  in (/.+, d2), where 

d-2(x ,y ) =  (J2kLi l^fc-Vfe|2) 1/2, for every x =  { 6 }*.eN and y =  {v k} keN in ( 2+ . This shows 

that the set tl+ is dense in the metric space (r+ , dfl).

Positive results concerning the invariant subspace problem have been found for certain 

classes of operators on a Hilbert space (in particular for subnormal operators) and for 

a general Banach space. It is an open problem whether every non-normal operator 

T  G B (H ) 1ms a nontrivial invariant subspace if Ji is an infinite-dimensional Hilbert 

space. It is easy to show that for non-separable Banach spaces the invariant subspace 

problem has an immediate affirmative answer. For finite dimensional complex Banach 

spaces the invariant subspace problem has an affirmat ive answer too. To see this, let
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T : X  — » X  he a bounded operator on a finite dimensional complex Banach space 

(dim(7i) >  1). There is nothing to prove if T is a multiple of the identity operator, 

since then each subspace is invariant (and the only hyperinvariant, subspaces are t he 

trivial ones). So, we assume that T  is not. a multiple of the identity. Now if A is an 

eigenvalue of T, then its eigenspace M *  =  {x  E H : Tx =  Ax} is a non-trivial closed 

hyperinvariant subspace. Counter examples have been constructed t o answer t he invari­

ant. subspace problem, in some non-reflexive spaces and even in (\ . For inst ance. Read 

[GO] presented an example of a bounded operator on the real t\ space wit hout non-trivial 

invariant subspaces. These examples have established that, the invariant subspace prob­

lem in its general form has a negative answer.

As a consequence of the fundamental theorem of algebra, every linear operator on a 

complex finite-dimensional Banach space ( in particular a Hilbert space) with dimension 

at least 2 has an eigenvector. Therefore every such linear operator has a non-trivial in­

variant subspace. The fact that the complex numbers are algebraically closed is required 

here. It is clear that the invariant subspaces of a linear operator is dependent upon t he 

underlying scalar field of the Hilbert, space H.

The invariant and hyperinvariant subspaces of a linear operator T  shed light on the 

structure of T. When 7i  is finite dimensional Hilbert, space over an algebraically closed 

field, a linear operator T  acting on Tt is characterized (up to similarity) bv the Jordan 

canonical form, which decomposes H  into invariant subspaces of T. Many fundamental 

questions regarding T  (including isolation of parts ) can be translated to quest ions 

about invariant subspaces, of T.

For subnormal operators, the existence of invariant subspaces was proved by Brown 

[11]. Cho and Huruya [12] have shown t hat a large class of hyponormal operators have 

invariant subspaces.

Definition 4.8

An algebra U of operators on a Hilbert space is reductive if it is weakly closed, contains 

the identity operator, and that Lat(il) =  Lat(if*).

It, is clear that, von Neumann algebras are reductive.

C oro llary 4.19 (Bumside)[58]. If K. is a finite-dimensional Hilbert .space and U is a 

subalgebra of B (1C) with no nontrivial invariant subspace, then U =  B(IC).
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Proof. Since Lal(U) =  { { ( ) } , / C } .  it. follows that, if is a reductive algebra. Now let. 

S € B (H ) be a unilateral shift of finite multiplicity, and define the reductive algebra 

2D 1 B (H ) © 11. Since 2D cont ains the operator S © 0, 2D is a von Neumann algebra, 

which implies that it is a von Neumann algebra. It. follows from t his fact, that U =  if", 

where if is the double commutant. of if. The fact that, if has no nontrivial invariant 

subspace implies t hat. 21', t he commutant. of if, consists of t he scalar operators. Therefore, 

if =  if =  ( i f ) ’ =  {X I : A € C } ’ =  B(IC). Thus if =  B(IC). which was to be shown.

Rem ark 4.14

Wu [78] has studied the Hyperlat(T) of C\\ contractions with finite defect indices and 

characterized the elements of Hyper lat{T) among invariant subspaces for T  of their 

regular factorizations and has shown that the elements of Hyperlat(T) are exactly the 

spectral subspaces of T  defined by Nagy and Foia.s [53], which are T-invariant and 

matrix representation of T  in the basis of 7i  using the bases of these subspaces represent 

its Jordan canonical form. Nagy and Foias [53] have shown that if T\ and T2 are two 

such operators which are quasi-similar to each other, then Hyperlat{T\) is (lattice) 

isomorphic to Hyj>ei-lat(Ti). Recently several authors studied Hyper lat (T ) for certain 

classes of contractions. Uchiyama ([70], [71]) has shown that Hyperlat(T) is preserved, 

as a lattice, for quasi-similar Cn (N ) cont ract ions and for completely injection-similar Co 

contractions with finite defect indices. Wu [79], determined Hyperlat(T) when T  is a 

completely non-unit,ary (c.n.u) contraction with a scalar-valued characteristic function 

or a direct sum of such contractions. Wu [78] has shown that elements of Hyperlat(T) 

are exactly the spectral subspaces H r  defined by Nagy and Foia.s [53].

Using these results we can completely determine Hyperlat(T) in terms of the well-known 

structure of the hyperinvariant subspace lattice of normal operators.

We know that for a C\\ contraction T, dp =  dp-. Let Qp denote the characteristic 

function of an arbitrary contraction T. There is a one-to-one correspondence between 

the invariant subspaces of T and the regular factorizations of 07-. If /C C 74 is invariant 

for T  with the corresponding regular

factorization Qp 0 2 0.and T  =s*'
Tx

0

X

Ti
is the triangulation on H =  K. ©  7C-1,

then the characteristic functions of T\ and T2 are purely contractive parts of ©i and 02, 

respectively.



We need t he following notation. For anv subset £ of the unit, circ le, c®, let. Mg denote 

the operator ol multiplication by eu on the space L2(£ ) of square-integrable funct ions on 

E. It. was proved in Wu [81] that, any c.n.u. C\\ contraction T  with finite defect indices 

is quasi-similar to a uniquely determined operator, called the .Jordan model of T, of the 

form Mf, where ...,£k are Bored subsets of satisfying £\ D 2 £k-

In this case £\ =  {/, : Q r (t ) is not isometric}.

Here we use / to denote the argument of a function defined on the unit circle c®. A 

statement, involving t. is said to be true if it holds for almost all t with respect to the 

Lebesgue measure. In particular, for £, T  e c®, £ =  T  means that (£ \ T )  U (T  \ £) 

has Lebesgue measure zero.

We start with the following lemma.

Lem m a 4.20 [78, Lemma 1]. Let T be a Cu contraction on a Hilbert space LL and 

let U be a unitary operator on a Hilbert space JC. If there exists a one-to-one operator 

X  : Li — * 1C such that X T  =  U X , then T is quasi-similar to the unitary operator 

U\y h -

R em ark 4.15

Let T  be a c.n.u C\\ contraction on Li with finite defect indices dT and dT* and U =  

Mc\ acting on K. =  L '(£ i )© . . .© L 2(£\.) be its Jordan model. Let A' : H  — * /C

and Y  : 1C — ► Li be quasi-affinities intertwining T  and U. For any Borel subset T  C 

let

/Cjr =  L \ £ x n T )  ©  ... ©  L2{£k n T )

be the spectral subspace of /C associated with T . For a contraction T  we consider 

o (T ) C t®  holds and there has been developed a spectral decomposition [53, p. 318]. 

Let Lip denote the spectral subspace associated with F  C c®. Indeed, Li? is the 

(unique) maximal subspace of Li satisfying (i ) THy? C Lij, (ii ) T? =  T\hjt € C\\ and 

(Hi) &Tr (t ) is isometric for t in T c . the complement of J-, that is t € 0B\F. Moreover 

Lijr is hyperinvariant for T. Such subspaces Tt? give all the elements in Hyperlat(T). 

To show this, we need the following, results.

Lem m a 4.21 [78, Lemma 2] For any Bond subset T  C £\, XLij: =  K,jr.



For any Borcl subset, T  C. £], let, q(ICf) =  V.st=7'.v SYlCjr. It is shown in [53 pp. 70-78] 

that ) is hyperinvariant, for T  anil Xq(lCjr) =  JCjr.

L e m m a  4.22 [78, Lemma 3] For any Bond subset T  C £, , let. q(lCjr) be defined as 

in Lemma f.21. Then q(ICjr) =  H r-

L e m m a  4.23 [78, Lemma 4] Let. M  C TL be liyperinvannnt. for T with the corre­

sponding factorization Qt =  © 2©i find let. T  — {/, : © j (/) is not isometric}. Then 

M  =  Hr-

Rem ark 4.16

Lemma 4.23 says that the hyperinvariant subspaces of a Cn contraction are the spectral 

subspaces of T. Using the previous concepts we now state and prove the following result.

Theorem  4.24 Let T be a c.n.u. Cn contraction on H with dj =  (It - =  n <  oo. Let. 

1C C H b e  an invariant subspace with the corresponding regular factorization QT =  0_>©i 

and let £ =  {t. : Qt is not. isometric). Then the following are equivalent:

(i ) K. € Hyperlat(T)

(ii) K. =  TLf for some Borcl subset T  C £

(Hi) the intermediate space of Q T =  02©i is of dimension n and for almost all I. either 

02(/.) or Q\[t) is isometric.

Proof. (i) = >  (ii). That K  =  H r, where T  =  {/, : 0 ,(/ ) is not isometric}, is proved 

in Lemma 4.23. It is a simple matter to check that T  C £.

(ii) =t> (Hi). Since T\nr G Cn, the intermediate space of © 7- =  © 2©i is of dimension

n. For the proof of the remaining parts (see [53]).

(Hi) = >  (i). Since the intermediate space © 7- =  © 2©i is of dimension n and det.(Q\) ^  U 

(otherwise de/,(©r) =  0), we conclude that T\IC is of class Cn by [53, p. 318]. Therefore, 

©i is outer (from both sides). This, together with the other condition in (iii), implies 

that 1C =  Hr, where T  =  {t : © i (f )  is not isometric}. Thus 1C € Hyperlat(T).

These concepts lead to the following results.

Corollary 4.25 Let T be as in Theorem f.24 and let U =  Mrl ®  ... ©  4Tc,. acting 

on 1C, be its Jordan model. Then HyperlatfT) is (lattice) isomorphic to HypeiiatfU). 

Moreover, if X  : H  — * 1C and Y  : K. — > H are quasi-affinities intertwining T and U ,
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then I,lie mapping Ad — » X M  implements the lattice isomorphism from H yperlat (T ) 

onto Hyperlat (U ), and its inverse, is given Iry J\T — * r/(Af) =  \JST=TS SYJ\f. In this 

case, T\m  ,md U\t m  are (Iuasi-similar to each oilier.

C oro llary  4.26 Let. T\ and T2 be c.n.u. C\\ contractions with finite defect indices. If 

T] is quasi-similar to T2, then Hyperlat{T\) is (lattice) isommphic to Hyperla.t(T2).

C oro llary  4.27 Let T be a c.n.u. C  u contraction with finite defect indices. If K.\, IC2 € 

HyperlotfT) and T\ic, is quasi-similar to T |̂ 2, then IC\ =  IC2.

Proo f. T\K, quasi-similar to T\/c2 implies that, they have the same Jordan model, say 

U =  Me, 0  ••• 0  Mek. By Theorem 4.24, K.i =  He, =  X 2.

R em ark  4.17

The following results give a charaet erizat ion of invariant and hyperinvariant subspaces 

for some classes of operators. First we prove the following result which is an extension 

of Theorem 4.13.

Lem m a 4.28 Suppose A 6 B (H ) and B  6 B(IC) are quasisimilar operators on H. 

If B  has a nontrivial hyperinvariant, subspace then A has a nontrivial hyperinvariant

subspace./

Proof. Let V  : H  — ♦ K. and IF : AC — > H  be quasi-affinities of A  and B. That is, 

B V  — VA  and AW  — W B. Let M  be a nontrivial invariant subspace for B. Define

M  =  \J {X W A f  : X  E {A } ' } .

Clearly Ad is fi-hyperinvariant and Ad ^  {0 } because Ad D WJ\f. Moreover, Ad H  

because

V M  =  V {\ J  XW fif : X  € {.4 } '}

C \ f { Y A f : Y e { B } ' }

C AT^IC  =  (V H ).

Thus Ad is nont rivial.
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Remark 4.18

Recall from Definition 4.5 t hat, an operator .4 E B (H )  is algebraic if t here exists a poly­

nomial p other than 0 such that ]>(A) =  0. Every operator on a finite-dimensional space 

is algebraic. The algebraic operators on infinite-dimensional spaces can be characterized 

in terms of t heir invariant subspaces. An operator T E B (H ) is algebraic if and only 

if t he union of its finite-dimensional invariant subspaces is H. We now investigate and 

analyze the invariant subspaces of an algebraic operator.

Theorem  4.29 Let A\ and A> be algebraic operators with minimal polynomials p\ arid

l>2 on the. Hilbert, spaces Hi and Hi, respectively. Them

Lat{A\ 0  A 2) =  Lat(Ai) ©  Lat(A2) if and only if cj.c.d(p\.pi) =  1.

P roof. In general case, for every operator .4, E B (H t), i =  1,2,

Z,u/(.4i)0Lat(A-i) C Lat(A\ © A 2) holds. For the inverse inclusion, let gc.d{pi,p2) =  1. 

That is the two polynomials are relatively prime. We must show that A I E La,t{A\(&Af) 

implies that A I =  A4| © A D  with A I, E Lat(A,), i =  1,2. Given A I E Lat{A\ ©  Ai), 

let AA\ © {0 } =  (1 ©  0)A1 and { 0} ©  A4> =  (0 ©  1 )AA. Obviously, M  C AA\ ©  M 2. 

To prove that M \  ©  AAi C AA. let rj and r2 be polynomials such that rppi +  r-iPi =  1, 

and let =  r2Pi. We must have 72( ^ 1) =  1 — r\(Ai)p (A\) =  1. So, 72(̂ 1 ©  .4j) =  

q2[A x) ©  (ji (A 2) =  1 ©  0. Hence M i  ©  {0 } =  (1 ©  Q )M  =  72(̂ 1 ©  A2)M  C M .  

Similarly, {( ) }  © M 2 ©  M .  Thus M i  ©  M 2 C M ,  and it follows that AR  ©  A 2̂ =  AI. 

The converse is easy to prove ahd we omit its proof.

Rem ark 4.19

Hoover [39] has indicated that the structure of an operator is not likely to Ire revealed by 

the presence of a single nontrivial hyperinvariant subspace for an operator T, but more 

likely by the presence of a collection of hyperinvariant subspaces {A 4 „ }„e; for which the 

structure of T\m „ is well understood. Thus the ultimate value of the quasisimilarity 

relation may lie in the extent to which it preserves the lattices of the hyperinvariant sul>- 

spaces of quasisimilar operators. Nagy and Foias [53, Prob 5.1, pg. 76] have shown that 

if A and B  are quasisimilar and 7i is a unitary operator, then there exists an injective 

mapping of HyperLat(B) into HyperLat.(A) which respects the lattice structures. They 

also proved that if S is unitary, then Hyper Lai {T ) contains a sublattice isomorphic to

HO



Hyper Lai (S ). In Hoover [39], the result was extended to the rase when 13 is n normal 

operator.

Using these facts as a motivat ion, we give a generalization of these results to completely 

non-normal operators. We note also that these results are valid for completely nonuni- 

tary contractions.

Theorem  4.30 If T =  7i ©  T2 where T\ is normal and T> is c.n.n., then {T } =  

{T\ } ®  {T j} , and all the invariant subspaces of T> are hyperinvariant, that is, Lat(T2) =  

Hyper Lat(T2).

Proo f. Let M  be the largest reducing subspace for T  such t hat t he restrict ion of T  t o ,\f 

is normal. Then it is easy to see that there is a largest such subspace since M  can be char­

acterized as the span of the set {M  : M  is a reducing subsjxice. for T  and T\M is normal}.

Since T2 is c.n.n, any operator .4 can be written as a matrix .4 =  ( 11 ' “ I corre-
\ e\'2l -422 )

spending to the decomposition of the Hilbert space as H  =  M  ©  AT1. If A commutes 

with T  then T\An =  .412T2 and A2\T\ =  T2A21. This says that T,\K,r(Au)i is nor­

mal. Since T2 is c.n.n., it has no normal direct summand, KeifAyf)^ =  {()}. That is, 

.4i2 =  0. Similarly, T2\nm,(AiV) is normal and it follows that .42i =  0. This shows that 

/ .4„ 0 \
A =  I . This shows that every invariant subspace of A € { T } reduces A.

V 0 .4 22 )
The fact that every invariant subspace of T2 is hyperinvariant, follows by t he same proof, 

where the direct summands of T2 play the role of T{ and T2.

The following is a consequence of Theorem 4.30.

Corollary 4.31 If T  G H(7i) and T is completely non-normal (c.n.n.), then Lat(T) =  

Hyper Lat(T).

Corollary 4.32 If T  € B (H ) is normal, then every hyperinvariant subspace of T is 

hyperinvariant for T*. That is, Hyper Lat(T ) =  Hyper Lot (T * ).

Proof. Since T  is normal if and only if T* is normal, t he result follows from t he fact 

that if r  G {T } ' then T  G {T ‘ }\

Corollary 4.31 and Corollary 4.32 yield the following result.

Theorem  4.33 If T  =  T\ (&T2 where T\ is normal and T2 is c.n.n., {T }  =  {T\}'T>\T2 

and HyperLat{T) — HyjrerLat(T*) then Lat(T>) =  HyperLat{T2) D HyperLot(T )).
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We note Unit for a normal operator T. Lnl(T) =  Lat(T’ ) holds if and only if T * lies in 

t he weakly closed algebra generated by T  (i.e, t he weak closure of t he set, of polynomials 

in T ). Theorem 4.33 yields the following result,.

Coro llary  4.34 Let T be a completely non-normal opcmlor whose every invariant 

subspace is reducing. Then the. normal direct summand T\ is absent and Lat(T ) =  

HyperLat.(T) D HyperLot(T*).

Rem ark 4.20

Note that if ,4 commutes with T  and M  is a hyperinvariant subspace of .4 then M  is 

invariant under T  and hence. M  reduces {7 '} ’. In particular. M  reduces A. In particular, 

every operator that commutes with a normal operator has a nontrivial hyperinvariant 

subspace that reduces it.

C oro llary 4.35 If T  is completely non-normal and if every invariant subspace of T 

reduces T (that is, Lat(T ) =  R ed (T )) and AT =  TA, then every hyperinvariant subspace 

of A reduces A. That is Hyperlat(A) =  Red(A).

Proof. By Corollary 4.34. Lol(T ) =  Hyper Lot {T ) D H yper Lot (T * ) and since AT =  

TA, then M. invariant for T  is equivalent to AA hyperinvariant for A. This means 

that Lat(T) =  Hyperlat(A). Since every invariant subspace of T  reduces T. we have 

Lat(T ) = Red(T). By Remark 4.20, it follows that Hyperlot(A) C Red(A). But the 

reverse inclusion Hyperlat(A) 5  Red(A) is obvious. Thus Hyperlat.(A) =  Red(A).

R em ark 4.21

If T  € B (H ) is a contraction, then the operator T*’ Tn — ► A  strongly to an operator A 

on H, where O  <  A  <  I , ||.4|| =  1 whenever 4 ^ 0 .  We use this information to prove the 

following assertion by Nzimbi, Poklmriyal and Khalagai [55] about the characterization 

of invariant subspaces of some contraction operators.

Proposition  4.36 [55] Let T be a contraction. If T and T* have no nontrivial invari­

ant subspace, then cither T  € Coo or M il <  1 with Ker(A  — A2) =  {0 }.

P roo f. We prove the case for T. The case for T* can be proved similarly by applying 

the adjoint operation. Now suppose that T  is a contraction with no nontrivial invariant



subspare. It suffices to show that, T  G Co . Using [55, Proposition 1.4], it, is clear that 

her (A  — A2) is invariant, for T. By the hypothesis, this means that, either I\er(A — A2) =  

{ ( ) }  or her(A  — A 2) =  Ti. The former ease implies that A is a projection, and hence T 

can be decomposed as T =  G 0  S+ ©  U, where G  is a strongly stable contraction, S+ is 

a unilateral shift, and U is a unitary operator, where any of the direct summands may 

be missing. But by [45, § 0.5], S+ and U have nontrivial invariant subspaces. Since T 

is assumed to have no nontrivial invariant subspace, these direct summands are missing 

in the decomposition of T. Thus T =  G  and T  G Co.. To prove the latter case, we note 

that {a: G Ti : ||Ai:|| =  ||.r||} =  K e r (I  — .4) C K er(A  — A2) =  { 0}. Since T  is strongly 

stable and A is also a contraction, ||,4|| ^  1. Hence ||.4|| <  1. This completes the proof.

R em ark  4.22

Note that, direct sum decompositions of operators arises from the action of orthogonal 

projections of H  onto invariant (in particular, reducing) subspaces. We now charac­

terize invariant subspaces of an operator T in terms of orthogonal projections on such 

subspaces.

Theorem  4.37 If T E B (7i) and P  is any projection onto Ad C 7{  then A i G Lat(T) 

if and only if T P  =  PT P .

Proo f. If M. G Lat(T ) and x G H, then TPx  is contained in T(AA ), and since T (M )  C 

M  it follows that P (T P x ) - TPx. Conversely, if T P  — P T P  and x G M ,  then Px =  x 

and Tx =  PTPx. Since P (T x ) =  Tx, Tx G A4, we have that M  G Lat(T).

Theorem  4.38 If T  G B(fH) and P  is the projection on A i C. Ti along AT C Ti then 

Ad and Af are both in Lat{T) if and only if T P  =  PT.

Proo f. By Theorem 4.37, {A \ M }  C Lat(T) if and only if T P  =  P T P  and T (I  -  P )  =  

(/ — P )T (I  — P ), (since I  — P  is a projection on AS). The second equation is equivalent 

to T  — T P  =  T  — P T  — T P  +  P T P , or 0 =  — P T  +  PTP. The first equation gives 

0 =  —P T  +  TP, which completes the proof.

Rem ark 4.23

Recall that Red(T) is the collection of all subspaces of H  which are invariant under both 

T  and T*. Equivalently, a subspace Ad G Red(T) if TAd C Ad and TAd1 C Ad1.



It is easy to see t hat. M  reduces T  if and only if M  G Lal(T ) n Lul{T*). These facts 

toget her with Theorem 4.38 lead to the following result,.

Coro llary 4.39 Let T  G B (H ). A subspace. M  € Rc(l{T) if P T  =  T P , where P  is the 

orthogonal projection onto A4.

Rem ark 4.24

It is not difficult to see that a nontrivial subspace of Tt may be an invariant, subspace 

for an operator T  6 B (H ) but not reduce T. In fact, an operator may have many 

nontrivial invariant subspaces and no nontrivial reducing subspaces. For instance, the

operator T : R2 R2 defined by T (x ,y ) =  (| i  +  \y,y) has M. — span as

a nontrivial invariant subspace but .Vf1 =  span 

M  does not reduce T.

0

1
| is not invariant, under T. So

Proposition  4.40 For a self-adjoint. T  G B(TL), invariance of A4 implies the invariance 

o f M L.

Rem ark 4.25

We note that Proposition 4.40 can be be extended to normal operators which contains 

the class of self-adjoint operators. Since similar operators have isomorphic invariant 

subspace lattices, the lattice of hyperinvariant subspaces of T  is a similarity invariant. 

On the other hand, there may be T-invariant subspaces that are not T-hyperinvariant.

* 0 0 0 N 1 0 1 -1  ^ * 0 0 0 N

For let A = 0 0 1 and B  = 0 0 0 acting on R :!. Let P  = 0 1 0

1 °  0 1 )

Ooo

l  o 0 1 /
be the projection onto an ^-invariant subspace At, which is not ^-invariant.

A  simple computation shows that B commutes with A, and thus Ran(P ) is not hyperin­

variant under A. By Kubrusly [47, Problem 1.3], since AB  =  0, K er(A ) and Ran(B) are 

nontrivial invariant invariant subspaces for both A and B. In this example, all invariant 

subspaces will be hyperinvariant since by construction A B  =  0.

P ro o f  of Proposition  4.40. Let x G M 1. Then (x ,y ) =  0 for every y G M . However, 

Ty G M  for y G M .  Hence (x,Ty ) =  0. Since T  is self-adjoint, (Tx ,jj) =  0 for every
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y € A4. Consequently, Tx € M x, as w;is required.

We give an application of the preceding facts.

Theorem  4.41 Let A i hr. an invariant subspace for T  € B(Ti). If T is hypononnal, 

then T\m  is hypononnal.

Proof. Let M  be invariant, under T. Then (T\M )* =  PT*\m , where P  is the orthogonal 

project ion onto M .  Thus

ll(7 W *| |  =  Wp t ' M I  <  r\M X  =  ||r*x|| <  im ^x il, x  € m .

Rem ark 4.26

It is known (see Hoover [39]) that if .4 and B  are quasisimilar operators and A has a 

nontrivial hyperinvariant subspace then so does B. Furthermore, if A  is normal then 

quasisimilarity induces an injection from Hyperlat(A) to HyperlntfB), so one could 

expect that quasisimilar operators always have isomorphic hyperlattices. An example 

will show that this is not necessarily true, even for simple operators.

To see this we investigate the hyperlatt ice of certain nilpotent operators.

( 0 t 12 7l3 \

Proof. Let T = 0 n Tn

1 ° 0 0 /

Lem m a 4.42 Let T be. a nilpotent operator of order three (i.e, T2 =  0). Then I\er(T2) 

(respectively, Ran(T2) )  is a maximal, (respectively, minimal) hyperinvariant subspace of 

T.

be the matrix of T  with respect to the orthog­

onal direct sum decomposition H  =  H i ©  H 2 ©  H 3, where H i =  I\er(T), H 2 =  

K er (T 2) 0  K er(T ) and H 3 =  H  ©  Ker(T '2). Then 7 j2 and TX\ are injective opera­

tors and therefore their adjoints have dense ranges.

A  straightforward computation shows that the commutant of T  consists of all those oper­

ators A € B{7i) of the form A =

T23A 33 and A\\T\i +  AypTrs =  7j2A 2.j +  T13A 33, where A 33 can be arbitrarily chosen. Let 

.M € Hyperlnt(T) and assume that A i is not contained in K er(T 2); then there exists a 

vector v =  {x>\,V2,Vs) in A i (iq e H i, v2 € H 2, v-s € H 3 )  with v-j ^  0.

/ A n A \ 2 A 13 \

0 a 22 A 2 3 S l l d l  t li c i t  A \ \ T \ 2  —  T 1 2 ^ 2 2

V J J 0 A 33
)



Let A lx; as above with .4,*. =  0 lor ( j. k) ^  (1,3); then the hyper-invariance of A4 

implies that .4?.’ =  A(i>\, v2, •*.»;*) =  (Ai.ye-j, 0, 0) G M .  Since Am can be arbitrarily chosen, 

we conclude that H\ C M .  Hence (0, v2, v:i) € M .

Since Ran(Tf:i) is dense, there exits an /„ G H 2 such that (T2*.,/0,u3) =  1. Let, f2 be 

an element in H 2 and define B2:i =  f2 <g> r 2‘3/„, B V1 =  Tn f2 <8 fa (where x <g> y de­

notes the operator defined by x ®  y (z ) =  (z ,y )x ) and Bjk =  0 for all (j,k ) (1,2)

or (2,3). It is easily seen that B =  (B jk) G {T } ',  the connnutant of T  and therefore 

£(0,?;2,t;3) =  (B\2V\, B2iV3, 0) =  (B Vivu f2,0) € M .  Thus 'H \ ® H 2 =  Ker(T2) c  M .  

Hence (0,0, v3)  G M .

Now use the fact that Ran(T\2T2$) is dense in order to obtain an e» € H\ such that 

((T\2T2:iy e(h v3) =  1. Let g3 lie an element in H 3 and define Ci3 =  g3® {T V2T23y e{u C22 =  

T23y3(g>TV2e(), On =  Ti2T23g3®eo, C j2 Ti3g3®T*2en, 0 23 =  T23g3®Tf3e.Q and Cjk =  0 

for all (j,fc) ^  (1.1), (1,2), (2.2), (2,3) or (3,3). Then C  =  (C jk) G { T } ’ and therefore 

C (0,0,n3) =  (0, C2:iv:i, C :i3v3) =  (0,C23v3,g3)  G M .  Thus, we conclude that M  =  H. 

That is M  is maximal.

The same arguments applied to T ’ shows that Ke.r(T*2) is a maximal hyperinvariant 

subspace of T* and therefore ^K er{T *2)^ =  Ran(T2) is a minimal hyperinvariant

subspace of T.

Coro llary  4.43 If M  G HyperlatfT), with T:i =  0 and {( ) } ^ M  ^  7i, then 

Rnn{T2) C M  C Ker(T2).

Proof. The result follows from Lemma 4.42.

Definition 4.9

Let Tk € B (C k) lie the nilpotent operator defined by Tkei =  0, Tke3 =  e3-i  for j  =  

2,3, ...,/c, with respect to the canonical orthonormal basis {e3}3=i of C k and let Tk(ak) 

be the orthogonal direct sum of nk copies of Tk acting in the usual fashion on the 

orthogonal direct sum of ak copies of C fe. An operator J G B (H ) is a Jordan operator 

if it can be written as J =  ® ) ‘=1 Tk(nk) with respect to a suitable decomposition H =

© I'., (® " : ,c ‘ )or n.

Clearly, every nilpotent operator T  G B{7i) is quasisimilar to a Jordan operator.



Proposition  4.44 Let T € B (7 i) be. such that 7’,t =  0. Tlu v HyperhilfT) is the chain 

of five elements

{ ( ) }  C Ran(T2) C K cr{T ) C Ran{T) =  K cr{T2) C H.

C oro llary  4.45 There exist two quasisimilar nilpotent operators T and .1 of order three 

such that Hyper lot (T ) and Hyperlat(J) do not contain the same (finite.) number• of 

elements. In particular, these lattices are not order-isomorphic.

R em ark  4.27

Fillmore, Herrero and Longstaff [21] have given an example of a nilpotent operator T  

such that T 3 =  0 and such that Hyperlat(T) can only have four, six or eight elements and 

a Jordan operator J quasisimilar to T. However, by Proposition 4.44, the Hyperial(T) 

of a nilpotent operator T of nilpotence index 3 has five elements. Wu [83] has shown 

that if T is a C 0 contraction with finite defect indices, then HyperlatfT) is (lattice) 

generated by those subspaces which are either I\ e r ( 'f (T )) or R.an(£(T)), where rj> and 

£ are scalar-valued inner functions. This result was extended to general operators by 

Fillmore, Herrero and Longstaff [21], who have shown t hat on a finite-dimensional space 

Tt, Hyper hit {T ) is (lattice) generated by those subspaces which are either K er{p {T )) or 

Rein(q(T)) , where p and q are polynomials.

We give a simplified proof to the following result by Wu[81].

Theorem  4.46 [83] Let T € BfiH) be a contraction of class C.o with finite defect indices 

acting on a separable Hilbert space. Then HyperlatfT) is (lattice) generated by those 

subspaces which are either Ker(i/j(T )) or R a n (f(T )), where rp and (  are scalar-valued 

inner functions.

Proof. The result follows easily since every unilateral shift on a Hilbert space H  is 

unitarily equivalent to the operator of multiplication by z on t he Hardy space H2(7f) 

and the fact that t he unilateral shift is of class Co- 

We give an extension of Theorem 4.46 to a general linear operator.

Corollary 4.47 Let T be a linear transformation on a finite-dimensional space H. Then 

Hyper hit (T ) is (lattice) generated by those subspaces which are cither■ K er (p (T )) or 

Ran(q(T )) , where p and q are polynomials.
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Proof. For 0 <  o  <  l/||Tj|, S «  <\T is a strict, contraction, lienee a contraction of 

class C.t). Theorem 4.40 implies that, Hypcrlut{S) =  Hypcrlat{T) is (lattice) generated 

by those subspaces which are either K cr(U ) or Ran(V ), where U, V  are operators in

Definition 4.10

An operator is reducible, if it, has a nont rivial reducing subspace (equivalently, if it has a 

proper nonzero direct summand); otherwise it is said to be irreducible (e.g. a unilateral

An operator T  is said to be reductive if all its invariant subspaces are reducing. Note 

that an operator may be reducible but fail to be reductive. Thus the class of reductive 

operators is contained in the class of reducible operators. From Proposition 4.40, every 

self-adjoint (and by extension, normal ) operator is reductive.

We state and prove the following result.

Theorem . 4.48 Every operator uni tardy equivalent to a reducible operator is reducible.

Proof. Let 'H and /C be unitarily equivalent Hilbert spaces. Take T, P  e B(T~t) and

an arbitrary operator U : 1C — * H. Put S =  U*TU  and E =  U *PU  in B(IC). The
/

operator E  is an orthogonal projection if and only if P  is. Indeed E 2 =  U *P 2U and 

E * =  U 'P *U  so that E =  E 2 if and only if P  — P 2 and E =  E* if and only P  =  P*. 

Moreover, E  =  U *PU  is nontrivial if and only if P  is, and E  commutes with S if and 

only if P  commutes with T  (since ES  — SE =  U m(P T  — T P )U  ). Thus S is reducible if 

and only if T  is reducible.

Rem ark 4.28

We note that Theorem 4.48 does not hold under similarity. For consider the matrices

shift, of multiplicity one is irreducible and so is the 2 by 2 operator matrix

A =  0 0 0 , B  =  0 0 0 , X  =  0 1 0

\  0 1 0 j   ̂ \  0 1 0 )  V 0 0 1 /
representing operators in C'1. A simple matrix computation shows that X A — BX , X

is invertible (thus A and B are similar) and B  is a direct sum, B  =  1 ©

8 8



A is irreducible since the only one-dimensional invariant subspace A4 =  .spon{
(  1 \

0

\ ° j
for A is not invariant for A*.

We now extend and prove the celebrated Lomonosov theorem to complex Hilbert spaces.

Theorem  4.49 (Lom onosov Theorem )([58, §8.3], [4G, Theorem 0.12]). If a non­

scalar operator commutes with a nonzero compact operator, then it. has a nontrivial 

hyperinvariaiit subspace.

Proof. Let T  be an operator on a complex Hilbert space. Suppose that there exists a 

nonzero compact operator A in { T } ' , and suppose T  has no nontrivial hyperinvariant 

subspace. The following assertions hold

(a) There exist an operator L in {T } ' such that K e r ( I - L A )  is nonzero and T-invariant.

(b ) T  has an eigenvalue A € C such that I\er(XI — T ) ^  {()}.

But Ker(X I — T ) is a hyperinvariant subspace for T. Therefore, if T  has no nontrivial 

hyperinvariant subspace, then Ker(X I — T ) =  H. Equivalently, T =  XI; that is, T  is 

scalar operator. This sums up the following: If an operator T  has no nontrivial hyper­

invariant subspace and commut es with a nonzero compact operator A, then T  must be 

scalar. □

Note that any scalar operator T  commutes with any operator in BlfH). Thus {T } '  =  

B(7i). By Corollary 4.19, we have Hyperlat(T) =  La .t({T }') =  La t{B {H )) =  {{0 },7Y }.

We introduce the following notation: we let A =  lim„__>oc T ,nTn and A, =  lim„__T "T ’n

We note that A  =  0 if and only if Tnx — ♦ 0 (n — ♦ oo) and .4* =  0 if and only if 

T*nx — ♦ 0 (n — ♦ oo).

C oro llary  4.50 If T  is a contraction for which A  ^  0 and A* ^  0, then either T has 

a nontrivial hyperinvariant subspace or T  is a scalar unitary.

Proof. We consider two cases:

If K er (A ) =  K er (A ») =  { 0}, then T  is a C \\-contraction and hence it either has a 

nontrivial hyperinvariant subspac^or it is a scalar unitary. This is because on a Hilbert 

space of dimension great er than one, a C n has a nontrivial invariant subspace.

If I\er(A ) ^  { 0}. then bv [45, Proposition 3.1 (i )], K er (A ) is a nontrivial hyperinvariant 

subspace for T  ( since K er (A ) A Ti because A  ^  0). Equivalently, if Ker(A t) ^  {()},

8!)



thon J\cr(A») is a nontrivial invariant, subspace for T *, so that K cifA *)1  is a nontrivial 

hyperinvariant subspace f<jr T. This completes t he proof.

Rem ark 4.29

We now study the invariant subspaces of a shift operator. We not e that t he results can 

be extended to completely non-normal operators. This is true since every operator can 

be modeled using the backward shift by Remark 3.24 and Theorem 3.33.

where Ad is a. closed linear subspace. We want to find out how t his Ad looks like. We 

distinguish two separate cases:

We, note that zAA =  Ad if and only if 3Ad =  A4, since 2 € c©  and zz =  \z\2 =  l. In 

this case when 2At C A4 and 3Ad C Ad then Ad is a reducing subspace and in the case 

when 2 Ad C Ad, 2 Ad ^  Ad .Ad is simply invariant and not reducing.

First we consider the reducing subspaces of the shift.

Theorem  4.51 (W ie n e r )^ 8]. Let. Ad C L2 (dU>) satisfy 2Ad =  Ad. Then there is 

a unique measurable set a C <9D such that Ad =  xaL 2(0D) =  {/  € L2(dB ) : / =  

0 a.e. outside a }, where Xa is the characteristic function (indicator function) of a.

Proo f. Let \ =  P/wl, X G Ad, where Pm  is the orthogonal projection from L 2(OH>) 

onto Ad. We have the following:

The functions en(z ) — 2" for n e Z  form an orthonormal basis in L 2(c© ). The orthonor­

mal expansions

r 2 I I

are just the classical Fourier series. Since (2/)(/;) =  /(/?.—1), for n € Z  , the action of the 

operator / — > 2/ can be considered as a right translation or shift. Let Ad C L 2(c)ID)),

2 Ad =  Ad, or 2 Ad 7̂  Ad

We write dfi for normalized Lebesgue measure on the circle. That is d/i =  A d.t.

1 — X =  (/ — Pv i)l € Ad1

and so

!>{)



that is,

— \ )'h l — 0. V/1 6 Z.

Since \(1 — \ ) £ L '(c © ), tIk; product \(1 — \)<lfi is a finite complex Borel measure 

on (JED which annihilates the set T  of trigonometric polynomials, the set of finite linear 

combinations of powers z" with n £ Z. But T  is dense in the vector space C(clID>) of 

continuous functions on the unit circle, so, y ( l  — y ) =  0 a.e. Hence \  =  |x|2 a.e. and 

this implies that \ takes only the values 0 and 1. Let a =  {I. : \ (l ) =  1}. Then the 

set a is well-defined up to a set of measure zero. Since \  £ Ad, we have zn\ £ Ad for 

all n € Z, and T\  C A4 and \T  C A4 . On the other hand, \ T  -  \L 2((?P), since 

T  — L 2(0O). Thus C Ad. and it only remains to show that these two spaces

are equal.

Hence f\  =  / (I  — \) =  () a.e., and / =  0 a.e. Hence y L “(<9ID)) =  Ad.

We now study the structure of the simply, invariant subspace of the shift operator.

Theorem  4.52 (Beurling, H. Helson)[58]. Let At C  L 2(c®>) with z M  C Ad, z M  ^

Ad. Then there exists a measurable function 0 (unique up to a constant) such that, |0| =  1 

a.e. on OB and Ad =  6H 2.

Proof. First we note that #H2 is a closed subspace, since the transformation / — > Of 

is an isometry and even a unitary operator on L2(0B ). Using the orthogonal projection 

method as in Theorem 4.51, we consider the orthogonal complement of zM. in Ad : Ad©  

z M  is a nontrivial subspace of Ad, so we take 9 £ Ad ©  2Ad with ||#|| =  1. Then 9 £ Ad 

and 9 _L ;Ad, and so z"9 £ cAd. for n >  1, implying that 9 ±  z"9. That is,

Let / £ Ad with / _L \zn, V n £ Z. Then z" f  £ Ad for all n, and 1 - y  1  zuf, V n £ Z, 

and t hese imply that

anil

Taking complex conjugates we have:



that is, (|0|2)(u ) =  0 for n G Z \ {()}.

Thus \0\2 =  const =  c a.e. Since 1 =  ||0||:; =  JD \0\2<l/i =  r//(3D) =  c, we have |fl| =  1 

a.e.

Thus / — ♦ Of is an isometry in L2(<9D). Thus we have z"0 G Ad , for n >  0. The linear 

span has (he same property. We write V  for the set of polynomials in z, so VO C AT  

and 0V  =  OV =  AH2 C AT  Thus we have a closed subspace of Ad, OH2 C Ad, and we 

want it, to coincide with AT  To show this, consider / € AT  / T  OHi2. We need to show 

t hat, / =  0. Indeed, we have:

f  1 0 U 2 =►  / _L 0zn, n >  0,

and

/ e Ad

It follows that

and

2"/  € 2Ad, n >  1 = »  2n/  T  0, n >  1.

f  f  Bzn(ln =  0, >  0,
Jon

[  f 0znd/i =  0, n >  1.
•/ao

Thus (J0)(n ) =  0, V 7i G Z  and JO =  0. But, |0| =  1 a.e., and so / =  0 a.e. and

A T =  0H2.

To show uniqueness, let #iH2 =  6bH 2, where |0t| =  \02\ =  1 a.e. on 3D. Then =

H 2, so 0\0‘2 € H2, and, by symmetry, 020\ G H2, or 0{02 G H2. But H2 n H 2 =  {cons/}, 

since, for instance / G H2 = >  f (n )  =  0, n <  0; and / G H2 =>• f (n ) =  J {—n) =  0,7? <  

0 ==>■ / =  const.

Theorem 4.52 implies a particular result about closed shift-invariant subspaces of H2, 

generally referred to as Beurling’s theorem.

Lem m a 4.53 (Deurling)[58] Any closed, shift-invariant subspace Ad C i 2 has the form 

Ad =  OH2, where 0 is inner.

Proo f. Clearly, if OH2 C H2 and \0\ =  1 a.e on 3D then 0 is in H 2, and hence inner. 

R em ark  4.30

The Beurling Theorem characterizes invariant subspaces of the shift operator in terms 

of operator-valued inner functions on the unit disk. If A G t hen by Corollary 4.39

! ) 2



(he reducing subspaces of .4 are ( lie ranges of the orthogonal projections P  such that, 

A P  =  PA  . Tiiking the adjoint, of the last equality we obtain P A * =  A ’P. Thus, the 

problem of finding t he reducing subspaces of .4 is contained in t he problem of finding 

all operators that, commute with A and A*.

We solve t his problem for the mult iplicat ion operator.

Theorem  4.54 Let. p be a finite, positive, compactly supported Bond measure in the 

complex plane. C and let, A be the. operator in L2(p ) of multiplication by z,

(A f )(z ) =  z f (z ), f  G L 2 (p ), z G C.

Then the operators that, commute, with A anil A * are precisely the operators on L2(p ) of 

multiplication by the functions in Loc(p).

Proo f. One half of Theorem 4.54 is trivial: If A is as described and p G then

multiplication by p obviously defines an operator on L2 (p ) that commutes with .4 and 

A*. The other half of the theorem is easy to prove.

R em ark  4.31

The unilateral shift S+ is defined on i2 so t hat

(S+f ) (n )  =
0, n =  0 

f {n  -  1), n >  0

The operator 5+ is an isometry and its adjoint, the backward shift, satisfies

(s + f ){n ) =  f (n  + 1), f e e 2.

The sequence {S + ” }  converges strongly to 0. The minimal unitary (normal) extension U 

of S+ is the bilateral shift defined on L2(D) =  {/  : Z  — > D and ||/(n )l|2 <  ° ° }

and U  is defined by

(U f ) (n ) =  f (n  — 1), far f  e L2{D).

It, is easily verified that U is unitary and we identify f2 as a subspace of L 2(ID>) in the 

obvious way , S+ =  U\p. By the von Neumann-Wold decomposition, any isometry 

T =  W  © S.f , where W  is unitary and S+ is a unilateral shift. The connnutant of any

isometry T =  W  ©  S+ consists of the restriction of operators with mat rix



where A\U =  U A U A ,72 c f2, A:tU  =  U M ;, and A ,IK  =  M M 4.

Shifts are of fundamental importance in Operator Theory. They can he considered as 

prototypes (models) of infinite-dimensional operators (i.e. operators with an infinite­

dimensional range). Every operator is unitarily equivalent to a multiple of a part of the 

adjoint of a unilateral shift.

Remark 4.32

We now study some special T-invariant subspaces for arbitrary T  G  B (H ).  We define 

the kernels and ranges of the power Tn, n =  0,1, 2,... of a linear operator T  on a Hilbert 

space TL. We have the following two sequences of subspaces.

K er(T >>) =  {0 } C I<er{T) C K er{T 2) C  ...

and

T '{H ) =  H  5  T {H ) 3  T 2{H ) D ...

Generally, all these inclusions are strict. \\re note that for weighted unilateral shift 

operators one or both of these two sequences becomes constant.

We define the following special subspaces of 7i.
X

=  p| T l(H )
T f = 0

oo
K er°° (T ) =  (J  K e r (T l)

n = 0

Proposition  4.55 Both T °° (K ) and Ker°°(T ) are T-invariant.

Proo f. Let x € T °° (H ).  That is x € n,?=oTn(w )- Then

OO

Tx € t (  p| T { H ) )  =  D ~0  T ’l+l (H )  c  f C o  r " ( ^ )
7 1 = 0

Therefore Tx G  D,TLn T n(7i). Thus T°c(Ti) is invariant under T. The proof of showing 

that 7t'eroc(T ) is T -invariant is similar.

Theorem  4.5G Let T  G B (H ) be a C.o contraction. Then TL =  T oc{TL) ©  /t'eroc(T’). 

We note that this result can be extended to C ()o contractions since T  G  C .o  implies 

T* G  C„..



R em ark  4.33

If T  € B (H ) is ii nilpoteut. operator of nilindex then Lal(T ) yHyp<ilul(T)j is a 

chain and Red(T) =  | {0 } .h |. The lattice of invariant, snbspaces of an operator T  is 

a metric space. We give various topological conditions on a point in the lat tice which 

ensure it is a hyperinvariant subspace for the operator T  € B (H ).  We can extract, some 

information about the structure or properties of an operator given its invariant subspace 

lattice.

We introduce t he following terminology concerning subspace lattices.

Definition 4.11 A lattice is commut ative if for every pair of subspaces AA and .M in 

the. lattice, the coiresponding projections PM and Pjy commute.

Theorem  4.57 If Lat(T ) is commutative, then Lat(T ) =  HyperlatfT).

Proo f. This result follows from Theorem 4.37, Theorem 4.38 and Corollary 4.39 using 

Definition 4.11.

Exam ple  4.3

For the unilateral shift A with multiplicity 1, Lot(A ) =  Hyperlat(A). This follows

clearly from Theorem 4.52 and Theorem 4.54.

■

C oro llary  4.58 If dim{Ti) <  oo, then the following conditions are equivalent.

(i ) Lat(T) =  HyperlatfT)

(ii ) Lat(T ) is finite

Proo f. From Theorem 4.47, we have Hyperlat,(T) =  jA 'e 7- j^T — AjI)...{T  — A„/)j : 

e ^ (T ) j  u  | Ran (T  -  A1/)...(T  -  A„/) : Ai,...,A„ € a (T ) j  U j {0 } ,T f j  and 

this is a finite set, since H  is finite-dimensional.

R em ark  4.34

The following results relate the lattices of invariant subspaces of similar operators. Let H

and 1C be separable Hilbert spaces, and let A : H  — ♦ 7i, B : K. — ♦ AC, and X  : H  — ♦ K.
**•

be operators such that X  intertwines the operators A and B, i.e. X A  =  BX. Then 

the map fl.y : La.t(A) — + Lat(B ) given by D,y (A4) =  X {M ) ,  M  € Lat(A) is well 

defined.
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Theorem 4.59 Let Ti and 1C be separable Hilbc.rl. spaces, and, let A : H  — ► 7i, B : 

/C — * K., and X  : TL — > 1C be. operators such l.li.al. X A  =  B X . Then the map Q .y : 

Lat(A ) — ♦ Lal(B ) given by Q.y(.M ) =  X (Ad), M  € La l(A ) has the following 

properties

(1 ) Q y is a lattice isomorphism if and only if 11 \ is a Injection

(2 ) Q.y (Lat(A )) =  Lot(B ) if and only if Q y  is injective

(3 ) Q .y  is injective if M \ =  M  -j whenever Adi, M 2 € Lot (A ), M i  C M >, and 

^.y (A 4 i ) =  Q.v (A42).

Proof.

( 1)  . fi.y a lattice isomorphism if and only if it is an invertible lattice homomorphism 

that preserves spans(joins) and intersections(meets). This is equivalent to saying that 

Q.y is a Injection of Lat(A) onto Lat(B ).

(2 ) . First note that Q\- : Lat{B*) — + Lai (A *) is well-defined l>y — (X*J\f),

Af E Lat{B '). Since X A  =  BX , then A *X ' =  X *B *. Thus Q .y is onto Lat{A*) if and 

only if Q y  =  Q.y is one-to-one on Lai(^4). It is clear that Q.y is a lattice isomorphism 

since Q.y is by ( 1). This proves that Q.y is injective. Conversely, suppose Q.y is 

injective. Then A V r(Q .y ) =  {( )} and Ban(Q .y ) =  Lal(At), which shows that Q.y is 

onto LatfA*) and hence Q.y is onto Lat(B). Equivalently. il\ (L o t (A )) =  Lai(B ).

(3 ) . This is trivial and follows from the definition.

Remark 4.35

In Theorem 4.59, if X  is invertible, then A and B  are similar. This is in accordance with 

the well known fact in [8] that similarity preserves the lattice of invariant subspaces. 

Recall from [8] that similarity preserves many other characteristics of the operators A 

and B, e.g, the multiplicity, spectra, etc. Quasisimilarity is weaker t han similarity and 

it has been proved that quasisimilarity does not preserve invariant subspace lattices of 

quasisimilar operators A and B, in general. It preserves a sublattice of the invariant 

subspace lattice . But if A and B  are quasisimilar weak contractions, then Lot (A ) and 

La t(B ) are isomorphic. However Hoover [39] has shown that quasisimilar operators 

have isomorphic hyperinvariant subspace latt ices.

All normal operators have reducing subspaces (M  and A4X). This follows from t he spec­

tral theorem. Unless T  is a multiple of t he identity, these reducing subspaces are even
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hyperinvariant. Every subnormal operator, i.e., T =  , where Ad is an invariant

snhspace of the normal operator N, luus invariant snbspac.es. These invariant, subspaces 

need not be reducing, e.g., the unilateral shift (which is subnormal) has no reducing 

subspaces by Beurling’s theorem alt hough a unilateral shift, has plenty of invariant sub­

spaces.

Proposition  4.60 For every T G B (H ) and for every A i  G Hyperlol (T ), PM belongs 

to \V*(T), where I3m  is the projection of T on A i and \V*(T) denotes the (weakly 

closed.) (united) von Neumann algebra generated by T.

Proof. By the double commutant theorem, it suffices to show that if Q =  Q2 =  Q* G 

{ IE * (T ) }  =  {T }  D {7^*} /, then Pm Q — QPm , or, equivalently, that Q A i C Ad. Since 

Q  G {T }  and M  G HyperlatfT), this proves the result.

Proposition  4.61 Let T be. a normal operator in B (7 i). Then

Hyper lot (T ) =  { M  C H  : Pm  € W '{T )} .

Proof. By Proposition 4.60, if Ai € HyperlatfT), then Pm  G W *(T ). On the other 

hand, by Fuglede’s theorem

{T } ' =  { T } ’ O {T * } ' =  W *(T ).

Thus, if PM  6 W *{T )" =  W *(T ) and S G {T } ',  then PMS =  SPjg so S N  C N  and 

Af G Hyperlat(T).

R em ark  4.36

Recall from Corollary 4.47 that Hyperlat(T) is generated as a lattice by the spaces 

K er (T m) and Ran(T’n), m -  0,1, 2,..., n. Lemma 4.42 can be generalized to show that 

Ran(T ”-1) (respectively, K er(T T*-1) )  is the smallest (respectively, the largest) nontrivial 

hyperinvariant subspace for a nilpotent operator T  G B(Tl), where n is the nilpotency 

of T. We give an illustration, where Jn denotes a Jordan operator.

Exam ple 4.4 ^

When nilpotency n =  1. we have T =  0 and the only hyperinvariant subspaces are the 

trivial ones: T  =  J\ : {0 } C Li.
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When n =  2, there are two possible lattices:

T =  J2 : {0 } C K er (T ) =  Ran(T ) C Ti,

T =  J-2 ©  J, : {( ) }  C K cr(T ) C /2a/i(T) C H

while for n =  3, there are four possibilities:

T =  J3 : {0} C Ran(T2) =  K er(T ) c Rnn(T) =  I\er(T2) C H.

T  =  J3 ©  ./2 : { « }  C Rnn(T2) C A'e?-(r) C /?rm(T) C Ker{T2) C H  

T  =  ,/3 © Ji : {( ) }  C  Ran(T2) =  Ran(T ) n I<er(T) C Ran{T),

Ker(T ) C  Ran(T) V  K er {T ) =  K er (T 2) C  H  

T — J-i ©  J2 ©  Ji : {0 } C Ran{T2) C Ran(T) fl K er (T ) C Rnn(T),

A'er(T ) C  Ran{T)\J I<er{T ) C K er (T 2) C H.

These results follow clearly from Remark 4.32 and Proposition 4.55. We give an example 

to show that quasisimilarity does not preserve the hyperlattice.

Exam ple 4.5

Consider the operators

.4  =  J i  ©  J 2 ©  J 2 © -

//  B =  J'2 ©  J‘2 ©  'J'2 ©

where J„ denotes the Jordan operator associated with a nilpotent operator of nilpotency 

n. Clearly, A  and B  are quasisimilar but Hyperlat(A) has four elements (i.e. is of height 

4) and Hyperlat(B) has three elements (i.e. is of height 3). In this case we have four 

lattices, where the first two are tot ally ordered and other two are not totally ordered. 

Recall that lattices are isomorphic if they have the same number of levels or heights. 

The following result strengthens Theorem 4.57. It says that the converse of Theorem 

4.57 is also true.

Corollary 4.62 Let T  6 B (H ).  Hyperlat(T) =  Lat{T ) if Lat(T ) is any one of the 

following:

(i ) commutative

(ii) totally ordered.
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Proof.

By assumption, Hyper la! {T ) =  Lat{T) if { M  : TAA C M } =  {AA : S M  C AA, S 6 

{T }  }. Clearly AA,Af are in Lal(T ) if and only if Pm TPm  =  TPm  and PjyTPm  =  TPm , 

where PM and Pm  are the project ions of 74 onto AA and Af, respect ively. Thus by the 

hypothesis, Pm  Pm  =  Pm ^aT and AA C Af or Af C Ad. This proves that Lat(T ) is 

commutative or totally ordered.

Rem ark 4.37

We note here that any element in HyperlatfT) is the kernel or range of some operators 

in {T }  '. Note also that T =  ftl (i.e. scalar operator) if and only if HyperlatfT) =  

{ { ( ) } ,  74} if and only if Red(T) is the collection ( in this case, a lattice) of all subspaces 

of 74. Recall that Red(T ) is not necessarily a lat t ice.

Theorem  4.63 If T x =  xi,-+i 4s the unilateral shift operator, the only closed linear 

subspaces which reduce T are {0 } and 74.

Proof. Suppose AA ^  {0 } is a closed linear subspace which reduces T. For a non-zero 

vector y =  Ylm ^kxk, define the index of y to be the smallest subscript k such that 

Ak ^  0. Let in be the smallest index of any non-zero vector in AA, and choose any 

non-zero y € AA wit h index in. Clearly, y =  Ylm Necessarily, in =  1; ot herwise,

AA would contain the non-zero vector T*y =  ^kxk-i =  ^ m - i  -V+i-'a- contrary to 

the minimality of in. We may suppose Ai =  1, thus y =  x\ -I- 'ffff XkXk- One has T*y =  

T*xl +  X ^  ^kT’Xk — 0 +  £ ~  ^kxk- l i  hence TT*y =  ]C 2 X^Tx^-i =  ^ 2  ^k?k =  V ~ -7:i- 

Since :r1 =  y — TT*y, clearly x.\ € AA. Clearly AA also contains Tx\ =  x2, Tx2 =  x-j, 

and so on. This shows that AA1  =  {0 } and AA =  Tt. This completes the proof.

We note that by Theorem 4.03 that a unilateral shift or a direct sum of unilateral shifts 

has no nontrivial unitary summand in its decomposition.

Theorem  4.64 If AA reduces T, then {T\m )* =  T*\m -

Proo f. Let R =  T\m  and S =  T*\m - For all x,y € AA.

(■R 'x , y) =  (* , Ry) =  (x, Ty) =  (T*x, y) =  (Sx, y) ,

and since /?' and S are operators in AA, R* =  5.



C oro lla ry  4.G5 If M  reduces T , mid T is noniitd (iv.sjxe.lively, unitary), then T\m  's 

normal (iv.spexlively, unitary).

Proo f. By Theorem 4.64, since JA reduces T. (T|.vi)* =  Tim normality of T

implies T T  =  T T\  Hence T'M TM =  {T\M )*(T\M ) =  (TM )(T M )* =  TM T'M . The case 

when T  is unit ary follows easily.

We investigate nontrivial invariant suhspaces of operators. First, we need the following 

definition.

Definition 4.12

If T  is an operator and A is a scalar, then I\cr(XI — T ) is called the A—tli nontrivial 

subspace of T, and is denoted by .<VIt (A) =  {./: 6 H : Tx =  A.r}. Clearly, A4y(A) is a 

closed linear subspace of Ti and is different from {()} if and only ii A is an eigenvalue of 

T.

Theorem  4.66 If S and T are. operators such that ST  =  TS. then the A- suhspaces 

of T  are invariant, under S.

Proo f. If x € M r W ,  then T (S x ) =  (TS )x  =  (ST).r =  S (T x ) =  S (\x ) =  A(S.r). This 

shows that Sx E

Theorem  4.67 If T is a normal operator, then

(i ) the spaces of T  reduce T;

(ii ) A4y(A) =  A4r*(A );

(H i) M r (X ) -L M r { a)i whenever A ^  o.

R em ark  4.38

Note that Theorem 4.67 is a combination of Theorem 4.66. Corollary 4.65 and Theorem 

4.66 with S replaced with T*. It is well known (see [58]) that every reductive operator 

is normal if and only if it has a nontrivial invariant subspace . If M  reduces every 

operator in the coinmutant of 7\ we call XA hyperredaciny for T (equivalently, M  € 

Lat{A}' fl Laf{i4*} ).

Proposition 4.68 If T is reductive, then every hyperinvariant subspace of T is hyper- 

reducing.
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Proof. Suppose that Ad is liyperinvariant for T. and suppose that. B  commutes with 

T. Then Ad is invariant, under 13. and wit h respect, to t,he decomposit ion Ad (1) Adx we 

can write T  and 13 as operator matrices as follows:

T = and 13 =
E F \

0 G )

Since TB =  BT, it. is true that, 11F =  FS. and by the Putnam-Fuglede theorem IF F  =  

FS* as well. The last, equation is the same as F*B  =  S F * and t his means that T

commutes with the operator D . But by hypothesis Ad is hyperinvariant
0 0 

F* 0 /
for T , and hence is invariant under D. Thus F * =  0, or, F  =  0, and hence Ad reduces

B.

Theorem  4.69 If T is a reductive operator then T can be. written as a direct, sum 

T\ ®  T-2 where T\ is normal, T> is reductive, {T } =  {F i }  ®  {F>} , and all the invariant 

subspaces of T> are hyperinvariant (  in fact hyperreduciny). Equivalently, LatfTf) =  

Lat{Tz} ' <1 L a t {T f } '.

Proof. Mimic t he proof of Theorem 4.30.

Rem ark 4.39

The second part of Theorem 4.69 says that if T  is a completely non-normal reduct ive 

operator (that is. T has no normal direct summand) then Lat(A) =  La t{A } . But by 

Remark 4.38, every operator has a nontrivial invariant, subspace if and only if every 

reductive operator is normal. It may turn out there are no non-normal reductive opera­

tors and that we are dealing with an empty class. Remember that every scalar operator 

T  € B(7i) has a nontrivial invariant subspace if dimifH) >  1.

Using Proposition 3.44, we deduce the following result.

C oro llary  4.70 Let T  € B (7 i) be an operator in class Co- If T is not a. scalar then it 

has nontrivial liyperinvariant subspaces.

Proof. By Proposition 3.44, an ifi'ner divisor 0 of m-r is uniquely determined (up to a 

constant coefficient) by the liyperinvariant subspace I\er(0 (T )). Thus, if 0 ^  1 and 0 ^  

nij', K er (0 (T )) is a nontrivial liyperinvariant subspace for T. Assume that m j has no
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nontrivial inner divisors. Then nir must he a Blaschke factor: ■/»•/■(A) =  ( ”_f\] , A G ID), 

which clearly means that X — a l.

Theorem  4.71 Let X G B(Tt) and A f C Tt. If A l  is T —invariant then M  is also 

T  — invariant.

Proo f. Take an arbitrary x € A l  so that x is a limit, point of A f and hence t here exists 

an A l-va lued  sequence, say {x „ }  that converges to x. If A f  is T-invariant, then {X./:,,} 

is again ail Al-valued sequence. Since X is continuous, {XT,,} converges to Tx. But. A f  

is closed and each Tx„ lies in A f C A l so that Tx lies in A l. This shows that. A l is 

X-invariant whenever A l  is.

C oro llary  4.72 Let T G B{Tt). Then

(i )  K er(T ) and Ran(T) are hyperinvariant ftuhspac.es for T.

(ii ) If dim (H) >  1 and T has no nontrivial invariant subspace, then K er (T ) =  {()} mid 

Ran(T ) =  H.

Proo f, (i) Suppose L G P (H )  commutes with X. If x G A 'er(X ), then XLx =  LTx =  0, 

and hence Lx G I\er(T ). Thus L (I\er (T )) C K er (T ) so that A 'er(X ) is L-invariant. 

Since LTx =  TLx  for every x G Tt, it follows that L (H a n (T )) C Ran(T), and hence 

L (R a n {T )) C L(Ra.n(T)) C Ran(T), so that Ran(T) is X-invariant.

(ii) Suppose dimf'H) >  1 and X has no nontrivial invariant subspace. Then X -f 0 

and has no nontrivial hyperinvariant subspace, so that A 'er(X ) and Ran(T) are trivial 

subspaces by assertion (i). But since X ^  0, it. follows that K er (T ) ^  H  and Ran(T) ^  

{ ( ) } .  Therefore, K er (T ) — { 0}  and Ran(T) =  Tt.

R em ark  4.40

Corollary 4.72 says that if an operator has no nontrivial invariant subspace, then it is 

quasiinvert, ible.

C oro llary 4.73 Let S and T  he nonzero operators on a Hilbert space Tt. If ST - 0, 

then Ker(S ) and Ra.n(T) are nontrivial invariant subspaces for both S and X.

P roof. If ST  =  0, then Ran(T ) C I\er(S), and hence X (A 'e r (5 )) C T(Tt) — Ran(T) C 

K cr(S ). If X ±  0, then Ran(T ) ±  {( )} so that K cr(S ) ^  { 0}. If S ±  0. then
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I\rr(S ) ±  7i  and so Rnn{T) ^  H  because Ker(S ) is closed. Therefore, {()} ^  I\cr(S) ^  

H  and {()} ^  Ihin(T) ^  TL. Since S is continuous and since S(R<ui(T)) =  {()},

S (Ran (T )) C S (Iian (T )) C ]{<ui(T).

Thus if 5 ^  0, T ^  0, and ST =  0, then I\rr(S) and 1 iim(T) are nontrivial invariant 

subspaces for S and T, respect ively.



Chapter 5

On canonical factorization of an 

operator

In this chapter we investigate t lie factorization of an operator into two or more simpler 

factors and the properties shared by these factors. Although operator factorization is a 

live subject in Operator Theory, there is no general theory on how to carry on. A number 

of mathematicians have considered the problem of writing an operator as a product of 

'nice, operators, such as positive, hermit inn (self-adjoint), unitary, cyclic, nilpotent, 

quasinilpotent, normal operators, projections, idempotents, cyclic, scalar, or n-th roots 

of identity. Operator factorization is a first hand tool in solving many problems in 

mathematical and theoretical physics and the diversity of the problems necessitates to 

keep improving it.

We start with the following result due to Ruan and Yan [G4] which will be useful in t he 

sequel.

Lem m a 5.1 [G4. Lemma

dim K er(A  -  XI) dim

then crp(A) =  ap{B).

2], Let S ,T  € 

I\er(B  -  A/)|,

B (H ). If A =  TS and B  =  ST, then 

A 7̂  0; moreover, if K er (S ) =  I\er{T),

Rem ark 5.1

Recall by Definition 4.12, Lemma 5.1 says t hat if .4 =  TS  and B =  ST  then d:im{MA(X)) =  

dim (M B (X )).

Factorizations of matrices over a field are useful in quite a number of problems, both
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analytical and liinncrical; for example in t ho numerical solution of linear equations and 

eigenvalue problems. Some well-known factorizations are QR, SVD, LU. Cholesky and

terminologies.

Definition 5.1

A  vector x 6 H  such t hat V { ^ " :,;}»>o =  'H, t hen x is said to be a cyclic vector for T, 

where V {7 ”‘j:}n>o =  Ti =  s]xm{Tnx }n>o, which is a subspace of Ti. If T  6 B(7i) has 

a cyclic vector, then it is a cyclic operator. Note that t he (linear) span of the orbit, of x 

under T  (i.e. {T ’n.r}) is the set of the images of all nonzero polynomials of T  at x. that

A  linear manifold M. of H  is totally cyclic for T  if ever}' nonzero vector in M  is cyclic. 

Observe that T  has no nontrivial invariant subspace if and only if every nonzero vector 

in Ti is a cyclic vector for T : For if M  C Ti is ^-invariant, then Tn(M )  C M\  that 

is, if and only if V {^ 'nj'}n>o =  'H for every x ^  0 in Ti\ which means t hat H  is itself 

totally cyclic for T. A diagonal operator D  is said to have multiplicity 1 if t he diagonal 

sequence is made up of distinct elements.

Exam ple 5.1

Example 1.5, //(T) =  1. This is an example of a nilpotent operator of nilpotence index

2.
Rem ark 5.2

We show that an operator T  is the product of finitely many cyclic operators if and only 

if the Ker(T*) is finite-dimensional. That is, if the multiplicity //(T*) if finite. More 

precisely, if dim (K erT ') <  k (2 <  k <  oo), then T  is the product of at most k +  2 

cyclic operators. Wu [82] conjectured that in this case at most k cyclic operators would 

suffice. We verify t his conjecture fot some classes of operators.

A  necessary condition for an operator T  to be expressible as a product of k [\ < k <  oc) 

cyclic operators is that dim (K e r (T * ) \ <  k. Indeed, for k =  1 this is trivial. Assuming

Wiener-Hopf factorizations (see [08] for details). We need the; following definitions and

is,

A unilateral shift of multiplicity 1 on C2 is T =



its validity lor A:, we prove it for k +  1. Lei, T  =  7j...7*+ i he a, product, of A' +  1 cyclic 

operators, and let S = T\ ...7). Then T* = T£+iS* implies that, dim (^Kcr(T*)'j =  

dim ̂ K er (S *)j +  r/nn(/?rm(5*)D AYr(7J+1) )  <  rfim (/w r(5 *)) +  dim^Ker(T^+lf j <  

A: +  1. In view of this, we conjecture that, when A: >  2, this necessary condition is also 

sufficient. This leads to the following result.

Proposition  5.2 An operator T is the product oj A' (2 <  A' <  oc) cyclic operators if arid 

only if dim (I\cr(T*)) <  A'.

Lem m a 5.3 Every cyclic operator is the. product of two other cyclic operators.

Proof. Since T is cyclic, by ([29], Problem 107) it h as a special mat rix form
 ̂ n,  * ^

T  =

T =

« i  ... *

6i a2 

! b2 '•

V o  • /

f  ci 0 \

2̂

V 0  • /

, where all the hn’s are non-zero. We decompose 

 ̂ d\ * ^

eA d2 

e2
where the rn’s are distinct and the c„’s are all

V o
nonzero. Then T  is the product of two cyclic operators.

Rem ark 5.3

We study some classes of operators where the factorizations have been investigated. 

Suppose 7i is a separable infinite-dimensional Hilbert space, and, for each positive in­

teger n, let Vn denote the set of all operators on Ti that can be written as t he product 

of n positive operators. It was shown in Wu [84] that the union of the V n is the set of 

invertible operators and it equals Vn.

Recall that an operator T  € B(7i. Ki) is inveiiible if it has an inverse on Ran(T) =  /C; 

and such an inverse must be bounded. For convenience we denote by QlfH. K.'] the class 

of all invertible operators in This class contains the class of unitary operators

(i.e. an invertible operator for which T ~ l =  T*). Note that Q {H ) =  QifH.'H) is a group 

under multiplication and not an algebra and that Q {H ) C B (H ). Q{~H) contains the 

identity I. Hence it is a (unital) von Neumann algebra. Recall that an operator is

too



said to be positive il (T x .ij  >  0 lor all nonzero x E H. We note that, positive opera­

tors are not, necessarily invertible (see [45], [40], [47]). 1! T  is a positive operator, then 

K e r (T ) =  {()} and Ran{T )x =  K e r (T ') =  K cr (T ) =  {( )},  (for T  is self-adjoint) so 

that. Rnn(T) — {0 }1- =  7i, and T  has an inverse on its dense range. However, Ran(T) 

is not necessarily closed in 7i. A  positive scalar multiple of the identity operator is 

an example of an operator which is in bot h classes. In t his case we say T  is strictly 

positive. Knbrusly [40] has given another but equivalent characterization of a strictly 

positive operator T  as one where o-||.r||2 <  (Tx,x ) for every x 6 H  and a >  0. More 

recent ly, Phillips [57] improved on W u’s result and proved that P 7 contains every in­

vertible operator (i.e. (/(Tf) C Vr). That is, every invertible operator can be expressed 

as a product of seven positive operators. Finite-dimensional results had been obtained 

earlier by Ballantine [7] who proved that P 5 is the set of all n x n matrices with positive 

determinant. Khalkhali etnl [42], studied the norm closures of the V „, and membership 

in T>2 was characterized for certain classes of operators. It, was shown that P 4 contains 

all biquasitriangular operators and t hat P 5 contains each Vn for n >  5; and hence Vr, 

contains every invertible operator, i.e. Q (H ) C Vr,.

We need the following definitions.

An operator T E B (7 i) is called quasidiagonal ( quasitriangular) if there exists an in­

creasing sequence {P n} ^ ,  of finite rank (orthogonal) projections such that Pn — > / 

(strongly as n — > oc) and ||TP„ — PnT || — > 0, i.e. (\\TPn — PnTP„\\ — ► 0, respec­

tively as n — ♦ oo) ( see [54]). The class of biquasitriangular operators is defined as 

(B Q T ) — {T  E B (7 i) : T and its adjoint T* ore quasitriangular}. Quasitriangularity 

can be illustrated further as follows:

An operator matrix Q -  (q^) is quastriangular(Hessenberg) matrix if qtJ =  0 whenever 

i >  j - 1-1. That is, if all entries of Q  below the sub-diagonal are zero (see [54]). Compact 

operators, algebraic operators anti quasinilpotent operators are biquasitriangular. Let 

S+ denote a unilateral shift. Then the bilateral shift 5+ 0  5+ is a c.n.u biquasitrian­

gular contraction (it, is a partially isometric biquasitriangular contraction). Recall that 

bilateral shifts are unitary (i.e besides being isometries they are normal too).

Hadwin [27] has shown that P 4 =^ Pr, and completely characterized P 2 as the set of 

biquasitriangular operators T  for which each component of a ,{T ) U au(T ) intersects the 

set R + of non-negative real numbers, where ae(T )  is t he essential spectrum of T  (a

1 0 7



subset of the spectrum of T, i.e. those A € C such that XI — T  is not Fredholm, i.e., 

its range is not closed and its kernel and range are not finite-dimensional) and rr^{T) is 

t he set of normal eigenvalues of T  (i.e, A G o,,(T ) if A is an isolated point of n (T ) whose 

Riez-Dunforcl spectral projection is finite-dimensional). Hadwin [27] has also shown that 

V:\ contains every operator whose essent ial spect rum contains 0 and t hat t he operators 

in V-.i all contain 0 in their essential numerical range. Hence, V a /  V.\. Wu [84] observed 

that V 2 is closed under similarity since V 2 is the set of operators similar to a positive 

invertible operator.

Theorem  5.4 The following assertions are equivalent for an operator T :

( i)  T € V 2

(ii ) T  G {A  : o (A ) C R + }

(in ) T  is biquasitriangular, and each component of a,.(T) U rr0(T ) intersects R + .

P roof. The equivalence of (ii) and (iii) is contained in [2 , Proposition 10.1] and the 

implication ( i )= >  (ii) is obvious from the fact that V 2 is the set of all operat ors similar 

to a positive invertible operator. This also follows from the fact that every positive 

operator is self-adjoint and hence has non-negative real spectra. Hence we need to show 

that if o (T ) C R+ , then T  G V 2. If o'(X’) C R+ , then no point in the Fredholm resolvent 

can have non-zero index. Hence by [3], T  is biquasitriangular. It follows from Voiculescu 

[73] that T  is a norm limit of a sequence of algebraic operators. By the semicontinuity 

of t he spectrum, for every positive number e there is an algebraic operator A  such that 

IIP — .41| < e and the imaginary parts of all the eigenvalues of A  have absolute value less 

than e. However, by [30], A has an upper triangular operator matrix whose diagonal 

ent ries are eigenvalues of A.

The equivalence (i i i )= >  (i) follows immediately from Hadwin [27]. By perturbing the 

diagonal entries of A  to make them positive and distinct, we obtain an operator B  with 

||T — 5 1| <  e such that B  has an upper triangular operator matrix with distinct positive 

diagonal entries. By Rosenblum’s theorem [02], B  is similar to a positive invertible 

operator and thus B  G V2. Since e >  0 was arbitrary, T  G V 2.

C oro llary  5.5 If T is a bilateral operator-weight shift, with weights that, are all unitary 

or form a commuting family of diagonal operators { D lt} with D n =  D\ for all, non-zero 

integers n, then T  G V2.
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P roo f. II t he weights are all unit ary, t hen T is a unit ary operat or whose spect rum is t he 

unit circle. In t he hitter case. T  is unitarily equivalent to a direct sum of scalar weighted 

bilateral shifts t hat, are compact, perturbations of scalar multiples of the unweighted shift. 

Hence by [3] T is biquasitriangular. Since o (T ) and <x,{T) have circular symmetry , 

(To{T ) =  0 and each component of n, (T ) intersects R + . Hence, by Theorem 5.4, T  € V>.

Theorem  5.G [27] V\ =  Vr,

R em ark  5.4

In Theorem 5.G, bv showing that V\ — Pr, shows that V\ is not contained in the bi­

quasit riangular operators. This result was improved by [27] by showing that P a is not 

contained in the biquasitriangular operators.

Theorem  5.7 [27] The set V\\ contains every T whose essential spectrum contains 0. 

R em ark  5.5

Theorem 5.7 shows that, V.\ contains many operators; however, V a does not contain 

every invertible operator. Not e t hat a number A is in the essential numerical range of an 

operator T  if there is an orthonormal sequence {e„ } of vectors such that (Ten, c„) — > A.

Proposition  5.8 If T  € V a then the essential numerical ran ye of T intersects R+ .

P roof. Suppose T  6 Va, and choose sequences {.4„}, { B„ } and {C „ } of positive in­

vertible operators such that AnBuC„ — ♦ T. Since A„BnCn =  ( p I1y)(||.4,1||R, 

we can assume that ||.4„|| =  1 for each n. Since B„Cn is similar to a positive op­

erator, there is a positive A„ in the left essential spectrum of BuCn. Hence we can 

construct a sequence {.7'„} of unit vectors such that xn G {z i ,  x-2, . . . ,  z „ _ i} for n >  2, 

and such that \\BuCux,l -  A„ || <  ~ for n >  1. Hence (iist[(Txn, xn), R +] <  |(Tz„, zn) — 

\n(A nxn, z„)| — * 0. Thus any limit point of the sequence {(T x„, x „ )} is a point in the 

essential numerical range of T t hat lies in R+ .

Rem ark 5.6

When we consider products of n invertible hermitian operators with at least, one factor 

positive H„. we find that T € "Hi if and only if T  is similar to an invertible hermitian 

operator.

tot)



(P roo f. A 13 =  a H M 1 3 A * )A -i and S~ 'D S  =  5 - ' ( 5 * ) - |[5*D 5]). This moans Hint. 

Theoroin 5.4 romains valid with V2 replaced with H 2 and R+ replaced with R. From 

Theorem 5.G, it. is clear that. Tit =  V.\. Proposition 5.8 remains valid when Vw is replaced 

with 7i.i and R+ replaced with R.

Falling short of proving the Lemma 5.3, we are able to verify it for several classes of 

special operators. We start with the finite-dimensional case.

Proposition  5.9 On a finite-dimensional Hilbert space H, T £ 33(H) is the product of 

k (2 <  k <  oo) cyclic operators if and only if dim^Ker(T*)\ <  k.

Proo f. We prove that dim(^I\er(T*)^ -  k implies that T  is the product of k cyclic 

operators. Since the property of cyclicity is preserved under similarity, we may assume

t hat T  is of the form
(  0 1 0 \

0 ' ...©

(  0 1 0 \

0

1

V
©

^ «1 * ^

V 0 tin j

T\ ©  ... ©  Tk ©  T)t+ i,

0 0
where Tj is.of size iij for j  =  1,..., A; +  1 and the u,’s are all nonzero. Note that

/ 0 2 0 \ / x
l>\ 0 \

T\ © ... ©T*. =

... +  nk and

0 3

••• N  

0

bo

V0

SiS-2, where N  =  n\ +  n2 +

'jn /

J J i f  1 < j  < N  and j  ^ n\ + 1, ni n2 + 1,. . . , + ... + nk- 1 + 1,
otherwise

and t hat Tk+i =
 ̂ Â'+l * 1 { Cl o \

V 0 l>N+n / l  () ^  j
R\Ri,

where ftjv+i, ...,f>jv+m are all nonzero and distinct and the c,’s are nonzero and distinct 

and also distinct from the nonzero bfs. Letting Aj =  Sj ©  Rj, j  =  1,2, we have



T  =  AiA>. Since A\ =

 ̂ L\ * ^

\ () Ln j

when! the L, are all cyclic and have mutually

disjoint spectra, .4, must be cyclic. On the ot her hand, since A 2 is a diagonal operator 

with A: — 1 zero diagonals, we can express it as a product of A; -  1 diagonal operators each 

with distinct diagonals. Hence A > is the product of A: — 1 cyclic operators, and therefore 

T  is the product of k cyclic operators.

C oro lla ry  5.10 On an n-dimensional Hilbert space., every operator is the product of n 

cyclic operators and n is the smallest such number.

W e now investigate operators on infinite-dimensional Hilbert spaces. We denote the 

multiplicity of an operator T  by p {T ). Since dim^I\er(T ')^ <  /i(T ) =  dim (j\er{T )\  

for any operator T, the next proposition is weaker than the Corollary 5.10. Recall that 

a  multicyclic operator is one that has finite multiplicity. That is //(T) <  oo. The cyclic 

multiplicity is the number of cyclic subspaces for T  that are needed to generate H.

Proposition  5.11 If T is a multicyclic operator with multiplicity in, then T is the 

product of m cyclic operators.

P ro o f .  We prove this result by Mathematical Induction on the multiplicity in. Obvi­

ously, this is true for rn =  1. Assuming its validity for any operator T  with multiplicity 

_>ri {T ) =  m, we prove it for m +  1. So let T  be an operator with multiplicity m +  1, then

' 7j X  '
T  )y Herrero and Wogen [3G], we have the triangulat ion for T =

0 T2
|, where 7j is

•cyclic  and p{T2) =  m. Hence T2 =  Sj...5m_iS'm is a product of rn cyclic operators by 

• th e  induction process. On the other hand, using Lemma 5.3, we obtain 7j =  R 1 ...Rm+i, 

^vh ere  the Rj's are all cyclic and each Rj, j  =  1, is diagonal and invertible with

crzr(Rj) disjoint from cr(5J) when j  =  1 -  1. Moreover, let S’m =  SmS,ll+i, where

t  ooth factors are cyclic, a(Sm) is disjoint from o{R ,n) and 5,„+ i is diagonal and invertible

j  =  1, - ,  m,
\ 0 Sj )

Rm+1 R~l...Rf1x '9

^ith o(Sm+i) disjoint from o{R„i+v). Finally, we let Q t =  

**».nd Q m+1 =
\ 0 Sm+\

hen eac:h Qj is cyclic by Proposition 5.9 and T -  Qi.. Qm+i■ This proves the result.

Ill



Rem ark 5.7

Recall that an operator is triangular if it c an be represent ed in the matrix form «2

V »
We give an improvement of Lemma 5.3.

Lem m a 5.12 If T  is a cyclic operator with dense, range, then T =  T\T2, where 7) is 

unitary cyclic, arid T2 is triangular cyclic.

R em ark  5.8

This is essentially the infinit e-dimensional QR  decomposit ion: every operator wit h dense 

range is the product of a unitary operator and a triangular operator (see [G8] for details).

Proposition  5.13 If the spectrum of 7  does not surround 0, then 7  is the product of 

two cyclic operators.

Proo f. We assume t hat 7  is of the form [T,j], where T„ is cyclic for all i and TtJ — 0 for 

i > j .  It is easily seen from [58, Theorem 0.8] that cr{Tu) is contained in the polynomially 

convex hull of cr(T).

Our hypot hesis implies that 7), is invert ible for all i. Thus by Lemma 5.12, we obtain 

Ta — UiAi, where f/, is unitary cyclic and A, is triangular cyclic. Let { r , }  be a sequence 

of dist inct real numbers between 1 and 2, and let V, =  r, (7, and B, =  £•. Then 7[, =  VlB i. 

Since the B f  s together with the A ,’s are all invertible, we may make further adjustments 

so that the diagonals of all the B f  s are distinct. If

(V \  T]2B f ' TysBf1 \ (  B x 0 \

V2 T i,B fl ‘

II

b 2

Bi

0 '•• / 0 
then T  =  TiT2. The relation Bj 1 =  r,Ai 1 =  rfT^ 1 Ut implies that ||i3t 11| <  2||T '|| for

all i, whence T2 is invertible and therefore 7j is indeed a bounded operator. Since the 

Vj’s are cyclic and their spectra are mutually disjoint, Proposition 5.9 implies that T\ 

is cyclic. On the other hand, if D, is a diagonal operator whose diagonals are exactly 

those of Bi, then A: is a quasiallme transform of Bt. Hence ^  0 A  is a quasiaffine 

transform of T2. Since (BD, is itself a diagonal operator with distinct diagonals, it is 

cyclic, whence T2 is cyclic. This completes the proof.



Theorem  5.14 Let T  =  where. I,he T„’s are cyclic. If k >  2 anil T„ has

dense range for all n >  k, then T is the product of k cyclic operators.

Proof. By Lemma 5.3 we cun express each Tn, n =  1,2, ...,fc, as a product Tn — 

T„\ - Tnk, where Tuf  s are all cyclic and each T„j, j  « ,  is a diagonal operator with 

spectrum disjoint from the spectra of all the other Tj/s. For the remaining TVs, we 

use Lemma 5.12 to obtain Tn =  UuAn, where Un is unitary cyclic and .4,, is triangular 

cyclic. We further express these T„'s as a product Tn =  Tn\...Tnk ( »  >  k), where each 

Tni is a distinct multiple of Un with spectrum disjoint from the spectra of Tu ,.. ,T ku 

and each TUj, j  =  2 , is either triangular cyclic or diagonal cj'clic with the closure 

of its distinct diagonals disjoint from the spectra of T\j,.... Tkj. Let, S, =  YLn ®^nj» j  =  

1 ,...,k. Obviously, T =  5j...S*,.. with S\ cyclic by the above construction. To prove the 

cyclicity of the remaining S/s, let D UJ (n  >  k) and j  =  2,..., k be the diagonal operator 

with diagonals exactly those of Tnj. Since TXi 0 ...®  Tkj © ® A y ,  j  =  2, ...,1b, is 

cyclic and is a quasiaffine transform of Sj, using the above construction and Proposition 

5.9, we conclude that Sj is cyclic as asserted.

We now use our results to give some factorizations for some special classes operators.

Coro llary  5.15 An isometry T is the product of k (2 <  k <  oo) cyclic operators if 

dim (K er{T * ) )  <  k.

Proof. This result follows from the application of Theorem 5.14 and the application of 

the spectral theorem and the von Neumann-Wold decomposition of an isometry that: 

Every isometry can be expressed as a direct sum of simple unilateral shifts (c.n.u) and 

cyclic unitary (unitary) operators. In a similar fashion, every co-isometry is the direct 

sum of some backward shift ((c.n.u) summand) and cyclic unitary (unitary summand) 

operators.

Corollary 5.16 Every co-isometry is the product of two cyclic operators.

Proof. This result follows by the application of the fact that the backward shift is cyclic 

and Theorem 5.14.

Rem ark 5.9 **

We note t hat Corollary 5.15 also follows from [44, Theorem 2] that an isometry T with 

dirni I\er(T* ) ) =  k is t he product of k simple unilateral shifts. Corollary 5.1G also



follows from [10, Theorem 3] Unit every co-isometry is t he product, of some backward 

shift, and a simple unilateral shift . For a normal operator T  wit h dim yl\ e r {T * )j -  k, 

we have, by the spectral theorem, the decomposit ion T =  Yl^Li where 7 j , .... 7*. are 

the zero operators on a one-dimensional space and every Tn (n > k) is one-to-one with 

dense range.

This leads to the following result.

C oro llary  5.17 A normal operator T is the product of k (2 <  k <  oo) cyclic operators 

if and only if dim (l\er(T ')^ j < k.

The following result says that the product of finitely many cyclic operators condition 

can be characterized by the condition that the dimension of I\er(T*) is finite.

Theorem  5.18 An operator T with dim ^ / u r ( r ) j  <  k, 2 <  k < oc is the product 

of at m.ost k +  2 cyclic operators.

Proo f. If d i m (K e . r {T <  dim (K e r {T * )^ , then the polar decomposition of T  yields 

T =  V P . where V  is an isometry with dim yKer(V*)J  =  dim ^A 'cr(T *)j —dim ^Ker(T)\  

and P  =  {T *T )XP  satisfies K e r (P ) =  I\er(T). By Corollaries 5.15 and 5.17, V  and P  

are, respectively, the products of m and n cyclic operators, where m =  mar {dim yKer{T*)^ — 

dim.(^Ker{T)Sj  ,2 } and n =  max{dim (^I\er(T)^j. 2}. It follows that T  is the product of 

k +  2 cyclic operators.

On the other hand, if dim^Ker{T)^j > dim^Ker(T*)^J, then consider the decomposi­

tion T  =  PV , where P  =  (TT * )1/2 and V  is a co-isometry. Since dim (^Ker{P)j =  

dim (j\er{T*)^  <  k, Corollary 5.17 implies that P  is a product of k cyclic operators. 

Also, V  is the product of two cyclic operators by Corollary 5.1G. This proves the result.

R em ark 5.10

We note that Corollary 5.18 simply says that T  is a product of k cyclic operators if 

2 <  dim^Ker{T)^j and dim^Ker{T)^j + 2 <  dim (^I\cr(T*)^J <  k (2 <  k <  oc).

We also note that using Halmos [31], Corollary 5.15 can be sharpened to: Every isometry 

is either unitary or a shift or a product, of two of these two kinds. Some result s sharpening 

the preceding results have been given. For instance, Radjavi [59] has shown that a 

normal operator is the product of four self-adjoint, operators, Halmos and Kakutani [28]
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have proved I hot, each unit,ary operator is the product of Jour symmetries. Recent ly, 

Phillips [57] has proved t hat every invert it tie operator is t he product of seven positive 

operators. Very recently, Moslehian [52] worked on decomposition of an operator into 

a product of projections. It is well known (see [34]) that if T  is a linear operator in a 

finite- dimensional Hilbert space having nonzero kernel, then T is the product, of a finite 

number of projections.

We give a simple proof to t he following import ant assertion.

Proposition  5.19 An invertible operator T is a produel of two self-adjoint operators 

if and only if T is similar to T*.

Proof. Suppose T  is invertible with T =  AD  with .4* =  A and B* =  B. Since T  is 

invertible, then / =  TT~l =  (A B )(B ~ X A~l). This shows that A and B  are invertible 

also and hence BA  is invertible.

T* =  BA =  B IA  =  BTT~\A  =  B T {A B )~ XA =  B T B ~ lA~lA =  B T B ~ l. This shows 

that T  «  T*. Conversely, suppose T  is invertible and T  «  T*. Since T  is invertible, 

by the polar decomposition theorem, T  has a unique polar decomposition T =  UP, 

where U is unitary (and not necessarily self-adjoint) and P  =  (T 'T )U 2 is a positive 

operator (self-adjoint). We use the similarity of T  and T* to show that U , must indeed, 

be self-adjoint. T «  T* implies that U P  =  X ~ '{U P y X  =  X ~ lP U *X . Without loss of 

generality, we can let X  =  1. In that cause, U =  U* , which proves that U  is self-adjoint. 

This completes the proof.

Rem ark 5.11

We denote by 6 () the set of all invertible products of self-adjoint operators A and B  and 

by 6  the set of invertible operators that are similar to their adjoints. It is clear that 

© o  C  6 . Proposition 5.19 asserts that & C  S n is also valid. By using the invariance of 

the classes ©o and ©  under similarity transformations T  =  S~lTS. We notice that ©  is 

strictly larger than the class of operators that are similar to self-adjoints. An example 

is the bilateral shift.

Theorem  5.20 T is unitarily eqttivaleni to its adjoint, if and only if T is the product 

of a symmetry and a self-adjoint, operator.
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Proo f. II T =  .1 A, where ./ =  =  J _l is ;i symmetry and A is self-ad joint, t hen

JTJ  =  A.I — T*, so that T  is unitarily equivalent to its adjoint. Conversely, suppose 

TU =  U T *, where U  is unitary. Tlien T  commutes with U 2. Let, / cl0dEo lie the spectral 

representation of U 2. II V  =  f et0̂ 2dEo, then V  is a unitary operator, V 2 =  U2. and 

V  commutes wit h every operator that commutes with U2. It follows that V  commutes 

with U  and T, therefore J =  V ~ ] U  is a symmetry and T.J =  JT*. Hence T =  J (T J ) is 

the product of a symmetry and a self-adjoint operator.

Theorem 5.20 leads to the following assertion.

C oro lla ry  5.21 A unitary operator U is similar to its inverse if and only if U is the 

product, of two symmetries.

R em ark  5.12

We now study operators that admit a factorization as a product of two self-adjoint 

operators.

We begin by considering the finite-dimensional case.

Theorem  5.22 If 7i is a finite-dimensional Hilbert space, then the following are equiv­

alent, conditions for an operator T  on hi.

(i ) T  is a product of two self-adjoint operators.

(ii) T  is a product of two self-adjoint operators, one which is invertible.

(in ) T  is similar to T *.

R em ark  5.13

The implications (H i) <<=>• (ii) = >  (?) are purely formal and hence they remain valid in 

the infinite-dimensional case. To show that (iii) does not imply (i), consider the operator

T =
1 2 

0 4
It is clear that T  is similar to T* but T =  T\T2, where 7j =

1 1

1 2

/ 2 2 \
and T2 =  I . Clearly, To is not self-adjoint.

V - l  2 /
These results show that the invertibihty condition of T in Proposition 5.19 cannot be 

dropped.

Theorem  5.23 Two normal operators A and. B  that are similar are unitarily equivalent,.
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Proof. Suppose .4 and B satisfy the relation .4 =  X B X  1 i.c A X  — X B  for some 

invertible operator X. By t he Putnnm-Fuglcde Theorem, if .4A' =  X B  for some operator 

A', then A *X  =  XB*. Thus .4* =  A *~ 'B *X *  and .4* =  X B 'X ~ \  which means that. 

X* =  .A-1 or X  is a unitary operator. This proves the result.

Corollary 5.24 Each normal operator in (5 belongs to © ().

Proof. The proof follows from the fact that two normal operators that are similar are 

also unitarily equivalent, by Theorem 5.23.

Theorem  5.25 T  € B{T~L) is a product of two projections if and only if T T 'T  — T 1 .

Proof. The necessity is trivial. To prove the sufficiency, let P\ be the projection onto 

Ran(T ), and let P2 he the projection onto l\er(T ) x . Then T =  P\Pi-

Rem ark 5.14

We now study the factorization of invert ible operat ors. Invert ible operators include t he 

unitary operators which are a first hand t ool in solving many problems in mat hemat­

ical and theoretical physics, with applications in quantum cryptography and quantum 

teleportation. We wish to factorize a unitary operator as T =  AB. where .4 is unitary 

and is a product of (n-1) unitary operators and B  is a little bit simpler operator than 

T. Recall that an operator T  is similar to S if T =  X ~ l SX  for certain invertible X  and 

T  is congruent to S if T  =  X 'S X  for some operator X. Since unitary operators are 

invertible, we give the following general result .

Theorem  5.26 (i ) An invertible operator T is the product of a positive operator and a 

hermitian operator if and only if it is similar to a herm.it.ian operator.

(ii) An invertible operator is the product of a positive operator and an involution operator 

if and only if it is congruent to an involution operator.

(Hi) Every invertible operator is a product of a positive operator and a unitary operator. 

Proof. The proof of (i) is obvious.

(ii). If T  =  X *V X  where V  is an involution, then X *X  is positive, X ~ {V X  is an 

involution and T =  (X * X ) (X ~ 1V X ),  as required. Conversely, if T — P V  where 

P  is positive and V  is an involution, then PP'2V P ~ x/ 2 is an involution and T =
p i/ 2 ^ p i/ 2 y p - i/ 2 ^ p i/ 2 ^  as reqnire(]
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(iii) II T =  P U  is the polar decomposition of T, then P  X/2T P ^ 2 =  P P 2U P ^ 2 and
p - l / ‘2T p~\/2 =  p\/2U p -i/2^ ,LS m ,u i r i ,(1

Theorem  5.27 An invertible, operator T is

(i ) similar to its adjoint if and. only if it is a product of two li.ermit.ian operators

(ii ) similar l.o its inverse if anil only if it is a product, of two involution operators.

Lem m a 5.28 Let S and T  be involution operators on PL. Then ST is an. involution if 

and only ifTS  =  ST.

Proof. Since S and T are involutions, then S '2 =  I  and T 2 =  I  (equivalently, S =  S -1 

and T = T~ l). Now ST  an involution implies that (S T )2 =  STST =  I. A simple 

computation shows that ST  =  TS. Conversely, suppose the involutions satisfy TS =  

ST. Then STS =  TSS =  TS2 =  T. Also, ST2TS  =  T. Thus, STTS =  I  or STST =  I. 

This shows that (S T )2 =  I . Hence ST  is an involution.

R em ark  5.15

We introduce a special factorization of T  which is applicable in solving linear sys­

tems. We conjecture that for commuting linear operators Pq, P i , ..., Pn, any operator 

T =  P()P\...P„. This decomposition lias an applicability in the solution of general inho­

mogeneous problems Tx =  y. Using the above factorization t his problem reduces to a 

system of simpler problems. These problems capture t he structure of the solution and 

range spaces and, if the operators involved are differential, then this gives an effective 

way of lowering the differential order of t he problem.

Theorem  5.29 Let. T — PnP\...Pu where the Pi are commuting linear operators. Then

(a ) K er(T ) =  K e r (P )

(b ) Ran(T) =  Ran(Pi)

Theorem  5.30 The product, of two projection operators Pm  and P,\> is also a projection, 

operator if and only if Pm  and PV commute.

Corollary 5.31 Two subspaces A/^ und N  are orthogonal if and only if Pm Pm  =  0.

Theorem  5.32 A finite sum. of projection operators Pm , +  Pm 2 +  ••• +  Pm „ =  Q is a 

projection if and only if Pm , Pm 2 - Pm „ =  0. That is, if and only if .M, -L Adj, i ^  j.
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Rem ark 5.1G

We now study the factorization of operators into n-th roots of identity.

C oro llary  5.33 Let T  be. of the form T\ ©  T, ©  ... ©  T„, where the product T\T>...T„ is 

a group commutator. Then T is a product of three n-th roots of identity for any given 

n >  2.

P roof. We write the product T\T2...Tn as a commutator U V U ~ 'V ~ l. Let w he the 

circulant matrix that sends the first basis vector to the last, the second to the first., the 

third to the second, etc. Let \V be the tensor product of w with the identity operator 

/, i.e., W =  w ® /. Define

K\ = (C/-1T,T2©T2- ,r f 1C/Pr1©/©.. .©/©T1- V - 1)W

and I\ 2 =  (VTxT2 ©  T f 'T f 'U T t  ©  T ^ V - 'U ^ T ,T 2TA ©  T4 ©  ... ©  T„_i ©  TU)\Y Then 

A }1 =  A 2 =  / and T\ ©  T3 ©  X4 ©  ... ®  T,, ©  T2 =  A 1A 2IT ~■ Since? T  is block 

permutationally similar to T\ ©  T:i ©  T4 ©  ... ©  Tn ©  T2, we are done.

R em ark . 5.17

It is clear from the proof that at least one of the n-th roots, namely W ~2 is unitary and 

that for unitary Tx, i =  1,2,..., n, all n-th roots are unitary.

Proposition  5.34 If an invertible normal operator N  has a unitary direct summand 

acting on an infinite-dimensional subspace, then N  is a product of three n-th roots of the 

identity.

Proo f. Write N  =  ©  C/2 ©  U3 ©  ... ©  t/2„ with N x normal and U, unitary, and let

T =  (N i ©  U2)(U 3 ©  C/4)...(C/2„_j ©  U2n) =  (N xUz. M ^ - 2)  ©  (U2U4...U2n).

since the second direct summand is unitary and acts on an infinite-dimensional subspace, 

by [9, Theorem 2], it is a group commutator. Hence, T  is a group commutator and the 

rest follows from Corollary 5.33.

C oro llary  5.35 Every unitary operator on an infinite-dimensional Hilbert space is a 

product of three unitary n-th roots of the identity, where 11 >  2.
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Proof. First, as a counterexample, let U =  <\I wit h |o| =  1 and o " ^ 1 . If n7 =  AB  

with A" =  B u = I, then A and B  commute and we have a”I  =  A "B " =  /, which is 

impossible. For «  =  2, it is not possible to have a l  =  A B C  with A1 =  B 2 =  C 2 =  I 

if a2 ±1  since otherwise we would have (\C =  A B  and n ~ 'C  =  BA  ~  A B  =  aC.

Hence, oiiC  would be similar to C  which is impossible unless a 2 =  1 or a 2 =  —1. Note 

however (see [40]) that every unitary operator is the product of four involutions.

C oro lla ry  5.36 A general invert ible operator T on an infinite-dimensional Hilbert space 

is a product, of five n-th roots of the identity for every n >  2 and three of the factors can 

be chosen to be unitary.

Proo f. By polar decomposition we have T =  PU  where P  is positive and U is unitary. 

By [38, Theorem 1], P  =  A'1Ab\/1P2 with A "  =  /, K'f =  I, V ” =  /, Vf  =  / and Pj, V2 

unitary. Then T =  I\\ A b l] V>U =  A ] I\21V and since IF =  X\V>U, being unitary, is also 

a product of three unitary /7.-th roots by Corollary 5.35.

R em ark  5.18

The question is whether five factors are needed, or a general invertible operator T  can 

be written as a product of fewer t han five n-th roots for an n >  2.

Lem m a 5.37 If U be a bilateml. shift, on an infinite dimensional Hilbert, space 7i with 

multiplicity equal to the dimension of H  then

(i ) every invertible operator on 7i is a product, of six operators similar to U.

(ii ) every unitary operator on Tt is a product of two operators, unitarily equivalent to U .

P roo f. Every unitary operator is a product of two bilateral shifts of multiplicity equal 

to dimension of the space ([28, Proof of Theorem 1]) and any two bilateral shifts of the 

same multiplicity are unitarily equivalent. This proves the second part.

Now choose an arbitrary integer n >  3. According to [38, Corollary 3] every invertible 

operator is a product of two n-th root s of identity and a unitary operator. The proof is 

concluded by noticing that every n-th root of the identity is similar to a unitary operator.

Rem ark 5.19

We use the terms multiplicity and deficiency interchangeably for isometries. An operator 

T  is left invertible if there exists another operator S such that ST =  I. Isometries are 

examples of left invertible operators.
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Lem m a 5.38 Every left invertible operator A 

pressed as a product of an operator similar to

£ 13(H) with, deficiency 4<l can be. cx-
(  B

C
and an operator similar to

where B. C, D  and E arc left invertible operators on H with deficiency d.

Proof. Let. N  £ B (H ) lie normal. Then by [28], Ti is the orthogonal sum of two 

subspaces of equal dimension, both of which reduce N. Now let T  be an arbit rary 

isometry with nonzero deficiency. Then it is a direct sum of a shift, and a unitary 

operator, by von Neumann-Wold decomposition. If the shift has multiplicity d\ +  tl2 it 

can obviously be expressed as a direct sum of shifts of multiplicities d\ and d2. Because 

A is left invertible its polar decomposition is A =  U\A\, where U is an isometry with 

deficiency 4r/ and |.4| is normal (since it. is posit ive and self-adjoint) and has two reducing 

subspaces. There exist an isometry V  of deficiency 2d t hat leaves both t hese subspaces 

invariant and such that V  restricted t o each of t hese subspaces 1ms deficiency d. Hence

P|.4| has the same reducing subspaces as A  and is similar to some
D

as required.

There also exists another isometry W  of deficiency 2d such that U =  \ V V . But as stated 

above we can split IT as a direct sum of two isometries, each with deficiency d and thus 

' B \
achieve the form

C
We now study the factorization of unitary operators and isometries.

Proposition  5.39 Let A be an isometry with deficiency d on a separable infinite dimen­

sional Hilbert space H. Suppose there exists a subspace A4 of TL such that dim(AA) — 

dim {H ) and A (X l ) T  A4. Then every isometry with deficiency Gd is a product of 6 

operators, unitarily equivalent to A.

Proof. Let U be a bilateral shift with infinite multiplicity on TL. We know that an 

(  U \
is a product of two operators unitarily equivalent to Aoperator of the form

X
where A' is an isometry with deficiency 2d. Let P  and Q  be arbitrary isometries on TL, 

with deficiencies 2d and 4d, respectively. Since X 2 and Q  have the same deficiencies,

2 / V  \
there exists a unitary operator V  such that V X  =  Q. We obtain I as a

product of two operators unitarily equivalent to A. There exists unitary XV such that
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W Y  =  P, hence Y\V is Militarily equivalent to P.

Since a product of two operators Militarily equivalent, to 13 equals I f ,  a product of (i 

operators unilarily equivalent to A is

The proof is completed by noticing that every isometry with deficiency 6d is Militarily 

equivalent to a direct sum of an isometry with deficiency 2d and one with deficiency Ad 

as in Lemma 5.39.

Theorem  5.40 Let A he an isometry with deficiency d >  0 on a separable infinite 

dimensional Hilbert, space H. Then every isometry with deficiency index Gd is a product 

of 6 operators unilarily equivalent, to A.

Proof. Since d ^  0, A is an orthogonal sum of a shift S and a unitary operator 

by Wold decomposition of an isometry. Let S(x\,X2,x$,...) =  (0. r , . :r.-2, .r:i. ...). The 

space of all vectors of the form (:rj,0, £3,0,...) clearly matches the requirements for M. 

in Proposition 5.40, since 5(.r1,0, x;j,0 ,x5,0 ,..) =  (0,xi, 0 ,2:3,0, X5, ...) is orthogonal to 

span(xi,Q, x$, 0,...) =  AA. The result follows from Proposition 5.39.

1 2 2



Chapter 6

Conclusion

6.1 Conclusion

The results in this thesis show that every linear operator acting oil a Hilbert space has 

a direct sum decomposition into a normal part and a completely non-normal part and 

that either direct summand may be absent. Similarly, every contraction operator has a 

direct sum decomposition into a unitary part and a completely lion-unitary part. The 

problem of decomposing some classes of operators as a direct, sum Inis been solved in 

Chapter Two and Chapter Three. To aid in carrying out a direct sum decomposition of 

an. operator. we studied its invariant and hyperinvariant lattices. This work was done in 

Chapter Three of this thesis. We have used simple operator theoretic tools to find out 

when some operators turn out to lie normal or pure and when certain contractions are 

unitary or completely non-unitary. We have found a relationship between the direct sum 

decomposition of an operator and its invariant and hyperinvariant lattices. In Chapter 

Five we have studied the idea of factorizing a given linear operator into two or more 

factors. We have found conditions under which a certain operator factorizes into a 

certain number of factors.

6.2 Summary o f M ain Contributions

In t his thesis we have made several key contributions about the spectral properties for 

some classes ol operators. We have extended results on some classes of operators to 

higher classes of operators.



In Chapter Two we have developed a mechanism to determine conditions under which 

some higher classes of operators are normal. For example, in Theorem 2.G we have shown 

t hat if a /i-hvponormal operator is similar to its adjoint, t hen it has no completely non­

normal direct summand. In Theorem 2.4 we have relaxed the condition of similarity and 

extended t his result to a (p, A;)-qvmsihyponormal operator which is a quasialfine trans­

form of a co-p-hyponormal operator. In particular, we have shown in Theorem 2.4 that 

a p-quasihyponormal operator which is a quasiafline transform of a normal operat or is 

normal. We have shown in Lemma 2.14 that if an operator is (p, A:)-quasihyponormal 

such that t he restriction of the operator to an invariant subspace is injective and nor­

mal, then the operator decomposes into a direct sum of nontrivial normal and com­

pletely non-normal (complementary) parts. In Lemma 2.22, we have shown that any 

p-quasihyponorinal operator that densely intertwines a normal operator is also normal. 

We have proved in Proposition 2.43 that any linear operator T  that is 2-normal and 

quasinormal and is injective on Ran([T*,T ]) has no c.n.n. part.

In Chapter Three we have solved a long standing open question: ’’When are the 

c.n.n parts of quasisimilar hyponormal contractions quasisimilar?” , by investigating their

c.n.u. parts. In this direction we have shown in Corollary 3.7 that, this is the case when
/

the c.n.u. part of one of the contractions has finite multiplicity. In Proposition 3.31, 

we have characterized isometries with deficiency index zero as unitary operators. Using 

Proposition 3.31, we have proved in Proposition 3.32 that every isometry with nonzero 

deficiency index is a direct sum of a unilateral shift and a unitary operator. This re­

sult agrees with the Wold Decomposition of an isometry. In Proposition 3.18, we have 

proved that the c.n.u. part of an operator which is similar to a normal contraction is of 

class Coo- Characterizing some contractions in terms of characteristic functions, we have 

shown in Corollary 3.23 that the characteristic function of any isometry is identically 

zero almost everywhere. We have proved in Corollary 3.52 that if two linear operators 

are almost similar and one operator is c.n.u, then the other is c.n.u.

V

Our work in Chapter Four was essentially to aid in carrying out ( lie direct sum decom­

positions and is a first attempt in trying to give a part ial solution to t he long standing
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open problem: Does every operator have a nontrivial invariant snbspaee? In Lemma. 

4.28, we have shown that if two linear operators are quasisimilar and one operator has 

a nontrivial hyperinvariant snbspaee, then so is the ot her. We have characterized some 

classes of operators in terms of t heir invariant and hyperinvariant lat tices. For instance, 

in Corollary 4.32, we have shown that if T  is normal t hen every hyperinvariant snbspaee 

of T  is also hyperinvariant for T*. We have also shown in Corollary 4.35 that for any 

c.n.n. linear operator T, every invariant subspace is also hypeihmiriant for T.

In Chapter five, we have proved several results on factorization of some operators. 

We have shown in Proposition 5.13 that, any multicyclic operator with multiplicity in 

is a product of m cyclic operators. We have also proved in Corollary 5.17 that any 

operator T  with dim {Ker(T*)) <  k , (2 <  k <  oo) is the product of at most k+  2 cyclic 

operators. In Theorem 5.20, we have shown t hat any invertible operator is a product 

of two self-adjoint operators if and only if the operator is similar to its adjoint. We 

have proved interesting results about normal and unitary operators. For instance, in 

Corollary 5.34, we have shown that if an invertible normal operator has a unitary direct 

summand acting on an infinite dimensional subspace of a Hilbert space, then it is a 

product of three n-th roots of t he identity. We have proved a consequence of this result

in Corollary 5.35 for the case of a unitary operator.
/

6.3 Future Research

The results in this thesis clearly demonstrate t hat it is of considerable interest to carry 

out more analysis in order to determine structures and properties of operators. These 

results could be used to give more insight into t he problem of determining the struc­

ture of operators in some classes of operators. For instance, given t he subspace lattice 

and hyperinvariant lattice of an arbitrary linear operator, we may be able to discern 

the location of the spectrum of the operator. It is clear from this work that direct 

summands and factors of a linear operator reveal information about the operator. This 

thesis has produced many new results on direct sum decomposition and factorization of 

some classes of operators. The treatment of t he topic is, however, far from complete. 

We give a list of some possibilities for future research.
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1. It. is well-known from results in this work tlmt. if the spectrum of a A-quasi- 

hvponormal operator has zero Lebesgue measure, t hen t he operator can <le decomposed 

as direct sum of a normal operator and a nilpotent operator. It is of considerable interest 

to find out more int rinsic propert ies of the nilpotent summand. For instance, what are 

the spectral properties of the operator if its nilpotent. summand happens to be the zero 

operator or a non-zero nilpot ent operator?

2. From the decomposition results in this thesis, it, is clear that every c.n.n. contrac­

tion is completely non-unitary. It would be worthwhile if one were able to decompose 

any c.n.n contraction as a direct, sum of a normal and a c.n.n. contraction.

3. Direct sum decomposition and factorization reveals spectral information about a 

linear operator. An interesting fut ure research direction is to investigate how the spec­

trum, the numerical range and the norm of each direct summand and factor compares 

with that of the operator.

4. To date, special research emphasis has been on the direct sum decomposition of 

an operat.or into a normal and a c.n.n. part and a contraction into a unitary and a 

c.n.u. part. We anticipate other forms of direct sum decompositions where the direct 

summands have other properties.

5. Most of our results on factorization were on a single linear operator. An interest­

ing fut ure research direction would be to find out the relationship of such factorizations 

for operators which are unitarily equivalent., similar, quasisimilar, hyperquasisimilar, 

almost-similar, commute or are quasiaffme transforms of each ot her.

6. In the (numerical) solution of linear equations and eigenvalue problems.

The central theme in the decomposition of the abst ract operator linear system Ax =  y 

into sets of linear subsystems (equations) which can be solved independently is to obtain 

a conceptual simplification of the system model. There are computational reasons for 

examining the decomposition process: Decomposition provides an alternative to inver-
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sion a»s a technique for solving or analyzing t he equations which describe a system. In 

part icular, decomposit ion provides a practical technique for computing solut ions to lin­

ear differential equations wit h arbitrary inputs. The ability to combine t he solut ions to 

small subproblems into a solut ion for t he full system equation depends on t he principle 

of linearity. It, is known that we can decompose most linear syst ems int o sets of simple 

scalar multiplications. It would be a research challenge to determine the optimal number 

of such subsystems.

7. Operator decomposition and factorization is applicable in the study of mathemat­

ical systems theory. It, reduces t he computational word length required in t he operator 

computations. It is useful in easing the solution of linear operator equations. Results 

on the factorization of operat ors as products of self-adjoint operators in Hilbert space 

play a role in pure and applied mathematics. Problems which give rise to linear oper­

ator equations include linear regression, optimal resource allocation, optimal filtering, 

opt imal control and solutions of integral and partial differential equations, which have 

lots of applications in control, signal and image processing. An interesting research 

direction would be to develop a real-time application of operator decompositions and 

factorizations in signal and image processing.
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